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Abstract
We provide an Agda library for inference systems, also supporting their recent generalization allowing
flexible coinduction, that is, interpretations which are neither inductive, nor purely coinductive. A
specific inference system can be obtained as an instance by writing a set of meta-rules, in an Agda
format which closely resembles the usual one. In this way, the user gets for free the related properties,
notably the inductive and coinductive intepretation and the corresponding proof principles. Moreover,
a significant modularity is achieved. Indeed, rather than being defined from scratch and with a
built-in interpretation, an inference system can also be obtained by composition operators, such as
union and restriction to a smaller universe, and its semantics can be modularly chosen as well. In
particular, flexible coinduction is obtained by composing in a certain way the interpretations of two
inference systems. We illustrate the use of the library by several examples. The most significant
one is a big-step semantics for the λ-calculus, where flexible coinduction allows to obtain a special
result (∞) for all and only the diverging computations, and the proof of equivalence with small-step
semantics is carried out by relying on the proof principles offered by the library.
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1 Introduction

An inference system [5, 19, 21], that is, a set of (meta-)rules stating that a consequence can be
derived from a set of premises, is a simple, general and widely-used way to express and reason
about a recursive definition. In most cases such recursive definition is seen as inductive, that
is, the denoted set consists of the elements with a finite derivation. This enables inductive
reasoning, that is, to prove that the elements an inductively defined set satisfy a property, it
is enough to show that, for each (meta-)rule, the property holds for the consequence assuming
that it holds for the premises. In other cases, the recursive definition is seen as coinductive,
that is, the denoted set consists of the elements with a possibly infinite derivation. This
enables coinductive reasoning, that is, to prove that all the elements satisfying a property
belong to the coinductively defined set, it is enough to show that, when the property holds for
an element, it can be derived from premises for which the property holds as well. Recently, a
generalization of inference systems has been proposed [8, 13, 15] which handles cases where
neither the inductive, nor the purely coinductive intepretation provides the desired meaning.
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13:2 Flexible Coinduction in Agda

This approach is called flexible coinduction, and, correspondingly, coinductive reasoning is
generalized as well by a principle which is called bounded coinduction.

The Agda proof assistant [23] offers language constructs to inductively/coinductively
define predicates, and correspondingly built-in proof principles. However, in this way the
recursive definition is monolithic, and hard-wired with its chosen interpretation. Our aim,
instead, is to provide an Agda library allowing the user to express a recursive definition as an
instance of a parametric type of inference systems. In this way, the user is not committed from
the beginning to a given interpretation but, rather, gets for free a bunch of properties which
have been proved once and for all, including the inductive and coinductive intepretation and
the corresponding proof principles. Moreover, it is possible to define composition operators on
inference systems, for instance union and restriction. Finally, flexible coinduction is modularly
obtained as well, by composing in a certain way the interpretations of two inference systems.

Indexed containers [6] provide a way to specify possibly recursive definitions of predicates
independently from their interpretation and are supported in the Agda standard library.
An Agda implementation of inference systems can be provided by seeing them as indexed
containers. However, this approach requires to structure definitions in an unusual way.
Indeed, inference systems are usually presented through a (finite) set of meta-rules, denoting
all the rules which can be obtained by instantiating meta-variables with values satisfying the
side condition. Hence, we provide a different implementation following this schema, to allow
users to write their own inference system in an Agda format which closely resembles that
“on paper”. We then prove that the two implementations are equivalent, showing that every
indexed container can be encoded in terms of meta-rules and viceversa.

In Sect. 2 we recall basic notions on inference systems, and in Sect. 3 the generalization
supporting flexible coinduction. In Sect. 4 we describe how to implement (generalized)
inference systems in Agda. Notably, in Sect. 4.1 we present the approach mimicking meta-
rules, showing step-by-step the correspondence with the previous definitions. In Sect. 4.2,
instead, we explain the view of inference systems as indexed containers, and prove the
equivalence. Then, we illustrate the use of the library by several examples. In Sect. 5 we
consider three different predicates on possibily infinite lists (colists in Agda terminology)
defined by induction, coinduction, and flexible coinduction, respectively. In Sect. 6 we provide
a more significant and elaborated example: a big-step semantics for the λ-calculus where
flexible coinduction allows to obtain a special result (∞) for all and only the diverging
computations, and the proof of equivalence with small-step semantics is carried out by relying
on the proof principles offered by the library. Finally, we summarize the contribution and
outline further work in Sect. 7.

2 Inference systems

We recall basic definitions on inference systems [5, 19, 21, 15]. Throughout this section and
the following we assume a set U , named universe, whose elements j are called judgments. An
inference system I is a set of rules, which are pairs ⟨pr , j⟩, with pr ⊆ U the set of premises,
and j ∈ U the conclusion (a.k.a. consequence). A rule with an empty set of premises is an
axiom. A rule ⟨pr , j⟩ is often written as a fraction pr

j .

In practice, inference systems are described by a (finite) set of meta-rules, written in
some meta-language. For instance, taking as universe the set N∞ of finite and infinite lists
of natural numbers, and denoting Λ the empty list, and x:u the list with head x and tail u,
the following two sets of meta-rules describe inference systems for the predicates holding
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when an element belongs to the list, and all elements are positive, respectively.

(mem-h) member(x, x:xs) (mem-t)
member(x, xs)

member(x, y:xs)

(allP-Λ) allPos(Λ) (allP-t)
allPos(xs)

allPos(x:xs) x > 0

The aim of an inference system is to define, in a way which provides canonical techniques
to prove properties, a subset of the universe. There are several ways to choose this set,
depending on the interpretation given to the inference system.

To define an interpretation in a model-theoretic way, the basis is the inference operator
associated with I, which is the function FI : ℘(U) → ℘(U) defined by

FI(X) = {j ∈ U | pr ⊆ X, ⟨pr , j⟩ ∈ I, for some pr ∈ ℘(U)}.

A subset X of the universe is I-closed if, for all rules ⟨pr , j⟩ ∈ I, if pr ⊆ X then j ∈ X, it is
I-consistent if, for all j ∈ X, there is a rule ⟨pr , j⟩ ∈ I and pr ⊆ X.

The inductive interpretation IndJIK is the least fixed point of FI , which, by the Knaster-
Tarski theorem, coincides with the least pre-fixed point of FI and so with the least I-closed
set. As an immediate consequence, when we define a set inductively, that is, as IndJIK for
some I, we can prove that such definition is sound with respect to a given specification,
namely, a subset S ⊆ U , by the induction principle:

(ind) If a set S ⊆ U is I-closed, then IndJIK ⊆ S.

Proving that S is I-closed amounts to show that, for each (meta-)rule, if the premises satisfy
S then the consequence satisfies S as well.

The coinductive interpretation CoIndJIK is the greatest fixed point of FI , which, by the
Knaster-Tarski theorem, coincides with the largest post-fixed point of FI and so with the
largest I-consistent set. As an immediate consequence, when we define a set coinductively,
that is, as CoIndJIK for some I, we can prove that such definition is complete with respect
to a given specification S ⊆ U by the coinduction principle:

(coind) If a subset S ⊆ U is I-consistent, then S ⊆ CoIndJIK.

Proving that S is I-consistent amounts to show that, for each j satisfying S, there is a rule
with consequence j and premises satisfying S as well.

To prove completeness of the inductive interpretation, and soundness of the coinductive
interpretation, instead, there is no canonical technique, so some ad-hoc proof is needed.

Alternatively, the interpretation can also be specified proof-theoretically, that is, through
the notion of proof tree. For the aim of this paper a semi-formal definition is enough, we
refer to [13, 15] for a rigorous treatment. Set T the set of trees with nodes (labeled by)
judgments. Given τ ∈ T , r(τ) is the (label of the) root, dst(τ) the set of direct subtrees, and
chl(τ) the set of (the labels of) their roots. The inference operator can be naturally extended
to a function TI : ℘(T ) → ℘(T ) as follows:

TI(Y ) = {τ ∈ T | dst(τ) ⊆ Y, ⟨chl(τ), r(τ)⟩ ∈ I}

Then, a proof tree (a.k.a. derivation) is a tree such that, for each subtree τ , ⟨chl(τ), r(τ)⟩ ∈ I,
that is, there is a node (labelled by) j with set of children (labelled by) pr only if the rule
⟨pr , j⟩ belongs to I. A proof tree for j is a proof tree τ such that r(τ) = j.
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13:4 Flexible Coinduction in Agda

Then, IndJIK and CoIndJIK can be equivalently defined as the sets of judgments with
respectively a finite and a possibly infinite proof tree. Moreover, the sets of finite and
possibly infinite proof trees turn out to be the least fixed point and the greatest fixed point,
respectively, of the inference operator extended to trees. See [13, 14] for detailed proofs
carried out with a rigorous definition of trees.

Coming back to the two examples above, it is easy to see that, in order to obtain the
desired meaning, the inference system for member should be interpreted inductively, while
that for allPos coinductively. Indeed, the fact that an element belongs to the list can be
shown by a finite proof tree, even for an infinite list, whereas, for such a list, to show that all
elements are positive an infinite proof tree is needed.

3 Corules

We recall the notion of inference systems with corules, which mixes induction and coinduction
in a flexible way [8, 13, 15]. For X ⊆ U , we write I|X for the restriction of I to X, that is,
the inference system {⟨pr , j⟩ ∈ I | j ∈ X}.

▶ Definition 1. A generalized inference system, or inference system with corules, is a
pair ⟨I, Ico⟩ where I and Ico are inference systems. Elements in I and Ico are called
rules and corules, respectively. The interpretation of ⟨I, Ico⟩ is defined by FCoIndJI, IcoK =
CoIndJI|IndJI∪IcoKK.

Thus, the interpretation FCoIndJI, IcoK is basically coinductive, but restricted to a universe
of judgements which is inductively defined by the (potentially) larger system I ∪ Ico.

In [8, 13, 15] the following results are proved:
FCoIndJI, IcoK is the largest post-fixed point of FI included in IndJI ∪ IcoK
in proof-theoretic terms, FCoIndJI, IcoK is the set of judgments which have a possibly
infinite proof tree in I whose nodes all have a finite proof tree in I ∪ Ico, that is, the
(standard) inference system consisting of rules and corules.

As an immediate consequence, when we define a set by flexible coinduction, that is, as
FCoIndJI, IcoK for some ⟨I, Ico⟩, we can prove that such definition is complete with respect
to a given specification S ⊆ U by the bounded coinduction principle, which generalizes the
coinduction principle:

(b-coind) If a subset S ⊆ U is bounded, that is, S ⊆ IndJI ∪ IcoK, and I-consistent, then
S ⊆ FCoIndJI, IcoK.

Proving that S is bounded means proving completeness of the inference system extended
by corules, interpreted inductively, with respect to S. Hence, there is no canonical technique,
and for each concrete case we must find an ad-hoc proof. Proving that S is I-consistent,
as for the standard coinduction principle, amounts to show that, for each j satisfying S,
there is a rule with consequence j and premises satisfying S as well. As for the purely
coinductive interpretation, an ad-hoc proof is also needed for soundness. However, as shown
in the examples in Sect. 5 and Sect. 6, in many cases we can take advantage of the fact that
FCoIndJI, IcoK is a subset of IndJI ∪ IcoK, and reason by induction on the latter.

We illustrate the role of corules by a simple example: defining the maximal element of a
list. A (meta-)corule is written as a fraction with a thicker line.

(max-Λ) maxElem(x:Λ, x) (max-t)
maxElem(u, y)

maxElem(x:u, z) z = max(x, y) (max-co)
maxElem(x:u, x)
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Considering the standard inference system consisting of the two rules, its inductive interpreta-
tion only provides the desired meaning on finite lists, since for infinite lists an infinite proof is
needed. However, the coinductive interpretation allows also wrong judgements. For instance,
let L = 1:2:1:2:1:2: . . .. Then any judgment maxElem(L, x) with x ≥ 2 can be derived, as
illustrated by the following examples.

. . .

maxElem(L, 2)
maxElem(2:L, 2)

maxElem(1:2:L, 2)

. . .

maxElem(L, 5)
maxElem(2:L, 5)

maxElem(1:2:L, 5)

By adding the coaxiom, we force the element to belong to the list, so that wrong results
are “filtered out”. Indeed, the judgment maxElem(1:2:L, 2) has the infinite proof tree shown
above, and each node has a finite proof tree in the inference system extended by the corule:

. . .

maxElem(L, 2)
maxElem(2:L, 2)

maxElem(1:2:L, 2)
maxElem(2:L, 2)

maxElem(1:2:L, 2)

On the other hand, the judgment maxElem(1:2:L, 5) has the infinite proof tree shown above,
but has no finite proof tree in the inference system extended by the corule. Indeed, since 5
does not belong to the list, the corule can never be applied. Hence, this judgment cannot be
derived in the inference system with corules. We refer to [8, 13, 15] for other examples.

Note that the inductive and coinductive interpretation of I are special cases, notably:
the inductive interpretation of I is the interpretation of ⟨I, ∅⟩
the coinductive interpretation of I is the interpretation of ⟨I, {⟨∅, j⟩ | j ∈ U}⟩.

4 Generalized inference systems in Agda

We describe how to implement (generalized) inference systems in Agda. Notably, in Section 4.1
we present an approach mimicking meta-rules, showing step-by-step the correspondence with
the definitions of the previous sections. In Sect. 4.2, instead, we explain the view of inference
systems as indexed containers, and prove the equivalence.

4.1 An Agda library for writing meta-rules
In this section and the following we report the most interesting parts of the Agda code.

As anticipated, the aim of the Agda library is to allow a user to write meta-rules as “on
paper”. To illustrate this format, let us consider, e.g., the previous example:

(allP-t)
allPos(xs)

allPos(x:xs) x > 0

In a meta-rule, we have meta-variables, which range over certain sets, in a way possibly
restricted by a side condition. We call context the set of the instantiations of meta-variables
which satisfy the side-condition, hence produce a rule of the inference system. In the example,
there are two meta-variables, x and xs, which range over N and N∞, respectively, with the
restriction that x should be positive. Hence the context is {⟨x, l⟩ ∈ N × N∞ | x > 0}, see
Sect. 5 for the Agda version of this meta-rule.

Correspondingly, the following Agda declaration defines a meta-rule as a record, parametric
on the universe U. The first two components are the context and a set of positions for premises.
For each element of the context (instantiation of meta-variables satisfying the side condition),
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13:6 Flexible Coinduction in Agda

the last two components produce the premises, one for each position, and the conclusion of
the rule obtained by this instantiation.

record MetaRule {ℓc ℓp : Level } (U : Set ℓu) : Set _ where
f i e l d

Ctx : Set ℓc
Pos : Set ℓp
prems : Ctx → Pos → U
conclu : Ctx → U

RF[_] : ∀{ℓ} → (U → Set ℓ) → (U → Set _)
RF[_] P u = Σ [ c ∈ Ctx ] (u ≡ conclu c × (∀ p → P (prems c p )) )

RClosed : ∀{ℓ} → (U → Set ℓ) → Set _
RClosed P = ∀ c → (∀ p → P (prems c p)) → P ( conclu c )

Recall that in Agda the declaration U : Set introduces the type (set) U, and P : U → Set
the dependent type (predicate on U) P. For each element u of U, P u is the type of the
proofs that u satifies P, hence P u inhabited means that u satisfies P. To avoid paradoxes,
not every Agda type is in Set ; there is an infinite sequence Set 0, Set 1, . . . , Set ℓ, . . .
such that Set ℓ : Set ( suc ℓ), where ℓ is a level, and Set is an abbreviation for Set 0.
The programmer can write a wildcard for a level which can be inferred; to make the Agda
code reported in the paper lighter, we sometimes use a wildcard even for a level which is
explicit in the real code.

In the Agda code in this section, predicates P : U → Set encode subsets of the universe
as in Sect. 2 and Sect. 3, so we speak of subsets and membership, rather than of predicates
and satisfaction, to closely follow the previous formulation.

The function RF [ _] encodes the inference operator associated with the meta-rule. Given
a subset P of the universe, u belongs to the resulting subset if we can find an instantiation
c of meta-variables satisfying the side condition, producing u as conclusion, and, for each
position, a premise in P. Note the use of existential quantification Σ[ x ∈ A ] B where B
depends on x.

The predicate RClosed encodes the property of being closed with respect to the meta-rule.
A subset P of the universe is closed if, for each instantiation c of the meta-variables satisfying
the side-condition, if all the premises are in P then the conclusion is in P as well. Note the
use of universal quantification ∀ ( x : A) → B, where B depends on x.

Since in practical cases meta-rules are very often finitary, that is, premises are a finite
set, the library also offers an interface to write a (finitary) meta-rule, by providing, besides
the context, two components which are the vector of premises, with fixed length n, and the
conclusion. The injection from transforms this more concrete format in the generic one for
meta-rules, by specifying that the set of positions is Fin n (the set of indexes from 0 to
n − 1).

record FinMetaRule {ℓc n} (U : Set ℓu) : Set _ where
f i e l d

Ctx : Set ℓc
comp : C → Vec U n × U

from : MetaRule {ℓc} {zero} U
from . MetaRule . Ctx = Ctx
from . MetaRule . Pos = Fin n
from . MetaRule . prems c i = get ( pro j 1 (comp c )) i
from . MetaRule . conclu c = pro j 2 (comp c)
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An inference system is defined as a record, parametric on the universe U, consisting of a
set of meta-rule names and a family of meta-rules. The function ISF [ _] and the predicate

ISClosed are defined composing those given for a single meta-rule.
record IS {ℓc ℓp ℓn : Level } (U : Set ℓu) : Set _ where

f i e l d
Names : Set ℓn
r u l e s : Names → MetaRule {ℓc} {ℓp} U

ISF [_] : ∀{ℓ} → (U → Set ℓ) → (U → Set _)
ISF [_] P u = Σ [ rn ∈ Names ] RF[ r u l e s rn ] P u

ISClosed : ∀{ℓ} → (U → Set ℓ) → Set _
ISClosed P = ∀ rn → RClosed ( r u l e s rn ) P

Recall that the inductive interpretation IndJIK of an inference system I is the set of
elements of the universe which have a finite proof tree, and finite proof trees are, in turn,
inductively defined, that is, by a least fixed point operator. In Agda, inductive structures
are encoded as datatypes, which specify their constructors.
data IndJ_K {ℓc ℓp ℓn : Level }
( i s : IS {ℓc} {ℓp} {ℓn} U) : U → Set _ where

f o l d : ∀ {u} → ISF [ i s ] IndJ i s K u → IndJ i s K u

For each u, Ind J is K u is the type of the proofs that u satisfies Ind J is K, which are
essentially the finite proof trees1 for u. Indeed, the fold constructor, given a proof that u
can be derived by applying a rule from premises belonging to Ind J is K, which essentially
consists of a rule with conclusion u and finite proof trees for its premises, builds a finite proof
tree for u.

The coinductive interpretation CoIndJIK, instead, is the set of elements of the universe
which have a possibly infinite proof tree, and possibly infinite proof trees are, in turn,
coinductively defined, that is, by a greatest fixed point operator. In Agda, coinductive
structures can be encoded in two different ways: either as coinductive records [3], or as
datatypes by using the mechanism of thunks (suspended computations) together with sized
types [1, 2, 4] to ensure termination. To allow compatibility with existing code implemented
in either way, both versions are supported by the library.
record CoIndJ_K {ℓc ℓp ℓn : Level }

( i s : IS {ℓc} {ℓp} {ℓn} U) (u : U) : Set _ where
coinductive
constructor cofold_
f i e l d

unfold : ISF [ i s ] CoIndJ i s K u

data SCoIndJ_K {ℓc ℓp ℓn : Level }
( i s : IS {ℓc} {ℓp} {ℓn} U) : U → Size → Set _ where

s f o l d : ∀ {u i } → ISF [ i s ] (λ u → Thunk (SCoIndJ i s K u) i ) u
→ SCoIndJ i s K u i

For each u, CoInd J u K is the type of the proofs that u satisfies CoInd J is K, which are
essentially the possibly infinite proof trees for u, and analogously for SCoInd J is K.

In the first version, a possibly infinite proof tree for u is a record with only one field
unfold containing an element of ISF [ is ] CoInd J is K u, that is, a proof that u can be

derived by applying a rule from premises belonging to CoInd J is K, which essentially consists
of a rule with conclusion u and possibly infinite proof trees for its premises.

1 With some more structure, since the Agda proofs keep trace of the applied meta-rules.
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13:8 Flexible Coinduction in Agda

In the second version, a possibly infinite proof tree is obtained by a data constructor,
analogously to a finite one in the inductive interpretation; however, since proof trees are
encoded as thunks, hence evaluated lazily, this encoding represents infinite trees as well. In
other words, coinduction is “hidden” in the library type Thunk , which is a coinductive record
with only one field force , intuitively representing the suspended computation.

The interpretation of a generalized inference system can then be encoded following exactly
the definition in Sect. 3: it is the coinductive interpretation of I , restricted to rules whose
conclusion is in the inductive interpretation of the (standard) inference system consisting of
both rules I and corules C.

FCoIndJ_,_K : ∀{ℓc ℓp ℓn ℓn ’} → ( I : IS {ℓc} {ℓp} {ℓn} U)
→ (C : IS {ℓc} {ℓp} {ℓn ’} U) → U → Set _

FCoIndJ I , C K = CoIndJ I ⊓ IndJ I ∪ C K K

SFCoIndJ_,_K : ∀{ℓc ℓp ℓn ℓn ’} → ( I : IS {ℓc} {ℓp} {ℓn} U)
→ (C : IS {ℓc} {ℓp} {ℓn ’} U) → U → Size → Set _

SFCoIndJ I , C K = SCoIndJ I ⊓ IndJ I ∪ C K K

The definition is provided in two flavours where the coinductive interpretation is encoded
by coinductive records and thunks, respectively, and uses two operators on inference systems,
restriction ⊓ and union ∪. We report the former, which adds to each rule the side condition
that the conclusion should satisfy P, as specified by the function addSideCond , omitted.

_⊓_ : ∀ {ℓc ℓp ℓn ℓ}{U : Set ℓu} → IS {ℓc} {ℓp} {ℓn} U
→ (U → Set ℓ) → IS {ℓc ⊔ ℓ} {_} {_} U

( i s ⊓ P) .Names = i s .Names
( i s ⊓ P) . r u l e s rn = addSideCond ( i s . r u l e s rn ) P

The library also provides the proofs of relevant properties, e.g., that closed sets coincide
with pre-fixed points, and consistent sets coincide with post-fixed points. Moreover, it is
shown that the two versions of encoding of the coinductive interpretation (by coinductive
records and thunks) are equivalent. Finally, the library provides the induction, coinduction,
and bounded coinduction principles. We only report here the statements.

ind [_] : ∀{ℓc ℓp ℓn ℓ}
→ ( i s : IS {ℓc} {ℓp} {ℓn} U) −− IS
→ (S : U → Set ℓ) −− s p e c i f i c a t i o n
→ ISClosed i s S −− S i s c losed
→ IndJ i s K ⊆ S

If S is closed, then each element of the inductively defined set Ind J is K satisfies S.

coind [_] : ∀{ℓc ℓp ℓn ℓ}
→ ( i s : IS {ℓc} {ℓp} {ℓn} U)
→ (S : U → Set ℓ)
→ (S ⊆ ISF [ i s ] S) −− S i s cons i s t en t
→ S ⊆ CoIndJ i s K

If S is consistent, then each element satisfying S is in the coinductively defined set CoInd J is K.

bounded−coind [_,_] : ∀{ℓc ℓp ℓn ℓn ’ ℓ}
→ ( I : IS {ℓc} {ℓp} {ℓn} U)
→ (C : IS {ℓc} {ℓp} {ℓn ’} U)
→ (S : U → Set ℓ)
→ S ⊆ IndJ I ∪ C K −− S i s bounded w. r . t . I ∪ C
→ S ⊆ ISF [ I ] S −− S i s cons i s t en t w. r . t . I
→ S ⊆ FCoIndJ I , C K
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If S is bounded, and consistent with respect to I , then each element which satisfies S belongs
to the set FCoInd J I , C K defined by flexible coinduction.

Another easy theorem useful in proofs is that FCoIndJI, IcoK ⊆ IndJI ∪ IcoK:

fcoind−to−ind : ∀{ℓc ℓp ℓn ℓn ’}
{ i s : IS {ℓc} {ℓp} {ℓn} U}{ co i s : IS {ℓc} {ℓp} {ℓn ’} U}
→ FCoIndJ i s , co i s K ⊆ IndJ i s ∪ co i s K

4.2 Inference systems as indexed containers
Indexed containers [6] are a rather general notion, meant to capture families of datatypes
with some form of indexing. They are part of the Agda standard library. We report below
the definition, simplified and adapted a little for presentation purpose. Notably, we use
ad-hoc field names, chosen to reflect the explanation provided below.

record Container {ℓ i ℓo}
( I : Set ℓ i ) (O : Set ℓo) (ℓc ℓp : Level ) : Set _ where

constructor _ ◁ _/_
f i e l d

Cons : (o : O) → Set ℓc
Pos : ∀ {o} → Cons o → Set ℓp
input : ∀ {o} (c : Cons o) → Pos c → I

J_K : ∀ {ℓ i ℓo ℓc ℓp ℓ} { I : Set ℓ i } {O : Set ℓo} → Container I O ℓc ℓp →
( I → Set ℓ) → (O → Set _)

J C ◁ P / inp K X o = Σ [ c ∈ C o ] ((p : P c ) → X ( inp c p))

To explain the view of an inference system as an indexed container, we can think of the
latter as describing a family of datatype constructors where I and O are input and output
sorts, respectively. Then, Cons specifies, for each output sort o, the set of its constructors;
for each constructor for o, Pos specifies a set of positions to store inputs to the constructor;
finally, input specifies the input sort for each position in a constructor.

The function J_K models the “semantics” of an indexed container, that is, given a family of
inputs X indexed by I , it returns the family of outputs indexed by O which can be constructed
by providing to some constructor inputs from P of correct sorts.

Then, inference systems can be defined as indexed containers where input and output
sorts coincide, and are the elements of the universe, as follows.

ISCont : {ℓc ℓp : Level } → (U : Set ℓu) → Set _
ISCont {ℓc} {ℓp} U = Container U U ℓc ℓp

In this way, for each u : U:
Cons u is the set of (indexes for) all the rules which have consequence u
Pos c is the set of (indexes for) the premises of the c-th rule
input c p is the p-th premise of the c-th rule.

This view comes out quite naturally observing that an inference system is an element
of ℘(℘(U) × U); equivalently, a function which, for each j ∈ U , returns the set of the sets
of premises of all the rules with consequence j. In a constructive setting such as Agda, the
powerset construction is not available, hence we have to use functions. So, for each element
u, we need a type to index all rules with consequence u, and, for each rule, a type to index
its premises, which are exactly the data of an indexed container. In other words, this view of
inference systems as indexed containers explicitly interprets rules as constructors for proofs.
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Moreover, definitions in Sect. 2 can be easily obtained as instances of analogous definitions
for indexed containers, building on the fact that the inference operator associated with an
inference system turns out to be the semantics J_K of the corresponding container.

Whereas this encoding allows reuse of notions and code, a drawback is that information
is structured in a rather different way from that “on paper”; notably, we group together rules
with the same consequence, rather than those obtained as instances of the same “schema”,
that is, meta-rule. For instance, the inference system for allPos would be as follows:

al lPosCont : ISCont ( Co l i s t N ∞)
al lPosCont . Cons [ ] = ⊤
al lPosCont . Cons (x : : xs ) = x > 0
allPosCont . Pos { [ ]} c = ⊥
al lPosCont . Pos {x : : xs} c = Fin 1
al lPosCont . input {x : : xs} c zero = xs . fo rce

For this reason we developed the Agda library mimicking meta-rules described in Sect. 4.1,
and we use this library for the examples in the following sections.

However, we can prove that the two notions are equivalent, as shown below. To this end,
we define a translation C[_] from inference systems as in Sect. 4.1 to indexed containers,
and a converse translation IS [ _ ] . Note that in the translation C[_] each meta-rule is
transformed in all its instantiations; more precisely, for each u : C, Cons u gives all the
instantiations of meta-rules having u as consequence. Conversely, in the translation IS [ _ ] ,
each rule is transformed in a meta-rule with trivial context.

C[_] : ∀{ℓc ℓp ℓn} → IS {ℓc} {ℓp} {ℓn} U → Container U U _ ℓp
C[ i s ] . Cons u = Σ [ rn ∈ i s .Names ] Σ [ c ∈ i s . r u l e s rn . Ctx ]

u ≡ i s . r u l e s rn . conclu c
C[ i s ] . Pos ( rn , _ , r e f l ) = i s . r u l e s rn . Pos
C[ i s ] . input ( rn , c , r e f l ) p = i s . r u l e s rn . prems c p

IS [_] : ∀{ℓc ℓp} → Container U U ℓc ℓp → IS {zero} {ℓp} { l ⊔ ℓc} U
IS [ C ] .Names = Σ [ u ∈ U ] C . Cons u
IS [ C ] . r u l e s (u , c ) =

record {
Ctx = ⊤ ;
Pos = C . Pos c ;
prems = λ _ r → C . input c r ;
conclu = λ _ → u }

i s f −to−c : ∀{ℓc ℓp ℓn ℓp} { i s : IS {ℓc} {ℓp} {ℓn} U}{P : U → Set ℓp}
→ ISF [ i s ] P ⊆ J C[ i s ] K P

i s f −to−c ( rn , c , r e f l , pr ) = ( rn , c , r e f l ) , pr

c−to−i s f : ∀{ l ’ ℓp ℓp} {C : Container U U l ’ ℓp}{P : U → Set ℓp}
→ J C K P ⊆ ISF [ IS [ C ] ] P

c−to−i s f ( c , pr ) = (_ , c ) , t t , r e f l , pr

5 Using the library

We show how to use the library to define specific inference systems and prove their properties.
Consider the examples in Sect. 2 and Sect. 3. For member , the universe are pairs of elements
and possibly infinite lists, implemented by the Agda library Colist which uses thunks:

U = A × Co l i s t A ∞
data memberRN : Set where mem-h mem-t : memberRN
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mem-h- r : FinMetaRule U
mem-h- r . Ctx = A × Thunk ( Co l i s t A) ∞
mem-h- r . comp (x , xs ) =

[ ] ,
−−−−−−−−−−−−−−−−
(x , x : : xs )

mem-t- r : FinMetaRule U
mem-t- r . Ctx = A × A × Thunk ( Co l i s t A) ∞
mem-t- r . comp (x , y , xs ) =

(( x , xs . fo rce ) : : [ ] ) ,
−−−−−−−−−−−−−−−−
(x , y : : xs )

memberIS : IS U
memberIS .Names = memberRN
memberIS . r u l e s mem-h = from mem-h- r
memberIS . r u l e s mem-t = from mem-t- r

Here memberRN are the rule names, and each rule name has an associated element of
FinMetaRule U, which exactly encodes the meta-rule in Sect. 2. Note, in mem-t-r, the use

of the force field of Thunk to actually obtain the tail colist.
This inference system is expected to define exactly the pairs ( x , xs ) such that x

belongs to xs , that is, those satisfying the following specification

memSpec : U → Set
memSpec (x , xs ) = Σ [ i ∈ N ] ( Co l i s t . lookup i xs = ju s t x )

where the library function lookup : N → Colist A ∞ → Maybe A returns the i -th ele-
ment of xs , if any.

As said in Sect. 2, to obtain the desired meaning this inference system has to be interpreted
inductively, and soundness can be proved by the induction principle, that is, by providing a
proof that the specification is closed with respect to the two meta-rules, as shown below.

_member_ : A → Co l i s t A ∞ → Set
x member xs = IndJ memberIS K (x , xs )

memSpecClosed : ISClosed memberIS memSpec
memSpecClosed mem-h _ _ = zero , r e f l
memSpecClosed mem-t _ pr =

l e t ( i , proof ) = pr Fin . zero in ( suc i ) , proof

memberSound : ∀ {x xs} → x member xs → memSpec (x , xs )
memberSound = ind [ memberIS ] memSpec memSpecClosed

For completeness there is no canonical technique; in this example, it can be proved by
induction on the position (the index i in the specification).

For allPos , the universe are possibly infinite lists.

U : Set
U = Co l i s t N ∞
data allPosRN : Set where a l lP -Λ a l lP -t : allPosRN

a l lP -Λ- r : FinMetaRule U
a l lP -Λ- r . Ctx = ⊤
a l lP -Λ- r . comp c =

[ ] ,
−−−−−−−−−−−−−−−−−
[ ]
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a l lP -t- r : FinMetaRule U
a l lP -t- r . Ctx = Σ [ ( x , _) ∈ N × Thunk ( Co l i s t N) ∞ ] x > 0
a l lP -t- r . comp (( x , xs ) , _) =

(( xs . fo rce ) : : [ ] ) ,
−−−−−−−−−−−−−−−−−
x : : xs )

a l lPos IS : IS U
a l lPos IS .Names = allPosRN
a l lPos IS . r u l e s a l lP -Λ = from a l lP -Λ- r
a l lPos IS . r u l e s a l lP -t = from a l lP -t- r

This inference system is expected to define exactly the lists such that all elements are
positive, that is, those satisfying the following specification (where for simplicity, we use the
predicate ∈, omitted, directly defined inductively).
al lPosSpec : U → Set
al lPosSpec xs = ∀ {x} → x ∈ xs → x > 0

As said in Sect. 2, to obtain the desired meaning this inference system has to be
interpreted coinductively, and completeness can be proved by the coinduction principle, that
is, by providing a proof that the specification is consistent with respect to the inference
system, as shown below.
a l lPos : U → Set
a l lPos = CoIndJ a l lPos IS K

allPosSpecCons : ∀ {xs} → al lPosSpec xs → ISF [ a l lPos IS ] al lPosSpec xs
allPosSpecCons { [ ]} _ = al lP -Λ , ( t t , ( r e f l , t t , λ ( ) ) )
allPosSpecCons {(x : : xs )} Sxs =

a l lP -t ,
(( x , xs ) , ( r e f l , ( Sxs here , λ {Fin . zero → λ mem → Sxs ( there mem)})))

allPosComplete : al lPosSpec ⊆ a l lPos
allPosComplete = coind [ a l lPos IS ] al lPosSpec allPosSpecCons

For soundness there is no canonical technique; in this example, when the colist is empty
the proof that the specification holds is trivial. If the colist is not empty, then the proof
proceeds by induction on the position of the element to be proved to be positive.

Finally, for maxElem , the universe are pairs of natural numbers and possibly infinite lists.
U : Set
U = N × Co l i s t N ∞
data maxElemRN : Set where max-h max-t : maxElemRN
data maxElemCoRN : Set where co-max-h : maxElemCoRN

max-h- r : FinMetaRule U
max-h- r . Ctx = Σ [ (_ , xs ) ∈ N × Thunk ( Co l i s t N) ∞ ] xs . fo rce ≡ [ ]
max-h- r . comp (( x , xs ) , _) =

[ ] ,
−−−−−−−−−−−−−−
x , x : : xs

max-t- r : FinMetaRule U
max-t- r . Ctx =

Σ [ ( x , y , z , _) ∈ N × N × N × Thunk ( Co l i s t N) ∞ ] z ≡ max x y
max-t- r . comp (( x , y , z , xs ) , _) =

(x , xs . fo rce ) : : [ ] ,
−−−−−−−−−−−−−−
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z , y : : xs

co-max-h- r : FinMetaRule U
co-max-h- r . Ctx = N × Thunk ( Co l i s t N) ∞
co-max-h- r . comp (x , xs ) =

[ ] ,
−−−−−−−−−−−−−−
(x , x : : xs )

maxElemIS : IS U
maxElemIS .Names = maxElemRN
maxElemIS . r u l e s max-h = from max-h- r
maxElemIS . r u l e s max-t = from max-t- r

maxElemCoIS : IS U
maxElemCoIS .Names = maxElemCoRN
maxElemCoIS . r u l e s co-max-h = from co-max-h- r

Note that in this example we have defined two inference systems, the rules and the corules.
This generalized inference system is expected to define exactly the pairs ( x , xs ) such that
x is the maximal element of xs , that is, those satisfying the following specification, where to
be the maximal element x should belong to xs , and be greater or equal than any n in xs .
maxSpec inSpec geqSpec : U → Set
inSpec (x , xs ) = x ∈ xs
geqSpec (x , xs ) = ∀{n} → n ∈ xs → x ≡ max x n
maxSpec u = inSpec u × geqSpec u

As said in Sect. 3, the desired meaning is provided by the interpretation of the generalized
inference system.
_maxElem_ : N → Co l i s t N ∞ → Set
x maxElem xs = FCoIndJ maxElemIS , maxElemCoIS K (x , xs )

and completeness can be proved by the bounded coinduction principle, see (bcoind) at page 4.
maxElemComplete : ∀{x xs} → maxSpec (x , xs ) → x maxElem xs
maxElemComplete =

bounded-coind [ maxElemIS , maxElemCoIS ] maxSpec
(λ{(x , xs ) → maxSpecBounded x xs }) λ{(x , xs ) → maxSpecCons x xs}

Notably, we have to prove that the specification is:
bounded, that is, contained in _maxElem i_ , the inductive interpretation of the standard
inference system consisting of both rules and corules, as shown below:
_maxElemi_ : N → Co l i s t N ∞ → Set
x maxElemi xs = IndJ maxElemIS ∪ maxElemCoIS K (x , xs )

maxSpecBounded : ∀{x xs} → inSpec (x , xs )
→ geqSpec (x , xs ) → x maxElemi xs

consistent with respect to the inference system consisting of only rules, as shown below:
maxSpecCons : ∀{x xs} → inSpec (x , xs ) →

geqSpec (x , xs ) → ISF [ maxElemIS ] maxSpec (x , xs )

These proofs are omitted.
For soundness there is no canonical technique. The proof can be split for the two

components of the specification. It is worth noting that, for soundness with respect to inSpec ,
we first use fcoind -to- ind at page 9, and then define maxElemSound -in- ind , omitted, by
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induction on the inference system consisting of rules and corules. The use of fcoind -to- ind in
the proof corresponds to the fact that without corules unsound judgments could be derived,
see Sect. 3.

maxElemSound- i n : ∀ {x xs} → x maxElem xs → inSpec (x , xs )
maxElem-sound- i n max = maxElemSound- i n - ind ( fco ind -to- ind max)

Soundness with respect to geqSpec is proved by induction on the position, that is, the
proof of membership, of the element that must be proved to be less or equal. In this case,
soundness would hold even in the purely coinductive case.

6 A worked example

We describe a more significant example of instantiation: an inference system with corules
providing a big-step semantics of lambda-calculus including divergence among the possible
results [9], reported in Fig. 1. In this example, corules play a key role: indeed , considering,
e.g., the divergent term Ω = (λx.x) (λx.x), in the standard inductive big-step semantics no
result can be derived (an infinite proof tree is needed), as for a stuck term; in the purely
coinductive interpretation, any judgment Ω ⇓ v∞ would be obtained [19]. Since each node of
the infinite proof tree for a judgment should also have a finite proof tree using the corules,
the coaxiom (coa) forces to obtain only ∞ as result, see [9] for a more detailed explanation.2

t ::= v | x | t1 t2 | . . . term
v ::= λx.t | . . . value

v∞ ::= v | ∞ result

(coa)
e ⇓ ∞

(val) v ⇓ v

(app)
t1 ⇓ λx.t t2 ⇓ v t[x/v] ⇓ v∞

t1 t2 ⇓ v∞

(l-div)
t1 ⇓ ∞

t1 t2 ⇓ ∞ (r-div)
t1 ⇓ v t2 ⇓ ∞

t1 t2 ⇓ ∞

Figure 1 λ-calculus: syntax and big-step semantics.

In rule (app), v∞ is used for the result, so the rule also covers the case when the evaluation
of the body of the lambda abstraction diverges. As usual, t[x/v] denotes capture-avoiding
substitution. Rules (l-div) and (r-div) cover the cases when either t1 or t2 diverges, assuming a
left-to-right evaluation strategy.

Terms, values, and results are inductively defined, hence encoded by Agda datatypes. As
customary in implementations of lambda-calculus, we use the De Bruijn notation: notably,
Term n is the set of terms with n free variables.

data Term (n : N) : Set where
var : Fin n → Term n
lambda : Term ( suc n) → Term n
app : Term n → Term n → Term n

data Value : Set where lambda : Term 1 → Value

term : Value → Term 0
term ( lambda x) = lambda x

data Value∞ : Set where

2 Other examples of big-step semantic definitions with more sophisticated corules are given in [10, 7].
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r e s : Value → Value∞

∞ : Value∞

The universe consists of big-step judgments (pairs consisting of a term and a result).
U : Set
U = Term 0 × Value∞

The two inference systems of rules and corules are encoded below:
data BigStepRN : Set where va l app l−div r−div : BigStepRN
data BigStepCoRN : Set where COA : BigStepCoRN

BigStepIS : IS U
BigStepIS .Names = BigStepRN
BigStepIS . r u l e s va l = from va l - r
BigStepIS . r u l e s app = from app- r
BigStepIS . r u l e s L-DIV = from l -div - r
BigStepIS . r u l e s R-DIV = from r -div - r

BigStepCoIS : IS U
BigStepCoIS .Names = BigStepCoRN
BigStepCoIS . r u l e s COA = from coa- r

where BigStepRN are the rule names, and each rule name has an associated element of
FinMetaRule U. For instance, app -r is given below. The auxiliary function subst , omitted,

implements capture-avoiding substitution.
app- r : FinMetaRule U
app- r . Ctx = Term 0 × Term 1 × Term 0 × Value × Value∞

app- r . comp ( t1 , t , t2 , v , v∞ ) =
( t1 , r e s ( lambda t )) : : ( t2 , r e s v ) : : ( subst t ( term v) , v∞ ) : : [ ] ,
−−−−−−−−−−−−−−−−−−−−−−−−−
(app t1 t2 , v∞ )

The big-step semantics can be obtained as the interpretation of the generalized inference
system, as shown below. We use the flavour with thunks.
_⇓_ : Term 0 → Value∞ → Size → Set
( t ⇓ v∞ ) i = SFCoIndJ BigStepIS , BigStepCoIS K ( t , v∞ ) i

_⇓i_ : Term 0 → Value∞ → Set
t ⇓i v∞ = IndJ BigStepIS ∪ BigStepCoIS K ( t , v∞ )

The second predicate (i stands for “inductive”) models that a judgment has a finite proof
tree in the inference system consisting of rules and coaxiom, and will be used in proofs.

Small-step semantics, reported in Fig. 2, can also be obtained appropriately instantiating

(β) (λx.t) v ⇒ t[x/v] (l-app)
t1 ⇒ t′

1
t1 t2 ⇒ t′

1 t2
(r-app)

t2 ⇒ t′
2

v t2 ⇒ v t′
2

Figure 2 λ-calculus: small-step semantics.

the library. In this case, the universe consists of small-step judgments, which are pairs of
terms. There is only one inference system, where SmallStepRN are the rule names, and each
rule name has an associated element of FinMetaRule U.
U : Set
U = Term 0 × Term 0
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data SmallStepRN : Set where β L-app R-app : SmallStepRN

SmallStepIS : IS U
SmallStepIS .Names = SmallStepRN
SmallStepIS . r u l e s β = from β- r
SmallStepIS . r u l e s L-app = from l -app- r
SmallStepIS . r u l e s R-app = from r -app- r

For instance, β-r is given below.
β- r : FinMetaRule U
β- r . Ctx = Term 1 × Value
β- r . comp ( t , v ) =

[ ] ,
−−−−−−−−−−−−−−−−−−−−−−−−−
(app ( lambda t ) ( term v) , subst t ( term v ))

The one-step relation ⇒ is obtained as the inductive interpretation of the (standard)
inference system. Then, finite computations are modeled by its reflexive and transitive
closure ⇒⋆, defined using Star in the Agda library, as shown below.
_⇒_ : Term 0 → Term 0 → Set
t ⇒ t ’ = IndJ SmallStepIS K ( t , t ’ )

_⇒⋆_ : Term 0 → Term 0 → Set
_⇒⋆_ = Star _⇒_

Infinite computations, instead, are modeled by the relation ⇒∞, coinductively defined by

the meta-rule t′ ⇒∞

t ⇒∞ t ⇒ t′, encoded in Agda by thunks.
data _⇒∞ : Term 0 → Size → Set where

step : ∀ {t t ’ i } → t ⇒ t ’ → Thunk ( t ’ ⇒∞ ) i → t ⇒∞ i

The proof of equivalence between big-step and small-step semantics is structured as
follows, where S = {⟨t, v⟩ | t ⇒⋆ v} ∪ {⟨t, ∞⟩ | t ⇒∞}.
Soundness

t ⇓ v implies t ⇒⋆ v We use fcoind -to-ind at page 9, and then reason by induction on
the judgment t⇓iv. That is, we show that t ⇒⋆ v is closed w.r.t. the inference system
consisting of rules and corules. As already pointed out for the maxElem example, the
use of fcoind -to- ind in the proof corresponds to the fact that, without the coaxiom
(coa), unsound judgments would be derived, e.g., Ω ⇓ v for v ∈ Val.

t ⇓ ∞ implies t ⇒∞ This implication, instead, would hold even in the purely coinductive
case. It can be proved from progress and subject reduction properties:
Progress t ⇓ ∞ implies that there exists t′ such that t ⇒ t′.
Subject reduction t ⇓ ∞ and t ⇒ t′ implies t′ ⇓ ∞.

Completeness By bounded coinduction, see (bcoind) at page 4.
Boundedness

t ⇒⋆ v implies t⇓iv By induction on the number of steps.
t ⇒∞ implies t⇓i∞ Trivial, since the coaxiom coa can be applied.

Consistency We have to show that, for each ⟨t, v∞⟩ ∈ S, ⟨t, v∞⟩ is the consequence of a
big-step rule where the premises are in S as well. We distinguish two cases.
t ⇒⋆ v By induction on the number of steps. If it is 0, then t is a value, hence we

can use rule (val). Otherwise, t is an application, and we can use rule (app).
t ⇒∞ The term t is an application t1 t2. We distinguish the following cases:

t1 diverges, hence we can use rule (l-div)
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t1 converges and t2 diverges, hence we can use rule (r-div)

both t1 and t2 converge, hence we can use rule (app).
Note that in this proof by cases we need to use the excluded middle principle, which
is defined in the standard library, and postulated in our proof.

7 Conclusion

We have presented an Agda implementation of inference systems which, besides the standard
inductive and coinductive interpretations, supports also flexible coinduction and the associated
proof principle. The key feature is that the library allows the separation of the definitions
from their semantics, thus enabling modular composition and reasoning. This is particularly
useful for flexible coinduction, because the interpretation of a generalized inference system
is just defined by mixing the inductive and the coinductive interpretations of two inference
systems built from rules and corules.

Of course, as Agda supports both inductive and coinductive dependent types, one could
directly write Agda code for inductive, coinductive and even flexible coinductive definitions
of concrete examples. We have explored this possibility in [12]. However, in this way, the
definition is hard-wired with its semantics, and, for flexible coinduction, one has to manually
construct the interpretation by combining in the correct way an inductive and a coinductive
type and to prove the bounded coinduction principle for each example. For instance, the
definition of maxElem will look as follows:

data _maxElem_ : N → CoList N ∞ → Size → Set where
max-h : ∀ {x xs i } → fo rce xs ≡ [ ] → x maxElem (x : : xs ) i
max-t : ∀ {x y xs i } → Thunk (x maxElem ( force xs )) i

→ z ≡ max x y
→ z maxElemi (y : : xs )
→ z maxElem (y : : xs ) i

data _maxElemi_ : N → CoList N ∞ → Set where
imax-h : ∀ {x xs} → fo rce xs ≡ [ ] → x maxElemi (x : : xs )
imax-t : ∀ {x y xs} → x maxElemi ( fo rce xs )) → z ≡ max x y

→ z maxElemi (y : : xs )
co-max-h : ∀ {x xs} → x maxElemi (x : : xs )

Clearly, this approach causes duplication of rules and code, as rules of the coinductive type
have to be duplicated in the inductive one, making things rather complex. Our library
instead hides all these details, exposing interfaces for interpretations and proof principles, so
that the user only has to write code describing rules.

For future work we plan to extend the library in several directions. The first one is to
support other interpretations of inference systems, such as the regular one [14], which is
basically coinductive but allows only proof trees with finitely many distinct subtrees.To this
end, useful starting points are works on regular terms and streams [22, 24] and on finite sets
[17] in dependent type theories. The challenging part is the finiteness constraint, which is not
trivial in a type-theoretic setting. A second direction is to implement other proof techniques
for (flexible) coinduction, as parametrized coinduction [18] and up-to techniques [20, 16].
Finally, another direction could be the development of a full framework for composition of
inference systems, along the lines of seminal work on module systems [11]. On the more
practical side, a further development is to transform the methodology in an automatic
translation. That is, a user should be allowed to write an inference system (with corules)
in a natural syntax, and the corresponding Agda types should be generated automatically,
either by an external tool, or, more interestingly, using reflection, recently added in Agda.
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