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Preface

This volume constitutes the post-proceedings of the 26th International Conference on Types
for Proofs and Programs, TYPES 2020, that was planned in Turin from the 2nd to the
5th of March 2020. The TYPES meetings are a forum to present new and on-going work
in all aspects of type theory and its applications, especially in formalised and computer
assisted reasoning and computer programming. The meetings from 1990 to 2008 were annual
workshops of a sequence of five EU-funded networking projects. Since 2009, TYPES has
been run as an independent conference series. Previous TYPES meetings were held in
Antibes (1990), Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Torino
(1995), Aussois (1996), Kloster Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal
near Nijmegen (2002), Torino (2003), Jouy-en-Josas near Paris (2004), Nottingham (2006),
Cividale del Friuli (2007), Torino (2008), Aussois (2009), Warsaw (2010), Bergen (2011),
Toulouse (2013), Paris (2014), Tallinn (2015), Novi Sad (2016), Budapest (2017), Braga
(2018) and Oslo (2019).

The TYPES areas of interest include, but are not limited to: foundations of type theory
and constructive mathematics; applications of type theory; dependently typed programming;
industrial uses of type theory technology; meta-theoretic studies of type systems; proof
assistants and proof technology; automation in computer-assisted reasoning; links between
type theory and functional programming; formalizing mathematics using type theory. The
TYPES conferences are of open and informal character. Selection of contributed talks
is based on short abstracts; reporting work in progress and work presented or published
elsewhere is welcome. A formal post-proceedings volume is prepared after the conference;
papers submitted to that volume must represent unpublished work and are subjected to a
full peer-review process.

Due to the COVID-19 outbreak, in 2020 the conference did not take place; the abstracts
of contributed talks are available from: https://types2020.di.unito.it/. Nonetheless
the steering committee decided to have TYPES 2020 post-proceedings published. After a new
call and a thorough peer-review procedure, 11 submissions could be accepted for publication.
We thank all authors and reviewers for their contribution to this volume.

Ugo de’Liguoro, Stefano Berardi and Thorsten Altenkirch, June 2021

26th International Conference on Types for Proofs and Programs (TYPES 2020).
Editors: Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch
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On Model-Theoretic Strong Normalization for
Truth-Table Natural Deduction
Andreas Abel ! Ï

Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden
Gothenburg University, Göteborg, Sweden

Abstract
Intuitionistic truth table natural deduction (ITTND) by Geuvers and Hurkens (2017), which is
inherently non-confluent, has been shown strongly normalizing (SN) using continuation-passing-style
translations to parallel lambda calculus by Geuvers, van der Giessen, and Hurkens (2019). We
investigate the applicability of standard model-theoretic proof techniques and show (1) SN of detour
reduction (β) using Girard’s reducibility candidates, and (2) SN of detour and permutation reduction
(βπ) using biorthogonals. In the appendix, we adapt Tait’s method of saturated sets to β, clarifying
the original proof of 2017, and extend it to βπ.
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this article. I am also grateful for the feedback of the reviewer that led to a substantial clarification
of the proof using orthogonality.

1 Introduction

Recently, Geuvers and Hurkens [13] have observed that, departing from the truth table of a
logical connective, one can in a schematic way construct introduction and elimination rules
for that connective both for intuitionistic and classical natural deduction. For each line in
the truth table where the connective computes to true one obtains an introduction rule, and
for the false lines one obtains an elimination rule. It is shown that these truth table natural
deduction (TTND) calculi are equivalent to Gentzen’s original calculi [12] in the sense that
the same judgements can be derived. However, the schematic rules are sometimes unwieldy
and unintuitive – for instance, in TTND there are three introduction rules for implication
since A → B is true for three out of four valuations of (A, B). As a remedy, Geuvers and
Hurkens show how the original TTND rules can be optimized in a systematic way. In this
article, we shall confine ourselves to the schematic, unoptimized rules of intuitionistic TTND
(ITTND).

When studying proof terms and proof normalization for ITTND, one can observe that
β-reduction – the reduction of detours, i.e., introductions followed directly by eliminations1–
is essentially non-deterministic and even non-confluent. Non-confluence poses some challenges
1 Geuvers and Hurkens call detour redexes direct intuitionistic cuts [13] or a-redexes [14] and with van

der Giessen D-redexes [16]. We follow Joachimski and Matthes [20] and call detour reductions simply
β-reductions, as these are a generalization of the β-reduction of λ-calculus.
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1:2 SN for Truth-Table ND

to the proof that reduction is terminating, the so-called strong normalization (SN) property.
In the original presentation [13], the authors confine the SN proof to ITTND with a single
but universal connective if-then-else and the optimized inference rules for if-then-else which
yield confluent and standardizing β-reduction. The proof follows the saturated sets method
pioneered by Tait [30] which is known to rely on standardization by using deterministic weak
head reduction.2

In subsequent work [14], the authors attack SN for full ITTND with non-confluent β-
reduction, introducing elements of Girard’s technique of reducibility candidates (RCs) [17, 19].
However, this innovative mix of Tait and Girard is not without pitfalls, as we shall investigate
in Section 4.2. We tread on safer grounds by returning to Girard’s original definition of RCs
in Section 4. Our proof in Section 4.1 relies on impredicativity and could not be formalized in
a predicative metatheory such as Martin-Löf Type Theory [24]. We thus give in Section 4.3
a variant that replaces the use of impredicativity by inductive definitions.

However, β-reduction is not the only form of proof optimization in ITTND. The schematic
elimination rules of ITTND have the flavor of disjunction elimination which does not pose any
restriction on the formula on the right. Likewise, eliminations in ITTND have an arbitrary
target. In such settings, one eliminates a hypothesis to directly prove the desired conclusion.
Eliminating into an intermediate conclusion which is then eliminated again is thus considered
a detour. Joachimski and Matthes [20] call such a detour a permutation redex or π-redex3 – in
the context of intuitionistic sequent calculus restricted to implication. Permutation reduction
for ITTND by itself is terminating [14], and in loc. cit. it is shown that the free combination
with β-reduction, βπ, is weakly normalizing. Strong normalization was left open until the
joint work of Geuvers and Hurkens with van der Giessen [16], where SN was established via
a continuation-passing-style (CPS) translation to the parallel simply-typed lambda calculus
(parallel STLC).4

The change of proof strategy begs the question whether the usual model-theoretic SN
proofs could not work also for βπ-reduction. While the saturated sets method applied in a
similar situation by Joachimski and Matthes [20] seems not applicable due to non-confluence
of β, Girard’s RCs do not cover π. However, there is a third popular method, (bi)orthogonals,
that has been developed to prove SN for classical lambda-calculi which are essentially non-
confluent. 5 Biorthogonals have been successfully applied by Lindley and Stark [22] to
prove SN for Moggi’s “monadic metalanguage”, that is STLC with introduction, elimination,
and permutation rules for the monad. We show in Section 6 that biorthogonals, putting
elimination sequences at the center of attention, can show SN for βπ of ITTND. Finally, in
the Appendix A, we demonstrate how the the saturated sets method can also be adapted.

While we limit our presentation on the implicational fragment of ITTND for didactic
purposes and convenience of exposition, our techniques scale immediately to the general case.

Overview

In Section 2 we recapitulate Geuvers and Hurkens’ construction of intuitionistic inference
rules from truth tables and the associated β-rules. In Section 3 we present a common
structure of model-theoretic SN proofs. This structure is instantiated to RCs in Section 4
and we present the two ways of constructing the interpretation of the connectives: via the

2 Weak head reduction is sometimes called key reduction in the context of saturated sets.
3 Geuvers and Hurkens call π-redexes b-redexes [14] and, with van der Giessen, P-redexes [16].
4 In a first approximation, one can think of parallel STLC as STLC with explicit non-determinism.
5 Early applications of orthogonality can be found in the works of Parigot [27, 28] and Barbanera and

Berardi [4].
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elimination rules (Section 4.1) and via the introduction rules (Section 4.3). Further, we
take a critical look at the proof of Geuvers and Hurkens [14] in Section 4.2. In Section 5
we turn to π-reduction, laying some foundation for the SN proof for βπ using orthogonality
(Section 6), which is the main contribution of this paper. We conclude with a short discussion
in Section 7.

2 Intuitionistic Truth Table Natural Deduction

Geuvers and Hurkens [13] introduced a method to derive natural deduction proof rules from
truth tables of logical connectives. For instance, consider the truth table for implication:

A B A → B

0 0 1
0 1 1
1 0 0
1 1 1

For each line where A → B holds, e.g., the second line, an introduction rule is created where
0-valued (or negative) operands A become premises Γ.A ⊢ A → B and 1-valued (or positive)
operands B become premises Γ ⊢ B. Lines like the third where A → B is false become
elimination rules with a conclusion Γ ⊢ C for an arbitrary formula C. The premises of this
elimination rule are, besides the principal premise Γ ⊢ A → B, a premise Γ ⊢ A for each
1-valued operand A, and a premise Γ.B ⊢ C for each 0-valued operand B. This yields the
following four rules of judgement t : Γ ⊢ A :6

t : Γ.A ⊢ A → B u : Γ.B ⊢ A → B

in00
→(t, u) : Γ ⊢ A → B

t : Γ.A ⊢ A → B b : Γ ⊢ B

in01
→(t, b) : Γ ⊢ A → B

f : Γ ⊢ A → B a : Γ ⊢ A t : Γ.B ⊢ C

f · el10
→(a, t) : Γ ⊢ C

a : Γ ⊢ A b : Γ ⊢ B

in11
→(a, b) : Γ ⊢ A → B

As seen from these instances, we preferably use letters t, u, v for terms with a distinguished
hypothesis and letters a, b, c, d, e, f for terms without such. Replacing the distinguished
hypothesis, i.e., the 0th de Bruijn index, in term t by a term a is written t[a]. We use letter
I for introduction terms, i.e., such with “in” at the root, and letter E for an elimination in
term f · E, i.e., the “el” part. Heads h are either variables x or introductions I, and each
term can be written in spine form h · E1 · · · · · En. This may be written h · E⃗.

Detour or β reductions can fire when an introduction is immediately eliminated, i.e., on
well-typed subterms of the form I ·E. For the case of implication, there are three introduction
rules that can be paired with the only elimination rule. There are two ways in which a β

6 Additional information for the reader unfamiliar with natural deduction and proof terms:
Natural deduction asserts the truth of a proposition A under a list of assumed propositions Γ, a context,
via the judgement Γ ⊢ A. Derivations of such judgements form proof trees where nodes are labeled by the
name of the applied proof rule and the ordered subtrees correspond to the premises of that rule. Leaves
are either applications of a rule that has no premises or references to one of the hypotheses in Γ.
We write ε for empty lists. The list Γ can be extended on the right by a proposition A using the notation
Γ.A. Following de Bruijn [11], we number the hypotheses from the right starting with zero. A reference to
a hypothesis – a so-called de Bruijn index – is a non-negative number i strictly smaller than the length
of Γ. For example, de Bruijn index zero, written x0, refers to proposition A in context Γ.A. We write
x : Γ ⊢ A to denote a de Bruijn index x pointing to proposition A in context Γ.
In general, we use the notation t : Γ ⊢ A to state that t is a valid proof tree, also called proof term, whose
conclusion is the judgement Γ ⊢ A. We will only refer to terms t that correspond to a valid proof tree,
thus, we consider terms as intrinsically typed [3, 5]. This choice however affects neither presentation nor
results in this article very much; they apply the same to extrinsic typing.

TYPES 2020



1:4 SN for Truth-Table ND

redex can fire: Either, a positive premise (1) of the introduction matches a negative premise
(0) of the elimination. For the case of implication, the second premise of the elimination el10

→
is negative, and it can react with the positive second premise of in01

→ and in11
→:

in_1
→ (_, b) · el10

→(_, t) 7→β t[b]

The other reaction is between a negative premise of the introduction and a matching positive
premise of the elimination. In this case, the elimination persists, but the introduction is
replaced with an instantiation of its respective negative premise. In the case of implication,
the first premise of in00

→ and in01
→ can be instantiated with the first premise of el10

→:

in0_
→ (u, _) · el10

→(a, t) 7→β u[a] · el10
→(a, t)

The case of implication already demonstrates the inherent non-confluence of β-reduction:
the reducts of in01

→(u, b) · el10
→(a, t) form the critical pair (t[b], u[a] · el10

→(a, t)) which can in
general not be joined. Non-confluence excludes some techniques to show strong normalization,
e.g., those that rely on deterministic weak head reduction. However, Girard’s reducibility
candidates accommodate non-confluent reduction, thus, his technique may be adapted to the
present situation.

3 Model-theoretic proofs of strong normalization

In this section we explain the general format of a model-theoretic proof of strong normalization.
We will instantiate this framework to two techniques later: reducibility candidates (Section 4)
and orthogonality (Section 6).

3.1 Preliminaries
We work with sets Γ ⊢ A of nameless well-typed terms. De Bruijn indices are written
xn : Γ.A.∆ ⊢ A where ∆ has length n. Instead of full-fledged renaming, we confine to
weakening under order-preserving embeddings (OPE) τ : ∆ ≤ Γ . Here, τ witnesses that
and how Γ is a subsequence of ∆. Then, ⇑ τ : ∆.B ≤ Γ.B be the lifted OPE. Further,
↑ : Γ.B ≤ Γ is the OPE for weakening by one variable, and OPEs form a category with
identity 1 : Γ ≤ Γ and composition (Γ ≤ ∆) → (∆ ≤ Φ) → (Γ ≤ Φ) written as juxtaposition.
If a : Γ ⊢ A then weakening aτ : ∆ ⊢ A is defined in the usual way. In particular, ⇑ is used
to traverse under binders, for instance, in01

→(t, b)τ = in01
→(t(⇑ τ), bτ).

Substitutions σ : ∆ ⊢ Γ are defined as lists of terms σ = ε.b1. · · · .b|Γ| typed by list Γ
under context ∆. Parallel substitution aσ : ∆ ⊢ A for a : Γ ⊢ A is defined as usual. OPEs
τ : ∆ ≤ Γ are silently coerced to substitutions ∆ ⊢ Γ consisting only of de Bruijn indices.
Substitutions form a category, and we reuse 1 for identity and juxtaposition for substitution.
Like for OPEs, we have lifting ⇑ : (∆ ⊢ Γ) → (∆.B ⊢ Γ.B) to push substitutions under
binders. Single substitution t[b] is an instance of parallel substitution tσ for substitution
σ = 1.b : (Γ ⊢ Γ.B) obtained from b : Γ ⊢ B.

Reduction a −→ a′ , which is defined using single substitution, acts on same-typed terms
a, a′ : Γ ⊢ A by definition. It is closed under weakening and substitution. It is even closed
under anti-weakening, i.e., if aτ −→ a′τ then also a −→ a′. (Not so for substitution: it is
not closed under anti-substitution, of course.) Further, reduction commutes with weakening:
If aτ −→ b′ then there is b with a −→ b and b′ = bτ .

Via the parallel substitution operation, the family _ ⊢ A of terms of type A is a
contravariant functor (i.e., presheaf) targeting the category Set of sets and functions. Its
source is the category of substitutions, and thus also its subcategory OPE. We will work a lot
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with presheaves of the latter kind, especially with families of predicates PΓ ⊆ (Γ ⊢ A) closed
under weakening, meaning if a ∈ PΓ and τ : ∆ ≤ Γ then aτ ∈ P∆. We call such predicates
term set families. We may simply write a ∈ P instead of a ∈ PΓ if Γ is fixed but arbitrary or
can be determined by the context.

Our prime example of a term set family are the strongly normalizing terms SN given
inductively by rule

(a −→ _) ⊆ SN
a ∈ SN .

While it is formally a family of inductive predicates on well-typed terms a : Γ ⊢ A, we mostly
write a ∈ SN instead of a ∈ SN(Γ ⊢ A) for simplicity. The set SN is closed under weakening,
i.e., if τ : ∆ ≤ Γ then aτ ∈ SN as well. This follows easily from anti-weakening for reduction.

3.2 Semantic types and normalization proofs
A typical model-theoretic proof of strong normalization will interpret types A by families
A = JAK of strongly normalizing terms of type A. To work smoothly for open terms, a further
requirement on such semantic types A is that they contain the variables, i.e., if x : Γ ⊢ A

then x ∈ AΓ.
To obtain a compositional interpretation of types, each type constructor such as implication

A → B is interpreted by a suitable operation A → B on semantic types. For pure implicational
truth table natural deduction, types are formed from uninterpreted base types o (propositional
variables) and function space: A, B ::= o | A → B. Types are interpreted as the following
semantic types:

JoKΓ = SN(Γ ⊢ o)
JA → BKΓ = (JAK → JBK)Γ

The main structure of the normalization proof then proceeds as follows: Contexts Γ are
interpreted as families of sets of substitutions.

JεK∆ = ∆ ⊢ ε ( = {σ | σ : ∆ ⊢ ε})
JΓ.AK∆ = {σ.a | σ ∈ JΓK∆ and a ∈ JAK∆}

Thanks to the requirement that the variables inhabit the semantic types, each context can
be valuated by the identity substitution:

▶ Lemma 1 (Identity substitution). 1 ∈ JΓKΓ.

Proof. By induction on Γ. In case Γ.A, we have 1 ∈ JΓKΓ by induction hypothesis, thus, by
weakening, ↑ ∈ JΓKΓ.A. Further, the 0th de Bruijn index x0 ∈ JAKΓ.A. Thus (↑.x0) = 1 ∈
JΓ.AKΓ.A. ◀

The main theorem shows that each well-typed term inhabits the corresponding semantic
type:

▶ Theorem 2 (Fundamental theorem of logical predicates). If a : Γ ⊢ A and σ ∈ JΓK∆ then
aσ ∈ JAK∆.

Normalization is then a direct consequence:

▶ Corollary 3 (Strong normalization). If a : Γ ⊢ A then a ∈ SN.
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Proof. By Theorem 2 with Lemma 1, a1 = a ∈ JAKΓ, thus, a ∈ SN since each semantic type
contains only strongly normalizing terms. ◀

The definition of the semantic types such as A → B needs be crafted such as to allow us
to prove Theorem 2. In the next section we identify the necessary properties.

3.3 Modelling the inference rules
To formulate the properties that allow us to prove Theorem 2 we introduce an auxiliary
construction C[A] , “abstraction”, given semantic types A and C, where A classifies terms
of type A and C terms of type C.

C[A]Γ = {t ∈ Γ.A ⊢ C | t(τ.a) ∈ C∆ for all τ : ∆ ≤ Γ and a ∈ A∆}.

The abstraction7 C[A] is a presheaf via the weakening with the lifted OPE:

▶ Lemma 4. If τ : ∆ ≤ Γ and t ∈ C[A]Γ then t(⇑ τ) : C[A]∆.

Proof. Assume τ ′ : Φ ≤ ∆ and a ∈ AΦ and show t(⇑ τ)(τ ′.a) ∈ CΦ. Since (⇑ τ)(τ ′.a) = ττ ′.a

this follows by definition of t ∈ C[A]Γ. ◀

Using abstraction, the properties of the semantic connective can be mechanically obtained
from the inference rules for the syntactic connective. In the formulation of these properties, a
judgement a : Γ ⊢ A turns into statement a ∈ AΓ and a judgement t : Γ.A ⊢ C into t ∈ C[A]Γ.
In case of semantic implication A → B, we obtain the following four requirements, one for
each rule:

(in00
→) If t ∈ (A → B)[A] and u ∈ (A → B)[B] then in00

→(t, u) ∈ A → B.
(in01

→) If t ∈ (A → B)[A] and b ∈ B then in01
→(t, b) ∈ A → B.

(in11
→) If a ∈ A and b ∈ B then in11

→(a, b) ∈ A → B.
(el10

→) If f ∈ A → B and a ∈ A and t ∈ C[B] then f · el01
→(a, t) ∈ C.

Given these properties of semantic implication, we can show that semantic types model
the inference rules:

Proof of Theorem 2. By induction on t : Γ ⊢ C, prove tσ ∈ JCK∆ for all σ ∈ JΓK∆. In case
of a variable t = x, we have xσ ∈ JΓ(x)K∆ by assumption on σ.

The other cases are covered by the assumptions on semantic implication. For instance,
consider:

t : Γ.A ⊢ A → B b : Γ ⊢ B

in01
→(t, b) : Γ ⊢ A → B

By induction hypothesis (2) bσ ∈ JBK∆ and (1) t(στ.a) ∈ JA → BKΦ for arbitrary τ : Φ ≤ ∆
and a ∈ JAKΦ, since then στ ∈ JΓKΦ. Hence, t(⇑ σ) ∈ (JA → BK)[JAK]∆ by definition of
abstraction. By property (in01

→), it follows that in01
→(t, b)σ = in01

→(t(⇑ σ), bσ) ∈ JA → BK∆. ◀

This completes the description of our framework for strong normalization proofs. We
now turn our attention to ways how to instantiate this framework.

7 Matthes [25, Sec. 6.2] uses the notation Sx(A, C) for abstraction (in a setting with named variables x).
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3.4 Flavors of semantic types
We are familiar with three principal methods how to construct semantic types for strong
normalization proofs.
1. Saturated sets following Tait [30], see e.g. the exposition by Luo [23]. This technique

requires semantic types to be closed under weak head expansion and is only known
to work for deterministic weak head reduction. While it has been applied [13] to the
if-then-else instance of ITTND with optimized rules, it does not cover the general case of
TTND with non-deterministic and even non-confluent weak head reduction.

2. Reducibility candidates following Girard [17, 19]. We apply this method in Section 4. It
covers β-reduction but not βπ.

3. Biorthogonals that have been used in SN proofs for λ-calculi for classical logic, e.g. by
Parigot [27], and in SN proofs for the monadic meta-language by Lindley and Stark [22].
These cover even βπ, and we shall turn to these in Section 6.

4 Reducibility Candidates

Girard’s reducibility candidates are a flavor of semantic types that can show strong nor-
malization also for non-confluent rewrite relations such as reduction in truth-table natural
deduction.

When defining the semantic versions of the logical connectives such as A → B, we have
the choice to base the definition either on the introduction rules or the elimination rules.8 We
will study both approaches, but first, we recapitulate the definition of reducibility candidates.

Let Intro be the term set of introductions, i.e., the terms of the form inb⃗
c(⃗t). This set is

clearly closed under weakening and anti-weakening.
A reducibility candidate A for a type A is a term set family with the following properties:
CR1 AΓ ⊆ SN.
CR2 If a ∈ AΓ and a −→ a′ then a′ ∈ AΓ.
CR3 For a : Γ ⊢ A, if a ̸∈ Intro and (a −→ _) ⊆ AΓ, then a ∈ AΓ.

We write A ∈ CR if A is a term set family satisfying CR1-3. It is easy to see that SN ∈ CR.
If A satisfies only CR1/2, it shall be called a precandidate.

Term set abstraction operates on precandidates:

▶ Lemma 5 (Abstraction). Let AΓ be inhabited for any Γ. If C is a precandidate, so is C[A].

Proof. CR1 holds by non-emptiness of A: Given t ∈ C[A]Γ and arbitrary a ∈ AΓ we have
t[a] ∈ CΓ. In particular, t[a] ∈ SN, and thus, t ∈ SN.

CR2 relies on the closure of reduction under substitution: Assume C[A]Γ ∋ t −→ t′ and
τ : ∆ ≤ Γ and a ∈ A∆. To show t′(τ.a) ∈ C∆ observe that t(τ.a) ∈ C∆ and that CR2 holds
for C. ◀

▶ Remark 6 (On emptiness of RCs). In untyped presentations of RCs, CR3 guarantees non-
emptiness of any A ∈ CR, since automatically all variables will inhabit A by virtue of CR3.
In our case, AΓ may be empty since there may be no variables x : Γ ⊢ A of the correct type
A. We thus have to be a bit careful when carrying over the textbook proofs [19] to our
intrinsically-typed setting.

8 See Matthes’ [25, Section 6.2] systematic exposition of introduction-based vs. elimination-based definition
of semantic types (in the context of the saturated sets method).
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4.1 Elimination-based approach
Geuvers and Hurkens [14] base the semantic definition of the logical connective on the
elimination rules. A term inhabits a semantic type if it can be soundly eliminated by all
possible eliminations for that type. In case of implication,

f ∈ (A → B)Γ ⇐⇒ ∀C ∈ CR, τ : ∆ ≤ Γ, a ∈ A∆, t ∈ C[B]∆. fτ · el10
→(a, t) ∈ C∆.

Due to our intrinsic typing, in contrast to Geuvers and Hurkens [14], we need Kripke-style
function space, i.e., quantify over all extensions ∆ of Γ with their respective embeddings
τ : ∆ ≤ Γ. Still, this definition can be mechanically derived from the elimination rules of
implication, which is the single rule:

f : Γ ⊢ A → B a : Γ ⊢ A t : Γ.B ⊢ C

f · el10
→(a, t) : Γ ⊢ C

In case of several elimination rules, the definition of the semantic type has to require the
closure under all rules [14].

Note the impredicative quantification over all reducibility candidates C, which requires an
impredicative meta-theory to formalize this definition. Such an impredicative quantification
is not required in the introduction-based approach that we study in Section 4.3.

The elimination-based approach gives us the soundness of the elimination rules for free.

▶ Lemma 7 (Elimination). If f ∈ A → B and a ∈ A and t ∈ C[B] then f · el10
→(a, t) ∈ C.

(Property (el10
→).)

Proof. By definition of A → B using τ = 1. ◀

Soundness of the introduction rules requires some work.

▶ Lemma 8 (Introduction). Properties (in00
→), (in01

→) and (in11
→) hold for A → B.

Proof. We show property (in01
→), the others are analogous. Assume t ∈ (A → B)[A] and

b ∈ B and show in01
→(t, b) ∈ A → B. To this end, assume C ∈ CR and τ : ∆ ≤ Γ and a ∈ A∆

and u ∈ C[B]∆ and show v := in01
→(t, b)τ · el10

→(a, u) ∈ C∆ by induction on t(⇑ τ), bτ, a, u ∈ SN
(obtained by CR1).

Since v is not an introduction we shall utilize CR3 for C. Therefore, we have to show
that all reducts of v are already in C∆.

If reduction happens in subterm bτ , so bτ −→ b′, we can apply the induction hypothesis
on b′ ∈ SN, since b′ ∈ B∆ by CR2. Reduction in one of the other subterms t, a, u of v is
treated analogously.

It remains to cover the β-reductions at the root, which are v −→ u[bτ ] and v −→ t(τ.a) ·
el10

→(a, u). We have u[bτ ] ∈ C∆ by assumptions on u and b. Further, since t(τ.a) ∈ (A → B)∆,
by definition t(τ.a) · el10

→(a, u) ∈ C∆. ◀

Let us not forget to verify that A → B is indeed a reducibility candidate.

▶ Lemma 9 (Function space). If A, B ∈ CR then (A → B) ∈ CR.

Proof. First, A → B needs to be a term set family. This is facilitated by the Kripke-
style definition of the function space: Assume f ∈ (A → B)Γ and τ : ∆ ≤ Γ and show
fτ ∈ (A → B)∆. To this end assume C ∈ CR and τ ′ ∈ Φ ≤ ∆ and a ∈ AΦ and t ∈ C[B]Φ and
show fττ ′ · el10

→(a, t) ∈ CΦ. This follows from the assumption on f with OPE ττ ′ : Φ ≤ Γ.
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For CR1, assume f ∈ (A → B)Γ and show f ∈ SN. Let C = A (this choice is simplest,
but any RC would do) and ∆ = Γ.A. Clearly a := (x0 : ∆ ⊢ A) ∈ A∆ and t := (x1 : ∆.B ⊢
A) ∈ C[B]∆. Thus fτ · el10

→(a, t) ∈ C∆ ⊆ SN. This implies f ∈ SN.
Closure under reduction (CR2) follows because reduction is closed under weakening and

elimination.
For CR3, assume f : Γ ⊢ A → B that is not an introduction and whose reducts are

in (A → B)Γ. To show f ∈ (A → B)Γ, assume C ∈ CR and τ : ∆ ≤ Γ and a ∈ A∆ and
t ∈ C[B]∆ and show fτ · E ∈ C∆ where E = el10

→(a, t). We proceed by CR3 for C, exploiting
that fτ · E is not an introduction either. It is sufficient to show that all reducts of fτ · E are
in C∆. We proceed by induction on a, t ∈ SN. Since f is not an introduction, we can only
reduce in f or in E. Reductions in f are covered by the assumption on f . Reductions in E

are either a −→ a′ or t −→ t′ and covered by the respective induction hypothesis, since a′

and t′ stay in their respective RCs by virtue of CR2. ◀

Strong normalization now follows according to Section 3.

4.2 A gap in the original proof by Geuvers and Hurkens, and its fix
In their elimination-based SN proof, Geuvers and Hurkens [14, Section 6.1] use for semantic
types saturated sets with the expansion closure modified to liken CR3. To explain their
approach, let us first introduce weak head reduction9 I · E · E⃗ ▷β v · E⃗ where β-redex I · E

contracts to v and the elimination sequence E⃗ is arbitrary (can be empty). Any SN term
that is neither an introduction nor a ▷β-redex is called neutral (set Neut).

In Def. 57.3 [14] a set of terms X is defined to be saturated (X ∈ SAT) if
a. (SAT1) X ⊆ SN,
b. (SAT2) Neut ⊆ X , and
c. (SAT3′) X is closed under ▷β-expansion, namely if t ∈ SN and (t ▷β _) ⊆ X (*) then

t ∈ X .
In the original formulation (SAT3) of the saturated sets method,10 the requirement (*) is
that (t▷β _) ∩ X is inhabited, meaning that t is the weak-head expansion of some term that
is already in X . In the new formulation the requirement is that all weak-head reducts of
t are in X . It is easy to see that now SAT2 is subsumed under SAT3′, since neutrals have
no weak-head reducts, and the condition (*) is trivially satisfied. The modification of SAT3
towards CR3-style SAT3′ was perhaps undertaken to account for the non-determinism of ▷β

in ITTND.
Unfortunately, with SAT3′ it is not clear how to show the equivalent of Lemma 9,

(A → B) ∈ SAT [14, Lemma 58]. In the formulation based on untyped terms, A → B is
defined by

f ∈ (A → B) ⇐⇒ ∀C ∈ SAT, a ∈ A, t ∈ C[B]. f · el10
→(a, t) ∈ C.

To attempt to show SAT3′ for A → B, assume f ∈ SN with (f ▷β _) ⊆ A → B and derive
f ∈ A → B. To this end, assume C ∈ SAT and a ∈ A and t ∈ C[B] and show f · E ∈ C with
E = el10

→(a, t). Since C is arbitrary, we have to rely on SAT3′ to introduce elements into C.
Thus, we need to show (1) f · E ∈ SN and (2) t′ ∈ C whenever f · E ▷β t′. For both goals we
need to analyze the reducts of f · E. The problem is that f could be an introduction and,

9 Weak head reduction is called key reduction in loc. cit..
10 See for instance the exposition by Luo [23].
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hence, f · E a β-redex reducing to some v. We lack assumptions to show v ∈ C and even
v ∈ SN, since v is not of the same form as f · E. Were it either f ′ · E (with f −→ f ′) or f · E′

(with E −→ E′) there would be some hope to use the assumptions, in particular f, E ∈ SN.
Note that with the original SAT3 the relevant part of the proof goes in the other direction,

we can exploit the closure of weak head reduction under elimination, namely if f ▷β f ′ then
f · E ▷β f ′ · E. It seems that this direction is employed in the proof sketch [14, Lemma 58.c],
not matching the new requirement SAT3′.

Pointed to the gaps in their argument Geuvers and Hurkens published a revision [15]
with two amendments to the definitions:
1. Closure condition SAT3′ now applies only to weak head redexes t. Only strongly normal-

izing weak head redexes t whose weak head reducts are in saturated set X are forced into
X . The thus relativized SAT3′ no longer subsumes SAT2 which forces neutrals into X .

2. The semantic connectives are relativized to SN terms. E.g., f ∈ (A → B) stipulates also
f ∈ SN.

The second amendment fixes a problem with connectives that have no eliminations, like truth,
but does not add anything for connectives with at least one elimination, like A → B.

Yet the first amendment allows us now to analyse the reducts of f · E in the proof of
SAT3′ for A → B. Since f is not an introduction, the only weak head redexes of f · E are of
the form f ′ · E with f ▷β f ′. To show (f · E ▷β _) ⊆ C, we can thus utilize the assumption
(f ▷β _) ⊆ A → B. This repairs the proof; in Appendix A.1 we will see a variant of the
amended proof be spelled out in detail.

In the following section, we can get rid of the impredicative definition of A → B and
use an inductive definition instead. We study this introduction-based approach to type
interpretation in the context of Girard’s method, but conjecture that it could be utilized in
the arguably more structured method of Geuvers and Hurkens as well.

4.3 Introduction-based approach
Instead of the impredicative elimination-based definition of semantic types like A → B,
we can base their definition on the introduction rules. The rough idea is that elements of
A → B can be introduced by any of in00

→, in01
→, and in11

→ – this is a union of reducibility
candidates. However, since the first two of these need already the implication they introduce,
the construction of a least fixed-point is required.

Note that the union A ∪ B of two reducibility candidates A and B preserves CR1/2, but
not CR3. However, property CR3 can be forced by the following closure operation A on a
term set A ⊆ (Γ ⊢ A).

emb a ∈ A
a ∈ A

exp a : Γ ⊢ A a ̸∈ Intro (a −→ _) ⊆ A
a ∈ A

The closure operation lifts pointwise to families AΓ ⊆ Γ ⊢ A of term sets.

▶ Lemma 10. If a ∈ AΓ and τ : ∆ ≤ Γ then aτ ∈ A∆.

Proof. By induction on a ∈ AΓ. In case a ∈ AΓ (emb) use the functoriality of A and emb. In
case exp, i.e., a ∈ SN(Γ ⊢ A)\Intro and (a −→ _) ⊆ A∆ we first have aτ ∈ SN(∆ ⊢ A)\Intro.
If aτ −→ b′ then there is b with a −→ b and b′ = bτ , and by induction hypothesis bτ ∈ A∆.
Thus aτ ∈ A∆ by exp. ◀

▶ Lemma 11 (Saturation). A is a reducibility candidate for any precandidate A.
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Proof. CR3 is forced by the closure operation. Closure under reduction (CR2) and preserva-
tion of SN (CR1) are proven by induction on a ∈ A, the latter using that a ∈ SN when all of
a’s reducts are. ◀

We may now define a notion of function space on reducibility candidates based on the
introduction rules for implication. Since introduction rules are “recursive” in general, i.e.,
may mention the principal formula in the subsequent of a premise, we need to employ the
least fixed-point operation µ for monotone operators on the lattice of reducibility candidates.
We define A → B = µF where

F(X )Γ = {in00
→(t, u), in01

→(t, b), in11
→(a, b) | a ∈ AΓ, b ∈ BΓ, t ∈ X [A]Γ, u ∈ X [B]Γ}

This operation acts on reducibility candidates:

▶ Lemma 12 (Function space). If A and B are reducibility candidates, so is A → B.

Proof. It is sufficient to show that F acts on reducibility candidates. Since CR3 is forced,
it is sufficient that F(X ) is a precandidate for any candidate X , and this follows mostly
from Lemma 5 and the candidateship of A and B. CR1 follows since any reduction of an
introduction needs to happen in one of the arguments of in, which are SN. CR2 follows by
the same observation. ◀

By definition, A → B models the introduction rules for implication: properties (in00
→),

(in01
→) and (in11

→). For the elimination rule, property (el10
→), we have to do a bit of work.

▶ Lemma 13 (Function elimination). Let A, B, C be candidates. If f ∈ A → B and a ∈ A
and u ∈ C[B] then f · E ∈ C where E = el10

→(a, u).

Proof. By main induction on f ∈ A → B.
Case (exp) f ̸∈ Intro and f −→ f ′ implies f ′ ∈ A → B. We show f · E ∈ C by side

induction on E ∈ SN via CR3. First, f · E ̸∈ Intro. Assume f · E −→ c. Since f is not a
introduction, we have either f −→ f ′ or E −→ E′. In the first case, by main induction
hypothesis, f ′ · E ∈ C. In the second case, f · E′ ∈ C by side induction hypothesis. In any
case, c ∈ C. Since c was arbitrary, f · E ∈ C by CR3.

Case f = in00
→(t1, t2) where t1 ∈ (A → B)[A] and t2 ∈ (A → B)[B]. We show f · E ∈

C by side induction on t1, t2, E ∈ SN via CR3. Given f · E −→ c, there are three cases.
Either c = f ′ · E with f −→ f ′ or c = f · E′ with E −→ E′ or c = t1[a] · E. The first
two cases are handled by the side induction hypotheses, the last case by main induction
hypothesis on t1[a] ∈ A → B.

Case f = in01
→(t1, b) where t ∈ (A → B)[A] and b ∈ B. We show f · E ∈ C by side in-

duction on t, b, E ∈ SN via CR3. Given f · E −→ c, there are four cases. Either c = f ′ · E

with f −→ f ′ or c = f · E′ with E −→ E′ or c = t[a] · E or c = u[b]. The first two
cases are handled by the side induction hypotheses, the but-last case by main induction
hypothesis on t[a] ∈ A → B, and the last case by assumption u ∈ C[B].

Case f = in11
→(a′, b) where a′ ∈ A and b ∈ B. We show f · E ∈ C by side induction on

a′, b, E ∈ SN via CR3.
Given f · E −→ c, there are three cases. Either c = f ′ · E with f −→ f ′ or c = f · E′ with
E −→ E′ or c = u[b]. The first two cases are handled by the side induction hypotheses
and the last case by assumption u ∈ C[B]. ◀
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The pattern outlined here for implication generalizes to arbitrary connectives given by
truth tables. Each connective is interpreted as an operation on candidates, using the least
fixed-point of the closure of the term set generated by the introductions. Each elimination
then has to be proven sound in a lemma similar to Lemma 13.

This concludes our study of reducibility candidates to show SN for ITTND. In the
remaining technical sections, we study the extension of the normalization argument to
permutations.

5 Permutation Reductions

In previous sections, we have studied the reduction β of detours I · E stemming from an
elimination E of a via I just introduced connective. In ITTND, even an elimination E

followed by another elimination E′, thus, a term of the form f · E · E′, constitutes a detour
and can be π-reduced.

For the sake of defining and studying π-reduction, let us introduce eliminations E and
evaluation contexts E⃗, aka spines, as syntactic classes separate from terms. Eliminations E

from type A into type C are typed by judgement E : Γ | A ⊢ C . In the case of implication,
we have:

a : Γ ⊢ A u : Γ.B ⊢ C

el10
→(a, u) : Γ | A → B ⊢ C

Sequences of eliminations form spines E⃗, where we denote the empty spine as id and spine
construction by a centered dot.

id : Γ | A ⊢ A

E : Γ | A ⊢ B E⃗ : Γ | B ⊢ C

E · E⃗ : Γ | A ⊢ C

Spine construction straightforwardly extends to spine concatenation E⃗ · E⃗′. Weakening E⃗τ

and substitution E⃗σ are defined in the obvious way.
Since the target type C of an elimination can be freely chosen, one can structure a proof

to always eliminate a hypothesis x : A directly into the goal C. Thus, a sequence x · E · E′ of
two eliminations E : Γ | A ⊢ B and E′ : Γ | B ⊢ C, going via an intermediate formula B, can
be considered a detour.

This detour is removed by a permutation contraction E · E′ 7→π E{E′} that shifts
(“permutes”) the outer elimination E′ into the negative branches of the inner elimination E.
The composition11 E{E′} of eliminations moves a weakened version of E′ to the negative
branches of E. In the case of implication, we have

el10
→(a, u){E′} = el10

→(a, u · E′↑) (1)

where E′↑ shall denote the weakening of elimination E′ by ↑ : Γ.B ≤ Γ. In particular,
el10

→(a′, u′)↑ = el10
→(a′↑, u′(⇑ ↑)).

▶ Remark 14. If in Equation (1) term u is an introduction, it may β-react with E′ to eliminate
further detours. Thus, π-reductions can lead to significant further normalization.

11 The notation E{E′} is due to Joachimski and Matthes [20].
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Now a one-step π-reduction t −→π t′ shall be a π-contraction in some spine within term

t. Let us further define spine reduction E⃗ ▷π E⃗′ as π-contraction within a spine at the root,
i.e., inductively by the axiom

E⃗ · E1 · E2 · E⃗′ ▷π E⃗ · E1{E2} · E⃗′.

Since a spine reduction shortens the length of the spine by 1, spine reduction is SN. For
π-reduction, the situation is slightly more complicated since a π-reduction can create new
π-redexes: for instance, if in Equation (1) the term u is an elimination. However, these
π-redexes have moved deeper into the term, thus, by ranking π-redexes by their depth we
can easily construct a termination order. Consequently, π-reduction alone is also SN [14,
Thm. 55]. Since elimination composition is associative, i.e., (E1{E2}){E3} = E1{E2{E3}},
spine and π-reduction are confluent.

5.1 Permutations are harmless
For β-reduction alone, we have the following closure property of SN: If all proper sub-terms
and all ▷β-reducts of a term are β-SN, so is the term itself. This is Lemma 2.3. of Geuvers
and Hurkens’ addendum [15]. We reprove it here for βπ-SN. Note that the requirements
are not extended to include the ▷π-reducts! So, the addition of permutation reduction is
actually “harmless”.

From now, let “reduction” be βπ-reduction and SN be understood w.r.t. this reduction
relation.

▶ Lemma 15 (Weak head expansion). Assume a, b, t, u, a′, u′ ∈ SN, where mentioned. Let
E = el10

→(a′, u′).
1. If t[a′] · E · E⃗ ∈ SN then in00

→(t, u) · E · E⃗ ∈ SN.
2. If t[a′] · E · E⃗ ∈ SN and u′[b] · E⃗ ∈ SN then in01

→(t, b) · E · E⃗ ∈ SN.
3. If u′[b] · E⃗ ∈ SN then in11

→(a, b) · E · E⃗ ∈ SN.

Proof. We demonstrate statment 2 in detail, the others are similar. For in01
→(t, b) ·el10

→(a′, u′) ·
E⃗ ∈ SN, we show that all its one-step reducts are SN. To this end, we induct on our two
main hypotheses (i) and (ii). The induction on (i) t[a′] · E · E⃗ ∈ SN immediately covers
reductions in t, E, and E⃗, and the induction on (ii) u′[b] · E⃗ ∈ SN covers the remaining inner
reductions, namely in b.

Besides inner reductions, we have two ▷β-reductions, yet they are directly implied by
our two main hypotheses. It remains to show that the π-contraction of E · E⃗ is also benign,
meaning I · E′ · E⃗′ ∈ SN, where I = in01

→(t, b) and E′ = el10
→(a′, u′ · E1 ↑) and E⃗ = E1 · E⃗′. To

tackle this by induction hypothesis, we need to show the two new main hypotheses, which
are now (i’) t[a′] · E′ · E⃗′ ∈ SN and (ii’) (u′ · E1 ↑)[b] · E⃗′ ∈ SN. But (i’) is just a π-reduct of
(i), and (ii’) is identical to (ii), once we distribute the substitution [b]. The inductive step is
thus justified by the first induction hypothesis.

Statement 1 is very similar, only that the second induction is on (u, u′) ∈ SN, to cover
reductions in u and u′.

Statement 3 needs a main induction on the length of E⃗ to cover the case of ▷π-reduction.
Further side inductions are needed on a, a′ ∈ SN. ◀

Similar arguments to Lemma 15 can be found in the work of Joachimski and Matthes [21,
Sect. 5 and 6]. I have also formalized that argument in Agda, albeit for a simpler case:
simply-typed combinatory algebra with conditionals.12

12 https://github.com/andreasabel/truthtable/blob/1a7a01fd28ffb327e9c91a3722e49b467d05a79d
/agda/SK-Bool-ortho.agda
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5.2 Failure of the CR method for βπ

Our goal is now a model-theoretic proof of the SN of βπ-reduction. Unfortunately, just
throwing permutation reductions into the mix and replaying the CR proof for SN-β does not
work, despite the “harmless” character of permutations. The proof of Lemma 13 relies on the
fact that if f · E −→ c and f ̸∈ Intro then either f −→ f ′ or E −→ E′, and the structure of
the elimination f · E is preserved. However, with permutations, in case f = f0 · E0 it could
be that c = f0 · E0{E}, changing the structure of the elimination. Such reductions are not
covered by any of the induction hypotheses.

We cannot arbitrarily tighten the restriction _ ̸∈ Intro in the formulation of CR3, since
CR3 is used in Lemma 13 to introduce terms of the shape f ·E into a reducibility candidate C.
Such terms need to satisfy the restriction, therefore we cannot exclude π-redexes in general:
a priori, f · E could be a π-redex.

6 Orthogonality

Since the reducibility candidate method does not immediately extend to permutations, we
turn to a more powerful technique: (bi)orthogonals [6, 29, 8, 18, 32, 1]. Lindley and Stark
[22] have observed that biorthogonals (“⊤⊤-lifting”) deal well with the permutation reduction
for the monadic bind in a strong normalization proof for the monadic meta-language. We
shall thus adapt this technique, although it is more demanding on our meta-theory, requiring
greatest fixed-points of non-strictly positive operators. This is covered by Knaster and
Tarski’s fixed-point theorem [31], but not readily available in type-theoretic proof assistants
like Coq [7] and Agda [2].

In the following, when we speak of context-indexed families, we implicitly assume that
the family is closed under weakening.

Semantic types A shall now be context-indexed families of sets of spines E⃗, and we write
a ⊥ AΓ to characterize a term a : Γ ⊢ A as classified by semantic type A. The orthogonality

relation ⊥ is defined as

a ⊥ AΓ :⇐⇒ a ∈ A⊥
Γ :⇐⇒ a · E⃗ ∈ SN for all E⃗ ∈ AΓ.

We demand of semantic types that they contain the empty spine id and only contain
strongly normalizing spines. Reductions E⃗ −→ E⃗′ in spines E⃗ can either be βπ-reductions
in the subterms of the eliminations or can be π-contractions along the spine.

More formally, a semantic type AΓ for syntactic type A at context Γ is a set of pairs
(C, (E⃗ : Γ | A ⊢ C)). Then a ⊥ AΓ is defined as a · E⃗ ∈ SN(Γ ⊢ C) for all (C, E⃗ : Γ | A ⊢ C) ∈
AΓ. However, we typically suppress the type component C which is implicitly determined
by E⃗.

▶ Lemma 16 (Semantic types). Let A be a semantic type for A.
1. If x : Γ ⊢ A is a variable, then x ⊥ AΓ.
2. A⊥ ⊆ SN.
3. A⊥ is closed under reduction.

Proof.
1. Given (C, E⃗) ∈ AΓ show x · E⃗ ∈ SN. This holds since the only reductions are in E⃗, which

is required to be SN by definition of semantic types.
2. Given t ⊥ AΓ show t ∈ SN. Since id ∈ AΓ, we have t · id = t ∈ SN.
3. Given t ⊥ AΓ and t −→ t′ and E⃗ ∈ AΓ we have t′ · E⃗ ∈ SN since t · E⃗ ∈ SN and

t · E⃗ −→ t′ · E⃗. ◀
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Symmetrically to A⊥, given a set of terms TΓ ⊆ (Γ ⊢ A) we define

T ⊥
Γ = {(C, (E⃗ : Γ | A ⊢ C)) | a · E⃗ ∈ SN(Γ ⊢ C) for all a ∈ TΓ}.

Taking the orthogonal T ⊥ of a non-empty SN term set T is one way to construct a semantic
type:

▶ Lemma 17 (Orthogonals are semantic types). If T is a family of non-empty sets of strongly
normalizing terms of type A, then T ⊥ is a semantic type for type A.

Proof. First, id ∈ T ⊥ since T ⊆ SN. Then T ⊥ ⊆ SN since T is non-empty. ◀

By definition, orthogonality gives rise to the Galois connection

T ⊥ ⊇ A ⇐⇒ T ⊆ A⊥

(both sides of ⇐⇒ expand to the same statement ∀t ∈ T , E⃗ ∈ A. t · E⃗ ∈ SN). As a
consequence, biorthogonality _⊥⊥ is a closure operator both on sets of terms, T ⊆ T ⊥⊥,
and evaluation contexts, A ⊆ A⊥⊥.

The abstraction type X [A] is now defined by

X [A]Γ = {(C, (E⃗ : Γ.A | X ⊢ C)) | E⃗(τ.a) ∈ X∆ for all τ : ∆ ≤ Γ and a ⊥ A∆}.

Abstraction operates on semantic types:

▶ Lemma 18 (Abstraction, revisited). If A and X are semantic types for A and X, then
X [A] is a semantic type for X.

Proof. We first show that (X, (id : Γ.A | X ⊢ X)) ∈ X [A]Γ. To this end, assume τ : ∆ ≤ Γ
and a ∈ A∆ and show id(τ.a) ∈ X∆. This is trivial, since id(τ.a) = id and X is a semantic
type.

Then, assume (C, (E⃗ : Γ.A | X ⊢ C)) ∈ X [A]Γ and show E⃗ ∈ SN. Choose τ = ↑ : Γ.A ≤ Γ
and a = x0 ∈ AΓ.A the 0th de Bruijn index, then E⃗(↑, x0) = E⃗ ∈ XΓ.A and hence SN. ◀

Given two semantic types A and B, the function space A → B is defined as the greatest
fixpoint νF⊥ of the pointwise orthogonal F⊥ of the operator

F(X )Γ = {in00
→(t, u), in01

→(t, b), in11
→(a, b) | a ⊥ AΓ, b ⊥ BΓ, t ⊥ X [A]Γ, u ⊥ X [B]Γ}.

In comparison with the reducibility candidate version in Section 4, the closure operation has
been replaced by biorthogonalization, and we converted µ(F⊥⊥) to (ν(F⊥))⊥. We dropped
the outer orthogonalization since we now compute sets of evaluation contexts, but note that
F applies orthogonalization on X . Due to the double “negation”, F⊥ is a non-strictly positive
operator which has a (greatest) fixpoint thanks to its monotonicity, yet, this fixpoint is not
directly obtainable in meta-theories that only accept strictly positive coinductive definitions,
such as the type theories of Agda [2] and Coq [7].

▶ Lemma 19 (Function space, revisited). If A is a semantic type for A and B one for B,
then A → B is a semantic type for A → B.

Proof. Applying Lemma 17, it is sufficient to show that F(X ) is a family of non-empty sets
of SN terms for semantic types X . This is the case by assumptions on A, B, and X . ◀

▶ Lemma 20 (Function introduction). Given a ⊥ AΓ and b ⊥ BΓ and t ⊥ (A → B)[A]Γ and
u ⊥ (A → B)[B]Γ, we have in00

→(t, u), in01
→(t, b), in11

→(a, b) ⊥ (A → B)Γ.

TYPES 2020
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Proof. For any of the mentioned introductions I we have I ∈ F(A → B)Γ by definition
of F . Since biorthogonalization is a closure operator, we have I ∈ F(A → B)⊥⊥

Γ and thus
I ⊥ F(A → B)⊥

Γ = (A → B)Γ, since A → B is a fixed point of F⊥. ◀

It seems now logical to prove the following soundness statement for eliminations:

▶ Lemma 21 (Function elimination, preliminary). Let A, B, C be semantic types for A, B, C,
resp. If a ⊥ AΓ and u ⊥ C[B]Γ then E = el10

→(a, u) ∈ (A → B)Γ.

However, such a lemma is not strong enough to justify the implication elimination rule, as
from f ⊥ (A → B)Γ and E ∈ (A → B)Γ we only get f · E ∈ SN, but we need the stronger
f · E ∈ CΓ. Thus, we prove the following stronger lemma.

▶ Lemma 22 (Function elimination, revisited). Let A, B, C be semantic types for A, B, C, resp.
If a ⊥ AΓ and u ⊥ C[B]Γ and E = el10

→(a, u) and E⃗ ∈ CΓ then E · E⃗ ∈ (A → B)Γ.

Proof. Let XΓ = {E · E⃗ | E = el10
→(a, u) for some a ⊥ AΓ and u ⊥ C[B]Γ, and E⃗ ∈ CΓ}. To

show X ⊆ A → B, by coinduction it is sufficient that X is a post-fixpoint of F⊥. So assume
E · E⃗ ∈ X and I ∈ F(X ) and show v := I · E · E⃗ ∈ SN by Lemma 15. To this end, we have
to show that all ▷β-redexes of v are SN. We distinguish the different introduction forms I.

Case I = in00
→(t, u′) with t ⊥ X [A]Γ and u′ ⊥ X [B]Γ. We have t[a] ⊥ XΓ by assumption

on t and E · E⃗ ∈ XΓ, thus, t[a] · E · E⃗ ∈ SN.
Case I = in11

→(a, b) with a ⊥ AΓ and b ⊥ BΓ. We have u[b] ⊥ CΓ and E⃗ ∈ CΓ, thus
u[b] · E⃗ ∈ SN.

Case I = in01
→(t, b). In this case we have two weak head β-redexes which we handle as in

the previous cases. ◀

Plugging these lemmata into the framework of Section 3, we obtain a new proof of βπ-SN
for ITTND.

7 Conclusion

We have successfully applied Girard’s method, in its original form, to prove β-SN of ITTND,
and the orthogonality method to prove βπ-SN. The applicability of established methods is
reassuring that ITTND does not offer a new form of computation asking for new theoretical
justifications.

Our proof using orthogonality places rather high demands on the meta-theory: non-strictly
positive coinductive definitions. Neither Coq nor Agda directly support those; in Coq, though,
we can always fall back to impredicativity to construct the necessary fixed-point in the lattice
of term or spine sets ordered by inclusion. In Martin-Löf Type Theory (MLTT) [24], the
basis of Agda, such backups do not exist. This begs the question whether non-strictly
positive (co)inductive types could be added in some form to MLTT without jeopardizing its
soundness.

In the appendix (Appendix A), we investigate how the SN-method of Joachimski and
Matthes [21, 26] can be applied to ITTND to prove βπ-SN without the need for impredicativity
nor non-strict positivity nor CPS-translation. Whether even an arithmetical proof à la David
and Nour [9, 10] works for unoptimized ITTND is unclear, since already the introduction
rules for implication are recursive and thus make implication semantically an inductive type.
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A further question is the computational content of the normalization arguments presented
here. The double negation on the meta level employed in the biorthogonals superficially
resembles the CPS translation by Geuvers, van der Giessen, and Hurkens [16], and perhaps
the latter can be extracted from our normalization proof.

Finally, the classical version of TTND has been little explored so far. It is unclear whether
it has a computational interpretation that enjoys the strong normalization property.
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We first observe that the set SN contains a weak-head redex already when (1) all of its
reducts are SN and (2) its lost terms are SN, where a lost term is a subterm that could
get dropped by all of the weak-head reductions. This fact is made precise by the following
lemma:

▶ Lemma 23. The following implications, written as rules, are valid closure properties of
SN:

t1[a] · el10
→(a, u) · E⃗ ∈ SN t2 ∈ SN

in00
→(t1, t2) · el10

→(a, u) · E⃗ ∈ SN

t[a] · el10
→(a, u) · E⃗ ∈ SN u[b] · E⃗ ∈ SN b ∈ SN

in01
→(t, b) · el10

→(a, u) · E⃗ ∈ SN
u[b] · E⃗ ∈ SN a1, a2, b ∈ SN
in11

→(a1, b) · el10
→(a2, u) · E⃗ ∈ SN

(Spine E⃗ may be empty in all cases.)

Proof. Each of these implications is proven by induction on the premises, establishing that
the possible reducts of the term in the conclusion are SN. The weak-head reduct(s) are
covered by the premises in each case. Reductions in lost terms are covered by the extra SN
hypotheses. Reductions in preserved terms are covered by the main SN hypotheses. (This
includes reductions in the spine E⃗.)

For example, consider the case for in00
→: By induction on t1[a] · el10

→(a, u) · E⃗ ∈ SN and
t2 ∈ SN show t′ ∈ SN given in00

→(t1, t2) · el10
→(a, u) · E⃗ −→ t′.

Case t′ = t1[a] · el10
→(a, u) · E⃗. Then t′ ∈ SN by assumption.

Case t′ = in00
→(t1, t′

2) · el10
→(a, u) · E⃗ where t2 −→ t′

2. Then t′ ∈ SN by induction hy-
pothesis t′

2 ∈ SN.

Case t′ = in00
→(t′

1, t2) · el10
→(a′, u′) · E⃗′ where (t1, a, u, E⃗) −→ (t′

1, a′, u′, E⃗′) (a single
reduction in one of these subterms). Then t1[a] · el10

→(a, u) · E⃗ −→+ t′
1[a′] · el10

→(a′, u′) · E⃗′

(several steps possible, e.g., if reduction was in a and t1 mentions the 0th de Bruijn index).
Thus, t′ ∈ SN by induction hypothesis on t′

1[a′] · el10
→(a′, u′) · E⃗′ ∈ SN. ◀

Mimicking Lemma 23, the saturation A of a term set is – in the case of the implicational
fragment of ITTND – defined inductively as follows:

t ∈ AΓ

t ∈ AΓ

t1[a] · el10
→(a, u) · E⃗ ∈ AΓ t2 ∈ SN

in00
→(t1, t2) · el10

→(a, u) · E⃗ ∈ AΓ

t[a] · el10
→(a, u) · E⃗ ∈ AΓ u[b] · E⃗ ∈ AΓ b ∈ SN

in01
→(t, b) · el10

→(a, u) · E⃗ ∈ AΓ

u[b] · E⃗ ∈ AΓ a1, a2, b ∈ SN
in11

→(a1, b) · el10
→(a2, u) · E⃗ ∈ AΓ
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▶ Lemma 24. SN ⊆ SN.

Proof. We show t ∈ SN by induction on t ∈ SN, using Lemma 23. ◀

▶ Corollary 25. If A ⊆ SN then A ⊆ SN.

Proof. Since closure is a monotone operator, we have A ⊆ SN ⊆ SN by Lemma 24. ◀

A saturated set A ∈ SAT must fulfill the following three properties:
SAT1 A ⊆ SN (contains only SN terms).
SAT2 If E⃗ ∈ SN then x · E⃗ ∈ A (contains SN neutrals).
SAT3 A ⊆ A (closed under SN weak-head expansion).

Semantic implication can now be defined as:

f ∈ (A → B)Γ ⇐⇒ f ∈ SN and ∀C ∈ SAT, τ : ∆ ≤ Γ, a ∈ A∆, t ∈ C[B]∆. fτ · el10
→(a, t) ∈ C∆.

▶ Lemma 26 (Function space on SAT). If A ⊆ SN and B ∈ SAT, then A → B ∈ SAT.

Proof. SAT1 holds by definition. SAT2 holds by SAT2 of B. SAT3 holds by SAT3 of B. ◀

The introductions rules for implication are indeed modeled for the SAT variant of semantic
function space. For instance, in01

→:

▶ Lemma 27 (Introduction (in01
→)). If t ∈ (A → B)[A]Γ and b ∈ BΓ then in01

→(t, b) ∈ (A →
B)Γ.

Proof. Assume C ∈ SAT and τ : ∆ ≤ Γ and a ∈ A∆ and u ∈ C[B]∆ and show in01
→(t, b)τ ·

el10
→(a, u) ∈ C∆. Using SAT3 on C, it is sufficient to show that (1) t(τ.a) · el10

→(a, u) ∈ C∆ and
(2) u[bτ ] ∈ C∆ and (3) bτ ∈ SN. Subgoals (2) and (3) follow since bτ ∈ B∆, and (1) holds
since t(τ.a) ∈ (A → B)∆. ◀

A.2 On Permutation Reductions
Ralph Matthes’ [26] formulation of saturated sets in the context of π-reductions can also be
adapted to ITTND.

First, we observe that Lemma 23 still holds if π-reductions are taken into account. This
is because any reduction in the spine of a conclusion can be simulated in the spine of at least
one of the premises.

Thus, SAT3 can remain in place, only SAT2 needs to be reformulated, since a neutral x ·E⃗
can be subject to a β-reduction after a π-reduction in E⃗ has created a new β-redex. Towards
a reformulation of SAT2, we observe the following closure properties of SN by neutral terms:

▶ Lemma 28 (Neutral closure of SN). The following implications, written as rules, are valid
closure properties of SN:

x ∈ SN
a ∈ SN u ∈ SN
x · el10

→(a, u) ∈ SN
x · E1{E2} · E⃗ ∈ SN E2 · E⃗ ∈ SN

x · E1 · E2 · E⃗ ∈ SN

The extra assumption E2 · E⃗ ∈ SN in the third implication is equivalent to y · E2 · E⃗ ∈ SN
for some variable y. In the implicational fragment, this assumption is redundant since the
composition el10

→(a, u){E2} = el10
→(a, u · E2↑) does not lose E2. In particular, any reduction in

E2 · E⃗ can be replayed in x · E1{E2} · E⃗. However, in general there can be eliminations with
only positive premises, such as el1¬(a) for negation, where composition el1¬(a){E2} = el1¬(a)
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simply drops E2. This means that reductions in part E2 · E⃗ of x ·E1 ·E2 · E⃗ cannot necessarily
be simulated in x · E1{E2} · E⃗. In particular, a reduction E2 · E3 −→π E2{E3} could lead to
new β-redexes which have no correspondence in E1{E2} · E3.

Mimicking Lemma 28, we extend the definition of saturation C of a semantic type C for
C by the following three clauses:

var x : Γ ⊢ C

x ∈ CΓ
el x : Γ ⊢ A → B a ∈ SN(Γ ⊢ A) u ∈ CΓ.B

x · el10
→(a, u) ∈ CΓ

pi

x : Γ ⊢ A E1 : Γ | A ⊢ B x · E1{E2} · E⃗ ∈ CΓ

τ : ∆ ≤ Γ y : ∆ ⊢ B y · (E2 · E⃗)τ ∈ C∆

x · E1 · E2 · E⃗ ∈ CΓ

Note that a premise such as y · (E2 · E⃗)τ ∈ SN would be too weak to show that semantic
function space is saturated.

We revise the definition of SAT such that SAT3 uses the extended definition of closure,
obsoleting SAT2.

▶ Lemma 29 (Function space on SAT). If A ⊆ SN and B ∈ SAT, then A → B ∈ SAT.

Proof. We shall focus on the new closure conditions for SAT:
var: Show x ∈ (A → B)Γ. Clearly x ∈ SN. Now assume C ∈ SAT and τ : ∆ ≤ Γ and
a ∈ A∆ and u ∈ C[B]∆ and show xτ · el10

→(a, u) ∈ C∆. By el, it is sufficient that a ∈ SN
and u ∈ C∆.B . By var we have x0 ∈ B∆.B , thus u(↑.x0) = u ∈ C∆.B .
el: Assume x : Γ ⊢ A0 → B0 and a0 ∈ SN(Γ ⊢ A0) and u0 ∈ A → BΓ.B0 and show
x · el10

→(a0, u0) ∈ A → BΓ. First, x · el10
→(a0, u0) ∈ SN.

Further, assume C ∈ SAT and τ : ∆ ≤ Γ and a ∈ A∆ and u ∈ C[B]∆ and show
(x · el10

→(a0, u0))τ · el10
→(a, u) ∈ C∆. Using pi, we first discharge the last subgoal x0 ·

el10
→(a, u)↑ ∈ C∆.(A→B) by el for C with a↑ ∈ A∆.(A→B) and u(⇑ ↑) ∈ C∆.(A→B).B .

It remains to show that xτ · el10
→(a0τ, u0(⇑ τ) · el10

→(a, u)↑) ∈ C∆. Again, we use el for
C. Clearly a0τ ∈ SN, so it remains to show that u0(⇑ τ) · el10

→(a↑, u(⇑ ↑)) ∈ C∆.B0 . Since
u0(⇑ τ) ∈ (A → B)∆.B0 and a↑ ∈ A∆.B0 and u(⇑ ↑) ∈ C[B]∆.B0 , this is the case by
definition of A → B.
pi: The case pi for A → B is shown by pi for C (what C refers to, see the previous
cases). This part is a bit tedious to spell out, but completely uninteresting, since just E⃗

is extended by another el10
→-elimination at the end. ◀

The soundness of the introductions carries over from the previous section (Lemma 27)
since the saturated sets are still closed by weak head expansion.

This concludes the βπ-SN proof for ITTND using saturated sets.
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1 Introduction

There is a recent interest for the formal verification of monadic programs stemming from
monadic equational reasoning : an approach to the verification of monadic programs that
emphasizes equational reasoning [8,9,25–27]. In this approach, an effect is represented by an
operator belonging to an interface together with equational laws. The interfaces all inherit
from the type class of monads and the interfaces are organized in a hierarchy where they are
extended and composed. There are several efforts to bring monadic equational reasoning to
proof assistants [1, 2, 28].

In monadic equational reasoning, the user cannot rely on the model of the interfaces
because the implementation of the corresponding monads is kept hidden. The construction
of models is nevertheless important to avoid mistakes when adding equational laws [1].
This means that a formalization of monadic equational reasoning needs to provide tools to
formalize models.

In this paper, we extend an existing formalization of monadic equational reasoning (called
Monae [2]) with monad transformers. Monad transformers is a well-known approach to
combine monads that is both modular and practical [20]. It is also commonly used to write
Haskell programs. The interest in extending monadic equational reasoning with monad
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transformers is therefore twofold: (1) it enriches the toolbox to build formal models of
monad interfaces, and (2) it makes programs written with monad transformers amenable to
equational reasoning.

In fact, the interest for a formal theory of monad transformers goes beyond its application
to monadic equational reasoning. Past research advances about monad transformers could
have benefited from formalization. For example, a decade ago, Jaskelioff identified a lack of
uniformity in the definitions of the liftings of operations through monad transformers [15].
He proposed modular monad transformers which come with a uniform definition of lifting
for operations that qualify as sigma-operations or their sub-class of algebraic operations.
Unfortunately, the original proposal in terms of System Fω was soon ruled out as faulty [17,
Sect. 6] [14, p. 7] and its fix gave rise to a more involved presentation in terms of (non-trivial)
category theory [17]. More recently, this is the comparison between monad transformers and
algebraic effects that attracts attention, and it connects back to reasoning using equational
laws (e.g., [30, Sect. 7]). This is why in this paper, not only do we provide examples of
monad transformers and applications of monadic equational reasoning, but also formalize a
theory of monad transformers.

Contributions. In this paper, we propose a formalization in the Coq proof assistant [32]
of monad transformers. This formalization comes as an extension of Monae, an existing
library that provides a hierarchy of monad interfaces [2]. The benefits of this extension are
as follows.

The addition of sigma-operations and of monad transformers to Monae improves the
implementation of models of monads. These models are often well-known and it is
tempting to define them in an ad hoc way. Sigma-operations help us discipline proof
scripts and naming, which are important aspects of proof-engineering.
We illustrate with an example how to extend Monae to verify a program written with a
monad transformer. Verification is performed by equational reasoning using equational
laws from a monad interface whose model is built using a monad transformer.
We use our formalization of monad transformers to formalize the theory of lifting of
modular monad transformers. Thanks to Monae, the main theorems of modular monad
transformers can be given short formal proofs in terms of equational reasoning.

Regarding the theory of lifting of modular monad transformers, our theory fixes the original
presentation [15]. This fix consists in a non-standard use of Coq combining impredicativity
and parametricity (as implemented by ParamCoq [18]) that allows for an encoding using
the language of the proof assistant and thus avoids the hassle of going through a technical
formalization of category theory (which is how Jaskelioff fixed his original proposal). It
must be said that this was not possible at the time of the original paper on modular monad
transformers because parametric models of dependent type theory were not known [4] (but
were “expected” [16]). We are therefore in the situation where formalization using a proof
assistant allowed for a fruitful revisit of pencil-and-paper proofs.

Regarding the benefit of extending Monae with sigma-operations and monad transformers,
we would like to stress that this is also a step towards more modularity in our formalization
of monadic equational reasoning. Indeed, one important issue that we have been facing is
the quality of our proof scripts. Proof scripts that reproduce monadic equational reasoning
must be as concise as they are on paper. Proof scripts that build models (and prove lemmas)
should be maintainable (to be improved or fixed easily in case of changes in the hypotheses)
and understandable (this means having a good balance between the length of the proof script
and its readability). This manifests as mundane but important tasks such as factorization
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of proof scripts, generalization of lemmas, abstraction of data structures, etc. From the
viewpoint of proof-engineering, striving for modularity is always a good investment because
it helps in breaking the formalization task into well-identified, loosely-coupled pieces.

Outline. In Sect. 2, we recall the main constructs of Monae. In Sect. 3, we formalize the
basics of modular monad transformers: sigma-operations, monad transformers, and their
variants (algebraic operations and functorial monad transformers). Section 4 is our first
application: we show with an example how to extend Monae to verify a program written
using monad transformers. In Sect. 5, we use our formalization of monad transformers to
prove a first theorem about modular monad transformers (namely, the lifting of algebraic
operations) using equational reasoning. In Sect. 6, we formalize (and fix) the main theorem of
modular monad transformers (namely, the lifting of sigma-operations that are not necessarily
algebraic along functorial monad transformers). We review related work in Sect. 7 and
conclude in Sect. 8.

2 Overview of the Monae Library

Monae [2] is a formal library implemented in the Coq proof assistant [32] to support
monadic equational reasoning [9]. It takes advantage of the rewriting capabilities of the tactic
language called SSReflect [10] to achieve formal proofs by rewriting that are very close
to their pencil-and-paper counterparts. Monae provides a hierarchy of monad interfaces
formalized using the methodology of packed classes [6]. Effects are declared as operations
in interfaces together with equational laws, and some effects extend others by (simple or
multiple) inheritance. This modularity is important to achieve natural support for monadic
equational reasoning.

Let us briefly explain some types and notations provided by Monae that we will use
in the rest of this paper. Monae provides basic category-theoretic definitions such as
functors, natural transformations, and monads. By default, they are specialized to UU0,
the lowest universe in the hierarchy of Coq types, understood as a category1. The type
of functors is functor. The application of a functor F to a function f is denoted by F # f.
The composition of functors is denoted by the infix notation \O. The identity functor is
denoted by FId. Natural transformations from the functor F to the functor G are denoted
by F ~> G. Natural transformations are formalized by their components (represented by
the type forall A, F A -> G A, denoted by F ~~> G) together with the proof that they are
natural, i.e., the proof that they satisfy the following predicate:

Definition naturality (M N : functor) (m : M ~~> N) :=
forall (A B : UU0) (h : A -> B), (N # h) \o m A = m B \o (M # h).

(The infix notation \o is for function composition.) Vertical composition of natural trans-
formations is denoted by the infix notation \v. The application of a functor F to a natural
transformation n is denoted by F ## n.

The type of monads is monad, which inherits from the type functor. Let M be of type
monad. Then Ret is a natural transformation FId ~> M and Join is a natural transformation
M \O M ~> M. Using Ret and Join, we define the standard bind operator with the notation >>=.

In this paper, we show Coq proof scripts verbatim when it is reasonable to do so. When
we write mathematical formulas, we keep the same typewriter font, but, for clarity and to
ease reading, we make explicit some information that would otherwise by implicitly inferred

1 Monae also provides a more generic setting [24, file category.v] but we do not use it in this paper.
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by Coq. For example, one simply writes Ret or Join in proof scripts written using Monae
because it has been implemented in such a way that Coq infers from the context which
monad they refer to and which type they apply to. In mathematical formulas, we sometimes
make the monad explicit by writing it as a superscript of Ret or Join, and we sometimes
write the argument of a function application as a subscript. This leads to terms such as RetM

A:
the unit of the monad M applied to some type A.

See the online development for technical details (in particular, [24, file hierarchy.v]).

3 Sigma-operations and Monad Transformers in Monae

The first step is to formalize sigma-operations (Sect. 3.1) and monad transformers (Sect. 3.3).
We illustrate sigma-operations with the example of the model of the state monad (Sect. 3.1.1)
and its get operation (Sect. 3.1.2).

3.1 Extending Monae with Sigma-operations
Given a functor E, an E-operation for a monad M (sigma-operation for short) is a natural
transformation from E \O M to M. The fact that sigma-operations are defined in terms of
natural transformations is helpful to build models because it involves structured objects
(functors and natural transformations) already instrumented with lemmas. In other words,
we consider sigma-operations as a disciplined way to formalize effects. For illustration, we
explain how the get operation of the state monad is formalized.

3.1.1 Example: Model of the State Monad
First we define a model State.t for the state monad (without get and put for the time being).
We assume a type S (line 2) and define the action on objects acto (line 3), abbreviated as M
(line 4). We define the action on morphisms map (line 5) and prove the functor laws (omitted
here, see [24, file monad_model.v] for details). This provides us with a functor functor (line 8,
Functor.Pack and Functor.Mixin are constructors from Monae and are named after the
packed classes methodology [6]). We define the unit of the monad by first providing its
components ret_component (line 9), and prove naturality (line 10, proof script omitted). We
then package this proof to form a genuine natural transformation at line 12 (Natural.Pack and
Natural.Mixin are constructors from Monae). We furthermore define bind (line 14), prove
the properties of the unit and bind (omitted). Finally, we call the function Monad_of_ret_bind
from Monae to build the monad (line 16):

1 (* in Module State *)
2 Variable S : UU0.
3 Definition acto := fun A => S -> A * S.
4 Local Notation M := acto.
5 Definition map A B (f : A -> B) (m : M A) : M B :=
6 fun (s : S) => let (x1, x2) := m s in (f x1, x2).
7 (* functor laws map_id and map_comp omitted *)
8 Definition functor := Functor.Pack (Functor.Mixin map_id map_comp).
9 Definition ret_component : FId ~~> M := fun A a => fun s => (a, s).

10 Lemma naturality_ret : naturality FId functor ret_component.
11 (* proof script of naturality omitted *)
12 Definition ret : FId ~> functor :=
13 Natural.Pack (Natural.Mixin naturality_ret).
14 Definition bind := fun A B (m : M A) (f : A -> M B) => uncurry f \o m.
15 (* proofs of neutrality of ret and of associativity of bind omitted *)
16 Definition t := Monad_of_ret_bind left_neutral right_neutral associative.
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3.1.2 Example: The Get Operation as a Sigma-operation
By definition, for each sigma-operation we need a functor. The functor corresponding to the
get operation is defined below as Get.func (line 5): acto is the action on the objects, actm is
the action on the morphisms (the prefix @ disables implicit arguments in Coq):

1 (* in Module Get *)
2 Variable S : UU0.
3 Definition acto X := S -> X.
4 Definition actm (X Y : UU0) (f : X -> Y) (t : acto X) : acto Y := f \o t.
5 Program Definition func := Functor.Pack (@Functor.Mixin _ actm _ _).
6 (* proofs of the functors law omitted *)

We then define the sigma-operation itself (StateOps.get_op at line 7), which is a natural
transformation from Get.func S \O M to M, where M is the state monad State.t built in
Sect. 3.1.1. Note that this get operation (λs. k s s, line 4) is not the usual operation [15,
Example 13].

1 (* in Module StateOps *)
2 Variable S : UU0.
3 Local Notation M := (State.t S).
4 Definition get A (k : S -> M A) : M A := fun s => k s s.
5 Lemma naturality_get : naturality (Get.func S \O M) M get.
6 (* proof script of naturality omitted *)
7 Definition get_op : (Get.func S).-operation M :=
8 Natural.Pack (Natural.Mixin naturality_get).

3.1.3 Example: Model of the Interface of the State Monad
Monae originally comes with an interface stateMonad for the state monad (with the get and
put operations). It implements the interface as presented by Gibbons and Hinze [9, Sect. 6]; it
therefore expects the operations to be the usual ones. We show how to instantiate it using the
definition of sigma-operations. First, we need to define the usual get from StateOps.get_op
(line 4 below):

1 (* in Module ModelState *)
2 Variable S : UU0.
3 Local Notation M := (ModelMonad.State.t S).
4 Definition get : M S := StateOps.get_op _ Ret.

We do the same for the put operation (omitted). We then build the model of interface of the
state monad (with its operations) using the appropriate constructors from Monae:

Program Definition state : stateMonad S := MonadState.Pack (MonadState.Class
(@MonadState.Mixin _ _ get put _ _ _ _)).

(* proofs of the laws of get and put automatically discharged *)

Similarly, using sigma-operations, we have formalized the operations of the list, the
output, the state, the environment, and the continuation monads, which are the monads
discussed along with modular monad transformers [15, Fig. 1] (see [24, file monad_model.v]
for their formalization).

3.2 The Sub-class of Algebraic Operations
An E-operation op for M is algebraic [15, Def. 15] when it satisfies the predicate algebraicity
defined as follows in Coq (observe the position of the continuation >>= f):
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forall A B (f : A -> M B) (t : E (M A)),
op A t >>= f = op B ((E # (fun m => m >>= f)) t).

Algebraic operations are worth distinguishing because they lend themselves more easily to
lifting, and this result can be used to define lifting for the whole class of sigma-operations
(this is the purpose of Sections 5 and 6). We can check using Coq that, as expected, all
the operations discussed along with modular monad transformers [15, Fig. 1] are algebraic
except for flush, local, and handle2.

Example: the Get operation is Algebraic
For example, the get operation of the state monad is algebraic:

Lemma algebraic_get S : algebraicity (@StateOps.get_op S). Proof. by []. Qed.

In the Coq formalization, we furthermore provide the type E.-aoperation M (note the prefix
“a”) of an E.-operation M that is actually algebraic. For example, here is how we define the
algebraic version of the get operation:

Definition get_aop S : (StateOps.Get.func S).-aoperation (ModelMonad.State.t S) :=
AOperation.Pack (AOperation.Class (AOperation.Mixin (@algebraic_get S))).

3.3 Extending Monae with Monad Transformers
Given two monads M and N, a monad morphism e is a function of type M ~~> N such that for
all types A, B the following laws hold:

e A \o Ret = Ret. (* MonadMLaws.ret *)

forall (m : M A) (f : A -> M B), (* MonadMLaws.bind *)
e B (m >>= f) = e A m >>= (e B \o f).

In Coq, we define the type of monad morphisms monadM that implement the two laws
above. Monad morphisms are also natural transformations (this can be proved easily using
the laws of monad morphisms). We therefore equip monad morphisms e with a canonical
structure of natural transformation. Since it is made canonical, Coq is able to infer it
in proof scripts but we need to make it explicit in statements; we provide the notation
monadM_nt e for that purpose.

A monad transformer t is a function of type monad -> monad with an operator Lift such
that for any monad M, Lift t M is a monad morphism from M to t M. Let monadT be the
type of monad transformers in Monae. We reproduced all the examples of modular monad
transformers (state, exception, environment, output, continuation monad transformers, resp.
stateT, exceptT, envT, outputT, and contT in [24, file monad_transformer.v]).

Example: The Exception Monad Transformer
Let us assume given some type Z : UU0 for exceptions and some monad M. First, we define
the action on objects of the monad transformed by the exception monad transformer (the
type Z + X represents the sum type of the types Z and X):

2 In fact, we had to fix the output operation of the output monad. Indeed, it is defined as follows
in [15, Example 32]: output((w, m) : W × OX) : OX =̂ let (x, w′) = m in (x, append(w′, w)). We changed
append(w′, w) to append(w, w′) to be able to prove algebraicity.
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Definition MX := fun X : UU0 => M (Z + X).

We also define the unit and the bind operator of the transformed monad (the constructors
inl/inr inject a type into the left/right of a sum type):

Definition retX X x : MX X := Ret (inr x).
Definition bindX X Y (t : MX X) (f : X -> MX Y) : MX Y :=

t >>= fun c => match c with inl z => Ret (inl z) | inr x => f x end.

Second, we define the monad morphism that will be returned by the lift operator of the
monad transformer. In Coq, we can formalize the corresponding function by constructing
the desired monad assuming M. This is similar to the construction of the state monad we saw
in Sect. 3.1. We start by defining the underlying functor MX_map, prove the two functor laws
(let us call MX_map_i and MX_map_o these proofs), and package them as a functor:

Definition MX_functor := Functor.Pack (Functor.Mixin MX_map_i MX_map_o).

We then provide the natural transformation retX_natural corresponding to retX and call the
Monae constructor Monad_of_ret_bind (like we did in Sect. 3.1):

Program Definition exceptTmonad : monad :=
@Monad_of_ret_bind MX_functor retX_natural bindX _ _ _.

(* proofs of monad laws omitted *)

Then we define the lift operation as a function that given a computation m in the monad M X
returns a computation in the monad exceptTmonad X:

Definition liftX X (m : M X) : exceptTmonad X := m >>= (@RET exceptTmonad _).

(The function RET is a variant of Ret better suited for type inference here.) We can finally
package the definition of liftX to form a monad morphism:

Program Definition exceptTmonadM : monadM M exceptTmonad :=
monadM.Pack (@monadM.Mixin _ _ liftX _ _).

(* proof of monad morphism laws omitted *)

The exception monad transformer merely packages the monad morphism we have just
defined to give it the type monadT:

Definition exceptT Z := MonadT.Pack (MonadT.Mixin (exceptTmonadM Z)).

One might wonder what is the relation between the monads that can be built with
these monad transformers and the monads already present in Monae. For example, in
Sect. 3.1, we already mentioned the stateMonad interface and we built a model for it (namely,
ModelState.state). On the other hand, we can now, say, build a model for the identity
monad (let us call it identity) and build a model for that state monad as stateT S identity
(we have not provided the details of stateT, see [2]). We can actually prove in Coq that
stateT S identity and State.t are equal3, so that no confusion has been introduced by
extending Monae with monad transformers.

3 [24, Section instantiations_with_the_identity_monad, file monad_model.v]
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Figure 1 Hierarchy of Monad Interfaces Provided by Monae.

3.4 Functorial Monad Transformers
A functorial monad transformer [15, Def. 20] is a monad transformer t with a function h
(hereafter denoted by Hmap t) of type

forall (M N : monad), (M ~> N) -> (t M ~> t N)

such that (1) h preserves monad morphisms (the laws MonadMLaws.ret and MonadMLaws.bind
seen in Sect. 3.3), (2) h preserves identities and composition of natural transformations, and
(3) Lift t is natural, i.e.,

forall (M N : monad) (n : M ~> N) X, h M N n X \o Lift t M X = Lift t N X \o n X.

Note that we cannot define the naturality of Lift t using the predicate naturality we
saw in Sect. 2 because it is restricted to endofunctors on UU0. Also note that Jaskelioff
distinguishes monad transformers from functorial monad transformers while Maillard defines
monad transformers as functorial by default [21, Def. 4.1.1].

4 Application 1: Monadic Equational Reasoning in the Presence of
Monad Transformers

We apply our formalization of monad transformers to the verification of a recursive program
combining the effects of state and exception. We argue that this program is similar in style
to what an Haskell programmer would typically write with monad transformers. Despite
this programming style and the effects, the correctness proof is by equational reasoning.

4.1 Extending the Hierarchy
The first thing to do is to extend the hierarchy of interfaces with stateRunMonad and
exceptStateRunMonad (Fig. 1).

The interface stateRunMonad is a parameterized interface that extends stateMonad with
the primitive RunStateT and its equations. Concretely, let N be a monad and S be the type
of states. When m is a computation in the monad stateRunMonad S N, RunStateT m s runs
m in a state s and returns a computation in the monad N. There is one equation for each
combination of RunStateT with operations below in the hierarchy:
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RunStateT (Ret a) s = Ret (a, s)
RunStateT (m >>= f) s = RunStateT m s >>= fun x => RunStateT (f x.1) x.2
RunStateT Get s = Ret (s, s)
RunStateT (Put s') s = Ret (tt, s')

This is the methodology of packed classes that allows for the overloading of the notations Ret
and >>= here. The notation .1 (resp. .2) is for the first (resp. second) projection of a pair.
The unique value of type unit is tt. The operations Get and Put are the standard operations
of the state monad. Intuitively, given a monad M that inherits from the state monad, Get is a
computation of type M S that returns the state and Put has type S -> M unit and updates
the state (see Sect. 3 for a model of these operations).

The interface exceptStateRunMonad is the combination of the operations and equations
of stateRunMonad and exceptMonad [9, Sect. 5] [24, file hierarchy.v] plus two additional
equations on the combination of RunStateT with the operations of exceptMonad. Recall that
the operations of the exception monad are the computations Fail of type M A and Catch of
type M A -> M A -> M A for some type A (which happens to be the type of the state in this
example); intuitively, Fail raises an exception while Catch handles it.

RunStateT Fail s = Fail
RunStateT (Catch m1 m2) s = Catch (RunStateT m1 s) (RunStateT m2 s)

Using our formalization of monad transformers presented in this paper, it is then easy to
build a model that validates those equations, whereas in previous work we had to build a
model from scratch each time we were introducing a new combination of effects.

4.2 Example: The Fast Product
Now let us write a program and reason on it equationally. First, we write a recursive function
that traverses a list of natural numbers to compute their product, but fails in case a 0 is met.
Intermediate results are stored in the state:

Variables (N : exceptMonad) (M : exceptStateRunMonad nat N).
Fixpoint fastProductRec l : M unit :=

match l with
| [::] => Ret tt
| 0 :: _ => Fail
| n.+1 :: l' => Get >>= fun m => Put (m * n.+1) >> fastProductRec l'
end.

Then, the main function will catch an eventual failure. If there is a failure, then the result
is 0, else the result is the value stored in the state:

Variables (N : exceptMonad) (M : exceptStateRunMonad nat N).
Definition fastProduct l : M _ :=

Catch (Put 1 >> fastProductRec l >> Get) (Ret 0 : M _).

To implement this algorithm in Haskell, we would use the state monad transformer
applied to the exception monad. It would then be necessary to prefix each primitive of the
exception monad with a lifting operation (lift or mapStateT2 in Haskell). Here, we avoid
this by using the hierarchy of interfaces, and the use of monad transformers is restricted to
the construction of models for the interfaces.

The correctness states that the result of the fast product is always the same as a purely
functional version:
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E(M(M X)) M(M X)

E(M(N X)) M(N X)

E(M X)

E(N X)

M X

N X

(l) opX

(k) eX(e) E#ex

(b) E#Ret
(c) op(N X)

(d) Join ◦ e(N X)

(f) E#Ret

(g) E#(M#eX)

(h) op(M X)

(i) M#eX

(j) Join

(a) lifting of opX

Figure 2 Proof of Uniform Algebraic Lifting (Theorem 1).

Lemma fastProductCorrect l n : evalStateT (fastProduct l) n = Ret (product l).

where evalStateT m s is defined as RunStateT m s >>= fun x => Ret x.1. This proposition is
proved easily with a 10 lines proof script that consists of an induction on l, rewriting with the
equations in exceptStateRunMonad and application of standard arithmetic (see Appendix A.1).

Note that in this section we are dealing with the state monad transformer applied to
the exception monad, and that the last equation in Sect. 4.1 specifies that the state is
“backtracked”, i.e., if the state is modified in m1 before an exception occurs, then this change
is forgotten before m2 is executed. This is usual in Haskell. The alternative semantics without
backtracking would be closer to, say, OCaml, where the state is not be backtracked in case
of an exception. Our program would behave the same way because it happens that the
exception handler ignores the state. However, we would need to devise new equations to deal
with Fail and Catch.

5 Application 2: Formalization of the Lifting of an Algebraic Operation

This section is an application of Monae extended with the formalization of sigma-operations
and of monad transformers of Sect. 3. We prove using equational reasoning a theorem
about the lifting of algebraic operations along monad morphisms. This corresponds to
the theorem that concludes the first of part of the original paper on modular monad
transformers [15, Sect.2–4].

In the following M and N are two monads. Given an E-operation op for M and a monad
morphism e from M to N, a lifting of op (to N) along e is an E-operation op' for N such that for
all X:

eX ◦ opX = op'X ◦ (E#eX).

▶ Theorem 1 (Uniform Algebraic Lifting [15, Thm. 19]). Given an algebraic E-operation op
for M and a monad morphism e from M to N, let op' be

X 7→ JoinN
X ◦ e(N X) ◦ op(N X) ◦ (E#RetM

(N X)).

Then op' is an algebraic E-operation for N and a lifting of op along e.

Proof. The proof that op' is a lifting is depicted by the diagram of Fig. 2.
The first step is to show that the path (a) ( ) and the path (b)-(c)-(d) ( ) are equal,

which is by definition of a lifting. The resulting goal is rendered in Coq as follows (for any Y):
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e X (op X Y) = Join (e (N X) (op (N X) ((E # Ret) ((E # e X) Y))))

The second step of the proof is to show that the path (e)-(b) ( ) and the path (f)-(g)
( ) are equal, which is achieved by appealing to the functor laws and the naturality of Ret.
More precisely, to prove

(E # Ret) ((E # e X) Y) = (E # (M # e X)) ((E # Ret) Y),

it suffices to execute the following sequence of rewritings:

rewrite -[in LHS]compE -functor_o. (* functor composition law in the lhs *)
rewrite -[in RHS]compE -functor_o. (* functor composition law in the rhs *)
(* the goal is now: (E # (Ret \o e X)) Y = (E # (M # e X \o Ret)) Y *)
rewrite (natural RET). (* naturality of ret *)
(* the goal is now: (E # (Ret \o e X)) Y = (E # (Ret \o FId # e X)) Y *)
by rewrite FIdf. (* property of the identity functor *)

The next step is to show that the path (g)-(c) and the path (h)-(i) ( ) are equal; this is
by naturality of op.

The next step is to show that the paths (i)-(d) and (j)-(k) are equal, which is by the bind
law of monad morphisms and naturality of monad morphisms.

The last step (equality of the paths (f)-(h)-(j) and (l)) amounts to proving:

op X Y = Join (op (M X) ((E # Ret) Y)).

This step depends of an intermediate lemma [15, Prop. 17]. Let us explain it because it
introduces functions and we will use one of them again later in this paper. Given a natural
transformation n : E ~> M, psi is an E-operation for M defined by the function X 7→ JoinX ◦ n.
Given an E-operation for M, phi is a natural transformation E ~> M defined by the function
X 7→ opX ◦ (E#Ret). It turns out that psi is algebraic and that psi cancels phi for algebraic
operations (proofs omitted here, see [24]), which proves the last goal.

The second part of the proof is to prove that op' is algebraic. This is a direct consequence
of the fact that psi is algebraic.

It should be noted that, even though the statement of the theorem defines the lifting as
the composition of the functions Join, e, etc., it is actually much more practical from the
view point of formal proof to define it as psi (monadM_nt e \v phi op), i.e., the application
of the function psi to the vertical composition of e and phi op, because this object (let us
call it alifting) is endowed with the properties of algebraic operations, whose immediate
availability facilitates the formal proof. ◀

The reader can observe in Appendix A.2 that the complete proof script for Theorem 1
essentially amounts to a small number of rewritings, as has been partially illustrated in the
proof just above.

Example: Lifting the get Operation along the Exception Monad
Transformer
Let us assume the availability of a type S for states and of a type Z for exceptions. We
consider M to be the state monad. To define the lifting of the get operation of M (more
precisely its algebraic version seen in Sect. 3.2) along exceptT (Sect. 3.3) it suffices to call
the alifting function with the right arguments:
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Let M S : monad := ModelState.state S.

Definition aLGet {Z S} : (StateOps.Get.func S).-aoperation (exceptT Z (M S)) :=
alifting (get_aop S) (Lift (exceptT Z) (M S)).

By the typing, we see that the result aLGet is also an algebraic operation.
For example, we can check that the resulting sigma-operation is indeed the get operation

of the transformed monad:

Goal forall Z (S : UU0) X (k : S -> exceptT Z (M S) X),
aLGet _ k = StateOps.get_op _ k. by [].

6 Application 3: Formalization of the Lifting of Sigma-Operations

This section is an application of our formalization of sigma-operations and (functorial)
monad transformers of Sect. 3 and also of Theorem 2. Using Monae, we give an equational
proof for a theorem that generalizes the lifting of Sect. 5 which was restricted to algebraic
operations. This corresponds to the second part of the original paper on modular monad
transformers [15, Sect. 5].

This application requires us to use a non-standard setting of Coq. Section 6.1 introduces
a monad transformer whose formalization requires impredicativity. Section 6.2 focuses on the
main technical difficulty that we identified when going from the pencil-and-paper proofs to a
formalization using Coq: an innocuous-looking proof that actually calls for an argument
based on parametricity. We conclude this section with the formal statement of [15, Thm. 27]
and its formal proof (Sect. 6.3).

6.1 Impredicativity Setting for the Codensity Monad Transformer
To implement the lifting of an operation along a functorial monad transformer, Jaskelioff
introduces a monad transformer codensityT related to the construction of the codensity
monad for an endofunctor [15, Def. 23]. Its formalization requires impredicativity and if
nothing is done, the standard setting of Coq would lead to universe inconsistencies.

Let us give a bit of background on impredicativity with Coq. The type theory of Coq
is constrained by a hierarchy of universes Set, Type1, Type2, etc. The Coq language only
provides the keywords Set and Type, the Coq system figures out the right indices for Types.
Universes are not impredicative by default; yet, Coq has an option (-impredicative-set)
that changes the logical theory by declaring the universe Set as impredicative. This option
is useful in Coq to formalize System F/Fω, their impredicative encodings of data types,
and for extraction of programs in CPS style. It is known to be inconsistent with some
standard axioms of classical mathematics [7, 31] but we do not rely on them here4. To keep
a firm grip on the universes involved, we fix a few universes at the beginning of the formal
development [24, file ihierarchy.v]:

Definition UU2 : Type := Type.
Definition UU1 : UU2 := Type.
Definition UU0 : UU1 := Set.

and only use them instead of Set or Type (so far we have been using UU0 but it is really
another name for the native Set universe).

4 More precisely, the development we discuss in this paper [24, directory impredicative_set] uses
together with impredicative Set only the standard axioms of functional extensionality and proof
irrelevance, which are compatible.
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Now that we have set Coq appropriately, we define the codensity monad transformer.
Given a monad M, a computation of a value of type A in the monad codensityT M has type
forall (B : UU0), (A -> M B) -> M B of type UU0: here, impredicativity comes into play. We
abbreviate this type expression as MK M A in the following. We do not detail the formalization
of codensityT because it follows the model of the exception monad transformer that we
explained in Sect. 3.3. Let us just display its main ingredients, i.e., the unit, bind, and lift
operations [15, Def. 23]:

Definition retK (A : UU0) (a : A) : MK M A :=
fun (B : UU0) (k : A -> M B) => k a.

Definition bindK (A B : UU0) (m : MK M A) f : MK M B :=
fun (C : UU0) (k : B -> M C) => m C (fun a : A => (f a) C k).

(* definition of codensityTmonadM omitted *)
Definition liftK (A : UU0) (m : M A) : codensityTmonadM A :=

fun (B : UU0) (k : A -> M B) => m >>= k.

We can check in Coq that they indeed give rise to a monad transformer in the sense of
Sect. 3.3, so that codensityT does have the type monadT (Sect. 3.3) of monad transformers.

6.2 Parametricity to Prove Naturality
The monad transformer codensityT is needed to state the theorem about the lifting of sigma-
operations and in particular to define a natural transformation called from [15, Prop. 26].
Formally, we can define from’s components as follows (M is a monad):

Definition from_component : codensityT M ~~> M :=
fun (A : UU0) (c : codensityT M A) => c A Ret.

At first sight, the naturality of from_component seems obvious and indeed no proof is given
in the original paper on modular monad transformers (see the first of the two statements
of [15, Prop. 26]). It is however a bit more subtle than it appears and, as a matter of fact, it
is shown in a later paper that this claim is wrong: fromM cannot be a natural transformation
in the setting of Fω [17, p. 4452]. We explain how we save the day in Coq by relying on
parametricity.

We state the naturality of fromM as naturality (codensityT M) M from_component. This
goal reduces5 to:

forall (m : codensityT M A) (h : A -> B), (M # h \o m A) Ret = m B (M # h \o Ret).

This last goal is an instance of a more general statement (recall from Sect. 6.1 that MK M is
the action on the objects of the monad codensityT M):

forall (M : monad) (A : UU0) (m : MK M A) (A1 B : UU0) (h : A1 -> B),
M # h \o m A1 = m B \o (fun f : A -> M A1 => (M # h) \o f).

This is actually a special case of naturality as one can observe by rewriting the type of m with
the appropriate functors: exponential_F A \O M and M, where exponential_F is the functor
whose action on objects is forall X : UU0, A -> X:

forall (M : monad) (A : UU0) (m : MK M A), naturality (exponential_F A \O M) M m

Unfortunately, we are not able to prove it in plain Coq (with or without impredicative Set),
even if we consider particular functors M such as the identity functor.

5 By functional extensionality, by naturality of Ret, and by definition of from_component.
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The solution consists in assuming an axiom of parametricity for each functor M and derive
naturality from it. That is, we follow the approach advocated by Wadler [34]. It has been
shown to be sound in Coq [4, 5, 18, 19] and it is implemented by the ParamCoq plugin [18].
For instance, let us describe what happens when M is the list monad. First, we rewrite the
naturality statement above in the case of the list functor (map is the map function of lists):

forall (X Y : UU0) (f : X -> Y) (g : A -> seq X),
(map f \o m X) g = (m Y \o (exponential_F A \O M) # f) g.

The proof proceeds by induction on a proof-term of type

list_R X Y (fun x y => f x = y) (m X g) ((m Y \o (exponential_F A \O M) # f) g)

where list_R X Y X_R l1 l2 means that the elements of lists l1 and l2 are pairwise related
by the relation X_R. The role of ParamCoq is to generate definitions (including list_R) for
us to be able to produce this proof. Concretely, starting from MK, ParamCoq generates the
logical relation T_R of type (it is obtained by induction on types [11]):

(forall X : UU0, (A -> list X) -> list X) ->
(forall X : UU0, (A -> list X) -> list X) -> UU0

Here, T_R m1 m2 expands to:

forall (X1 X2 : UU0) (RX : X1 -> X2 -> UU0)
(f1 : A -> list X1) (f2 : A -> list X2),

(forall a1 a2 : A, a1 = a2 -> list_R X1 X2 RX (f1 a1) (f2 a2)) ->
list_R X1 X2 RX (m1 X1 f1) (m2 X2 f2)

It is then safe to assume the following parametricity axiom:

Axiom param : forall m : MK M A, T_R m m.

The application of param is the first step to produce the proof required for the induction:

have : list_R X Y (fun x y = f x = y) (m X g) ((m Y \o (exponential_F A \O M) # f) g).
apply: param.
(* ∀ a a', a = a' ->

list_R X Y ( fun x y = f x = y ) ( g a ) ( ( ( exponential_F A \O M ) # f ) g a' ) *)

The goal generated is proved by induction on g a which is a list.
The same approach is applied to other monads (identity, exception, option, state) [24, file

iparametricity_codensity.v].

6.3 Lifting of Sigma-operations: Formal Statement
Before stating and proving the main theorem about lifting of sigma-operations, we formally
define a special algebraic operation [15, Def. 25]. Let E be a functor, M be a monad, and op
be an E-operation for M. The natural transformation kappa from E to codensityT M is defined
by the components

A, (s : E A), B, (k : A -> M B) 7→ op B ((E#k) s)

and psik is the algebraic E-operation for the monad codensityT M defined by:

Definition psik : E.-aoperation (codensityT M) := psi (kappa op).

Recall that the function psi has been defined in the proof of Theorem 1.
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Figure 3 Proof of Uniform Lifting (Theorem 2).

▶ Theorem 2 (Uniform Lifting [15, Thm. 27]). Let M be a monad such that any computation
m : MK M A is natural in the sense of Sect. 6.2 (hypothesis naturality_MK). Let op be an
E-operation for M and t be a functorial monad transformer. We denote:

by op1 the term Hmap t (from naturality_MK) (see Sect. 6.2 for from, Hmap was defined
in Sect. 3.4),
by op2 the algebraic lifting along Lift t of (psik op) (see just above for psik), and
by op3 the term E ## Hmap t (monadM_nt (Lift codensityT M)) (see Sect. 6.1 for
codensityT).

Then the operation op1 \v op2 \v op3 (where \v is the vertical composition seen in Sect. 2)
is a lifting of op along t.

Proof. The proof is depicted by the diagram in Fig. 3.
The first step of the proof is to unfold the definition of lifting (which amounts to showing

that the paths (a) ( ) and (b)-(c)-(d) are equal). Consequently, the proof goal is rendered
in Coq as follows (for all X : UU0):

Lift t M X \o op X = (op1 \v op2 \v op3) X \o E # Lift t M X

The second step of the proof is to show that the path (e)-(b) and the path (f)-(g) ( ) are
equal, which is achieved by appealing to the law of functor composition and the naturality of
Hmap.

The next step is to show that the path (g)-(c) and the path (h)-(i) ( ) are equal; this is
by applying Theorem 1.

At this point, the goal becomes:

Lift t M X \o op X = (op1 X \o (Lift t (codensityT M) X \o psik op X))
\o E # Lift codensityT M X

It happens that we can use the naturality of Hmap to make the from function appear in
the right-hand side of the goal:

Lift t M X \o op X = ((Lift t M X \o from naturality_MK X)
\o psik op X) \o E # Lift codensityT M X

The last step is to identify op with the composition of the from function, psik op,
and E # List codensityT M, which is the purpose of a lemma [15, Prop. 26] (see [24, file
ifmt_lifting.v, lemma psikE]). ◀
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The proof script corresponding to the proof above is reproduced in Appendix A.3.
Finally, we show that, for all the monad transformers considered in this paper, the lifting of

an algebraic operation provided by Theorem 2 coincides with the one provided by Theorem 1.
This corresponds to the last results about modular monad transformers [15, Prop. 28].

7 Related Work

The example we detail in Sect. 4 adds to several examples of monadic equational reasoning [8,
9, 25–28]. Its originality is to use a parameterized interface and the RunStateT command,
which are typical of programs written using monad transformers.

Huffman formalizes three monad transformers in the Isabelle/HOL proof assistant [12].
This experiment is part of a larger effort to overcome the limitations of Isabelle/HOL type
classes to reason about Haskell programs that use (Haskell) type classes. Compared to
Isabelle/HOL, the type system of Coq is more expressive so that we could formalize a much
larger theory, even relying on extra features of Coq such as impredicativity and parametricity
to do so.

Maillard proposes a meta language to define monad transformers in the Coq proof
assistant [21, Chapter 4]. It is an instance implementation of one element of a larger
framework to verify programs with monadic effects using Dijskstra monads [22]. The lifting
of operations is one topic of this framework but it does not go as far as the deep analysis of
Jaskelioff [14,15,17].

There are also formalizations of monads and their morphisms that focus on the mathemat-
ical aspects, e.g., UniMath [33]. However, the link to the monad transformers of functional
programming is not done.

Monad transformers is one approach to combine effects. Algebraic effects is a recent
alternative. It turns out that the two are related [30] and we have started to extend Monae
to clarify formally this relation.

8 Conclusions and Future Work

In this paper, we extended Monae, a formalization of monadic equational reasoning, with
monad transformers. We explained how it helps us to better organize the models of monads,
thanks to sigma-operations in particular. We also explained how to extend the hierarchy of
monad interfaces to handle programs written with monad transformers in mind. We also
used our formalization of monad transformers to formalize the theory of liftings of modular
monad transformers [15] using equational reasoning. For that purpose, we needed to fix the
original presentation by using Coq’s impredicativity and parametricity.

The main result of this paper is a robust, formal theory of monad transformers. We plan
to extend the hierarchy of monad interfaces of Monae similarly to how we proceeded for
exceptStateRunMonad. Such an extension will call for more models to be formalized and we
expect our formalized theory of liftings to be useful on this occasion.

Results up to Sect. 5 hold whether or not Set is impredicative. In contrast, the setting of
Sect. 6 conflicts with Monae programs relying on some data structures from the MathComp
library [23] (such as fixed-size lists) or from the InfoTheo library [13] (such as probability
distributions) because these data structures are in Type and cannot be computed with monads
in Set. One could think about reimplementing them but this is a substantial amount of
work. A cheap way to preserve these data structures together with the theorem on lifting of
sigma-operations is to disable universe checking as soon as this theorem is used; this way,
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monads can stay in Type. Disabling universe checking is not ideal because it is unsound in
general6; note however that this is sometimes used for the formalization of category-theoretic
notions (e.g., [3, Sect. 6]). How to improve this situation is another direction for future work.
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A Proof Scripts for the Three Applications of This Paper

The following proof scripts have been copied verbatim from Monae [24] for the reader’s
convenience. We claim that these proof scripts are readable and short in the sense that
each line corresponds to a genuine proof step and that there are few administrative tactics
hampering reading. The terseness of the SSReflect tactic language could actually make
these proof scripts much shorter but that is not our point here. In particular, we make
explicit the proof steps of Theorems 1 and 2 (in Appendices A.2 and A.3) with transitivity
steps or explicit rewrite steps followed by indented (sub-)proof scripts.

A.1 Proof Script for the Correctness of fastProduct

The following proof script can be found in [24, file example_transformer.v].

Lemma fastProductCorrect l n :
evalStateT (fastProduct l) n = Ret (product l).

Proof.
rewrite /fastProduct -(mul1n (product _)); move: 1.
elim: l => [ | [ | x] l ih] m.
- rewrite muln1 bindA bindretf putget.

rewrite /evalStateT RunStateTCatch RunStateTBind RunStateTPut bindretf.
by rewrite RunStateTRet RunStateTRet catchret bindretf.

- rewrite muln0.
rewrite /evalStateT RunStateTCatch RunStateTBind RunStateTBind RunStateTPut.
by rewrite bindretf RunStateTFail bindfailf catchfailm RunStateTRet bindretf.

- rewrite [fastProductRec _]/=.
by rewrite -bindA putget bindA bindA bindretf -bindA -bindA putput ih mulnA.

Qed.

A.2 Proof Script for Theorem 1 [15, Thm. 19]
The following proof script can be found in [24, file monad_transformer.v].

Section uniform_algebraic_lifting.
Variables (E : functor) (M : monad) (op : E.-aoperation M).
Variables (N : monad) (e : monadM M N).

Definition alifting : E.-aoperation N := psi (monadM_nt e \v phi op).

Lemma aliftingE :
alifting = (fun X => Join \o e (N X) \o phi op (N X)) :> (_ ~~> _).

Proof. by []. Qed.

Theorem uniform_algebraic_lifting : lifting op e alifting.
Proof.
move=> X.
apply fun_ext => Y.
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rewrite /alifting !compE psiE vcompE phiE !compE.
rewrite (_ : (E # Ret) ((E # e X) Y) =

(E # (M # e X)) ((E # Ret) Y)); last first.
rewrite -[in LHS]compE -functor_o.
rewrite -[in RHS]compE -functor_o.
rewrite (natural RET).
by rewrite FIdf.

rewrite (_ : op (N X) ((E # (M # e X)) ((E # Ret) Y)) =
(M # e X) (op (M X) ((E # Ret) Y))); last first.

rewrite -(compE (M # e X)).
by rewrite (natural op).

transitivity (e X (Join (op (M X) ((E # Ret) Y)))); last first.
rewrite joinE monadMbind.
rewrite bindE -(compE _ (M # e X)).
by rewrite -natural.

by rewrite -[in LHS](phiK op).
Qed.
End uniform_algebraic_lifting.

A.3 Proof Script for Theorem 2 [15, Thm. 27]
The following proof script can be found in [24, file ifmt_lifting.v].

Section uniform_sigma_lifting.
Variables (E : functor) (M : monad) (op : E.-operation M) (t : FMT).
Hypothesis naturality_MK : forall (A : UU0) (m : MK M A),

naturality_MK m.

Let op1 : t (codensityT M) ~> t M := Hmap t (from naturality_MK).
Let op2 := alifting (psik op) (Lift t _).
Let op3 : E \O t M ~> E \O t (codensityT M) :=

E ## Hmap t (monadM_nt (Lift codensityT M)).

Definition slifting : E.-operation (t M) := op1 \v op2 \v op3.

Theorem uniform_sigma_lifting : lifting_monadT op slifting.
Proof.
rewrite /lifting_monadT /slifting => X.
apply/esym.
transitivity ((op1 \v op2) X \o op3 X \o E # Lift t M X).

by rewrite (vassoc op1).
rewrite -compA.
transitivity ((op1 \v op2) X \o

((E # Lift t (codensityT M) X) \o (E # Lift codensityT M X))).
congr (_ \o _); rewrite /op3.
by rewrite -functor_o -natural_hmap functor_o functor_app_naturalE.

transitivity (op1 X \o
(op2 X \o E # Lift t (codensityT M) X) \o E # Lift codensityT M X).
by rewrite vcompE -compA.

rewrite -uniform_algebraic_lifting.
transitivity (Lift t M X \o from naturality_MK X \o (psik op) X \o

E # Lift codensityT M X).
congr (_ \o _).
by rewrite compA natural_hmap.

rewrite -2!compA.
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congr (_ \o _).
by rewrite compA -psikE.
Qed.
End uniform_sigma_lifting.
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Abstract
Android is a platform for mobile devices that captures more than 85% of the total market share [14].
Currently, mobile devices allow people to develop multiple tasks in different areas. Regrettably, the
benefits of using mobile devices are counteracted by increasing security risks. The important and
critical role of these systems makes them a prime target for formal verification. In our previous
work [10], we exhibited a formal specification of an idealized formulation of the permission model
of version 6 of Android. In this paper we present an enhanced version of the model in the proof
assistant Coq, including the most relevant changes concerning the permission system introduced
in versions Nougat, Oreo, Pie and 10. The properties that we had proved earlier for the security
model have been either revalidated or refuted, and new ones have been formulated and proved.
Additionally, we make observations on the security of the most recent versions of Android. Using
the programming language of Coq we have developed a functional implementation of a reference
validation mechanism and certified its correctness. The formal development is about 23k LOC of
Coq, including proofs.
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1 Introduction

Android [24] is the most used mobile OS in the world, capturing approximately 85% of the
total market-share [14]. It offers a huge variety of applications in its official store that aim to
help people in their daily activities, many of them critical in terms of privacy. In order to
guarantee their users the security they expect, Android relies on a multi-party consensus
system where user, OS and application must be all in favour of performing a task. This
security framework is built upon a system of permissions, which are basically tags that
developers declare on their applications to gain access to sensitive resources. Whenever an
action that requires some of this permissions is executed for the first time, the user will be
asked for authorization and if provided, the OS will ensure that only the required access is
granted. The important and critical role of this security mechanism makes it a prime target
for (formal) verification.

Security models play an important role in the design and evaluation of security mechanisms
of systems. Earlier, their importance was already pointed in the Anderson report [1], where
the concept of reference monitor was first introduced. This concept defines the design
requirements for implementing what is called a reference validation mechanism, which shall
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be responsible for enforcing the access control policy of a system. For ensuring the correct
working of this mechanism three design requirements are specified: i) the reference validation
mechanism (RVM) must always be invoked (complete mediation); ii) the RVM must always
be tamper-proof (tamper-proof ); and iii) the RVM must be small enough to be subject to
analysis and tests, the completeness of which can be assured (verifiable).

The work presented here is concerned with the verifiability requirement. In particular we
put forward an approach where formal analysis and verification of properties is performed on
an idealized model that abstracts away the specifics of any particular implementation, and
yet provides a realistic setting in which to explore the issues that pertain to the realm of
(critical) security mechanisms of Android. The formal specification of the reference monitor
shall be used to establish and prove that the security properties that constitute the intended
access control policy are satisfied by the modeled behavior of the validation mechanisms.

Contributions. In our previous work [10] we presented a formal specification of an idealized
formulation of the permission model of version 6 of Android. We also developed, using the
programming language of Coq [27], an executable (functional) specification of the reference
validation mechanism and we proved its correctness conforming to the specified model.
Lastly, we used the program extraction mechanism provided by Coq [18] to derive a certified
Haskell implementation of the reference validation mechanism. Here we present an enhanced
version of the model, including the most relevant changes concerning the permission system
introduced in versions Nougat, Oreo, Pie and 10. Some of these changes don’t have a
direct impact on our abstract model. In those cases, an informal analysis is included. The
executable specification was also updated, and with that, the derived implementation as well.
The properties that we had proved for the security model have been either revalidated or
refuted, and new ones have been formulated and proved. The formal development is about
23k LOC of Coq, including various lemmas and their proofs.

Organization of the paper. Section 2 reviews the security mechanisms of Android and
briefly describes the changes introduced in the later versions. Sections 3 and 4 present the
formal axiomatic specification and the semantics of the certified implementation, respectively.
Both sections discuss relevant properties concerning the new features. Section 5 considers
related work and finally, Section 6 concludes with a summary of our contributions and
directions for future work. The full formalization is available at https://github.com/
g-deluca/android-coq-model [19] and can be verified using the Coq proof assistant. A
preliminary version of this paper is accessible on arXiv [20].

2 Android’s security model

2.1 Basic security mechanisms
The Android security model is primarily based on a sandbox and permission mechanism. Each
application runs in a private virtual machine with a unique ID assigned to it, which means
that one application’s code is isolated from the code of the rest. This isolation means that, by
default, applications can not interact with each other and have limited access to the OS. For
example, if an application tries to do something malicious, like reading the user’s contacts
without permission, the action will fail due to the lack of privileges. However, these actions
could also be started by trusted applications, and therefore, need to be done. Android’s
permission system is the mechanism in charge of deciding which of these actions should occur
and which ones should not, depending on the permissions that each application has.

https://github.com/g-deluca/android-coq-model
https://github.com/g-deluca/android-coq-model
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Every permission is identified by a unique name/text, has a protection level and may
belong to a permission group. Furthermore, permissions can be classified into two groups:
the ones defined by an application, for the sake of self-protection; and those predefined by
Android, which are required to gain access to certain system features, like internet or location.
Depending on the protection level of the permission, the system defines the rules to grant
that permission. There are three classes of permission levels [4]: i) normal, these permissions
can be automatically granted since they cover data or resources where there’s very little
risk to the user’s privacy or the operation of other apps; ii) dangerous, permissions of this
level provide access to data or resources that may be sensitive or could potentially affect
the operation of other applications, and explicit user approval is needed to be granted; and
iii) signature, a permission of this level is granted only if the application that requires it and
the application that defined it are both signed with the same certificate. An application must
declare –in an XML file called AndroidManifest– the set of permissions it needs to acquire
further capacities than the default ones. From version 6 of Android, dangerous permissions
are granted at runtime whereas both normal and signature are given when the application is
installed.

Permissions may belong to groups that reunite a device’s capabilities. The main purpose
of grouping permissions in this way is to handle permission requests at the group level, in
order to avoid overwhelming the user with too many questions. For example, the SMS group
includes the permission needed to read text messages as well as the one needed to receive
them (both considered to be dangerous). Whenever an application needs one of those for the
first time, the user will be asked to authorize the whole group. In Section 2.2, we explain
what authorizing a group means depending on the platform version.

An Android application is built up from components. A component is a basic unit that
provides a particular functionality and that can be run by any other application with the
right permissions. There exist four types of components [2]: i) activity, which is essentially a
user interface of the application; ii) service, a component that executes in the background
without providing an interface to the user; iii) content provider, a component intended
to share information among applications; and iv) broadcast receiver, a component whose
objective is to receive messages, sent either by the system or an application, and trigger
the corresponding actions. The communication between components is achieved with the
exchange of special messages called intents, which can be either i) explicit, meaning that
the target application is specified; or ii) implicit, where only the action to be performed is
declared and the system determines which application will run the task (if there is more
than one capable application, the user is allowed to choose). In order to be candidates for
the resolution of implicit intents, an application must declare on their manifest an intent
filter that indicates the types of intents it can respond to.

Android provides two mechanisms by which an application can delegate its own permissions
to another one. These mechanisms are called pending intents and URI permissions. An
intent may be defined by a developer to perform a particular action. A PendingIntent
specifies a reference to an action, which might be used by another application to perform the
operation with the same permissions and identity of the one that created the intent. The
URI permissions mechanism can be used by an application that has read/write access to a
content provider to temporarily delegate those permissions to another application. These
permissions are revoked once the receiver activity or service becomes inactive.
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2.2 A brief review on the changelog
As we described in our previous work [10], the sixth version of Android introduced an
important change to the system, allowing the users to handle permissions at runtime. In this
section, we give a short account of the changes introduced between Android Nougat (7) and
Android 10, that had a significant impact on the permission system.

Filesystem

In order to improve security, the private directory of applications targeting1 Android 7.0 or
higher has restricted access: only the owner is capable of reading, writing or executing files
stored in it. This configuration prevents leakage of metadata of private files, like the size or
existence. With this change, applications are no longer able to share files simply by changing
the file permissions and sharing their private URI; a content provider must be used in order
to generate a reference to the file. With this approach, a new kind of URI is generated, which
grants a temporary permission that will be available for the receiver activity or service only
while they are active/running.

Our previous model already allowed granting temporary permissions to content providers
URIs, so no change was required to formalize this new feature.

Grouped permissions

Prior to Android 8, if an application requested a grouped permission at runtime and the
user authorized it, the system also granted the rest of the permissions from the same group
that were declared on the manifest. This behaviour was incorrect since it violated the
intended least privilege security policy claimed by the designers of the platform. For ap-
plications targeting Android 8 or higher, this action was corrected and only the requested
permission is granted. However, once the user authorized a group, all subsequent requests
for permissions in that group are automatically granted. This change was added to the model.

Normal grouped permissions. According to Android’s official documentation, any per-
mission can belong to a permission group regardless of protection level [3]. However, it is
not specified if normal and dangerous permissions can share a group or, in case that it
is possible, how the system should handle this situation. A few questions we have raised
are the following: i) Is the authorization to automatically concede permissions from that
group granted at installation time together with the normal permissions?; ii) Is the user
warned about that decision?; iii) If that is the case, then there’s a contradiction with the
documentation, since it claims that a permission’s group only affects the user experience if
the permission is dangerous; and iv) If it’s not, how does the system avoid that dangerous
permissions from the same group are not automatically granted later by the system?

In this work we formalized a worst-case scenario (that still suits the informal specification
given by the authors of the platform), where a normal permission enables the automatic
granting of dangerous permissions belonging to the same group. We formally discuss this
situation in Section 3.4.

1 Applications can target a particular version of the system. Android uses this setting to determine
whether to enable any compatibility behaviors or features.
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Privacy changes

Android Pie (9) introduced several changes aiming to enhance users’ privacy, such as limiting
background apps’ access to device sensors, restricting information retrieved from Wi-Fi scans,
and adding new permission groups and rules to reorganize phone calls and phone state related
permissions. Later, the tenth version of the platform continued adding limitations to services:
a new permission for accessing the location in the background was added. Furthermore,
Android 10 placed restrictions on when a service can start an activity, in order to minimize
interruptions for the user and keep the user more in control of what is shown on their screen.

These changes are specific to the implementation, meaning that they have no impact on
an abstract representation like ours.

Permission check on legacy apps

Applications that target Android 5.1 or lower are considered to be old2. If an old application
runs on an Android 10 system for the first time, a prompt appears on the screen, giving the
user an opportunity to revoke access to permissions that the system previously granted at
install time. This feature has been added to our model.

3 Formalization of Android’s permission system

In this section we describe the axiomatic semantics of our model of the system, focusing on
the features introduced in the later versions. We also discuss some of the verified properties.

Formal language used. Coq is an interactive theorem prover based on higher order logic
that allows to write formal specifications and interactively generate machine-checked proofs
of theorems. It also provides a (dependently typed) functional programming language that
can be used to write executable algorithms. The Coq environment also provides program
extraction towards languages like Ocaml and Haskell for execution of (certified) algorithms
[17, 18]. In this work, enumerated types and sum types are defined using Haskell-like
notation; for example, option T

def= None | Some (t : T ). Record types are of the form
{l1 : T1, . . . , ln : Tn}, whereas their elements are of the form {t1, . . . , tn}. Field selection is
written as r.li. We also use {T} to denote the set of elements of type T . Finally, the symbol
× defines tuples, and nat is the datatype of natural numbers. We omit Coq code for reasons
of clarity; this code is available in [19].

3.1 Model states
The Android security model we have developed has been formalized as an abstract state
machine. In this model, states (AndroidST) are modelled as 13-tuples that store dynamic
data about the system such as the installed applications and their current permissions, as well
as static data like the declared manifest of each installed app. A complete formal definition
is given in Figure 1.

The type PermId represents the set of permissions identifiers; PermGroup, the set of
permission groups identifiers; Comp, the application components whose code will run on the
system; AppId represents the set of application identifiers; iComp is the set of identifiers of
running instances of application components; ContProv is a subset of Comp, a special type

2 We can also refer to them as legacy applications.
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Auxiliary definitions
OpTy ::= read | write | rw
PermLvl ::= Dangerous | Normal | Signature | Signature/System
Perm ::= PermId × option PermGroup × PermLvl
CompInstance ::= iComp × Comp
Manifest ::= {Comp} × option nat × option nat × {PermId} × {Perm} × option PermId

State components
InstApps ::= {AppId}
VerifiedApps ::= {AppId}
AppPS ::= {AppId × PermId}
PermsGr ::= {AppId × PermGroup}
CompInsRun ::= {CompInstance}
DelPPerms ::= {AppId × ContProv × Uri × OpTy}
DelTPerms ::= {iComp × ContProv × Uri × OpTy}
ARVS ::= {AppId × Res × Val}
Intents ::= {iComp × Intent}
Manifests ::= {AppId × Manifest}
Certs ::= {AppId × Cert}
AppDefPS ::= {AppId × Perm}
SysImage ::= {SysImgApp}
AndroidST ::= InstApps × VerifiedApps × PermsGr × AppPS × CompInsRun × DelPPerms × DelTPerms ×

ARVS × Intents × Manifests × Certs × AppDefPS × SysImage

Figure 1 Android state.

of component that allows sharing resources among different applications; a member of the
type Uri is a particular URI (uniform resources identifier); the type Res represents the set
of resources an application can have (through its content providers, members of ContProv);
the type Val is the set of possible values that can be written on resources; an intent –i.e. a
member of type Intent– represents the intention of a running component instance to start or
communicate with other applications; a member of SysImgApp is a special kind of application
which is deployed along with the OS itself and has certain privileges, like being impossible to
uninstall.

The first component of the state records the identifiers (AppId) of the applications
installed by the user. The second component is a subset of the first one, and represents those
applications that are considered to be old but have already been verified, also by the user.
The third component keeps track of the permissions granted to every application present in
the system, including the ones preinstalled on the system. Similarly, the next component
holds the information about what permission groups have already been authorized by the user
on each app. The fifth component of the state stores the set of running component instances
(CompInstance), while the components DelPPerms and DelTPerms store the information
concerning permanent and temporary permissions delegations, respectively3. The eighth
and ninth components of the state store respectively the values (Val) of resources (Res) of
applications and the set of intents (Intent) sent by running instances of components (iComp)
not yet processed. The four last components of the state record information that represents
the manifests of the applications installed by the user, the certificates (Cert) with which they
were signed and the set of permissions they define. The last component of the state stores
the set of (native) applications installed in the Android system image, information that is
relevant when granting permissions of level Signature/System.

A manifest (Manifest) is modelled as a 6-tuple whose members respectively declare
application components (set of components, of type Comp, included in the application);
optionally, the minimum version of the Android SDK required to run the application;

3 A permanent delegated permission represents that an app has delegated permission to perform an
operation on the resource identified by an URI. A temporary delegated permission refers to a permission
that has been delegated to a component instance.
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optionally, the version of the Android SDK targeted on development; the set of permissions
it may need to run at its maximum capability; the set of permissions it declares; and the
permission required to interact with its components, if any. Application components are all
denoted by a component identifier. A content provider (ContProv), in addition, encompasses
a mapping to the managed resources from the URIs assigned to them for external access.
While the components constitute the static building blocks of an application, all runtime
operations are initiated by component instances, which are represented in our model as
members of an abstract type.

Valid states. The states defined in this way include some cases that are not relevant with
the model we are trying to analyze. For example, we don’t want a state where a preinstalled
application and one installed by the user have the same identifier. In order to prevent
this inconsistencies, we define a notion of valid state that captures several well-formedness
conditions. It is formally defined as a predicate valid_state on the elements of type
AndroidST. This predicate holds on a state s if the following conditions are met:

all the components both in installed applications and in system applications have different
identifiers;
no component belongs to two different applications present in the device;
no running component is an instance of a content provider;
every temporally delegated permission has been granted to a currently running component
and over a content provider present in the system;
every running component belongs to an application present in the system;
every application that sets a value for a resource is present in the system;
the domains of the partial functions Manifests, Certs and AppDefPS are exactly the
identifiers of the user-installed applications;
the domains of the partial functions AppPS and PermsGr are exactly the identifiers of the
applications in the system, both those installed by the users and the system applications;
every installed application has an identifier different from those of the system applications,
whose identifiers differ as well;
all the permissions defined by applications have different identifiers;
every partial function is indeed a function, that is, their domains don’t have repeated
elements;
every individually granted permission is present in the system; and
all the sent intents have different identifiers.

All these safety properties have a straightforward interpretation in our model. The full formal
definition of the predicate is available in [19].

3.2 Action semantics
We modelled the different functionalities provided by the Android security system as a set of
actions (of type Action) that determine how the system is able to transition from one state
to another. Table 1 summarises the actions specified in our previous model that remained
mostly the same since the new features didn’t affect them whereas Table 2 groups those that
are new or that suffered a big semantic change.

The behaviour of each action is specified in terms of a precondition (Pre : AndroidST →
Action → Prop) and a postcondition (Post : AndroidST → Action → AndroidST → Prop).
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Table 1 Legacy actions.

install app m c lRes Install application with id app, whose manifest is m, is signed with
certificate c and its resources list is lRes.

uninstall app Uninstall the application with id app.
read ic cp u The running comp. ic reads the resource corresponding to URI u

from content provider cp.
write ic cp u val The running comp. ic writes value val on the resource corresponding

to URI u from content provider cp.
startActivity i ic The running comp. ic asks to start an activity specified by the intent

i.
startActivityRes i n ic The running comp. ic asks to start an activity specified by the intent

i, and expects as return a token n.
startService i ic The running comp. ic asks to start a service specified by the intent i.
sendBroadcast i ic p The running comp. ic sends the intent i as broadcast, specifying that

only those components who have the permission p can receive it.
sendOrdBroadcast i ic p The running comp. ic sends the intent i as an ordered broadcast,

specifying that only those components who have the permission p

can receive it.
sendSBroadcast i ic The running comp. ic sends the intent i as a sticky broadcast.
resolveIntent i app Application app makes the intent i explicit.
stop ic The running comp. ic finishes its execution.
grantP ic cp app u pt The running comp. ic delegates permanent permissions to application

app. This delegation enables app to perform operation pt on the
resource assigned to URI u from content provider cp.

revokeDel ic cp u pt The running comp. ic revokes delegated permissions on URI u from
content provider cp to perform operation pt.

call ic sac The running comp. ic makes the API call sac.

Table 2 New or modified actions.

grant p app Grant the permission p to the application app with user confirmation.
grantAuto p app Grant automatically the permission p to the application app (without

user confirmation).
revoke p app Remove an ungrouped permission p from the application app.
revokePermGroup g app Remove the every permission of group g from the application app.
hasPermission p app Check if the application app has the permission p.
receiveIntent i ic app Application app receives the intent i, sent by the running comp. ic.
verifyOldApp app Application app granted permissions are verified by the user
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For instance, the axiomatic semantics of the new feature about automatic granting of
permissions grantAuto is given by:

P re(s, grantAuto p app) def=
(∃m : Manifest, m = getManifestF orApp(app, s)

∧ getP ermissionId(p) ∈ (use m)) ∧
(isSystemP erm p ∨ usrDefP erm p) ∧
p /∈ grantedP erms(app, s) ∧
permLevel(p) = dangerous ∧
(∃g : PermGroup, getP ermissionGroup(p) = Some g

∧ g ∈ getAuthorizedGroups(app, s))
P ost(s, grantAuto p app, s′) def=

grantP erm(app, p, s, s′) ∧
sameOtherF ieldsOnGrantAuto(s, s′)

The precondition establishes several conditions that must be fulfilled before this action is
able to transition. The first one requires that the permission p is listed on the application’s
manifest (and this manifest, of course, is required to exist). Regarding the permission, it is
also required that it is defined either by the user or the system, that its level is dangerous

and that it has not been already granted to app. Up to this point, the precondition of
grantAuto is exactly the same as the one of grant. The main difference is established by
the following condition: the permission at issue should belong to a group g and the system
should know that the user had previously authorized that group for automatic granting.

The postcondition of grantAuto p a requires that for an initial state s and a final state
s′, the individual permission p is granted to application app. This condition is enforced
by the grantPerm a p s s′ predicate which only alters the state in component that maps
applications with their current dangerous permissions. Every other component of the state
remains the same.

3.3 Executions
Whenever the system attempts to execute an action a over a valid state s, there are two
possible outcomes. If the precondition holds, the system will transition to another state s′

where the postcondition of a is established; but if the precondition is not satisfied on s, then
the state remains unchanged and the system answers with an error message determined by
the relation ErrorMsg4.

Formally, the possible answers of the system are defined by the type Response def=
ok | error (ec : ErrorCode) and the executions can be specified with this operational
semantics:

valid_state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−−→ s′

valid_state(s) ErrorMsg(s, a, ec)

s ↪
a/error(ec)−−−−−−−→ s

One-step execution with error management preserves valid states.

▶ Lemma 1 (Validity is invariant).
∀ (s s′ : AndroidST)(a : Action)(r : Response), s ↪

a/r−−→ s′ → valid_state(s′)

4 Given a state s, an action a and an error code ec, ErrorMsg(s, a, ec) holds iff error ec is an acceptable
response when the execution of a is requested on state s.
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The property is proved by case analysis on a, for each condition in valid_state, using several
auxiliary lemmas [19].

System state invariants, such as state validity, are useful to analyze other relevant
properties of the model. In particular, the results presented in this work are obtained from
valid states of the system.

3.4 Reasoning over the specified model
In this section we present and discuss some properties about the Android 10 security
framework. We focus on safety-related properties about the changes introduced on the later
versions of Android (mainly Oreo and 10) rather than on security issues. Nevertheless, we
also found potentially dangerous behaviours that may not be considered in the informal
documentation of the platform and we formally reasoned about them as well. The full formal
definition of these properties can be found in [19], along with the corresponding proofs.

On Table 3 we introduce helper functions and predicates used to define the properties
that will follow.

Table 3 Helper functions and predicates.

Function/Predicate Description
appHasP ermission(app, p, s) holds iff app is considered to have permission p on state s.
canGrant(cp, u, s) holds iff the content provider cp allows the delegation of permis-

sions over the resource at URI u on state s.
canStart(c′, c, s) holds if the app containing component c′ (installed in s) has

the required permissions to create a new running instance of c.
cmpP rotectedByP erm(c) returns the permission by which the component c is protected.
componentIsExported(c) holds iff the component c is exported and can be accessed from

other applications.
existsRes(cp, u, s) holds iff the URI u belongs to the content provider cp on s.
getAppF romCmp(c, s) given a component c on s, returns the app to which it belongs.
getAppRequestedP erms(m) given the manifest m of an app, returns the set of permissions

it uses.
getDefP ermsApp(app, s) returns the set of permissions defined by app on state s.
getGrantedP ermsApp(app, s) returns the set of indvidual permissions granted to app on s.
getAuthorizedGroups(app, s) returns the set of permission groups that have been authorized

for automatic granting for app on s.
getInstalledApps(s) returns the set of identifiers of the applications installed on s.
getManifestF orApp(app, s) returns the manifest of application app on state s.
getP ermissionId(p) returns the identifier of permission p.
getP ermissionLevel(p) returns the permission level of permission p.
getP ermissionGroup(p) returns Some g if the permission p is grouped or None if not.
getRunningComponents(s) returns the set of pairs consisting of a running instance id, and

its associated component currently running on state s.
inApp(c, app, s) holds iff the component c belongs to application app on state s.
permissionRequiredRead(c) returns the permission required for reading the component.
permSACs(p, sac) holds iff permission p is required for performing the system call

sac (of type SACall).
oldAppNotV erified(a, s) holds iff the application a is considered old and the user hasn’t

verified it in state s.



G. De Luca and C. Luna 3:11

The first property that we proved establishes a safety condition about the automatic
granting of grouped permissions. It states that the system is not able to transition with this
action unless the group of the permission involved is already authorized.

▶ Property 1 (Automatic grant only possible on authorized groups).
∀(s, s′ : AndroidST)(p : Perm)(g : PermGroup)(app : AppId),
getPermissionLevel(p) = dangerous ∧ getPermissionGroup(p) = Some g ∧
g /∈ getAuthorizedGroups(app, s) → ¬s ↪

grantAuto p app/ok−−−−−−−−−−−−→ s′

Android’s permission system ensures that an automatic granting can only occur on permissions
that belong to authorized groups.

However, a few questions arise when trying to formally describe the situations in which
a group is authorized. For instance, there is at least one valid state where the system can
automatically grant a grouped permission to an app even though that the application has no
other permission of the same group granted at that moment. This means that an application
can have a group authorized for automatic granting via a permission that no longer exists.
This is not necessarily a security flaw. It may be a design principle to avoid asking the user
to authorize the same group too many times, but the decision is not clear or disambiguated
in the official documentation.

▶ Property 2 (Auto-granting permission without having others of the same group).
∃(s : AndroidST)(p : Perm)(g : PermGroup)(app : AppId), valid_state(s) ∧
getPermissionLevel(p) = dangerous ∧ getPermissionGroup(p) = Some g ∧
¬(∃(p′ : Perm), p′ ∈ getGrantedPermsApp(app, s) ∧
getPermissionGroup(p′) = Some g) ∧ Pre(s, grantAuto p a)
System can automatically grant a permission even though there is currently no other permis-
sion of that group granted to the app.

The next property formalizes the situation described in Section 2.2 about normal and
dangerous permissions sharing a group. We believe that permissions with different protection
levels should not be allowed to share a group, since it could lead to a privilege escalation
scenario.

▶ Property 3 (Dangerous permission automatically granted without explicit consent).
∀(s, s′ : AndroidST) (a : AppId) (m : Manifest) (c : Cert) (resources : list Res)
(g : PermGroup) (pDang pNorm : Perm), s ↪

install a m c resources/ok−−−−−−−−−−−−−−−−−−→ s′ →
getPermissionLevel(pDang) = dangerous → getPermissionGroup(pDang) = Some g →
getPermissionLevel(pNorm) = normal → getPermissionGroup(pNorm) = Some g →
{pDang, pNorm} ⊆ getAppRequestedPerms(m) → Pre(s′, grantAuto pDang a)
An application that uses a normal and a dangerous permission of the same group, can obtain
the dangerous one automatically after being installed.

Users are able to revoke permissions at runtime. However, the UI does not allow to revoke
grouped permissions individually, the complete group is invalidated instead. We consider this
behavior to be expected and desirable, and therefore, we proved that our model is consistent
with it.

▶ Property 4 (Revoking group revokes grouped individual permissions).
∀(s, s′ : AndroidST) (g : PermGroup) (app : AppId), s ↪

revokePermGroup g app/ok−−−−−−−−−−−−−−−−→ s′ →
¬(∃(p : Perm), p ∈ getGrantedPermsApp(app, s′) ∧ getPermissionGroup(p) = Some g)
Whenever a user revokes a permission group from an application, every individual permission
that belongs to that group is revoked.
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The following property reasons about another change mentioned in Section 2.2. It
formalizes a good behaviour about the unverified legacy applications.

▶ Property 5 (Unverified old app cannot receive intents).
∀(s, s′ : AndroidST) (i : Intent) (ic : iComp) (app : AppId),
oldAppNotV erified(app, s) → ¬s ↪

receiveIntent i ic app/ok−−−−−−−−−−−−−−−−−→ s′

An old application that hasn’t been verified by the user yet cannot receive intents, meaning
that it can’t start activities as well.

Finally, we include here a property that holds since version 6 of Android. Any application
that wants to send information through the network must have the permission INTERNET,
but since this permission is of level normal, the application just needs to declare it as used
in its manifest. This will give access to the network in an implicit and irrevocable way.
Once again, this has been criticized due to the potential information leakage it allows. The
following property formally generalizes this situation and embodies a reasonable argument
to roll back this security issue introduced in Android Marshmallow.

▶ Property 6 (Internet access implicitly and irrevocably allowed).
∀(s : AndroidST)(sac : SACall)(c : Comp)(ic : iComp)(p : Perm),
valid_state(s) → permSAC(p, sac) →
getPermissionLevel(p) = normal → getPermissionId(p) ∈
getAppRequestedPerms(getManifestForApp(getAppFromCmp(c, s), s)) →
(ic, c) ∈ getRunningComponents(s) → s ↪

call ic sac/ok−−−−−−−−−→ s

If the execution of an Android API call only requires permissions of level normal, it is enough
for an application to list them as used on its manifest file to be allowed to perform such call.

4 A certified reference validation mechanism

The implementation we developed in our previous model consisted in a set of Coq functions
such that for every action in our axiomatic specification there exists a function which stands
for it. In this work we kept this approach, updating those functions for which its axiomatic
counterpart changed and adding new ones for the new actions verifyOldApp and grantAuto.

Functions that implement actions are basically state transformers. Their definition follows
this pattern: first, it is checked whether the precondition of the action is satisfied in state
s, and then, if that is the case, another function is called to return a state s′ where the
postcondition of the action holds. Otherwise, the state s is returned unchanged along with
an appropriate response specifying an error code which describes the failure. More formally,
the returned value has type Result

def= {resp : Response, st : AndroidST}. In Figure 2 we
present, as an example, the function that implements the execution of the grant action. The
Coq code of this function, together with that of the remaining ones, can be found in [19]5.
The function grant_pre is defined as the nested validation of each of the properties of the
precondition, specifying which error to throw when one of them doesn’t hold. In general,
every <action>_pre function is defined this way. The function grant_post implements the
expected behaviour of the grant action: the permission perm is prepended to the list6 of
given permissions of the application app and, if that permission is grouped, that group is
also added to the list of permissions groups authorized by the user on that application.

5 We omit here the formal definition of these functions due to space constraints.
6 We implement the sets in the model with lists of Coq.
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Definition grant_safe(perm, app, s) : Result :=
match grant_pre(perm, app, s) with

| Some ec ⇒ {error(ec), s}
| None ⇒ {ok, grant_post(perm, app, s)}

end.

Figure 2 The function that implements the grant action.

Step

All of these functions are grouped into a step function, which basically acts as an action
dispatcher7. Figure 3 show the structure of this function.

Definition step(s, a) :=
match a with

| . . . ⇒ . . .

| grant perm app ⇒ grant_safe(perm, app, s)
| . . . ⇒ . . .

end.

Figure 3 Structure of the step function.

Traces

We have modeled the execution of the permission validation mechanism during a session of
the system as a function that implements the execution of a list of actions starting in an
initial system state. The output of the execution, a trace, is the corresponding sequence of
states.

Function trace (s : AndroidST) (actions : list Action) : list AndroidST :=
match actions with

| nil ⇒ nil

| action :: rest ⇒ let s′ := (step s action).st in s′ :: trace s′ rest

end.

4.1 Correctness of the implementation
We proceed now to outline the proof that our functional implementation of the security
mechanisms of Android correctly implements the axiomatic model. This property has been
formally stated as the following correctness theorem which in turn was verified using Coq [19].

▶ Theorem 2 (Correctness of the reference validation mechanism).
∀ (s : AndroidST) (a : Action), valid_state(s) → s ↪

a/step(s,a).resp−−−−−−−−−−→ step(s, a).st

The proof of this theorem starts by performing a case analysis on the (decidable) predicate
Pre(s, a). Then, in case that the predicate holds, we apply Lemma 3; otherwise we continue
by applying Lemma 4.

7 Mechanism to trigger actions, on a state, according to the type of event considered.
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▶ Lemma 3 (Correctness of valid execution).
∀ (s : AndroidST) (a : Action), valid_state(s) → Pre(s, a) →
s ↪

a/ok−−−→ step(s, a).st ∧ step(s, a).resp = ok

▶ Lemma 4 (Correctness of error execution).
∀ (s : AndroidST) (a : Action), valid_state(s) → ¬Pre(s, a) → ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec)

The proof of these lemmas proceeds by applying functional induction on step(s, a). Then,
in Lemma 3, the proof continues by applying the corresponding subproof of soundness of the
function that implements each action; whereas in Lemma 4, a subproof about the existence
of a proper error code is provided.

4.2 Reasoning over the certified reference validation mechanism
In this section we present several security properties we have stated and proved about the
function trace defined in Section 4.

The first property states that in Android 10, if an application that is considered to be
old (as we defined in Section 2.2) is able to run, then it has been verified and validated by
the user previously.

▶ Property 7 (Old applications must be verified).
∀(initState, lastState : AndroidST)(app : AppId)(l : list Action), valid_state(initState) →
app ∈ getInstalledApps(initState) → oldAppNotV erified(a, initState) →
canRun(a, lastState) → last(trace(initState, l), initState) = lastState →
uninstall app /∈ l → verifyOldApp app ∈ l

The only way for an old application to be able to execute is if the user verified it.

The next property establishes that for an application to have any dangerous permission
(grouped or ungrouped) it must be explicitly granted to it, either by the user or automatically
by the system.

▶ Property 8 (Dangerous permissions must be explicitly granted).
∀(initState, lastState : AndroidST)(app : AppId)(p : Perm)(l : list Action),
valid_state(initState) → app ∈ getInstalledApps(initState) →
getPermissionLevel(p) = dangerous → appHasPermission(app, p, lastState) →
¬appHasPermission(app, p, initState) → uninstall app /∈ l →
last(trace(initState, l), initState) = lastState → (grant p app ∈ l ∨ grantAuto p app ∈ l)
The only way for an application to get a permission is if the user authorized it, or if the user
authorized a group and the system is able to automatically grant it.

The following property formally states that if an application used to have a permission
that was later revoked, only re-granting it will allow the application to have it again.

▶ Property 9 (Revoked permissions must be regranted).
∀(initState, sndState, lastState : AndroidST)(app : AppId)(p : Perm)(l : list Action),
valid_state(initState) → getPermissionLevel(p) = dangerous →
p /∈ getDefPermsForApp(app, initState) →
step(initState, revoke p app).st = sndState →
step(initState, revoke p app)).resp = ok → uninstall app /∈ l → grant p app /∈ l →
grantAuto p app /∈ l → last(trace(sndState, l), sndState) = lastState →
¬appHasPermission(app, p, lastState)
If a permission is revoked from an application, only regranting it will allow the application to
have it again.
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Whenever an application app receives a READ/WRITE permission perm, it also receives the
right to delegate this permission to another application, say app′, to access that same resource
on its behalf. However, if perm is later revoked from application app, there’s a chance that
app′ still has access to that resource, since delegated permissions are not recursively
revoked. The following property formalizes this situation and is a proof that the current
specification allows a behavior which is arguably against the user’s will.

▶ Property 10 (Delegated permissions are not recursively revoked).
∀(s : AndroidST)(p : Perm)(app, app′ : AppId)(ic, ic′ : iComp)(c, c′ : Comp)(u : Uri)
(cp : CProvider), valid_state(s) → step(s, grant p app).resp = ok →
getAppFromCmp(c, s) = app → getAppFromCmp(c′, s) = app′ →
(ic, c) ∈ getRunningComponents(s) → (ic′, c′) ∈ getRunningComponents(s) →
canGrant(cp, u, s) → existsRes(cp, u, s) → componentIsExported(cp) →
permissionRequiredRead(cp) = Some p →
let opsResult := trace(s, [grant p app, grantP ic cp app′ u Read,
revoke p app] in step(last(opsResult, s), read ic′ cp u).resp = ok

In Android 10, if a permission p is revoked for an application app not necessarily shall it be
revoked for the applications to which app delegated p.

The purpose of the following property is to show that with runtime permissions introduced
after Android 6, certain assertions on which a developer could rely in previous versions do
not hold. For example, a running component may have the right of starting another one
on a certain state, but may not be able to do so at a later time, even though no involved
application was uninstalled. The property still holds on the latest version of Android.

▶ Property 11 (The right to start an external component is revocable).
∀(initState : AndroidST)(l : listAction)(app, app′ : AppId)(c : Comp)(act : Activity)
(p : Perm), valid_state(initState) →
getPermissionLevel(p) = dangerous → permissionIsGrouped(p) = None →
app ̸= app′ → p /∈ getDefPermsApp(app, initState) → inApp(c, app, initState) →
inApp(act, app′, initState) → cmpProtectedByPerm(act) = Some p →
canStart(c, act, initState) → ∃(l : list Action), uninstall app /∈ l ∧
uninstall app′ /∈ l ∧ ¬canStart(c, act, last(trace(initState, l), initState))
A running component may have the right of starting another one on a certain state, but may
not be able to do so at a later time.

5 Related work

Several analyses have been carried out concerning the security of the Android permission
system. Plenty of them [11, 30, 13, 29, 23, 5] implement a static analysis tool that is capable
of detecting overprivileges and unwanted information flow on a set of applications. This
pragmatic approach may be helpful for Android users to keep their private information
secure, but no properties about the system can be established. Recently, Mayrhofer et al.
[22] described the Android security platform and documented the complex threat model and
ecosystem it needs to operate, but no formal analysis was performed in it.

Few works study the aspects of the permission enforcing framework in a formal way. In
particular, Shin et al. [25, 26] developed using Coq a framework that represents the Android
permission system, similarly to what we did. Although, that work does not consider the
different types of components, the interaction between a running instance and the system, the
R/W operation on a content provider, the semantics of the permission delegation mechanism.
Also, their work is based on an older version of the platform and some novel aspects, like the
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management of runtime permissions or the verification of legacy applications, are not included.
Similarly, Bagheri et al. [6] formalized Android’s permission protocol using Alloy [15]. The
analysis performed, however, was based on the ability to automatically find counterexamples
provided by the Alloy framework, which the authors claim to be tremendously helpful for
identifying vulnerabilities. A Coq-based approach like ours, requires more human effort to
identify a flaw but provides stronger guarantees on security and safety properties. Another
formal work on Android is CrashSafe [16], where the authors formalized in Coq the inter-
component communication mechanism and proved its safety with regard to failures (or
crashes). This work, similarly to ours, focus on safety properties rather than security ones.

On the other hand, many works have addressed the problem of relating inductively defined
relations and executable functions. In particular, Tollitte et al. [28] show how to extract a
functional implementation from an inductive specification in Coq, and [9] exhibits a similar
approach for Isabelle. Earlier, alternative approaches such as [7, 8] aim to provide reasoning
principles for executable specifications. In [12], the verification of properties of imperative
programs is performed using techniques based on the specialization of constrained logic
programs. In this work we are able to develop independently the specification of the reference
monitor and the implementation of the validation mechanism, considering that Coq provides
a reasoning framework based on higher order logic to perform proofs of specifications and
programs and a functional programming language. Other approaches could be considered to
develop the formalization. For instance, a logical approach like the one used in [12]. However,
a logical approach does not allow us to have the same functionalities in a unified formal
environment.

Specifically, in this work we present a model of a reference monitor and demonstrate
properties which shall hold for every correct implementation of the model. Then, we have
developed a functional implementation in Coq of the reference validation mechanism and
proved its correctness with respect to the specified reference monitor. Applying the program
extraction mechanism provided by Coq we have also derived a certified Haskell prototype of
the reference validation mechanism, which can be used to conduct verification activities on
actual real implementations of the platform. The results presented in this paper extend the
ones reported in [10, 21]. We have enriched the model presented in [10, 21] so as to consider
the changes introduced in Android permission system by version Nougat, Oreo, Pie and 10.

6 Final remarks

We have enhanced the formal specification considered in our previous work [10] with the new
features concerning the permission system that have been added during the later releases
of Android. With a conservative approach, we first analyzed the validity of the already
formulated properties and then established new ones about the novel changes; summing
up a total of 14 valid properties, without including the auxiliary lemmas that have been
separated just for modularization. Among these properties we included several that aim to
highlight how formal methods help to disambiguate unclear behaviours that may be inferred
from an informal specification. For instance, we found a potentially dangerous situation in
which an application can gain access to every dangerous permission that shares group with
a normal one, without explicit consent of the user (see Property 3). This scenario fits the
model (informally) described in the official documentation of the platform.

We also enriched our previous functional implementation of the reference validation
mechanism with these new characteristics and updated its correctness proof. As consequence,
the derived Haskell prototype obtained using the program extraction mechanism provided
by the proof assistant, has been updated as well. The full certified code is available in [19]
and is about 23k LOC of Coq, including proofs.
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One important goal of our work is to keep our formalization up to date with the
later versions of Android in order to constitute a reliable framework for reasoning about
its permission system. We aim to help to increase the confidence on Android’s security
mechanisms by providing certified guarantees about the enforcement of this measures. The
use of idealized models and certified prototypes is a good step forward but no doubt the
definitive step is to be able to provide similar guarantees concerning actual implementations
of the platform. We plan to use the certified extracted algorithm as a testing oracle and also
to conduct verification activities on actual implementations of the platform, following the
methodology proposed in [21]. In particular, we are investigating the use of that algorithm
to compare the results of executing an action on a real Android platform and executing that
same action on the correct program. This would allow us to monitor the actions performed
in a real system and assessing whether the intended security policy is actually enforced by
the particular implementation of the platform.

On September 8th 2020, Android 11 was released. This update includes features that
continue increasing the security of the device, such as auto-resetting permissions from unused
applications or one-time permissions for the most sensitive resources, like the microphone or
camera. In future work, we intend to add this features to our model.
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Abstract
The approach to proof search dubbed “coinductive proof search”, and previously developed by
the authors for implicational intuitionistic logic, is in this paper extended to LJP , a focused
sequent-calculus presentation of polarized intuitionistic logic, including an array of positive and
negative connectives. As before, this includes developing a coinductive description of the search
space generated by a sequent, an equivalent inductive syntax describing the same space, and decision
procedures for inhabitation problems in the form of predicates defined by recursion on the inductive
syntax. We prove the decidability of existence of focused inhabitants, and of finiteness of the number
of focused inhabitants for polarized intuitionistic logic, by means of such recursive procedures.
Moreover, the polarized logic can be used as a platform from which proof search for other logics is
understood. We illustrate the technique with LJT , a focused sequent calculus for full intuitionistic
propositional logic (including disjunction). For that, we have to work out the “negative translation”
of LJT into LJP (that sees all intuitionistic types as negative types), and verify that the translation
gives a faithful representation of proof search in LJT as proof search in the polarized logic. We
therefore inherit decidability of both problems studied for LJP and thus get new proofs of these
results for LJT .
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1 Introduction and Motivation

An approach to proof search dubbed “coinductive proof search” has been developed by the
authors [5, 7]. The approach is based on three main ideas: (i) the Curry-Howard paradigm of
representation of proofs (by typed λ-terms) is extended to solutions of proof-search problems
(a solution is a run of the proof search process that, if not completed, does not fail to apply
bottom-up an inference rule, so it may be an infinite object); (ii) two typed λ-calculi are
developed for the effect, one being obtained by a co-inductive reading of the grammar of
proof terms, the other being obtained by enriching the grammar of proof terms with a formal
fixed-point operator to represent cyclic behaviour, the first calculus acting as the universe
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for the mathematical definition of concepts pertaining to proof search (e. g., the existence
of solutions for a given logical sequent), the second calculus acting as the finitary setting
where algorithmic counterparts of those concepts can be found; (iii) formal (finite) sums
are employed throughout to represent choice points, so not only solutions but even entire
solution spaces are represented, both coinductively and finitarily.

The approach was developed systematically for intuitionistic implicational logic, delivering
new solutions to inhabitation and counting problems, and proofs of the state-of-the-art
coherence theorems, in the simply typed λ-calculus [8]; it also helped the investigation of
new questions, like the various concepts of finiteness suggested by proof search [6].

The goal of this paper is to extend this approach to polarized, intuitionistic propositional
logic with a rich choice of positive and negative connectives [17, 4], and to proof search in a
full-fledged focused sequent calculus. Polarized logic can be used as a platform from which
proof search for other logics is understood [15]. The extension to polarized logic also aims at
obtaining results about proof search for full intuitionistic propositional logic.

In this paper, coinductive proof search is applied to LJP , a focused sequent-calculus
presentation of polarized logic. The extension works smoothly, which is a sign of the
robustness of the approach, that has been developed for a relatively simple logic. Only the
luxuriant syntax (typical of focused systems, rich in various forms of judgments) puts a
notational challenge, and we make a proposal for that. Unlike the case of implicational logic
we described in previous work of ours, guardedness of the coinductively described expressions
is not enforced by the grammar alone, and so it has to be made an extra assumption; and
focusing suggests a refinement of our approach: formal sums are not needed in the inversion
phases, and the infinity of solutions must go infinitely often through stable sequents (this
can be expressed by a rather simple instance of the parity condition). In the end, we
obtain for LJP decidability of provability, and decidability of finiteness of the number of
proofs, with our typical two-staged decision procedure: a function that calculates the finitary
representation (in the calculus with formal fixed points) of the solution space of the given
logical sequent, composed with a syntax-directed, recursive predicate that tests the desired
property.

As said, from the results about the polarized logic, we can extract results for other
logics. We illustrate the technique with LJT , a focused sequent calculus for full intuitionistic
propositional logic (including disjunction) [11, 3]. For that, we define the “negative translation”
of LJT into LJP , that sees all intuitionistic formulas as negative formulas (an idea rooted
in the !A ⊸ B translation by Girard of intuitionistic logic into linear logic, and developed
in various contexts [19, 15, 1]). While the translation of formulas is mostly dictated by
polarity, there are subtle problems with a definition of the translation of proof terms without
knowing the logical sequent they witness (see the definitions of DLV(t) and atomic and
positive spines in Section 5). Soundness of a translation is its first aim, but we also crucially
need to guarantee that the translation gives a faithful representation of proof search in LJT

as proof search in LJP . In proving this result, we benefited from the language of proof terms
developed for polarized logic in [4].

Plan of the paper. The sequent-calculus presentation of polarized logic from [4] is reviewed
in Section 2. Coinductive proof search for LJP occupies Sections 3 and 4. Applications to
full intuitionistic logic are extracted in Section 5. Section 6 concludes.
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2 Background on the system LJP of polarized propositional logic

We introduce the sequent calculus LJP for polarized intuitionistic propositional logic (PIPL).
LJP is a variant of the cut-free fragment of λ±

G [4].
Formulas of LJP are as follows (unchanged from λ±

G):

(formulas) A ::= N | P

(negative) N, M ::= C | a−

(composite negative) C ::= ↑ P | P ⊃ N | N ∧ M

(positive) P, Q ::= a+ | ↓ N | ⊥ | P ∨ Q

Here, we assume a supply of (names of) atoms, denoted typically by a; the markers − and +
for polarity are added to the atom (name) as superscripts, giving rise to negative resp. positive
atoms. The symbols ⊥, ∧ and ∨ obviously stand for falsity, conjunction and disjunction, ⊃
stands for implication, and ↑ and ↓ are polarity shifts (as they are commonly denoted in the
literature). We call right formulas or R-formulas positive formulas and negative atoms. The
set of formulas is thus partitioned in two ways: into negative and positive formulas, and
into composite negative and right formulas. The second partitioning plays an important role
in LJP , more than in λ±

G. We also use the notion of left formulas or L-formulas: they are
either negative formulas or positive atoms.

Proof terms of LJP are organized in five syntactic categories as follows:

(values) v ::= z | thunk(t) | inP
i (v)

(terms) t ::= ⌈e⌉ | ⌜e⌝ | λp | ⟨t1, t2⟩
(co-values/spines) s ::= nil | cothunk(p) | v :: s | i :: s

(co-terms) p ::= za+
.e | xN .e | abortA | [p1, p2]

(stable expressions) e ::= dlv(t) | ret(v) | coret(x, s)

where i ∈ {1, 2}, and z and x range over countable sets of variables assumed to be disjoint,
called positive resp. negative variables.1 The syntax deviates from λ±

G [4, Figure 4] in the
following ways: the letters to denote values and covalues are now in lower case, the two
expressions to type the cut rules are absent, and the last form of values (the injections) and
abort come with type information, as well as the binding occurrences of variables in the first
two forms of co-terms – all the other syntax elements do not introduce variable bindings,
in particular, there is no binding in λp or coret(x, s). Often we refer to all proof terms of
LJP as expressions, and use letter T to range over expressions in this wide sense (T being
reminiscent of terms, but not confined to the syntactic category t). To shorten notation, we
communicate ⟨t1, t2⟩ and [p1, p2] as ⟨ti⟩i and [pi]i, respectively.

We also use the typical letters for denoting elements of the syntactic categories as sorts:
let S := {v, t, s, p, e} be their set, and use letter τ to denote any element of S.

Since proof terms of LJP come with some extra type information as compared to λ±
G, the

typing rules will be adjusted accordingly. The typing relation will also be slightly reduced:
it is assumed that the FocusL-rule of λ±

G (the one typing the coret construction for proof
terms) only applies if the right-hand side formula is an R-formula. This also means that
focus negative left sequents can be restricted to R-formulas on the right-hand side, which we
therefore do in LJP .

1 At first sight, these proof terms are far removed from any familiar sort of λ-terms; and the fact that
cut-elimination does not belong to this paper means that no reduction semantics will be given here
to help grasping what they are. As detailed in [4], this language refines call-by-push-value [14], with
the positive/negative distinction being related to the value/computation distinction. In Section 5 the
translation of the more familiar proof terms from LJT into these proof terms gives some insight. Bear
in mind proof terms are the cornerstone of coinductive proof search, as both the coinductive and the
finitary representations of search spaces are based on them.
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Γ, z : a+ ⊢ [z : a+]
Γ =⇒ t : N

Γ ⊢ [thunk(t) :↓ N ]
Γ ⊢ [v : Pi]

Γ ⊢ [inP3−i

i (v) : P1 ∨ P2]
i ∈ {1, 2}

Γ ⊢ e : a−

Γ =⇒ ⌜e⌝ : a−
Γ ⊢ e : P

Γ =⇒ ⌈e⌉ :↑ P

Γ | p : P =⇒ N

Γ =⇒ λp : P ⊃ N

Γ =⇒ ti : Ni for i = 1, 2
Γ =⇒ ⟨ti⟩i : N1 ∧ N2

Γ[nil : a−] ⊢ a−
Γ | p : P =⇒ R

Γ[cothunk(p) :↑ P ] ⊢ R

Γ ⊢ [v : P ] Γ[s : N ] ⊢ R

Γ[v :: s : P ⊃ N ] ⊢ R

Γ[s : Ni] ⊢ R

Γ[i :: s : N1 ∧ N2] ⊢ R
i ∈ {1, 2}

Γ, z : a+ ⊢ e : A

Γ | za+
.e : a+ =⇒ A

Γ, x : N ⊢ e : A

Γ | xN .e :↓ N =⇒ A

Γ | abortA :⊥=⇒ A

Γ | p1 : P1 =⇒ A Γ | p2 : P2 =⇒ A

Γ | [pi]i : P1 ∨ P2 =⇒ A

Γ =⇒ t : C
Γ ⊢ dlv(t) : C

Γ ⊢ [v : P ]
Γ ⊢ ret(v) : P

Γ, x : N [s : N ] ⊢ R

Γ, x : N ⊢ coret(x, s) : R

Figure 1 Inductive definition of typing rules of LJP .

There are five forms of sequents, one for each syntatic category τ of proof terms (the full
names and the rationales of the categories are found in [4]):

(focus negative left) Γ[s : N ] ⊢ R (focus positive right) Γ ⊢ [v : P ]
(invert positive left) Γ | p : P =⇒ A (invert negative right) Γ =⇒ t : N

(stable) Γ ⊢ e : A

The rules, given in Fig. 1, are the obvious adaptations of the ones in [4, Figures 1–3] (omitting
the cut rules), given the more annotated syntax and the mentioned restrictions to R-formulas
in some places. We recall that Γ is a context made of associations of variables with left
formulas that respect polarity, hence these associations are either z : a+ or x : N (in other
words, positive variables are assigned atomic types only). The extra annotations ensure
uniqueness of typing in that, given the shown context, type and term information, there
is at most one formula that can replace any of the placeholders in Γ[s : N ] ⊢ ·, Γ ⊢ [v : ·],
Γ | p : · =⇒ ·, Γ =⇒ t : · and Γ ⊢ e : ·.

We also consider sequents without proof-term annotations, i. e., Γ ⊢ [P ], Γ =⇒ N ,
Γ[N ] ⊢ R, Γ | P =⇒ A and Γ ⊢ A, that we will call logical sequents. The letters ρ, ρ′

etc. will range over Γ ⊢ R, with an R-formula on the right-hand side. Those will be called
R-stable sequents. (Such logical sequents cannot be proven by a proof term of the form
dlv(t).) Results about all forms of sequents can sometimes be presented uniformly, with the
following notational device: If σ is any logical sequent and T a proof term of the suitable
syntactic category, let σ(T ) denote the sequent obtained by placing “T :” properly into σ,
e. g., if σ = (Γ | P =⇒ A), then σ(p) = (Γ | p : P =⇒ A) (the parentheses around sequents
are often used for better parsing of the text). We sometimes indicate the syntactic category
τ of T as upper index of σ, e. g., an arbitrary logical sequent Γ ⊢ A is indicated by σe.

We also use the set S of sorts to give a more uniform view of the different productions of
the grammar of LJP proof terms. E. g., we consider thunk(·) as a unary function symbol,
which is typed/sorted as t → v, to be written as thunk(·) : t → v. As another example, we see
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co-pairing as binary function symbol [·, ·] : p, p → p. This notational device does not take into
account variable binding, and we simply consider za+

. · as a unary function symbol for every
z and every a. The positive variables z have no special role either in this view, so they are all
nullary function symbols (i. e., constants) with sort v. Likewise, for every negative variable x,
coret(x, ·) is a unary function symbol sorted as s → e. We can thus see the definition of proof
terms of LJP as based on an infinite signature, with function symbols f of arities k ≤ 2. The
inductive definition of proof terms of LJP can then be depicted in the form of one rule scheme:

f : τ1, . . . , τk → τ Ti : τi, 1 ≤ i ≤ k

f(T1, . . . , Tk) : τ

Later we will write f(Ti)i in place of f(T1, . . . , Tk) and assume that k is somehow known.
Instead of writing the k hypotheses Ti : τi, we will then just write ∀i, Ti : τi.

3 Coinductive approach to proof search in the polarized system LJP

In this section, we adapt our coinductive approach to proof search from implicational
intuitionistic logic to LJP . Due to the high number of syntactic categories and different
constructors for proof terms, we use the extra notational devices from the end of Section 2
to ensure a uniform presentation of mostly similar rules that appear in definitions. Our
previous development sometimes departs from such a uniformity, which is why we also widen
the grammar of “forests”. This in turn asks for a mathematically more detailed presentation
of some coinductive proofs that are subtle but lie at the heart of our analysis. (For reasons
of limited space, that presentation was moved into Appendix A.5.)

3.1 Search for inhabitants in LJP , coinductively
System LJP co

Σ extends the proof terms of LJP in two directions: there is a coinductive
reading of the rules of the grammar of proof terms, and formal sums are added to the
grammar as means to express alternatives. This general idea is refined when applied to the
focused system LJP : the coinductive reading will be attached to stable expressions only;
and the formal sums are not added to the categories of (co)terms, since (co)terms serve to
represent the inversion phase in proof search, where choice is not called for.

The expressions in the wide sense of LJP co
Σ are called forests and ranged by the letter T .

They comprise five categories introduced by the simultaneous coinductive definition of the
sets vco

Σ , tco
Σ , sco

Σ , pco
Σ , and eco

Σ . However, we will continue to use the sorts τ taken from the
set S that was introduced for LJP . This allows us to maintain the function-symbol view of
LJP with the same symbols f that keep their typing/sorting. As said, only for the classes
of values, spines and expressions, we add finite sums, denoted with the multiary function
symbols Στ for τ ∈ {v, s, e}. The definition of the set of forests, i. e., the expressions (in a
wide sense) of LJP co

Σ can thus be expressed very concisely as being obtained by only two
rule schemes:

f : τ1, . . . , τk → τ ∀i. Ti : τi

f(T1, . . . , Tk) : τ
coinductive if τ = e

∀i. Ti : τ∑τ
i Ti : τ

τ ∈ {v, s, e}

The doubly horizontal line indicates a possibly coinductive reading. As a first step, we read
all these inference rules coinductively, but in a second step restrict the obtained infinitary
expressions to obey the following property: infinite branches must go infinitely often through
the e-formation rules coming from LJP , i. e., those depicted as unary function symbols
f : τ1 → e (also called the inherited e-formation rules – those for dlv(·), ret(·) and coret(x, ·)).
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This can be expressed as the parity condition (known from parity automata where this is
the acceptance condition) based on priority 2 for any rule for those f : τ1 → e and priority 1
for all the others. The parity condition requires that the maximum of the priorities seen
infinitely often on a path in the (forest) construction is even, hence infinite cycling through
the other syntactic categories and the summing operation for e-expressions is subordinate to
infinite cycling through the inherited e-formation rules. Put less technically, we allow infinite
branches in the construction of forests, but infinity is not allowed to come from infinite use
solely of the “auxiliary” productions (for τ ̸= e) or the additional sum operator for e, thus,
in particular ruling out infinite pairing with angle brackets, infinite copairing with brackets
or infinite spine composition by way of one of the :: constructors – all of which would never
correspond to typable proof terms – and also ruling out infinite stacks of finite sums.

Sums
∑τ

i Ti are required to be finite and therefore may also be denoted by T1 + . . . + Tk,
leaving τ implicit. We write O (possibly with the upper index τ that obviously cannot be
inferred from the summands) for empty sums. Sums are treated as sets of alternatives (so
they are identified up to associativity, commutativity and idempotency – that incorporates α-
equivalence (this is still a λ-calculus, the presentation with function symbols f is a notational
device) and bisimilarity coming from the full coinductive reading in the first step of the
construction).

We now define an inductive notion of membership, hence restricting the notion we had in
our previous papers on implicational logic.

▶ Definition 1 (Membership). An LJP -expression T is a member of a forest T ′ when the
predicate mem(T, T ′) holds, which is defined inductively as follows.

∀i. mem(Ti, T ′
i )

mem(f(Ti)i, f(T ′
i )i)

mem(T, T ′
j)

mem(T, T ′
1 + . . . + T ′

k)
for some j

The intuition of this definition is obviously that the sums expressed by
∑τ

i represent
alternatives out of which one is chosen for a concrete member.

The minimum requirement for this definition to be meaningful is that the five syntactic
categories are respected: if mem(T, T ′) then T ∈ τ iff T ′ ∈ τco

Σ . This property holds since we
tacitly assume that the sum operators are tagged with the respective syntactic category.

For a forest T , we call finite extension of T , which we denote by Efin(T ), the set of the
(finite) members of T , i. e., Efin(T ) = {T0 | mem(T0, T )}. Properties of special interest in this
paper are: (i) exfinext(T ), defined as: Efin(T ) is nonempty; and nofinext, the complement of
exfinext; and (ii) finfinext(T ), defined as: Efin(T ) is finite; and inffinext, the complement of
finfinext. These predicates play an important role in Section 4.

In Fig. 2, analogously to our previous work [8], we inductively characterize exfinext and
finfinext, and we coinductively characterize nofinext and inffinext. Note that the characteriz-
ation of finfinext resp. inffinext depends upon the characterization of nofinext resp. exfinext.
In Appendix A.1, it is shown that the characterizations in Fig. 2 are adequate, namely:
exfin = exfinext, nofin = nofinext, finfin = finfinext and inffin = inffinext. As immediate
consequences, exfin and nofin are complementary predicates, as are finfin and inffin, and
additionally nofin ⊆ finfin.

Now, we are heading for the infinitary representation of all inhabitants of any logical
sequent σ of LJP as a forest whose members are precisely those inhabitants (to be confirmed
in Prop. 4). For all the five categories of logical sequents στ , we define the associated solution
space S(στ ) as a forest, more precisely, an element of τco

Σ , that is supposed to represent the
space of solutions generated by an exhaustive and possibly non-terminating search process
applied to that given logical sequent στ . This is by way of the following simultaneous
coinductive definition. It is simultaneous for the five categories of logical sequents. For each
category, there is an exhaustive case analysis on the formula argument.
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∀i. exfin(Ti)
exfin(f(Ti)i)

exfin(Tj)
exfin(

∑
i Ti)

nofin(Tj)
nofin(f(Ti)i)

∀i. nofin(Ti)
nofin(

∑
i Ti)

∀i. finfin(Ti)
finfin(f(Ti)i)

nofin(Tj)
finfin(f(Ti)i)

∀i. finfin(Ti)
finfin(

∑
i Ti)

inffin(Tj) ∀i. exfin(Ti)
inffin(f(Ti)i)

inffin(Tj)
inffin(

∑
i Ti)

Figure 2 Predicates exfin, nofin, finfin and inffin.

S(Γ ⊢ [a+]) :=
∑

(z:a+)∈Γ z S(Γ ⊢ [⊥]) := Ov

S(Γ ⊢ [↓ N ]) := thunk(S(Γ =⇒ N)) S(Γ ⊢ [P1 ∨ P2]) :=
∑

i∈{1,2} inP3−i

i (S(Γ ⊢ [Pi]))

S(Γ =⇒ a−) := ⌜S(Γ ⊢ a−)⌝ S(Γ =⇒ P ⊃ N) := λS(Γ | P =⇒ N)
S(Γ =⇒↑ P ) := ⌈S(Γ ⊢ P )⌉ S(Γ =⇒ N1 ∧ N2) := ⟨S(Γ =⇒ Ni)⟩i

S(Γ[a−] ⊢ R) := if R = a− then nil else Os

S(Γ[P ⊃ N ] ⊢ R) := S(Γ ⊢ [P ]) :: S(Γ[N ] ⊢ R)
S(Γ[↑ P ] ⊢ R) := cothunk(S(Γ | P =⇒ R))

S(Γ[N1 ∧ N2] ⊢ R) :=
∑

i∈{1,2}(i :: S(Γ[Ni] ⊢ R))

S(Γ | a+ =⇒ A) := za+
. S(Γ, z : a+ ⊢ A) S(Γ | ⊥ =⇒ A) := abortA

S(Γ | ↓ N =⇒ A) := xN . S(Γ, x : N ⊢ A) S(Γ | P1 ∨ P2 =⇒ A) := [S(Γ | Pi =⇒ A)]i

S(Γ ⊢ C) := dlv(S(Γ =⇒ C))
S(Γ ⊢ a−) :=

∑
(x:N)∈Γ coret(x, S(Γ[N ] ⊢ a−))

S(Γ ⊢ P ) := ret(S(Γ ⊢ [P ])) +
∑

(x:N)∈Γ coret(x, S(Γ[N ] ⊢ P ))

Figure 3 Solution spaces for LJP .

▶ Definition 2 (Solution spaces). We define a forest S(στ ) ∈ τco
Σ for every logical sequent στ ,

by simultaneous coinduction for all the τ ∈ S. The definition is found in Fig. 3, where in the
clauses for S(Γ | a+ =⇒ A) resp. S(Γ | ↓ N =⇒ A), the variables z resp. x are supposed to
be “fresh”.

In the mentioned clauses, since the names of bound variables are considered as immaterial,
there is no choice involved in this inversion phase of proof search, as is equally the case for
S(Γ =⇒ ·) – as should be expected from the deterministic way inversion rules are dealt with
in a focused system like LJP .

▶ Lemma 3 (Well-definedness of S(σ)). For all logical sequents σ, the definition of S(σ)
indeed produces a forest.

Proof. Well-definedness is not at stake concerning productivity of the definition since every
corecursive call is under a constructor. As is directly seen in the definition, the syntactic
categories are respected. Only the parity condition requires further thought. In Appendix A.2,
we prove it by showing that all the “intermediary” corecursive calls to S(σ) in the calculation
of S(Γ ⊢ A) – which is the only case that applies inherited e-formation rules – lower the
“weight” of the logical sequent, until a possible further call to some S(Γ′ ⊢ A′). ◀

The members of a solution space are exactly the inhabitants of the sequent:
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4:8 Coinductive Proof Search for Polarized Logic with Applications to Full IPL

▶ Proposition 4 (Adequacy of the coinductive representation). For each τ ∈S, logical sequent
στ and T of category τ , mem(T, S(σ)) iff σ(T ) is provable in LJP (proof by induction on T ).

The following definition is an immediate adaptation of the corresponding definition in [8].

▶ Definition 5 (Inessential extension of contexts and R-stable sequents).
1. Γ ≤ Γ′ iff Γ ⊆ Γ′ and |Γ| = |Γ′|, with |∆| := {L | ∃y, (y : L) ∈ ∆} for an arbitrary

context ∆ (where we write y for an arbitrary variable). That is, Γ ≤ Γ′ if Γ′ only has
extra bindings w. r. t. Γ that come with types that are already present in Γ.

2. ρ ≤ ρ′ iff for some Γ ≤ Γ′ and for some right-formula R, ρ = (Γ ⊢ R) and ρ′ = (Γ′ ⊢ R).

3.2 Search for inhabitants in LJP , inductively
We are going to present a finitary version of LJP co

Σ in the form of a system LJP gfp
Σ of finitary

forests that are again generically denoted by letter T . We are again making extensive use of
our notational device introduced in Section 2. The letter f ranges over the function symbols
in this specific view on LJP . Summation is added analogously as for LJP co

Σ , and there are
two more constructions for the category of expressions.

f : τ1, . . . , τk → τ ∀i. Ti : τi

f(T1, . . . , Tk) : τ

∀i. Ti : τ∑τ
i Ti : τ

τ ∈ {v, s, e}
Xρ : e

T : e
gfpXρ.T : e

where X is assumed to range over a countably infinite set of fixpoint variables and ρ ranges
over R-stable sequents, as said before. The conventions regarding sums

∑
i in the context of

forests are also assumed for finitary forests. We stress that this is an all-inductive definition,
and that w. r. t. LJP , the same finite summation mechanism is added as for LJP co

Σ , but that
the coinductive generation of stable expressions is replaced by formal fixed points whose
binding and bound/free variables are associated with R-stable sequents ρ whose proof theory
is our main aim.

Below are some immediate adaptations of definitions in our previous paper [8]. However,
they are presented in the new uniform notation. Moreover, the notion of guardedness only
arises with the now wider formulation of finitary forests that allows fixed-point formation for
any finitary forest of the category of stable expression.

For a finitary forest T , let FPV (T ) denote the set of freely occurring typed fixed-point
variables in T , which can be described by structural recursion:

FPV (f(Ti)i) = FPV (
∑

i Ti) =
⋃

i FPV (Ti) FPV (Xρ) = {Xρ}
FPV (gfp Xρ.T ) = FPV (T ) \ {Xρ′ | ρ′ R-stable sequent and ρ ≤ ρ′}

Notice the non-standard definition that considers Xρ′ also bound by gfpXρ, as long as
ρ ≤ ρ′. This special view on binding necessitates to study the following restriction on finitary
forests: A finitary forest is called well-bound if, for any of its subterms gfp Xρ.T and any
free occurrence of Xρ′ in T , ρ ≤ ρ′.

▶ Definition 6 (Interpretation of finitary forests as forests). For a finitary forest T , the
interpretation [[T ]] is a forest given by structural recursion on T :

[[f(T1, . . . , Tk)]] = f([[T1]], . . . , [[Tk]]) [[Xρ]] = S(ρ)
[[T1 + . . . + Tk]] = [[T1]] + . . . + [[Tk]] [[gfp Xρ.T ]] = [[T ]]

This definition may look too simple to handle the interpretation of bound fixed-point variables
adequately, and in our previous paper [8] we called an analogous definition “simplified
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F(Γ ⊢ [a+]; Ξ) :=
∑

(z:a+)∈Γ z F(Γ ⊢ [↓ N ]; Ξ) := thunk(F(Γ =⇒ N ; Ξ))
F(Γ ⊢ [⊥]; Ξ) := Ov F(Γ ⊢ [P1 ∨ P2]; Ξ) :=

∑
i∈{1,2} inP3−i

i (F(Γ ⊢ [Pi]; Ξ))

F(Γ =⇒ a−; Ξ) := ⌜F(Γ ⊢ a−; Ξ)⌝ F(Γ =⇒ P ⊃ N ; Ξ) := λF(Γ | P =⇒ N ; Ξ)
F(Γ =⇒↑ P ; Ξ) := ⌈F(Γ ⊢ P ; Ξ)⌉ F(Γ =⇒ N1 ∧ N2; Ξ) := ⟨F(Γ =⇒ Ni; Ξ)⟩i

F(Γ[a−] ⊢ R; Ξ) := if R = a− then nil else Os

F(Γ[↑ P ] ⊢ R; Ξ) := cothunk(F(Γ | P =⇒ R; Ξ))
F(Γ[P ⊃ N ] ⊢ R; Ξ) := F(Γ ⊢ [P ]; Ξ) :: F(Γ[N ] ⊢ R; Ξ)

F(Γ[N1 ∧ N2] ⊢ R; Ξ) :=
∑

i∈{1,2}(i :: F(Γ[Ni] ⊢ R; Ξ))

F(Γ | a+ =⇒ A; Ξ) := za+
. F(Γ, z : a+ ⊢ A; Ξ) (z fresh)

F(Γ |↓ N =⇒ A; Ξ) := xN . F(Γ, x : N ⊢ A; Ξ) (x fresh)
F(Γ | P1 ∨ P2 =⇒ A; Ξ) := [F(Γ | Pi =⇒ A; Ξ)]i

F(Γ | ⊥ =⇒ A; Ξ) := abortA

F(Γ ⊢ C; Ξ) := dlv(F(Γ =⇒ C; Ξ))
F(Γ ⊢ a−; Ξ) := gfp Y ρ.

∑
(x:N)∈Γ coret(x, F(Γ[N ] ⊢ a−; Ξ, Y :ρ)) (ρ=Γ⊢a−, Y fresh)

F(Γ ⊢ P ; Ξ) := gfp Y ρ. ret(F(Γ ⊢ [P ]; Ξ, Y :ρ)) (ρ=Γ⊢a−, Y fresh)
+

∑
(x:N)∈Γ coret(x, F(Γ[N ] ⊢ P ; Ξ, Y :ρ))

Figure 4 All other cases of the finitary representation of solution spaces for LJP .

semantics” to stress that point. However, as in that previous paper, we can study those
finitary forests for which the definition is “good enough” for our purposes of capturing
solution spaces: we say a finitary forest T is proper if for any of its subterms T ′ of the form
gfp Xρ.T ′′, it holds that [[T ′]] = S(ρ).

To any free occurrence of an Xρ in T is associated a depth: for this, we count the function
symbols on the path from the occurrence to the root and notably do not count the binding
operation of fixed-point variables and the sum operations. So, Xρ only has one occurrence
of depth 0 in Xρ, likewise in gfpY ρ′

.Xρ.
We say a finitary forest T is guarded if for any of its subterms T ′ of the form gfp Xρ.T ′′,

it holds that every free occurrence in T ′′ of a fixed-point variable Xρ′ that is bound by this
fixed-point constructor has a depth of at least 1 in T ′′.

▶ Definition 7 (Finitary solution spaces for LJP ). Let Ξ := −−−→
X : ρ be a vector of m ≥ 0

declarations (Xi : ρi) where no fixed-point variable name occurs twice. The definition of
the finitary forest F(σ; Ξ) is as follows. If for some 1 ≤ i ≤ m, ρi =: (Γi ⊢ Ri) ≤ σ (i. e.,
σ = Γ ⊢ Ri and Γi ≤ Γ), then F(σ; Ξ) = Xσ

i , where i is taken to be the biggest such index
(notice that the produced Xi will not necessarily appear with the ρi associated to it in Ξ).
Otherwise, F(σ; Ξ) is as displayed in Fig. 4. Then, F(σ) denotes F(σ; Ξ) with empty Ξ.

Analogously to the similar result for implicational logic [7, Lemma 20], one can show that
F(σ; Ξ) is well-defined (the above recursive definition terminates) – some details are given in
Appendix A.4. Notice that the “if-guard” in the above definition presupposes that σ is an
R-stable sequent, hence for other forms of sequents, one necessarily has to apply the (mostly
recursive) rules of Fig. 4.
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P (ρ)
EFP (Xρ)

∀i, EFP (Ti)
EFP (f∗(Ti)i)

EFP (Tj)
EFP (

∑
i Ti)

¬P (ρ)
NEFP (Xρ)

NEFP (Tj)
NEFP (f∗(Ti)i)

∀i, NEFP (Ti)
NEFP (

∑
i Ti)

Figure 5 EFP and NEFP predicates.

▶ Theorem 8 (Equivalence of representations for LJP ). Let σ be a logical sequent and Ξ as
in Def. 7. We have:
1. F(σ; Ξ) is guarded.
2. F(σ; Ξ) is well-bound and F(σ) is closed.
3. F(σ; Ξ) is proper.
4. [[F(σ; Ξ)]] = S(σ); hence the coinductive and the finitary representations are equivalent.

Proof. The proof is by structural induction on F(σ; Ξ). Items 1 and 2 are proved independ-
ently (the former is an easy induction, the latter on well-boundness uses in the two cases
which generate gfp-constructions the lemma “if Xρ′ occurs free in F(σ; Ξ), then, for some
ρ ≤ ρ′, X : ρ ∈ Ξ”, also proved by structural induction on F(σ; Ξ), and from that lemma
follows immediately that F(σ) is closed). As in the proof of [8, Thm. 19], item 3 uses item 4,
which can be proved independently, but some effort is saved if the two items are proved
simultaneously. ◀

4 Deciding inhabitation problems in the polarized system LJP

Now we adapt to LJP our method [8] (until now only available for intuitionistic implication)
to decide type emptiness (provability), and to decide type finiteness (only finitely many
inhabitants). The presentation will look very different due to our notational device. Because
of the wider notion of finitary forests that does not ensure guardedness through the grammar,
some subtle technical refinements will be needed in the proofs (which will involve the Prop. 9
and are detailed in Appendix A.5). In the following, we write f∗ to stand for a function
symbol f or the prefix gfpXρ. of a finitary forest, the latter being seen as special unary
function symbol.

4.1 Type emptiness

We consider complementary parameterized predicates on finitary forests EFP (T ) and NEFP (T ),
where the parameter P is a predicate on logical sequents. (P = ∅ will be already an important
case). The definition of the two predicates EFP and NEFP is inductive and presented in
Fig. 5, although, as in [8], it is clear that they could equivalently be given by a definition by
recursion over the term structure. Thus, the predicates EFP and NEFP are decidable if P is.

The following can be proven by routine induction on T (barely more than an application
of de Morgan’s laws): for all T ∈ LJP gfp

Σ , NEFP (T ) iff EFP (T ) does not hold.

▶ Proposition 9 (Finitary characterization).
1. If P ⊆ exfin ◦ S and EFP (T ) then exfin([[T ]]).
2. Let T ∈ LJP gfp

Σ be well-bound, guarded and proper. If NEFP (T ) and for all Xρ ∈ FPV (T ),
exfin(S(ρ)) implies P (ρ), then nofin([[T ]]).

3. For any T ∈ LJP gfp
Σ well-bound, guarded, proper and closed, EF∅(T ) iff exfin([[T ]]).
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P (ρ)
FFP (Xρ)

∀i, FFP (Ti)
FFP (f∗(Ti)i)

NEF⋆(Tj)
FFP (f∗(Ti)i)

∀i, FFP (Ti)
FFP (

∑
i Ti)

¬P (ρ)
NFFP (Xρ)

NFFP (Tj) ∀i, EF⋆(Ti)
NFFP (f∗(Ti)i)

NFFP (Tj)
NFFP (

∑
i Ti)

Figure 6 FFP and NFFP predicates.

Proof.
1. is proved by induction on the predicate EFP (or, equivalently, on T ). The base case

for fixpoint variables needs the proviso on P , and all other cases are immediate by the
induction hypothesis (notice the special case for f∗ that is even simpler).

2. This needs a special notion of depth of observation for the truthfulness of nofin for forests.
A more refined statement has to keep track of this observation depth in premise and
conclusion, even taking into account the depth of occurrences of the bound fixed-point
variables of T . This is presented with details in Appendix A.5.

3. For P = ∅ resp. for closed T , the extra condition on P in part 1 resp. part 2 is trivially
satisfied. We now use that exfin and nofin are complements, as are NEFP and EFP . ◀

▶ Theorem 10 (Deciding the existence of inhabitants in LJP ). A logical sequent σ of LJP

is inhabited iff exfin(S(σ)) iff EF∅(F(σ)). Hence “σ is inhabited” is decided by deciding
EF∅(F(σ)). In other words, the inhabitation problem for LJP is decided by the computable
predicate EF∅ ◦ F .

Proof. The first equivalence follows by Prop. 4 and exfin = exfinext. The second equivalence
follows from Prop. 9.3, using all items of Theorem 8. Computability comes from computability
of the recursive function F and the equivalence of the inductively defined EF∅ with a recursive
procedure over the term structure of its argument. ◀

The theorem opens the way to using Prop. 9 with P := EF∅ ◦ F . This is explored now,
but will be needed only in the next subsection. The predicates EF⋆ and NEF⋆ on LJP gfp

Σ
are defined by EF⋆ := EFP and NEF⋆ := NEFP for P := EF∅ ◦ F (which by Theorem 10 is
equivalent to say P := exfin ◦ S). We already know such P is decidable, hence, also EF⋆ and
NEF⋆ are decidable. Additionally:

▶ Lemma 11 (Sharp finitary characterization). For all T ∈ LJP gfp
Σ , EF⋆(T ) iff exfin([[T ]]).

Proof. The direction from left to right follows immediately by Proposition 9.1. The other
direction is equivalent to NEF⋆(T ) implies nofin([[T ]]), which folows by an easy induction on
the predicate NEF⋆ with the help of Theorem 10 in the base case T = Xσ. ◀

4.2 Type finiteness
Decision of type finiteness will be achieved by mimicking the development for deciding type
emptiness, but will additionally require concepts and results from the latter. The finitary
characterization of type finiteness is obtained through the complementary (parametrized)
predicates FFP and NFFP , which are defined inductively on Fig. 6 and make use of the sharp
finitary characterizations of emptiness and non-emptiness (NEF⋆ and EF⋆). That the two
predicates are indeed complementary, i .e . that FFP (T ) iff NFFP (T ) does not hold, is again
proved by routine induction on T .
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▶ Proposition 12 (Finitary characterization).
1. If P ⊆ finfin ◦ S and FFP (T ) then finfin([[T ]]).
2. Let T ∈ LJP gfp

Σ be well-bound, guarded and proper. If NFFP (T ) and for all Xρ ∈ FPV (T ),
finfin(S(ρ)) implies P (ρ), then inffin([[T ]]).

3. For any T ∈ LJP gfp
Σ well-bound, guarded, proper and closed, FF∅(T ) iff finfin([[T ]]).

Proof. Each of the items follows anologously to the corresponding item of Proposition 9.
In particular: 1 follows by induction on FFP , and uses the fact nofin ⊆ finfin; 2 needs a
special notion of depth of observation for the truthfulness of inffin for forests, as detailed
in Appendix A.5; 3 follows then by items 1 and 2, and uses the facts finfin and inffin are
complements, as are FFP and NFFP . ◀

▶ Theorem 13 (Deciding finiteness of inhabitants in LJP ). A logical sequent σ of LJP has
(only) finitely many inhabitants iff finfin(S(σ)) iff FF∅(F(σ)). Hence “σ has (only) finitely
many inhabitants” is decided by deciding FF∅(F(σ)). In other words, the type finiteness
problem for LJP is decided by the computable predicate FF∅ ◦ F .

Proof. The first equivalence follows by Prop. 4 and finfin = finfinext. The second equivalence
follows from Prop. 12.3, using all items of Thm. 8. Computability comes from computability
of the recursive function F , decidability of NEF⋆, and the equivalence of the inductively
defined FF∅ with a recursive procedure over the term structure of its argument. ◀

5 Applications to intuitionistic propositional logic with all connectives

One of the interests of polarized logic is that it can be used to analyze other logics [15]. This
is also true of LJP and we illustrate it now, deriving algorithms for deciding the emptiness
(provability) and the finiteness problems for LJT with all connectives. Such transfer of
results from LJP will be immediate after the preparatory work that sets up an appropriate
version of LJT , alongside with its embedding into LJP .

5.1 System LJT of intuitionistic logic with all propositional connectives
The best known variant of the focused sequent calculus LJT for IPL is the one for implication
only [10]. Variants including conjunction and disjunction as well can be found in [11, 3]. We
present our own variant, still denoted LJT . Formulas of LJT are as follows:

(intuitionistic formulas) A, B ::= A ⊃ B | A ∧ B | R

(right intuitionistic formulas) R ::= a | ⊥ | A ∨ B

where a ranges over atoms, of which an infinite supply is assumed. A positive intuitionistic
formula, P , is a non-atomic right intuitionistic formula.

Proof terms of LJT are organized in three syntactic categories as follows:

(terms) t ::= λxA.t | ⟨t1, t2⟩ | e

(expressions) e ::= xs | inA
i (t)

(spines) s ::= nil | t :: s | i :: s | abortR | [xA1
1 .e1, xA2

2 e2]

where i ∈ {1, 2}, and x ranges over a countable set of variables. We will refer to e1 and e2 in
the latter form of spines as arms. Proof terms in any category are ranged over by T .

There are three forms of sequents, Γ =⇒ t : A and Γ ⊢ e : R and Γ[s : A] ⊢ R, where, as
usual, Γ is a context made of associations of variables with formulas. Therefore, a logical
sequent σ in LJT may have three forms: Γ =⇒ A and Γ ⊢ R and Γ[A] ⊢ R. The latter two
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Γ, x : A =⇒ t : B

Γ =⇒ λxA.t : A ⊃ B

Γ =⇒ ti : Ai for i = 1, 2
Γ =⇒ ⟨t1, t2⟩ : A1 ∧ A2

Γ ⊢ e : R
Γ =⇒ e : R

Γ, x : A[s : A] ⊢ R

Γ, x : A ⊢ xs : R

Γ =⇒ t : Ai

Γ ⊢ inA3−i

i (t) : A1 ∨ A2
i ∈ {1, 2} Γ =⇒ t : A Γ[s : B] ⊢ R

Γ[t :: s : A ⊃ B] ⊢ R Γ[nil : a] ⊢ a

Γ[abortR :⊥] ⊢ R

Γ[s : Ai] ⊢ R

Γ[i :: s : A1 ∧ A2] ⊢ R
i ∈ {1, 2}

Γ, xi : Ai ⊢ ei : R for i = 1, 2
Γ[xA1

1 .e1, xA2
2 .e2 : A1 ∨ A2] ⊢ R

Figure 7 Typing rules of LJT .

(A ⊃ B)∗ = ↓ A∗ ⊃ B∗ (A ∨ B)◦ = ↓ A∗∨ ↓ B∗

(A ∧ B)∗ = A∗ ∧ B∗ ⊥◦ = ⊥
P ∗ = ↑ P ◦ a◦ = a−

a∗ = a◦

(λxA.t)∗ = λ(xA∗
.DLV(t∗)) (xs)∗ = coret(x, s∗)

⟨t1, t2⟩∗ = ⟨t∗
1, t∗

2⟩ inA
i (t)∗ = ret(in↓A∗

i (thunk(t∗)))
e∗ = ⌜e∗⌝, if e is atomic
e∗ = ⌈e∗⌉, if e is positive

nil∗ = nil (abortR)∗ = cothunk(abortR◦
)

(t :: s)∗ = thunk(t∗) :: s∗ [xA1
1 .e1, xA2

2 .e2]∗ = cothunk([xA∗
1

1 .e∗
1, x

A∗
2

2 .e∗
2])

(i :: s)∗ = i :: s∗

Figure 8 Negative translation.

forms require a right formula to the right of the turnstile. The full definition of the typing
rules of LJT is given in Fig. 7. As for LJP , the annotations guarantee that there is at most
one formula that can replace the placeholders in Γ =⇒ t : ·, Γ ⊢ e : · and Γ[s : A] ⊢ ·.

The characteristic feature of the design of LJT is the restriction of the type of spines to
right formulas. Since the type of nil is atomic, spines have to be “long”; and the arms of
spines cannot be lambda-abstractions nor pairs, which is enforced by restricting the arms
of spines to be expressions, rather than general terms: this is the usefulness of separating
the class of expressions from the class of terms. In the typing rules, the restriction to right
formulas is generated at the select rule (the typing rule for xs); and the long form is forced
by the identity axiom (the typing rule for nil) because it applies to atoms only.

We could not find in the literature the restriction of cut-free LJT we consider here, but
Ferrari and Fiorentini [9] consider a presentation of IPL that enforces a similar use of right
formulas, in spite of being given in natural deduction format and without proof terms. It
is easy to equip this natural deduction system with proof terms and map it into LJT : the
technique is fully developed in [4] for polarized logic, but goes back to [3]. Since the just
mentioned system [9] is complete for provability, so is LJT .

System LJT can be embedded in LJP . We define the negative translation (·)∗ : LJT →
LJP in Fig. 8, comprising a translation of formulas and a translation of proof terms.
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The translation of formulas uses an auxiliary translation of right intuitionistic formulas R:
R◦ is a right formula (and specifically, P ◦ is a positive formula). An intuitionistic formula
A is mapped to a negative formula A∗, hence the name of the translation. At the level of
proof terms: terms (resp. spines, expressions) are mapped to terms (resp. spines, stable
expressions). Definitions like e∗ = ⌜e∗⌝ are meaningful if one thinks of the left e as being
tagged with the injection into terms. Use is made of the derived construction DLV(t), a stable
expression of LJP , defined by DLV(⌜e⌝) = e and DLV(t) = dlv(t) otherwise. Its derived
typing rule is that Γ ⊢ DLV(t) : N follows from Γ =⇒ t : N .

The translation of proof terms is defined for legal proof terms in LJT only: T is legal
if every expression e occurring in T is either atomic or positive; an expression xs is atomic
(resp. positive) if s is atomic (resp. positive), whereas an injection is positive; and a spine s

is atomic (resp. positive) if every “leaf” of s is nil or aborta (resp. an injection or abortP ).
Only when translating a legal T can we apply the definition of (·)∗ to e as a term.

Formally, the inductive definition of atomic and positive spines is as follows:
nil is atomic; aborta is atomic; if s is atomic, then t :: s and i :: s are atomic; if, for each
i = 1, 2, ei = yisi and si is atomic, then [xA1

1 .e1, xA2
2 .e2] is atomic.

abortP is positive; if s is positive, then t :: s and i :: s are positive; if, for each i = 1, 2,
ei = yisi and si is positive, or ei = inA

i (t), then [xA1
1 .e1, xA2

2 .e2] is positive.
Suppose Γ[s : A] ⊢ R is derivable. If R = a (resp. R = P ) then s is atomic (resp. positive).
Hence any typable proof term of LJT is legal. Moreover, if Γ ⊢ e : R then if e is atomic,
R = a and if e is positive, R = P .

The negative translation is easily seen to be injective. In order to state other properties
of the translation, we define the logical LJP sequent σ∗ for every logical LJT sequent σ:
(Γ =⇒ A)∗ = (Γ∗ =⇒ A∗) and (Γ ⊢ R)∗ = (Γ∗ ⊢ R◦) and (Γ[A] ⊢ R)∗ = (Γ∗[A∗] ⊢ R◦).

▶ Proposition 14 (Soundness). For all T = t, e, s in LJT : if σ(T ) is derivable in LJT then
σ∗(T ∗) is derivable in LJP .

Proof. By simultaneous induction on derivations for σ(T ). ◀

For the converse property (faithfulness), we need to understand better the image of
the negative translation, which we will call the ∗-fragment of LJP . Consider the following
subclass of formulas in LJP :

(∗-formulas) M, N ::= a− | ↑ P | ↓ N ⊃ M | N ∧ M

(positive ◦-formulas) P ::= ⊥ | ↓ N∨ ↓ M

The positive ◦-formulas are separated because they are useful to define ◦-formulas R, which
are either atoms a− or positive ◦-formulas P . A ∗-formula N is a negative formula; a
positive ◦-formula P is a positive formula; a ◦-formula R is a right formula. The negative
translation, at the level of formulas, is a bijection from intuitionistic formulas to ∗-formulas,
from positive intuitionistic formulas to positive ◦-formulas; and from right intuitionistic
formulas to ◦-formulas. The respective inverse maps are denoted | · |: they just erase the
polarity shifts and the minus sign from atoms.

If we are interested in deriving in LJP logical sequents of the form σ∗ only, then some
obvious cuts can be applied to the grammar of proof terms of LJP , yielding the following
grammar G of ∗-proof terms:

(∗-terms) t ::= ⌈e⌉ | ⌜e⌝ | λ(xN .e) | ⟨t1, t2⟩
(∗-spines) s ::= nil | cothunk(abortR) | cothunk([xN1

1 .e1, xN2
2 .e2]) | thunk(t) :: s | i :: s

(∗-expressions) e ::= dlv(t) | ret(inP
i (thunk(t))) | coret(x, s)

Here the type annotations range over formulas in the ∗-fragment.
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A legal ∗-proof term is one where dlv(t) is only allowed as the body of a λ-abstraction.
Legal expressions are generated by a restricted variant of the grammar above: dlv(t) is
forbidden as a ∗-expression per se, but, as a compensation, we introduce a second form of
λ-abstraction, λ(xN .dlv(t)).

There is a forgetful map from legal ∗-terms (resp. legal ∗-spines, legal ∗-expressions) to
terms (resp. spines, expressions) of LJT that essentially erases term decorations, and is given
in detail in Appendix A.6. The negative translation only generates legal ∗-proof terms; and,
since the negative translation is just a process of decoration, the forgetful map is left inverse
to it: |T ∗| = T .

▶ Proposition 15 (Faithfulness). For all T in LJP : if σ∗(T ) is derivable in LJP , then T is
legal and σ(|T |) is derivable in LJT and |T |∗ = T .

Proof. By simultaneous induction on T = t, s, r as generated by the grammar G above. ◀

By faithfulness and injectivity of the negative translation, the implications in Proposi-
tion 14 are in fact equivalences. Moreover:

▶ Corollary 16 (Reduction of counting and inhabitation problems).
1. There is a bijection between the set of those T ∈ LJT such that σ(T ) is derivable in LJT

and the set of those T ′ ∈ LJP such that σ∗(T ′) is derivable in LJP .
2. There is T ∈ LJT such that σ(T ) is derivable in LJT iff there is T ′ ∈ LJP such that

σ∗(T ′) is derivable in LJP .

Proof. We prove the first item. The negative translation is the candidate for the bijection.
Due to Proposition 14, it maps from the first set to the second. We already observed that
the translation is injective. Proposition 15 guarantees that the translation is also surjective.
The second item is an immediate consequence of the first. ◀

5.2 Deciding emptiness and finiteness in LJT

The “extraction” of the two decision procedures is immediate. Both procedures will be given
by the composition of two recursive functions: first, F calculates the finitary representation
of the full solution space; second, recursing on the structure of this representation, a predicate
(EF∅ or FF∅) is decided.

Emptiness. Given σ in LJT : σ is inhabited in LJT iff σ∗ is inhabited in LJP (Cor. 16);
iff exfin(S(σ∗)) (Prop. 4 and exfin = exfinext); iff EF∅(F(σ∗)) (Thm. 10). The obtained
algorithm is thus EF∅(F(σ∗)). Recall from Subsec. 4.1 that, although predicate EF∅ is given
inductively, it can be equivalently given by recursion over the structure of finitary forests.

Finiteness. Given σ in LJT : σ has finitely many inhabitants in LJT iff σ∗ has finitely many
inhabitants in LJP (Cor. 16); iff finfin(S(σ∗)) (Prop. 4 and finfin = finfinext); iff FF∅(F(σ∗))
(Thm. 13). The obtained algorithm is thus FF∅(F(σ∗)). Again, here, we should think of FF∅
as given by its recursive description.

Discussion. Complexity issues are not (yet) a concern of “coinductive proof search”. So
far we privileged a conceptual approach, where the representation of the search space is
separated from its analysis. This separation of concerns is reflected in the architecture of our
decision procedures, given as the composition of F with a recursive predicate adequate for
the specific problem at hand. This organization is modular, with F(σ∗) being reused, as we
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move our attention to a different decision problem; but it is not optimized, because knowing
the particular predicate we want to compose F with, in general, suggests simplifications.
Nevertheless, here are some comparisons with algorithms from the literature.

It is well-known that provability in full IPL is PSPACE-complete. In particular, [13]
establishes a space bound O(n log n) for this problem based on a contraction-free proof system.
Of course, this kind of efficiency cannot be expected from a naive implementation of our
decision method above, as it would first fully compute through F the finitary representation
of the solution space. An immediate optimization would be to compute with F lazily,
and interleave it with the structural decision algorithm for EF∅, thus avoiding the explicit
construction of the solution space. We wonder if such kind of optimization leads to a decision
algorithm for provability in full IPL within PSPACE. Note that, if our sole interest was
decision of provability, it would be better to start from variants of LJT like the systems
MJHist [12] or Nbu [9], which, in particular, block application of context-expanding rules if
the formulas to be added are already present in the context (like in total discharge convention).
However, neither the latter systems nor contraction-free systems give an appropriate basis to
address questions related to the full set of normal proofs/inhabitants.

The work of [18] is the only one we are aware of that deals with a question of type finiteness
for full IPL (but ⊥ is not included). That work considers a cut-free LJT -presentation of
IPL close to ours, but allowing more proofs, due to unrestricted RHS in its contraction
rule (recall our version of LJT imposes an atom or disjunction on the RHS when a formula
from the context is selected to the “focus”). The work [18] uses graphs to represent the
search space, and such graphs are guaranteed to be finite only in the case where contexts are
sets, in other words, when the total discharge convention is assumed. The decision of type
finiteness is then based on traversal of this finite graph structure and exhaustive checking for
the absence of “cyclic proof structures”. In our case, the decision comes by computing the
result of the function F , which gives the finitary forest representing the solution space, and
then by deciding by a simple structural recursion the predicate FF∅ on such a forest; but,
again, one may compute with F lazily and interleave it with the structural decision of FF∅.
It should be noted that decision of type finiteness in [18] is part of more general algorithms
that count the number of inhabitants of a type. In our case, counting of inhabitants is done
by a function defined by structural recursion on finitary forests. This worked fine for the
implicational fragment of LJT [8], and we anticipate no major obstacles in extending the
idea to full LJT .

6 Final remarks

We have shown that “coinductive proof search” extends to polarized intuitionistic logic
[17, 4]: the basic result about the equivalence of the coinductive and finitary representation
of solution spaces is obtained, as well as decidability of some predicates (one of which is
provability) through recursive predicates defined over the finitary syntax.

In the presence of disjunction, focused proofs fail to be canonical – in e. g. [16] (Subsec. 1.7)
it is observed that types with a unique canonical inhabitant may have infinitely many focused
inhabitants. So, we stress again, our algorithms for type finiteness refer to the finiteness of
the number of focused inhabitants (which are all the inhabitants according to the specific
proof systems considered in this paper). The next challenge is to try our approach with the
even more sophisticated systems [16] that capture canonical inhabitants, and for that we
find it useful to deal with LJP first.
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But the study of LJP has other uses, as a platform to study other logics. We illustrated
this view with LJT , a focused proof system for intuitionistic logic, by means of the negative
translation of LJT into LJP . Variants of this translation were previously mentioned or
sketched [19, 15], here we give a full treatment as a translation between languages of proof
terms. By composing the properties of the negative translation with the results about
polarized logic, we extract results about proof search in LJT (including notably disjunction).

Our negative translation is reminiscent of Girard’s translation of intuitionistic logic
into linear logic. The latter translation may be seen as underlying other translations in
the literature – see [1] for a study that involves polarized linear logic and even covers
cut-elimination (our setting is cut-free and linearity plays no role). We also worked out a
positive translation of cut-free LJQ [2] into LJP , but have no space to show it. This opens
the way to the study of inhabitation problems relative to call-by-value λ-terms, and for that,
the results obtained here about LJP will be reused.

In the context of intuitionistic implication, we obtained in [6] decidability of problems
involving the concept of solution rather than inhabitant (including the problem of termination
of proof search). As further future work, we plan to extend to LJP such decidability results.
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A Appendix with some more technical details

A.1 On the characterization of predicates on forests in Section 3.1
▶ Lemma 17.
1. Given a forest T , exfin(T ) iff nofin(T ) does not hold.
2. Given a forest T , finfin(T ) iff inffin(T ) does not hold.

Proof. Both items are plain instances of the generic result in the style of De Morgan’s laws
that presents inductive predicates as complements of coinductive predicates, by a dualization
operation on the underlying clauses. ◀

The following lemma shows that the predicates exfin and finfin correspond to the intended
meaning in terms of the finite extensions. Additionally, the lemma shows that the negation
of exfin resp. finfin holds exactly for the forests which have no finite members resp. for the
forests which have infinitely many finite members.

▶ Lemma 18 (Coinductive characterization). Given a forest T ,
1. exfin(T ) iff Efin(T ) is non-empty, i. e., exfin = exfinext as sets of forests;
2. finfin(T ) iff Efin(T ) is finite, i. e., finfin = finfinext as sets of forests.

Proof. Item 1 follows directly from the fact: exfin(T ) iff mem(T0, T ) for some T0. The left
to right implication is proved by induction on exfin. (Recall exfin is a predicate on forests,
but is defined inductively.) The right to left implication can be proved via the equivalent
statement “for all T0, mem(T0, T ) implies exfin(T )”, which follows by induction on LJP proof
terms T0. For the case of membership in sums, it is necessary to decompose them (thanks to
priority 1) until membership in an expression f(Ti)i is reached so that the argument for the
first inductive clause of membership applies. Item 2 follows analogously, but also uses the
fact nofin = nofinext, which is an immediate consequence of item 1 and Lemma 17. ◀
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A.2 On well-definedness of infinitary representation in Section 3.1

This section is dedicated to the proof of Lemma 3.
It remains to check the parity condition. As mentioned in the main text, this comes

from the observation that all the “intermediary” corecursive calls to S(σ) in the calculation
of S(Γ ⊢ A) – which is the only case that applies inherited e-formation rules – lower the
“weight” of the logical sequent, until a possible further call to some S(Γ′ ⊢ A′).

▶ Definition 19 (weight). Weight of a formula: w(⊥, a+) := 0, w(a−) := 1, and for composite
formulas, add the weights of the components and add the following for the extra symbols:
w(↓, ∧) := 0, w(∨) := 1, w(↑) := 2, w(⊃) := 3. Then w(N) ≥ 1 and w(P ) ≥ 0.

Weight of context Γ: the sum of the weights of all the formulas associated with the
variables.

Weight of logical sequent: w(Γ ⊢ A) := w(Γ)+w(A), w(Γ =⇒ N) := w(Γ)+w(N)−1 ≥ 0.
w(Γ ⊢ [P ]) := w(Γ) + w(P ), w(Γ|P =⇒ A) := w(Γ) + w(P ) + w(A) + 1, w(Γ[N ] ⊢ R) :=
w(Γ) + w(N) + w(R). Then for all σ, w(σ) ≥ 0.

In preparation of Section A.4, we even show the following more general statement:

▶ Lemma 20. Every direct corecursive call in the definition of S(σ) to some S(σ′) for
neither σ nor σ′ R-stable sequents lowers the weight of the logical sequent.

Proof. We have to show the following inequalities:
w(Γ ⊢ C) > w(Γ =⇒ C) (the rule introducing dlv(·) is easy to overlook but not needed

for the proof of Lemma 3): this is why · =⇒ · has to weigh less
w(Γ|a+ =⇒ A) > w(Γ, z : a+ ⊢ A): this is why ·|· =⇒ · has to weigh more (and variable

names must not enter the weight of contexts Γ)
w(Γ| ↓ N =⇒ A) > w(Γ, x : N ⊢ A): w(↓) = 0 suffices
w(Γ ⊢ [↓ N ]) > w(Γ =⇒ N): w(↓) = 0 suffices
w(Γ ⊢ [P1 ∨ P2]) > w(Γ ⊢ [Pi]): trivial since w(∨) > 0
w(Γ =⇒ a−) > w(Γ ⊢ a−) is not to be shown (and is wrong) since we hit the class of

R-stable sequents
w(Γ =⇒↑ P ) > w(Γ ⊢ P ): this works since ↑ weighs more (given that · =⇒ · weighs less),

but this inequation is not needed either
w(Γ =⇒ P ⊃ N) > w(Γ|P =⇒ N): since both logical sequent weights are unfavourably

modified, the weight of ⊃ has to be so high
w(Γ =⇒ N1 ∧ N2) > w(Γ =⇒ Ni): since w(N3−i) ≥ 1
w(Γ[↑ P ] ⊢ R) > w(Γ|P =⇒ R): this is why ↑ has to weigh more (given that ·|· =⇒ ·

weighs more)
w(Γ[P ⊃ N ] ⊢ R) > w(Γ ⊢ [P ]) and > w(Γ[N ] ⊢ R): both are trivial since w(⊃) > 0
w(Γ[N1 ∧ N2] ⊢ R) > w(Γ[Ni] ⊢ R): since w(N3−i) ≥ 1
w(Γ|P1 ∨ P2 =⇒ A) > w(Γ|Pi =⇒ A): trivial since w(∨) > 0 ◀

It is clear that this lemma guarantees the parity condition for all S(σ).

A.3 On forest transformation for inessential extensions in Section 3.1

If ρ = (Γ ⊢ R) and ρ′ = (Γ′ ⊢ R), then the result [ρ′/ρ]T of the decontraction operation
applied to T is defined to be [Γ′/Γ]T , with the latter given as follows:
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[Γ′/Γ]f(T1, . . . , Tk) = f([Γ′/Γ]Ti, . . . , [Γ′/Γ]Tk) for f neither z nor coret(x, ·)

[Γ′/Γ]
∑

i Ti =
∑

i [Γ′/Γ]Ti

[Γ′/Γ]z = z if z /∈ dom(Γ)
[Γ′/Γ]z =

∑
z′∈Dz

z′ if z ∈ dom(Γ)

[Γ′/Γ]coret(x, s) = coret(x, [Γ′/Γ]s) if x ̸∈ dom(Γ)
[Γ′/Γ]coret(x, s) =

∑
x′∈Dx

coret(x′, [Γ′/Γ]s) if x ∈ dom(Γ)

Figure 9 Corecursive equations for definition of decontraction.

▶ Definition 21 (Decontraction). Let Γ ≤ Γ′. For a forest T of LJP co
Σ , the forest [Γ′/Γ]T of

LJP co
Σ is defined by corecursion in Fig. 9, where, for w ∈ dom(Γ),

Dw := {w} ∪ {w′ : (w′ : Γ(w)) ∈ (Γ′ \ Γ)} .

In other words, the occurrences of variables (in the syntactic way they are introduced in the
forests) are duplicated for all other variables of the same type that Γ′ has in addition.

▶ Lemma 22 (Solution spaces and decontraction). Let ρ ≤ ρ′. Then S(ρ′) = [ρ′/ρ]S(ρ).

Proof. Analogous to the proof for implicational logic [7]. Obviously, the decontraction
operation for forests has to be used to define decontraction operations for all forms of logical
sequents (analogously to the R-stable sequents, where only Γ varies). Then, the coinductive
proof is done simultaneously for all forms of logical sequents. ◀

A.4 On termination of finitary representation in Section 3.2
Definition 7 contains recursive equations that are not justified by calls to the same function for
“smaller” sequents, in particular not for the rules governing R-stable sequents as first argument.
We mentioned that the proof of termination of an analogous function for implicational logic [7,
Lemma 20] can be adapted to establish also termination of F(σ; Ξ) for any valid arguments.
Here, we substantiate this claim.

The difficulty comes from the rich syntax of LJP , so that the “true” recursive structure
of F(ρ; Ξ) – for R-stable sequents that spawn the formal fixed points – gets hidden through
intermediary recursive calls with the other forms of logical sequents. However, we will now
argue that all those can be seen as plainly auxiliary since they just decrease the “weight” of
the problem to be solved.

▶ Lemma 23. Every direct recursive call in the definition of F(σ; Ξ) to some F(σ′; Ξ′) for
neither σ nor σ′ R-stable sequents lowers the weight of the first argument.

Proof. This requires to check the very same inequations as in the proof of Lemma 20. ◀

The message of the lemma is that the proof search through all the other forms of logical
sequents (including the form Γ ⊢ C) is by itself terminating. Of course, this was to be
expected. Otherwise, we could not have “solved” them by a recursive definition in F where
only R-stable sequents ask to be hypothetically solved through fixed-point variables.
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The present argument comes from an analysis that is deeply connected to LJP , it has
nothing to do with an abstract approach of defining (infinitary or finitary) forests. As seen
directly in the definition of F , only by cycling finitely through the dlv(·) construction is the
context Γ extended in the arguments σ to F . And the context of the last fixed-point variable
in Ξ grows in lockstep.

It is trivial to observe that all the formula material of the right-hand sides lies in the same
subformula-closed sets (see [7]) as the left-hand sides (in other words, the logical sequents in
the recursive calls are taken from the same formula material, and there is no reconstruction
whatsoever).

Therefore, the previous proof for the implicational case [7, Lemma 20] can be carried
over without substantial changes. What counts are recursive calls with first argument an
R-stable sequent for the calculation when the first argument is an R-stable sequent. In the
implicational case, these “big” steps were enforced by the grammar for finitary forests (and
the logical sequents Γ ⊢ R had even only atomic R there, but this change is rather irrelevant
for the proof (instead of counting atoms, one has to count R formulas for getting the measure,
but this does not affect finiteness of it). The preparatory steps in the proof of [7, Lemma 20]
are also easily adapted, where the Γ part of the first argument to F takes the role of the
context Γ in that proof.

A.5 Completing the proofs of Props. 9.2 and 12.2 with extra concepts
First we prove Prop. 9.2. For this, we need an auxiliary concept with which we can formulate
a refinement of that proposition. From the refinement, we eventually get Prop. 9.2.

We give a sequence of approximations from above to the coinductive predicate nofin
whose intersection characterizes the predicate. The index n is meant to indicate to which
observation depth of T we can guarantee that nofin(T ) holds. For this purpose, we do not
take into account the summation operation as giving depth. We present the notion as a
simultaneous inductive definition.

nofin0(T )
nofinn(Tj)

nofinn+1(f(Ti)i)
for some j

∀i. nofinn+1(Ti)
nofinn+1(

∑
i Ti)

A guarantee up to observation depth 0 does not mean that the root symbol is suitable but
the assertion is just void. Going through a function symbol requires extra depth. The child
has to be fine up to a depth that is one less. As announced, the summation operation does
not provide depth, which is why this simultaneous inductive definition cannot be seen as a
definition of nofinn by recursion over the index n.

By induction on the inductive definition, one can show that nofinn is antitone in n, i. e.,
if nofinn+1(T ) then nofinn(T ).

▶ Lemma 24 (Closure under decontraction of each nofinn). Let ρ ≤ ρ′ and n ≥ 0. For all
forests T , nofinn(T ) implies nofinn([ρ′/ρ]T ).

Proof. By induction on the inductive definition – we profit from not counting sums as
providing depth. ◀

▶ Lemma 25 (Inductive characterization of absence of members). Given a forest T . Then,
nofin(T ) iff nofinn(T ) for all n.

Proof. From left to right, this is by induction on n. One decomposes (thanks to priority 1) the
sums until one reaches finitely many expressions f(Ti)i to which the induction hypothesis ap-
plies. From right to left, one proves coinductively R ⊆ nofin, for R := {T : ∀ n ≥ 0, nofinn(T )}.
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For example, in the case T = f(Ti)i ∈ R, this amounts to showing Tj ∈ R for some j. The
assumption nofin1(f(Ti)i) already implies the existence of at least one Tj . The proof is
then indirect: if for all i we would have Ti ̸∈ R, then, for each i, there would be an ni s. t.
¬nofinni(Ti), and letting m be the maximum of these ni’s, ¬nofinm(Ti) by antitonicity; hence
we would have ¬nofinm+1(T ), but T ∈ R. ◀

For T ∈ LJP gfp
Σ , we write An(T ) for the following assumption: For every free occurrence

of some Xρ in T (those Xρ are found in FPV (T )) such that ¬P (ρ), there is an n0 with
nofinn0(S(ρ)) and d + n0 ≥ n for d the depth of the occurrence in T as defined earlier, where
sums and generations of fixed points do not contribute to depth.

Notice that, trivially n′ ≤ n and An(T ) imply An′(T ).

▶ Lemma 26 (Ramification of Proposition 9.2). Let T ∈ LJP gfp
Σ be well-bound, proper and

guarded and such that NEFP (T ) holds. Then, for all n ≥ 0, An(T ) implies nofinn([[T ]]).

Proof. By induction on the predicate NEFP (which can also be seen as a proof by induction
on finitary forests).

Case T = Xρ. Then [[T ]] = S(ρ). Assume n ≥ 0 such that An(T ). By inversion, ¬P (ρ),
hence, since Xρ ∈ FPV (T ) at depth 0 in T , this gives n0 ≥ n with nofinn0(S(ρ)). Since
nofinm is antitone in m, we also have nofinn([[T ]]).

Case T = gfpXρ.T1. NEFP (T ) comes from NEFP (T1). Let N := [[T ]] = [[T1]]. As T is
proper, N = S(ρ). We do the proof by a side induction on n. The case n = 0 is trivial. So
assume n = n′ + 1 and An(T ) and that we already know that An′(T ) implies nofinn′(S(ρ)).
We have to show nofinn(S(ρ)), i. e., nofinn([[T1]]). We use the main induction hypothesis on
T1 with the same index n. Hence, it suffices to show An(T1). Consider any free occurrence
of some Y ρ′ in T1 such that ¬P (ρ′). We have to show that there is an n0 with nofinn0(S(ρ′))
and d + n0 ≥ n for d the depth of the occurrence in T1.

First sub-case: the considered occurrence is also a free occurrence in T . Since we disregard
fixed-point constructions for depth, d is also the depth in T . Because of An(T ), we get an
n0 as desired.

Second sub-case: the remaining case is with Y = X and, since T is well-bound, ρ ≤ ρ′.
As remarked before, An(T ) gives us An′(T ). The side induction hypothesis therefore yields
nofinn′(S(ρ)). By closure of nofinn under decontraction, we get nofinn′([ρ′/ρ]S(ρ)), but that
latter forest is S(ρ′) by Lemma 22. By guardedness of T , this occurrence of Xρ′ has depth
d ≥ 1 in T1. Hence, d + n′ ≥ 1 + n′ = n.

Case T = f(T1, . . . , Tk) with a proper function symbol f . Assume n ≥ 0 such that
An(T ). There is an index j such that NEFP (T ) comes from NEFP (Tj). Assume n ≥ 0 such
that An(T ). We have to show that nofinn([[T ]]). This is trivial for n = 0. Thus, assume
n = n′ + 1. We are heading for nofinn′([[Tj ]]). We use the induction hypothesis on Tj (even
with this smaller index n′). Therefore, we are left to show An′(Tj). Consider any free
occurrence of some Xρ in Tj such that ¬P (ρ), of depth d in Tj . This occurrence is then also
a free occurrence in T of depth d + 1 in T . From An(T ), we get an n0 with nofinn0(S(ρ))
and d + 1 + n0 ≥ n, hence with d + n0 ≥ n′, hence n0 is as required for showing An′(Tj).

Case T =
∑

i Ti. NEFP (T ) comes from NEFP (Ti) for all i. Assume n ≥ 0 such that An(T ).
We have to show that nofinn([[T ]]). This is trivial for n = 0. Thus, assume n = n′ + 1 and fix
some index i. We have to show nofinn([[Ti]]). We use the induction hypothesis on Ti (with the
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same index n). Therefore, we are left to show An(Ti). Consider any free occurrence of some
Xρ in Ti such that ¬P (ρ), of depth d in Ti. This occurrence is then also a free occurrence
in T of depth d in T . From An(T ), we get an n0 with nofinn0(S(ρ)) and d + n0 ≥ n, hence
n0 is as required for showing An(Ti). (Of course, it is important that sums do not count
for depth in finitary terms if they do not count for the index of the approximations to nofin.
Therefore, this proof case is so simple.) ◀

We return to Prop. 9.2:

Proof. Let T ∈ LJP gfp
Σ be well-bound, proper and guarded, assume NEFP (T ) and that for

all Xρ ∈ FPV (T ), exfin(S(ρ)) implies P (ρ). We have to show nofin([[T ]]). By Lemma 25 it
suffices to show nofinn([[T ]]) for all n. Let n ≥ 0. By the just proven refinement, it suffices to
show An(T ). Consider any free occurrence of some Xρ in T such that ¬P (ρ), of depth d in
T . By contraposition of the assumption on FPV (T ) and by the complementarity of nofin
and exfin, we have nofin(S(ρ)), hence by Lemma 25 nofinn(S(ρ)), and d + n ≥ n, as required
for An(T ). ◀

The whole development above can be replayed to prove Prop. 12.2. Now, the required
auxiliary concept is inffinn, which gives a sequence of approximations to the coinductive
predicate inffin:

inffin0(T )
inffinn(Tj) ∀i. exfin(Ti)

inffinn+1(f(Ti)i)
for some j

inffinn+1(Tj)
inffinn+1(

∑
i Ti)

for some j

▶ Lemma 27 (Antitonicity and closedness under decontraction of inffinn). Given a forest T

and n ≥ 0,
1. if inffinn+1(T ) then inffinn(T );
2. for any ρ ≤ ρ′, inffinn(T ) implies inffinn([ρ′/ρ]T ).

Proof. Both items 1 and 2 follow by induction on the inductive definition of inffinn, and 2
uses closedness of exfin under decontraction. ◀

▶ Lemma 28 (Inductive characterization of finiteness of members). Given a forest T , inffin(T )
iff inffinn(T ) for all n ≥ 0.

Proof. Analogously to the proof of Lemma 25, the left to right direction follows by induc-
tion on n, and the right to left direction follows by proving coinductively R ⊆ inffin, for
R := {T : ∀ n ≥ 0, inffinn(T )}. ◀

For T ∈ LJP gfp
Σ , now An(T ) will stand for the assumption: For every free occurrence

of some Xρ in T (those Xρ are found in FPV (T )) such that ¬P (ρ), there is an n0 with
inffinn0(S(ρ)) and d + n0 ≥ n for d the depth of the occurrence in T as defined earlier, where
sums and generations of fixed points do not contribute to depth. (The only change w. r. t.
the definition of An(T ) above is the replacement of nofinn0 by inffinn0 .)

▶ Lemma 29 (Ramification of Proposition 12.2). Let T ∈ LJP gfp
Σ be well-bound, proper and

guarded and such that NFFP (T ) holds. Then, for all n ≥ 0, An(T ) implies inffinn([[T ]]).

Proof. By induction on the predicate NFFP . All cases for T follow analogously to the
corresponding cases of Lemma 26, with the help of Lemma 27. The case T = f(Ti)i uses
additionally Lemma 11. ◀

Finally, Prop. 12.2 follows from Lemma 29 (in lockstep with the proof of Prop. 9.2 from
Lemma 26) thanks to Lemma 28.
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A.6 Details on the forgetful map in Section 5
The forgetful map from legal ∗-terms (resp. legal ∗-spines, legal ∗-expressions) to terms
(resp. spines, expressions) of LJT is as follows:

|λ(xN .dlv(t))| = λx|N |.|t| |nil| = nil
|λ(xN .e)| = λx|N |.|e| |cothunk(abortR)| = abort|R|

|⟨t1, t2⟩| = ⟨|t1|, |t2|⟩ cothunk([xN1
1 .e1, xN2

2 .e2]) = [x|N1|
1 .|e1|, x

|N2|
2 .|e2|]

|⌜e⌝| = |e| |thunk(t) :: s| = |t| :: |s|
|⌈e⌉| = |e| |i :: s| = i :: |s|

|coret(x, s)| = x|s| |ret(inP
i (thunk(t)))| = in|P |

i (|t|)
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Abstract
Hybrid logic extends modal logic with nominals that name worlds. Seligman-style tableau systems
for hybrid logic divide branches into blocks named by nominals to achieve a local proof style. We
present a Seligman-style tableau system with a formalization in the proof assistant Isabelle/HOL.
Our system refines an existing system to simplify formalization and we claim termination from this
relationship. Existing completeness proofs that account for termination are either analytic or based
on translation, but synthetic proofs have been shown to generalize to richer logics and languages.
Our main result is the first synthetic completeness proof for a terminating hybrid logic tableau
system. It is also the first formalized completeness proof for any hybrid logic proof system.
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1 Introduction

Hybrid logic increases the expressiveness of modal logic by adding a special sort of proposi-
tional symbol called nominals to the syntax. In regular modal logic we can only reference
worlds indirectly through the modalities, but nominals, that are true at exactly one world,
name worlds explicitly. A nominal i gives rise to the satisfaction operator @i that states what
world a formula is true “at.” These features make hybrid logic well suited for applications
like temporal logic [3], description logic [5] and epistemic logics for social networks [24].

There are many proof systems for classical hybrid logic [4] and we focus on tableau systems
in the following. Early work relied on loop checks to ensure termination [10] but Bolander and
Blackburn introduced a calculus that guarantees finite branches through local restrictions [9].
Their completeness proof is analytic, meaning that they reason about open branches directly.
Blackburn et al. [4] introduced the Seligman-style [25] system ST with a more local proof
style than previous systems. Jørgensen et al. [21] later introduced a synthetic completeness
proof for ST and showed that it scales with extensions to the logic. The synthetic approach
involves reasoning about maximal consistent sets and their properties [13, 26] and this also
opens the way for other developments, notably interpolation results [1].

Blackburn et al. [4] restricted ST into the terminating ST* but showed completeness by
translation from the system by Bolander and Blackburn [9]. The synthetic completeness
proof for ST relies on a symmetry in branches that neither terminating system has. We
present system STA, a refinement of ST* suitable for formalization, which is formalized in
the simple type theory of Isabelle/HOL [23]. Its proof of completeness fills a gap as the first
synthetic completeness proof for a terminating tableau system for hybrid logic. It is also
the first standalone completeness proof for a terminating Seligman-style system and, to our
knowledge, the first formalization of any proof system for hybrid logic.
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The formalization provides absolute trust in the correctness of the completeness proof
and serves as a companion to this paper, where the proofs can be seen in full detail.

Our system closely resembles ST* but with restrictions that are simpler to formalize and
we argue for termination based on this relationship. Formalizing termination remains future
work since we want a direct proof, not one based on translation. Blanchette [6] gives an
overview of efforts to formalize the metatheory of logical calculi and provers in Isabelle.

Other formalizations of hybrid logic itself exist. Doczkal and Smolka [12] formalized hybrid
logic with nominals in constructive type theory using the proof assistant Coq. They gave
algorithmic proofs of small model theorems and computational decidability of satisfiability,
validity, and equivalence of formulas. In Isabelle/HOL, Linker [22] formalized the semantic
embedding of a spatio-temporal multi-modal logic with a hybrid logic-inspired at-operator.

Our work is classical but hybrid logic also has a constructive variant. Braüner and de
Paiva [11] defined intuitionistic hybrid logic, and a natural deduction system, and Galmiche
and Salhi [19] showed its decidability via a sequent calculus. Jia and Walker [20] interpreted
modal proofs as distributed programs with nominals denoting places in the network.

We formalized the synthetic completeness of ST with some of the simpler ST* restric-
tions required for termination in our MSc thesis [17]. A short paper by From et al. [14]
briefly described an even earlier version of the formalization and we mentioned the present
completeness proof in a short presentation at Advances in Modal Logic 2020 [18].

The paper continues as follows. First, we give the syntax and semantics of basic hybrid
logic (Section 2). We introduce the proof system, corresponding rule restrictions and some
consequences (Section 3). Next, we show a number of properties of the system that are useful
for the completeness proof (Section 4). After that, we prove completeness of the system and
show how our proof relates to existing work (Section 5). We then show how STA relates
to ST* and argue for our choice of restrictions. From this relationship we claim that STA

must be terminating by sketching a possible translation (Section 6). We briefly discuss some
points about the formalization (Section 7) and conclude with future work (Section 8).

2 Syntax and Semantics

The well-formed formulas of the basic hybrid logic are given by the following grammar, where
we use p as a propositional symbol and i, j, k, a, b for nominals.

ϕ, ψ ::= p | i | ¬ϕ | ϕ ∨ ψ | ♢ϕ | @iϕ

The ♢ operator is the usual possibility modality and @i is the aforementioned satisfaction
operator. A formula of the form @iϕ is called a satisfaction statement.

We interpret the language on Kripke models M = (W,R, V ). The frame (W,R) consists
of a non-empty set of worlds W and a binary accessibility relation R between them. V is the
valuation of propositional symbols. An assignment g maps nominals to elements of W ; if
g(i) = w we say that nominal i denotes w. Formula satisfiability is defined as follows:

M, g, w |= p iff w ∈ V (p)
M, g, w |= i iff g(i) = w

M, g, w |= ¬ϕ iff M, g, w ̸|= ϕ

M, g, w |= ϕ ∨ ψ iff M, g, w |= ϕ or M, g, w |= ψ

M, g, w |= ♢ϕ iff for some w′, wRw′ and M, g, w′ |= ϕ

M, g, w |= @iϕ iff M, g, g(i) |= ϕ
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@iϕ1

@iϕ2
...

@jψ1
...

(a) Internalized.

i

ϕ1

ϕ2
...
j

ψ1
...

(b) Seligman-style.

Figure 1 Internalized and Seligman-style tableau branches.

3 Our Seligman-Style Tableau System

Our proof system of choice is tableau. In tableau we decompose an initial set of root formulas
into a tree structure and show unsatisfiability by reaching a contradiction on each branch.
This is called “closing” the branch and a branch that cannot be closed remains “open.” If we
can close every branch that emerges then the root formulas have a closing tableau.

A hybrid logic formula is true relative to a given world and our proof system must handle
this. Internalized tableau systems, as depicted in Figure 1a, encode the information in
every formula on the branch by working exclusively with satisfaction statements. We follow
instead the Seligman style [25] adapted to tableau systems by Blackburn et al. [4]. Here, the
information is attached to a group of formulas at once by dividing the branch into blocks as
depicted in Figure 1b. The first formula on each block is ensured to be a nominal and called
the opening nominal. It denotes the world that the formulas on the block are true at. We
occasionally call a block’s opening nominal its “type” and use the following shorthands:

▶ Definition 1 (ϕ at i). If a formula ϕ occurs on a block with opening nominal i, then we
say that ϕ occurs “on an i-block” or simply that ϕ occurs “at i.”

3.1 Proof System

Figure 2 gives our tableau rules. We give the rule output below the vertical lines and the
rule input above them. The opening nominal of the latest, current, block is given below
the horizontal line. Above each input formula we write the opening nominal of the block it
occurs on. When a rule has multiple input we write these pairs side by side. Any formula on
the current block may be used as input under the same restrictions on opening nominals.

▶ Example 2. Consider the (¬¬) rule: if ¬¬ϕ occurs on an a-block and the current block
is an a-block, then ϕ is a legal extension of the branch. The intuition for the Nom rule is
that the current opening nominal a occurs on a b-block so nominals a and b must denote
the same world and it is sound to copy ϕ from b to a. The (♢) rule witnesses its input
formula, ♢ϕ, with a fresh witnessing nominal i by producing an accessibility formula, ♢i,
and a satisfaction statement, @iϕ, saying that ϕ holds at the reachable world denoted by i.

▶ Remark 3. In the internalized system, cf. Figure 1a, we may work on a formula prefixed
by @i one moment and one prefixed by @k the next. The Seligman-style blocks give rise to a
more local proof style by delegating this perspective switch, e.g. from i to k, to the GoTo
rule that opens a new block with corresponding opening nominal.

The soundness proof for STA follows existing work [4, 14] (cf. the formalization).
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Figure 2 Our Seligman-style tableau system STA.

3.2 Restrictions for Termination
Besides the side conditions, we need to impose the following four restrictions on the system
to ensure that we eventually run out of applicable rules (inspired by Blackburn et al. [4]):

S1 The output of a non-GoTo rule must include a formula new to the current block type.
S2 The (♢) rule can only be applied to input ♢ϕ on an a-block if ♢ϕ is not already witnessed

at a by formulas ♢i and @iϕ for some witnessing nominal i.
S3 We associate potential, a natural number n, with each line in the tableau. GoTo must

decrement the number, the other rules increment it and we may start from any amount.
S4 We parameterize the proof system by a fixed set of nominals A and impose the following:

a. The nominal introduced by the (♢) rule is not in A.
b. For any nominal i, Nom only applies to a formula ϕ = i or ϕ = ♢i when i ∈ A.

Restrictions S1 and S2 prevent us from applying the same rule to the same input repeatedly.
We motivate restriction S3 by the following examples and restriction S4 in Section 3.3.

▶ Example 4. In Figure 3a we prove the validity of ¬@iϕ ∨ @iϕ by constructing a closing
tableau for its negation. We start from potential 0 in the fourth column. Notice how regular
rule applications build up potential that is then discharged to open a new block on line 5.

▶ Example 5. In Figure 3b we start from the unsatisfiable formula @i¬i and potential n.
Restriction S3 prevents infinite applications of GoTo and eventually forces us to make progress
(or we might get stuck if no rules apply).

▶ Remark 6. The choice of a fresh opening nominal for the root block ensures that we do not
close the branch because of an interplay between the formula itself and the opening nominal
(imagine starting from ¬i on a block with opening nominal i).

Given restrictions S3 and S4 we say that a branch has a closing tableau with respect to a
set of allowed nominals A and potential n. We also introduce the following shorthand:

▶ Definition 7 (Allowed ϕ). A formula ϕ is allowed by A if it meets condition S4b.
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0. a

1. ¬(¬@iϕ ∨ @iϕ) [0]
2. ¬¬@iϕ (¬∨) 1 [1]
3. ¬@iϕ (¬∨) 1 [1]
4. @iϕ (¬¬) 2 [2]
5. i GoTo [1]
6. ¬ϕ (¬@) 3 [2]
7. ϕ (@) 4 [3]

×
(a) Building up potential.

0. a

1. @i¬i [n]
2. i GoTo [n− 1]
3. i GoTo [n− 2]
...

...
...

...
n+ 1. i GoTo [0]
n+ 2. ¬i (@) 1 [1]

×
(b) Running out of potential.

Figure 3 Two examples of potential.

3.3 Nominal Asymmetry
See Blackburn et al. [4] for why a restriction like S4 is needed. They conclude:

We . . . have to enforce some control on the “direction” we allow the copying of
formulas, so that we can establish a decreasing length argument. It is OK to copy a
formula true at a nominal i to a nominal j if j generated i, but not if i generated j [4].

Essentially, we need to ensure that blocks of generated nominals contain strictly smaller
formulas, so that any chain of them eventually terminates. It is the (♢) rule that generates a
fresh nominal i by producing the formulas ♢i and @iϕ. Only GoTo can decompose either
formula into the raw nominal i. Our restriction S4a ensures i /∈ A so by S4b, nominal i
cannot be copied to another block. Thus, unlike root nominals, the nominals generated by (♢)
can only appear raw as opening nominals. Since Nom requires the opening nominal of the
current block to appear on its own, formulas can only be copied to blocks with (♢)-generated
opening nominals, not from them. This matches the quote. It also shows how generated
nominals are treated differently, causing a “nominal asymmetry.”

We revisit termination in Section 6. For now, note that the fixed set A frees us from
formalizing the growing set of nominals generated by (♢). The reader may imagine the set A
to contain all root nominals, as it will in Section 5, such that these can be copied freely.

4 Properties

We briefly remark on some properties of STA that are useful for the completeness proof. We
start by noting that while restriction S3 allows us to start from any amount of potential, a
single unit is always sufficient to close a branch. Then we lift the S1 and S2 restrictions by
showing that unrestricted versions of the proof rules are admissible. This makes it simpler to
show further properties of the system, since we do not have to worry about the restrictions
any longer. Finally we show a structural property.

4.1 Sufficient Potential
That a single unit is sufficient is not surprising: simply never make a detour (i.e. two
applications of GoTo in a row) and the other rule applications will build up the potential
as needed. Similarly, given an existing tableau, construct a more “efficient” counterpart by
collapsing sequences of GoTo so only the last one remains. GoTo serves no other purpose
than starting a new block so any subsequent rule applications only depend on the final GoTo.
The single starting unit may, however, be needed for an initial application of the rule.
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▶ Lemma 8 (A single unit of potential). If branch Θ closes with respect to A and potential n
then Θ closes with respect to A and potential 1.

Proof. By induction on the closing tableau for Θ (see the formalization for details). ◀

4.2 Strengthening
▶ Lemma 9 (Strengthening). Let Θ be a branch and ∆ a set of occurrences of ϕ on i-blocks
in Θ. Assume that at least one “lasting occurrence” of ϕ at i is not in ∆. If Θ closes wrt. A
and potential n then so does Θ with all occurrences in ∆ removed.

Proof. By induction on the construction of the closing tableau for Θ. When an occurrence
in ∆ is used as rule input, use the lasting occurrence of ϕ instead to construct the tableau
for the strengthened branch. No rule applications are invalidated, so the new branch closes
under the same amount of potential. Similarly, we only apply rules that were applicable
before, so restriction S2 cannot be violated. See the formalization for exact details. ◀

In the formalization we represent the set of occurrences as a set of indices into the branch.
We state the lemma over such a set to make it work with the induction principle given by
Isabelle/HOL. To lift restriction S1, fix the set of occurrences to contain only the rule output,
which must occur elsewhere since S1 is violated, and apply the lemma to justify it.

4.3 Substitution
Next we show a substitution lemma. Note that substitution across a tableau can collapse
formulas such that an occurrence suddenly violates restriction S1 and cannot be justified as
before the substitution. This is why Lemma 9 is useful. But it also means that our substitution
lemma will quantify existentially over the potential needed to close the transformed branch:
we may need to start from more potential to account for the fewer rule applications. Another
complication is that restriction S2 may suddenly be violated by this collapsing but, as we
have also shown previously [14], collapsing witnessing nominals allows us to lift S2.

▶ Definition 10 (Θσ). Given a substitution σ, i.e. a mapping from nominals to nominals,
and a branch Θ, Θσ denotes the branch obtained by replacing every nominal i in Θ by σ(i).

Substitutions are allowed to change the type of nominals, e.g. from numbers to strings,
so in the following lemma we need to ensure that it leaves enough fresh nominals available.

▶ Lemma 11 (Substitution). Let Θ be a branch, A be a finite set of allowed nominals and σ
a substitution whose co-domain is at least as large as its domain. If Θ closes with respect to
A then Θσ closes with respect to the image of A under σ.

Proof. By induction on the construction of the closing tableau for an arbitrary σ.
In the (♢) case, let i be the generated witnessing nominal. After the (collapsing)

substitution, the rule input may become witnessed by some nominal σ(j), violating S2. In
this case, utilize that we can pick σ in the induction hypothesis such that it maps i to σ(j).
By the side condition on (♢), the image of A under the updated σ is the same, but now
Lemma 9 justifies the rule output. The rest of the branch is unaffected since i is fresh.

If S2 is not violated, it may still be that σ(i) is no longer fresh like i was before the
substitution. Therefore, use the finiteness of both the branch and A, and the size of the
co-domain of σ, to obtain a fresh nominal k. Apply the induction hypothesis at σ mapping i
to k. This guarantees that the (♢) rule applies to justify the rule output. ◀
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To lift S2, collapse the involved witnessing nominals in the same way as in the proof of
Lemma 11 and apply Lemma 9. The finiteness assumption on A is stronger than we need,
but we forgo generalization since we work with finite sets in Section 5 anyway.

4.4 Branch Structure

The following lemma shows that we can add, contract and rearrange blocks on a branch
without affecting the existence of a closing tableau. Such operations may violate both S1
and S2, but we have lifted these restrictions already, so we do not need to worry about them.

▶ Lemma 12 (Adding, contracting and rearranging blocks). Let Θ be a branch consisting of
the set of blocks {B1, . . . , Bn} and let Θ′ be a branch whose blocks are a finite superset of
{B1, . . . , Bn}. If Θ closes wrt. finite A then so does Θ′.

Proof. By induction on the construction of the closing tableau for arbitrary Θ′. In each case
we apply the induction hypothesis at Θ′ extended by B, where B is the current block of the
original branch. This makes the opening nominals agree on the two branches, so that the
original rule applies to the new branch as well. After applying this rule, we justify the B
block by Lemma 9 and the GoTo rule. Lemma 11 resolves (♢) cases where the fresh nominal
is not fresh on the new branch since we can substitute it with another fresh nominal. ◀

5 Completeness

Our completeness proof is a synthesis of two approaches, both based on showing completeness
via contradiction by constructing a model for formulas on open, exhausted branches.

Bolander and Blackburn reason about the shape of such branches directly from the proof
rules in their terminating, internalized calculus [9]. Jørgensen et al., on the other hand, define
Hintikka sets of blocks as an abstraction of their open, exhausted branches and show model
existence for formulas in such sets. They show that any set of blocks without a closing tableau
can be extended to a maximal consistent set of blocks and that these are Hintikka sets [21].
Their model construction, however, assumes that all nominals are treated uniformly, which
our termination restrictions prevent (cf. Section 3.3). We define Hintikka sets of blocks that
characterize open branches exhausted with respect to a set of allowed nominals A. We then
abstract the model existence result by Bolander and Blackburn, which is compatible with
such branches, and apply it to our Hintikka sets. In Section 5.4 we contrast our approach
with the existing work but the proof itself is self-contained.

5.1 Hintikka Sets

Figure 4 shows our definition of Hintikka sets of blocks. We reuse the “at” notation
from Definition 1 and suppress “in H” for brevity. Our goal is to show a model existence
result for formulas on blocks in such sets. ProP and NomP ensure consistency at the bottom
by forbidding certain contradictions. The remaining requirements match the proof rules. The
ones up to Nom ensure downwards saturation such that the satisfiability of a complex formula
is guaranteed by conditions on its subformulas [21]. The novel condition Nom ensures lateral
saturation of allowed formulas across blocks whose opening nominals denote the same world.
This allows us to treat such blocks uniformly when it comes to allowed formulas.

▶ Remark 13. Nom replaces three requirements by Jørgensen et al. [21, (iv, v, vii)] that
serve the same purpose for a smaller range of formulas.
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ProP If nominal b occurs at a and prop. symbol p occurs at b then ¬p does not occur at a.
NomP If nominal i occurs at a then ¬i does not occur at a.
NegN If ¬¬ϕ occurs at a then ϕ occurs at a.
DisP If ϕ ∨ ψ occurs at a then either ϕ or ψ occurs at a.
DisN If ¬(ϕ ∨ ψ) occurs at a then both ¬ϕ and ¬ψ occur at a.
DiaP If ♢ϕ occurs at a and ϕ is not a nominal then for some i, ♢i and @iϕ occur at a.
DiaN If ¬♢ϕ and ♢i both occur at a then ¬@iϕ occurs at a.
SatP If @aϕ occurs at b then ϕ occurs at a.
SatP If ¬@aϕ occurs at b then ¬ϕ occurs at a.
GoTo If ϕ occurs at a and i is a nominal in ϕ then some block in H has opening nominal i.
Nom If ϕ and nominal a both occur at b and ϕ is allowed by A then ϕ occurs at a.

Figure 4 Eleven requirements for a set of blocks H to be a Hintikka set with respect to A.

5.1.1 Equivalence
Assume for the rest of the section that H is a Hintikka set with respect to the set of allowed
nominals A. We define an equivalence between nominals:

▶ Definition 14 (Equivalence). Nominals i, j are equivalent, i ∼H j, if j occurs at i in H.

▶ Note 15 (∼ and ϕ at i). In the following we typically suppress the subscript in ∼H and
likewise the fragment “in H” in sentences like “ϕ occurs at i in H”.

The equivalence i ∼ j only implies j ∼ i if i ∈ A as otherwise Nom does not apply: only
allowed nominals are symmetric. This motivates the restriction on the following lemma:

▶ Lemma 16 (Equivalence relation). ∼H is an equivalence relation on the set of allowed
opening nominals in H.

Proof. Reflexivity: i ∼H i for any opening nominal i in H since opening nominals occur on
their own block. Symmetry: Assume i ∼H j with i ∈ A. That is, j occurs at i in H so by
Nom, i occurs at j in H: j ∼H i. Transitivity: Assume i ∼H j and j ∼H k with i, k ∈ A.
By symmetry, i occurs at j in H: j ∼H i. Moreover, k ∈ A occurs at j in H so by Nom, k
occurs at i in H: i ∼H k. ◀

▶ Note 17. Due to the GoTo Hintikka restriction, any nominal occurring in H also occurs as
opening nominal, so ∼H is an equivalence relation on the allowed nominals in H.

5.1.2 Model Construction
Let |i|∼H denote the set of nominals equivalent to i with respect to H.

We make use of the following shorthand in our model construction:

▶ Definition 18 (ϕ at a∗). We say that ϕ occurs at a set of nominals a∗ = {a0, a1, . . .} if it
occurs at some nominal ak ∈ a∗ and that ϕ occurs at all a∗ if it occurs at all nominals in a∗.

We can now define the model induced by Hintikka set H and allowed nominals A:

▶ Definition 19 (The model MH,A and assignment gH,A induced by H and A).
Worlds The worlds of MH,A are sets of equivalent nominals, written a∗, from H.
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Assignment The assignment gH,A maps a nominal to the equivalence class of an equivalent,
allowed nominal or a singleton set if no such nominal exists:

gH,A(a) =
{

|b|∼H ∃b ∈ A. a ∼H b

{a} otherwise

Reachability From world a∗ we can reach a world exactly if it is denoted by some nominal b
that is reachable at a∗ (as witnessed by ♢b occurring at a∗):

RH,A(a∗) = {gH,A(b) | ∃a ∈ a∗. ♢b occurs at a in H}

Valuation Propositional symbol p holds at world a∗ exactly if p occurs at a∗ in H:

VH,A(a∗)(p) = ∃a ∈ a∗. p occurs at a in H

5.1.3 Properties of the Model
Consider first a property of the assignment:

▶ Lemma 20 (Non-empty assignment). The induced assignment gH,A is always non-empty.

Proof. Fix an arbitrary nominal a. If gH,A(a) = {a} the thesis holds immediately. So assume
there is some b ∈ A such that a ∼H b and gH,A(a) = |b|. b ∈ |b| witnesses the thesis. ◀

The following lemma showcases the lateral saturation guaranteed by the Nom condition:

▶ Lemma 21 (Assignment closure). If ϕ is allowed by A and ϕ occurs at a in H then ϕ

occurs at all gH,A(a) in H (and at least one such world exists).

Proof. If gH,A(a) = {a} the thesis holds immediately. So assume there is some b ∈ A where
b occurs at a in H and gH,A(a) = |b|. Then by Hintikka requirement Nom, ϕ occurs not only
at b in H but at all a ∈ |b| in H, proving the thesis. Lemma 20 gives the parenthetical. ◀

5.1.4 Model Existence
We can now prove model existence:

▶ Lemma 22 (Model existence). Let H be a Hintikka set with respect to allowed nominals A.
We show two statements by mutual induction:

If ϕ occurs at i in H and ϕ is allowed by A then MH,A, gH,A, gH,A(i) |= ϕ.
If ¬ϕ occurs at i in H and ϕ is allowed by A then MH,A, gH,A, gH,A(i) ̸|= ϕ.

Proof. By induction on the structure of ϕ for an arbitrary nominal i. The proof follows the
one by Bolander and Blackburn [9]. We suppress subscripts for readability.

If p at i then p at g(i) by Lemma 21, which matches the valuation, so M, g, g(i) |= p.
If ¬p at i then ¬p at all g(i) so by ProP, p does not occur at g(i), so M, g, g(i) ̸|= p.
If a at i then from the assumption a ∈ A we have g(i) = |a| and g(a) = |a| and thereby

g(i) = g(a) so M, g, g(i) |= a.
If ¬a at i then ¬a at g(i) by Lemma 21. Moreover, a ∈ A by assumption so from

Lemma 21 we have that a occurs at all g(a). We thus have ¬a at g(i) but a at all g(a) so by
NomN, g(i) ̸= g(a) and therefore M, g, g(i) ̸|= a.

If ¬ϕ at i then M, g, g(i) ̸|= ϕ by the induction hypothesis so M, g, g(i) |= ¬ϕ.
If ¬¬ϕ at i then ϕ at i by NegN and M, g, g(i) ̸|= ¬ϕ by the induction hypothesis.
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The cases for ϕ ∨ ψ, ¬(ϕ ∨ ψ), @jϕ and ¬@jϕ at i all follow similarly to ¬ϕ and ¬¬ϕ.
If ♢j at i then j ∈ A by assumption. Thus ♢j at g(i) so g(i)Rg(j) and M, g, g(i) |= ♢j.
If ♢ϕ at i where ϕ is not a nominal then by DiaP (and Lemma 21) there is some witnessing

nominal k such that ♢k and @kϕ both appear at g(i). By SatP, ϕ then occurs at k and by
the induction hypothesis at k we have M, g, g(k) |= ϕ. From ♢k at g(i) we have g(i)Rg(k)
so combined we get M, g, g(i) |= ♢ϕ.

If ¬♢ϕ at i then ¬♢ϕ at g(i) by Lemma 21. We need to show that all worlds reachable
from g(i) falsify ϕ. So assume for some arbitrary j that ♢j occurs at some a ∈ g(i). By
Nom, we also have ¬♢ϕ at a so by DiaN we get ¬@jϕ at a and finally by SatN we have ¬ϕ
at j. The induction hypothesis at j then tells us that M, g, g(j) ̸|= ϕ as needed. Since j was
chosen arbitrarily, M, g, g(i) ̸|= ♢ϕ.

Each appeal to the induction hypothesis requires showing that the subformula is allowed
by A but since it is a subformula this holds trivially. ◀

5.2 Maximal Consistent Sets
Our next task is to follow the classical synthetic recipe: extend a consistent set of blocks to
be maximally consistent, show that such sets fulfill all Hintikka requirements and thus that
formulas in them are satisfiable. Consistency and maximality are standard but wrt. A:

▶ Definition 23 (Consistency). The set of blocks S is consistent wrt. A if there is no finite
subset S′ ⊆ S such that S′ has a closing tableau wrt. A and any amount of potential.

▶ Definition 24 (Maximality). The set of blocks S is maximal wrt. A if it is consistent wrt. A
and for any block B /∈ S the set S ∪ {B} is inconsistent wrt. A.

Besides maximally consistent, our constructed set will also be ♢-saturated [21]:

▶ Definition 25 (♢-Saturation). The set of blocks S is ♢-saturated if for any ϕ at any a in S,
where ϕ is not a nominal, there is a nominal i such that @ip and ♢i both occur at a in S.

We now construct our ♢-saturated maximally consistent set and show it is a Hintikka set:

▶ Definition 26 (Lindenbaum-Henkin construction). Assume an enumeration of all blocks
B0, B1, B2 . . . in the language. From a consistent set S0 we build an infinite sequence of
consistent sets S0, S1, S2, . . . in the following way. Given Sn, construct Sn+1 like so:

Sn+1 =
{
Sn if Sn ∪ {Bn} is inconsistent wrt. A
Sn ∪ {Bn} ∪ {B′} otherwise, where B′ is a ♢-witness for Bn

A ♢-witness for a block B is a block with the same opening nominal that witnesses all
♢ϕ-formulas in B using fresh and disallowed nominals (when ϕ is not a nominal).

▶ Lemma 27 (Lindenbaum-Henkin). Let S0 be a consistent set of blocks with respect to finite
A and over a finite set of nominals. Then

⋃
Sn as given by Definition 26 is a ♢-saturated

maximally consistent set.

Proof. The three-part proof follows the one by Jørgensen et al. [21].

Consistency. Proof by contradiction. Assume
⋃
Sn is inconsistent. Then some finite subset

S′ ⊆
⋃
Sn has a closing tableau. But the sequence S0, S1, S2, . . . grows with respect to ⊆

so there must be an m such that S′ ⊆ Sm. And since S0 is consistent, it follows by
induction on m that Sm is too (each ♢-witness preserves consistency due to the (♢) rule).
This contradicts the existence of an inconsistent, finite subset S′.
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Maximality. Proof by contradiction. Assume that there is some block Bm /∈
⋃
Sn such that⋃

Sn ∪ {Bm} is still consistent. This block is part of the enumeration of blocks, but
was not added to Sm+1. This can only be because Sm ∪ {Bm} is inconsistent. However,
Sm ∪ {Bm} ⊆

⋃
Sn ∪ {Bm} contradicting the consistency of the right-hand side.

♢-Saturation. Follows directly from the addition of ♢-witnesses. ◀

▶ Lemma 28 (Smullyan-Fitting block lemma). Assume S is a ♢-saturated maximal consistent
set of blocks wrt. a finite set A and a finite set of nominals. Then S is a Hintikka set.

Proof. The proof follows the one by Jørgensen et al. [21] but we have fewer cases since we
have fewer Hintikka requirements. The cases are straight-forward so we only exemplify three,
with the last being the typical one. The remaining cases can be found in the formalization.

Case ProP. Proof of negation. Assume that b occurs at a, p occurs at b and ¬p occurs at a
in S for some a, b, p. The set S is assumed to be consistent but we can construct a closing
tableau from these blocks by applying the Nom rule to get ¬p at b and immediately close
due to the existing p at b.

Case DiaP. Follows directly from ♢-saturation.
Case Nom. Assume that both ϕ and a occur at b in S and that ϕ is allowed by A. Assume

towards a contradiction that ϕ does not occur at a in S. Then by the maximality of S,
we can find an inconsistent finite subset S′ ∪ {([ϕ], a)} ⊆ S ∪ {([ϕ], a)} where ([ϕ], a) is
an a-block that only contains ϕ. If a closing tableau exists for S′ ∪ {([ϕ], a)} then it also
exists for the larger set S′ ∪ {([ϕ], a)} ∪ {([ϕ, a], b)} (Lemma 12). But now the Nom rule
tells us that ϕ at a is redundant, so just S′ ∪ {([], a)} ∪ {([ϕ, a], b)} is inconsistent. The
GoTo rule gets us to S′ ∪ {([ϕ, a], b)} and this set is trivially a subset of S, contradicting
its consistency. ◀

5.3 Tying It All Together

Completeness follows by constructing a model for any formula whose tableau does not close.

▶ Theorem 29 (Completeness). Assume that ϕ is a valid formula and a is some nominal.
Let A be the set containing all nominals in ϕ. Then the branch consisting solely of ¬ϕ on an
a-block has a closing tableau with respect to A and 1 unit of potential.

Proof. Assume towards a contradiction that the branch does not close. Then the set
S0 = {([¬ϕ], a)} is consistent with respect to A. We construct

⋃
Sn, which by Lemma 27 is

a ♢-saturated maximal consistent set of blocks, so by Lemma 28
⋃
Sn is a Hintikka set.

Since ¬ϕ occurs at a in
⋃
Sn, we obtain from Lemma 22 a model that does not satisfy ϕ,

namely MH,A, gH,A, gH,A(a) ̸|= ϕ. This contradicts our validity assumption, so the branch
must close. By Lemma 8 it must close from a single unit of potential. ◀

5.4 Relation to Existing Work

In this section we provide context for our induced model, Definition 19, and the corresponding
Lemma 22. Readers less familiar with tableau systems for hybrid logic may skip this section.
To refresh, Bolander and Blackburn give an analytic proof for a terminating, internalized
calculus [9] and Jørgensen et al. give a synthetic proof for the non-terminating system ST [21].
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5.4.1 Worlds

Jørgensen et al. have no restrictions on their Nom rule so they have no nominal asymmetry
(cf. Section 3.3) and ∼H is an equivalence relation on all nominals. They use representatives
of such equivalence classes as their worlds [21]. Since ∼H is only an equivalence relation on
a subset of our nominals, we cannot use equivalence classes directly. Instead we use sets of
equivalent nominals. Bolander and Blackburn use plain nominals as their worlds.

5.4.2 Assignment

Jørgensen et al. map each nominal i in H to its equivalence class |i|∼H [21]. If we artificially
fix A to contain all nominals in H then ∼H becomes an equivalence relation on all nominals.
Our assignment then reduces to its first clause and becomes equivalent to theirs.

Bolander and Blackburn map each nominal a to its “urfather” u(a): either an equivalent
“right nominal” or the nominal itself if no such nominal exists [9]. This is very similar to
our assignment that maps each nominal to the equivalence class of an equivalent allowed
nominal or the singleton set if no such nominal exists.

A right nominal, understood in terms of our setting, is a non-opening nominal that
occurs on its own. Since there may be multiple equivalent right nominals, Bolander and
Blackburn impose an ordering on them and always choose the smallest one to ensure that their
assignment is well-defined [9]. Working with sets of nominals frees us from such concerns.

5.4.3 Reachability and the Bridge Rule

It is worthwhile to compare the three different reachability relations from the considered
systems. By writing them in similar notation we get:

Jørgensen et al. |i|RH |j| iff ♢j occurs at i in H

Bolander and Blackburn i RH u(j) iff ♢j occurs at i in H

The present paper i∗ RH gH,A(j) iff ♢j occurs at i∗ in H

If we further note that g(j) = |j| for Jørgensen et al. [21] and g(j) = u(j) for Bolander and
Blackburn [9] we see that the relations are all defined in the same way over the assignment:
a world is reachable iff it is denoted by a nominal j such that ♢j occurs at the current world.
Only the treatment of the worlds differ. Since Jørgensen et al. use representatives of their
sets they need the following Hintikka requirement to ensure well-definedness:

If there is an i-block in H with ♢j on it, and a j-block in H with k on it, then there
is an i-block in H with ♢k on it [21, (vi)].

To see why, imagine that the premises hold but the conclusion does not. Then |i|RH |j|
and j ∼H k but not |i|RH |k| even though |j| = |k| by the second premise, so the choice of
representative matters when it should not. In our setting we side-step the problem completely
by having no representatives but quantifying existentially over the nominals in our worlds.

If we view the requirement as a rule, we get the known Bridge rule that produces ♢k at i
given ♢j at i and nominal k at j. Jørgensen et al. prove the admissibility of Bridge as part
of their completeness proof [21]. We include this result in the formalization (when j ∈ A)
because it is interesting in its own right [4] but do not need it for completeness.
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5.4.4 Valuation
Our valuation is standard but our use of sets instead of representatives slightly complicates
the ProP Hintikka requirement, where we take equivalence of nominals into account. For
Jørgensen et al. the following suffices: “if there is an i-block in H with atomic formula a on
it then there is no i-block in H with ¬a on it.” [21].

5.4.5 Model Existence
We turn now to the model existence result, Lemma 22, inspired by Blackburn and Bolander [9].

The two nominal cases and the ♢j case rely on the involved nominals being in A. Bolander
and Blackburn work with right nominals instead of allowed nominals [9]. This gives them
the positive nominal case for free, since the formula in that case is a right nominal. In the
negative nominal case, however, they need to rely on a special (¬) rule that upgrades a
negated nominal, “@i¬a”, to a right nominal “@aa”. They need this rule because of the
nature of internalized tableau systems: the nominal i in a satisfaction statement @ia has
lower status than the right nominal a. The status of nominals in our system is not defined
structurally but by the set A. Thus, we make the (¬) rule unnecessary by picking A carefully.

Finally, Bolander and Blackburn assume that the formula in question is not a ♢j formula
produced by the (♢) rule. Our assumption j ∈ A matches this, since the (♢) rule cannot
generate an allowed nominal, but we are free from keeping track of actual rule applications.

6 Relation to ST*

Here, we relate our restrictions S1-S4 to the restrictions R1-R5 and Nom* rule in ST* [4].

6.1 System ST*

For reasons of space we introduce ST* only briefly. To obtain ST*, take the rules in Figure 2,
add another rule called Name that introduces a fresh nominal to the branch and impose
restrictions R1-R5 and Nom* that we explain in the following. Since the rules of STA are a
subset of ST*, it is meaningful to compare the strength of our restrictions to those of ST*.

Blackburn et al. [4] need the Name rule since they allow the very first block to have no
opening nominal. We have dispensed with this flexibility to obtain a simpler formalization.

6.2 Restrictions R1-R5
Restriction R1 states that “a formula is never added to an i-block if it already occurs in an
i-block on the same branch” [4]. This formulation is more ambiguous than our S1, which
states when a rule is applicable. Any rule application outlawed by R1 is also outlawed by S1:

▶ Lemma 30 (R1 implies S1). If R1 outlaws a rule application then so does S1.

Proof. R1 outlaws the rule application so it must include no formulas new to the block type.
Therefore, S1 outlaws it too. ◀

Restriction R2 states that “the (♢) rule can not be applied twice to the same formula
occurrence” [4]. Note that formalizing this would require keeping track of (♢) rule applications.
This is why S2 is formulated in terms of branch content instead. It is at least as strict as R2:

▶ Lemma 31 (R2 implies S2). If R2 outlaws an application of (♢) then so does S2.
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Proof. Assume that an application of the rule (♢) to formula ♢ϕ at a is outlawed by R2.
This means that (♢) has already been applied to ♢ϕ at a. So for some nominal i there must
be formulas @iϕ and ♢i witnessing ♢ϕ at a. Thus the application is also outlawed by S2. ◀

Restriction R3 applies to the omitted name rule so we have no equivalent of it [4].
Restriction R4 states that “the GoTo rule can not be applied twice in a row” [4]. Our

counterpart is S3 that does allow repeated applications but still prevents repeating the rule
ad infinitum (cf. Figure 3b). We see in Section 6.5 why this extra flexibility is desirable. For
now recall the idea from Section 4.1 that any tableau with repeated applications of GoTo
can be translated into one where just the final application remains. We have the following:

▶ Lemma 32 (From S3 to R4). A tableau satisfying S3 collapses into one that satisfies R4
where only finite sequences of GoTo are removed and all non-GoTo applications are preserved.

Proof. By collapsing all sequences of GoTo applications into the last one (cf. Lemma 8). All
such sequences are finite due to decreasing potential so “the last one” is well-defined. ◀

Finally, restriction R5 can be ignored here: it restricts the more liberal variants of rules
(@) and (¬@) in system ST to the versions present in ST* and STA [4].

6.3 Nom* and Allowed Nominals
We turn now to the Nom* rule in ST* and its relationship to our set of allowed nominals A in
restriction S4. We first need the following by Blackburn et al. [4]: “A quasi-root subformula
is a formula of the form ϕ, ¬ϕ, @iϕ or ¬@iϕ where ϕ is a subformula of the root.”

Their Nom* rule is then defined as follows:

Suppose i and j are nominals, ϕ is a quasi-root subformula and j ̸= i, ϕ. If j and ϕ

both occur in i-blocks on a branch Θ, then ϕ can be added to any j-block on Θ [4].

By inspecting the rules of ST* and STA we see that only the (♢) rule can produce
formulas that are not quasi-root subformulas [4]. As such, the only formulas that Nom* does
not allow us to copy are formulas i and ♢i where i was introduced by (♢). This is exactly
what restriction S4 enforces on our Nom rule (cf. Section 3.3). So S4 is at least as strict:

▶ Lemma 33 (Nom implies Nom*). Suppose that ϕ and a both occur at b in a tableau
constructed under the allowed set of nominals A. If Nom can add ϕ to a then so can Nom*.

Proof. If ϕ can be added by Nom it must be allowed by A. Thus ϕ must be a quasi-root
subformula. Moreover, since adding ϕ to a does not violate S1 (or R1), a ≠ ϕ and likewise
a ̸= b. Ultimately, Nom* can also add ϕ to a. ◀

6.4 Termination
We have covered all differences between ST* and STA and seen how the restrictions compare.
This motivates the following unformalized theorem and proof sketch:

▶ Theorem 34 (STA is terminating). Any STA tableau is finite.

Proof. Lemmas 30–33 imply that we can translate any STA tableau into an ST* tableau of
similar size by collapsing repeated applications of GoTo (and adding an initial application of
the Name rule). Since all ST* tableaux are finite [4] so must any STA tableau be. ◀

Blackburn et al. [4] exemplify a number of infinite branches possible in system ST and
show that they are illegal in system ST*. In support of the above theorem, we note that the
sequences of rule applications leading to those infinite branches are also outlawed in STA.



A. H. From 5:15

a

ϕ

a′ GoTo
ϕ′ R
i GoTo
ψ

(a) Possible segment on original closing tableau.

a

ϕ

a GoTo
ϕ R
σ(i) GoTo
ψσ

(b) R becomes invalid causing two GoTos in a row.

Figure 5 Unjustified GoTo after applying substitution σ that unifies a and a′ as well as ϕ and ϕ′.

6.5 Restricting the GoTo Rule
We should motivate our choice of S3 over R4. As Section 4 shows, we typically show lemmas of
the form “if branch Θ has a closing tableau then so does f(Θ)”, where f is some operation like
substitution or restructuring. In a proof by induction on the closing tableau under restriction
R4 we need to show in each non-GoTo case that GoTo becomes applicable, since we need
that assumption to discharge the GoTo case. However, the transformation may invalidate a
previously valid rule application and prevent us from making this promise. Figure 5 depicts a
possible case when proving the substitution lemma. Before the substitution, the application
of rule R was legal, but afterwards it violates restriction R1. We can still justify the extension
ϕ with the Strengthening Lemma 9 but doing so does not make GoTo applicable afterwards.

We might give a more intricate transformation that also prunes detours but that would
complicate an otherwise simple idea like substitution. We could also state the lemma in
weaker terms that allow for a different branch structure, but we prefer to give straight-forward
lemmas and transformations. Our S3 restriction resolves the issue by dealing with detours
separately. Consider Figure 5 from the perspective of potential: we need to start from more
potential to close the transformed branch since we lose a rule application, but we can simply
do this, so the detour becomes benign. Thus, we can give the transformation we want, we
just need to existentially quantify the potential required to close the resulting branch.

7 Formalization

In general, the formalization consists of close to 5000 lines in the intelligible semi-automated
reasoning language Isar [27] and follows the structure of the paper. It is accepted into the
Archive of Formal Proofs and thus kept up to date with new versions of Isabelle/HOL.

We formalize the logic as a deep embedding into higher-order logic by specifying the syntax
as a datatype and the semantics as a predicate on that datatype (alongside a model and an
assignment). Types in higher-order logic are non-empty so we represent the set of worlds as
a type variable ’w. Similarly, we use ’a for the universe of propositional symbols and ’b for
the universe of nominals. We formalize a block as a list of formulas paired with its opening
nominal and a branch as a list of blocks, where lists in Isabelle/HOL are finite, ordered
sequences. We use the inductive command to specify the proof system as ten inductive
cases. The command provides a predicate ⊢ for whether or not a given branch closes with
respect to a set A and potential n. Thus, we abstract away the concrete shape of a closing
tableau and reason only about its existence. This suffices for formalizing completeness but
not termination where we would need to inspect well-formed but infinite branches. However,
it permits induction over the proof rules instead of the trickier coinduction.

Imagine that we formalized ST* instead of STA. Section 6.5 motivated our choice of S3
over R4. Restriction R2 on the (♢) rule would require us to additionally index our predicate ⊢
by a list of indices, each pointing to a formula occurrence that (♢) cannot be applied to. When
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proving lemmas by induction, we would need to make suitable assumptions about this list.
Instead, our formulation S2 identifies the applicability of (♢) from the branch content itself,
which we already know. The Nom* rule considers quasi-root subformulas and would require
us to remember the root segment of the tableau as we extend it, complicating induction
proofs too. Our parameterization of the rules by the set A causes no such complications.

Imagine next that we adapted the completeness proof for ST* to STA. That proof works
by translation from a different system with an analytic completeness proof, which we would
have to formalize as well. This could be done: Blanchette, Popescu and Traytel [7, 8] have
formalized analytic completeness proofs for first-order logic in Isabelle/HOL. Instead, our
standalone synthetic completeness proof joins a family of such proofs in Isabelle/HOL [2, 15,
16]. While possible, a similar proof for ST* would, as described, be harder to formalize.

8 Conclusion and Future Work

We have presented a Seligman-style tableau system for hybrid logic with a formalization
in Isabelle/HOL of its soundness and completeness and argued that it is terminating. The
restrictions required for termination cause an asymmetry in branches that makes a previous
synthetic completeness proof for hybrid logic tableau systems inapplicable. We have presented
a novel proof that works in this case and described its relation to existing work. The use of
plain sets instead of representatives in the model construction relieves us of some concerns
about well-definedness. Our work is the first sound and complete formalized proof system
for hybrid logic and the first synthetic proof for a terminating hybrid logic tableau system.

Blackburn et al. showed termination of ST* by a translation of any branch into a
terminating system and we claim termination of STA by possible translation into ST*. We
are currently working on a direct, formalized termination proof for STA through a decreasing
measure argument in the style of Bolander and Blackburn [9]. This will allow code generation
for a verified decision procedure based on the tableau system. We also want to explore
extensions to the logic and investigate a Seligman-style system for intuitionistic hybrid logic.
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Abstract
The λΠ-calculus modulo theory is a logical framework in which various logics and type systems
can be encoded, thus helping the cross-verification and interoperability of proof systems based on
those logics and type systems. In this paper, we show how to encode predicate subtyping and proof
irrelevance, two important features of the PVS proof assistant. We prove that this encoding is
correct and that encoded proofs can be mechanically checked by Dedukti, a type checker for the
λΠ-calculus modulo theory using rewriting.
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1 Introduction

A substantial number of proof assistants can be used to develop formal proofs, but a proof
developed in an assistant cannot, in general, be used in another one. This impermeability
generates redundancy since theorems are likely to have one proof per proof assistant. It also
prevents adoption of formal methods by industry because of the lack of standards and the
difficulty to use adequately formal methods.

Logical frameworks are a part of the answer. Because of their expressiveness, different
logics and proof systems can be stated in a common language. The λΠ-calculus modulo
theory, or λΠ/≡, is such a logical framework. It is the simplest extension of simply typed
λ-calculus with dependent types and arbitrary computation rules. Fixed-length vectors
are a common example of dependent type, that can be represented in the λΠ-calculus as
∀n : N, Vec(n). The λΠ-calculus modulo theory already allows to formulate first order logic,
higher order logic [5] or proof systems based on Pure Type Systems [12] such as Matita [3],
Coq [10] or Agda [16].

PVS [28] is a proof assistant that has successfully been used in collaboration by academics
and industrials to formalise and specify real world systems [27]. More precisely, PVS is
an environment comprising a specification language, a type checker and a theorem prover.
One of the specificities of PVS is its ability to blend type checking with theorem proving
by requiring terms to validate arbitrary predicates in order to be attributed a certain type.
This ability is a consequence of predicate subtyping [30]. It facilitates the development of
specifications and provides a more expressive type system which allows to encode more
constraints. For instance, one can define the inverse function inv : R∗ → R, where R∗ is a
predicate subtype defined as reals which are not zero.
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6:2 Predicate Subtyping with Proof Irrelevance in λΠ/≡

If predicate subtyping provides a richer type system, it also makes type checking of
specifications undecidable. In [17], F. Gilbert paved the way of the expression of PVS into
λΠ/≡: he formalised the core of PVS and provided a language of certificates for PVS whose
type checking is decidable. However, the encoding in λΠ/≡ of this language of certificates
relies on proof irrelevance.

The following work proposes an encoding of proof irrelevant equivalences into the λΠ-
calculus modulo theory. It also inspects the completion of such equations into a confluent
rewrite system. The resulting rewrite system can be used to provide an encoding of PVS
into Dedukti, a type-checker for the λΠ-calculus modulo theory based on rewriting [4].

Related work

An encoding or “simulation” of predicate subtyping à la PVS into HOL can be found in [20].
The objective of that work was to get some facilities provided by predicate subtyping into
HOL rather than providing a language of certificates, and proof checking hence remains
undecidable. Moreover, predicate subtypes are not represented by types but by theorems.

In [32], predicate subtyping is weakened into a language named Russell to be then
converted into CIC. This conversion amounts to the insertion of coercions and unsolved
meta-variables, the latter embody PVS type correctness conditions (TCC). The equational
theory used in the CIC encoding is richer than ours since it includes surjective pairing
e = pair T U (fst T U e) (snd T U e) and η-equivalence f = λx, f x in addition to proof
irrelevance.

In [36], proof irrelevance is embedded into Luo’s ECC [25] and its dependent pairs. Pairs
and dependent pair types come in two flavours, the proof irrelevant one and the normal one.
The flavour is noted by an annotation, and proof irrelevance is implemented by a reduction
which applies only on annotated pairs. The article presents as well an application to pvs.

On a slightly more practical side, the automated first-order prover ACL2 [21] reproduces
the system of “guards” provided by predicate subtyping into its logic based on Common
Lisp with the concept of gold symbols. Approximately, a symbol is gold if all its TCC have
been solved.

Some theories – often based on Martin-Löf’s Type Theory – blend together a decidable
(called definitional or intensional) equality with an undecidable (said extensional) equality.
In [29], a judgement “A is provable” is introduced, to say that a proof of A exists, but no
attention is paid to what it is. Similarly, [1] introduces proof irrelevance in Martin-Löf’s
logical framework using a function to distinguish propositions A from “proof-irrelevant
propositions Prf(A)”. While A can be inhabited by several normal terms, Prf(A) is inhabited
by only one normal form noted ⋆, to which all terms of Prf(A) reduce. Still in Martin-Löf’s
type theory, [31] provides proof irrelevance for predicate subtyping (here called subset types)
for two different presentations, one is intensional, and the other extensional. The interested
reader may have a look at Nuprl [11], an implementation of Martin-Löf’s Type Theory with
extensional equality and subset types.

Proof irrelevance has also been added to LF to provide a new system LFI in [24], where
proof irrelevance is used in the context of refinement types. In LFI, proof irrelevance is not
limited to propositions, nor it is attached to a certain type: terms are irrelevant based on
the function they are applied to. A similar system is implemented in Agda [33].

More generally, concerning proof irrelevance in proof assistants, Coq and Agda [18]
each have a sort for proof irrelevant propositions (SProp for Coq and Prop for Agda [33]).
Lean [14] is by design proof irrelevant, and Matita supports proof irrelevance as well [2,
Section 9.3].
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Outline

Encoding predicate subtyping requires a clear definition of it, which is done in Section 2.
Predicate subtyping is encoded into λΠ/≡ using the signatures provided in Section 3. This
encoding is put in use into some examples as well. The encoding is proved correct in Section 4:
any well typed term of the source language can be encoded into λΠ/≡, and its type in λΠ/≡
is the encoding of its type in the source language. Finally, we show that a type checker for
the λΠ-calculus modulo rewriting can be used to type check terms that have been encoded
as described in Section 3.

2 PVS-Cert: A Minimal System With Predicate Subtyping

Because of its size, encoding the whole of PVS cannot be achieved in one step. Consequently,
F. Gilbert in his PhD [17] extracted, formalised and studied a subsystem of PVS which
captures the essence of predicate subtyping named PVS-Cert. Unlike PVS, PVS-Cert
contains proof terms, which has for consequence that type checking is decidable in PVS-Cert
while it is not in PVS. Hence PVS-Cert is a good candidate to be a logical system in which
PVS proofs and specifications can be encoded to be rechecked by external tools.

In this paper, we use an equational presentation of PVS-Cert, that is, we use equations
rather than reduction rules and slightly change the syntax of terms. We describe PVS-Cert,
as done in [17], namely the addition of predicate subtyping over simple type theory.

2.1 Type Systems Modulo Theory
To describe PVS-Cert and λΠ/≡ in a uniform way, we will use the notion of Type Systems
Modulo described in [8]. Type Systems Modulo are an extension of Pure Type Systems [7]
with symbols of fixed arity whose types are given by a typing signature Σ, and an arbitrary
conversion relation ≡ instead of just β-conversion ≡β .

The terms of such a system are characterised by a finite set of sorts S, a countably infinite
set of variables V and a signature Σ. The set of terms T (Σ,S,V) is inductively defined in
Figure 1.

M, N, T, U ::= s ∈ S | x ∈ V |M N | λx : T, M | (x : T )→ U | f(−→M)

with Σ(f) =
(−−→

x, T , U, s
)

Figure 1 Terms of the type system characterised by S, V and Σ.

The contexts are noted Γ ::= ∅ | Γ, v : T and the judgements Γ ⊢WF or Γ ⊢M : T . The
typing rules are given in Figure 2 and depend on

axioms A ⊆ S × S to type sorts;
product rules P ⊆ S × S × S to type dependent products;
a typing signature Σ which defines the function symbols and how to type their applications;
a convertibility relation ≡.

Notations. Rewriting relations are noted ↪→R, where R is a set of rewriting rules. ↪→R is the
closure of R by substitution and context. ≡R is the symmetric, reflexive and transitive closure
of ↪→R. The substitution of x by N in M is noted {x 7→ N}M . We use a vectorised notation
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empty
∅ ⊢WF

Γ ⊢ T : s
decl v ̸∈ Γ

Γ, v : T ⊢WF

Γ ⊢WF
var v : T ∈ Γ

Γ ⊢ v : T

Γ ⊢M : U Γ ⊢ T : s T ≡ U
conv

Γ ⊢M : T

Γ ⊢WF
sort (s1, s2) ∈ A

Γ ⊢ s1 : s2

Γ ⊢ T : s1 Γ, x : T ⊢ U : s2prod (s1, s2, s3) ∈ P
Γ ⊢ (x : T )→ U : s3

Γ ⊢ (x : T )→ U : s Γ, x : T ⊢M : U
abst

Γ ⊢ λx : T, M : (x : T )→ U

Γ ⊢M : (x : T )→ U Γ ⊢ N : T
app

Γ ⊢M N : {x 7→ N}U

−−−→
x : T ⊢ U : s

(
Γ ⊢ ti :

{
(xj 7→ tj)j<i

}
Ti

)
isig Σ(f) =

(−−→
x, T , U, s

)
Γ ⊢ f (⃗t) :

{−−−→
x 7→ t

}
U

Figure 2 Typing rules of a Type System Modulo.

for products (−−−→x : T ) → U to represent the dependent product (x1 : T1) → (x2 : T2) →
· · · (xn : Tn)→ U ; and more generally for any construction that can be extended to a finite
sequence, such as a parallel substitution

{−−−−→
x 7→ N

}
M . A mapping Σ(f) = (−−−→x : T , U, s)

can also be written −−−→x : T ⊢Σ f(x⃗) : U : s. For all relations on terms R and S, we write
RS = {(t, u) | ∃v, tRv∧vSu} the composition of R and S, and R∗ the reflexive and transitive
closure of R.

2.2 Simple Type Theory
PVS and PVS-Cert are both based on simple type theory, which can be represented by
the PTS λHOL [7]:
SλHOL = {Prop, Type, Kind},
AλHOL = {(Prop, Type), (Type, Kind)},
PλHOL = {(Prop, Prop, Prop), (Type, Type, Type), (Type, Prop, Prop)},
ΣλHOL = ∅,
≡λHOL is the reflexive, transitive and symmetric closure of the β-equation

((λx, M) N) = {x 7→ N}M (β)

2.3 Predicate Subtyping
Predicate subtyping has two main benefits for a specification language. The first is to
provide a richer type system thanks to the entanglement of type-checking and proof-checking.
In consequence, any property can by encoded in the type system, which allows to easily
create “guards” such as tail : nonempty_stack → stack where nonempty_stack is a
predicate subtype defined from a predicate empty?. It is also essential in the expression of
mathematics: the judgement M : T is akin to the statement M ∈ T in the usual language
of mathematics when T is a set defined by comprehension such as E = {n : N | P (n)}.
With predicate subtyping, we can represent the set E by the type (psubN P ), and the
judgement Γ ⊢ M : psubN P is derivable if term M contains a proof of P (n) for some
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n. The other benefit of predicate subtyping, which is essential in PVS developments, is
that it separates the process of writing specifications from the proving phase. In PVS,
this separation appears through type correctness conditions (TCC): the development of
specifications creates proof obligations that may be solved at any time. This separation is
also visible in usual mathematical developments, where if we want to prove that t ∈ E, we
prove once that P (t) is valid to then forget the proof and simply use t.

The type system of PVS-Cert can be seen as λHOL with a non empty signature ΣPVS

defined in Figure 3 and a richer equivalence ≡
pvs

that will be discussed in the next paragraph.

T : Type, p : T → Prop ⊢ psub T p : Type : Kind (1)
T : Type, p : T → Prop, m : T, h : p m ⊢ pair T p m h : psub T p : Type (2)
T : Type, p : T → Prop, m : psub T p ⊢ fst T p m : T : Type (3)
T : Type, p : T → Prop, m : psub T p ⊢ snd T p m : p (fst T p m) : Type (4)

Figure 3 Signature ΣPVS of PVS-Cert.

A predicate subtype (psub T U) is defined from a supertype T and predicate U which
binds a variable of type T to a proposition. Terms inhabiting a predicate subtype (psub T U)
are built with the pair construction (pair T U M N) where M is a term of the supertype T

and N is a proof of (U M). While the pair construction allows to coerce a term from any type
to a predicate subtype, the converse, that is the coercion from a type to its supertype is done
with fst, the left projection of the pair. The right projection, snd, provides a witness that the
left projection of the pair validates the predicate defining the subtype. Unlike PVS-Cert,
PVS does not use coercions pair, fst and snd. In PVS, subtyping is implicit: terms do not
have a unique type, and the choice of this type is left to the type checker.
▶ Remark 1. Unlike the original presentation of PVS-Cert in [17], this one annotates fst
and snd, using fst T p m instead of fst m to ease the well-definedness proof of the translation
of PVS-Cert terms (Proposition 4).

Equations and Proof Irrelevant Pairs

So far, no real difference has been evinced between PVS-Cert and dependent pairs: pre-
dicate subtype (psub T p) may be encoded as the dependent pair type Σx : T, p x [17,
Definition 4.2.3]. The difference lies in the equivalence relations and the fact that PVS-Cert
implements proof irrelevance in pairs.

The equivalence of PVS-Cert is noted ≡
pvs

and contains Equations (5), (6), and (β) which
provide proof irrelevance:

pair t u m h0 = pair t u m h1 (5)
fst t0 u0 (pair t1 u1 m h) = m (6)

We will now motivate the use of these equations in PVS-Cert. Proofs contained in
terms are essential for typing purposes. On the other hand, these proofs are a burden
regarding equivalence of terms. Were these proofs taken into account (as ≡β does), too
many terms would be distinguished. For example, consider two terms t = pairN Even 2 h

and t′ = pairN Even 2 h′ typed as even numbers. Then t and t′ are not considered equal
because they don’t have the same proof (h and h′) that 2 is even. We end up with one even
number 2 per proof that 2 is even.
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As stated in [13], most mathematicians seek convertibility of t and t′ and care more about
what h and h′ prove than the proofs themselves. To this end, PVS-Cert has proof irrelevant
pairs: proofs attached to terms are not taken into account when checking the equivalence of
two pairs. This property is embedded in the equivalence relation ≡

pvs
used in the conversion

rule of PVS-Cert which must verify Equation (5).
Equation (6) allows the projection to compute, but because of proof irrelevance, we

cannot allow the right projection to compute, otherwise, all terms of type Prop would be
considered equivalent.

A proof of T ≡β U or T ≡
pvs

U can use untyped intermediate terms, which can be
problematic when one wants to prove some property on typed terms only. In the case of ≡β ,
the problem is solved by using the fact that ↪→β is confluent, that is ≡β = ↪→∗

β←↩∗β . We now
prove a similar property for ≡

pvs
:

▶ Lemma 2 (Properties of the PVS-Cert conversion). Let ↪→βfst = ↪→β ∪ ↪→fst where ↪→fst
is the closure by substitution and context of Equation (6) oriented from left to right, and let
↔pi be the closure by substitution and context of Equation (5) and =pi=↔∗

pi.
For all relation on terms R, let Rty be the restriction of R to typable terms. Then:
≡
pvs
⊆ ↪→∗

βfst=pi←↩∗βfst

↪→βfst preserves typing: if Γ ⊢PVS M : T and M ↪→βfst M ′, then Γ ⊢PVS M ′ : T

≡
pvs

ty ⊆
(

↪→ty
βfst

)∗ (
↔ty

pi

)∗ (
←↩ty

βfst

)∗
,

Proof. A relation ↪→ is confluent modulo some relation E if ←↩∗↪→∗ ⊆ ↪→∗ E ←↩∗. If E = ∅,
we simply say that ↪→ is confluent.

First note that ↪→βfst is confluent since it can be seen as a Combinatory Reduction System
that is orthogonal (i.e. whose rules are left-linear and non-overlapping) [22].

We now prove that ↔pi steps can be postponed: ↔pi↪→βfst ⊆ ↪→=
βfst=pi, where ↪→=

βfst
is the reflexive closure of ↪→βfst. Assume that the ↔pi step is at position p and the
↪→βfst step is at position q. If p and q are disjoint, this is immediate. If p is above
q, we have pair T U M N1 ↔pi pair T U M N2 and either pair T U M N2 ↪→fst M or
pair T U M N2 ↪→βfst pair T ′ U ′ M ′ N ′

2. In the first case, pair T U M N1 ↪→fst M . In
the second case, pair T U M N1 ↪→=

βfst pair T ′ U ′ M ′ N1 ↔pi pair T ′ U ′ M ′ N ′
2. Finally,

if q is above p, we have (λx : T, M)N ↔pi (λx : T ′, M ′)N ′ ↪→βfst {x 7→ N ′}M ′ and
(λx : T, M)N ↪→βfst {x 7→ N}M =pi {x 7→ N ′}M ′, and similarly in the case of a fst step.

Hence, (1) ↪→βfst is confluent modulo =pi, that is, ≡
pvs
⊆ ↪→∗

βfst=pi←↩∗βfst.
We now prove that (2) ↪→β preserves typing. To this end, it suffices to prove that, if

(x : T )→ U and (x : T ′)→ U ′ are typable, and (x : T )→ U ≡
pvs

(x : T ′)→ U ′, then T ≡
pvs

T ′

and U ≡
pvs

U ′ (see [9] for more details), which follows from (1).
We now prove that (3) ↪→fst preserves typing. Assume that fst T0 P0 (pair T1 P1 M N) is

of type C. By inversion of typing rules, pair T1 P1 M N is of type psub T0 P0 and T0 ≡
pvs

C.
By inversion again, M is of type T1 and psub T0 U0 ≡

pvs
psub T1 P1. By (1), T0 ≡

pvs
T1 and

P0 ≡
pvs

P1. Therefore, M is of type C.
Next, note that (4) =pi =⇔pi where⇔pi consists in applying several↔pi steps at disjoint

positions. Indeed, if t = pair T P M N1 ↔pi u = pair T P M (. . . (pair T ′ P ′ M ′ N ′
1) . . .)

↔pi v = pair T P M (. . . (pair T ′ P ′ M ′ N ′
2) . . .), then t↔pi v as well.

Moreover, we have (5)⇔ty
pi = (↔ty

pi)∗. Indeed, A⇔ty
pi B means that we can obtain B from

A by replacing some subterms of A, that are typable since A is typable, by some subterms of
B, that are typable since B is typable.
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We can now conclude as follows. Assume that A ≡
pvs

ty B. By (1), there are A′ and B′ such
that A ↪→∗

βfst A′ =pi B′ ←↩∗βfst B. By (2), (3), (4) and (5), A(↪→ty
βfst)∗A′(↔ty

pi)∗B′(←↩ty
βfst)∗B.

◀

3 Encoding PVS-Cert in λΠ/≡

We provide an encoding of PVS-Cert into the logical framework λΠ/≡. This encoding
allows to express terms of PVS-Cert into λΠ/≡. Because logical frameworks strive to
remain minimal, constructions such as pair or psub are not built-in: they must be expressed
into the language of the logical framework through an encoding. We hence define the symbols
allowing to emulate predicate subtyping using the terms of λΠ/≡.

Definition of λΠ/≡

λΠ/≡ is the family of Type Systems Modulo whose sorts, axioms and product rules are:
sorts SλΠ = {TYPE, KIND},
axiom AλΠ = {(TYPE, KIND)},
product rules PλΠ = {(TYPE, TYPE, TYPE), (TYPE, KIND, KIND)}.

3.1 Encoding Simple Type Theory
The encoding of λHOL given in Figures 4 and 5 follows the method settled in [12] for pure
type systems.

In the following, we write the function symbols of a signature in blue and the other
constructions of λΠ/≡ in black, to better distinguish them.

The general idea is to manipulate types and terms of λHOL as terms of λΠ/≡. Sorts
are both objectified as type and prop and encoded as types by Kind, Type and Prop in
Equations (7)–(11). Sorts as types are used to type sorts as objects to encode the axioms
in A. Terms of type Type are encoded as terms of type Type. These encoded types can
be interpreted as λΠ/≡ types with function El (12). Similarly, propositions are reified as
terms of type prop and interpreted by function Prf. For instance, given a λHOL type T

and a λHOL proposition P both encoded as λΠ/≡ terms, the abstractions λx : El T , x and
λh : Prf P , h are valid λΠ/≡ terms. The signature exposed in Figure 4 is noted ΣλHOL.

Equations (18)–(20) are used to map encoded products to λΠ/≡ products. Equation (17)
makes sure that the objectified sort prop is the same as the sort Prop when interpreted as
a type.

3.2 Encoding Predicate Subtyping
Predicate subtypes are defined in Equation (21) as encoded types (i.e. terms of type Type)
built from encoded type t and predicate defined on t. Pairs are encoded in Equation (22),
where the second argument is the predicate that defines the type of the pair. The two projec-
tions are encoded in Equations (23) and (24), and we note the signature of Figure 6 Σpsub.

The signature used to encode PVS-Cert into λΠ/≡ is ΣPC = ΣλHOL ∪Σpsub. The terms
of the encoding are thus the terms of T (ΣPC,SλΠ,V). The typing rules are those of λΠ/≡
with the signature ΣPC and the congruence ≡

λΠ
generated by Equations (5), (6), (17)–(20),

and (β) where, in Equations (5) and (6), psub, pair and fst (PVS-Cert symbols in black)
are replaced by psub, pair and fst (λΠ/≡ symbols in blue).
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⊢ Kind : TYPE : KIND (7)
⊢ Type : TYPE : KIND (8)
⊢ Prop : TYPE : KIND (9)
⊢ type : Kind : TYPE (10)
⊢ prop : Type : TYPE (11)

t : Type ⊢ El t : TYPE : KIND (12)
p : Prop ⊢ Prf p : TYPE : KIND (13)

t : Type, p : El t→ Prop ⊢ ∀ t p : Prop : KIND (14)
p : Prop, q : Prf p→ Prop ⊢ p⇒ q : Prop : KIND (15)
t : Type, u : El t→ Type ⊢ t⇝ u : Type : KIND (16)

Figure 4 Signature ΣλHOL of the encoding of λHOL into λΠ/≡.

El prop = Prop (17)
Prf(∀ t p) = (x : El t)→ Prf(p x) (18)

Prf(p⇒ q) = (h : Prf p)→ Prf(q h) (19)
El(t⇝ u) = (x : El t)→ El(u x) (20)

Figure 5 Equations of the encoding of λHOL into λΠ/≡.

3.3 Translation of PVS-Cert Terms Into λΠ/≡ Terms
▶ Definition 3 (Translation). Let Γ be a well formed context.

The term translation of the terms M typable in Γ, noted [M ]Γ, is defined in Figures 7
and 8.
The type translation of Kind and the terms M typable by a sort in Γ, noted JMKΓ, is
defined in Figure 9.
The context translation JΓK is defined by induction on Γ as

J∅K = ∅; JΓ, x : T K = JΓK , x : JT KΓ

▶ Proposition 4. The translation function [·]· that maps a context and a PVS-Cert term
typable in this context to a λΠ/≡ term is well-defined.

Proof. After Lemma 2 and [8, Lemma 41], the types of a term are unique up to equivalence.
Moreover, the arguments of the translation function are decreasing with respect to the (strict)
subterm relation. ◀

3.4 Examples of Encoded Theories
We provide here some examples that take advantage of proof irrelevance or predicate subtyping.
While these examples could have been presented in PVS-Cert, we unfold them into the
encoding of PVS-Cert into λΠ/≡ to show how it can be used in practice. All examples are
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t : Type, p : El t→ Prop ⊢ psub t p : Type : TYPE
(21)

t : Type, p : El t→ Prop, m : El t, h : Prf(p m) ⊢ pair t p m h : El(psub t p) : TYPE
(22)

t : Type, p : El t→ Prop, m : El(psub t p) ⊢ fst t p m : El t : TYPE
(23)

t : Type, p : El t→ Prop, m : El(psub t p) ⊢ snd t p m : Prf(p (fst t p m)) : TYPE
(24)

Figure 6 Signature Σpsub of the encoding of predicate subtyping into λΠ/≡.

[x]Γ = x

[Prop]Γ = prop
[Type]Γ = type
[M N ]Γ = [M ]Γ [N ]Γ

[λx : T, M ]Γ = λx : El [T ]Γ, [M ]Γ,x:T

[(x : T )→ U ]Γ = [T ]Γ⇝
(

λx : JT KΓ, [U ]Γ,x:T

)
when Γ ⊢PVS T : Type and Γ, x : T ⊢PVS U : Type

[(x : T )→ P ]Γ = ∀ [T ]Γ
(

λx : JT KΓ, [P ]Γ,x:T

)
when Γ ⊢PVS T : Type and Γ, x : T ⊢PVS P : Prop

[(h : P )→ Q]Γ = [P ]Γ⇒
(

λh : JP KΓ, [Q]Γ,h:P

)
when Γ ⊢PVS P : Prop and Γ, h : P ⊢PVS Q : Prop

Figure 7 Translation from λHOL to λΠ/≡.

[psub T P ]Γ = psub [T ]Γ [P ]Γ
[pair T P M N ]Γ = pair [T ]Γ [P ]Γ [M ]Γ [N ]Γ

[fst T P M ]Γ = fst [T ]Γ [P ]Γ [M ]Γ
[snd T P M ]Γ = snd [T ]Γ [P ]Γ [M ]Γ

Figure 8 Translation from PVS-Cert to λΠ/≡.

JT KΓ = El [T ]Γ when Γ ⊢PVS T : Type;
JT KΓ = Prf [T ]Γ when Γ ⊢PVS T : Prop;

JKindK = Kind
JTypeK = Type

Figure 9 Translation of types from PVS-Cert to λΠ/≡.
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symbol stack : Type ; symbol empty : El stack; symbol t : Type ;
symbol nonempty_stack?(s : El stack) := s ̸= empty;
symbol nonempty_stack := psub nonempty_stack?;
symbol push : El stack→ El t→ El nonempty_stack;
symbol pop : El nonempty_stack→ El stack;
symbol pop_push(x : El t)(s : El stack) : Prf(pop(push x s) = s);
symbol pop2push2(x y : El t)(s : El stack)

: Prf(pop(pair (pop(push x (fst(push y s)))) ?0) = s) := . . . ;

Figure 10 Specification for stacks.

available as Dedukti files1 and can be type-checked with Lambdapi2. In the examples, the
first two arguments of fst, pair and snd are implicit.

▶ Example 5 (Stacks with predicate subtypes). This example comes from the language reference
manual of PVS [26] and illustrates the use of predicate subtyping and the generation of
TCC through a specification of stacks in Figure 10.

Predicate subtyping is used to define the type of nonempty stacks, which allows the
function pop to be total. Symbol pop_push is an axiom that uses Leibniz equality = on
stacks. In the definition of the theorem pop2push2, term ?0 is a meta-variable that must be
instantiated with a proof that the first argument of the pair is not empty, and represents,
in the encoding, the TCC generated by PVS. We can thus see that the concept of TCC
of PVS has a clear and explicit representation in the encoding, allowing its benefits to be
transported to λΠ/≡.

▶ Example 6 (Bounded lists and proof irrelevance). This example is inspired by sorted lists in
the Agda manual [33]3. Because we have not encoded dependent types, we cannot encode
the type of lists bounded by a variable. We thus declare the bound in the signature. The
specification is given in Figure 11.

We first notice that the predicate subtype allows to encode the proof head ≤ bound
passed as a standalone argument in Agda in the type of an argument in our encoding,
providing a shorter type for bcons. In Figure 12, we define two (non-convertible) axioms
p1 and p2 as proofs of zero ≤ suc bound, and two lists containing zero but proved to be
bounded by suc bound using p1 for ℓ1 and p2 for ℓ2. Type checking ℓi requires axioms pi.
These axioms are like TCC’s in PVS. Assuming that one wants to prove ℓ1 = ℓ2, had we
lacked proof irrelevance, we would have had to prove that p1 ≡ p2, which is not possible. In
our case, the equality is simply the result of refl ℓ1.

4 Correctness of the Encoding

In this section, we prove that the encoding is correct: if a PVS-Cert type is inhabited then
its translation is inhabited too. Any type-checker for λΠ/≡ could thus be used to recheck
PVS-Cert typings. However, to make sure that our encoding is faithful (the encoding that

1 https://github.com/Deducteam/personoj/paper/
2 https://github.com/Deducteam/lambdapi, commit 0875521
3 https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html

https://github.com/Deducteam/personoj/paper/
https://github.com/Deducteam/lambdapi
https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html
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symbol zero : ElN;
symbol suc(n : ElN) : ElN;
symbol ≤ (n m : ElN) : Prop ;

symbol bound := . . . ;
symbol blist : Type ;
symbol bnil : El blist ;

symbol bounded := psub(λn, n ≤ bound);
symbol bcons(head : El bounded)(tail : El blist) : El blist ;

Figure 11 Specification of sorted lists.

symbol p1 : Prf(zero ≤ suc bound);
symbol p2 : Prf(zero ≤ suc bound);

symbol ℓ1 := bcons(pair zero p1) bnil ;
symbol ℓ2 := bcons(pair zero p2) bnil ;

Figure 12 Definition of two sorted lists with different proofs.

maps any PVS-Cert term to the same well-typed ground term is correct, but useless),
completeness (also called conservativity) ought to be proved too: a PVS-Cert type is
inhabited whenever its encoding is inhabited. However, as completeness is often difficult to
establish (see [3, 34]), we leave it for future work.

In the following,
s stands for Type, Prop or Kind;
T, U designate terms of type Type;
M, N, t, u designate expressions that have a type T : Type;
P, Q are propositions of type Prop, or predicates of type T → Prop;
h stands for a proof typed by a proposition.

Typing judgements in PVS-Cert are noted with ⊢PVS, and typing judgements in λΠ/≡ are
noted with ⊢λΠ/≡.

▶ Lemma 7 (Preservation of substitution). If Γ, x : U, ∆ ⊢PVS M : T and Γ ⊢PVS N : T , then
[{x 7→ N}M ]Γ,{x 7→N}∆ = {x 7→ [N ]Γ} [M ]Γ,x:U,∆.

Proof. By structural induction on M . ◀

▶ Lemma 8 (Preservation of equivalence). Let M and N be two well typed terms in Γ.
1. If M ↔

pvs
N , then [M ]Γ ≡

λΠ
[N ]Γ.

2. If M ≡
pvs

N , then [M ]Γ ≡
λΠ

[N ]Γ.

Proof. Each item is proved separately.
1. Taking back the notations of the proof of Lemma 2, we show that

a. computational steps of ↪→ty
βfst are preserved,

b. equational steps of ↔ty
pi are preserved.

These two properties are shown by induction on a context C such that M = C[M̂ ] R C[N̂ ] =
N where R is any of the two relations applied at the head of M̂ and N̂ . We will only
detail the base cases of inductions, the other cases being straightforward.
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Preservation of Computation There are two possible cases,
Case M = ((λx, t) u) ↪→β {x 7→ u} t, we have,

[(λx : U, t) u]Γ = ((λx : JUKΓ, [t]Γ,x:U ) [u]Γ) = {x 7→ [u]Γ} [t]Γ ≡
λΠ

[{x 7→ u} t]Γ

where the equivalence is given by Lemma 7.
Case M = fst T1 P1 (pair T0 P0 t h) ↪→fst t, we have the following equalities

[fst T1 P1 (pair T0 P0 t h)]Γ = fst [T1]Γ [P1]Γ [pair T0 P0 t h]Γ
= fst [T1]Γ [P1]Γ (pair [T0]Γ [P0]Γ [t]Γ [h]Γ)
≡
λΠ

[t]Γ

with the last equivalence provided by Equation (6).
Preservation of Proof Irrelevance Assume that M = pair T P t h↔pi pair T P t h′

[pair T P t h]Γ = pair [T ]Γ [P ]Γ [t]Γ [h]Γ ≡
λΠ

pair [T ]Γ [P ]Γ [t]Γ [h′]Γ = [pair T P t h′]Γ

where the equivalence is given by Equation (5).

2. By Lemma 2, we know that there are H0 and H1 such that M(↪→ty
βfst)∗H0(↔ty

pi)∗H1

(←↩ty
βfst)∗N . For R ∈ {↔pi, ↪→βfst}, we have t(Rty)∗u ⇒ [t] ≡

λΠ
[u] by induction on the

number of Rty steps, using Item 1 for the base case. Therefore, [M ]Γ ≡
λΠ

[H0]Γ ≡
λΠ

[H1]Γ ≡
λΠ

[N ]Γ, which gives, by transitivity of ≡
λΠ

, [M ]Γ ≡
λΠ

[N ]Γ.
◀

▶ Theorem 9 (Correctness). If Γ⊢PVS M : T , then JΓK⊢λΠ/≡ [M ]Γ : JT KΓ. For all Γ, if Γ⊢PVS WF ,
then JΓK ⊢λΠ/≡ WF .

Proof. By induction on the typing derivation of Γ ⊢PVS M : T and case distinction on the last
inference rule.
empty ∅ ⊢PVS WF

We have J∅K = ∅ and ∅ ⊢λΠ/≡ WF .

decl
Γ ⊢PVS T : s

v ̸∈ Γ
Γ, v : T ⊢PVS WF

We have JΓ, v : T K = JΓK , v : JT KΓ. By induction hypothesis, we have JΓK⊢λΠ/≡ [T ]Γ : JsKΓ,
for s ∈ S and hence JsKΓ is either Prop by conversion (because El prop ≡

λΠ
Prop),

Type or Kind. If s is Kind, then T is Type. Since JΓK ⊢λΠ/≡ Type : TYPE because
ΣPC(Type) = (⃗0, (TYPE, KIND)), we can derive with the declaration rule JΓ, v : T K⊢λΠ/≡ WF

because JTypeK = Type. Otherwise, s is Type or Prop and JT K = ξ [T ]Γ where ξ is El
or Prf. By typing of El or Prf (with the signature), JΓK ⊢λΠ/≡ JT KΓ : TYPE and finally,
JΓ, v : T K ⊢λΠ/≡ WF by application of the declaration rule.

var
Γ ⊢PVS WF

v : T ∈ Γ
Γ ⊢PVS v : T

By definition, [v] = v and by induction hypothesis, JΓK ⊢λΠ/≡ WF . Since v : T ∈ Γ, by
definition, there is ∆ ⊊ Γ, ∆ ⊢PVS WF such that, v : JT K∆ ∈ JΓK. Hence JΓK ⊢λΠ/≡ v : JT K∆
and finally JΓK ⊢λΠ/≡ v : JT KΓ because contexts are well formed.

sort
Γ ⊢PVS WF

(s1, s2) ∈ A
Γ ⊢PVS s1 : s2

First, [s1] is either prop or type. In the former case, Js2K = Type and because JΓK⊢λΠ/≡WF

(by induction hypothesis) and ΣPC(prop) = (⃗0, (Type, TYPE)), we have JΓK ⊢λΠ/≡ prop :
Type. The same procedure holds for s1 = Type and s2 = Kind.
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prod
Γ ⊢PVS T : s1 Γ, x : T ⊢PVS U : s2 (s1, s2, s3) ∈ P

Γ ⊢PVS (x : T )→ U : s3

We only detail for the product (Type, Prop, Prop), others being processed similarly. We
have [(x : T )→ U ]Γ = ∀ [T ]Γ

(
λx : JT KΓ, [U ]Γ,x:T

)
. By induction hypothesis, JΓK ⊢λΠ/≡

[T ] : JTypeK, and thus JΓK ⊢λΠ/≡ [T ] : Type by definition. By induction hypothesis,
JΓ, x : T K ⊢λΠ/≡ [U ] : JPropK, and thus JΓK , x : JT KΓ ⊢λΠ/≡ [U ] : Prop by definition of J·K
and conversion which yields JΓK ⊢λΠ/≡ λx : JT KΓ, [U ]Γ,x:T : JT KΓ → Prop.
To finish, we obtain JΓK ⊢λΠ/≡ λx : JT KΓ, [U ]Γ,x:T : (El [T ]Γ)→ Prop by conversion. Using
the typing signature ΣPC, JΓK ⊢λΠ/≡ ∀ [T ]Γ

(
λx, JT KΓ[U ]Γ,x:T

)
: Prop which becomes, by

conversion Prop ≡
λΠ

El prop and definition of J·KΓ: El prop = JPropK, hence, JΓK ⊢λΠ/≡

∀ [T ]Γ
(

λx, JT KΓ[U ]Γ,x:T

)
: JPropK

abst
Γ, v : T ⊢PVS M : U Γ ⊢PVS (v : T )→ U : s

Γ ⊢PVS λv : T, M : (v : T )→ U

We have [λv : T, M ]Γ = λv : JT KΓ, [M ]Γ. By induction hypothesis, JΓ, v : T K ⊢λΠ/≡

[M ]Γ,v:T : JUKΓ,v:T and by definition of J·K, JΓK , v : JT KΓ ⊢λΠ/≡ [M ]Γ,v:T : JUKΓ,v:T . Apply-
ing the abstraction rule in λΠ/≡, we obtain JΓK ⊢λΠ/≡ λv : JT KΓ, [M ]Γ,v:T : (v : JT KΓ)→
JUKΓ,v:T (with the product well typed in λΠ/≡ since JUK and JT K are both of type TYPE
and thus the product is of type TYPE as well).
Finally, we proceed by case distinction on sorts sT and sU such that Γ ⊢PVS T : sT and
Γ ⊢PVS U : sU . We will detail the case (sT , sU ) = (Type, Prop). We have (v : JT KΓ) →
JUKΓ,v:T ≡

λΠ
Prf(∀ [T ]Γ (λx : JT KΓ, [U ]Γ,v:T )) = J(v : T )→ UKΓ which allows to conclude.

app
Γ ⊢PVS M : (v : T )→ U Γ ⊢PVS N : T

Γ ⊢PVS M N : {v 7→ N}U

By induction hypothesis and conversion, we have JΓK ⊢λΠ/≡ [M ]Γ : (v : JT KΓ)→ JUKΓ,v:T
(shown by case distinction on the sorts of T and U) and JΓK ⊢λΠ/≡ [N ]Γ : JT KΓ. Since
[M N ]Γ = [M ] [N ], we obtain using the application rule JΓK⊢λΠ/≡[M N ] : {v 7→ [N ]Γ} JUKΓ,v:T
and by Lemma 7, we obtain JΓK ⊢λΠ/≡ [M N ] : J{v 7→ N}UKΓ.

conv

Γ ⊢PVS M : U Γ ⊢PVS T : s T ≡
pvs

U

Γ ⊢PVS M : T

By hypothesis, there is a type U such that Γ ⊢PVS M : U , and T ≡
pvs

U , and there is a sort s

such that Γ ⊢PVS T : s. By induction hypothesis, JΓK ⊢λΠ/≡ [M ]Γ : JUKΓ.
We now prove that if T ≡

pvs
U , then JT KΓ ≡

λΠ
JUKΓ and Γ ⊢λΠ/≡ JT K : TYPE: it will allow us

to conclude using the conversion rule in λΠ/≡.
By Lemma 2, we have T ↪→∗

βfst T ′ =pi U ′ ←↩∗βfst U and T (↪→ty
βfst)∗T ′(↔ty

pi)∗U ′(←↩ty
βfst)∗U .

Because ↪→βfst preserves typing (Lemma 2), we have Γ ⊢PVS U ′ : s. By [8, Lemma 43],
Γ ⊢PVS T : s. By Lemma 8, [T ]Γ ≡

λΠ
[U ]Γ

If s = Prop, then JT KΓ = Prf [T ]Γ ≡
λΠ

Prf [U ]Γ = JUKΓ. Moreover we have JΓK ⊢λΠ/≡ JT KΓ :
TYPE because, by induction hypothesis, [T ]Γ : JPropK = El [Prop] = El prop = Prop, and
(p : Prop ⊢ΣPC Prf p : TYPE : KIND). If s = Type, JT KΓ = El [T ]Γ ≡

λΠ
El [U ]Γ = JUKΓ. By

induction hypothesis, [T ]Γ : JTypeKΓ = Type. If s = Kind, then T = U = Type (Type is
the only inhabitant of Kind). Finally, JTypeK = Type : TYPE.

sig

−−−→
x : T ⊢ U : s

(
Γ ⊢ ti :

{
(xj 7→ tj)j<i

}
Ti

)
i Σ(f) = (−−→x, T , U, s)

Γ ⊢ f (⃗t) :
{−−−→

x 7→ t
}

U
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We first observe from Figure 6 that for each f ∈ ΣPVS, we have a counterpart symbol
f̂ ∈ ΣPC such that if ΣPVS(f) =

(−−−→
x : T , U, s

)
, then ΣPC(f̂) =

(−−−→
x, JT K, JUK−−→

x:T , TYPE
)

.
By induction hypothesis, for each i, we have JΓK ⊢λΠ/≡ [ti]Γ : J{(xj 7→ tj)j<i}TiKΓ which
we can write as, thanks to Lemma 7, JΓK ⊢λΠ/≡ [ti]Γ :

{
(xj 7→ [tj ]Γ)j<i

}
JTiKΓ.

Now, using the signature rule, we are able to conclude JΓK ⊢λΠ/≡ f̂
−→
[t]Γ :

{−−−−→
x 7→ [t]

}
JUK.

By Lemma 7, we obtain JΓK ⊢λΠ/≡ f̂
−→
[t]Γ :

r{−−−→
x 7→ t

}
U

z
. Moreover, we have taken care to

define the translation in Figure 8 such that
[
f(−→t )

]
= f̂
−→
[t]. ◀

5 Mechanised Type Checking

The encoding of PVS-Cert into λΠ/≡ can be used to proof check terms of PVS-Cert
using a type checker for λΠ/≡. But because of the rule

Γ ⊢ t : B Γ ⊢ A : s A ≡ B

Γ ⊢ t : A (λΠ/≡-conv)

type checking is decidable only if ≡ is. A decidable relation equivalent to ≡ can be obtained
using the convertibility relation stemming from the rewriting relation of a convergent rewrite
system, yielding the type system λΠ/R (R for rewriting). Consequently, while type checkers
cannot be provided for λΠ/≡ in general, they can for λΠ/R, as can be seen with Dedukti4.
Such rewrite systems can be obtained through completion procedures [6]. However, completion
procedures rely on a well-founded order that cannot be provided here because of Equation (5)
which cannot be oriented since each side of the equation has a free variable which is not in
the other side.

A possible solution would be to rewrite all proofs of a pair to a canonical proof with a
rule of the form

pair t p m h ↪→ pair t p m (canon t p m)

where t : Type, p : El t → Prop, m : El t ⊢ canon t p m : Prf(p m) : TYPE. But this creates a
rewrite rule that duplicates three variables.

Otherwise, as noted in [23], the addition of a symbol to the signature can circumvent the
issue. Hence, we add a symbol for proof irrelevant pairs, and make it equal to pairs

t : Type, p : El t→ Prop, m : El t ⊢ pair† t p m : El(psub t p) : TYPE (25)
pair t p m h = pair† t p m (26)

thus (pair t p m h) ≡ (pair† t p m) ≡ (pair t p m h′). The new set of identities given
by Equations (6), (17)–(20), and (26) can be completed into a rewrite system R which is
equivalent to the equations:

▶ Proposition 10. Let ↪→R be the closure by context and substitution of the rewrite rules
of Figure 13, and ≡R be the smallest equivalence containing ↪→R. Then, for all M, N ∈
T (ΣPC,SλΠ,V), if M ≡

λΠ
N then M ≡R N .

4 https://github.com/Deducteam/lambdapi.git

https://github.com/Deducteam/lambdapi.git
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(λx : T, t) u ↪→ {x 7→ u} t (27)
pair t p m h ↪→ pair† t p m (28)
fst t0 p0 (pair† t1 p1 m) ↪→m (29)

El prop ↪→Prop (30)
Prf(∀ t p) ↪→ (x : El t)→ Prf(p x) (31)
El(t⇝ u) ↪→ (x : El t)→ El(u x) (32)
Prf(p⇒ q) ↪→ (h : Prf p)→ (Prf(q h))

(33)

Figure 13 Rewrite system R resulting from the completion of the equations of the encoding of
PVS-Cert in λΠ/≡.

Proof. It suffices to prove that every equation of PVS-Cert is included in ≡R. This is
immediate for the Equations (17)–(20) and (β) since they are equal to the rules (27) and (30)–
(33). For the Equation (5), we have pair t p m h0 ↪→R pair† t p m ←↩R pair t p m h1. Finally,
for the Equation (6), we have fst t0 p0 (pair t1 p1 m h) ↪→R fst t0 p0 (pair† t1 p1 m) ↪→R m. ◀

▶ Remark 11. Rewrite system R is confluent because it is orthogonal.
Termination of R is required to obtain the decidability of ≡R. A possible approach to
prove it would be to extend the termination model of λHOL described in [15].
In order to prove the completeness of the encoding, that is, the fact that a type is
inhabited whenever its encoding is, it could be useful to have the reciprocal implication,
that is, if M ≡R N and M, N ∈ T (ΣPC,SλΠ,V), then M ≡

λΠ
N . We leave this for future

work too.

A priori, the introduction of pair† allows one to craft terms that cannot be proof checked
in PVS-Cert. Indeed, given a predicate Even on natural numbers, the term (pair† N Even 3)
is the encoding of (pairN Even 3 h) which cannot be type checked in PVS-Cert since there
is no proof h that 3 is even. However, Dedukti relies on a system of modules and tags
attached to symbols to define where and how symbols can be used. A symbol tagged protected
cannot be used to build terms outside of the module where it is defined, but it may appear
during type checking because of conversion, a trick first introduced in [35] and used also for
encoding Cumulative Type Systems in λΠ/≡ [34]. In our case, one may protect pair† in the
module that defines the encoding of PVS-Cert, so that users of the encoding are forced to
use pair.

Conclusion

This work provides an encoding of predicate subtyping with proof irrelevance into the λΠ-
calculus modulo theory, λΠ/≡ [4]. We first recall PVS-Cert, an extension of higher-order
logic with predicate subtyping and proof irrelevance [17]. We then provide a λΠ/≡ signature
to encode terms of PVS-Cert, and prove that the encoding is correct: if a PVS-Cert
type is inhabited, then its translation in λΠ/≡ is inhabited too. Finally, we show that the
equational theory of our encoding is equivalent to a confluent set of rewrite rules which
enable us to use Dedukti to type check encoded specifications.

However, two important problems are left open. First, is our encoding complete, that is,
is a PVS-Cert type inhabited if its translation is? Second, is the confluent rewrite system
used in the encoding terminating? We believe that these two properties hold but leave their
difficult study for future work.
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Perspectives

The encoding of PVS-Cert in λΠ/R is the stepping stone towards an automatic translator
from PVS to Dedukti. Indeed, PVS does not have proof terms in its syntax, and con-
sequently type checking is undecidable. The creation of PVS-Cert allows to convert PVS
terms to a syntax whose type checking is decidable. This was the work of F. Gilbert in [17].
Now we are able to express this decidable syntax in λΠ/R and hence in Dedukti. However,
the type system proposed here only allows to coerce from a type to its direct supertype or
a subtype, that is, we can go from (psub (psub ι P ) Q) to psub ι P in one coercion, but we
cannot coerce from (psub (psub ι P ) Q) to ι, whereas PVS can. Consequently, an algorithm
to elaborate the correct sequence of coercions is needed to obtain terms that can be type
checked in Dedukti.

Other features of PVS can be integrated into PVS-Cert and the encoding: dependent
types like (psub list (λℓ, length ℓ = n)), recursive definitions of functions, and dependent
records. With those features encoded, almost all the standard library5 of PVS can be
translated to Dedukti.

Finally, while the previous points were concerned with the translation of specifications
from PVS, we may also want to translate proofs developed in PVS. These proofs are witnesses
of type correctness conditions (TCC), which are required to type check terms. Since PVS is
a highly automated prover, proof terms often come from application of complex tactics that
cannot be mimicked into Dedukti. However, proof terms may either be provided by hand,
emulating the interaction provided by TCC’s, or we may call external solvers [19].
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Abstract
We present the web portal Λ-symsym, available at http://158.110.146.197:31780/automata/,
for experimenting with game semantics of λ!-calculus, and its normalizing elementary sub-calculus,
the λEAL-calculus. The λ!-calculus is a generalization of the λ-calculus obtained by introducing a
modal operator !, giving rise to a pattern β-reduction. Its sub-calculus corresponds to an applicatively
closed class of terms normalizing in an elementary number of steps, in which all elementary functions
can be encoded. The game model which we consider is the Geometry of Interaction model I
introduced by Abramsky to study reversible computations, consisting of partial involutions over a
very simple language of moves.

Given a λ!- or a λEAL-term, M , Λ-symsym provides:
an abstraction algorithm A!, for compiling M into a term, A!(M), of the linear combinatory
logic CL!, or the normalizing combinatory logic CLEAL;
an interpretation algorithm [[ ]]I yielding a specification of the partial involution [[A!(M)]]I in
the model I;
an algorithm, I2T , for synthesizing from [[A!(M)]]I a type, I2T ([[A!(M)]]I), in a multimodal,
intersection type assignment discipline, ⊢!.
an algorithm, T 2I, for synthesizing a specification of a partial involution from a type in ⊢!,
which is an inverse to the former.

We conjecture that ⊢! M : I2T ([[A!(M)]]I). Λ-symsym permits to investigate experimentally the
fine structure of I, and hence the game semantics of the λ!- and λEAL-calculi. For instance, we can
easily verify that the model I is a λ!-algebra in the case of strictly linear λ-terms, by checking all
the necessary equations, and find counterexamples in the general case.

We make this tool available for readers interested to play with games (-semantics). The paper
builds on earlier work by the authors, the type system being an improvement.
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1 Introduction

We present the web portal Λ-symsym, available at http://158.110.146.197:31780/
automata/, for experimenting, in the spirit of [24], with the game semantics of the λ!-calculus,
and its normalizing elementary affine sub-calculus, the λEAL-calculus. The λ!-calculus is
a generalization of the λ-calculus obtained by introducing a co-monadic modal operator !,
which gives rise to a pattern β-reduction. Its sub-calculus corresponds to an applicatively
closed class of terms normalizing in an elementary number of steps. All elementary functions
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can be encoded in the λEAL-calculus, cf [20, 6]. The game model that we consider consists
of partial involutions, i.e. partial symmetric functions. These were introduced by Abramsky
in [3] to provide a Geometry of Interaction model, I, of reversible computation for linear
combinatory logic, see also [4, 5].

In a series of papers by the authors, [12, 10, 11, 18], we have explored and extended
Abramsky’s model I. In particular, we have introduced:

a generalized co-monadic λ-calculus, the λ!-calculus, which subsumes also the elementary
affine and linear affine calculi [26, 7, 6, 15, 16];
abstraction algorithms for compiling the above calculi in corresponding fragments of an
extended linear combinatory logic, CL! or the normalizing CLEAL;
a semantics of these combinatory logics in terms of partial involutions, and hence a
semantics of the λ!-calculus via the abstraction algorithm;
a multi-modal intersection type systems ⊢! for the λ!-calculus;
an algorithm T 2I for obtaining a specification of a partial involution, given a type in the
language of ⊢!, and an algorithm I2T for synthesizing a type given a specification of a
partial involution, which are “morally” mutual inverses.

Moreover, we have shown that linear application between involutions, i.e. the game
analogue of Girard’s “Execution Formula”, amounts to a kind of resolution between types in
⊢!. In particular, in the case of strictly linear terms M, N , we have that I2T ([[MN ]]I) =
I2T ([[M ]]I · [[N ]]I) = Res(I2T ([[M ]]I), I2T ([[N ]]I)), [12]. In this perspective, types deriving
from I2T can be viewed as a kind of principal types for terms in the λ!-calculus.

In this paper, we outline the implementation of the algorithms above and present the on-
line tool Λ-symsym1 for experimenting with them in a user-friendly interactive setting, thus
allowing for the investigation of the fine structure and the peculiarities of the symmetric game
semantics of λ!-calculus. The sheer combinatorial complexity of applying linear application
by hand, in effect, makes it essential to use a machine for checking equalities and finding
counterexamples.

Λ-symsym easily provides evidence for the following facts.
The model I of partial involutions does not satisfy any form of the ξ-rule, if the terms
involved are not strictly linear. Namely, we can check all the necessary equations for I to
be a λ!-algebra in the strictly linear case and provide counterexamples otherwise.
Partial involutions keep track of the history of the execution, such as the erasures of
arguments or the comonad !.

In particular, given a normalizing λ!-term, or a λEAL-term, M , the web tool provides a web
application for compiling M into a term of linear combinatory logic, A!(M) or AEAL(M),
respectively. Another web application provides the interpretation of A!(M) as a specification,
[[A!(M)]]I , of a partial involution over a very simple language of moves, in the model I of [3].
Yet another application permits to synthesize from [[A!(M)]]I a type, I2T ([[A!(M)]]I), in a
multimodal, intersection type discipline. The type assignment system is given in the form
of a general type system ⊢!, for which we conjecture that ⊢! M : I2T ([[A!(M)]]I). In this
paper we do not discuss the other web applications made available by the tool Λ-symsym
for dealing with the other λ!-calculi of [18], and non normalizing terms.

We wrote this paper to encourage interested readers to enjoy utilizing Λ-symsym. We
made it available for people to play with games (-semantics)!

1 We combine Λ to the magic word of the formula Open Sesame, (iftah ya symsym), in the

Arab collection of novels 1001 Nights, (kitab alf laylah wa-laylah), which reminds that
our semantics are symmetric partial functions.
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Synopsis. In Section 2, we introduce in a self-contained format the formal systems used
in the web tool, namely the λ!-calculus, and the λEAL-calculus, the linear combinatory
logics CL! and CLEAL, !-intersection-types, and the ⊢! type discipline. In Subsection 2.1 we
give the corresponding abstraction algorithms. In Section 3, we present the game theoretic
semantics of the linear combinatory logic CL!, and hence of its normalizing sublogic CLEAL,
in terms of partial involutions. We introduce also the crucial concept of specification of an
involution. In Subsection 3.1, we present the two algorithms I2T and T 2I, for mapping
specifications of partial involutions into types and back. In Section 4, we illustrate the web
tool Λ-symsym and present its web interface. In Subsection 4.2 we discuss remarkable
example sessions. Finally, in Section 5, we draw some conclusions and outline future directions.
In the Appendix A, we give the Erlang code corresponding to the implementation of linear
application of involutions. The complete code of our web tool is available in [13].

2 The λ!-calculus, Linear Combinatory Logic, !-intersection-types

In this section we recall the formal systems used in the web tool. Most of these appear
already in earlier papers by the authors, see [12, 10, 11, 18], but for the definition of the type
assignment system ⊢!.

We start with the λ!-calculus and its sub-calculus.

▶ Definition 1 (λ!-calculus, λEAL-calculus).
The language Λ! of the λ!-calculus is inductively defined from variables x, y, z, . . . and
constants c, . . ., and it is closed under the following formation rules:

M ∈ Λ! N ∈ Λ!

MN ∈ Λ! (app) M ∈ Λ!

!M ∈ Λ! (!)

M ∈ Λ! O!
≤1(x, M)

λx.M ∈ Λ! (λ) M ∈ Λ! O≥1(x, M)
λ!x.M ∈ Λ! (λ!)

where FV (M) denotes the set of free variables of M , and O#
? (x, M) (O#

? (M)), for #
denoting either ! or blank, and ? denoting ≤ 1 or ≥ 1 or no constraint, means that the
variable x (the free variables of M) appears at most once (≤ 1) or at least once (≥ 1) in
M , respectively, and, when # is not blank, that it cannot appear in the scope of !.
We denote by ≡ syntactical identity on λ-terms.
The language ΛEAL of the λEAL-calculus is the restriction of Λ! obtained by considering
rules (app), (λ), and the following versions of the rules (λ!) and (!):

M ∈ ΛEAL O≥1(x, M) x is in the scope of a single !
λ!x.M ∈ ΛEAL

M ∈ ΛEAL O!(M)
!M ∈ ΛEAL

The reduction rules of the λ!-calculus include the restrictions of the standard (β)-rule and
(ξ)-rule to linear abstractions, the pattern-β-reduction rule, which define the behaviour
of the ! pattern abstraction operator, the corresponding (str !) structural rule, and the (ξ!)
rule, namely:

(β) (λx.M)N →! M [N/x] (β!) (λ!x.M)!N →! M [N/x]

(ξ) M →! N λx.M ∈ Λ!

λx.M →! λx.N
(ξ!) M →! N λ!x.M ∈ Λ!

λ!x.M →! λ!x.N
(str !) M →! N

!M →!!N

(applL) M1 →! M ′
1

M1M2 →! M ′
1M2

(applR) M2 →! M ′
2

M1M2 →! M1M ′
2

We denote by →∗
! the reflexive and transitive closure of →!.

The reduction rules of the λEAL-calculus are the restrictions of the rules of the λ!-calculus
to ΛEAL-terms. We denote by →EAL the corresponding reduction relation.

TYPES 2020
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We define strong normal forms as the irreducible terms which do not contain stuck redexes,
i.e. subterms of the shape (!M)N or (λ!x.M)P , where P is irreducible and not a !-term.

▶ Definition 2 (Strong Normal Forms). The set SN ! of strong normal forms is inductively
defined as follows:

Mi ∈ SN ! ∀i ∈ {1, . . . , n}
xM1 . . . Mn ∈ SN !

M ∈ SN !

!M ∈ SN !

M ∈ SN ! λx.M ∈ Λ!

λx.M ∈ SN !
M ∈ SN ! λ!x.M ∈ Λ!

λ!x.M ∈ SN !

Of course many terms containing stuck redexes are typable in the typing system of
Definition 6 below, and receive the appropriate involution semantics, e.g. λx.(λ!y.y)x behaves
as λ!x.x, but these intricacies are not worthwhile considering for the purposes of this paper.

The involution semantics of terms in Λ! and in ΛEAL will be given via a compilation in
linear combinatory logic.

▶ Definition 3 (Linear Combinatory Logics).
The language of the extended linear combinatory logic CL! consists of variables x, y, . . .,
distinguished constants (combinators) B, C, I, K, W, D, δ, F, and it is closed under ap-
plication and !-promotion, i.e.:

M ∈ CL! N ∈ CL!

MN ∈ CL!
M ∈ CL!

!M ∈ CL!

In CL!-terms, we associate · to the left and we assume ! to have order of precedence
greater than ·. Combinators reduce according to the following pattern reduction rules:

BMNP →! M(NP ) IM →! M CMNP →! (MP )N KMN →! M

WM !N →! M !N !N δ!M →!!!M D!M →! M F!M !N →!!(MN)
M →! M ′

C[M ] →! C[M ′] for any context C[ ],

where one-hole contexts are defined as usual.
The language of elementary affine combinatory logic CLEAL includes only the combinators
B, I, C, K, W, F, and is closed under the rules of application and !-promotion. The
reduction relation restricted to CLEAL is denoted by →EAL.

We use the notation Comb to denote any of the combinators in the above definition.

We recall the following proposition because it is not so immediate:

▶ Proposition 4 (Normalization [18]). The λEAL-calculus and CLEAL linear combinatory
logic are strongly normalizing.

The type discipline introduced in this section is a refinement of the ones introduced in
[10, 12, 11] and originated in the process of relating partial involutions and principal types.
It amounts essentially to a multimodal intersection type discipline, which generalizes [8].

▶ Definition 5 (Type Language). The language of types, Type!, is a two sorted language
given by the following grammars, where ω is a constant, and α, β, . . . and i, j, . . . are type
and index variables respectively:
(Type! ∋) σ, τ ::= ω | α | . . . | σ ⊸ τ | σ̂

(T̂ ype! ∋) σ̂, τ̂ ::= !uσ | σ̂ ∧ τ̂

u, v ::= ϵ | i | j | . . . | ⟨u, v⟩.
The syntactic category σ̂-types isolates types whose main constructor is ! or ∧. Moreover, we
consider the equivalence relation on types ∼ induced by ω ∼ σ, for any type σ which contains
only the constant ω and no type variables.
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▶ Definition 6 (Type System).
The type system ⊢! derives judgements Γ ⊢! M : τ , where the environment Γ is a set of pairs
of the following shapes: x : σ, !x : σ̂; each variable occurs at most once in Γ either as a linear
variable or a !-variable. dom(Γ) denotes the set of variables which appear in Γ.

Assumption rule:

x : α ⊢! x : α
(Var)

Introduction and elimination rules:

Γ ⊢! M : σ i fresh
!̂i(Γ) ⊢! !M :!iσ

(!Intro) Γ ⊢! !M :!iσ !(Γ)
!̂[ϵ/i](Γ) ⊢! M : σ[ϵ/i]

(!-Elim)

Γ1 ⊢! !M : σ̂ Γ2 ⊢! !M : τ̂ !(Γ1) !(Γ2)
Γ1 ∧ Γ2 ⊢! !M : σ̂ ∧ τ̂

(∧- Intro)

Γ ⊢! M : σ̂ ∧ τ̂
Γ ⊢! M : σ̂

(∧-E-left) Γ ⊢! M : σ̂ ∧ τ̂
Γ ⊢! M : τ̂

(∧-E-right)

Γ1 ⊢! M : σ ⊸ τ Γ2 ⊢! N : σ
⋂

!(Γ1, Γ2)
Γ1 ∧ Γ2 ⊢! MN : τ

(MP)

Γ, x : σ ⊢! M : τ
Γ ⊢! λx.M : σ ⊸ τ

(λ) Γ, !x : σ̂ ⊢! M : τ
Γ ⊢! λ!x.M : σ̂ ⊸ τ

(λ!)

Γ ⊢! M : σ
U(Γ) ⊢! M : U(σ) (Inst)

Structural-rules:

Γ ⊢! M : σ x /∈ dom(Γ)
Γ, x : τ ⊢! M : σ

(weak) σ ∼ ω
Γ ⊢! M : σ

(ω)

where
!(Γ) means that all variables in Γ are banged (Γ is possibly empty);
by a slight abuse of notation

!̂u(Γ, x : τ) = !̂u(Γ), !x : !̂u(τ) and


!̂u(τ) =!uτ if τ /∈ T̂ ype!

!̂u(!vτ) =!⟨u,v⟩τ

!̂u(τ̂ ∧ σ̂) = !̂u(τ̂) ∧ !̂u(σ̂);
!̂[ϵ/i](Γ, !x : τ) = !̂[ϵ/i](Γ), !x : τ [ϵ/i];⋂

!(Γ1, Γ2) means that each variable in the intersection of dom(Γ1) and dom(Γ2) is
!-prefixed both in Γ1 and Γ2;
for Γ1, Γ2 such that

⋂
!(Γ1, Γ2), the environment Γ1 ∧ Γ2 is defined by:

if x : σ ∈ Γ1 or x : σ ∈ Γ2, then x : σ ∈ Γ1 ∧ Γ2
if !x : σ ∈ Γ1 and x ̸∈ dom(Γ2), or !x : σ ∈ Γ2 and x ̸∈ dom(Γ1), then !x : σ ∈ Γ1 ∧ Γ2
if !x : σ1 ∈ Γ1 and !x : σ2 ∈ Γ2, then !x : σ1 ∧ σ2 ∈ Γ1 ∧ Γ2;

U is a substitution, mapping type/index variables to types/indexes, respectively.

We will denote by Type!− and ⊢−
! the set of types without ω and the type system without the

ω-rule, respectively.
The type system ⊢EAL is obtained by giving up the rule (!-Elim) and restricting the rules of
⊢! to λ-terms in ΛEAL.

Some comments and remarks on the above definitions are in order:

TYPES 2020
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The type connective ∧ is neither commutative nor idempotent nor associative.
The notion of type equivalence ∼ defined above for the system of Definition 6 is a sharp
restriction of the usual type equivalence on intersection types, cf. [8]. The traditional
rule does not hold in the involution model of Section 3.
Not all terms of Λ! can be typed in ⊢−

! , i.e. without the ω-rule, e.g.
⊢! (λ!x.x!x)(λ!x.x!x) : ω ⊢! λ!x!y.(λ!z.z)(xy) : (α ⊸ ω) → (α ⊸ ω).
The former is not normalizing, while in the latter pattern matching fails and hence it
does not have a strong normal form. Notice however that the type which can be assigned
to it records the fact that the two variables can be applied. The meaningfulness of such
types is the reason for weakening the traditional definition of type equivalence ∼ as in the
system of Definition 6. The issue is rather intricate and will be taken up in Section 4.2.2.
Rule (Inst) could be made redundant by allowing arbitrary types in rule (Var) and
arbitrary indices in rule (!Intro).
One could consider also second or higher order (possibly recursive) type systems. Their
typing strength is subsumed by the ∧-rules.

A relevant class of types is that of binary types, which, as we will see in Section 3.1, arise
naturally from specifications of partial involutions:

▶ Definition 7.
A type τ ∈ Type! is binary if each type variable appears at most twice in τ .
A judgement Γ ⊢! M : τ is binary if each type variable occurs at most twice in it.

A slight modification of Theorem 30 [11] allows to prove that:

▶ Proposition 8. If Γ ⊢! M : τ is derivable, then there exist a binary judgement Γ′ ⊢! M : τ ′

and a substitution U such that U(Γ′) = Γ and U(τ ′) = τ .

2.1 Abstraction Algorithm
The abstraction algorithm for mapping terms of the λ!-calculus into the linear combinatory
algebra CL! is a refinement of the standard abstraction algorithm, but this needs to be
carefully spelled out so as to factor out as an abstraction algorithm also from λEAL to
CLEAL.

▶ Definition 9 (Abstraction Algorithms A!, AEAL).
Let Λ!

CL denote the set of terms of the λ!-calculus obtained by taking combinators as the
constants of the calculus. We define A! : Λ!

CL → CL! as in Figure 1, where # denotes
the modality ! or no modality.
Let ΛEAL

CL be the set of λEAL-terms obtained by taking CLEAL-combinators as constants.
We define AEAL : ΛEAL

CL → CLEAL as the restriction of A! to terms in ΛEAL
CL .

Vice versa, we denote by ( )λ : CL! → Λ! the natural mapping of a CL-term into a
λ-term obtained by replacing, in place of each combinator, the corresponding Λ!-term as
follows:

(B)λ = λxyz.x(yz) (C)λ = λxyz.(xz)y (I)λ = λx.x (K)λ = λxy.x

(W)λ = λx!y.x!y!y (D)λ = λ!x.x (δ)λ = λ!x.!!x (F)λ = λ!x!y.!(xy).
The following theorem justifies the above definition. For ease of readability we will often
use the notation λ∗#x1 . . . #xn.M , for M ∈ CL!, to denote A!(λ#x1 . . . #xn.M), where #
stands for either the modality ! or no modality (see [18] for more details).
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A!(M)

=



x if M ≡ x

Comb if M ≡ Comb
I if M ≡ λx.x

F(!I) if M ≡ λ!x.!x
D if M ≡ λ!x.x

Kc if M ≡ λx.c

Ky if M ≡ λx.y

C(A!(λx.M1))A!(M2) if M ≡ λx.M1M2 and x ∈ F V (M1)
BA!(M1)A!(λx.M2) if M ≡ λx.M1M2 and x ∈ F V (M2)
K(A!(M1)A!(M2)) if M ≡ λx.M1M2 and x ̸∈ F V (M1M2)
A!(λ#x.A!(λ#y.M1)) if M ≡ λ#x.λ#y.M1

W(B(CA!(λ!x.M1))(A!(λ!x.M2))) if M ≡ λ!x.M1M2 and x ∈ FV (M1), x ∈ FV (M2)
BA!(M1)A!(λ!x.M2) if M ≡ λ!x.M1M2 and x ̸∈ F V (M1), x ∈ F V (M2)
CA!(λ!x.M1)A!(M2) if M ≡ λ!x.M1M2 and x ∈ F V (M1), x ̸∈ F V (M2)
F!(λx.A!(M1)) if M ≡ λ!x.!M1 and x occurs once in M1 and O!(M1)
WA!(λ!y.λ!x.!M1[y/x1]) if M ≡ λ!x.!M1[x1], x occurs in M1 more than once

and x1 is the leftmost occurrence of x in M1 and O!(M1)
B(F(!A!(λ!x.M1)))δ if M ≡ λ!x.!M1 and ¬O!(M1)
A!(M1)A!(M2) if M = M1M2

!A!(M1) if M =!M1

F AIL otherwise

Figure 1 The Abstraction Algorithm A! : Λ!
CL → CL!.

▶ Theorem 10 (Soundness of the Abstraction Algorithms A! and AEAL).
Let M ∈ CL!, let #M1, . . . , #Mn ∈ Λ!, n ≥ 0, then
(λ∗#x1 . . . #xn.M)A!(#M1) . . . A!(#Mn) →∗

! M [A!(M1)/x1, . . . , A!(Mn)/xn] .

Let M ∈ CLEAL, let #M1, . . . , #Mn ∈ ΛEAL, n ≥ 0, then AEAL(M) ∈ ΛEAL and
moreover:
(λ∗#x1 . . . #xn.M)AEAL(#M1) . . . AEAL(#Mn) →∗

! M [AEAL(M1)/x1, . . . , AEAL(Mn)/xn] .

The abstraction algorithm in Fig. 1 is implemented in Λ-symsym, see Section 4.

3 Game Semantics for Combinatory Logics and λ-calculi

In this section, we present the game theoretic semantics of the linear combinatory logic CL!,
and hence of its sublogic CLEAL, in terms of partial involutions. Then, via the abstraction
algorithm, we obtain a game semantics for terms in Λ! and ΛEAL. Finally, we present two
algorithms, I2T and T 2I, which relate schematic representations of partial involutions and
types.

We start by introducing the model of partial involutions, I, originally defined by Abramsky
in [3] in order to study reversible computations, and studied in [12, 11, 18]. The notion of
application on this model amounts to the categorical trace on a subcategory of the category
of relations, introduced in [23] (see also [2]).

▶ Definition 11 (The Model of Partial Involutions, I).
TΣ, the language of moves, is defined by the signature Σ0= {ϵ}, Σ1 = {l, r}, Σ2 = {⟨ , ⟩}
(where Σi is the set of constructors of arity i); terms r(t) are output words, while terms
l(t) are input words (often denoted simply by rt and lt);
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I is the set of partial involutions over TΣ, i.e. the set of all partial functions f : TΣ ⇀ TΣ
such that f(t) = t′ ⇔ f(t′) = t;
the operation of replication is defined by !f = {(⟨t, t1⟩, ⟨t, t2⟩) | t ∈ TΣ ∧ (t1, t2) ∈ f};
the notion of linear application is defined by f · g = frr ∪ (frl; g; (fll; g)∗; flr), where
fij = {(t1, t2) | (i(t1), j(t2)) ∈ f}, for i, j ∈ {r, l} (see diagram below), where “;” denotes
postfix composition of relations.

in // •
frr //

frl

��

• // out

•
g // •

fll

oo

flr

OO

▶ Proposition 12 ([3]). I is closed under !-replication and linear application.

Next we give the notion of schematic specification of the graph of a partial involution,
which was introduced in [18] and recall some of its main properties. Schematic specifications
induce a substructure of I which is still closed under application and replication, and it is
sufficient to interpret all combinators, see [18] for full details.

▶ Definition 13 (Schematic Specification). Let TΣ[Var ] denote the set of terms generated by
the signature Σ \ {ϵ} starting from a set of variables Var , where we distinguish between term
variables x, y, . . . and index variables i, j, . . ., i.e.:
(TΣ[Var ] ∋) t ::= x | y | . . . | lt | rt | ⟨u, t⟩ where u ::= ϵ | i | j | . . . | lu | ru | ⟨u, v⟩ .

A specification P of a partial involution is a (possibly infinite) irreflexive set of pairs
{t1 ↔ t′

1, t2 ↔ t′
2, . . .}, where:

(i) ti, t′
i ∈ TΣ[Var ];

(ii) a single pair ti ↔ t′
i represents both (ti, t′

i) and (t′
i, ti);

(iii) in any pair ti ↔ t′
i exactly one term variable appears, once in ti and once in t′

i;
(iv) for any pairs ti ↔ t′

i, tj ↔ t′
j, ti is not an instance of tj.

Schematic specifications generate graphs of partial involutions as follows:

▶ Definition 14 (G). Given a schematic specification P , the set G(P ) is the symmetric
closure of the set {(U(t1), U(t2)) | (t1 ↔ t2) ∈ P ∧ U : TΣ[Var ] → TΣ}.

The following lemma follows immediately from the above definitions:

▶ Lemma 15. If P is a specification, then G(P ) is the graph of a partial involution on TΣ.

Not all partial involutions are generated by specifications, e.g. the relation {rϵ ↔ lϵ} is
trivially not induced by any specification.

A notion of composition on specifications, which corresponds to composition on partial
involutions can be defined as follows:

▶ Definition 16 (Composition of Specifications). Let P, P ′ be specifications. We define

P ; P ′ = {(t, t′) | ∃(t1, t2) ∈ P, (t′
1, t′

2) ∈ P ′, U. (U = U(t2, t′
1) ∧ t = U(t1) ∧ t′ = U(t′

2))} ,

where U(t2, t′
1) is the most general unifier of t2 and t′

1.

This definition essentially amounts to composition in Clause Algebras, as in [19].
The above definitions permits to define a notion of application between specifications,

P · P ′, which mimics the one between partial involutions in Definition 11.
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[[B]]I = {r3x ↔ lrx , l2x ↔ rlrx , rl2x ↔ r2lx}
[[I]]I = {lx ↔ rx}
[[C]]I = {l2x ↔ r2lx , lrlx ↔ rlx , lr2x ↔ r3x}
[[K]]I = {lx ↔ r2x}
[[F]]I = {l⟨i, rx⟩ ↔ r2⟨i, x⟩ , l⟨i, lx⟩ ↔ rl⟨i, x⟩}
[[W]]I = {r2x ↔ lr2x , l2⟨i, x⟩ ↔ rl⟨li, x⟩ , lrl⟨i, x⟩ ↔ rl⟨ri, x⟩}
[[δ]]I = {l⟨⟨i, j⟩, x⟩ ↔ r⟨i, ⟨j, x⟩⟩}
[[D]]I = {l⟨ϵ, x⟩ ↔ rx}
[[MN ]]I = [[M ]]I · [[N ]]I
[[!M ]]I = ![[M ]]I

Figure 2 Game Semantics for CL!.

▶ Lemma 17 ([18]). Let P, P ′ be specifications. Then
(i) G(P ; P ′) = G(P ); G(P ′);
(ii) G(P · P ′) = G(P ) · G(P ′).

One can easily check that:

▶ Lemma 18 ([18]). The substructure of I induced by schematic specifications is closed
under application and replication.

Now we are in the position of giving the interpretation in I of CL!, by defining the schematic
specifications of the graphs of the combinators.

▶ Definition 19 (Game Semantics of CL!). The combinatory logic CL! is interpreted in I as
in Figure 2, where we use the abbreviation lnt and rnt for the terms l . . . l︸ ︷︷ ︸

n

t, and r . . . r︸ ︷︷ ︸
n

t.

In following proposition for (i) see [3], for (ii) see [11].

▶ Proposition 20.
(i) I is a model of CL!, and hence of the combinatory sublogic CLEAL.
(ii) I is a model of all the reduction rules of Λ!, but the ξ-rules.

Using the semantics for CL!-combinators defined in Figure 2, and the abstraction al-
gorithm described in Section 2.1, one can derive the partial involution corresponding to a
given λ-term, by repeatedly applying our implementation of linear application on involutions
(see Appendix A). However, not all interpretations of CL!-combinators are partial involutions
with finite specifications, since graphs of finite specifications are not closed under linear
application. E.g. the fixed point combinator (λ∗!x!y.y!(x!y!y!x))!(λ∗!x!y.y!(x!y!y!x)) has an
infinite specification. This is taken care of in Λ-symsym by outputting the stream of pairs
in the partial specification.

3.1 Correspondence Algorithms, I2T , T 2I
Here we present the two algorithms, I2T and T 2I, which relate schematic representations of
partial involutions and types in Type!. The first algorithm, given a schematic specification of
a partial involution, yields a binary type, the latter, given a binary type, provides a schematic
specification of a partial involution. The two transformations are one inverse of the another
over suitable domains of schematic specifications and types.
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We begin by explaining how the algorithm I2T works. First of all, we need the following
build_type_tree( ) function, in order to build a skeleton type tree from a term t ∈ TΣ[V ar].
The function definition is syntax driven:

build_type_tree(t)

=



αx if t ≡ x

build_type_tree(t′) → _ if t ≡ lt′

_ → build_type_tree(t′) if t ≡ t′

!ubuild_type_tree(t′) if τ ≡ ⟨u, t′⟩
and u does not contain l/r constructors

build_type_tree(⟨u′, t′⟩) ∧ _ if t ≡ ⟨u, t′⟩ and l is the leftmost l/r constructor
in u and u′ is obtained from u by erasing it

_ ∧ build_type_tree(⟨u′, t′⟩) if t ≡ ⟨u, t′⟩ and r is the leftmost l/r constructor
in u and u′ is obtained from u by erasing it

where the underscore characters (_) above stand for “missing parts” of the resulting type
tree. Such holes will be (hopefully) filled in by successive unifications, as explained below.

Hence, for each rule ti ↔ t′
i (for i = 1, . . . , n) of a given specification, we compute the

two (partial) types build_type_tree(ti) and build_type_tree(t′
i). Finally, we try to unify

all such partial types, over all rules. If we succeed, we infer a type representing the original
partial specification; otherwise, we fail. Notice that the possible final type may still contain
“holes”. E.g. partial specifications of erasing terms do not exhibit any rule for the variable
which is erased.

Due to the peculiar syntax of types in Type!, unification of types is not a plain unification
à la Robinson. Indeed, we have subcases which may need to spawn ∧-constructors in order to
instantiate new instances of some types. For instance, a !-subtype like !uσ may need to spawn
new instances of !uσ, becoming !u′σ′∧!u′′σ′′ ∧ . . ., in order to unify against another type. In
our implementation, we implement such spawnings in order to ease the unification process as
much as possible. At the end there can be some leftovers of those spawning activities; thus,
we implement a sort of “garbage collector” which takes care of those dummy ∧’s, before
returning the final type-candidate to the user.

Another subtle issue comes from the fact that the order in which the pairs of the
specification are processed may imply success or failure in the unification process (because
the spawning of ∧-constructors must trigger at the right moment). Hence, we restart the
procedure until a type is found, permuting in all possible ways the pairs in the specification.

Finally, the type synthesis algorithm may fail, totally or partially. Total failure can be
easily detected, since the algorithm returns Ω, meaning that it was not able to build even
a partial skeleton. On the other hand, partial failure occurs when the algorithm does not
succeed in recovering a complete type tree from the partial specification, i.e., there remain
some “holes” to be filled in. Such holes are marked by placeholders of the form Ωi, where i

is some integer index. Such Ωi’s correspond to the underscore characters generated by the
build_type_tree() function above which have not been instantiated by the type unification
algorithm. We could safely replace them with a plain Ω, since the type ω is a wild card, but
we do not make this choice in the web tool, see Section 4.2.2.

The other way round is dealt with by the algorithm T 2I. Here the input can be any
type and the output is a specification of a symmetric relation; if the input type is binary,
then the result is the specification of a partial involution. The algorithm processes all type
variables occurring in a given type by means of the function var_type2PI, which produces
a list L of partial specification terms. If the type is binary the list has at most length 2. The
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partial specification rules for that type variable are obtianed by combining in all possible
ways the terms of L. Repeating this procedure for all type variables of a type, we recover
the corresponding partial specification. We give only var_type2PI:

var_type2P I(α, τ)

=



[xα] if τ ≡ α

l(var_type2P I(α, τ ′)) + +
r(var_type2P I(α, τ ′′)) if τ ≡ τ ′ → τ ′′

and α ∈ fv(τ ′), α ∈ fv(τ ′′)
l(var_type2P I(α, τ ′)) if τ ≡ τ ′ → τ ′′

and α ∈ fv(τ ′) \ fv(τ ′′)
r(var_type2P I(α, τ ′′)) if τ ≡ τ ′ → τ ′′

and α ∈ fv(τ ′′) \ fv(τ ′)
add_index(u, var_type2P I(α,

∧n

i=1!vi τi)) if τ ≡
∧n

i=1!<u,vi>τi

compose_index(l, var_type2P I(α, τ ′)) + +
compose_index(r, var_type2P I(α, τ ′′)) if τ ≡ τ ′ ∧ τ ′′

and α ∈ fv(τ ′), α ∈ fv(τ ′′)
and ! indices in τ have different π1’s

compose_index(l, var_type2P I(α, τ ′)) if τ ≡ τ ′ ∧ τ ′′

and α ∈ fv(τ ′) \ fv(τ ′′)
and ! indices in τ have different π1’s

compose_index(r, var_type2P I(α, τ ′′)) if τ ≡ τ ′ ∧ τ ′′

and α ∈ fv(τ ′′) \ fv(τ ′)
and ! indices in τ have different π1’s

add_index(u, var_type2P I(α, τ ′)) if τ ≡!uτ ′ and α ∈ fv(τ ′)
[] otherwise

where:
fv(τ) is the set of free variables of type τ ;
in the expression τ ≡

∧n
i=1 τi the right-hand side term denotes the atomic components of

τ ;
++ is the list concatenation operator;
the functions l() and r(), when applied to a list (i.e., the return type of var_type2PI()),
distribute, respectively the l and r constructors at the head of all elements of the list, i.e.,
each t ∈ L will be substituted by lt (resp. rt);
compose_index(c, L) (where c is either l or r) is a function distributing the constructor
c to all the pairs of the list L, i.e., each ⟨u, t⟩ ∈ L will be substituted by ⟨cu, t⟩;
add_index(u, t) is a function distributing the index u to all elements of the list L, i.e.
each tinL will be substituted by ⟨u, t⟩.

Notice that in dealing with types whose outermost constructor is ∧, we distinguish between
the cases where all atomic components have a common prefix in their !’s, denoting that
promotions have been carried after the ∧ operations, and the cases where there is no such
common prefix, where the ∧-constructor was indeed the last to be used in producing the type.

It is easy to check that:

▶ Lemma 21.
1. For any specification P of a partial involution, I2T (P ) is a binary type.
2. For any binary type τ , T 2I(τ) is a specification of a partial involution.

TYPES 2020



7:12 Λ-Symsym

The two transformations, I2T and T 2I, are the inverse of one another in the sense:

▶ Conjecture 22.
1. Let M ∈ Λ! be a closed term which reduces to a term in strong normal form, without the

use of the ξ-rules, then: ⊢ M : I2T ([[M ]]I) and T 2I(I2T ([[M ]]I)) = [[M ]]I .

2. Let τ be a binary type, then I2T (T 2I(τ)) = τ .
When a closed term M ∈ Λ! needs the ξ-rules to reduce to strong normal form its semantics
as a partial involution does not necessarily yield an immediately meaningful type. We will
discuss this issue further in Section 5.

Conjecture 22 applies also when we restrict to terms of ΛEAL.

4 The Web Tool Λ-symsym

In the following, we will illustrate how to use the web tool, Λ-symsym, available at
http://158.110.146.197:31780/automata/, in order to experiment with the algorithms
provided in the previous section. We will provide excerpts from various sessions illustrating
how to convert λ!-terms to combinators, from the latter to partial involutions, and finally
to types. Moreover, we will also show how to infer a partial involution from a type. The
web tool is implemented in the language Erlang, [17]. We chose this language because of
its rich pattern matching features, its flexible constructors such as the set data type and for
the large number of libraries which allow for a rapid prototyping. The fine details of the
implementation appear in [13]

4.1 Encoding λ-terms, partial involutions and types
First we give the syntax representation; the following tables contain the correspondences
between the syntax we use with “pencil and paper”, the actual input syntax and the internal
representation used by our algorithms.

λ-terms
On the paper Input syntax Internal representation
x X {var, "X"}
C C {comb, C}
MN M@N {lapp, M, N}
λx.M l*X.M {abs, {var, "X"}, M}
λ!x.M l*!X.M {abs_b, {var, "X"}, M}
!M !M {bang, M}

Partial Involutions
On the paper Input syntax Internal representation
ϵ e e
x X {var, "X"}
lM lM {l, M}
rM rM {r, M}
⟨M, N⟩ <M,N> {p, M, N}
M ↔ N M <-> N [{M,N},{N,M}]

Types
On the paper Input syntax Internal representation
α A {var, "A"}
α −→ β A -> B {map, A, B}
α ∧ β A /\ B {cap, A, B}
!iα !I M {bang, I, M}

http://158.110.146.197:31780/automata/
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Figure 3 The interface of the web tool.

4.1.1 The web interface
Figure 3 depicts the web interface we can use to call the algorithms. It has 4 components:
1. a green drop-down menu allowing the user to choose the function to execute (e.g.,

lambda2type() in the general setting, as it appears in Figure 3); it provides a number of
functions for the general case, Λ! and for the ΛEAL case, namely:

(i) the function lambda2type() which given a term produces its combinatory logic
translation, its semantics as a specification of a partial involution, and the type
corresponding to the specification;

(ii) the function show_partial_involution which produces a specification of a partial
involution, given a type;

(iii) the function show_type which yields a type given a partial involution;
(iv) more functions which have not been discussed in this paper for dealing with polyno-

mial terms, and Hindley-Milner Types;
2. a text area where the user can write the argument to pass to the selected function;
3. another text area where the result will appear after clicking the button “Compute”;
4. a red button (“Compute”) to start the computation.

4.2 Sessions
4.2.1 Strictly Linear Combinators in I are a λ-algebra
One can see that the partial involutions corresponding to the two terms in input are equal.
This is one of the many equations which need to be checked to show that the ξ rule holds.

Input:
l*X.l*Y.l*Z.X@(Y@Z)
Combinators abstraction:
((C((BB)((BB)I)))((C((BB)I))I))
Partial involution rules:
--- begin ---
l(r(_X7)) <-> r(r(r(_X7)))
l(l(_X7)) <-> r(l(r(_X7)))
r(l(l(_X7))) <-> r(r(l(_X7)))
--- end ---
Principal type:
((_X10 -> _X9) -> ((_X8 -> _X10) -> (_X8 -> _X9)))

Input:
B
Partial involution rules:
--- begin ---
r(r(r(_X1))) <-> l(r(_X1))
l(l(_X1)) <-> r(l(r(_X1)))
r(l(l(_X1))) <-> r(r(l(_X1)))
--- end ---
Principal type:
((_X4 -> _X3) -> ((_X2 -> _X4) -> (_X2 -> _X3)))

4.2.2 The ξ-rule fails for erasers
The following example shows that the ξ-rule fails in I when terms erase variables. The
session on the right hand side shows that erased subterms might still leave an echo in the
partial involution. This is the reason why we have not taken the standard ω-equivalence
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as for intersection types. Please bear in mind that, when an inferred type features some
_Omegai variables (for i=1,2,3...), these variables stand for placeholders for any type.
They are “holes” in the type tree structure which arise since partial involutions do not
provide unnecessary information.

Input:
l*X.l*Y.((l*Z.I)@(X@Y))
Combinators abstraction:
((B(B(KI)))((C((BB)I))I))
Partial involution rules:
--- begin ---
r(r(l(_X4))) <-> r(r(r(_X4)))
l(l(_X4)) <-> r(l(_X4))
--- end ---
Principal type:
((_X5 -> _Omega3) -> (_X5 -> (_X6 -> _X6)))

Input:
l*X.l*Y.l*Z.Z
Combinators abstraction:
(K(KI))
Partial involution rules:
--- begin ---
r(r(l(_X2))) <-> r(r(r(_X2)))
--- end ---
Principal type:
(_Omega1 -> (_Omega2 -> (_X3 -> _X3)))

4.2.3 The ξ-rule fails when modalities are erased
As was the case in the above example, also in this case there remains an echo in the partial
involution when modalities are erased.

Input:
l*!X.D@!X
Combinators abstraction:
((BD)(F!(I)))
Partial involution rules:
--- begin ---
l(<e, _X1>) <-> r(_X1)
--- end ---
Principal type:
((!e _X2) -> _X2)

Input:
l*!X.D@!(D@!X)
Combinators abstraction:
((BD)((B(F!(((BD)(F!(I))))))d))
Partial involution rules:
--- begin ---
l(<<e, e>, _X1>) <-> r(_X1)
--- end ---
Principal type:
((!<e, e> _X2) -> _X2)

4.2.4 The ξ-rule fails in general
The following sessions illustrate that the ξ-rule fails in the encoding of standard λ-calculus
via application in the Kleisli category. This issue will be briefly discussed in Section 5.

Input:
l*!X.(l*!Y.Y@!Y)@!(X@!X)
Combinators abstraction:
((B(W((C((BB)D))(F!(I)))))((B(F!((W((C((BB)D))(F!(I)))))))d))
Partial involution rules:
--- begin ---
l(<<l(e), l(e)>, r(r(_X15))>) <-> r(_X15)
l(<<_X15, l(e)>, l(<_X16, _X17>)>) <-> l(<<_X15, r(_X16)>, _X17>)
l(<<l(e), l(e)>, r(l(<_X15, _X16>))>) <-> l(<<r(_X15), l(e)>, r(_X16)>)
--- end ---
Principal type:
(((!<e, e> (_Omega6 -> ((!_X17 _X18) -> _X21))) /\ (!<_X22, e> ((!_X19 _X20) -> _Omega10))) /\

/\ (((!<_X22, _X19> _X20) /\ (!<_X17, e> (_Omega4 -> _X18))) /\
/\(!<_X22, e> ((!_X19 _X20) -> _Omega10))))

-> _X21

but

Input:
l*!X.X@!X@!(X@!X)
Combinators abstraction:
(W((C((BB)(W((C((BB)D))(F!(I))))))((B(F!((W((C((BB)D))(F!(I)))))))d)))
Partial involution rules:
--- begin ---
r(_X14) <-> l(<l(l(e)), r(r(_X14))>)
l(<l(l(e)), l(<_X14, _X15>)>) <-> l(<l(r(_X14)), _X15>)
l(<l(l(e)), r(l(<_X14, _X15>))>) <-> l(<r(<_X14, l(e)>), r(_X15)>)
l(<r(<_X14, l(e)>), l(<_X15, _X16>)>) <-> l(<r(<_X14, r(_X15)>), _X16>)
--- end ---
Principal type:
(((!e ((!_X20 _X21) -> ((!_X17 _X23) -> _X24))) /\ (!_X20 _X21))/\

/\ ((!<_X17, e> ((!_X18 _X19) -> _X23)) /\ (!<_X17, _X18> _X19))) -> _X24
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4.2.5 Church Binary Words in the λEAL-calculus
This is the encoding of Church binary word < 0, 0, 1 > as would appear in [6].

Input:
l*!X.l*!Y.!(l*Z.X@(X@(Y@Z)))
Combinators abstraction:
((BF)(W((BF)(F!(((C((BB)((BB)((BB)I))))((C((BB)((BB)I)))((C((BB)I))I))))))))
Partial involution rules:
--- begin ---
l(<l(_X9), r(_X10)>) <-> r(r(<_X9, r(_X10)>))
l(<l(_X9), l(_X10)>) <-> l(<r(_X9), r(_X10)>)
l(<r(_X9), l(_X10)>) <-> r(l(<_X9, r(_X10)>))
r(r(<_X9, l(_X10)>)) <-> r(l(<_X9, l(_X10)>))
--- end ---
Principal type:
(((!_X11 (_X15 -> _X14)) /\ (!_X11 (_X16 -> _X15))) -> ((!_X11 (_X12 -> _X16)) -> (!_X11 (_X12 -> _X14))))

5 Final Remarks

In this paper we have introduced the web tool Λ-symsym which implements various
algorithms for computing the game semantics, in terms of involutions, of λ!- and λEAL-terms
and their types. Using Λ-symsym we have uncovered many peculiarities of game semantics.
The fact that in Abramsky’s model, I, the ξ-rule fails in the general case, but not in the
strictly linear case is perhaps the most remarkable one. Actually the portal Λ-symsym
makes available algorithms, similar to the ones introduced in this paper, for dealing with
the λLAL-calculus, introduced by the authors in [18], which captures in our framework
the polynomial calculi underpinning Light Linear Logic, cf [20, 26]. Furthermore, partial
involutions easily generalize to symmetric partial relations, see [18]. In this broader setting
one can model ML-types. Λ-symsym provides algorithms also for this case.

We list, in a cursory manner, a number of intriguing issues deserving future attention.
There is a plausible duality between types in ⊢! and partial involutions, which should
build up to a framework such as the one in [14, 1] for domain theory and intersection
types, cf [9].
Conjecture 22 appears to be very difficult to prove in full generality. A proof should
relate two dual alternative ways of carrying out unification. In analogy to Abramsky’s
terminology, we could call the wave-style traditional unification and the particle-style
unification, which goes on when linearly applying two specifications of involutions.
The failure of the ξ-rule in the model I uncovers the fact that sometimes, rather than
computing the most general unifier between the corresponding types, linear application
of partial involutions stops short of that and just computes some sort of least general
ancestor of the type. This has not been fully appreciated yet. In this respect, exploring
the connections of the present work with Girard’s Clause Algebras and the Execution
Formula as in [19] should prove fruitful.
The λ!-calculus is worthwhile investigating per se, but many well established notions need
to be generalized, most notably normal forms, because of stuck terms. The paper [21]
should provide some suggestions.
J.-Y. Girard in [20] introduced a polynomial time set-theory, which bears some relation
to the one of Fitch as presented in [25], which we have studied in [22]. The experience
gathered with λLAL-calculus should improve our understanding of its applicability.

In conclusion we think that the fine structure of game semantics of the λ-calculus needs
more investigation. This could be quite rewarding, provided more concrete experiments are
carried out. Λ-symsym is our contribution to making them a little more feasible.
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A An Erlang implementation of application between specifications of
partial involutions

The definition of linear application between specifications of partial involutions follows the
definition in [3], namely the flow diagram in Definition 11 (see Section 3). Given f, g,
f · g = frr ∪ frl; g; (fll; g)∗; flr, where fij = {(u, v) | (i(u), j(v)) ∈ f} for i, j ∈ {l, r}. Hence,
we must begin by implementing a function extract, which infers l- and r- rewriting rules
from the partial involution represented by the list L, according to Op1 and Op2:

extract(L,Op1,Op2) ->
case L of

[] -> [];
[{e,_}|T] -> extract(T,Op1,Op2);
[{_,e}|T] -> extract(T,Op1,Op2);
[{{p,_,_},_}|T] -> extract(T,Op1,Op2);
[{_,{p,_,_}}|T] -> extract(T,Op1,Op2);
[{T1,T2}|T] -> {O1,S1}=T1,

{O2,S2}=T2,
if

(O1==Op1) and (O2==Op2) -> [{S1,S2} | extract(T,Op1,Op2)];
true -> extract(T,Op1,Op2)

end
end.

Thus, if F represents a partial involution, then extract(F,r,l) will compute Frl.
Then, we define the core function composeRuleList which composes rule R1→R2 with

all the rules in L (exploiting the natural unification and substitution functions):

composeRuleList(R1,R2,L) ->
case L of

[] -> [];
[{S1,S2}|T] -> {ExitStatus,MGU}=unify(R2,S1,[]),

if
(ExitStatus==ok) -> [{subListTerm(MGU,R1),subListTerm(MGU,S2)}

| composeRuleList(R1,R2,T)];
true -> composeRuleList(R1,R2,T)

end
end.
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In order to avoid possible clashes between variable names, the alpha function defined
below replaces all variables in Ruleset1 which also occur in Ruleset2 with freshly generated
ones:

alpha(Ruleset1,Ruleset2) ->
Vars1=ruleListVars(Ruleset1),
Vars2=ruleListVars(Ruleset2),
FreshSubst=separateVars(Vars1,Vars2),
subListRuleset(FreshSubst,Ruleset1).

alpha is used fruitfully in the definition of compose which computes all possible chainings
between rewriting rules of L1 and L2:

compose(L1,L2) ->
L1_Fresh=alpha(L1,L2),
compose_fresh(L1_Fresh,L2).

compose_fresh(L1_Fresh,L2) ->
case L1_Fresh of

[] -> [];
[H1|T1] -> {R1,R2}=H1,

composeRuleList(R1,R2,L2)++compose_fresh(T1,L2)
end.

The function star capitalizes on the definition of compose, in order to implement the
computation of H; (F; G)∗:

star(H,F,G) ->
S=compose(H,F),
if

S==[] -> H;
true -> T=compose(S,G),

if
T==[] -> H;
true -> H++star(T,F,G)

end
end.

At this point, the implementation of linear application, according to Definition 11 of
Section 3, is straightforward:

lapp(F,G) ->
FRR=extract(F,r,r),
FRL=extract(F,r,l),
FLL=extract(F,l,l),
FLR=extract(F,l,r),
FRL_G=compose(FRL,G),
FRL_G_STAR=star(FRL_G,FLL,G),
FRR++compose(FRL_G_STAR,FLR).



Why Not W?
Jasper Hugunin !

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In an extensional setting, W types are sufficient to construct a broad class of inductive types, but
in intensional type theory the standard construction of even the natural numbers does not satisfy
the required induction principle. In this paper, we show how to refine the standard construction of
inductive types such that the induction principle is provable and computes as expected in intensional
type theory without using function extensionality. We extend this by constructing from W an internal
universe of codes for inductive types, such that this universe is itself an inductive type described by
a code in the next larger universe. We use this universe to mechanize and internalize our refined
construction.
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1 Introduction

In intensional type theory with only type formers 0, 1, 2, Σ, Π, W, Id and U, can the natural
numbers be constructed?

The W type [12] captures the essence of induction (that we have a collection of possible
cases, and for each case there is a collection of sub-cases to be handled inductively), and in
extensional type theory it is straightforward to construct familiar inductive types out of it,
including the natural numbers [6]. Taking the elements of the two-element type 2 to be Ô
and Ŝ, we define

Ñ = Wb:2(case b of {Ô 7→ 0, Ŝ 7→ 1}). (1)

(the tilde distinguishes the standard construction from our refined construction of the natural
numbers in Section 2)

However, as is well known [6, 10, 13, 14], in intensional type theory we cannot prove the
induction principle for Ñ without some form of function extensionality. The obstacle is in
the Ô case, where we end up needing to prove P f for an arbitrary f : 0 → Ñ, when we only
know P (x 7→ case x of {}).

Can this obstacle be avoided? The answer turns out to be yes; in this paper, we show
that refining the standard construction allows the natural numbers and many other inductive
types to be constructed from W in intensional type theory. 1

1 These results have been formalized in Coq 8.12 [17]: see the link to supplementary material in the top
matter of this article.
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Type-theoretic notations and assumptions

We work in a standard intensional type theory with dependent function types Πa:AB[a] (also
written ∀a:AB[a], (a : A) → B[a], non-dependent version A → B, constructed as (x 7→ y[x])
or (λx. y[x])), dependent pair types Σa:AB[a] (also written (a : A) × B[a], non-dependent
version A × B, constructed as (x, y), destructed as fst p, snd p), finite types 0, 1 (with
inhabitant ⋆), 2 (with inhabitants ff and tt, aliased to Ô and Ŝ when we are talking about
constructing the natural numbers), W types Wa:A B[a] (constructor sup af for a : A and
f : B[a] → Wa B[a]), identity types IdA x y (constructor refl, destruction of e : Id x y keeps
x fixed and generalizes over y and e), and a universe U. We define the coproduct A + B as∑

b:2 case b of {ff 7→ A, tt 7→ B}, and notate the injections as inl and inr.
Function extensionality is the principle that ∀x Id (f x) (g x) implies Id f g, and unique-

ness of identity proofs is the principle that IdId x y p q is always inhabited. We do not assume
either of these principles.

We require strict β-rules for all type formers, and strict η for Σ (that p = (fst p, snd p))
and Π (that f = (x 7→ fx)). For convenience we will also assume strict η for 1 (that u = ⋆).

2 Constructing N (for real this time)

We run into problems in the Ô case because we don’t know that f = (x 7→ case x of {}) for
an arbitrary f : 0 → Ñ. To solve those problems, we will assume them away. To construct
N, we will first define a predicate canonical : Ñ → U such that canonical(sup Ôf) implies
Id (x 7→ case x of {}) f . We then let N = Σx:Ñ canonical x be the canonical elements of Ñ
(with Ñ defined by Equation (1)). This predicate will be defined by induction on W, so we
can start out with

canonical(sup xf) = ? : U (x : 2, f : · · · → Ñ, may use canonical(f i) : U).

The obvious next thing to do is to split by cases on x : 2:

canonical(sup Ôf) = ? : U (f : 0 → Ñ, may use canonical(f i)),
canonical(sup Ŝf) = ? : U (f : 1 → Ñ, may use canonical(f i)).

We need canonical terms to be hereditarily canonical, that is, we want to include the
condition that all sub-terms are canonical. For the Ŝ case, thanks to the strict η rules for 1
and Π, the types canonical(f ⋆) and (i : 1) → canonical(f i) are equivalent; we can use
either one. This will be the only condition we need for the Ŝ case, so we can complete this
part of the definition:

canonical(sup Ŝf) = canonical(f ⋆).

The Ô case is the interesting one. The blind translation of “every sub-term is canonical”
is (i : 0) → canonical(f i), but this leads to the same problem as before: without function
extensionality we can’t work with functions out of 0. Luckily, we have escaped the rigid
constraints of the W type former, and have the freedom to translate the recursive condition
as simply 1. No sub-terms of zero, no conditions necessary!

canonical(sup Ôf) = ? : U (f : 0 → Ñ)

That is all well and good, but we can’t forget why we are here in the first place: we need
Id (x 7→ case x of {}) f . Luckily, there is a hole just waiting to be filled:

canonical(sup Ôf) = Id (x 7→ case x of {}) f.
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Ñ = Wb:2(case b of {Ô 7→ 0, Ŝ 7→ 1}) : U,

canonical : Ñ → U,

canonical(sup Ôf) = Id (x 7→ case x of {}) f,

canonical(sup Ŝf) = canonical(f ⋆),
(2)

N = Σx:Ñ canonical x : U, (3)
O = (sup Ô(x 7→ case x of {}), refl) : N, (4)
S = n 7→ (sup Ŝ(⋆ 7→ fst n), snd n) : N → N. (5)

Figure 1 The complete definition of N.

Induction

Now we are ready for the finale: induction for N with the right computational behavior.
Assume we are given a type P [n] which depends on n : N, along with terms ISO : P [O]

and ISS : ∀n:NP [n] → P [S n]. Our mission is to define a term recN : ∀n:NP [n]. Happily, the
proof goes through if we simply follow our nose.

We begin by performing induction on fst n : Ñ, and then case on Ô vs Ŝ, just like the
definition of canonical.

recN(sup Ôf, y) = ? : P [(sup Ôf, y)] (f : 0 → Ñ, y : Id (x 7→ case x of {}) f),
recN(sup Ŝf, y) = ? : P [(sup Ŝf, y)] (f : 1 → Ñ, y : canonical(f ⋆)).
(where we may make recursive calls recN(f i, y′) for any i and y′)

In the Ŝ case, f = (⋆ 7→ f ⋆) by the η rules for 1 and Π, and thus (sup Ŝf, y) = S (f ⋆, y).
We can thus define

recN(sup Ŝf, y) = ISS (f ⋆, y) (recN(f ⋆, y)).

The Ô case is again the interesting one, but it is only a little tricky. We know ISO :
P [(sup Ô (x 7→ case x of {}), refl)], and we want P [(sup Ô f, y)]. But since we have y :
Id (x 7→ case x of {}) f , this is a direct application of the eliminator for Id. We thus
complete the definition of recN with

recN(sup Ôf, y) = case y of {refl 7→ ISO}.

Examining the definitions, we can see that as long as we have strict η for Σ and strict
β for Id, recNO = ISO and recN(S n) = ISS n (recN n). Thus we have indeed defined the
natural numbers with the expected induction principle and computational behavior in terms
of the W type.

▶ Theorem 1. The natural numbers can be constructed in intensional type theory with only
type formers 0, 1, 2, Σ, Π, W, Id and U, such that the induction principle has the expected
computational behavior.

3 The General Case

Above, we have refuted a widely held intuition about the expressiveness of intensional type
theory with W as the only primitive inductive type. Once we know we can construct the
natural numbers, that we can construct lots of other inductive types is much less surprising.

TYPES 2020
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Given

a type P [n] depending on n : N, (6)
ISO : P [O], (7)
ISS : ∀n:NP [n] → P [S n], (8)

we have

recN : ∀n:NP [n],
recN(sup Ôf, y) = case y of {refl 7→ ISO},

recN(sup Ŝf, y) = ISS (f ⋆, y) (recN(f ⋆, y)),
(9)

recNO = ISO, (10)
recN(S n) = ISS n (recN n). (11)

Figure 2 Induction for N.

Nevertheless, for completeness we define below an internal type of codes for inductive
types along with the construction from W types of the interpretation of those codes. For
convenience, in this section we assume that we have not just one universe U but an infinite
cumulative tower of universes U0 : U1 : · · · : Ui : Ui+1 : . . . all closed under 0, 1, 2, Σ, Π, W,
and Id such that A : Ui implies A : Ui+1.

The end result is a universe of inductive types which is self-describing, or “levitating” in
the sense of [4].

3.1 Inductive Codes

We will let Codei : Ui+1 be the type of codes for inductive types in Ui, and implement it for
now as a primitive inductive type. In Section 3.4 we will show how to construct Code itself
from W.

To define Code, we adapt the axiomatization of induction-recursion from [7]. Thus Codei

is generated by the constructors

nil : Codei, nonind : (A : Ui) → (A → Codei) → Codei, ind : Ui → Codei → Codei.

Looking at Ui as the usual category of types and functions, a code A : Codei defines an
endofunctor F A : Ui → Ui defined by recursion on A by

Fnil X = 1, (12)
Fnonind(A,B) X = Σa:AF(B a) X, (13)
Find(Ix,B) X = (Ix → X) × FB X. (14)

▶ Example 2. We can define a code for the natural numbers as

“N” = nonind(2, b 7→ case b of {Ô 7→ nil, Ŝ 7→ ind(1, nil)}) : Code0.

Each code also defines a polynomial functor GA X = Σs:SA
(PA s → X), which is what is

used in the standard construction:
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Snil = 1 Pnil ⋆ = 0 (15)
Snonind(A,B) = Σa:AS(B a) Pnonind(A,B) (a, b) = P(B a) b (16)
Sind(Ix,B) = SB Pind(Ix,B) b = Ix + PB b. (17)
GA X = Σs:SA

(PA s → X) Ẽl A = Ws:SA
PA. (18)

The idea here is that SA collects up all the non-inductive data, and then PA counts the
number of inductive sub-cases.

There is an easy-to-define natural transformation ϵ : F ⇒ G, and it even has a left
inverse on objects, but without function extensionality ϵ does not have a right inverse
(roughly speaking, ϵ is not surjective); there are usually terms g : G X not in the image
of ϵ. This is exactly the problem we ran into in the case of the natural numbers: the map
(⋆ 7→ (x 7→ case x of {})) : 1 → (0 → X) is not surjective. (The above S, P , and ϵ roughly
correspond to Lemma 3 in [6])

The last component we need is AllA s : (Q : PA s → Uj) → Uj (for universe level j ≥ i),
the quantifier “holds at every position” (a refinement of ∀p, Q p):

Allnil ⋆ Q = 1, (19)
Allnonind(A,B)(a, b) Q = All(B a) b Q, (20)
Allind(Ix,B) b Q = (∀i, Q (inl i)) × AllB b (Q ◦ inr). (21)

Noting that snd(ϵ t) : P (fst(ϵ t)) → X enumerates the sub-terms of t : F X, we find
that All(Q ◦ snd(ϵ t)) lifts a predicate Q : X → Uj to a predicate over t : F X.

▶ Lemma 3. There is an equivalence r (à la Voevodsky, a function with contractible fibers)

r : F (Σx:XC x) ≃ Σ(t:F X) All(C ◦ snd(ϵ t)). (22)

Proof. Follows easily by induction on the code A. We use equivalences à la Voevodsky
as a concrete definition of coherent equivalences, which are the “right” way to define type
equivalence in the absence of UIP. ◀

3.2 The General Construction
We are finally ready to define the true construction of inductive types El : Code → Ui.
As with natural numbers, we define a “canonicity” predicate on Ẽl A, which says that “all
subterms are canonical, and this node is in the image of ϵ”. This translates as:

canonical(sup sf) = All(canonical ◦f) × (t : F (Ẽl A)) × IdG (Ẽl A) (ϵ t) (s, f) : Ui, (23)

and thus we finally have

El A = Σx:Ẽl A canonical x. (24)

For the constructors, we expect to have intro : F (El A) → El A, which we define by

intro x = (sup (ϵ (fst (r x))), (snd(r x), fst (r x), refl)). (25)

using the equivalence r from Lemma 3 to split x : F (El A) into fst(r x) : F (Ẽl A) and
snd(r x) : All(canonical ◦ snd(ϵ fst (r x))).

TYPES 2020
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3.3 General Induction
When we go to define the induction principle for El A, we are given P : El A → Uj for some
j ≥ i and the induction step IS : ∀(x:F (El A)) All(P ◦ snd(ϵ x)) → P (intro x), and want to
define rec : ∀(x:El A)P x. The definition proceeds by induction on fst x:

rec(sup sf, (h, t, e)) = ? : P (sup sf, (h, t, e)) h : All(canonical ◦f) e : Id (ϵ t) (s, f),

and we have induction hypothesis H = p 7→ c 7→ rec(f p, c) : ΠpΠcP (f p, c). Next, we
destruct the identity proof e, generalizing over both h and H, leaving us with

rec(sup(ϵ t), (h, t, refl)) = ? : P (sup(ϵ t), (h, t, refl)),

for t : F (Ẽl A), h : All(canonical ◦ snd(ϵ t)), and H : ΠpΠcP (snd(ϵ t) p, c). The last step
to bring us in line with the definition of intro is to use the equivalence from Lemma 3 to
replace (t, h) with r x for some x : F (El A), leaving us with

rec(sup(ϵ (fst(r x))), (snd(r x), fst(r x), refl)) = ? : P (intro x)

and induction hypothesis H : ΠpΠcP (snd(ϵ (fst(r x))) p, c). We can then apply IS, but
that leaves us with an obligation to prove All(P ◦ snd(ϵ x)). Fortunately, it is easy to show
by induction on the code A that our hypothesis H is sufficient to dispatch this obligation.

This completes the definition of the induction principle, and it can be observed on concrete
examples like the natural numbers to have the expected computational behavior. We can also
prove a propositional equality Id (rec(intro x)) (IS x (rec ◦ snd(ϵ x))) witnessing the expected
computation rule, and observe on concrete examples that this witness computes to reflexivity.
The details of this construction have all been formalized in Coq.

3.4 Bootstrapping
In Section 3.1 we postulated the type Codei to be a primitive inductive type, which leads
to the question of whether the general construction we have proposed is really constructing
inductive types out of W or whether it is making sneaky use of the inductive structure of
Codei to perform the construction.

As a first observation, Codei : Ui+1 while El : Codei → Ui, thus Codei can’t appear as
data in El A: it is too big! However, this argument doesn’t show that we can completely
eliminate Codei from the construction.

Next, we observe that the inductive type Codei itself has a code “Codei” : Codei+1:

“Codei” = nonind((1 + Ui) + Ui, t 7→ case t of {
inl(inl ⋆) 7→ nil, (case nil)
inl(inr A) 7→ ind(A, nil), (case nonind)
inr Ix 7→ ind(1, nil), (case ind)

}).

Then we can propose to define Codei = El “Codei”, but this is a circular definition: we
define Codei by using recursion on Codei+1. What we really want, and in some ways should
be able to expect, is that El “Codei” computes to a normal form which no longer mentions
Code but is expressed purely in terms of W. We could then tie the knot by defining Codei to
be what El “Codei” will compute to, once we have defined El.
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There is just one minor, rather technical problem to resolve, which is that currently El
(which is defined by recursion on codes) gets stuck on El(case t of {. . .}) which is used to
branch on constructor tags; we are missing some sort of commuting conversion [9, section
10]. Fortunately, this problem is easy to work around by reifying the operation of branching
on constructor tags as part of Code. We add another constructor

choice : Codei → Codei → Codei, F choice(A,B) X = FA X + FB X (26)

which encodes the simple binary sum of functors, specializing the dependent sum of functors
nonind(2, b 7→ case b of {. . .}) (but with all proofs essentially the same). With this in hand,
we can define

“Codei” = choice(choice( (27)
nil, (case nil)
choice(

nonind(Ui, A 7→ ind(A, nil)), (case nonind)
ind(1, ind(1, nil)))), (case choice)

nonind(Ui, Ix 7→ ind(1, nil))). (case ind)

With this adjustment, the structure of the code is not hidden inside case, and the
computation of El “Codei” proceeds to completion without becoming stuck, resulting in
a term which does not mention Code at all. From there, we can define El such that
El “Codei” = Codei, as in [4] but with no invisible cables, just the W type.

▶ Theorem 4. In intensional type theory with type formers 0, 1, 2, Σ, Π, W, Id and an
infinite tower of universes Ui, we can construct terms Codei : Ui+1 and El : Codei → Ui

such that El A is an inductive type, and we can also construct terms “Codei” : Codei+1 such
that El “Codei” = Codei. Furthermore, Codei is not trivial: it contains codes for natural
numbers, lists, binary trees, and many other inductive types, including inductive types such
as W that have infinitary inductive arguments.

4 Discussion

4.1 Composition
Being codes for functors, one may ask if Codei is closed under composition of functors? As
with the codes for inductive-recursive types we have modified, without function extensionality
we do not appear to have composition (for similar reasons as considered in [8]). Indeed,
experiments suggest that the general construction of a class of inductive types closed under
composition of the underlying functors essentially requires function extensionality. Even
worse, to get definitional computation rules for the resulting inductive types, all our attempts
have required that transporting over funext(x 7→ refl) computes to the identity, a property
which not even cubical type theory [5] satisfies (it is satisfied, however, by observational type
theory [2]). Thus, we do not know how to combine a class of inductive types closed under
composition constructed from the W type as we have in Section 3 with the the principle of
Univalence [16] while maintaining good computational behavior.

We do however wish to emphasize that the construction in Section 3 (which is not closed
under composition) is completely compatible with Univalence, and could be implemented in
cubical type theory as long as an identity type with strict β rule is used.

TYPES 2020
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4.2 Canonicity
Despite being constructed from W types, our natural numbers enjoy the canonicity property
(that for every closed term n of type N, either n = O or n = S m for some closed m : N), at
least as long as 2 and Id enjoy canonicity (closed b : 2 implies b = Ô or b = Ŝ, and closed
e : Id x y implies e = refl and x = y). The trick is that when we have some representation
of zero, it looks like (sup Ôf, e), where e is a closed term of type Id (x 7→ case x of {}) f ,
and thus by canonicity for Id, this must be (sup Ô(x 7→ case x of {}), refl) = O.

However, in a situation like cubical type theory where function extensionality holds, Id
no longer enjoys canonicity, and neither does our construction of the natural numbers.

4.3 Problems
What are the problems with using this construction as the foundation for inductive types in
a proof assistant? While we have shown bare possibility, this is not an obviously superior
solution when compared to the inductive schemes present in proof assistants today.

The construction is complex, which has the possibility of confusing unification and other
elaboration algorithms. While the reduction behavior simulates the expected such, the
reduction engine has to make many steps to simulate one step of a primitive inductive type,
which can lead to a large slowdown. As an example, we observed the general construction
slow down from seconds to check to half an hour when replacing primitive inductive types
the bootstrapped definition of Code. Understanding exactly why this slowdown happens and
how to alleviate it is an important question to be answered before attempting to apply this
construction in practice.

There are also some (fairly esoteric) limitations to the expressivity of this construction.
Nested inductive types such as Inductive tree := node : list tree → tree do not appear
to be constructible, nor do mutual inductive types landing in a mixture of impredicative and
predicative sorts at different levels, and nor do inductive-inductive types.

4.4 Setoids
In [15], Palmgren uses W types to construct a setoid model of extensional type theory in
intensional type theory, including the natural numbers. In contrast, we have different goals (we
are not concerned with extensional type theory), and our construction has different properties:
we construct the natural numbers as a set not a setoid, with definitional computation rules
and canonicity rather than working only up to an extensional setoid notion of equality. Other
work on setoid models includes [11] and [1].

4.5 Conclusion
We have shown that intensional type theory with W and Id types is more expressive than was
previously believed. It supports not only the natural numbers, but a whole host of inductive
types, generated by an internal type of codes, which is itself an inductive type coded for by
itself (one universe level up). This brings possibilities for writing generic programs acting on
inductive types internally (like in [3]), and perhaps simplifies the general study of extensions
of intensional type theory: once you know W works, you know lots of inductive types work.

Thus we return to the titular question: why not use W as the foundation of inductive
types, for example in a proof assistant like Coq or Agda? Equipped with this result, one can
no longer say that it is impossible.
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Abstract
We introduce a new concept called a subtype universe, which is a collection of subtypes of a
particular type. Amongst other things, subtype universes can model bounded quantification without
undecidability. Subtype universes have applications in programming, formalisation and natural
language semantics. Our construction builds on coercive subtyping, a system of subtyping that
preserves canonicity. We prove Strong Normalisation, Subject Reduction and Logical Consistency
for our system via transfer from its parent system UTT[C]. We discuss the interaction between
subtype universes and other sorts of universe and compare our construction to previous work on
Power types.
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1 Introduction

In this paper we define a new sort of universe, which we call a subtype universe. The key
idea is embodied in the following two pseudo-rules:

UNIVERSE-FORM
Γ ⊢ A : Type

Γ ⊢ U(A) : Type

UNIVERSE-INTRO
Γ ⊢ B ≤ A

Γ ⊢ B : U(A)

The first rule states that for any type A, there is a type U(A) which we call the subtype
universe of A. The second rule states that any subtype of A is an object of U(A). U(A)
is therefore a type representing a collection of all subtypes of A. It is similar to universes
such as Type0 in that its objects are types (technically, names for types), but whilst Type0
contains all types (at the time of formation, at least), the membership of a type in U(A) is
based on the presence of a subtyping judgement between the type in question and A.

Subtype universes provide a simple model for bounded quantification, a concept first
introduced by Cardelli and Wegner for the language Fun[5]. Bounded quantification extends
the notion of parametric polymorphism with support for subtypes. In a system with support
for subtyping, the bounded quantifier ΠA ≤ B.T binds a type A in the body T under the
constraint that A is a subtype of B. In essence, bounded quantification allows a function to
be defined over all subtypes of a particular type.

A typical use of bounded quantification is in writing operations on records. Consider
a system with record types similar to [13], although for simplicity without dependence of
record fields on each other. We write record types as R := ⟨⟩ | ⟨R, l : A⟩ and records as
r := ⟨⟩ | ⟨r, l = a : A⟩. Record types each have a corresponding kind RType[L], where L is
the set of labels occurring in the record type. We can define the following function, which
translates a one-dimensional point by a given amount to the right.

translateX : Nat → ⟨x : Nat⟩ → ⟨x : Nat⟩
translateX(n, r) = set(r, x, r.x + n)
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⟨x : Nat⟩ is a record type containing a single field x of type Nat. set(r, l, a) is a primitive
operation on records which updates the record r, setting the value of the field labelled l to a.
r.l selects the value in the record r corresponding to the label l.

We may wish to apply this function to coordinates in higher dimensions, such as objects
of type ⟨x : Nat, y : Nat⟩. This prompts us to consider a subtyping relation for records, and
there is a natural one arising from the record restriction operator [r], which removes the
outermost field of a record: ⟨R, l : A⟩ ≤[_] R. In other words, any extension of a record type
R by additional fields produces a subtype of R. Thus we have ⟨x : Nat, y : Nat⟩ ≤ ⟨x : Nat⟩.
We can now apply translateX to objects of ⟨x : Nat, y : Nat⟩, but this will implicitly
downcast them, as the result type is ⟨x : Nat⟩.

Bounded quantification solves this problem by introducing quantification over subtypes.
In this way the original subtype is named and can be given in the result type. With bounded
quantification we can write the type of translateX as

translateX : ΠR ≤ ⟨x : Nat⟩.Nat → R → R

which describes a function that takes an argument of some arbitrary record type R constrained
to be a subtype of ⟨x : Nat⟩. When a function of this type is applied to an argument of type
⟨x : Nat, y : Nat⟩, R is instantiated to ⟨x : Nat, y : Nat⟩ and the result is an object of the
same type.

System F≤[4] is System F[9, 22] extended with subtyping and bounded quantification, and
is a foundation for much of the research on subtyping in functional programming languages.
However there is one drawback: typechecking in F≤ is undecidable [20]. The crux of the
problem is the rule for subtyping between bounded quantifiers:

Γ ⊢ A1 ≤ B1 Γ, x ≤ A1 ⊢ B2 ≤ A2

Γ ⊢ Π(x ≤ B1). B2 ≤ Π(x ≤ A1). A2

When combined with a Top type, of which every type is a subtype, this rule causes the
subtyping relation to become undecidable, which in turn causes typechecking to become
undecidable [2]. Various modifications have been proposed to get around this problem[6, 23].
For example, disallowing Top in the bounds of quantifiers or requiring A1 = B1 in the rule
above. Each has its own trade-offs in terms of expressiveness and algorithmic practicality.

Because of this undecidability result and the difficulties in extending System F with
bounded quantification, many researchers have thought that extending dependent type
theories with bounded quantification would also be problematic, or at least, it would not be
an easy task. This has turned out to be mistaken. We take up this challenge in this paper
and show that bounded quantification can be modelled by subtype universes in a way that
maintains nice meta-theoretic properties. Moreover, our system is a full dependent type
theory, providing richer types than F≤.

With subtype universes, bounded quantification can be modelled using normal Π types:
the type ΠX : U(A).B is equivalent to ΠX ≤ A.B. However it is important to note that
Π types cannot model all uses of subtype universes. A subtype universe U(A) is a type of
types, whereas Π is a type of functions. Using subtype universes we can construct types such
as A → U(A). The right hand side of this function type is a type whose objects are subtypes
of A, and there is no equivalent to this using Π types.

We use coercive subtyping, which is a subtyping system well suited to type theories due to
its preservation of canonicity. The system UTT[C] is an extension of UTT [11] with coercive
subtyping. We further extend this system with support for subtype universes, forming the
system UTT[C]U . The extension consists of a handful of new syntactic forms and six new
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typing rules, which are described in Section 2. Working in a dependent type theory rather
than a weaker language allows us to apply the concept to a wide range of fields. Section 3
describes examples applicable to programming, formalisation and natural language semantics.
Section 4 proves several important meta-theoretic properties, including logical consistency
and strong normalisation. Section 5 discusses the design decisions we have taken and some
interesting alternatives.

2 Subtype Universes

In Martin-Löf’s intuitionistic type theory [17] the concept of a universe is introduced to
represent a collection of types which is closed under specific type-forming operations. Typically
one starts by defining a group of base type-forming operations and then one defines a universe
Type0 which contains the closure of these operations. Type0 is itself a type, and can be used
in combination with other type-forming operations to form new types. For example, we can
construct the polymorphic identity function ΠT : Type0. Πx : T. T . A function with this
type can be applied to any type in Type0, but not to Type0 itself. We can construct a more
powerful type for the identity function by repeating the process: we define a new universe
Type1 which contains the closure of all type-forming operations including Type0. We can
then construct the type Π(T : Type1). Π(x : T ). T , objects of which can be applied to Type0.
This process can be iterated indefinitely, forming a hierarchy of predicative universes, each
one stronger than the previous one. This hierarchy allows us to quantify over arbitrarily large
collections of types, providing great proof-theoretic strength. At the same time, the absence
of a “type of all types” means that it neatly avoids Girard’s Paradox[8]. Intuitively, this
construction of universes is an application of the reflection principle well known to set theory,
and there are analogous constructions in other fields (such as the Grothendieck universes of
category theory). Universes are typically expressed in either Tarski style or Russell style.
Tarski style is more explicit, and to avoid ambiguity it is the style we use here.

2.1 Tarski style universes
The Tarski formulation introduces a new type for each universe, objects of which are names
for other types. Alongside, we introduce a family of operators to map names to their
corresponding types. We will briefly walk through this construction, as our system builds on
some of the concepts. Firstly, to represent each universe we form a type Typei, where i is a
positive integer indicating the level of the universe.

Γ valid
Γ ⊢ Typei : Type

Objects of the universe Typei are names of other types. For each universe we introduce a
reflection operator Ti which maps names in Typei to their corresponding types.

Γ ⊢ a : Typei

Γ ⊢ Ti(a) : Type

Now whenever we introduce a new type to the system, we also introduce its name in each
universe. For example, if we introduce a type Nat of natural numbers then we would also
add the following axiom, which states that each universe contains a name nat for Nat.

TYPES 2020
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Γ valid
Γ ⊢ nati : Typei

We also add rules defining how Ti behaves on these new names:

Γ valid
Γ ⊢ Ti(nati) = Nat : Type

Finally, for each universe we introduce a lifting operator ti which “lifts” names from a
universe Typei into the successive universe Typei+1.

Γ ⊢ a : Typei

Γ ⊢ ti(a) : Typei+1

Γ ⊢ a : Typei

Γ ⊢ T(ti(a)) = T(a) : Type

Thus (informally) for the type Nat we have a name nat0 in Type0, and T0(nat0) yields Nat.
We can apply the lifting operator t1 to this name, giving t1(nat0) = nat1, and of course
T1(nat1) = Nat. We can lift again, giving t2(nat1) = nat2, and so on.

2.2 Coercive subtyping
Coercive subtyping [12, 15] is a model of subtyping in type theories which expresses the
subtyping relationship via a specific coercion, which is a function from the subtype to the
supertype. It is a powerful form of subtyping which is particularly well suited to type theories
with canonical objects, as it preserves canonicity [15]. A type theory T can be extended
with coercive subtyping by adding two new judgement forms, for subtyping and subkinding.
We will focus on the former; for a full description of this extension we refer the reader to
[15]. The subtyping judgement is written Γ ⊢ A ≤c B : Type. It declares that A is a proper
subtype of B via a coercion c : (A)B.1 There are associated rules that define subtyping to
be congruent and transitive, among other things. A particularly important addition is the
coercive definition rule:

Γ ⊢ f : (x : B)C Γ ⊢ a : A Γ ⊢ A ≤c B

Γ ⊢ f(a) = f(c(a)) : [c(a)/x]C

This rule states that if A ≤c B, then a function f , despite having domain B, may be applied
to an object a of A. When this happens, it is equal to f(c(a)), which is the application of
f to the coercion of a to an object of B, using the specific coercion c. This is the primary
mechanism by which coercive subtyping relations are put to work.

1 The systems described in this paper are defined in the meta-level framework LF, which is a typed
version of Martin-Löf’s Logical Framework. Where appropriate we will use LF syntax. In brief, (x : A)B
is the type of a meta-level function from A to B, where x : A is bound in B. [x : A]b is a meta-level
function from an object of A to an expression b, where x : A is bound in b. See [11] for a full description
of the language.
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Finally, we add a set C of axiomatic subtyping judgements. The only restriction on C
is that it must be coherent. This means that all coercions between any two types A and B

must be the same, i.e. A ≤c B and A ≤c′ B implies c = c′. We can then write T [C] for the
system formed by extending T with coercive subtyping and a coherent set C of axiomatic
subtyping judgements. A key property of this process is that T [C] is a conservative extension
of T : any T -judgement is derivable in T [C] if and only if it is derivable in T .

Coercive subtyping is a conservative extension of type theory, as stated in the following
result, where T is either the type theory UTT [11] or Martin-Löf’s type theory [19]. For
example, a corollary of the following theorem is that T [C] is logically consistent if T is.

▶ Theorem 1 (Conservativity [15]). For any coherent set C of coercion judgements, T [C] is
equivalent to a system that is a conservative extension of the type theory T .

Extending the type theory UTT [11] with coercive subtyping yields the system UTT[C]
(“replacing” T by UTT ), and it is this system that we build on in this paper. Specifically,
we extend UTT[C] with additional syntax and rules concerning subtype universes, yielding a
system we call UTT[C]U .

2.3 The system UTT[C]U

Our system is an extension of UTT [11], although any type theory with a predicative universe
hierarchy is suitable. The extension consists of some new syntactic forms and six new typing
rules. The syntactic forms are Ui(A), TA

Ui
, n(A) and ui(A). Ui(A) is a subtype universe

parameterised by the type A. TA
Ui

is an operator parameterised by the subtype universe
Ui(A). n(A) is a meta-level operation which gives the name for the type A. Similarly, ui(A)
is a meta-level operation which gives the name for the subtype universe Ui(A). These forms
are given meaning via six new typing rules. The rules are given in Figure 1. They can be
divided into four groups, which we call formation (U-FORM), introduction (U-INTRO),
reflection (U-REFL1, U-REFL2) and predicativity (U-PRED1, U-PRED2). Note that these
are convenient labels rather than precise categorisations.

The formation rule (U-FORM) introduces a subtype universe Ui(A) for every type A

which has a name in a traditional universe Typei. We apply a single restriction in the form
of the side condition LΓ(A) = i, which requires that the type level of A is equal to i.

Type levels are explained in Definition 2, but informally the level of a type is the index
of the smallest traditional universe in which the type has a name. For example, Bool has
type level 0 whilst Type0 has type level 1. Type levels are important because they allow us
to determine “size” of a type. By annotating every subtype universe with a type level, we
syntactically expose a lower bound for the type when placing it in the traditional universe
hierarchy. For example, we cannot allow the subtype universe U2(Type1) to have a name
in Type0, as Type1 is a strictly larger type. We prevent this by ensuring that any subtype
universe Ui(A) has a name only in the traditional universe Typei+1 (see rules (U-PRED1)
and (U-PRED2)).

▶ Definition 2 (Type Level). For any type A in a context Γ, in UTT[C] or UTT[C]U , its
type level LΓ(A) is defined as follows:

If ∃P. Γ ⊢ Prf(P ) = A : Type, LΓ(A) =df −1
Otherwise, LΓ(A) is the least m such that ∃a. Γ ⊢ Tm(a) = A : Type

Since every type in UTT[C] and UTT[C]U has a name in some universe, Definition 2 is well
defined for all types.
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U-FORM
Γ ⊢ Ti(a) = A : Type

Γ ⊢ Ui(A) : Type
(LΓ(A) = i)

U-INTRO
Γ ⊢ Ti(a) = A : Type Γ ⊢ B ≤c A : Type

Γ ⊢ n(B) : Ui(A)
(LΓ(B) ≤ LΓ(A))

U-REFL1
Γ ⊢ n(B) : Ui(A)

Γ ⊢ TA
Ui

(n(B)) : Type

U-REFL2
Γ ⊢ Ti(a) = A : Type Γ ⊢ B ≤c A : Type

Γ ⊢ TA
Ui

(n(B)) = B : Type
(LΓ(B) ≤ LΓ(A))

U-PRED1
Γ ⊢ Ui(A) : Type

Γ ⊢ ui(A) : Typei+1

U-PRED2
Γ ⊢ Ui(A) : Type

Γ ⊢ Ti+1(ui(A)) = Ui(A) : Type

Figure 1 The typing rules for subtype universes. The extension of UTT[C] by these rules forms
the system UTT[C]U .

It is important to note that because proof types (types of the form Prf(P ) for some
proposition P ) have a defined type level of −1, we cannot form subtype universes of them.
This is because the premiss of (U-FORM) is Γ ⊢ Ti(a) = A : Type, where i = LΓ(A). There
is no operator T−1 in UTT[C], and therefore we cannot derive this judgement for proof
types. Proof types can have names in other subtype universes, if there exists a corresponding
subtyping relation, but the inverse is not possible. Intuitively, proof types are not data types
and one usually does not consider subtyping relationships between them. We therefore do
not consider subtype universes of a proof type. This decision is a point in the design space
and there are alternative options. We discuss some of these in Section 5.

The introduction rule (U-INTRO) defines the membership of subtype universes. If a type
B is a subtype of A, then its name, given by n(B), is an object of the subtype universe of A.
As we shall see, we will be able to convert from n(B) to B. In this way we represent the
concept that B is a “member” of Ui(A). Again, there is an additional restriction on this rule:
the type level of B must not be greater than the type level of A. This restriction ensures
that we can translate derivations in our system into derivations in UTT[C], and is critical in
proving some meta-theoretic properties, as we will describe shortly.

We now have a connection between subtypes of A and their corresponding names in Ui(A).
The reflection rules (U-REFL1) and (U-REFL2) complete the circle by relating the names
back to their subtypes. (U-REFL1) introduces an operator TA

Ui
, which is parameterised

by a type A and its type level i. For any object n(B) in Ui(A), TA
Ui

(n(B)) is a type.
(U-REFL2) then tells us what type: TA

Ui
(n(B)) is equal to the type B. This rule has the
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same side condition as (U-INTRO), which has no effect on the semantics but simplifies the
metatheory. Together, these four rules are effectively a translation of (UNIVERSE-FORM)
and (UNIVERSE-INTRO) into the Tarski universe formulation.

Finally, we relate subtype universes to the traditional universe hierarchy. Rules (U-
PRED1) and (U-PRED2) state that a subtype universe Ui(A) has a name in the universe
Typei+1. Placing subtype universes into the traditional universes is a design choice, rather
than a necessary construction. We discuss this approach and alternatives in Section 5.

3 Applications

Subtype universes have a clear use as a way to model bounded quantification, and this section
describes some examples in programming, formalisation and natural language semantics. As
subtype universes are first-class types in the system they are inherently more flexible than
bounded quantifiers and we expect there are other applications to be discovered.

3.1 Bounded Quantification
With subtype universes we can straightforwardly construct an equivalent to the bounded
quantifier ΠA ≤ B. Continuing our running example, the function translateX can be given
the following type:

translateX : Πr : Ui(⟨x : Nat⟩).Nat → T⟨x:Nat⟩
Ui

(r) → T⟨x:Nat⟩
Ui

(r)

Applying translateX to ⟨x = 1, y = 2⟩ gives a result of type T⟨x:Nat⟩
Ui

(n(⟨x : Nat, y : Nat⟩)),
which reduces to ⟨x : Nat, y : Nat⟩. Thus we retain the information that the result is an
two-dimensional coordinate.

This kind of extensibility has many applications in programming, where it is useful to
be able to deal with partially specified data. As a software system is evolved, data is often
embellished with new fields. Functions like translateX will continue to work as new fields
are added to the records it is applied to, allowing for easy and type-safe system extension.

Being a type itself, a subtype universe provides more flexibility than bounded quantifica-
tion. For example, a subtype universe can appear in both the domain and codomain position
of a function type, whereas bounded quantification is only valid in the domain. For example,
we can construct types such as A → U0(A), which are functions from objects of type A to
subtypes of A. Another example is the type

U0(A) → U0(B) → U0(Σ(A, [x : A]B))

Given a subtype of A and a subtype of B, a function of this type will return a subtype of
their sum, Σ(A, [x : A]B).

3.2 Extending predicates to subtypes
With coercive subtyping it is straightforward for a predicate P : (x : A)Prop on some type
A to be extended to all subtypes of A, since we can always convert objects of a subtype to
objects of the supertype. For example, given B ≤c A and b : B then P (b) becomes P (c(b))
after coercion insertion, which is well typed.

However this fact is not expressed in the type. We rely on meta-level reasoning to know
that the domain of P is implicitly extended to all subtypes of A. If we rewrite P to use
subtype universes we can better express this property:

P : (t : Ui(A))(x : TA
Ui

(t))Prop
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Here P is now a predicate on subtypes of A. Its first argument is the name of a type in the
subtype universe for A, and its second argument is an object of that type, as before. We
can apply P both to A and its subtypes: P (n(A), a) and P (n(B), b) are both well typed,
assuming a : A and b : B.

3.3 Natural language semantics
As well as applications in programming, subtype universes have proved to be useful in
formalising the semantics of natural language. In order to describe this application we will
first introduce some basic concepts in natural language semantics. Then we will describe
how subtype universes can model gradable adjectives.

3.3.1 Montague Grammar
The seminal treatment of natural language semantics is the system developed by Montague in
the 1970s [18]. Known as Montague Grammar, this system uses an embedding of higher-order
logic in the simply typed lambda calculus to model sentences of natural language. Language
constructs are divided into categories: sentences, verb phrases, noun phrases, and common
nouns, amongst others. Each category is assigned a type with respect to the two atomic
types e and t, representing objects and propositions respectively. A complete sentence (e.g.
“Socrates is a man”) is regarded as a proposition, and thus has type t. Verb phrases such as
“is a man” form complete propositions when supplied with an object, and therefore have type
e → t. Common nouns are interpreted as predicates. For example, the common noun “man”
is represented by the function λx.man(x). Common nouns therefore have the type e → t.
We can also make use of logical operators such as implication (⇒), universal quantification
(∀) and existential quantification (∃): the sentence “all men are mortal” can be expressed as
∀x. man(x) ⇒ mortal(x).

There are two notable downsides to this approach. Firstly, the use of a single type e for
all objects means there is no distinction between different classes of objects, and we can
therefore form nonsensical sentences such as “the colour green plays football”. Secondly, the
interpretation of common nouns (and indeed, noun phrases) is not intuitive. One would
naturally expect common nouns to be interpreted simply as objects.

3.3.2 MTT Semantics
An alternative model of natural language based on Modern Type Theories (MTTs) [21][14]
provides a solution to these problems. In MTT semantics, common nouns are interpreted
as types in a type theory such as UTT. The interpretation of “man” is as the type Man,
and the sentence “Socrates is a man” is interpreted as Socrates : Man. We can construct
as many types as necessary to precisely describe the context, for example a type Man

representing men and a type Human representing humans. This naturally leads to problems
when a particular object can be seen to inhabit multiple types. For example, both of the
judgements Socrates : Man and Socrates : Human seem reasonable. To solve this we
can apply coercive subtyping. We might define Man ≤c Human via some coercion c, and
then we have Socrates : Man and c(Socrates) : Human. A full comparison of Montague
grammar with MTT semantics is not within the scope of this paper; we refer the reader
to [7] for details.

In the context of MTT semantics, subtype universes turn out to be useful in modelling
gradable adjectives [16]. Gradable adjectives (words such as “tall”) can be interpreted as
predicates which involve comparison of a measurement on the entity with some threshold
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δ : UTT[C]U → UTT[C]
δ(Ui(A)) = Typei

δ(ui(A)) = typei

δ(TA
Ui

) = Ti

δ(Type) = Type
δ(El(A)) = El(δ(A))

δ([x : A]B) = [x : δ(A)]δ(B)
δ((x : A)B) = (x : δ(A))δ(B)

δ(f(x)) = δ(f)(δ(x))
δ(c) = c

Figure 2 The transformation δ converts terms in UTT[C]U to terms in UTT[C].

value. In the case of “tall”, the measurement is the height of the argument. Furthermore,
the threshold often varies based on the type of the argument. The threshold height that is
considered tall for a human is very different from the height considered tall for a building.
We will describe how “tall” can be interpreted in UTT[C]U , thereby motivating the use of
subype universes in formal semantics.

We first collect together into a new universe T all the common nouns for which it makes
sense to measure a height. T may contain, amongst others, (names for) the types Human

and Building. Each of these may have subtypes such as Man ≤ Human. We will define a
function height which measures the height of an object of some type in the universe T , and
a function ξ which calculates the threshold height for a particular type to be considered tall:

height : ΠA : T.ΠB : U0(A).B → Nat

ξ : ΠA : T.U0(A) → Nat

Note that height and ξ are defined over all subtypes of all types in T . For simplicity, we
assume that all types in T have names in the universe Type0. We can then define tall as
follows:

tall : ΠA : T. ΠB : U0(A).B → Prop

tall(A, B, x) = height(A, B, x) ≥ ξ(A, B)

Compared to other approaches subtype universes provide a simpler semantic construction
for gradable adjectives, and may be useful in modelling other linguistic features.

4 Metatheory

The system UTT[C]U retains many of the nice meta-theoretic properties of its base system
UTT[C]: logical consistency, strong normalisation and subject reduction. In particular,
logical consistency and strong normalisation results can be transferred from UTT[C] because
our new rules are admissible in UTT[C] after applying a simple syntactic transformation.
This transformation is named δ, and it converts terms of UTT[C]U to terms of UTT[C], as
shown in Figure 2.
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For any type A, δ converts the universe Ui(A) to Typei, which is a valid type in UTT[C].
For any object A, δ converts ui(A) to typei. For any object a, δ converts an application of
the subtype universe lifting operator TA

Ui
(a) to an application of the traditional universe

lifting operator Ti(a). For any constant c, δ leaves c unchanged. The translation is extended
to other syntax forms by recursion on their structure, ensuring that the result contains none
of the syntax introduced by our extension. Using δ we can transform the typing rules in
Figure 1, producing rules in the syntax of UTT[C]. These are shown in Figure 3.

In this section we will need to refer to derivations in both UTT[C]U and UTT[C]. To
avoid confusion we will use ⊢U for judgements in UTT[C]U and ⊢ for judgements in UTT[C].
Contexts in UTT[C]U will be written Γ whereas contexts in UTT[C] will typically be of the
form δ(Γ).

We first note that the side condition LΓ(B) ≤ LΓ(A) in (U-INTRO) and (U-REFL2)
provides information about the traditional universes in which A and B have names.

▶ Lemma 3. If Γ ⊢ Ti(a) = A : Type, Γ ⊢ B : Type and LΓ(B) ≤ LΓ(A) then there exists
a name b : Typej such that Γ ⊢ Tj(b) = B : Type for some j ≤ i.

Proof. There are six cases to consider:
1. LΓ(B) = LΓ(A) = −1
2. LΓ(B) = −1, LΓ(A) ≥ 0
3. LΓ(B) ≥ 0, LΓ(A) = −1
4. LΓ(B) = LΓ(A) ≥ 0
5. LΓ(B) > LΓ(A) ≥ 0
6. LΓ(B) < LΓ(A) ≥ 0
Cases 3 and 5 violate the premiss LΓ(B) ≤ LΓ(A) and can be discounted.

For cases 1 and 2 we follow the same reasoning: via the definition of type level (Definition 2)
there exists some PB such that Γ ⊢ Prf(PB) = B : Type. Thus we have Γ ⊢ T0(t0(PB)) =
B : Type. We also have i ≥ 0 (otherwise Ti would not be defined) and therefore we can
choose j = 0 and b = t0(PB) to satisfy the conclusion.

Cases 4 and 6 also follow the same reasoning: we use the definition of type level to get
∃b′. Γ ⊢ TLΓ(B)(b′) = B : Type. Choosing j = LΓ(B) and b = b′ satisfies the conclusion. ◀

▶ Lemma 4. The rules in Figure 3 are admissible in UTT[C].

Proof. The conclusions of (δ-U-FORM), (δ-U-PRED1) and (δ-U-PRED2) are all axioms in
UTT, so these rules are trivially admissible. (δ-U-REFL1) follows from the definition of Ti,
which has type (Typei)Type. This leaves (δ-U-INTRO) and (δ-U-REFL2).

For (δ-U-REFL2), we consider the premiss δ(Γ) ⊢ Ti(a) = δ(A) : Type and side condition
Lδ(Γ)(δ(B)) ≤ Lδ(Γ)(δ(A)). By Lemma 3 we can deduce ∃j ≤ i. δ(Γ) ⊢ Tj(b) = δ(B) : Type,
where b is the name for δ(B) in Typej . Since the traditional universes form a cumulative
hierarchy we can conclude δ(Γ) ⊢ Ti(b′) = δ(B) : Type, where b′ is the name for δ(B) in
Typei.

For (δ-U-INTRO), we follow the same derivation. From δ(Γ) ⊢ Ti(b) = δ(B) : Type we
can then conclude δ(Γ) ⊢ b : Typei. ◀

▶ Theorem 5 (Logical consistency). There is no proof M such that Γ ⊢U M : ∀X : Prop.X.

Proof. By contradiction. Assume there is an M such that ⊢U M : ∀X : Prop.X. Then it
follows that ⊢ δ(M) : δ(∀X : Prop.X), and therefore ⊢ δ(M) : ∀X : Prop.X. This implies
that UTT[C] is logically inconsistent, which is false [15]. ◀
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δ-U-FORM
δ(Γ) ⊢ Ti(a) = δ(A) : Type

δ(Γ) ⊢ Typei : Type
(Lδ(Γ)(δ(A)) = i)

δ-U-INTRO
δ(Γ) ⊢ Ti(a) = δ(A) : Type

δ(Γ) ⊢ δ(B) ≤δ(c) δ(A) : Type
δ(Γ) ⊢ n(B) : Typei

(Lδ(Γ)(δ(B)) ≤ Lδ(Γ)(δ(A)))

δ-U-REFL1
δ(Γ) ⊢ n(B) : Typei

δ(Γ) ⊢ Ti(n(B)) : Type

δ-U-REFL2
δ(Γ) ⊢ Ti(a) = δ(A) : Type

δ(Γ) ⊢ δ(B) ≤δ(c) δ(A) : Type
δ(Γ) ⊢ Ti(n(B)) = δ(B) : Type

(Lδ(Γ)(δ(B)) ≤ Lδ(Γ)(δ(A)))

δ-U-PRED1
δ(Γ) ⊢ Typei : Type

δ(Γ) ⊢ typei : Typei+1

δ-U-PRED2
δ(Γ) ⊢ Typei : Type

δ(Γ) ⊢ Ti+1(typei) = Typei : Type

Figure 3 The rules in Figure 1 after transformation by δ.

▶ Definition 6 (Reduction). We write M ⇝ N to mean that applying a single step of
reduction to the expression M yields the expression N . We write M ⇝∗ N to mean that
applying zero or more steps of reduction to the expression M yields the expression N .

▶ Lemma 7 (δ preserves one-step reduction). For every term M in UTT[C]U , if M ⇝ N

then in UTT[C] we have δ(M)⇝ δ(N).

Proof. See appendix A. ◀

▶ Lemma 8 (δ preserves multi-step reduction). For every term M in UTT[C]U , if M ⇝∗ N

then in UTT[C] we have δ(M)⇝∗ δ(N).

Proof. There are two cases to consider: a reduction sequence of zero steps and a reduction
sequence of one or more steps. For the former case we have M = N and therefore it follows
that δ(M) = δ(N) and hence δ(M) ⇝∗ δ(N). The latter case follows from Lemma 7 by
induction. ◀

▶ Theorem 9 (Strong Normalisation). If Γ ⊢U M : A then M is strongly normalisable. In
other words, every sequence of reductions starting from M is finite.

Proof. Assume that Strong Normalisation does not hold for UTT[C]U - i.e. there exists a
term M in UTT[C]U with an infinite reduction sequence. By Lemma 8 it follows that there is a
corresponding infinite reduction sequence in UTT[C] for δ(M). This is a contradiction because
Strong Normalisation holds for UTT[C], as it is a conservative extension of UTT [15]. ◀
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▶ Theorem 10 (Subject Reduction). If Γ ⊢U M : A and M ⇝ N , then Γ ⊢U N : A.

Proof. UTT[C]U is an extension of UTT[C], for which subject reduction holds. Therefore
it is sufficient to show that the new syntax forms and rules we have introduced preserve
this property. We proceed by induction on the structure of terms. Most cases follow
straightforwardly by the induction hypothesis, except for the two base cases induced by the
reduction rules urefl and upred, derived from the typing rules (U-REFL2) and (U-PRED2).
Given the premises of each rule we can derive identical types for either side of the equality
in the conclusion. For urefl we have M ≡ TA

Ui
(n(B)), N ≡ B and M ⇝urefl N . From the

premises of (U-REFL2) we can then derive Γ ⊢U M : Type and Γ ⊢ _UN : Type:

Γ ⊢U Ti(a) = A : Type Γ ⊢U B ≤c A : Type
(U-INTRO)

Γ ⊢U n(B) : Ui(A)
(U-REFL1)

Γ ⊢U TA
Ui

(n(B)) : Type
(definition of M)

Γ ⊢U M : Type

Γ ⊢U A ≤c B : Type
Γ ⊢U B : Type

(definition of N)
Γ ⊢U N : Type

For upred we have M ≡ Ti+1(ui(A)), N ≡ Ui(A) and M ⇝upred N . From the premiss
of (U-PRED2) we already have Γ ⊢U N : Type. We can then derive Γ ⊢U M : Type as
follows:

Γ ⊢U Ui(A) : Type
(U-PRED1)

Γ ⊢U ui(A) : Typei+1 (definition of Ti+1)
Γ ⊢U Ti+1(ui(A)) : Type

(definition of M)
Γ ⊢U M : Type

The four new syntactic forms, Ui(A), ui(A), n(B) and TA
Ui

(n(B)), are irreducible under
the existing reduction rules of UTT[C] and so do not affect the subject reduction property of
the original rules. Therefore subject reduction holds for UTT[C]U . ◀

5 Discussion on design choices

Whilst most aspects of our system follow directly from the pseudo rules given in Section 2 or
from metatheoretic constraints (for example, the annotation of subtype universes with type
levels), some parts reflect specific design choices that could be modified. These areas concern
how subtype universes interact with other universes, such as the traditional predicative
universes Typei, the impredicative universe Prop and even other subtype universes. We
might ask if a particular subtype universe can have a name in the universe Type1, or vice
versa. Or even: can we construct subtype universes containing names for other subtype
universes? Whilst these questions are formally interesting, we have not identified any clear
applications of alternative designs.

Firstly, our rules permit universes such as U1(Type0), meaning that judgements like
Type0 : U1(Type0) are derivable. In the opposite direction, the rules (U-PRED1) and
(U-PRED2) define that Ui(A) : Typei+1. However, these two rules are optional. We include
them so that the traditional universes continue to allow quantification over “all types”, but
the system remains standing if they are removed. There are three main options for this point
in the design.
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The first option is that subtype universes have names in the same traditional universe as
the type they are parameterised by - i.e. Ui(A) : Typei. It is straightforward to show that
this option leads to inconsistency when translated to UTT[C]. Applying δ to the judgement
Γ ⊢ Ui(A) : Typei yields δ(Γ) ⊢ δ(Ui(A)) : δ(Typei), which simplifies to δ(Γ) ⊢ Typei : Typei.

The second option is that subtype universes are contained in the traditional universe
directly “above” the universe of the type they are parameterised by: Ui(A) : Typei+1. So
for some base type T : Type0, U0(T ) : Type1. When translated to UTT this judgement
becomes (in the general case) Γ ⊢ Typei : Typei+1 which is a derivable judgement in UTT.
This, therefore, seems the most natural option for the relation between subtype universes
and traditional universes, not least because Typei+1 is the smallest universe in which we can
place Ui(A) without encountering paradoxes.

The third option is not to include subtype universes as objects in the traditional universe
hierarchy. This is equivalent to removing the rules (U-PRED1) and (U-PRED2). The
resulting system is still admissible in UTT, and therefore retains the desired meta-theoretic
properties. However this weakens the traditional universes, because there are now types that
they cannot capture (the subtype universes).

Subtype universes can be formed from any type in our system, with the except of proof
types of propositions, i.e. types of the form Prf(P ). We have made this decision to simplify
the typing rules, but there is also an intuitive argument that subtyping between proof types
is not desirable. It is important to note that whilst we cannot construct subtype universes
of proof types, these types can still have names in the subtype universes of other types.
Subtype universes of proof types can be supported by a small modification to the system:
removing the first clause from Definition 2. This has the auxiliary effect of making the
system independent of Prop entirely. We have not fully explored the relationship between
subtype universes and the impredicative universe Prop (and its related types); further work
is needed in this area.

Subtyping as a relation has the property of transitivity:

Γ ⊢ T ≤c A : Type Γ ⊢ A ≤c′ B : Type
Γ ⊢ T ≤c′◦c C : Type

By analogy with set theory, we might expect there to be a corresponding subtyping relation
between the subtype universes of A and B. The (informal) reasoning for this is as follows:
every type with a name in Ui(A) is a subtype of A, and therefore by transitivity it is also a
subtype of B, and must have a name in Uj(B). To formalise this argument we must find
a coercion between names of T in Ui(A) and names of T in Uj(B). This is not generally
derivable in our system as-is, but we can support it by the addition of the following rule:

U-EQUIV
Γ ⊢ A ≤c B : Type

Γ ⊢ TA
Ui

(t) = T : Type Γ ⊢ TB
Uj

(t′) = T : Type
Γ ⊢ tA,B

i,j (t) = t′ : Uj(B)
(LΓ(A) ≤ LΓ(B))

Here we introduce a lifting operator tA,B
i,j which takes a name in the universe Ui(A) to a

name of the same type in Uj(B). This operator can act as a coercion between universes,
allowing us to state the following subtype relation:

Γ ⊢ Ui(A) ≤tA,B
i,j

Uj(B)
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By (U-PRED2) we have LΓ(Uj(B)) = j + 1, and therefore we can derive

Γ ⊢ Uj+1(Uj(B)) : Type
Γ ⊢ TB

Uj
(n(Ui(A))) = Ui(A) : Type

6 Conclusion

Subtype universes are a novel and useful construct, providing amongst other things a
decidable alternative to bounded quantification. We have seen that a coercive subtyping
system can be extended to support subtype universes with the addition of six typing rules.
Our implementation builds on UTT[C], an existing system supporting coercive subtyping.
We prove logical consistency, strong normalisation and subject reduction for our system.

We have extended UTT[C] with subtype universes in a way that preserves its nice
metatheoretic properties. In this process we rely on the existence of the predicative universes
Typei in order to syntactically convert subtype universes into predicative universes. However
it is important to note that this is done only to make the metatheoretic proofs straightforward.
An early abstract of this paper [16] specified a simpler system where subtype universes were
not annotated with a type level. This formulation was entirely independent of UTT’s
predicative universes, but proving the admissibility of the typing rules was difficult. As a
result, it is possible that subtype universes can be formulated without predicative universes;
this would be an interesting subject for further work.

Although we believe that the system UTT[C]U has the Church-Rosser property, we
have not succeeded in proving it. We also leave unanswered the question of exactly why
a system with subtype universes enjoys decidable typechecking whilst traditional bounded
quantification does not. Notably absent in our system is the maximal type Top of which
every other type is a subtype. Indeed it is not clear how one could introduce such a type in
a system with a predicative universe hierarchy, for the same reason that we cannot introduce
a type of all types. This distinction is worthy of further investigation.

Related Work. Subtype universes bear similarities to Cardelli’s power type [3] Power(A),
a type containing all subtypes of A. Power types are constructed in the context of a system
of structural subtyping, where subtyping relations are determined by the structure of types
rather than by arbitrary axioms. This is motivated by the desire for types to be “self-
describing”, simplifying typechecking and enabling features like the type-safe (de)serialisation.
There is no distinct subtyping relation; the judgement ⊢ A : Power(B) reads “A is a subtype
of B” and is abbreviated ⊢ A ≤ B. A notable typing rule is that of Power Subtyping, written:

Γ ⊢ B ≤ A

Γ ⊢ Power(B) ≤ Power(A)

This rule states that if B is a subtype of A then the power type of B is a subtype of the
power type of A. The conclusion can also be written Γ ⊢ Power(B) : Power(Power(A)).
Written this way, it is clear that this has the same effect as the rule (U-EQUIV) described in
Section 5.

Another important aspect of Cardelli’s system is that it includes the axiom Type : Type,
well known to be logically inconsistent. A full discussion of the problems with this property
is beyond the scope of this paper; we merely note that, as an extension of UTT, our system
does not share this property.

Aspinall’s λP ower [1] is a predicative and simplified alternative to Cardelli’s system, but
it has been difficult to prove some of its metatheoretic properties (such as subject reduction).
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A Proof of Lemma 7

▶ Lemma (δ preserves one-step reduction). For every term M in UTT[C]U , if M ⇝ N then
in UTT[C] we have δ(M)⇝ δ(N).

Proof. By induction on the terms of UTT[C]U . For each reduction step M ⇝R N in
UTT[C]U via a computation rule R we will show that there is a reduction δ(M)⇝S δ(N) in
UTT[C] via a (possibly identical) rule S. In the special case where δ(M) = M , we will show
that δ(N) = N . There are eight reduction (or computation) rules in UTT [10]:
1. ([x : K]k′)k ⇝β [k/x]k′

2. E∀(A, P, R, f, Λ(A, P, g))⇝E∀ f(g)
3. Ti+1(typei)⇝typei Typei

4. T0(prop)⇝prop Prop

5. Ti+1(ti+1(a))⇝ti+1 Ti(a)
6. T0(t0(P ))⇝prf Prf(P )
7. the computation rule for inductive types E[Θ̄]
8. Ti(µi[Θ̄])⇝µ M[Θ̄]
Our extension adds two more:
1. TA

Ui
(n(B))⇝urefl B

2. Ti+1(ui(A))⇝upred Ui(A)
We will consider the last two rules in detail. The others follow straightforwardly from the
definition of δ. By induction we can therefore extend the result to all expressions in UTT[C]U .

▶ Case 1 (M ⇝urefl N). This rule eliminates n(B), the name for a type B in the subtype
universe Ui(A).

TA
Ui

(n(B))⇝urefl B

δ(TA
Ui

(n(B))) = δ(TA
Ui

)(δ((n(B))))
= Ti(n(δ(B)))
⇝X δ(B)

where X stands for the relevant reduction rule reflecting a name in a traditional universe to
its type. For example, if B is an inductive type then X stands for the rule ⇝µ.

▶ Case 2 (M ⇝upred N). This rule eliminates ui(A), the name for the subtype universe
Ui(A).

Ti+1(ui(A))⇝upred Ui(A)
δ(Ti+1(ui(A))) = δ(Ti+1)(δ((ui(A))))

= Ti+1(typei)
⇝typei Typei

= δ(Ui(A)) ◀
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Abstract
The logic programming paradigm provides a flexible setting for representing, manipulating, checking,
and elaborating proof structures. This is particularly true when the logic programming language
allows for bindings in terms and proofs. In this paper, we make use of two recent innovations
at the intersection of logic programming and proof checking. One of these is the foundational
proof certificate (FPC) framework which provides a flexible means of defining the semantics of a
range of proof structures for classical and intuitionistic logic. A second innovation is the recently
released Coq-Elpi plugin for Coq in which the Elpi implementation of λProlog can send and retrieve
information to and from the Coq kernel. We illustrate the use of both this Coq plugin and FPCs
with two example applications. First, we implement an FPC-driven sequent calculus for a fragment
of the Calculus of Inductive Constructions and we package it into a tactic to perform property-based
testing of inductive types corresponding to Horn clauses. Second, we implement in Elpi a proof
checker for first-order intuitionistic logic and demonstrate how proof certificates can be supplied
by external (to Coq) provers and then elaborated into the fully detailed proof terms that can be
checked by the Coq kernel.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Proof assistants, logic programming, Coq, λProlog, property-based testing

Digital Object Identifier 10.4230/LIPIcs.TYPES.2020.10

Supplementary Material Software (Source Code): https://github.com/proofcert/fpc-elpi
archived at swh:1:dir:2da6ff73379af393bef8a3a3a6419d07906af713

Acknowledgements We thank Enrico Tassi for his help with Coq-Elpi. His comments and those of
the anonymous reviewers on an early draft of this paper have also been very helpful.

1 Introduction

Recently, Enrico Tassi et al. developed the Elpi implementation [21] of λProlog [47], and more
recently, Tassi has made Elpi available as the Coq-Elpi plugin [62] (https://github.com/
LPCIC/coq-elpi) to the Coq proof assistant. This implementation of λProlog extends earlier
ones in primarily two directions: First, Elpi adds a notion of constraints and constraints
handling rules, which makes it more expressive than the Teyjus implementation [51] of
λProlog. Second, the plugin version of Elpi comes equipped with a quotation and anti-
quotation syntax for mixing Coq expressions with λProlog program elements and an API for
accessing the Coq environment, including its type checker.

The logic programming interpreter that underlies Elpi provides several convenient features
for the kind of meta-programming tasks that can arise within modern proof assistants. For
example, λProlog provides a declarative and direct treatment of abstract syntax that contains
bindings, including capture-avoiding substitution, unification, and recursive programming.
Elpi spares the programmer from dealing with low-level aspects of the representation of
binders (e.g., De Bruijn indexes) while still having clean and effective ways to manipulate
binding structures.
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Since relations (not functions) are central in λProlog, Elpi is capable of providing direct
support for the many relations that have a role in implementation and usage of proof
assistants. Such relations include typing (e.g., Γ ⊢ M : σ), evaluation (e.g., natural semantics
specifications [37, 33]), and interaction (e.g., structured operational semantics [49, 57]).

Felty has also made the point that LCF-style tactics and tacticals can be given an
elegant and natural specification using the higher-order relational specifications provided
by λProlog [23]. Some recent implementations built using Elpi support the usefulness of
higher-order logic programming as a meta-programming language for proof assistants in
general [20, 32] and, in particular, for Coq via the Coq-Elpi plugin [18, 63].

In this paper, we present two applications of Elpi within Coq. With these applications,
we shall illustrate that Elpi is useful not only because of its meta-programming features but
also because it soundly implements a higher-order intuitionistic logic: such implementations
of higher-order logic have long been known to provide powerful and flexible approaches to
implementing many different logics and their proof systems [24, 53]. Following that tradition,
the Elpi system makes it possible to encode the proofs and proof theory of various subsets of
the logic behind Coq (see also [22]).

While other meta-programming frameworks based on functional programming such as
MetaCoq [61] can and have been used for related endeavors, we believe (together with [20])
that they would require much more boilerplate code.

Before we can present these examples, we first highlight the rather striking differences in
notions of computing and reasoning that arise on each side of the Coq-Elpi API. We will
also present a quick summary of the key proof theory concepts that are used by our example
applications.

2 Two cultures

When studying structural proof theory, one learns quickly that many concepts come in pairs:
negative/positive, left/right, bottom-up/top-down, premises/conclusion, introduction/elimi-
nation, etc. When we examine the larger setting of this project of linking a logic programming
engine with Coq and its kernel, we find a large number of new pairings that are valuable to
explicitly discuss.

2.1 Proof theory vs type theory

In many ways, proof theory is more elementary and low-level than most approaches to type
theory. For example, type theories usually answer the question “What is a proof?” with
the response “a (dependently) typed λ-term”. That is, when describing a type theory, one
usually decides that a proof is a certain kind of λ-term within the system. In contrast, proof
theory treats logical propositions and proofs as separate. For example, proof theory does not
assume that there are terms within the logic that describe proofs.

Gentzen’s discovery that the key to treating classical and intuitionistic logics in the same
proof system was identifying the structural rules of the weakening and contraction and placing
them on the right-side of sequents [29]. This discovery led him away from natural deduction
to multiple-conclusion sequent calculus. This same innovation of Gentzen’s also opened the
way to another key proof-theoretic discovery, that of linear logic and linear negation [30].
While sequent calculus provides an elegant presentation of full linear logic, most treatments
of linear logic in type theory have been limited to single-conclusion sequents [5] or restricted,
multiple-conclusion variants [36].
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As is often observed, however, sequent calculus is too low-level to be used explicitly as
capturing the “essence of a proof”. Fortunately, the notion of focused proof systems [1, 42],
makes it possible to collect and join the micro-level inference rules of the sequent calculus into
large-scale, synthetic inference rules. As a result, using such proof systems, it is possible to
extract from sequent calculus not only natural deduction proofs [56], but also proof nets [13],
and Herbrand-style expansion trees [12]. The role of focused proof systems to characterize
classes of proof structures is described in the next section and used in our two example
applications of Elpi with Coq.

2.2 Proof search vs proof normalization
Gentzen-style proofs are used to model computation in at least two different ways. The
functional programming paradigm, following the Curry-Howard correspondence, models
computation abstractly as β-reduction within natural deduction proofs: that is, computation
is modeled as proof normalization. On the other hand, the logic programming paradigm,
following the notion of goal-directed proof search, models computation abstractly as a
regimented search for cut-free sequent calculus proofs: that is, computation is modeled as
proof search.

Proof search has features that are hard to capture in the proof normalization setting. In
particular, Gentzen’s eigenvariables are a kind of proof-level binder. In the proof normalization
setting, such eigenvariables are instantiated during proof normalization. However, during the
search for cut-free proofs, eigenvariables do not vary, and they are part of the syntax of terms
and formulas. As a result, they can be used in the treatment of bindings in data structures
more generally. Such eigenvariables can be used by the logic programming paradigm to
provide a natural and powerful approach to computing with bindings within syntax.

It is worth noting that the role of the cut rule and cut-elimination is different in these
two approaches to computing. In the proof normalization paradigm, the cut rule can be used
to model β reduction, especially via the explicit substitution approach [40]. In the proof
search paradigm, since computing involves the search for cut-free proofs, the cut rule plays
no part in the performance of computation. However, cut and cut-elimination can be used to
reason about computation: for example, cut-elimination can be used to prove “substitution
lemmas for free” that arise in the study of operational semantics [28].

2.3 λProlog vs Coq
Given that λProlog and Coq both result from combining the λ-calculus with logic, it is
important to understand some of their differences. The confusion around the term higher-order
abstract syntax (HOAS), is a case in point. In the functional programming setting, including
the Coq system, the HOAS approach leads to encoding binding structures within terms using
functions. The earliest such encodings were unsatisfactory since they would allow for exotic
terms [19] and for structures on which induction was not immediately possible [59]. Later
approaches yielded non-canonical and complex encodings [17, 35], as well as sophisticated
type theories [55]. All of these could support inductive and coinductive reasoning. In the
logic programming setting, particularly λProlog, HOAS is well supported since bindings
are allowed with terms (λ-bindings), formulas (quantifiers), and proofs (eigenvariables). (In
fact, the original paper on HOAS [54] was inspired by λProlog.) For this reason, the term
λ-tree syntax was introduced to name this particular take on HOAS [46]. The Abella proof
assistant [3] was designed, in part, to provide inductive and co-inductive inference involving
specifications using the λ-tree syntax approach.

TYPES 2020
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Another difference between λProlog and functional programming can be illustrated by
considering how they are used in the specification of tactics. The origin story for the ML
functional programming language was that it was the meta-language for implementing the
LCF suite of tactics and tacticals [31]. To implement tactics, ML adopted not only novel
features such as polymorphically typed higher-order functional programming but also the
non-functional mechanisms of failure and exception handling. While λProlog is also based on
ML-style polymorphically typed higher-order relational programming, it also comes with a
completely declarative version of failure and backtracking search. Combining those features
along with its support of unification (even in the presence of term-level bindings), λProlog
provides a rather different approach to the specification of tactics [23].

3 Proof theory and proof certificates

In this section, we introduce the main ideas from focused proof systems, foundational proof
certificates, and the Coq-Elpi plugin that we need for this paper.

3.1 Proofs for the Horn fragment
A Horn clause is a formula of the form ∀x̄1.A1 ⊃ ∀x̄2.A2 ⊃ ∀x̄n.An ⊃ A0 where ∀x̄i denote
a list of universal quantifiers (i ∈ {1, . . . , n}) and A0, . . . , An are atomic formulas. It is well
known that the following set of sequent calculus proof rules are complete for both classical
and intuitionistic logic when one is attempting to prove that a given atomic formula A is
provable from a set P of Horn clauses.

D ∈ P P ⇓ D ⊢ A

P ⊢ A
decide P ⇓ A ⊢ A

init

P ⇓ D[t/x] ⊢ A

P ⇓ ∀x.D ⊢ A
∀L

P ⊢ B P ⇓ D ⊢ A

P ⇓ B ⊃ D ⊢ A
⊃ L

Here, we use two different styles of sequents. The sequent P ⊢ A is the usual sequent which
we generally use as the end sequent (the conclusion) of a proof. The sequent P ⇓ D ⊢ A is a
focused sequent in which the formula D is the focus of the sequent. The two left introduction
rules and the initial rule can only be applied to the focused formula. This latter point is in
contrast to Gentzen’s sequent calculus where these rules can involve any formula on the left
of the ⊢. The fact that this proof system is complete for both classical and intuitionistic
logic (when restricted to the Horn clause fragment) follows from rather simple considerations
of Horn clauses [50] and from the completeness of uniform proofs [48] or LJT proofs [34].
The use of the term focus comes from Andreoli’s proof system for linear logic [1].

Figure 1 contains an annotated version of these proof rules: the annotations help us
connect to elements of the Coq proof system.
1. Instead of having separate connectives for ∀ and ⊃, we have the dependent product

connective (x : A)D.
2. We account for computation inside atoms by generalizing the init rule to allow type-level

conversion.
3. We have incorporated proof certificates [16] (using the schematic variable Ξ) along with

expert predicates (predicates with the e subscript). We explain these in Section 3.2.
4. The inference rules are annotated by terms structures that can be given directly to the

Coq kernel for checking.
5. We have added various premises which are responsible for interacting with Coq.
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Ind[p] (ΓI := ΓC) ∈ E (head A) : T ∈ ΓI k : D ∈ ΓC Ξ1 ⇓ l : D ⊢ A decidee(Ξ, Ξ1)
Ξ ⊢ k l : A

E[] ⊢CIC A : s sorte(Ξ,)
Ξ ⊢ A : s

E[] ⊢CIC A =βδιξ A′ initiale(Ξ)
Ξ ⇓ [] : A ⊢ A′

Ξ1 ⊢ t : B Ξ2 ⇓ l : D[t/x] ⊢ A prode(Ξ, Ξ1, Ξ2, t)
Ξ ⇓ (t :: l) : (x : B)D ⊢ A

Figure 1 Specification of a core calculus.

The proof system described in Figure 1 (and implemented in Figure 2) corresponds to a
subset of the Calculus of Inductive Constructions in which inductive definitions are limited to
Horn clauses. This system is inspired by the calculus for proof search in Pure Type Systems
introduced in [41], based in turn on ideas stemming from focusing (in particular, uniform
proofs [48] and the LJT calculus [34]). Similar to that calculus, we have a term language
that includes terms and lists of terms, and two typing judgments for the two categories. This
style of proof terms coincides with the idea behind the spine calculus [11]. The main novelty
of our proof system here is that proof terms and proof certificates are used simultaneously in
all inference rules.

The proof system is parameterized by Coq’s global environment E, here a set of constant
and inductive definitions; following Coq’s reference manual, inductive definition are denoted
by Ind[p](ΓI := ΓC), where ΓI determines the names and types of the (possibly mutually)
inductive type and ΓC the names and types of its constructors; finally p denotes the number
of parameters and plays here no role. The local context is empty, since we are only dealing
with types that correspond to Horn clauses, and atomic types are inductively defined. In fact,
we do not have a ∀ rule on the right, although the proof theory would gladly allow it. This
means that there are no bound variables in our grammar of terms. Terms are always applied
to a (possibly empty) list of arguments. We delegate to Coq’s type checking the enforcement
of the well-sortedness of inductive types. The decide rule, as in the previous proof system
for Horn logic, given an atom, selects a clause on which to backchain on: we lookup the
constructors of an inductive definition from the global environment, one that matches the
head symbol of the atom we aim to backchain on, and then call the latter judgment that
will find a correct instantiation, if any. The rules for backchaining include the (conflation of
the) left introduction rules for ∀ and ⊃, as well as the init rule, which incorporates Coq’s
conversion.

It may be at first surprising that there are no introduction rules for propositional
connectives, nor equality for that matter. However, one of the beauties of the Calculus of
Inductive Construction is that they are, in fact, defined inductively and therefore the decide
rule will handle those. Thus, the syntax of proof-terms is rather simple.

3.2 Proof certificate checking

Figure 2 contains the Elpi implementation of the inference rules in Figure 1: Ξ ⊢ t : A corre-
sponds to check Cert (go A T) and Ξ ⇓ l : D ⊢ A corresponds to check Cert (bc D A L),
The code in that figure mixes both Coq-specific and FPC-specific items. We describe both
of these separately.

TYPES 2020
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kind goal type.
type go term → term → goal.
type bc term → term → list term → goal.
type check cert → goal → o.

check Cert (go (sort S) A):−
sortE Cert,
coq.typecheck A (sort S) ok.

check Cert (go A Tm) :−
coq.safe-dest-app A (global (indt Prog)) _,
coq.env.indt Prog _ _ _ _ Kn KTypes,
decideE Kn Cert Cert’ K,
std.zip Kn KTypes Clauses,
std.lookup Clauses K D,
check Cert’ (bc D A L),
Tm = (app [global (indc K)|L]).

check Cert (bc (prod _ B D) A [Tm|L]) :−
prodE Cert Cert1 Cert2 Tm,
check Cert1 (bc (D Tm) A L),
check Cert2 (go B Tm).

check Cert (bc A A’ []) :−
initialE Cert,
coq.unify-eq A A’ ok.

Figure 2 Implementation of the core calculus.

3.2.1 Coq-specific code
Coq terms are accessed through the Coq-Elpi API, and their representation in λProlog takes
advantage of native λProlog constructs such as lists and binders. The following is part of the
Coq-Elpi API signature of constants that we use.

kind term type. % reification of Coq terms
kind gref type. % reification of refs to globals
type global gref → term. % coercion to term
type indt inductive → gref. % reification of inductive types
type indc constructor → gref. % reification of their constructors
type app list term → term. % reification of nary application
type prod name → term → (term → term) → term. % reification of dependent product

Note that prod encodes dependent products by taking a name for pretty printing, a
term and a λProlog abstraction from terms to terms: i.e., (x : B)D is encoded by
prod ‘‘x’’ B (x\ D x); when, in the implementation of the product-left rule, we ap-
ply D to the variable Tm, we get a new term that can be used to continue backchaining.
This application is obtained via meta-level substitution, in the style of HOAS. In this
sense, our calculus uses implicit substitutions, rather than explicit ones as in the LJT and
PTSC’s tradition; this is consistent with proof search in our application being cut-free,
whereas explicit substitutions are linked to cuts. The decide rule makes use of the Coq-Elpi
primitives coq.safe-dest-app to obtain the head term of a (possibly nested) application,
and coq.env.indt to access the global environment of inductive definitions and query for
information about them. The decideE predicate, has, among others, the role of selecting
which constructor to focus on from the inductive type. The kernel will successively obtain the
type of the selected constructor, and initiate the backchaining phase. The latter is terminated
when the focused atom unifies with the current goal, via Elpi’s primitive coq.unify-eq.
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3.2.2 FPC-specific code

The foundational proof certificates (FPC) framework was proposed in [16] as a flexible
approach to specifying a range of proof structures in first-order classical and intuitionistic
logics. Such specifications are also executable using a simple logic programming interpreter.
As a result of using logic programming, proof certificates in this framework are allowed to
lack details that can be reconstructed during the checking phase. For example, substitution
instances of quantifiers do not need to be explicitly described within a certificate since
unification within the logic programming checker is often capable of reconstructing such
substitutions.

In this and the next section, we shall only use a much reduced subset of the FPC
framework: in essence, an FPC will be used as a simple mechanism for bounding the search
for proofs. In our examples, a proof certificate, denoted by the schematic variable Ξ, is a
particular term that is threaded throughout a logic programming interpreter. For example,
the inference rules in Figure 1 are augmented with an additional premise that invokes an expert
predicate with is responsible for extracting relevant information from a proof certificate Ξ as
well as constructing continuation certificates, such as, Ξ1 and Ξ2. For example, the premise
prode(Ξ, Ξ1, Ξ2, t) calls the expert for products which should extract from the certificate Ξ a
substitution term t and two continuation certificates Ξ1 and Ξ2 for the two premises of this
rule. If the certificate Ξ does not contain an explicit substitution term, the expert predicate
can simply return a logic variable which would denote any term that satisfies subsequent
unification problems arising in completing the check of this certificate.

In our case here, an FPC is a collection of λProlog clauses that provide the remaining
details not supplied in Figures 1 and 2: that is, the exact set of constructors for the type
of certificates cert as well as the specification of the expert predicates listed ibidem. The
top of Figure 3 displays two FPCs, both of which can be used to describe proofs where
we bound the dimension of a proof. For example, the first FPC dictates that the query
(check (qheight 5) A) is provable in the kernel using the clauses in Figures 2 and 3 if
and only if the height of that proof is 5 or less. Similarly, the second FPC can be used to
bound the total number of instances of the decide rule in a proof. (Obviously, such proof
certificates do not contain, for example, substitution terms.)

As it has been described in [6], it is also possible to pair together two different proof
certificates, defined by two different FPC definitions, and do the proof checking in par-
allel. This means that we can build an FPC that restricts proofs satisfying two FPCs
simultaneously. In particular, the infix constructor <c> in Figure 3 forms the pair of two
proof certificates and the pairing experts for the certificate Cert1 <c> Cert2 simply request
that the corresponding experts also succeed for both Cert1 and Cert2. Thus, the query
check ((qheight 4) <c> (qsize 10)) A will succeed if there is a proof of A that has a
height less than or equal to 4 while also being of size less than or equal to 10.

3.3 A Prolog-like tactic

Thanks to the Coq-Elpi interface, in particular to the “main” procedure solve, we can
package the λProlog code for the checker as a tactic that can be called as any other tactic in
a Coq script.
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type qheight int → cert.
type qsize int → int → cert.
type <c> cert → cert → cert. infixr <c> 5.

ttE (qheight _).
sortE (qheight _).
prodE (qheight H) (qheight H) (qheight H) T.
decideE Kn (qheight H) (qheight H’) K :− std.mem Kn K, H > 0, H’ is H - 1.
%
ttE (qsize In In).
sortE (qsize In In).
prodE (qsize In Out) (qsize In Mid) (qsize Mid Out) T.
decideE Kn (qsize In Out) (qsize In’ Out) K :− std.mem Kn K, In > 0, In’ is In - 1.
%
ttE (A <c> B) :− ttE A, ttE B.
sortE (A <c> B) :− sortE A, sortE B.
prodE (C1 <c> C2) (D1 <c> D2) (E1 <c> E2) T :− prodE C1 D1 E1 T, prodE C2 D2 E2 T.
decideE Kn (A <c> B) (C <c> D) K :− decideE Kn A C K, decideE Kn B D K.

Figure 3 Sample FPCs.

Elpi Tactic dprolog.
Elpi Accumulate lp:{{

solve [str ’’ height’’, int N] [ goal _ Ev G _] _ :−
coq.say "Goal:" {coq.term→ string G},
check (qheight N) (go G Term),
Ev = Term,
coq.say "Proof:" {coq.term→ string Ev}.

... (* Other clauses for different fpc omitted *)
}}.

The glue code between Coq-Elpi and the implementation of our calculus is straightforward:
the goal consists of a quadruple of a (here inactive) context, an evar, a type (goal) and a list
of extra information, also inactive. In addition, we supply the certificate: it consists of an
integer (or two in the case of pairing) and a string to identify the “resource” FPC that we
will use in this case. We just need to call check on the goal G, together with the certificate,
in order to obtain a reconstructed proof term. We do not call the reconstruction directly on
the evar because Coq-Elpi ensures that evars manipulated by λProlog are well-typed at all
times; since we cannot guarantee that, as we work with partially reconstructed term, we get
around this by an explicit unification.

The following example shows how we can use the above tactic to do FPC-driven logic
programming modulo conversion in Coq and return a Coq proof-term:

Inductive insert (x:nat) : list nat → list nat → Prop :=
| i_n : insert x [] [ x]
| i_s : ∀ y: nat, ∀ ys, x <= y → insert x (y :: ys) (x :: y :: ys)
| i_c : ∀ y: nat, ∀ ys rs, y <= x → insert x ys rs → insert x (y :: ys) (x :: rs).
Lemma i1: ∃ R, insert 2 ([0] ++ [1]) R.
elpi dprolog height 10.
Qed.
Print i1.
ex_intro (fun R : list nat ⇒ insert 2 ([0] ++ [1]) R) [0; 1; 2]

(i_c 2 0 [1] [1; 2] (le_S 0 1 (le_S 0 0 (le_n 0)))
(i_c 2 1 [] [2] (le_S 1 1 (le_n 1)) (i_n 2)))



M. Manighetti, D. Miller, and A. Momigliano 10:9

The dprolog tactic implements some of the features of Coq’s eauto; it is programmable
and as such not restricted to depth-first search, since it follows the dictates of the given FPC;
for example we could easily add iterative-deepening search. Furthermore, FPCs can provide
a trace that may be more customizable than the one offered by (e)auto’s hard-wired Debug
facility.

4 Revisiting property-based testing for Coq

We have presented in a previous paper [9] a proof-theoretical reconstruction of property-based
testing (PBT) [26] of relational specifications, adopting techniques from foundational proof
certificates to account for several features of this testing paradigm: from various generation
strategies, to shrinking and fault localization.

Given the connection that Coq-Elpi offers between logic programming and the internals
of Coq, it is natural to extend the FPC-driven logic programming interpreter of the previous
section to perform PBT over Inductive types.

While nothing prevents us from porting all the PBT features that we have accounted
for in [9], for the sake of this paper we will implement only FPC corresponding to different
flavors of exhaustive generation, as adopted, e.g., in SmallCheck [60] and αCheck [14, 15],
and their combination. Note however that it would take no more than two lines of code in the
decideE expert to implement a form of random data generation in the sense of randomized
backtracking [25].

Of course, Coq already features QuickChick [52] (https://softwarefoundations.cis.
upenn.edu/qc-current), which is a sophisticated and well-supported PBT tool, based on a
different perspective: being a clone of Haskell’s QuickCheck, it emphasizes testing executable
(read decidable) specifications with random generators. While current research [39] aims to
increase automation, it is fair to say that testing with QuickChick, in particular relational
specifications, is still very labor intensive. We do not intend to compete with QuickChick
at this stage, but we shall see that we can test immediately Inductive definitions that
corresponds to pure Horn programs, without having to provide a decidability proof for those
definitions. Furthermore, we are not committed to a fixed random generation strategy, which,
in general, requires additional work in the configuration of generators and shrinkers.

4.1 PBT as proof reconstruction
If we view a Horn property (in uncurried form) as a many-sorted logical formula

∀x1 : τ1 . . . xn : τm, A1 ∧ · · · ∧ Am ⊃ B (*)

where the Ai and B are predicates defined using Horn clause specifications, a counter-example
to this conjecture consists of a witness of the negated formula

∃x1 : τ1 . . . xn : τn, A1 ∧ · · · ∧ Am ∧ ¬B (**)

In our Coq setting Ai and B will be propositions, while the τj are honest-to-goodness
datatypes. We will treat the two quite differently, in so far as elements of those datatypes
will be generated, while predicates will only be checked. This distinction is reminiscent of
bi-directional type-checking and plays also a part in interpreting the negation sign. In a
proof system for intuitionistic logic extended with fixed points [2], negation corresponds to
the usual intuitionistic interpretation, which is what Coq supports. However, for the sake of
PBT and as we argued in [9] , we can identify a proof certificate for (∗∗) simply with a proof
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certificate for ∃x1 : τ1 . . . xn : τn, A1 ∧ · · · ∧ Am and we can resort to negation-as-failure to
check that the conclusion does not hold without caring for any evidence for the latter. This
also means that we do not produce a Coq proof term for the refutation of our property –
and neither does QuickChick, which runs at the OCaml level – although we can return the
witness for the existential.

4.2 An Elpi tactic for PBT
We will invoke the tactic in a proof environment where the overall goal is the property that
the system-under-test (SUT) should meet. This means that, after intro has been used to
introduce the relevant hypotheses, the user specifies which variables of the environment
should be used for generating data and which for executing the specification. In addition to
this, the user should specify all the certificate information that will guide the data generation
phase. Concretely, for the property (∗) and the specification of a FPC, the call to the tactic
will be:

elpi dep_pbt <fpc> (A1 ∧ · · · ∧ Am) (x1) . . . (xn).

The tactic calls check with the given FPC on the dependent variables and delegates to a
vanilla meta-interpreter (see Section A.1 in the appendix) the test of the hypotheses and of
the negation of the goal:
interp (A1 ∧ · · · ∧ Am), not (interp B)

where not is λProlog’s negation-as-failure operator.
To exemplify, let us add to the previous specification of list insertion a definition of

ordered list:
Inductive ordered : list nat → Prop :=
| o_n : ordered []
| o_s : ∀ x : nat, ordered [x]
| o_c : ∀ (x y : nat), ∀ xs, ordered xs → x <= y → ordered (x :: y :: xs).

A property we may wish to check before embarking on a formal proof is whether insertion
preserves ordered-ness:
Conjecture ins_ord: ∀ (x : nat) xs rs, ordered xs → insert x xs rs → ordered rs.
intros x xs rs Ho Hi.
elpi dep_pbt (height 5) (Ho ∧ Hi) (x) (xs).
Abort.

In this query the tactic tests the hypotheses Ho and Hi against data x,xs generated ex-
haustively up to a height at most 5 from the library Inductive definitions of nat and
list. We do not generate values for rs, since by (informal) mode information we know that
it will be computed. Since we did slip in an error, our tactic reports a counter-example,
namely Proof Term: [0, [0; 1; 0]], which unpacks to x = 0 and xs = [0; 1; 0]. As
the latter is definitely not an ordered list, this points to a quite evident bug in the definition
of ordered. We leave the fix to the reader.

In order to generate the PBT query, some pre-processing is needed. In particular, we
turn variables inhabiting datatypes into λProlog logic variables when they appear inside a
specification, and generate queries for each of these logic variables in association with the
type of the data variable it corresponds to. In order to realize this pre-processing step, we
leverage extensively λProlog’s higher order programming features. The substitutions are
handled with the technique of copy clauses [44].
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Note that testing the above conjecture with QuickChick would have required much more
setup: if we wished to proceed relationally as above, we would have had to provide a proof
of decidability of the relevant notions. Were we to use functions, then we would have to
implement a generator and shrinker for ordered lists, since automatic derivation of the former
does not (yet) work for this kind of specification.

For a more significant case study, let us turn to the semantics of programming languages,
where PBT has been used extensively and successfully [38]. Here we will consider a far
simpler example, a typed arithmetic language featuring numerals with predecessor and
test-for-zero, and Booleans with if-then-else, which comes from the Software Foundations
book series (https://softwarefoundations.cis.upenn.edu/plf-current/Types.html).
Whereas this example is admittedly quite simple-minded, it has, among others, been used as
a benchmark for evaluating QuickChick’s automation of generators under invariants [39], and
to be amenable to the tool, the specification had to be massaged non-insignificantly.
Inductive tm : Type :=
| ttrue : tm | tfalse : tm | tif : tm → tm → tm → tm | tzero : tm | tsucc : tm → tm
| tpred : tm → tm | tiszero : tm → tm.
Inductive typ : Type := | TBool : typ | TNat : typ.

The completely standard static and small step dynamic semantics rules are reported in
appendix A.2.

While it is obvious that subject expansion fails for this calculus, it is gratifying to have it
confirmed by our tactic, with counterexample e = tif ttrue tzero ttrue:
Conjecture subexp: ∀ e e’ t, step e e’ → has_type e’ t → has_type e t.
intros e e’ t HS HT.
elpi dep_pbt (height 2) (HS ∧ HT) (e).
Abort.

Another way to asses the fault detection capability of a PBT setup is via mutation
analysis [10], whereby localized bugs are purposely inserted, with the view that they should
be caught (“killed”) by a “good enough” testing suite. Following on an exercise in the afore-
mentioned chapter of SF, we modify the typing relation by adding the following (nonsensical)
clause:
Module M1.
Inductive has_type : tm → typ → Prop :=
. . .

| T_SuccBool : ∀ t, has_type t TBool → has_type (tsucc t) TBool.
end M1.

Some of the desired properties for our SUT now fails: not only type uniqueness, but also
progress with counterexample e = tsucc ttrue:
Definition progress (e : tm) (Has_type : tm → typ → Prop) (Step : tm → tm → Prop):=

∀ t, Has_type e t → notstuck e Step.
Conjecture progress_m1: ∀ e, progress e M1.has_type step.
unfold progress.
intros e t Ht.
elpi dep_pbt (height 2) (Ht) (e).
Abort.

To make the example slightly more interesting, we now move to an intrinsically-typed
representation [4] of our object language, where by indexing terms with object types, we
internalize the typing judgment into the syntax:
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Inductive tm : typ → Type :=
| ttrue : tm TBool | tfalse : tm TBool | tzero : tm TNat | tsucc : tm TNat → tm TNat
| tpred : tm TNat→ tm TNat | tiszero : tm TNat→ tm TBool
| tif: ∀ (T : typ), tm TBool→ tm T → tm T → tm T.

Now, the operational semantics is by construction type-preserving, but bugs can still
occur, see variations 3 in the same chapter that falsifies determinism of evaluation:

Module M3.
Inductive step : ∀ {T: typ}, tm T → tm T → Prop :=
. . .

| ST_Funny2 : ∀ T t1 t2 t2’ t3, (*bug*)
t2 =⇒ t2’ → (tif T t1 t2 t3) =⇒ (tif T t1 t2’ t3)

End M3.
Goal ∀ (T : typ) (x y1 y2 : tm T ), M3.step x y1 → M3.step x y2 → y1 = y2.
intros T x y1 y2 H1 H2.
elpi dep_pbt pair 3 5 (H1 ∧ H2) (x).
Abort.
Counterexample:
x = (tif TBool ttrue (tiszero tzero) ttrue

While we can deal with this encodings seamlessly, QuickChick’s automatic derivation of
generators is not applicable to dependent types, forcing us again either to provide decidability
proofs for all judgments affected by the mutation or to embark in some non-trivial dependent
functional programming, possibly based on monad transformers.

5 Elaboration of external proof certificates for the Coq kernel

The trusted base of Coq is its kernel, which is a type-checking program that certifies that
a dependently typed λ-term has a given type. If type checking succeeds, the formula
corresponding to that type is, in fact, accepted by Coq users as a theorem of intuitionistic
logic (along with any axioms that have been asserted). The rest of the Coq system, especially
its tactic language, is designed to help a human user build proofs-as-λ-terms that can be
checked by the kernel.

There are many theorem provers for intuitionistic logic [58] for which a successful proof
is not the kind of detailed λ-term required by the Coq kernel. Often, such provers provide
no information about the proofs they discover. To the extent that some evidence is output
after a successful run, such evidence is usually just a trace of some key aspects of a proof,
where some details are often not included. For example:
1. Substitution instances of quantifiers might not be recorded in a proof since such instances

can, in principle, be reconstructed using unification.
2. Detailed typing information might not need to be stored within a proof since types can

often be reconstructed during proof checking [45].
3. Some simplifications steps might be applied within a proof without recording which

rewrites were used. A simple non-deterministic proof-search engine might be expected to
reconstruct an equivalent simplification.

A majority of the external and automatic theorem provers for intuitionistic logic do not
involve induction. Instead, they go beyond Horn clause by permitting formulas with no
restriction on occurrences of ∀ and ⊃. In that case, we need to modify the focused proof
rules that we have seen in Section 3.1 by adding the following rules.
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kind deb type.
type lambda deb → deb.
type apply int → list deb → deb.
type idx int → index.
type lc int → deb → cert.
type args int → list deb → cert.

impC (lc C (lambda D)) (lc C D).
impE (args C (A:: As)) (lc C A) (args C As).
initialE (args C []) .
decideE (lc C (apply H A)) (args C A) (idx V) :− V is C - H - 1.
storeC (lc C D) (x\ lc C’ D) (x\ idx C) :− C’ is C + 1.

Figure 4 The FPC definition of De Bruijn notation as proof evidence.

P, B ⊢ D

P ⊢ B ⊃ D
⊃ R

P ⊢ D[y/x]
P ⊢ ∀x.D

∀R

As usual, the ∀R rule has the restriction that the eigenvariable y is not free in its conclusion.
As has been detailed in earlier work on foundational proof certificates, this richer notion

of proof system can provide for richer proof certificates. The main differences with what
we have seen before is that the left-hand sides of sequents can now grow during the proof
checking process. When reading the right introduction rule for ⊃ from conclusion to premise,
we shall say that the antecedent of the implication is stored in the left side of the context.
When this store action occurs, an index is used by the store command to name that new,
left-hand formula occurrence. In this extended situation, the decide expert uses the index of
an assumption in order to enter a focus phase of inference. A full proof checking kernel for
first-order intuitionistic logic has been given in [16] so we do not reproduce it here.

To give an example, consider using untyped λ-terms encoded using De Bruijn’s notation
as proof certificates for propositional intuitionistic logic over just ⊃. The fact that such
terms can be used as proof certificates for such formulas (denoting simple types) can be
formally defined using the FPC description in Figure 4. Using the constants provided in that
figure, the untyped λ-term λx(x(λy(y(λz(x(λu z)))))) can be encoded as the following Elpi
term of type deb.

(lambda (apply 0 [lambda (apply 0 [lambda (apply 2 [lambda (apply 1 [])])]) ]) )

Using the constructor lc and args, terms in De Bruijn syntax (terms of type deb) are
incorporated into proof certificates (terms of type cert) along with other integer arguments
that are needed to compute offsets to address bound variables.

We describe here briefly how to use the technology behind FPCs and logic programming in
order to provide a flexible approach to connecting external provers of first-order intuitionistic
logic to Coq. Following the general outline that has been described in [6, 7], we assume that
the following steps are taken.
1. Modify an external prover to output some form of proof evidence (proof certificate) for

formulas it claims are theorems.
2. Develop a formal definition of the semantics behind such proof certificates using the FPC

framework. The FPC for De Bruijn expressions given in Figure 4 is an example of this
step.

3. Check proofs by executing the logic programming checker that is parameterized by the
particular FPC definition.
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As we have mentioned in Section 3.2.2, the logic programming setting allows parallel checking
and synthesizing of a pair of certificates. That is, during the checking of one certificate, it
is possible to synthesize, for example, a fully detailed term that is appropriate for handing
to the Coq kernel. If one is interested only in building Coq kernel proof structures, we
can bypass the use of an explicit pairing operation and build the synthesis of such proof
structures directly into the FPC proof checker. We took exactly this step in Figure 1 where
proof checking involved both proof certificates as well as Coq terms. If one is interested in
checking only one kind of external proof structure, then the FPC for that structure could
also be built into the checker (via, say, partial evaluation of logic programs [43]).

Continuing with the previous example, consider an external theorem prover for proposi-
tional intuitionistic logic which returns proof structures as untyped λ-terms using De Bruijn’s
notation. Using the FPC provided in Figure 4 and the proof certificate checker in the file
ljf-dep.mod, of the repository https://github.com/proofcert/fpc-elpi, the De Bruijn
term displayed above can be elaborated into a proper proof for the following Coq theorem.

Theorem dneg_peirce_mid : ∀ P Q: Prop, (((((P → Q) → P) → P) → Q) → Q).

We note that this proof certificate checker and Coq proof synthesizer is rather compact,
comprising less than 90 lines of Elpi code.

6 Conclusion and future work

This paper follows a line of research starting in the late 1980s and gaining more steam in
the last five years, which advocates the usefulness of proof theory and higher-order logic
programming for the many tasks concerning the development, enrichment, and even formal
verification of proof assistants. The development of the Coq-Elpi plug-in has made this
connection tighter.

We have presented two applications of this synergy: one supporting an out-of-the-box
way to do property-based testing for inductive relations; the other geared towards providing
a flexible approach to connecting external provers of first-order intuitionistic logic to Coq

The code reported in Fig. 1 is a simplification for exposition purposes of the real
implementation of the kernel. Following ideas from bidirectional type checking, we have
factored out the product left rule in ∀ − L and ⊃ −L, where the former delegates to Coq the
check that the instantiation term t is well-typed w.r.t. B, while in the latter, proof search
will generate such a term, given the type B. There are also other minor tweaks, such as a
rule performing weak-head reduction, allowing us to handle directly existential goals.

There are many avenues of development for this line of research. We would like to exploit
one of the distinguishing features of Elpi: the delay mechanism. The use of constraints for
data generation is well developed [27] and we could try to leverage it to improve our PBT
tactic to generate partially instantiated terms, without recurring to needed narrowing as
in LazySmallCheck [60]. On the more practical side, it would be worthwhile to investigate
random generation, following the ideas in [25, 9].

Finally, it makes sense to tie together the two threads of this paper and provide a way of
checking and elaborating proof evidence for intuitionistic logic over (inductively) defined
atoms using previously proved lemmata, that is capturing most of the features of eauto.
This can be pushed further up to FPC for (co)inductive proofs [8].

The source files mentioned in this paper are available at https://github.com/proofcert/
fpc-elpi.

https://github.com/proofcert/fpc-elpi
https://github.com/proofcert/fpc-elpi
https://github.com/proofcert/fpc-elpi
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A Appendix

In this appendix we list some definitions and pieces of code that we have mentioned in the
main paper.

A.1 The vanilla meta-interpreter
We report below the encoding of the vanilla meta-interpreter used in the testing phase of
the dep_pbt tactic. Differently from Fig. 2 we appeal, via quotations, to Coq’s defined
connectives. An atomic proposition is one defined Inductively.

type interp term → o.
type backchain term → term → o.

interp {{True}}.
interp (sort _).
interp {{lp:G1 ∧ lp:G2}} :− interp G1, interp G2.
interp {{lp:G1 ∨ lp:G2}} :− interp G1; interp G2.
interp {{lp:T1 = lp:T2}} :− coq.unify-eq T1 T2 ok.
interp {{ex (lp:G)}} :− interp (G X).
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interp Atom :−
atomic Atom,
coq.safe-dest-app Atom (global (indt Prog)) _,
coq.env.indt Prog _ _ _ _ _ KTypes,
std.mem KTypes D, backchain D Atom.

backchain A A’ :− atomic A, coq.unify-eq A A’ ok.
backchain D A :− is_imp D A D’, !, backchain D’ A, interp Ty.
backchain D A :− is_uni D D’, backchain (D’ X) A.

A.2 Semantics of the typed arithmetic language
We list the rules for static and dynamic semantics of the language mentioned in Section 4.2
and related notions:

Inductive has_type : tm → typ → Prop :=
| T_Tru : has_type ttrue TBool
| T_Fls : has_type tfalse TBool
| T_Test : ∀ t1 t2 t3 T,

has_type t1 TBool → has_type t2 T → has_type t3 T → has_type (tif t1 t2 t3) T
| T_Zro : has_type tzero TNat
| T_Scc : ∀ t1, has_type t1 TNat → has_type (tsucc t1) TNat
| T_Prd : ∀ t1, has_type t1 TNat → has_type (tpred t1 ) TNat
| T_Iszro : ∀ t1, has_type t1 TNat → has_type (tiszero t1) TBool.

Inductive nvalue : tm → Prop :=
| nv_zero : nvalue tzero
| nv_succ : ∀ t, nvalue t → nvalue (tsucc t).

Inductive bvalue : tm → Prop :=
| bv_t : bvalue ttrue
| bv_f : bvalue tfalse.

Reserved Notation "t1 ’=⇒ ’ t2" (at level 40).
Inductive step : tm → tm → Prop :=

| ST_IfTrue : ∀ t1 t2, (tif ttrue t1 t2) =⇒ t1
| ST_IfFalse : ∀ t1 t2, (tif tfalse t1 t2) =⇒ t2
| ST_If : ∀ t1 t1’ t2 t3,

t1 =⇒ t1’ → (tif t1 t2 t3) =⇒ (tif t1’ t2 t3)
| ST_Succ : ∀ t1 t1’,

t1 =⇒ t1’ → (tsucc t1) =⇒ (tsucc t1’)
| ST_PredZero : (tpred tzero) =⇒ tzero
| ST_PredSucc : ∀ t1,

nvalue t1 → (tpred (tsucc t1)) =⇒ t1
| ST_Pred : ∀ t1 t1’,

t1 =⇒ t1’ → (tpred t1) =⇒ (tpred t1’)
| ST_IszeroZero : (tiszero tzero) =⇒ ttrue
| ST_IszeroSucc : ∀ t1,

nvalue t1 → (tiszero (tsucc t1)) =⇒ tfalse
| ST_Iszero : ∀ t1 t1’,

t1 =⇒ t1’ → (tiszero t1) =⇒ (tiszero t1’)
where "t1 ’=⇒ ’ t2" := (step t1 t2).

Inductive notstuck (e : tm) (Step : tm → tm → Prop) : Prop :=
| pn : nvalue e → notstuck e Step
| pb : bvalue e → notstuck e Step
| ps e’ : Step e e’ → notstuck e Step.
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Duality in Intuitionistic Propositional Logic
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Abstract
It is known that provability in propositional intuitionistic logic is Pspace-complete. As Pspace is
closed under complements, there must exist a Logspace-reduction from refutability to provability.
Here we describe a direct translation: given a formula φ, we define φ so that φ is provable if and
only if φ is not.
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Introduction
A dual concept to proof theory is refutation theory [9] where one asks how to refute or
disprove a formula. Various refutation systems occur in the literature, e.g. [2, 4, 9] to derive
formal refutations. This paper takes a look from another angle: we ask if one can internalize
refutability as provability. A positive answer to this question may depend on the particular
logic, the intuitionistic propositional calculus (IPC) being a most promising case. Indeed,
the Pspace-completeness of IPC means that non-provability is Logspace reducible to
provability and vice versa. Here we show how to construct, for a given formula φ, another
formula φ which is provable if and only if φ is not. The construction works in logarithmic
space, in particular in polynomial time.

The inspiration for our approach comes from a computational interpretation of logic,
which can be seen as yet another side of Curry-Howard isomorphism, namely the equivalence:

Proof construction ⇔ Computation

This paradigm is implicitly exploited by many authors, especially in hardness and undecid-
ability proofs, e.g. [5], but it is rarely explicitly formulated. The idea is extremely simple:
the task to prove a judgment of the form

Γ ⊢ τ

is nothing else than a configuration of a machine, where
τ is the present internal state, and
Γ is the contents of memory.

The use of machine memory has to be cautious: usually assumptions are non-disposable
(unless we deal with some substructural logic) and one cannot verify that an assumption is not
available. On the other hand, proof search algorithms naturally use both nondeterministic
choices and universal splits (recursive calls). Machines adequate for IPC should therefore
be defined as alternating automata operating on write-once binary registers. Every register
represents an assumption: the value true means that the assumption is available. Registers
can only be accessed as positive guards: to execute an action the machine may have to check
that a given register is set to true. A register cannot be checked for the value false nor
unset to false. A variant of this model is mentioned in [6], an elaborated first-order version
is developed in [7]. The Wajsberg/Ben-Yelles algorithm for IPC, like in [10], can easily
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be implemented on such monotone automata [8]. On the other hand, for every monotone
automaton M one can construct a formula φM such that φM is a theorem of IPC if and only
if M halts. The formula φM can be defined using implication as the only conjective. So it is
just a simple type and only of order 3.

Under this understanding, our construction in this paper can be seen as complementation
of monotone automata: given an automaton M define another automaton M so that M

halts if and only if M does not halt. Such interpretation inspired our presentation below
which can be easily translated to the language of automata. This could make the whole
development somewhat more concise and technically direct, but we decided to remain within
the language of propositional logic, to demonstrate its flexibility.

Our goal is to define a formula φ that has a proof when a given φ has none. What φ

actually states is that φ has no normal proof without repeated judgments (and therefore of
bounded size). To handle the first aspect we use lambda-notation for proofs and we appeal to
normalization. To control proof size we found it convenient to define a restricted version of
natural deduction rules (Figure 1) where additional annotations are used to disallow cycles.

Natural deduction
We consider propositional formulas built from the connectives ∧, ∨, → and ⊥. Variables
and ⊥ are called atoms. Negation ¬α is defined as α → ⊥. We assume that implication
is right-associative, i.e., we write α → β → γ for α → (β → γ). If S = {α1, . . . , αk} then
S → β abbreviates any formula of the form α1 → · · · → αk → β (disregarding the order of
premises). Notation for sets of formulas is simplified, e.g. Γ, Σ stands for Γ ∪ Σ and Γ, α for
Γ ∪ {α}.

Our natural deduction calculus (Figure 1) derives judgments of the form Γ ⊢ α [Σ],
where Γ and Σ are sets of formulas, and α is a formula. The meaning of Γ ⊢ α [Σ] is that the
ordinary judgment Γ ⊢ α is provable without (directly) addressing proof goals in Σ. To see
this, one reads the rules upwards, in the order of proof search. Then, at every step, the set Σ
of forbidden goals is expanded by the current goal unless a new assumption is added; then Σ
is reset to ∅. This protocol ensures that no judgment can be repeated on any proof branch.
Note that the rules are “upward-preserving” in that all assumptions occurring in conclusion
must occur in the premises as well.

A convenient proof notation for propositional intuitionistic logic is an extended lambda-
calculus as e.g. in [1]. From this point of view, natural deduction becomes a type-assignment
(or, perhaps more adequately, “term-assignment” or “proof-assignment”) system (Figure 2),
deriving judgments Γ ⊢ M : α [Σ] with the additional term component M . (N.B. we identify
α-convertible terms.) Strictly speaking, Γ can no longer be just a set of formulas and must be
understood as a type environment, i.e., a set of variable declarations (x : α). Fortunately, we
do not need to consider environments Γ involving more than one declaration of the same α.
To make it precise, we say that an environment is simple when (x : α), (y : α) ∈ Γ implies
x = y. Simple environments can thus be identified with sets of formulas. In Figure 2, we
assume Γ simple in all rules,1 so the notation α ∈ Γ (resp. α ̸∈ Γ) can safely be read as
“there is (resp. is not) a variable of type α in Γ”). Note that in rule (W→2) it is assumed
that γ ∈ Γ despite the lambda-introduction.

1 The insightful reader should note that we do not claim subject reduction for the system in Figure 2,
cf. e.g. [3]; the existence of normal forms is inherited from the standard system.
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(Ax) Γ ⊢ α [Σ] [α ∈ Γ] (E⊥)
Γ ⊢ ⊥ [Σ, α]

[⊥ ̸∈ Σ]
Γ ⊢ α [Σ]

(E∧1)
Γ ⊢ α ∧ β [Σ, α]

[α ∧ β ̸∈ Σ ]
Γ ⊢ α [Σ]

(E∧2)
Γ ⊢ β ∧ α [Σ, α]

[β ∧ α ̸∈ Σ ]
Γ ⊢ α [Σ]

(W∧)
Γ ⊢ γ [Σ, γ ∧ δ] Γ ⊢ δ [Σ, γ ∧ δ]

[γ, δ ̸∈ Σ]
Γ ⊢ γ ∧ δ [Σ]

(E∨)
Γ ⊢ γ ∨ δ [Σ, α] Γ, x : γ ⊢ α[∅] Γ, y : δ ⊢ α[∅]

[γ ∨ δ ̸∈ Σ, γ, δ ̸∈ Γ]
Γ ⊢ α [Σ]

(W∨1)
Γ ⊢ γ [Σ, γ ∨ δ]

[γ ̸∈ Σ]
Γ ⊢ γ ∨ δ [Σ]

(W∨2)
Γ ⊢ δ [Σ, γ ∨ δ]

[δ ̸∈ Σ]
Γ ⊢ γ ∨ δ [Σ]

(E→)
Γ ⊢ β → α [Σ, α] Γ ⊢ β [Σ, α]

[β, β → α ̸∈ Σ]
Γ ⊢ α [Σ]

(W→1)
Γ, γ ⊢ δ[∅]

[γ ̸∈ Γ]
Γ ⊢ γ → δ [Σ]

(W→2)
Γ ⊢ δ [Σ, γ → δ]

[δ ̸∈ Σ, γ ∈ Γ]
Γ ⊢ γ → δ [Σ]

Figure 1 Natural deduction.

It is convenient to use term notation to express properties of proofs. But the principal
use of lambda-terms is that they normalize, and thus proof search can be restricted to
lambda-terms in normal form [1].

We are very relaxed regarding the notation. For example we write Γ ⊢ M : α [Σ] when it
is convenient to mention the proof M , and and Γ ⊢ α [Σ] when M is not relevant. Lambda-
terms are, for simplicity, written in Curry-style (without type decoration) but types are
always implicit, and can be marked e.g. as superscripts, whenever it is useful. The notation
Γ ⊢ α and Γ ⊢ M : α means ordinary intuitionistic provability and term-assignment as in [1].
Substitution of N for free occurrences of x in M is written M [x := N ].

The following definition is needed for the proof of completeness of our system (Lemma 2).
Let a term M be typable in a simple environment Γ. The set UΓ(M) of types directly used
in M with respect to Γ is defined by induction below. Informally, members of UΓ(M) are
(with one exception) types of proper subterms of M , not in scope of a variable binding in M .
The exception is a lambda-abstraction representing an unnecessary (duplicated) assumption.

UΓ(x) = ∅;
UΓ(P γ→δMγ) = UΓ(P ) ∪ UΓ(M) ∪ {γ → δ, γ};
UΓ(λxγ . N δ) = UΓ(N [x := y]) ∪ {δ}, when (y : γ) ∈ Γ, and UΓ(λxγ . N δ) = ∅, otherwise;
UΓ(M [α]) = UΓ(M) ∪ {⊥};
UΓ(P γ∧δ{1}) = UΓ(P γ∧δ{2}) = UΓ(P ) ∪ {γ ∧ δ};
UΓ(⟨Mγ , N δ⟩) = UΓ(M) ∪ UΓ(N) ∪ {γ, δ};
UΓ(⟨Mγ⟩1) = UΓ(M) ∪ {γ}, and UΓ(⟨M δ⟩2) = UΓ(M) ∪ {δ};
UΓ(P γ∨δ[x.M, y.N ]) = UΓ(P ) ∪ {γ ∨ δ}.
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(Ax) Γ, x : α ⊢ x : α [Σ] (E⊥)
Γ ⊢ P : ⊥ [Σ, α]

[⊥ ̸∈ Σ]
Γ ⊢ P [α] : α [Σ]

(E∧1)
Γ ⊢ P : α ∧ β [Σ, α]

[α ∧ β ̸∈ Σ ]
Γ ⊢ P{1} : α [Σ]

(E∧2)
Γ ⊢ P : β ∧ α [Σ, α]

[β ∧ α ̸∈ Σ ]
Γ ⊢ P{2} : α [Σ]

(W∧)
Γ ⊢ M : γ [Σ, γ ∧ δ] Γ ⊢ N : δ [Σ, γ ∧ δ]

[γ, δ ̸∈ Σ]
Γ ⊢ ⟨M, N⟩ : γ ∧ δ [Σ]

(E∨)
Γ ⊢ P : γ ∨ δ [Σ, α] Γ, x : γ ⊢ M : α[∅] Γ, y : δ ⊢ N : α[∅]

[γ ∨ δ ̸∈ Σ, γ, δ ̸∈ Γ]
Γ ⊢ P [x.M, y.N ] : α [Σ]

(W∨1)
Γ ⊢ M : γ [Σ, γ ∨ δ]

[γ ̸∈ Σ]
Γ ⊢ ⟨M⟩1 : γ ∨ δ [Σ]

(W∨2)
Γ ⊢ M : δ [Σ, γ ∨ δ]

[δ ̸∈ Σ]
Γ ⊢ ⟨M⟩2 : γ ∨ δ [Σ]

(E→)
Γ ⊢ P : β → α [Σ, α] Γ ⊢ M : β [Σ, α]

[β, β → α ̸∈ Σ]
Γ : PM : α [Σ]

(W→1)
Γ, x : γ ⊢ M : δ[∅]

[γ ̸∈ Γ]
Γ ⊢ λx M : γ → δ [Σ]

(W→2)
Γ ⊢ M : δ [Σ, γ → δ]

[δ ̸∈ Σ, γ ∈ Γ]
Γ ⊢ λx M : γ → δ [Σ]

Figure 2 Extended lambda-calculus.

▶ Lemma 1. If Γ ⊢ M : α, and β ∈ UΓ(M), then Γ ⊢ N : β, for some term N , shorter
than M . In particular, if M is the shortest term of type α in Γ, then α ̸∈ UΓ(M).

Proof. Easy induction with respect to M . ◀

▶ Lemma 2. The system in Figure 2 is sound and complete in the following sense:
If Γ ⊢ M : α [Σ], for some Σ, then Γ ⊢ M : α;
If Γ ⊢ M : α, and Γ is simple, then Γ ⊢ M : α [Σ], for all Σ with Σ ∩ UΓ(M) = ∅.

In particular, Γ ⊢ M : α is equivalent to Γ ⊢ M : α [∅].

Proof. The first part follows by a simple erasure of the unnecessary annotations. The second
part we prove by induction with respect to the size of a smallest possible witness M such
that Γ ⊢ M : α holds. From Lemma 1 we know that α ̸∈ UΓ(M).

If M is a variable then the claim holds trivially. Assume that M = P [α] with P of type ⊥.
Then α ̸∈ UΓ(M) = UΓ(P ) ∪ {⊥}, hence (Σ, α) ∩ UΓ(P ) = ∅. Observe that P is the shortest
term of type ⊥, hence Γ ⊢ P : ⊥ [Σ, α] holds by induction. Also Σ ∩ UΓ(M) = ∅, so ⊥ ̸∈ Σ,
rule (E⊥) applies, and yields Γ ⊢ M : α [Σ].

Consider the case M = P [x.R, y.N ] with P of type γ ∨ δ. Then Γ ⊢ P : γ ∨ δ [Σ, α] holds
by induction, because Σ, α is disjoint with UΓ(P ), as α ̸∈ UΓ(M) ⊇ UΓ(P ). Now note that
γ, δ ̸∈ Γ, as otherwise either R or N would make a shorter inhabitant of α than M . It follows
that environments Γ, γ and Γ, δ are simple. Hence the judgments Γ, x : γ ⊢ R : α[∅] and
Γ, y : δ ⊢ N : α[∅] also hold by induction, because the empty set is disjoint with everything.
To apply rule (E∨) we check that γ ∨ δ ̸∈ Σ because γ ∨ δ ∈ UΓ(M).
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As another example consider α = γ → δ, and let M = λx N . Then Γ, x : γ ⊢ N : δ,
and we have two cases depending on whether γ ∈ Γ or not. If γ ̸∈ Γ then Γ, x : γ is
a simple environment, and Γ, x : γ ⊢ N : δ [∅] holds by the induction hypothesis. Thus
Γ ⊢ λx N : γ → δ [Σ] using rule (W→1).

If γ ∈ Γ, say (y : γ) ∈ Γ, then Γ, x : γ is not simple. But then Γ ⊢ N [x := y] : δ. The
term N [x := y] is of the same size as N , so it is still a smallest possible term of type δ.
Now UΓ(N [x := y]) ∩ (Σ, γ → δ) = ∅ because γ → δ ̸∈ UΓ(M) ⊇ UΓ(N [x := y]) and
UΓ(M) ∩ Σ = ∅. So we can apply the induction hypothesis to Γ ⊢ N [x := y] : δ and infer
Γ ⊢ N [x := y] : δ [Σ, γ → δ]. Since δ ∈ UΓ(M), we have δ ̸∈ Σ, so rule (W→2) yields
Γ ⊢ λy. N [x := y] : γ → δ [Σ] and it remains to observe that λy. N [x := y] is just the same
term as λx N . Other cases are similar. ◀

The construction
In what follows we fix a formula φ and we define a formula φ to satisfy the equivalence:

⊬ φ ⇔ ⊢ φ. (*)

Let φ be of length n and let S be the set of all subformulas of φ. Then S has at most n

elements. For α, β ∈ S, and t = 0, ..., n, the following propositional symbols may occur in φ:
Dα,t – “Refute α in n − t phases”;
D′

α,t – “Refute α in n − t phases without addressing goal α again”;
Pα,t – “Assumption α present in phase t”;
Nα,t – “Assumption α not added in phase t”;
Xα,t – “Goal α cannot be derived in phase t using the axiom rule”;
Wα,t, W1

α,t, W2
α,t – “Goal α cannot be derived in phase t by introduction”;

Eα,β,t – “Goal α cannot be derived in phase t by elimination of β”.

Atoms subscripted by t are called t-atoms. The intuitive meaning of those is given above.
However, the role of Dα,t is twofold and depends on whether Dα,t occurs as a proof goal or as
an assumption. While proving Dα,t amounts to disproving α, an assumption of Dα,t should
be read as disqualifying α as a possible proof goal.
When β ∈ S, t ≤ n, Γ ⊆ S, we use the abbreviations:

Aβ,t = {Pβ,t} ∪ {Nα,t | α ∈ S ∧ α ̸= β} – “The unique assumption added in phase t is β”;
Nβ,t↓ = {Nβ,u | u ≤ t} – “Formula β not assumed until phase t”;
NΓ,t↓ = {Nβ,u | u ≤ t ∧ β ̸∈ Γ} – “No formula outside of Γ assumed until phase t”;
PΓ,t = {Pγ,t | γ ∈ Γ} – “Formulas in Γ assumed in phase t”;
DΣ,t = {Dβ,t | β ∈ Σ} – “Goals in Σ are forbidden in phase t”.

The formula φ to be defined has the form:

φ = ∆ → Dφ,0,

where ∆ is the set consisting of the following implicational formulas (called axioms):
1. Nα,0, for all α ∈ S;
2. Pα,t → Pα,t+1, for all α ∈ S, t < n;
3. (Dα,t → D′

α,t) → Dα,t, for all α ∈ S, and all t ≤ n;
4. Mα,t → D′

α,t, for all α ∈ S, and all t ≤ n, where the set Mα,t consists of the atoms:
Xα,t;
Eα,⊥,t, and Eα,β∧α,t, Eα,α∧β,t, Eα,β∨γ,t, Eα,β→α,t, for all β, γ ∈ S;
Wα,t, in case α is not an atom;
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5. Nα,t↓ → Xα,t;
6. Dγ,t → Wα,t, and Dδ,t → Wα,t, for α = γ ∧ δ;
7. Dγ,t → Dδ,t → Wα,t, for α = γ ∨ δ;
8. W1

α,t → W2
α,t → Wα,t, Pγ,t → W1

α,t, (Aγ,t+1 → Dδ,t+1) → W1
α,t, Nγ,t↓ → W2

α,t,
and Dδ,t → W2

α,t, for α = γ → δ;
9. D⊥,t → Eα,⊥,t;

10. Dα∧β,t → Eα,α∧β,t, and Dβ∧α,t → Eα,β∧α,t, for all β ∈ S;
11. Dβ,t → Eα,β→α,t, and Dβ→α,t → Eα,β→α,t, for all β ∈ S;
12. Dγ∨δ,t → Eα,γ∨δ,t, Pγ,t → Eα,γ∨δ,t, Pδ,t → Eα,γ∨δ,t, (Aδ,t+1 → Dα,t+1) → Eα,γ∨δ,t, and

(Aγ,t+1 → Dα,t+1) → Eα,γ∨δ,t, for all δ, γ ∈ S.
The main equivalence (*) follows from Lemma 3 below, for Γ = Σ = ∅, α = φ, and t = 0.
(Note that N∅,0↓ ⊆ ∆, P∅,0 = D∅,0 = ∅.)

▶ Lemma 3. For |Γ| = t, and α ̸∈ Σ:

Γ ⊬ α [Σ] iff ∆, NΓ,t↓, PΓ,t, DΣ,t ⊢ Dα,t.

Proof of Lemma 3
We begin with some additional notation and preparatory lemmas. Consider a set of atoms of
shape Ξ = N , P, D, where N , P , and D consist, respectively, of atoms of the form Nα,u, Pα,u,
and Dα,u. Write max Ξ for the largest u such that a u-atom occurs in Ξ. For t = max Ξ,
define |Ξ|t = |N |t↓, |P|t, |D|t, where:

|N |t↓ =
⋃

{Nα,t↓ | Nα,t↓ ⊆ N }, |P|t = {Pα,t | ∃u ≤ t. Pα,u ∈ P}, |D|t = {Dα,t | Dα,t ∈ D}.

The set |Ξ|t consists of atoms (either occurring in Ξ or derivable from Ξ) that are relevant
towards a t-atomic proof goal, as stated in Lemma 5.

▶ Lemma 4. Let Ξ = N , P, D be as above, with t = max Ξ. If ∆, Ξ ⊢ Pα,u, for some u ≤ t,
then there is v ≤ u such that Pα,v ∈ P. In particular, Pα,t ∈ |P|t.

Proof. Induction with respect to the size of a normal term M such that ∆, Ξ ⊢ M : Pα,u. If M

is a variable then v = u. Otherwise M = xN , where x is a variable of type Pα,u−1 → Pα,u

and N has type Pα,u−1, as only axioms (2) have targets of the form Pα,u. We apply the
induction hypothesis to N . ◀

We define the weight of a term M as the number of symbols in M , excluding parentheses
and occurrences of variables of type (2).

▶ Lemma 5. Let Ξ = N , P, D be as above, with t = max Ξ, and let Ct be a t-atom, not of
the form Nα,t. If ∆, Ξ ⊢ M : Ct, and M is normal, then also ∆, |Ξ|t ⊢ M ′ : Ct, where the
weight of the proof M ′ does not exceed the weight of M .

Proof. Induction with respect to the weight of a normal term M such that ∆, Ξ ⊢ M : Ct.
Clearly, M must be an application of an assumption variable to zero, one or more arguments.
If M is a variable (has no arguments), then Ct ∈ Ξ. Then also Ct ∈ |Ξ|t, by definition (recall
that atoms Nα,t are excluded), and we can take M ′ = M .

Otherwise let x be the head variable of M . The type of x is one of the axioms in ∆.
Assume first that x : Pα,t−1 → Pα,t. Then M has type Pα,t, whence Pα,t ∈ |P|t, by Lemma 4.
We take the appropriate variable as M ′.

Now M = xN⃗ , for some vector N⃗ of arguments. If types of these arguments are t-atoms
in Ξ, other than Nα,u, then we apply the induction hypothesis to each component of N⃗ .
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Atoms Nα,u only occur as arguments in the axioms: Nα,t↓ → Xα,t and Nγ,t↓ → W2
γ→δ,t.

If one of them is the type of x then Nα,t↓ (resp. Nγ,t↓) must be a subset of Ξ, more precisely
a subset of N . But then it is actually a subset of |N |t↓, so we can take M ′ = M .

There are four cases when an assumption of an axiom is not an atom. The case of
axiom (3) is simple: then M = x(λy N) with y : Dα,t and N : D′

α,t. In this case we apply the
induction hypothesis to ∆, Ξ, Dα,t ⊢ N : D′

α,t.
A less obvious case is when the head variable of M has e.g. type (Aγ,t+1 → Dδ,t+1) → W1

α,t.
Then we have ∆, Ξ, Aγ,t+1 ⊢ N : Dδ,t+1, for a subterm N of M , to which we apply the
induction hypothesis. This yields

∆, |N , N ′|(t+1)↓, |P , Pγ,t+1|t+1, |D|t+1 ⊢ N ′ : Dδ,t+1

where N ′ = {Nα,t+1 | α ∈ S ∧α ≠ γ}. We want to show ∆, |Ξ|t, Aγ,t+1 ⊢ N ′′ : Dδ,t+1, that is,

∆, |N |t↓, |P|t, |D|t, Aγ,t+1 ⊢ N ′′ : Dδ,t+1 . (†)

First observe that |D|t+1 = ∅ ⊆ |D|t. We also have |N , N ′|(t+1)↓ ⊆ |N |t↓ ∪ Aγ,t+1. Indeed,
if Nα,u ∈ |N , N ′|(t+1)↓ then the whole set Nα,(t+1)↓ is contained in N ∪ N ′. Thus, for all v,
if v ≤ t then Nα,v ∈ N , and if v = t + 1 then Nα,v ∈ N ′, in particular α ̸= γ. It follows that
Nα,u ∈ |N |t, for u ≤ t, and Nα,u ∈ Aγ,t+1 when u = t + 1.

However, it is not the case that |P , Pγ,t+1|t+1 ⊆ |P|t, Aγ,t+1, so we cannot take N ′′ = N ′.
But the missing atoms Pβ,t+1 are derivable (for free) from Pβ,t ∈ |P|t. That is, we can
replace in N ′ any occurrence of a variable of type Pβ,t+1 by an application of one or more
axioms of type (2) without adding more weight. We conclude that the judgment (†) holds
with some term N ′′ of the same weight as N ′. ◀

Proof of Lemma 3 (“if” part). Assume ∆, NΓ,t↓, PΓ,t, DΣ,t ⊢ Dα,t, where |Γ| = t, and
α ̸∈ Σ. Suppose towards contradiction that Γ ⊢ α [Σ]. We proceed by induction with respect
to the weight of a normal proof of Dα,t. Of course Dα,t ̸∈ DΣ,t, so the proof is an application
of the axiom (Dα,t → D′

α,t) → Dα,t. Hence ∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t ⊢ D′
α,t, and this means

that ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Ct, for every atom Ct ∈ Mt. Indeed, no other axiom targets D′
α,t,

and we have DΣ,t, Dα,t = DΣ,α,t.
In particular, ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Xt , and that can only happen when Nα,t↓ ⊆ NΓ,t↓,

i.e., when α ̸∈ Γ. It follows that the judgment Γ ⊢ α [Σ] is not an axiom.
Since ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Eα,⊥,t, it must be the case that ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ D⊥,t,

whence Γ ⊬ ⊥ [Σ, α] by induction. Thus, Γ ⊢ α [Σ] cannot be obtained from rule (E⊥).
Suppose Γ ⊢ α [Σ] is derived using (E∧1) in the last step. Then Γ ⊢ α ∧ β [Σ, α], for

some β such that α ∧ β ̸∈ Σ. But ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Eα,α∧β,t implies that Dα∧β,t is
derivable, whence Γ ⊬ α ∧ β [Σ, α], by the induction hypothesis.

In a similar fashion we exclude all rules where Γ remains unchanged in the premises. Let
us consider rule (E∨). For any γ, δ we have a proof of Eα,γ∨δ using one of the five available
axioms (12) targetting this atom.

Suppose that Eα,γ∨δ was derived using the axiom Dγ∨δ,t → Eα,γ∨δ,t. This means that
Dγ∨δ,t was proved in the same environment. If γ ∨ δ ̸∈ Σ then Γ ⊬ γ ∨ δ [Σ, α], by induction,
and rule (E∨) is not applicable. This rule is also excluded when γ ∨ δ ∈ Σ.

Axiom Pγ,t → Eα,γ∨δ,t can be used only if Pγ,t ∈ PΓ,t, i.e., when γ ∈ Γ. Then rule (E∨)
is not applicable too (and similarly for δ). So γ, δ ̸∈ Γ and we must have used e.g. the axiom
(Aδ,t+1 → Dα,t+1) → Eα,γ∨δ,t. It follows that M is of shape y(λx⃗ N), where

∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t, Aδ,t+1 ⊢ N : Dα,t+1 .
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From Lemma 5 we obtain:

∆, |NΓ,t↓, PΓ,t, DΣ,t, Dα,t, Aδ,t+1|t+1 ⊢ N ′ : Dα,t+1 ,

that is:

∆, |NΓ,t↓ ∪ {Nβ,t+1 | β ̸= δ}|(t+1)↓, |PΓ,t, Pδ,t+1|t+1, |DΣ,t, Dα,t|t+1 ⊢ N ′ : Dα,t+1 .

Now we should observe that:
|DΣ,t, Dα,t|t+1 = ∅ = D∅,t+1;
|NΓ,t↓ ∪ {Nβ,t+1 | β ̸= δ}|(t+1)↓ ⊆ NΓ,δ,(t+1)↓;
|PΓ,t, Pδ,t+1|t+1 = PΓ,δ,t+1.

Therefore, we can write:

∆, NΓ,δ,(t+1)↓, PΓ,δ,t+1, D∅,t+1 ⊢ N ′ : Dα,t+1 .

Since N ′ is smaller than M in weight, we have Γ, δ ⊬ α [∅] by the induction hypothesis, and
rule (E∨) is now excluded too. In other cases we proceed in an analogous way. ◀

Proof of Lemma 3 (“only if” part). Let Γ ⊬ α [Σ]. We prove ∆, NΓ,t↓, PΓ,t, DΣ,t ⊢ Dα,t, by
induction with respect to two parameters:

(1) the cardinality n − t of S − Γ, (2) the cardinality of S − Σ.

We need to show that all atoms in Mα,t can be derived from ∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t, which
is the same as ∆, NΓ,t↓, PΓ,t, DΣ,α,t. Then we can obtain Dα,t using the axioms Mα,t → D′

α,t

and (Dα,t → D′
α,t) → Dα,t.

We begin with Xα,t. From Γ ⊬ α [Σ] it follows that α ̸∈ Γ, hence all formulas Nα,u, for
u ≤ t, are in NΓ,t↓, and the axiom Nα,t↓ → Xα,t can be used to prove Xα,t.

In order to prove Eα,⊥,t, we consider two cases. If ⊥ ̸∈ Σ then we observe that Γ ⊬ ⊥[Σ, α],
as otherwise rule (E⊥) could be used to derive Γ ⊢ α [Σ]. By the induction hypothesis we have
∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ D⊥,t, because the cardinality of Γ is unchanged and the cardinality of
Σ, α is greater by one than that of Σ. Our goal is accomplished with the axiom D⊥,t → Eα,⊥,t.
The case ⊥ ∈ Σ is simpler, because then D⊥,t just belongs to DΣ,t.

Consider a constant Eα,β→α,t. If β ∈ Σ or β → α ∈ Σ then Dβ,t ∈ DΣ,t or Dβ→α,t ∈ DΣ,t,
and Eα,β→α,t follows easily. Otherwise, one of the premises of rule (E→) does not hold, and
one can apply the induction hypothesis to derive either Dβ,t or Dβ→α,t. The induction could
fail when β = α, in which case β ∈ Σ, α. But then we already have Dβ,t = Dα,t ∈ DΣ,t.

As the next example we consider the atom Wα, where α = γ → δ. We should derive the
two atoms W1

α,t and W2
α,t .

If γ ∈ Γ then Pγ,t ∈ Pα,t and Pγ,t → W1
α,t implies W1

α,t. Otherwise Γ, γ ⊬ δ [∅], as γ → δ

should not be derivable using rule (W→1). We can apply the induction hypothesis, because
the set Γ, γ is larger than Γ. Thus, ∆, NΓ,γ,(t+1)↓, PΓ,γ,t+1, D∅,t+1 ⊢ Dδ,t+1 . Observe that
NΓ,γ,(t+1)↓ ⊆ NΓ,t↓ ∪Aγ,t+1, and that all atoms Pσ,t+1 ∈ PΓ,γ,t+1 can be derived from the set
PΓ,t, Aγ,t+1, because Pγ,t+1 ∈ Aγ,t+1. Therefore ∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t, Aγ,t+1 ⊢ Dδ,t+1.
Using the axiom (Aγ,t+1 → Dδ,t+1) → W1

α,t we obtain what we need.
The atom W2

γ→δ,t is easily derived from Dδ,t in case δ ∈ Σ. Similarly, if γ ̸∈ Γ then
we can use the axiom Nγ,t↓ → W2

α,t. So we assume δ ̸∈ Σ, γ ∈ Γ and we apply in-
duction to Γ ⊬ δ [Σ, γ → δ]. This yields ∆, NΓ,t↓, PΓ,t, DΣ,γ→δ,t ⊢ Dδ,t, and we use the
axiom Dδ,t → W 2

α,t to complete the job. Other cases are similar. ◀
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A simple example
For a formula φ of length n, the “dual” formula φ is of size O(n3) with a decently large
constant, and may be quite incomprehensible even for short φ. We therefore consider an
extremely simple example φ = (p → p) → p. By our definition we have φ = ∆⃗ → Dφ,0,
where ∆⃗ abbreviates the sequence of all axioms (1–12). Not all of them are actually needed,
and some can be simplified in this case. For example, a normal proof of φ itself cannot be an
elimination, because only subformulas of φ are used and neither ⊥ or ∨ occurs in φ. Hence
the set Mφ,t in (4) reduces to two elements (cf. type of X4 below). Here we only list the
relevant part of ∆⃗, in the form of variable declarations. We use the abbreviation α = p → p.

1. X1 : Nφ,0, Z1 : Nα,0, Y1 : Np,0;
3. X3 : (Dφ,0 → D′

φ,0) → Dφ,0, Y3 : (Dp,1 → D′
p,1) → Dp,1, U3 : (Dφ,1 → D′

φ,1) → Dφ,1;
4. X4 : Xφ,0 → Wφ,0 → D′

φ,0, Y4 : Xp,1 → Ep,φ,1 → Ep,α,1 → D′
p,1, U4 : Xφ,1 → Wφ,1 → D′

φ,1;
5. X5 : Nφ,0 → Xφ,0, Y5 : Np,0 → Np,1 → Xp,1, U5 : Nφ,0 → Nφ,1 → Xφ,1;
8. X1

8 : W1
φ,0 → W2

φ,0 → Wφ,0, X3
8 : (Pα,1 → Nφ,1 → Np,1 → Dp,1) → W1

φ,0, X4
8 : Nα,0 → W2

φ,0 ,
U1

8 : W1
φ,1 → W2

φ,1 → Wφ,1, U2
8 : Pα,1 → W1

φ,1, U5
8 : Dp,1 → W2

φ,1.
11. Y 1

11 : Dp,1 → Ep,α,1, Y 2
11 : Dφ,1 → Ep,φ,1 .

A proof of Dφ,0 can now be presented as the lambda-term:

X3(λx:Dφ,0. X4(X5X1)(X1
8 T (X4

8 Z1))),

where T = X3
8 (λw:Pα,1λx1:Nφ,1λy1:Np,1. Y3(λy:Dp,1. Y4(Y5Y1y1) S (Y 1

11y))) has type W1
φ,0,

and S = Y 2
11(U3(λu:Dφ,1. U4(U5X1x1)(U1

8 (U2
8 w)(U5

8 y)))) has type Ep,φ,1.
The above term represents the following refutation of φ. First check that φ is not

assumed (this is the meaning of the subterm X5X1). Then check that φ cannot be obtained
by introduction from α ⊢ p. Since α is not yet assumed (X4

8 Z1) we now assume it (variable w)
but not the other formulas (variables x1, y1). The goal p is now addressed for the first time
and is marked as forbidden in this phase (variable y). It is easy to check that p is not an
assumption (Y5Y1y1) and that it cannot be derived by elimination from α: indeed, the latter
requires re-addressing the goal p in the same environment (Y 1

11y).
The subterm S refutes the possibility that p is obtained by elimination from φ, because

an attempt to derive α ⊢ φ will fail. Indeed, φ must be obtained by introduction from α ⊢ p

(the subterms U2
8 w and U5X1x1 certify that α has already been assumed, but φ has not).

But p is a forbidden goal (U5
8 y), hence using the introduction rule is illegal.

Conclusion
We have demonstrated a logarithmic space algorithm to construct a “dual” formula φ for
any given propositional formula φ, so that φ is provable in IPC if φ is not. The construction
is inspired by an automata-theoretic view of proof-search. This can be seen as alternative to
introducing rules to derive refutability: just apply the old ones towards a different task.

The formula φ uses only implication and (as a simple type) is of order (depth) at most 3.
Since φ is provable iff so is φ, we conclude that IPC provability reduces to provability of
formulas of particularly simple form.2 The formula φ is not equivalent to φ, but is computable
in logarithmic space (note the analogy with Cnf-Sat).

2 Of course that can be done much simpler in a direct way [8].
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Intuitionistic propositional logic can represent combinatorial problems as easily (or better)
as classical propositional satisfiability, and it is far more expressive because it reaches beyond
the class NP. Provability in IPC reduces to the case of order three. Those should be relatively
easy to simplify and manipulate by various heuristics (like joining and deleting some formula
components). It is about time for an intuitionistic analogue of Davis-Putnam algorithm.
This issue is raised in a subsequent work [8].
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