
On the Computational Tractability of a Geographic
Clustering Problem Arising in Redistricting
Vincent Cohen-Addad
CNRS and Sorbonne Université, Paris, France

Philip N. Klein
Brown University, Providence, RI, USA

Dániel Marx !

CISPA Helmholtz Center for Information Security,
Saarland Informatics Campus, Germany

Archer Wheeler
Brown University, Providence, RI, USA

Christopher Wolfram
Brown University, Providence, RI, USA

Abstract
Redistricting is the problem of dividing up a state into a given number k of regions (called districts)
where the voters in each district are to elect a representative. The three primary criteria are: that
each district be connected, that the populations of the districts be equal (or nearly equal), and
that the districts are “compact”. There are multiple competing definitions of compactness, usually
minimizing some quantity.

One measure that has been recently been used is number of cut edges. In this formulation of
redistricting, one is given atomic regions out of which each district must be built (e.g., in the U.S.,
census blocks). The populations of the atomic regions are given. Consider the graph with one vertex
per atomic region and an edge between atomic regions with a shared boundary of positive length.
Define the weight of a vertex to be the population of the corresponding region. A districting plan
is a partition of vertices into k pieces so that the parts have nearly equal weights and each part is
connected. The districts are considered compact to the extent that the plan minimizes the number
of edges crossing between different parts.

There are two natural computational problems: find the most compact districting plan, and
sample districting plans (possibly under a compactness constraint) uniformly at random.

Both problems are NP-hard so we consider restricting the input graph to have branchwidth at
most w. (A planar graph’s branchwidth is bounded, for example, by its diameter.) If both k and
w are bounded by constants, the problems are solvable in polynomial time. In this paper, we give
lower and upper bounds that characterize the complexity of these problems in terms of parameters
k and w. For simplicity of notation, assume that each vertex has unit weight. We would ideally like
algorithms whose running times are of the form O(f(k, w)nc) for some constant c independent of k

and w (in which case the problems are said to be fixed-parameter tractable with respect to those
parameters). We show that, under standard complexity-theoretic assumptions, no such algorithms
exist. However, the problems are fixed-parameter tractable with respect to each of these parameters
individually: there exist algorithms with running times of the form O(f(k)nO(w)) and O(f(w)nk+1).
The first result was previously known. The new one, however, is more relevant to the application to
redistricting, at least for coarse instances. Indeed, we have implemented a version of the algorithm
and have used to successfully find optimally compact solutions to all redistricting instances for France
(except Paris, which operates under different rules) under various population-balance constraints.
For these instances, the values for w are modest and the values for k are very small.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases redistricting, algorithms, planar graphs, lower bounds

Digital Object Identifier 10.4230/LIPIcs.FORC.2021.3

Related Version A version without discussion of the implementation is at:
Previous Version: http://https://arxiv.org/abs/2009.00188

Funding Philip N. Klein: Supported by National Science Foundation grant CCF-1841954.
Dániel Marx: Supported by European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.
Archer Wheeler : Supported by National Science Foundation grant CCF-1841954.

© Vincent Cohen-Addad, Philip N. Klein, Dániel Marx, Archer Wheeler, and Christopher Wolfram;
licensed under Creative Commons License CC-BY 4.0

2nd Symposium on Foundations of Responsible Computing (FORC 2021).
Editors: Katrina Ligett and Swati Gupta; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marx@cispa.de
https://doi.org/10.4230/LIPIcs.FORC.2021.3
http://https://arxiv.org/abs/2009.00188
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Computational Tractability of Redistricting

Figure 1 On the left is an imaginary state/department. In the middle, the state is subdivided
into smaller regions (atoms), e.g. census tracts. On the right, the planar dual is shown. Each atomic
region is represented by a node. (There is also a node for the single infinite region outside the state
boundary but here we ignore that node here.) For each maximal contiguous boundary segment
between a pair of atomic regions, the planar dual has an edge between the corresponding pair of
nodes.

Figure 2 The figure on the left shows an example of a districting plan with seven districts. Each
district is the union of several atomic regions. The figure in the middle depicts the districting plan
superimposed on the planar dual, showing that it corresponds to a partition of the atoms into
connected parts; the cost of the solution is the sum of costs of edges of the dual that cross between
different parts. In this paper, a districting plan is compact to the extent that this sum of costs is
small. The figure on the right illustrates a breadth-first search in the radial graph of the graph G of
atomic regions. As stated in Section 2.2, the radial graph of G has a node for every vertex of G and
a node for every face of G, and an edge between a vertex-node and a face-node if the vertex lies on
the face’s boundary. This diagram shows that every face is reachable from the outer face within six
hops in the radial graph of the graph G of atomic regions. This implies that the branchwidth of G

and of its dual are at most six.

1 Introduction

For an undirected planar graph G with vertex-weights and a positive integer k, a connected
partition of the vertices of G is a partition into parts each of which induces a connected
subgraph. If G is equipped with nonnegative integral vertex weights and [L, U) is an interval
we say such a partition has part-weight in [L, U) if the sum of weights of each part lies in the
interval. If G is equipped with nonnegative edge costs, we say the cost of such a partition is
the sum of costs of edges uv where u and v lie in different parts.

Consider the following computational problems:
optimization: Given a planar graph G with vertex weights and edge costs, a number k,
and a weight interval [L, U), find the minimum cost of a partition into k connected parts
with part-weight in [L, U).
sampling: Given in addition a number C, generate uniformly at random a cost-C partition
into k connected parts with part-weight in [L, U).

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:3

These problem arise in political redistricting. Each vertex represents a small geographical
region (such as a census block or census tract or county), and its weight represents the
number of people living in the region. Each part is a district. A larger geographic region
(such as a state) must be partitioned into k districts when the state is to be represented in
a legislative body by k people; each district elects a single representative. The partition is
called a districting plan.

The rules governing this partitioning vary from place to place, but usually there are (at
least) three important goals: contiguity, population balance, and compactness.1

Contiguity is often interpreted as connectivity; we represent this by requiring that the set
of small regions forming each district is connected via shared boundary edges.
Population balance requires that two different districts have approximately equal numbers
of people.
One measure of compactness that has been advocated e.g. by DeFord, Duchin, Solomon,
and Tenner [7, 8, 11, 12] is the number of pairs of adjacent small regions that lie in distinct
districts, equivalent to the cardinality of the cut-set corrresponding to the partition.

Thus in the definitions of the optimization and sampling problems above, the connectiv-
ity constraint reflects the contiguity requirement, the part-weight constraint reflects the
population balance requirement, and the cost is a measure of compactness.

The optimization problem described above arises in computer-assisted redistricting; an
algorithm for solving this problem could be used to select a districting plan that is optimally
compact subject to contiguity and desired population balance, where compactness is measured
as discussed above.

The sampling problem arises in evaluating a plan; in court cases [4, 35, 24, 23, 36] expert
witnesses argue that a districting plan reflects an intention to gerrymander by comparing it
to districting plans randomly sampled from a distribution. The expert witnesses use Markov
Chain Monte Carlo (MCMC), albeit unfortunately on Markov chains that have not been
shown to be rapidly mixing, which means that the samples are possibly not chosen according
to anything even close to a uniform distribution. There have been many papers addressing
random sampling of districting plans (e.g. [1, 3, 8, 23, 24]) but, despite the important role of
random sampling in court cases, there are no results on provably uniform or nearly uniform
sampling from a set of realistic districting plans for a realistic input in a reasonable amount
of time.

It is known that even basic versions of these problems are NP-hard. If the vertex weights
are allowed to very large integers, expressed in binary, the NP-hardness of Subset Sum
already implies the NP-completeness of partitioning the vertices into two equal-weight subsets.
However, in application to redistricting the integers are not very large. For the purpose of
seeking hardness results, it is better to focus on a special case, the unit-weight case, in which
each vertex has weight one. For this case, Dyer and Frieze [13] showed that, for any fixed
p ≥ 3, it is NP-hard to find a weight-balanced partition of the vertices of a planar graph
into connected parts of size p. Najt, Deford, and Solomon [33] showed that even without the
constraint on balance, uniform sampling of partitions into two connected parts is NP-hard.

Following Ito et al. [27, 26] and Najt et al. [33], we therefore consider a further restriction
on the input graph: we consider graphs with bounded branchwidth/treewidth.2

1 These terms are often not formally defined in law.
2 Treewidth and branchwidth are very similar measures; they are always within a small constant factor of

each other. Thus a graph has small treewidth if and only if it has small branchwidth.

FORC 2021

3:4 Computational Tractability of Redistricting

Figure 3 This map shows the twenty-one cantons for the department “Sarthe” of France. The
cantons are the atomic regions for the redistricting of Sarthe. The corresponding radial graph has
radius six, so there is a branch decomposition of width w = 6. For the upcoming redistricting of
France, Sarthe must be divided into k = 3 districts.

The branchwidth of a graph is a measure of how treelike the graph is: often even an
NP-hard graph problem is quickly solvable when the input is restricted to graphs with low
branchwidth. For planar graphs in particular, there are known bounds on branchwidth that
are relevant to the application. A planar graph on n vertices has branchwidth O(

√
n), and a

planar graph of diameter d has branchwidth O(d). There is an stronger bound, which we
will review in Section 2.2.

Najt, Deford, and Solomon [33] show that, for any fixed k and fixed w, the optimization and
sampling problems without the constraint on population balance can be solved in polynomial
time on graphs of branchwidth at most w.3 Significantly, the running time is of the form
O(f(k, w)nc) for some constant c. Such an algorithm is said to be fixed-parameter tractable
with respect to k and w, meaning that as long as k and w are fixed, the problem is considered
tractable. Fixed-parameter tractability is an important and recognized way of coping with
NP-completeness.

However, their result has two disadvantages. First, as the authors point out, the big O
hides a constant that is astronomical; for NP-hard problems, one expect that the dependence
on the parameters be at least exponential but in this case it is a tower of exponentials. As
the authors state, the constants in the theorems on which they rely are “too large to be
practically useful.”

Second, because their algorithm cannot handle the constraint on population balance, the
algorithm would not be applicable to redistricting even if it were tractable. The authors
discuss (Remark 5.11 in [33]) the extension of their approach to handle balance: “It is easy to
add a relational formula...that restricts our count to only balanced connected k-partitions....
From this it should follow that ... [the problems are tractable]. However ... the corresponding
meta-theorem appears to be missing from the literature.”

In our first result, we show that in fact what they seek does not exist: under a stand-
ard complexity-theoretic assumption, there is no algorithm that is fixed-parameter
tractable with respect to both k and w.

More precisely, we use the analogue of NP-hardness for fixed-parameter tractability,
W [1]-hardness. We show the following in Section 4.

3 They use treewidth but the results are equivalent.

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:5

▶ Theorem 1. For unit weights, finding a weight-balanced k-partition of a planar graph of
width w into connected parts is W [1]-hard with respect to k + w.

In the theory of fixed-parameter tractability (see e.g. Section 13.4 of [6]) this is strong
evidence that no algorithm exists with a running time of the form O(f(k, w)nc) for fixed c

independent of k and w.
This is bad news but there is a silver lining. The lower bound guides us in seeking

good algorithms, and it does not rule out an algorithm that has a running time of the form
f(k)nO(w) or f(w)nO(k). That is, according to the theory, while there is no algorithm that
is fixed-parameter tractable with respect to both k and w simultaneously, there could be one
that is fixed-parameter tractable with respect to k alone and one that is fixed-parameter
tractable with respect to w alone.

These turn out to be true. First we discuss fixed-parameter tractability with respect to
k. Ito et al. [27, 26] show that, even for general (not necessarily planar) graphs there is an
algorithm with running time O((w + 1)2(w+1)U2(w+1)k2n), where U is the upper bound on
the part weights. Thus for unit weights, the running time is O((w + 1)2(w+1)n2w+3).

However, for the application we have in mind this is not the bound to try for. Indeed,
the motivation for this project arose from a collaboration between the first author and some
other researchers. That team, in anticipation of the upcoming redistricting in France, sought
to find good district plans with respect to various criteria for French departments. Their
approach was to develop code that, for each department, would explicitly enumerate all
district plans that (a) are connected and (b) are population-balanced to within 20% of the
mean. Their effort succeeded on all but three departments (not including Paris, which follows
different rules): Doubs (25), Saône-et-Loire (71) and, Seine-Maritime (76). The question
arose: could another algorithmic approach succeed in finding optimal district plans for these
under some objective function? We observed that the numbers of districts tend to be very
small (sixty-three out of about a hundred departments have between two and five districts,
and the average is a little over three.) The number of atoms of course tends to be much
larger, but the diameter of the graph is often not so large, and hence the same is true for
branchwidth.4

Thus, to address such instances, we need an algorithm that can tolerate a very small
number k of districts and a moderately small branchwidth w. We prove the following in
Section 5.

▶ Theorem 2. For the optimization problem and the sampling problem, there are algorithms
that run in O(cwUkSn(log U +log S)) time, where c is a constant, k is the number of districts,
w ≥ k is an upper bound on the branchwidth of the planar graph, n is the number of vertices
of the graph, U is the upper bound on the weight of a part, and S is an upper bound on the
cost of a desired solution.

Remarks.
1. In the unit-cost case (every edge cost is one), S ≤ n.
2. In the unit-weight, unit-cost case, the running time is O(cwnk+2 log n).
3. For practical use the input weights need not be the populations of the atoms; if approximate

population is acceptable, the weight of an atom with population p can be, e.g., ⌈p/1000⌉.

4 For example, the French redistricting instances all have branchwidth at most eight; the average is about
five.

FORC 2021

3:6 Computational Tractability of Redistricting

In order to demonstrate that the theoretical algorithm is not inherently impractical, we
developed an implementation for the optimization problem, and successfully applied it to find
solutions for the redistricting instances in France. French law requires that the population
of each department needs to be within 20% of the mean. The implementation found the
cut-size-minimizing solutions subject to the 20% population balance constraint, and subject
to a 10% population balance constraint. Using a 5% population balance constraint, we
found optimal solutions for over half of the departments. We briefly describe the results in
Section 6, and we illustrate some district plans in the full version of the paper.

2 Preliminaries

2.1 Branchwidth
A branch decomposition of a graph G is a rooted binary tree with the following properties:
1. Each node x is labeled with a subset C(x) of the edges of G.
2. The leaves correspond to the edges of G: for each edge e, there is a leaf x such that

C(x) = {e}.
3. For each node x with children x1 and x2, C(x) is the disjoint union of C(x1) and C(x2).
We refer to a set C(x) as a branch cluster. A vertex v of G is a boundary vertex of C(x) if G

has at least one edge incident to v that is in C(x) and at least one edge incident to v that
is not in C(x). The width of a branch cluster is the number of boundary vertices, and the
width of a branch decomposition is the maximum cluster width. The branchwidth of a graph
is the minimum w such that the graph has a branch decomposition of width w.

For many optimization problems in graphs, if the input graph is required to have small
branchwidth then there is a fast algorithm, often linear time or nearly linear time, and often
this algorithm can be adapted to do uniform random sampling of solutions. Therefore Najt,
Deford, and Solomon [33] had good reason to expect that there would be a polynomial-
time algorithm to sample from balanced partitions where the degree of the polynomial was
independent of w and k.

2.2 Radial graph
For a planar embedded graph G, the radial graph of G has a node for every vertex of G and
a node for every face of G, and an edge between a vertex-node and a face-node if the vertex
lies on the face’s boundary. Note that the radial graph of G is isomorphic to the radial graph
of the dual of G. There is a linear-time algorithm that, given a planar embedded graph G

and a node r of the radial graph, returns a branch decomposition whose width is at most the
number of hops required to reach every node of the radial graph from r (see, e.g., [30]). For
example, Figure 2 shows that the number of hops required is at most six, so the linear-time
algorithm would return a branch decomposition of width w at most six.

Using this result, some real-world redistricting graphs can be shown to have moderately
small branchwidth. For example, Figure 3 shows a department of France, Sarthe, that will
need to be divided into k = 3 districts. The number of hops required for this example is six,
so we would get a branch decomposition of width w at most six.

2.3 Sphere-cut decomposition
The branch decomposition of a planar embedded graph can be assumed to have a special
form. The radial graph of G can be drawn on top of the embedding of G so that a face-node
is embedded in the interior of a face of G and a vertex-node is embedded in the same location

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:7

as the corresponding vertex. We can assume that the branch decomposition has the property
that corresponding to each branch cluster C is a cycle in the radial graph that encloses
exactly the edges belonging to the cluster C, and the vertices on the boundary of this cluster
are the vertex-nodes on the cycle. This is called a sphere-cut decomposition [10]. If the branch
decomposition is derived from the radial graph using the linear-time algorithm mentioned
above, the sphere-cut decomposition comes for free. Otherwise, there is an O(n3) algorithm
to find a given planar graph’s least-width branch decomposition, and if this algorithm is
used it again gives a sphere-cut decomposition.

3 Related work

There is a vast literature on partitioning graphs, in particular on partitions that are in
a sense balanced. In particular, in the area of decomposition of planar graphs, there are
algorithms [37, 34, 38] for sparsest cut and quotient cut, in which the goal is essentially to
break off a single piece such that the cost of the cut is small compared to the amount of
weight on the smaller side. The single piece can be required to be connected. There are
approximation algorithms for variants of balanced partition [19, 17] into two pieces. These
only address partitioning into k = 2 pieces, the pieces are not necessarily connected, and
the balance constraint is only approximately satisfied. In one paper [29], the authors use a
variant of binary decision diagrams to construct a compact representation of all partitions of
a graph into k connected parts subject to a balance constraint. However, their algorithm
does not address the problem of minimizing the size of the cut-set.

There are many papers on algorithms relevant to computer-aided redistricting (a few
examples are [5, 14, 22, 25, 32, 18]). Note that in this paper we focus on algorithms that
have guaranteed polynomial running times (with respect to fixed parameters k and w) and
that are guaranteed to find optimal solutions or that provably generate random solutions
according to the uniform distribution. There has been much work on using Markov Chain
Monte Carlo as a heuristic for optimization or for random generation but so far such methods
are not accompanied by mathematical guarantees as to running time or quality of output.

Finally, there many papers on W [1]-hardness and more generally lower bounds on fixed-
parameter tractability, as this is a well-studied area of theoretical computer science. Our
result is somewhat rare in that most graph problems are fixed-parameter tractable with
respect to branchwidth/treewidth. However, there are by now other W [1]-hardness results
with respect to treewidth [9, 2, 16, 31, 21, 20] and a few results [2, 15] were previously known
even under the restriction that the input graph must be planar.

4 W[1]-Hardness

In this section, we show that the problem is W[1]-hard parameterized by k + w, where k is
the number of districts and w the treewidth of the graph.

We start with the following lemma that shows that it is enough to prove that a more
structured version of the problem (bounded vertex weights, each region must have size greater
than 1) is W[1]-hard.

▶ Lemma 3. If the planar vertex-weighted version of the problem is W[1]-hard parameterized
by k + w when the total weight of each region should be greater than 1, and the smallest
weight is 1 and the largest weight is polynomial in the input size, then the planar unweighted
version of the problem is W[1]-hard parameterized by k + w.

FORC 2021

3:8 Computational Tractability of Redistricting

Proof. Consider a weighted instance of the problem satisfying the hypothesis of the lemma.
Let wmin and Wmax respectively denote the minimum and maximum weights. First, rescale
all the weights of the vertices so as to make them integers. Since the input weights are
rationals and Wmax is polynomial in the input size, this does not change the size complexity
of the problem by more than a polynomial factor. We now make the following transformations
to the instance. For each vertex v of weight w(v), create w(v)−1 unit-weight dummy vertices
and connect each of them to v with a single edge, then remove the weight of v.

This yields a unit-weight graph which satisfies the following properties. First, if the input
graph was planar, then the resulting graph is also planar. Second, since the ratio Wmax is
polynomial in the input size, the total number of vertices in the new graph is polynomial in
the input size. Finally, any solution for the problem on the vertex-weighted graph can be
associated to a solution for the problem on the unit-weight graph: for each vertex v of the
original graph, assign each of the w(v) − 1 dummy vertices to the same region as v. We have
that the associated solution has connected regions of exactly the same weight as the solution
in the weighted graph. Moreover, we claim that any solution for the unit-weight graph
is associated to a solution of the input weighted graph: this follows from the assumption
that the prescribed weights for the regions is greater than 1 and that the regions must be
connected. Thus for each vertex v, in any solution all the w(v) − 1 dummy vertices must
belong to the region of v.

Therefore, if the planar vertex-weighted version of the problem is W[1]-hard parameterized
by k + w when the smallest weight is at least 1, the total weight of each region should be
greater than 1, and the sum of the vertex weights of the graph is polynomial in the input size,
then the planar unit-weight version of the problem is W[1]-hard parameterized by k + w. ◀

By Lemma 3, we can focus without loss of generality on instances G = (V, E), w : V 7→ R+
where the vertex weights w lie in the interval [1, |V |c] for some absolute constant c. We next
show that the problem is W[1]-hard on these instances.

We reduce from the Bin Packing problem with polynomial weights. Given a set of integer
values v1, . . . , vn and two integers B and k, the Bin Packing problem asks to decide whether
there exists a partition of v1, . . . , vn into k parts such that for each part of the partition,
the sum of the values is at most B. The Bin Packing problem with polynomially bounded
weights assumes that there exists a constant c such that B = O(nc). Note that for the case
where the weights are polynomially bounded, we can assume w.l.o.g. that the sum of the
weights is exactly kB by adding kB −

∑n
i=1 vi elements of value 1. Since the weights are

polynomially bounded and that each weight is integer we have that (1) the total number of
new elements added is polynomial in n, hence the size of the problem is polynomial in n, and
(2) there is a solution to the original problem if and only if there is a solution to the new
problem: the new elements can be added to fill up the bins that are not full in the solution
of the original problem.

We will make use of the following theorem of Jansen et al. [28].

▶ Theorem 4 ([28]). The Bin Packing problem with polynomial weights is W[1]-hard para-
meterized by the number of bins k. Moreover, there is no f(k)no(k/ log k) time algorithm
assuming the exponential time hypothesis (ETH).

We now proceed to the proof of Theorem 1. From an instance of Bin Packing with
polynomially bounded weights and whose sum of weights is kB, create the following instance
for the problem. For each i ∈ [2n + 1], create

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:9

ℓi =
{

k if i is odd
k + 1 if i is even

vertices s1
i , . . . , sℓi

i . Let Si = {s1
i , . . . , s

ℓ(i)
i }. Moreover, for each odd i < n, for each 1 ≤ j ≤ k,

connect sj
i to sj

i−1 and sj
i+1, and when j < k, also to sj+1

i−1 and sj+1
i+1 . Let G be the resulting

graph.
It is easy to see that G is planar. We let f∞ be the longest face:

{s1
1, . . . , sk

1 , sk+1
2 , sk

3 , . . . , sk
2n+1, sk−1

2n+1, . . . , s1
2n+1, s1

2n, . . . , s1
2}.

We claim that the treewidth of the graph is at most 7k. To show this we argue that the
face-vertex incidence graph Ḡ of G has diameter at most 2k + 4 and by Lemma 3 this
immediately yields that the treewidth of G is at most 10k. We show that each vertex of Ḡ is
at hop-distance at most k + 2 of the vertex corresponding to f∞. Indeed, consider a vertex
sj

i (for a face, consider a vertex sj
i on that face). Recall that for each i0, j0, we have that sj0

i0

is adjacent to sj0
i+1 and sj0+1

i+1 and so, sj
i is at hop-distance at most k + 1 from either s

ℓ(i)
i

or s1
i in Ḡ. Moreover both s1

i and s
ℓ(i)
n are on face f∞ and so sj

i is at hop-distance at most
k + 2 from f∞ in Ḡ. Hence the treewidth of G is at most 10k.

Our next step is to assign weights to the vertices. Then, we set the weight w(sj
i) of

every vertex sj
i of {s1

1, . . . , sk
1} to be (kB)2 and the weight w(sj

i) of every vertex sj
i of

{s1
2n+1, . . . , sk

2n+1} to be (kB)4. For each odd i ̸= 1, 2n + 1 we set a weight of 1/(2n − 2).
Finally, we set the weight of each vertex sj

i where i is even to be vi/2. Let T = (kB)2 +
(kB)4 + 1/2 + kB, and recall that kB =

∑n
i=1 vi.

▶ Fact 1. Consider a set S of vertices containing exactly one vertex of Si for each i. Then
the sum of the weights of the vertices in S is T .

We now make the target weight of each region to be (kB)2 + (kB)4 + kB + B = T + B.
We have the following lemma.

▶ Lemma 5. In any feasible solution to the problem, there is exactly 1 vertex of {s1
1, . . . , sk

1}
and exactly 1 vertex of {s1

n, . . . , s
ℓ(n)
n } in each region.

Proof. Recall that by definition we have that
∑n

i=1 vi = kB. Moreover, the number of
vertices with weight equal to (kB)2 is exactly k. Thus, since the target weight of each region
is (kB)2 + (kB)4 + B + kB, each region has to contain exactly 1 vertex from {s1

1, . . . , sk
1}

and exactly 1 vertex from {s1
n, . . . , s

ℓ(n)
n }. ◀

We now turn to the proof of completeness and soundness of the reduction. We first show
that if there exists a solution to the Bin Packing instance, namely that there is a partition
into k parts such that for each part of the partition, the sum of the values is B, then there
exists a feasible solution to the problem. Indeed, consider a solution to the Bin Packing
instance {B1, . . . , Bk} and construct the following solution to the problem. For each odd
i, assign vertices s1

i , . . . , sk
i to regions R1, . . . , Rk respectively. For each i ∈ [n], perform

the following assignment for the even rows. Let ui be the integer in [k] such that vi ∈ Bui .
Assign all vertices s1

2i, . . . , sui−1
2i to regions R1, . . . Rui−1 respectively. Assign both vertices

sui
2i and sui+1

2i to region Rui
. Assign all vertices sui+2

2i , . . . sk+1
2i to regions Rui+1, . . . Rk. The

connectivity of the regions follows from the fact that for each odd i, sj
i is connected to both

sj
i+1 and sj+1

i+1 and to both sj
i−1 and sj+1

i−1 .
We then bound the total weight of each region. Let’s partition the vertices of a region Rj

into two: Let SRj
be a set that contains one vertex from each Si and let ¯SRj

be the rest of
the elements. The total weight of the vertices in SRj is by Fact 1 exactly T . The total weight

FORC 2021

3:10 Computational Tractability of Redistricting

of the remaining vertices corresponds to the sum of the values vi such that |Rj ∩ Si| = 2
which is

∑
vi∈Bj

vi = B since it is a solution to the Bin Packing problem. Hence the total
weight of the region is T + B, as prescribed by the problem.

We finally prove that if there exists a solution for the problem with the prescribed region
weights, then there exists a solution to the Bin Packing problem. Let R1, . . . , Rk be the
solution to the problem. By Lemma 5, each region contains one vertex of s1

1, . . . sk
1 and one

vertex of s1
1, . . . sk

2n+1. Since the regions are required to be connected, there exists a path
joining these two vertices and so by the pigeonhole principle for each odd i, each region
contains exactly one vertex of s1

i , . . . sk
i . Moreover for each even i, each region contains at

least one vertex of s1
i , . . . sk+1

i and exactly one region contains two vertices. Let ϕ(i) ∈ [k]
be such that |Rϕ(i) ∩ {s1

i , . . . sk+1
i }| = 2. We now define the following solution for the Bin

Packing problem. Define the jth bin as Bj = {vi | ϕ(i) = j}. We claim that for each bin Bj

the sum of the weights of the elements in Bj is exactly B. Indeed, observe that region Rj

contains exactly one vertex of s1
i , . . . sk

i for each odd i and exactly one vertex of s1
i , . . . sk+1

i

for each even i except for the sets s1
i , . . . sk+1

i where ϕ(i) = j for which it contains two
vertices. Thus by Fact 1, the total sum of the weights is T +

∑
i|ϕ(i)=j vi and since the target

weight is T + B we have that
∑

i|ϕ(i)=j vi = B. Since the weight of Bj is exactly
∑

i|ϕ(i)=j vi

the proof is complete.

5 Algorithm

In this section, we describe the algorithms of Theorem 2. In describing the algorithm, we
will focus on simplicity rather than on achieving the best constant possible as the base of k.

5.1 Partitions
A partition of a finite set Ω is a collection of disjoint subsets of Ω whose union is Ω. A
partition defines an equivalence relation on Ω: two elements are equivalent if they are in the
same subset.

There is a partial order on partitions of Ω: π1 ≺ π2 if every part of π1 is a subset of a
part of π2. This partial order is a lattice. In particular, for any pair π1, π2 of partitions of
Ω, there is a unique minimal partition π3 such that π1 ≺ π3 and π2 ≺ π3. (By minimal, we
mean that for any partition π4 such that π1 ≺ π4 and π2 ≺ π4, it is the case that π3 ≺ π4.)
This unique minimal partition is called the join of π1 and π2, and is denoted π1 ∨ π2.

It is easy to compute π1 ∨ π2: initialize π := π1, and then repeatedly merge parts that
intersect a common part of π2.

In a slight abuse of notation, we define the join of a partition π1 of one finite set Ω1 and
a partition π2 of another finite set Ω2. The result, again written π1 ∨ π2, is a partition of
Ω1 ∪ Ω2. It can be defined algorithmically: iniitalize π to consist of the parts of π2, together
with a singleton part {ω} for each ω ∈ Ω2 − Ω1. Then repeatedly merge parts of π that
intersect a common part of π2.

5.2 Noncrossing partitions
The sphere-cut decomposition is algorithmically useful because it restricts the way a graph-
theoretic structure (such as a solution) can interact with each cluster. For a cluster C,
consider the corresponding cycle in the radial graph, and let θC be the cyclic permutation
(v1 v2 · · · vm) of boundary vertices in the order in which they appear in the radial cycle.
(By a slight abuse of notation, we may also interpret θC as the set {v1, . . . , vm}.

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:11

First consider a partition ρin of the vertices incident to edges belonging to C, with the
property that each part induces a connected subgraph of C. Planarity implies that the
partition induced by ρin on the boundary vertices {v1, . . . , vm} has a special property.

▶ Definition 6. Let π be a partition of the set {1, . . . , m}. We say π is crossing if there are
integers a < b < c < d such that one part contains a and c and another part contains b and d.

It follows from connectivity that the partition induced by ρin on the boundary vertices
θC is a noncrossing partition. Similarly, let ρout be a partition of the vertices incident to
edges that do not belong to C; then ρout induces a noncrossing partition on the boundary
vertices of C.

The asymptotics of the Catalan numbers imply the following (see, e.g., [10]).

▶ Lemma 7. There is a constant c1 such that the number of noncrossing partitions of
{1, . . . , w} is O(cw

1).

Finally, suppose ρ is a partition of all vertices of G such that each part is connected.
Then ρ = ρin ∨ ρout where ρin is a partition of the vertices incident to edges in C (in which
each part is connected) and ρout is a partition of the vertices incident to edges not in C (in
which each part is connected).

Because the only vertices in both ρin and ρout are those in θC , the partition ρ induces
on θC is πin ∨ πout where πin is the partition induced on θC by ρin and πout is the partition
induced on θC by ρout.

5.3 Algorithm overview
The algorithms for optimization and sampling are closely related.

The algorithms are based on dynamic programming using the sphere-cut decomposition
of the planar embedded input graph G.

Each algorithm considers every vertex v of the input graph and selects one edge e that is
incident to v, and designates each branch cluster that contains e as a home cluster for v.

We define a topological configuration of a cluster C to be a pair (πin, πout) of noncrossing
partitions of θC with the following property:

πin ∨ πout has at most k parts. (1)

The intended interpretation is that there exist ρin and ρout as defined in Section 5.2 such
that ϕin is the partition ρin induces on θC and ϕout is the partition ρout induces on θC .

We can assume that the vertices of the graph are assigned unique integer IDs, and that
therefore there is a fixed total ordering of θC . Based on this total ordering, for any partition
π of θC , let p be the number of parts of π, and define representatives(π) to be the p-vector
(v1, v2, . . . , vp) obtained as follows:

v1 is the smallest-ID vertex in θC ,
v2 is the smallest-ID vertex in θC that is not in the same part as v1,
v2 is the smallest-ID vertex in θC that is not in the same part as v1 and is not in the
same part as v2,

and so on.
This induces a fixed total ordering of the parts of πin ∨ πout.
We define a weight configuration of C to be a k-vector w = (w1, . . . , wk) where each wi

is a nonnegative integer less than U . There are Uk such vectors.
We define a weight/cost configuration of C to be a k-vector together with a nonnegative

integer s less than S. There are UkS such configurations.

FORC 2021

3:12 Computational Tractability of Redistricting

We define a configuration of C to be a pair consisting of a topological configuration and
a weight/cost configuration. The number of configurations of C is bounded by cwUkS.

The algorithms use dynamic programming to construct, for each cluster C, a table
TC indexed by configurations of C. In the case of optimization, the table entry TC [Ψ]
corresponding to a configuration Ψ is true or false. For sampling, TC [Ψ] is a cardinality.

Let Ψ = ((πin, πout), ((w1, . . . , wk), s)) be a configuration of C. Let count(Ψ) be the
number of partitions ρin of the vertices incident to edges belonging to C with the following
properties:

ρin induces πin on θC .
Let π = πin ∨ ϕout. Let representatives(π) = (v1, . . . , vp). Then for j = 1, . . . , p, wj is
the total weight of vertices v for which C is a home cluster and such that v belongs to
the same part of ρin ∨ πout as vj .

For optimization, TC [Ψ] is true if count(Ψ) is nonzero. For sampling, TC [Ψ] = count(Ψ).
We describe in Section 5.5 how to populate these tables. Next we describe how they can be
used to solve the problems.

5.4 Using the tables

For the root cluster Ĉ, the cluster that contains all edges of G, θĈ is empty. Therefore there
is only one partition of θĈ , the trivial partition π0 consisting of a single part, the empty set.

To detemine the optimum cost in the optimization problem, simply find the minimum
nonnegative integer s such that, for some w = (w1, . . . , wk) such that each wi lies in [L, U),
the entry TĈ [((π0, π0), (w, s))] is true. To find the solution with this cost, the algorithm needs
to find a “corresponding” configuration for each leaf cluster C({uv}) ; that configuration tells
the algorithm whether the two endpoints u and v are in the same district. This information
is obtained by a recursive algorithm, which we presently describe.

Let C0 be a cluster with child clusters C1 and C2. For i = 0, 1, 2, let (πin
i , πout

i) be a
topological configuration for cluster Ci. Then we say these topological configurations are
consistent if the following properties hold:

For i = 1, 2, πout
i = πout

0 ∨ πin
3−i.

πin
0 = πin

1 ∨ πin
2 .

For i = 0, 1, 2, let (wi, si) be a weight/cost configuration for Ci. We say they are consistent
if w0 = w1 + w2 and s0 = s1 + s2.

Finally, for i = 0, 1, 2, let Ψi = ((πin
i , πout

i), (wi, si)) be a configuration for cluster Ci.
Then we say Ψ1, Ψ2, Ψ3 are consistent if the topological configurations are consistent and
the weight/cost configurations are consistent.

▶ Lemma 8. For a configuration Ψ0 of C0, count(Ψ0) =
∑

Ψ1,Ψ2
count(Ψ1) ·count(Ψ2) where

the sum is over pairs (Ψ1, Ψ2) of configurations of C1, C2 such that Ψ0, Ψ1, Ψ2 are consistent.

The recursive algorithm, given a configuration Ψ for a cluster C such that TC [Ψ] is
true, finds configurations for all the clusters that are descendants of C such that, for each
nonleaf descendant and its children, the corresponding configurations are consistent; for
each descendant cluster C ′, the configuration Ψ′ selected for it must have the property that
TC′ [Ψ′] is true.

The algorithm is straightforward:

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:13

Algorithm 1 Descend(C0, Ψ0).

define Descend(C0, Ψ0):
precondition: TC0 [Ψ0] = true

assign Ψ0 to C0

if C0 is not a leaf config
for each config Ψ1 = ((πin

1 , πout
1), (w1, s1)) of C0’s left child C1,

if TC1 [Ψ1] is true
for each topological config (πin

2 , πout
2) of C0’s right child C2

let (w2, s2) be the weight/cost config of C2 such that
Ψ0, Ψ1, Ψ2 are consistent

where Ψ2 = ((πin
2 , πout

2), (w2, s2))
if TC2 [Ψ2] = true

call Descend(C1, Ψ1) and Descend(C2, Ψ2)
return, exiting out of loops

Lemma 8 shows via induction from root to leaves that the procedure will successfully
find configurations for all clusters that are descendants of C0. For the root cluster Ĉ and a
configuration Ψ̂ of Ĉ such that TĈ [Ψ̂] is true, consider the ΨC configurations found for each
leaf cluster, and let (πin

C , πout
C) be the topological configuration of ΨC Consider the partition

ρ =
∨
C

πin
C

where the join is over all leaf clusters C. Because there are no vertices of degree one, for each
leaf cluster C({uv}), both u and v are boundary vertices, so ρ is a partition of all vertices
of the input graph. Induction from leaves to root shows that this partition agrees with the
weight/cost part (ŵ, ŝ) of the configuration Ψ̂. In particular, the weights of the parts of ρ

correspond to the weights of ŵ, and the cost of the partition equals ŝ.
In the step of Descend that selects (w2, s2), there is exactly one weight/cost config that

is consistent (it can be obtained by permuting the elements of w1 and then subtracting from
w0 and subtracting s1 from s0). By an appropriate choice of an indexing data structure to
represent the tables, we can ensure that the running time of Descend is within the running
time stated in Theorem 2. For optimization, it remains to show how to populate the tables.

Algorithm 2 Descend(C0, Ψ0, p).

define Descend(C0, Ψ0, p):
precondition: p ≤ TC0 [Ψ0]
assign Ψ0 to C0

if C0 is not a leaf config
for each config Ψ1 = ((πin

1 , πout
1), (w1, s1)) of C0’s left child C1,

for each topological config (πin
2 , πout

2) of C0’s right child C2

let (w2, s2) be the weight/cost config of C2 such that
Ψ0, Ψ1, Ψ2 are consistent

where Ψ2 = ((πin
2 , πout

2), (w2, s2))
∆ := TC1 [Ψ1] · TC2 [Ψ2]
if p ≤ ∆

q := ⌊p/TC2 [Ψ2]⌋
r := r mod TC2 [Ψ2]
call Descend(C1, Ψ1, q) and Descend(C2, Ψ2, r)
return

else p := p − ∆ and continue

FORC 2021

3:14 Computational Tractability of Redistricting

Induction shows that this procedure, applied to root cluster Ĉ and a configuration Ψ̂ and
an integer p ≤ TĈ [Ψ̂], selects the pth solution among those “compatible” with Ψ̂. This can
be used for random generation of solutions with given district populations and a given cost.
Again, the running time for the procedure is within that stated in Theorem 2.

5.5 Populating the tables
For this section, let us focus on the tables needed for sampling. Populating the table for
a leaf cluster is straightforward. Therefore, suppose C0 is a cluster with children C1 and
C2. We first observe that, given noncrossing partitions πout

0 of θC0 , πin
1 of θC1 , and πin

2
of θC2 , there are unique partitions πin

0 , πout
1 , πout

2 such that the topological configurations
(πin

0 , πout
0), (πin

1 , πout
1), (πin

2 , πout
2) are consistent. (The formulas that show this are in the

pseucode below.)
The second observation: consider a configuration Ψ0 = (κ0, (w0, s0)) of C0. Then

count(Ψ0) is∑
κ1,κ2

∑
(w1,s1),(w2,s2)

count((κ1, (w1, s1))) · count((κ2, (w2, s2))) (2)

where the first sum is over pairs of topological configurations κ1 for C1 and and κ2 where
κ0, κ1, κ2 are consistent, and the second sum is over pairs of weight/cost configurations that
are consistent with (w0, s0). Note that because of how weight/cost configuration consistency
is defined, the second sum mimics multivariate polynomial multiplication. We use these
observations to define the procedure that populates the table for C0 from the tables for C1
and C2.

Algorithm 3 Combine(C0, C1, C2).

def Combine(C0, C1, C2):
initialize each entry of TC0 to zero
for each noncrossing partition πout

0 of θC0

for each noncrossing partition πin
1 of θC1

for each noncrossing partition πin
2 of θC2

πout
1 = πout

0 ∨ πin
2

πout
2 = πout

0 ∨ πin
1

πin
0 = πin

1 ∨ πin
2

comment: now we populate entries of TC0 [·] indexed by
configurations of C0 with
topological configuration (πin

0 , πout
0).

for i = 1, 2,
let pi(x, y) be a polynomial over variables x1, . . . , xk, y

such that the coefficient of xw1
1 · · · x

wk
k ys

is TCi [((πin
0 , πout

0), ((w1, . . . , wk), s))]
let p(x, y) be the product of p1(x, y) and p2(x, y)
for every weight/cost configuration ((w1, . . . , wk), s)

add to T [((πin
0 , πout

0), ((w1, . . . , wk), s))] the
coefficient of xw1

1 · · · x
wk
k ys in p(x, y)

The three loops involve at most cw iterations, for some constant c. Multivariate polynomial
multiplication can be done using multidimensional FFT. The time required is O(N log N),
where N = UkS. (This use of FFT to speed up an algorithm is by now a standard algorithmic
technique.) It follows that the running time of the algorithm to populate the tables is as
described in Theorem 2.

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:15

6 Implementation, and application to redistricting in France

Our implementation differs from the algorithm described in Section 5 in a few minor ways.
Each configuration stores the populations of districts that intersect its boundary in a canonical
order, as opposed to storing a k-vector containing the populations of all k districts. This
reduces the number of configurations by reducing the redundancy of multiple configurations
which are the same up to the ordering of the districts.

Also, our implementation does not use the FFT-based method for combining configura-
tions; that method is helpful when the number of configurations is close to the maximum
possible number but we expect that in practice the number will be substantially lower.

To demonstrate the effectiveness of our implementation, we applied it to the redistricting
instances in France. There are about a hundred departments in France. The atoms are
called cantons. For each department, one must find a partition of the cantons. Each part
must be connected and each part’s population can differ from the average by at most 20%.
Omitting the special department of Paris (because its structure and rules are different)
and the departments for which the target number of districts is one, we are left with
eighty departments. The implementation was able to find solutions for every department.
Additionally we were able to find solutions for over half of the departments with a tighter
bound of 5%.

We were able to compute these solutions for all departments on a single machine within
eight hours. As shown in Figure 5 the cut edge size of the optimal solution increases only
slightly as the population constraint increases. This data suggests there is little downside to
creating departments with closer populations when such a solution exists.

6.1 Example: Sarthe
Consider for example the department Sarthe. We specify that the minimum population of a
district is 150,000 and the maximum population is 200,000. The computation took about 30
seconds on a single core of a 2018 MacBook Pro (Figure 4a).

(a) A districting of the cantons of Sarthe, France,
generated with four districts.

(b) Sarthe with seven districts.

FORC 2021

3:16 Computational Tractability of Redistricting

Figure 5 Differences in cut size cost for different population constraints. We include only those
instances for which our implementation finds a solution.

References
1 Sachet Bangia, Christy Vaughn Graves, Gregory Herschlag, Han Sung Kang, Justin Luo,

Jonathan C. Mattingly, and Robert Ravier. Redistricting: Drawing the line, 2017. arXiv:
1704.03360.

2 Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx. Planar capacitated dominating
set is W [1]-hard. In Jianer Chen and Fedor V. Fomin, editors, Proceedings of the 4th
International Workshop on Parameterized and Exact Computation, volume 5917 of Lecture
Notes in Computer Science, pages 50–60. Springer, 2009. doi:10.1007/978-3-642-11269-0_4.

3 Daniel Carter, Gregory Herschlag, Zach Hunter, and Jonathan Mattingly. A merge-split
proposal for reversible Monte Carlo Markov Chain sampling of redistricting plans, 2019.
arXiv:1911.01503.

4 J. Chen. Expert report of Jowei Chen, Ph.D., Raleigh Wake Citizen’s Association et al. vs.
the Wake County Board of Elections, 2017. URL: https://www.pubintlaw.org/wp-content/
uploads/2017/06/Expert-Report-Jowei-Chen.pdf.

5 Vincent Cohen-Addad, Philip N. Klein, and Neal E. Young. Balanced centroidal power diagrams
for redistricting. In Proceedings of the 26th ACM International Conference on Advances in
Geographic Information Systems, pages 389–396, 2018. doi:10.1145/3274895.3274979.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 1st
edition, 2015.

7 Daryl DeFord and Moon Duchin. Redistricting reform in Virginia: Districting criteria in
context. Virginia Policy Review, 12(2):120–146, 2019.

8 Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family of Markov chains
for redistricting, 2019. arXiv:1911.05725.

9 Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated dom-
ination and covering: A parameterized perspective. In Proceedings of the 3rd International
WorkshopParameterized and Exact Computation, volume 5018 of Lecture Notes in Computer
Science, pages 78–90. Springer, 2008. doi:10.1007/978-3-540-79723-4_9.

http://arxiv.org/abs/1704.03360
http://arxiv.org/abs/1704.03360
https://doi.org/10.1007/978-3-642-11269-0_4
http://arxiv.org/abs/1911.01503
https://www.pubintlaw.org/wp-content/uploads/2017/06/Expert-Report-Jowei-Chen.pdf
https://www.pubintlaw.org/wp-content/uploads/2017/06/Expert-Report-Jowei-Chen.pdf
https://doi.org/10.1145/3274895.3274979
http://arxiv.org/abs/1911.05725
https://doi.org/10.1007/978-3-540-79723-4_9

V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:17

10 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact
algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–
810, 2010. doi:10.1007/s00453-009-9296-1.

11 Moon Duchin. Geography meets geometry in redistricting. Conference at Center for Geographic
Analysis at Harvard University, May 2019. URL: https://cga-download.hmdc.harvard.edu/
publish_web/CGA_Conferences/2019_Redistricting/slides/Moon_Duchin.pdf.

12 Moon Duchin and Bridget Eileen Tenner. Discrete geometry for electoral geography, 2018.
arXiv:1808.05860.

13 Martin E. Dyer and Alan M. Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discret. Appl. Math., 10(2):139–153, 1985. doi:10.1016/0166-218X(85)90008-3.

14 David Eppstein, Michael T. Goodrich, Doruk Korkmaz, and Nil Mamano. Defining equitable
geographic districts in road networks via stable matching. In Proceedings of the 25th ACM
International Conference on Advances in Geographic Information Systems, pages 52:1–52:4,
2017. doi:10.1145/3139958.3140015.

15 Andreas Emil Feldmann and Dániel Marx. The parameterized hardness of the k-center
problem in transportation networks. Algorithmica, 82(7):1989–2005, 2020. doi:10.1007/
s00453-020-00683-w.

16 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems
parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011.

17 Kyle Fox, Philip N. Klein, and Shay Mozes. A polynomial-time bicriteria approximation
scheme for planar bisection. In Proceedings of the 47th Annual ACM on Symposium on Theory
of Computing, pages 841–850, 2015. doi:10.1145/2746539.2746564.

18 R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by implicit enumeration
techniques. Management Science, 16(8):B–495, 1970.

19 Naveen Garg, Huzur Saran, and Vijay V. Vazirani. Finding separator cuts in planar
graphs within twice the optimal. SIAM J. Comput., 29(1):159–179, 1999. doi:10.1137/
S0097539794271692.

20 Sushmita Gupta, Saket Saurabh, and Meirav Zehavi. On treewidth and stable marriage.
CoRR, abs/1707.05404, 2017. arXiv:1707.05404.

21 Gregory Z. Gutin, Mark Jones, and Magnus Wahlström. The mixed Chinese postman problem
parameterized by pathwidth and treedepth. SIAM J. Discret. Math., 30(4):2177–2205, 2016.
doi:10.1137/15M1034337.

22 Robert E Helbig, Patrick K Orr, and Robert R Roediger. Political redistricting by computer.
Communications of the ACM, 15(8):735–741, 1972.

23 Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia,
Robert Ravier, and Jonathan C. Mattingly. Quantifying gerrymandering in North Carolina,
2018. arXiv:1801.03783.

24 Gregory Herschlag, Robert Ravier, and Jonathan C. Mattingly. Evaluating partisan gerry-
mandering in Wisconsin, 2017. arXiv:1709.01596.

25 S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan political
redistricting by computer. Operations Research, 13(6):998–1006, 1965.

26 Takehiro Ito, Kazuya Goto, Xiao Zhou, and Takao Nishizeki. Partitioning a multi-weighted
graph to connected subgraphs of almost uniform size. IEICE Trans. Inf. Syst., 90-D(2):449–456,
2007. doi:10.1093/ietisy/e90-d.2.449.

27 Takehiro Ito, Xiao Zhou, and Takao Nishizeki. Partitioning a graph of bounded tree-width
to connected subgraphs of almost uniform size. J. Discrete Algorithms, 4(1):142–154, 2006.
doi:10.1016/j.jda.2005.01.005.

28 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/j.jcss.2012.04.004.

FORC 2021

https://doi.org/10.1007/s00453-009-9296-1
https://cga-download.hmdc.harvard.edu/publish_web/CGA_Conferences/2019_Redistricting/slides/Moon_Duchin.pdf
https://cga-download.hmdc.harvard.edu/publish_web/CGA_Conferences/2019_Redistricting/slides/Moon_Duchin.pdf
http://arxiv.org/abs/1808.05860
https://doi.org/10.1016/0166-218X(85)90008-3
https://doi.org/10.1145/3139958.3140015
https://doi.org/10.1007/s00453-020-00683-w
https://doi.org/10.1007/s00453-020-00683-w
https://doi.org/10.1145/2746539.2746564
https://doi.org/10.1137/S0097539794271692
https://doi.org/10.1137/S0097539794271692
http://arxiv.org/abs/1707.05404
https://doi.org/10.1137/15M1034337
http://arxiv.org/abs/1801.03783
http://arxiv.org/abs/1709.01596
https://doi.org/10.1093/ietisy/e90-d.2.449
https://doi.org/10.1016/j.jda.2005.01.005
https://doi.org/10.1016/j.jcss.2012.04.004

3:18 Computational Tractability of Redistricting

29 Jun Kawahara, Takashi Horiyama, Keisuke Hotta, and Shin-ichi Minato. Generating all
patterns of graph partitions within a disparity bound. In International Workshop on Algorithms
and Computation, pages 119–131. Springer, 2017.

30 Philip N. Klein and Shay Mozes. Optimization Algorithms for Planar Graphs. http://
planarity.org/. accessed June 2018.

31 Dániel Marx, Ario Salmasi, and Anastasios Sidiropoulos. Constant-factorapproximations for
asymmetric TSP on nearly-embeddable graphs. In Proceedings of the 19th Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume 60 of
LIPIcs, pages 16:1–16:54, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.16.

32 Anuj Mehrotra, Ellis L. Johnson, and George L. Nemhauser. An optimization based heuristic
for political districting. Management Science, 44(8):1100–1114, 1998.

33 Lorenzo Najt, Daryl R. DeFord, and Justin Solomon. Complexity and geometry of sampling
connected graph partitions. CoRR, abs/1908.08881, 2019. arXiv:1908.08881.

34 J. K. Park and C. A. Phillips. Finding minimum-quotient cuts in planar graphs. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, pages 766–775, 1993. doi:
10.1145/167088.167284.

35 W. Pegden. Pennsylvania’s congressional districting is an outlier: Expert re-
port, League of Women Voters vs. Pennsylvania General Assembly, 2017. URL:
https://www.brennancenter.org/sites/default/files/legal-work/LWV_v_PA_Expert_
Report_WesleyPegden_11.17.17.pdf.

36 Richard H Pildes, Tacy F Flint, and Sidley Austin. Brief of political geography scholars
as amici curiae in support of appellees. URL: https://www.brennancenter.org/sites/
default/files/legal-work/Gill_AmicusBrief_%20Political%20Geography%20Scholars_
InSupportofAppellees.pdf.

37 Satish Rao. Finding near optimal separators in planar graphs. In Proceedings of the 28th
Annual IEEE Symposium on Foundations of Computer Science, pages 225–237, 1987. doi:
10.1109/SFCS.1987.26.

38 Satish Rao. Faster algorithms for finding small edge cuts in planar graphs. In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, pages 229–240, 1992. doi:
10.1145/129712.129735.

http://planarity.org/
http://planarity.org/
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.16
http://arxiv.org/abs/1908.08881
https://doi.org/10.1145/167088.167284
https://doi.org/10.1145/167088.167284
https://www.brennancenter.org/sites/default/files/legal-work/LWV_v_PA_Expert_Report_WesleyPegden_11.17.17.pdf
https://www.brennancenter.org/sites/default/files/legal-work/LWV_v_PA_Expert_Report_WesleyPegden_11.17.17.pdf
https://www.brennancenter.org/sites/default/files/legal-work/Gill_AmicusBrief_%20Political%20Geography%20Scholars_InSupportofAppellees.pdf
https://www.brennancenter.org/sites/default/files/legal-work/Gill_AmicusBrief_%20Political%20Geography%20Scholars_InSupportofAppellees.pdf
https://www.brennancenter.org/sites/default/files/legal-work/Gill_AmicusBrief_%20Political%20Geography%20Scholars_InSupportofAppellees.pdf
https://doi.org/10.1109/SFCS.1987.26
https://doi.org/10.1109/SFCS.1987.26
https://doi.org/10.1145/129712.129735
https://doi.org/10.1145/129712.129735

	1 Introduction
	2 Preliminaries
	2.1 Branchwidth
	2.2 Radial graph
	2.3 Sphere-cut decomposition

	3 Related work
	4 W[1]-Hardness
	5 Algorithm
	5.1 Partitions
	5.2 Noncrossing partitions
	5.3 Algorithm overview
	5.4 Using the tables
	5.5 Populating the tables

	6 Implementation, and application to redistricting in France
	6.1 Example: Sarthe

