
Verifying an HTTP Key-Value Server with
Interaction Trees and VST
Hengchu Zhang
University of Pennsylvania,
Philadelphia, PA, USA

Wolf Honoré
Yale University, New Haven, CT, USA

Nicolas Koh
Princeton University, NJ, USA

Yao Li
University of Pennsylvania,
Philadelphia, PA, USA

Yishuai Li
University of Pennsylvania,
Philadelphia, PA, USA

Li-Yao Xia
University of Pennsylvania,
Philadelphia, PA, USA

Lennart Beringer
Princeton University, New Haven, NJ, USA

William Mansky
University of Illinois at Chicago, IL, USA

Benjamin Pierce
University of Pennsylvania,
Philadelphia, PA, USA

Steve Zdancewic
University of Pennsylvania,
Philadelphia, PA, USA

Abstract
We present a networked key-value server, implemented in C and formally verified in Coq. The server
interacts with clients using a subset of the HTTP/1.1 protocol and is specified and verified using
interaction trees and the Verified Software Toolchain. The codebase includes a reusable and fully
verified C string library that provides 17 standard POSIX string functions and 17 general purpose
non-POSIX string functions. For the KVServer socket system calls, we establish a refinement relation
between specifications at user-space level and at CertiKOS kernel-space level.

2012 ACM Subject Classification Theory of computation → Program specifications; Theory of
computation → Program verification; Theory of computation → Separation logic

Keywords and phrases formal verification, Coq, HTTP, deep specification

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.32

Supplementary Material The webserver code, proofs, and a step-by-step guide can be found at:
Software (Source Code): https://zenodo.org/record/4697379

Funding This work is supported by the National Science Foundation’s Expedition in Computing
The Science of Deep Specification under the awards 1521602 (Appel), 1521539 (Weirich, Zdancewic,
Pierce), and 1521523 (Shao). Additional support is provided by the NSF projects Verified High
Performance Data Structure Implementations, award 1005849 (Beringer, Mansky), Random Testing
for Language Design, award 1421243 (Pierce), and by the ONR projects N00014-18-2618 and
N00014-17-1-2930.

Acknowledgements We thank all members of the DeepSpec project for their collaboration and
feedback, and we greatly appreciate the reviewers’ comments and suggestions.

1 Introduction

The Science of Deep Specification launched a series of experiments in formal verification of
real-world systems [3]. Among these, Koh et al. [25] demonstrated how to verify a simple
networked server (called a “swap server”), written in C, against an implementation model
written with interaction trees [42], using the Verified Software Toolchain (VST) [4]. The

© Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer,
William Mansky, Benjamin Pierce, and Steve Zdancewic;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 32; pp. 32:1–32:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITP.2021.32
https://zenodo.org/record/4697379
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Verifying an HTTP Key-Value Server with Interaction Trees and VST

main result was a guarantee that any trace of observed external communications with the
server is included in an interaction tree describing intended server behavior.

In the work described here, we scale these verification techniques to a more realistic
example: a Key-Value server (KVServer) running over a minimal but practical subset of the
HTTP/1.1 protocol. The KVServer provides clients with a Get(key) and Put(key, value)
interface that uses HTTP/1.1 features including GET requests, POST requests, and Content-
Length encoding. It runs on the verified operating system CertiKOS [18] or any other OS
with a POSIX-compatible socket interface.

Besides significantly scaling up server features and protocol complexity, the present work
reduces the set of trusted axioms compared to that of Koh et al. [25]. The network interface of
the earlier swap server is described by a set of Hoare triples for the socket system calls, which
are assumed to be satisfied by the host operating system. In this work, we apply recently
developed techniques for proving refinement relations between CertiKOS’ kernel-level system
call specifications and user-level VST system call specifications, and prove that network
interface assumptions from [25] are consistent with CertiKOS’ system call specifications [32].
Such proofs are necessary because the specification styles of VST and CertiKOS are different
enough that it is not obvious that two specifications describe the same behaviors. One
significant difference stems from the logics used by VST and CertiKOS. Another distinction
is in their representations of the system state and the external effects of socket operations.
The user-level VST socket specifications use interaction trees to describe external effects
as observed “on the wire”. The CertiKOS specifications, on the other hand, capture these
external effects in a logical log of events, while also describing the internal effects on the
kernel state, which are invisible to the user-level code.

By proving refinement between the VST and CertiKOS models of socket system calls, we
demonstrate that the kernel- and user-level specifications agree on the behavior of sockets.
The kernel implementation of the socket system calls in CertiKOS is currently unverified
with respect to CertiKOS socket specifications. Our work does not attempt to fill this gap
(which requires modeling and verifying a TCP/IP stack), but instead proves a refinement
between the CertiKOS and VST socket specifications. This guarantees at least that the
operating system and the server agree on how sockets are expected to behave, thus removing
this interface from the trusted computing base and leaving only the kernel’s implementation.

The main challenges in developing the new KVServer stem from the significant increase
in feature complexity across all levels of the server. At the connection management level,
the KVServer needs verified data structures to maintain incoming and outgoing buffers for
multiple concurrent connections. At the protocol level, the KVServer requires a verified parser
to deserialize HTTP/1.1 requests and a verified printer to serialize HTTP/1.1 responses.
The parser and printer depend on a verified C string library. At the application level, the
KVServer needs a verified in-memory map for storing key-value pairs.

This blow-up in feature complexity also calls for a modular approach that can (1) contain
the implementation and verification complexity within each module and (2) reduce total
proof checking time through parallelization. We achieve this by dividing the entire KVServer
into eight independent verified modules. Each module comes with VST specifications for all
exposed functions. A module that depends on a lower-level module only needs the lower-level
module’s C API and VST specifications, while implementation and proof complexity remain
hidden away. This modular separation of the KVServer also produces general purpose and
reusable low-level modules. Furthermore, we keep function specifications separate from code
and avoid intermingling of code and proof information (e.g., loop invariants), as the latter is
typically specification-dependent. This organization sets our development apart from the
methodologies of verification tools such as Frama-C, VeriFast, KeY, and Dafny [23, 22, 28, 1]
and enables us to distribute the verification of individual function bodies into different files

H. Zhang et al. 32:3

that can be processed in parallel. We discuss related verification projects in more detail in
Section 6.

Our main contributions are:
1. We demonstrate a verified network server, implemented in C and communicating using a

subset of HTTP/1.1. The termination-insensitive specification and proofs are formulated
using VST and interaction trees (Section 3).

2. We prove that the network operations in KVServer interaction trees correspond directly
to I/O operations performed by the operating system. We use the verification methods
of Mansky et al. [32] to demonstrate a refinement between two disparate specifications of
the socket interface written in two different specification languages, by abstracting the
lower kernel-level CCAL specification on kernel socket states and the logical log of socket
operations into a higher user-level VST specification on externally observable network
effects. Our work is the first to formally bridge the gap between user- and kernel-level
specifications of POSIX network operations (Section 4).

3. We present a reusable and fully verified C string module offering 34 verified C string
functions. 17 of these belong to the POSIX string library; the rest are general-purpose
string functions used by the KVServer (Section 5).

2 Background

2.1 Interaction Trees
Interaction trees (ITrees) are a data structure and an accompanying Coq library for represent-
ing and reasoning about effectful and potentially non-terminating programs [42]. A significant
part of the verification work for KVServer involves proving that the server performs various
socket system calls in an expected way. We streamlined this effort by using ITree programs
to specify the socket-level behavior of KVServer.

To write an ITree program, one must first define the set of visible effects the program
can perform. In KVServer, the socket-level network effects are modeled by the following Coq
datatype.

Variant networkE : Type -> Type :=
| Listen : endpoint_id -> networkE unit
| Accept : endpoint_id -> networkE connection_id
| Shutdown : connection_id -> networkE unit
| RecvByte : connection_id -> networkE byte
| SendByte : connection_id -> byte -> networkE unit.

Each constructor describes a network effect parameterized by its argument types (the
parameters to the constructor) and its result type (the type argument to networkE at the
end of each line). For example, the Listen constructor represents the server beginning to
listen for incoming client connections on an endpoint_id (a network address identifier). This
operation does not return any meaningful data so its return type is unit. We specify how
this effect corresponds to the POSIX listen system call in the C program in Section 2.3.

ITree programs may involve multiple sets of effects. For example, runtime errors can be
expressed in ITree programs through the exceptE effect type from the ITree library...

Variant exceptE (Err : Type) : Type -> Type :=
| Throw : Err -> exceptE Err void.

... and we can use the binary operator +' to create a larger effect type: networkE +' (exceptE
string) is a composition of two kinds of effects, which together allow an ITree program to

perform socket effects and throw string-valued errors.

ITP 2021

32:4 Verifying an HTTP Key-Value Server with Interaction Trees and VST

The ITree library also provides a mechanism for expressing effect subsumption rela-
tions between effect types, leveraging Coq’s typeclass mechanism to automatically resolve
subsumption constraints. This mechanism can be used to automatically “lift” a concrete,
monomorphic effect type into a polymorphic one. For example, we can use it to define a
helper function that generalizes the Listen effect:

Definition listen `{networkE -< E} : endpoint_id -> itree E unit := embed Listen.

Here, the effect type E represents some possibly larger set of effects satisfying the subsumption
relation networkE -< E, and embed is an ITree library function that performs the lifting from
networkE into the subsuming type E. The signature of listen says that it is a function that
receives a network identifier and produces an ITree of type itree E unit that, intuitively,
calls the “listen” kernel function and returns the unit value once the effect completes.

ITrees satisfy the interface of monads [42], a standard mechanism for composing effectful
programs in a pure functional programming context. The monad interface consists of two
combinators:

Definition bind `{Monad m} {a b : Type} : m a -> (a -> m b) -> m b.
Definition ret `{Monad m} {a : Type} : a -> m a.

Intuitively, the bind combinator builds a computation that runs the effectful computation
in its first argument (with type m a) to produce a result of type a, passes the result to
the continuation in the second argument (with type a -> m b), and returns an effectful
computation with type m b. The ret combinator injects an effectless value of type a into a
computation that may have effects. ITree programmers can use these two combinators to
compose ITree values; for convenience, the ITree library provides the notation a <- m;; k for
the expression bind m (fun a => k).

2.2 Verified Software Toolchain
The Verified Software Toolchain [4] is a Coq framework for verifying C programs using
concurrent separation logic [37, 35]. To verify a piece of code, a user employs Coq’s
programming features to define assertions, connects partial-correctness specifications to
function definitions in CompCert’s Clight program representation, and finally applies forward
symbolic execution tactics to verify the corresponding function bodies. For readability,
specifications in this paper are presented in informal notation rather than in VST’s Coq-
based syntax.

As an example, consider this string library function, which allocates space for a string of
a given length.

unsigned char* new_string(uint32_t len);

Drawing upon predicates Mem and Mtok from VST’s verified malloc/free library [5], this
function’s specification{

!!(l < max_unsigned)
&& MemM gv

}
new_string(l)

 p. if p = null then MemM gv
else CUStringN(Ews, [], l + 1, p) ∗

Mtok(Ews, ucharl+1, p) ∗MemM gv

asserts that the result p of a call to new_string (with a suitable argument l), is either null
or is a pointer to some fresh region of memory that satisfies the predicate CUStringN. The
“deallocation token” Mtok represents the fact that the client not only gains read/write access
(represented by the exclusive-write-share Ews) to the freshly allocated region but may also
free it. In addition to these predicates – whose precise definitions we elide – the specification
makes use of VST’s operators for separating (∗) and ordinary (&&) conjunction, and an

H. Zhang et al. 32:5

operator !! that injects a pure Coq proposition into VST’s category of assertions. Finally,
ucharn is a shorthand for a length-annotated specialization of CompCert’s representation of
the function’s return type when interpreted as an array. Note that the malloc/free library
assertion MemM gv must be present but is not modified by the call, and that no fresh memory
is allocated if the return value is null.

2.3 Specifying Effects with VST and ITrees
We not only use VST for verifying memory safety and application logic, but also rely on a
combination of VST and ITrees to verify externally observable effects of C code.

Consider the listen system call from the POSIX socket API:
int listen(int sockfd, int backlog);

Recalling the lifted Listen network effect from Section 2.1, we specify the listen() system
call using two abstract predicates. The predicate ITREE t states that effects described by the
interaction tree t are included in the overall effects exhibited by the host OS. The predicate
SOCKAPI st states that the host OS has sockets in states corresponding to st, a map from
socket identifiers to states (bound, open, listening, etc.).

The specification of listen() quantifies over two ITrees, t and k, that respectively describe
the sequence of effects performed by the KVServer before and after running this listen()
network call.

{!!((listen addr ; ; k) ⊑ t) && ITREE t ∗ SOCKAPI st}
listen(fd, backlog){

r. EX t′ st′. !!(−1 ≤ r ≤ 0 ∧ post_listen t k st fd addr r t′ st′)
&& ITREE t′ ∗ SOCKAPI st′

}
Informally, the precondition says that the observed effects in t must first be a listen

effect, followed by effects observable in k, and that st is the current internal state of the
sockets being managed by the kernel. We think of the tree t as permission to perform
certain sequences of external operations, from the perspective of an observer that checks
off operations one by one as they are performed by the program. The ITree value k is
a continuation that models effects following this listen effect. The relation post_listen
specifies how t and st evolve to the ITree value t′ modeling the remaining observable effects
and the updated socket state st′, depending on whether the listen() system call succeeds.
Specifically, if the listen() system call fails (r = −1), then post_listen states that t′ is the
same as t. (The specification implies that the actual side effect of listen() does not occur
when the system call fails, and this design leads to a more straightforward connection to
the CertiKOS socket specification compared to some alternative designs. We discuss this
detail in Section 4.) Note that post_listen is purely propositional: it is independent of the
memory.

Formally, the predicates ITREE and SOCKAPI are defined as assertions on the external
ghost state of VST [32], which is kept in sync with a piece of external state in the OS. In this
case, the external state is the log of socket communications and the set of currently active
sockets; Section 4 will detail how this ghost state is related to CertiKOS’ kernel state.

2.4 HTTP/1.1
HTTP/1.1 is a standard network protocol that allows a client (e.g., a web browser) to access
and modify resources (e.g., HTML files, databases) stored on a remote server. A client

ITP 2021

32:6 Verifying an HTTP Key-Value Server with Interaction Trees and VST

initiates the communication with a request formatted as: (1) a request line consisting of a
method (e.g., GET, PUT, POST) indicating the desired action, and the resource on which
to perform it; (2) a sequence of header fields that specify extra options; (3) a blank line; and
(4) an optional body whose meaning depends on the request line. After handling the request,
the server responds with a message comprising (1) a status line that includes the numeric
status code (e.g., 404) and a textual message (e.g., “Not Found”); (2) a sequence of header
fields with additional information; (3) a blank line; and (4) an optional body [16].

The full HTTP/1.1 specification includes nine methods and many possible headers whose
effects range from setting the acceptable language of the response to specifying compression
and caching behaviors. In practice, though, only a relatively small subset is necessary
for common operations such as retrieving or updating resources: in particular, the only
methods the KVServer needs to implement are GET for looking up keys and POST for
updating or inserting key-value pairs, and the only header that the server needs to recognize
is Content-Length, which indicates the size of the message body. The following is a sample
request-response pair for a successful retrieval of the key-value pair foo 7→ bar. The ←↩

symbol represents an ASCII carriage return and line feed (CRLF) sequence.
GET /foo HTTP/1.1←↩
←↩
HTTP/1.1 200 OK←↩
Content-Length: 3←↩
←↩
bar

Though lean, this subset is sufficient to build a non-trivial application and demonstrate the
effectiveness of our methodology. Two real-world webservers1 also implement just this lean
subset of HTTP with only GET and POST support.

3 Components

The implementation of our HTTP server is divided into eight verified modules. We verify
memory safety and (termination-insensitive) functional correctness of each.

3.1 Infrastructure Modules
StringAPI. The KVServer presents a string-based key-value store over HTTP, and its im-
plementation uses C strings throughout. Our lowest-level infrastructure module is therefore
a reusable verified string library with implementations and specifications of many common
string functions, plus some useful variants. Due to the details of C memory semantics, idio-
matic C string programming introduces proof obligations for side conditions that programmers
typically gloss over. We therefore provide alternative implementations and specifications for
commonly used string functions to hide these proof obligations from dependent modules.
Section 5 describes the string library in more detail.

BufferAPI. This module provides a dynamically allocated resizable byte-buffer data struc-
ture. These byte buffers are used to both accumulate data received from clients and to
construct data to be sent to clients. We provide verified functions to create, resize, append
to, and deallocate byte buffers. Our specifications assert that BufferAPI operations allocate
and deallocate memory correctly and do not perform any invalid memory reads or writes.

1 http://tinyserver.sourceforge.net/ and https://sourceforge.net/projects/miniweb/

http://tinyserver.sourceforge.net/
https://sourceforge.net/projects/miniweb/

H. Zhang et al. 32:7

SocketAPI. This module provides the VST specifications of POSIX system calls for creating
sockets, binding sockets to network addresses, accepting connections, writing and reading
data on sockets, and learning which sockets are ready to read or write. This module
bridges the CertiKOS kernel and the rest of the KVServer by establishing refinement proofs
of the CertiKOS socket specifications against the VST socket specifications. Since these
socket operations have network effects that are observable from outside the KVServer, their
VST specifications describe the effects they may trigger using the technique introduced in
Section 2.3.

The earlier “swap server” described by Koh et al. [25] had similar specifications for the
network operations used by our KVServer. However, the specifications of network operations
in that work did not have a refinement relation with the CertiKOS socket specifications.
In our work, we push this verification boundary lower into CertiKOS with the SocketAPI
refinement proofs. We discuss this improvement in Section 4.

3.2 Application Modules

ParseAPI. This module provides functions that parse the subset of HTTP/1.1 requests
accepted by the KVServer and functions that serialize standard HTTP responses for KVServer
clients. The top-level specification for the parser is a relation between the input string, the
parsed request, and the remaining unused input string. This parser specification describes
how the parsed request and the unused portion of the input string can be reassembled to
recover the original input string. Specifically, the subset of HTTP/1.1 requests that the
KVServer accepts are GET and POST requests, and POST requests must have a string as
payload in the Content-Length encoding (the length of the string payload must be equal to
the value in the Content-Length header).

We also develop an executable parser in Gallina, Coq’s internal functional programming
language, for the subset of requests KVServer supports, plus refinement proofs between the
VST specification of the C parser and the Gallina parser, showing that the C parser is a
refinement of the pure Gallina parser.

KeyValueAPI. This module is a thin wrapper around the ParseAPI module that interprets
HTTP requests to the KVServer as read/write operations on the KeyValue storage. An
HTTP GET request at some url is translated into a read request to the KeyValue storage,
with the key being the specified url. Similarly, an HTTP POST request at some url with
some payload is a write request that puts the value of payload under the key url. The
KeyValueAPI specifications assert that GET and POST requests are correctly translated
into key-value read and write requests.

HashtableAPI. This module implements a hash table for string-valued keys and values,
which acts as the in-memory KeyValue storage. This module uses a pure Gallina implement-
ation of a string-valued hash table as its specification; we establish the refinement between
the Gallina implementation and the C implementation using VST. The hash table uses a
verified hash function that computes the hash value of a string by arithmetic manipulations
on the ASCII values of the characters in the string. The HashtableAPI specifications assert
that the C hash table implementation strictly follows the Gallina implementation model.

ITP 2021

32:8 Verifying an HTTP Key-Value Server with Interaction Trees and VST

3.3 Server I/O Modules
ConnectionAPI. This module pulls in both the application modules and the infrastructure
modules and provides an interface for managing and communicating with logical client
connections.

The KVServer is a single-threaded event-driven server. The event-driven I/O model allows
a single-threaded server to manage multiple concurrent connections. Under this scheme, the
server repeatedly tries to receive network data in a loop, buffers available network data from
all clients and checks the client buffers for pending requests in each loop iteration.

ConnectionAPI uses the BufferAPI module to maintain both incoming and outgoing
byte buffers for each connection. It also relies on the ParseAPI module to abstract over the
underlying byte stream by repeatedly trying to parse the accumulated bytes in the receiving
buffer until a complete HTTP request has been parsed. This request is then interpreted as a
KeyValue request by the KeyValueAPI module, and the corresponding KeyValue operations
are executed on the hash table storage.

ConnectionAPI uses a linked-list data structure to manage a collection of connections.
Furthermore, ConnectionAPI abstracts over select and provides an interface for focusing on
connections ready for network I/O.

ServerAPI. This module implements the main event-loop of the entire KVServer. The main
loop relies on operations from the ConnectionAPI module to focus on connections that have
pending requests to be processed, performs the operations encoded in these pending requests,
appends the serialized responses to the outgoing buffers for relevant connections, and flushes
outgoing buffers for connections that are ready for outgoing communication. The ServerAPI
specification asserts that the main loop does not cause the connection data structures to
become invalid and that the hash table storage’s content is updated correctly upon client
requests.

The ServerAPI module exposes a top-level VST specification for the main() function of the
entire server and relates the C implementation of the server’s main loop to its interaction-tree
specification.

!!(consistent_world st) &&
(ITREE ITree.iter (run_server) ([], empty_table); ; k tt) ∗

SOCKAPI st ∗ MemM gv

main()

{st′. ITREE k tt ∗ SOCKAPI st′ ∗ MemM gv}

This states that, starting from a valid state of OS sockets modeled by st, the effect of running
the main() function is reflected by the interaction tree that iterates the server specification
run_server in a loop, and that the loop starts with the initial empty state ([], empty_table).
The empty list is the initial empty list of client connections, and the empty table is an initial
empty key-value storage table.

The ITree function run_server is the specification of a single event-loop iteration of
the main server. This iteration is repeated using an ITree combinator ITree.iter. The
composed specification ITree.iter run_server is a program that runs forever, unless the
server encounters an irrecoverable error (e.g. memory allocation failure). The proof of this
VST triple uses data structure invariants for the hash table and connection list and relies on
lemmas that prove each server operation preserves these data structures’ invariants. However,
these proof details need not be exposed in the top-level VST specification.

H. Zhang et al. 32:9

Name Spec Proof Impl Description

String
POSIX functions 369 1890 143 POSIX-compliant string functions
Non-POSIX functions 563 2393 212 Other string functions
Buffer
buffer_append 49 225 27 Append bytes to a byte buffer
Socket
accept 36 37 N/A Accept a connection
listen 27 16 N/A Open port to listen for connections
send 40 33 N/A Send bytes
recv 44 158 N/A Receive bytes
socket 15 20 N/A Create a socket
Parse
parse_request 50 921 73 Parse an HTTP request
serialize_http_response 34 257 35 Serialize an HTTP response
Hashtable
hashtable_get 27 300 13 Read a key
hashtable_update 30 162 5 Set the string at a key
KeyValue
message_process 39 91 12 Run a KeyValue request
Connection
connection_set_next 31 41 3 Sets the tail of a connections list
connection_get_next 26 92 3 Gets the tail of a connections list
process_and_register 60 305 44 Process an HTTP request
master_process_and_register 58 1162 30 Process the entire connections list

Figure 1 Critical verified C functions from each module.

3.4 Summary
To give an idea of the scale of the KVServer and its verification, Figure 1 lists some of the
important functions from each module along with the number of lines of C code and Coq
specification and proof each required. Figure 2 compares the total number of lines to the
earlier Swap Server [25] to highlight the significant increase in scale.

4 Socket API

4.1 Connecting VST Specifications to CertiKOS Socket Calls
The KVServer communicates with clients using POSIX socket system calls: bind, accept,
send, recv, and so on. These system calls are provided by the verified operating system
CertiKOS, which includes functional specifications (either verified or axiomatized) for each
system call. Using a technique due to Mansky et al. [32], we connect the VST specifications
(separation logic pre- and postconditions) for the socket calls to the Certified Concurrent
Abstraction Layers (CCAL) specifications of socket calls provided by CertiKOS, strengthening
our confidence in the correctness of our server’s network communication.

The basic approach of Mansky et al. [32] is shown in Figure 3. We connect VST specific-
ations of each call to CertiKOS by means of an intermediate-level first-order predicate on
CompCert memories (maps from memory locations to values) and external state. Mansky

ITP 2021

32:10 Verifying an HTTP Key-Value Server with Interaction Trees and VST

Lines of Code KVServer Swap
Total specification lines 7033 1373
Total proof lines 28998 8545
Total implementation lines 3097 469

Figure 2 Total lines of code for KVServer and Swap Server.

VST

dry

CertiKOS

load(buf) = vals ∧ ext = t

{buf 7→ vals ∗ EXT(t)} syscall(buf); {buf 7→ vals′ ∗ EXT(t′)}

load(buf) = vals′ ∧ ext = t′

syscall(buf , OS_state) = OS_state′

Figure 3 Connecting VST to CertiKOS.

et al. refer to this intermediate-level specification as a “dry specification”. The dry specifica-
tion serves as a translation layer between the corresponding VST specification and CertiKOS
specification; this allows us to prove a round-trip theorem stating that the VST specification
follows from the guarantees provided by CertiKOS. For instance, recall the VST specification
of the listen system call from Section 2.3. The CertiKOS specification for listen is:

Definition listen_spec (abd : RData) (fd : Z) : option (SysRet Z) :=
if negb (kern_init abd) then None else
let socks := ZMap.get (curid abd) abd.(sockets) in
let log := ZMap.get (curid abd) abd.(socket_log) in
match is_bound (ZMap.get fd socks) with
| Some port =>

let socks' := ZMap.set fd (ListeningSocket port) socks in
let log' := SysSockListen port :: log in
Some (abd {sockets: ZMap.set (curid abd) socks' abd.(sockets)}

{socket_log: ZMap.set (curid abd) log' abd.(socket_log)},
OK)

| _ => Some (abd, ERR EBADF) (* Invalid socket state *)
end.

This specification mentions various pieces of OS state that are invisible to the C programmer,
including a record of the state of the sockets (i.e., abd.(sockets)) that is modified during the
call and a log of socket operations performed (i.e., abd.(socket_log)). The OS socket states
should correspond to the SOCKAPI in the VST specification, while operations appended to
the log should be reflected in events removed from the ITREE. We connect the two layers
by writing a dry specification for listen, in which the assertions of the VST specification
are converted to first-order predicates on memory and external state. The dry pre- and
postcondition take the parameters of the VST specification as arguments, along with the
memory m, external state z, and – in the case of the postcondition – the initial memory m0
and return value r. They capture the requirements on the external state and reflect the fact
that listen has no effect on user memory:

Pre((t, k, st, addr , fd, backlog), m, z) ≜ (listen addr ; ; k) ⊑ t ∧ z = (t, st) ∧
st fd = BoundSocket addr

Post((t, k, st, addr , fd, backlog), m0, m, z, r) ≜ m = m0 ∧ ∃t′st′. z = (t′, st′) ∧
consistent_world st′ ∧ −1 ≤ r ≤ 0 ∧ post_listen t k st fd addr r t′ st′

In particular, note that the ITREE and SOCKAPI predicates are no longer present, and
their contents are translated into assertions on the external state z. We then complete

H. Zhang et al. 32:11

the refinement by showing that the VST precondition implies Pre, that Post implies the
VST postcondition, and that if Pre is true of the user memory and external state given to
the CertiKOS listen_spec, then Post is true of the corresponding parts of the output –
thereby translating the assertions on z to effects on abd.(sockets) and abd.(socket_log),
the OS-level representation of sockets and communication.

The server implementation uses the system calls socket, bind, listen, accept, send, recv,
close, shutdown, and htons. For each of these, we prove a connection between the VST proof
rule used in the verification of the server and the CertiKOS axiom for the call. The proofs
follow the pattern of prior work. Most of the calls only affect external state (socket state
and/or interaction tree), while send and recv also use or change the contents of a single buffer
in memory; both of these patterns were illustrated by Mansky et al. [32]. These refinement
proofs significantly strengthen our confidence in the correctness of the server by removing
the VST socket specifications from the trusted computing base and replacing them with the
abstractions provided by the operating system. Indeed, while carrying out the refinement
proof, we discovered some correctness conditions that were missing from the original VST
specifications. For instance, the bind call is only guaranteed to return a valid result when
the provided port number is between 0 and 65535; the original VST specification omitted
this range requirement.

4.2 Granularity of ITree Events

The VST specification we used for the listen call looks like this:

{!!((listen addr ; ; k) ⊑ t) && ITREE t ∗ SOCKAPI st}
listen(fd, backlog){

r. EX t′ st′. !!(−1 <= r <= 0 ∧ post_listen t k st fd addr r t′ st′)
&& ITREE t′ ∗ SOCKAPI st′

}
Most of the details of what listen actually does are hidden in post_listen, which says that
either the call succeeds and t′ is the continuation k (i.e., t minus the listen event), or the call
fails and t′ = t. In other words, the listen event in the ITREE represents a successful call to
listen, and on failure the server must retry the call before moving on to k. This is only one
possible approach to representing communication events with an ITREE: we could imagine
using the listen event to represent an invocation of the listen system call, successful or not,
or even a permission guaranteeing that, if the server calls listen at this point, then the call
will succeed. In the former case, the event would be removed from the ITREE regardless of
the result; in the latter case, the error result (and the return value of −1) would not appear
in the specification at all.

In the swap server of Koh et al. [25], it was (somewhat arbitrarily) decided that events
should represent successful communications, leading to the current style of specification. Now
that we have connected the ITREE to the operating system’s log, this choice is no longer
arbitrary: each ITREE event corresponds to exactly one socket_log event, and the OS does
not add an event to its log when the call fails. We could build and validate specifications
in the other styles (by writing a wrapper function that calls listen until it succeeds, or by
providing a token from the OS that somehow guarantees that the next listen will not fail),
but our specification style leads to the most direct translation of the CertiKOS specification
into VST. If a user writes a program that assumes listen will always succeed and tries to
verify it using VST, the gap between their assumptions and the guarantees of the OS will
show up in the verification.

ITP 2021

32:12 Verifying an HTTP Key-Value Server with Interaction Trees and VST

5 C Strings in VST

A C string is a contiguous array of non-zero unsigned bytes (1-255), terminated by a null (0)
byte. To avoid confusion between a C string value and a Coq string value, we write C strings
here with array notation. For example, ['K', 'V', 'S', 'e', 'r', 'v', 'e', 'r', '\0'] is
a C string that can be modeled by the Coq string "KVServer".

Programs manipulate C strings through pointers to these byte arrays. For example,
our implementation of the standard function strstr() takes two pointers of type const
unsigned char *, representing a “haystack” and a “needle,” and searches for the needle in
the haystack.

const unsigned char* strstr(const unsigned char* hstk, const unsigned char* ndl);

Two key properties of a C string are its contiguous memory layout and its terminating null
byte; violating these can cause unexpected behaviors and subtle memory bugs [43, 14]. For
example, if hstk is not null-terminated, strstr may read beyond the allocated memory region,
possibly leaking secret information or crashing the program.

We use two VST predicates CUStringN(sh, s, n, p) and CUString(sh, s, p) to model C
strings. The predicate CUStringN is defined in terms of an access-permission share, the list of
bytes in the string s, and a pointer p to an array of size n. CUStringN(sh, s, n, p) states that:
1. the list of bytes s does not contain a null byte;
2. the length of s is strictly smaller than the array’s size (n);
3. the pointer p points to a contiguous memory region that starts with the contents of s;
4. the pointer p points to a value with the type ucharn (i.e., an array of n unsigned bytes);

and
5. the contents of s are immediately followed by a null byte.
The leftover space may hold arbitrary data. The share parameter sh controls whether read
or write accesses are allowed on the memory where the string is located. In KVServer, we use
the share values Ews and Tsh, which respectively mark heap-allocated read-write memory
and stack-allocated read-write memory.

We then further refine CUStringN with CUString by requiring that the length of the
array at the pointer p is exactly the length of s plus 1 (the extra byte is for the termin-
ating null). For example, the C string ['K', 'V', 'S', 'e', 'r', 'v', 'e', 'r', '\0']
allocated at pointer p with both read and write permissions can be specified, in Coq, as
CUString(Ews, “KVServer”, p).

5.1 Specifying strstr
To specify a string function like strstr, we need to formally describe two parts:
1. Memory safety: the memory-layout assumptions that the function makes about its inputs.

In this case, strstr only requires both inputs to be valid C strings.
2. Functional correctness. In this case, if hstk contains ndl, then strstr (either diverges or)

returns a pointer to a substring of hstk whose prefix is ndl. Otherwise, strstr returns
NULL.

For functions that return a substring of one of their arguments, the convention in the
standard C string library is to return a pointer at some offset from the input. For example,
when strstr succeeds, it returns a pointer at some offset i into the haystack C string.
However, in many instances (especially when working with constant strings), we are primarily
interested in the index at which the substring begins, rather than the substring itself.

H. Zhang et al. 32:13

In principle, the returned pointer from strstr implicitly encodes a non-negative offset
into the haystack string where the needle string can be found: if the haystack string is
at pointer p and the returned pointer is n, then offset = n - p. Although this offset is
trivial to compute, it adds proof obligations to convince VST that the arithmetic uses only
well-defined operations according to the CompCert memory model. While programmers
usually think of memory in C programs as a big array of data indexed by memory addresses,
and while memory addresses can obviously be subtracted from one another to compute the
offset between them, the C standard as reflected in the CompCert memory model is more
structured. In VST, memory regions allocated by different calls to malloc are considered
disjoint, and it is undefined behavior to take a pointer pA that points to region A and add
an offset x to pA such that pA + x points to a separate memory region B starting at some
pointer pB , even if arithmetically pA + x = pB [29].

Thus, a pointer subtraction like p1 − p2 induces an extra proof obligation that p1 and p2
point to memory addresses within the same memory region. Users of strstr’s specification
must deal with such proof obligations if what they really want is the offset. Since computing
the offset is indeed a common pattern throughout KVServer, we provide an alternative
“indexed” version of strstr called strstr_idx that packages up the pointer subtraction proof
and directly returns the offset.

int strstr_idx(const unsigned char* hstk, const unsigned char* ndl) {
const unsigned char* s = strstr(hstk, ndl);
if (s == NULL) { return -1; }
int i = s - hstk;
return i;

}

The specification of strstr_idx also reflects some logical simplifications that come with
working with offsets instead of pointers:

{
CUString(sh1, hstk, hstkptr) ∗ CUString(sh2, ndl, ndlptr)

}
strstr_idx(hstkptr, ndlptr)

i. !!(−1 ≤ i < length(hstk)) &&
!!(post_strstr_idx hstkptr hstk ndl i) &&

CUString(sh1, hstk, hstkptr) ∗ CUString(sh2, ndl, ndlptr)

The proposition post_strstr_idx used in the postcondition is defined as follows

Variant post_strstr_idx (ptr1 : val) (s1 s2 : list byte) : Z -> Prop :=
| StrStr_Idx_Not_Found:

~ (is_sublist s2 s1)
-> post_strstr_idx ptr1 s1 s2 (-1)

| StrStr_Idx_Empty:
s2 = nil

-> post_strstr_idx ptr1 s1 s2 0
| StrStr_Idx_Found (r : Z):

0 <= r < Zlength s1
-> s2 = firstn (List.length s2) (skipn (Z.to_nat r) s1)
-> ~ (is_sublist s2 (firstn (Z.to_nat r + List.length s2 - 1) s1))
-> post_strstr_idx ptr1 s1 s2 r.

The preconditions state the inputs are valid C strings stored in readable memory, and the
postconditions state that the returned value i is an integer between −1 (inclusive) and the
length of the “haystack” (exclusive) and that the model haystack string, needle string, and
returned value i satisfy a relation post_strstr_idx. This relation is split into three cases:

ITP 2021

32:14 Verifying an HTTP Key-Value Server with Interaction Trees and VST

1. The needle is not in the haystack and i = -1.
2. The needle is empty and i = 0.
3. The needle appears at offset i in the haystack, and i is in the range [0, length(hstk)).

The extra proof obligation induced by pointer subtraction is then handled once and for
all in the verification of strstr_idx.

We applied this technique for three functions in our string library: strstr, strchr, and
strcasestr. Each of these has a _idx version with a simplified specification, and higher-level
modules that depend on the C string module all use the indexed versions instead of the raw
pointer versions.

6 Related Work

Verifying networked servers. There are many papers on verifying networked servers,
including HTTP servers [11], distributed systems [20, 41], and mail servers [12]. Koh et al.
provide a detailed discussion of this previous work [25].

The goals and techniques of our work have much in common with those of Koh et al. [25].
The primary methodology in both projects is to refine a C program against an interaction tree
specification using separation logic and VST based on the Clight semantics of CompCert. The
KVServer extends the scale of this earlier effort in several dimensions. One is the complexity
of the server’s state and behavior: The swap server by Koh et al. [25] simply remembers
the last integer it received, where our KVServer manages arbitrarily many mappings, which
requires operations such as growing and shrinking buffers and string hashing. Another
difference is the protocols used for server-client communications. The swap server assumes
requests are always 4-byte integers, while the KVServer understands a subset of HTTP/1.1,
a ubiquitous industry standard. Handling HTTP requires verified parsing and C string
libraries, most of which are generic and could be reused in other verified projects.

Additionally, our work significantly strengthens the connection to CertiKOS. Although
Koh et al. [25] discussed connecting user- and kernel-level socket specifications, at the time
there was only a work-in-progress proof for recv, whereas we provide complete proofs for
a significant portion of the POSIX socket interface. The relation between user and kernel
state in the swap server also ignored some important details, such as the translation between
virtual and physical memory addresses, which are handled correctly in our work.

One limitation of our work compared to the swap server [25] is that we do not provide a
full refinement proof connecting the implementation to a high-level “linear specification” that
models the server’s behavior at the level of whole HTTP requests, hiding the low-level details
of parsing and buffering. We believe that the “network refinement” relation between the
low-level implementation and such a top-level linear specification can be formulated in terms
of linearizability [21]. The additional complexity in the KVServer compared to the swap
server arises from the fact that requests and responses are not atomic, since they may be
split by the network. As future work, we plan to formalize the connection to linearizability
and prove network refinement.

There is a great deal of previous work on verified parsers for network protocols. For
example, TRX [26] is a parser interpreter that can be used to extract HTTP parsers with
total correctness guarantees, and EverParse [36] is a framework for generating secure parsers
and has been used to implement a parser for TLS. Instead of generating a verified parser,
our work focuses on verifying hand-written C programs that use the standard, low-level C
string library to implement HTTP parsing.

H. Zhang et al. 32:15

Perennial [13] is a new framework for verifying concurrent, crash-safe systems that has
been used to implement a mail server. Whereas Perennial focuses on reasoning about
crash-safety of concurrent programs, our work focuses on building a networked server whose
specification is connected to the host operating system. A potential next step of our work is
to incorporate Perennial’s crash safety reasoning methodology.

There are also many prior efforts to specify the POSIX socket interface [8, 9, 10, 38].
Since KVServer only requires a subset of the POSIX socket interface, our specification is not
as complete as these. However, the KVServer socket specification is formally verified against
the specification provided by the host CertiKOS (Section 4), while [8], [9], [10] and [38] all
considered the verification against their specifications out of scope.

Modular verification. Beringer and Appel [7, 6] extended VST to support data repres-
entation abstraction and separation logic specification subsumption. These improvements
made it possible to modularly specify and verify abstract data structures that hide their
internal layouts and their operations with support from VST. KVServer uses an earlier
release of VST that does not have these features yet, and all internal data structures used
by KVServer in fact expose their implementation layouts – all C structs are defined in
C header files. Although we manually ensure higher-level modules only access lower-level
data structures through their verified C APIs to avoid breaking abstractions or introducing
spurious dependencies, this manual discipline could be mechanically checked by leveraging
these new features in the latest VST.

CCAL [17, 19] is a modular verification technique used in the CertiKOS project. CCAL is
a formal calculus that enforces clear separation between the interface of a verified module and
its implementation. CCAL gives a formal semantics of horizontal module composition within
abstraction layers and vertical composition between abstraction layers. The composition
of KVServer modules is similar to the horizontal composition of CCAL modules. However,
KVServer does not employ vertical composition or abstraction layers, since these features do
not exist yet in VST.

Verifying C strings. The VeriSoft project [2] verified a custom string library [39] based
on the C0 semantics, a restricted version of ANSI C99 [27]. Moy and Marché [34] verified
22 functions from the standard C string library of MINIX 3 (https://www.minix3.org/);
however, they only checked basic safety properties of these functions (e.g., absence of memory
access errors), not functional correctness. Efremov et al. [15] verified the functional correctness
of 26 string functions from the Linux kernel via deductive verification in Frama-C. Our work
includes the functional correctness specifications and proofs of 34 functions (see Figure 1)
based on the Clight semantics of CompCert [29]. 17 out of the 34 functions are POSIX
compliant.

Interaction trees. Our specifications are phrased in terms of interaction trees, a general-
purpose data structure for representing the behaviors of recursive programs that interact
with their environments [42]. They are a coinductive variant of “freer monads” [24]; similar
data structures include the program monads of Letan et al. [30], the general monads of
McBride [33], and the action trees of Swamy et al. [40]. Interaction trees were also used in
the specification of the swap server [25].

ITP 2021

https://www.minix3.org/

32:16 Verifying an HTTP Key-Value Server with Interaction Trees and VST

Connecting user-space and kernel-space specifications. Mansky et al. [32] demonstrated
how to connect higher-order specifications with external effects written in VST with first-order
specifications written in CCAL. This technique removes a verification gap between user-space
programs and the host kernel. We apply Mansky et al.’s verification methods, and prove a
refinement between the KVServer and CertiKOS socket specifications.

7 Conclusions and Future Work

We have verified a networked key-value server based on a subset of the HTTP/1.1 protocol,
using VST and interaction trees to verify memory safety and functional correctness of the C
implementation for each module. We also deepened the connection between KVServer and
CertiKOS by proving that the user-level socket specifications agree with kernel-level socket
specifications. The resulting proof guarantees the termination-insensitive correctness of the
KVServer down to the kernel level, reducing the trusted computing base to the unverified
POSIX socket system calls provided by CertiKOS.

As discussed in Section 6, an important future project is to define a high-level specification
similar to the “linear specification” of Koh et al. [25] and prove the associated refinement,
which can be viewed as a form of linearizability [21].

Specifying servers with interaction trees allows us to test server implementations against
the specification [31]. We have written a top-level linear specification for testing purposes,
whose relationship with the VST specification is still to be proven. From the testable
specification, we have automatically derived a “testing client” that interacts with servers and
checks whether they violate the specification. When developing the verified KVServer, we
ran it against the derived tester, which has helped shake out a liveness-related bug – when a
client pipelines more than one request in a single send(), the client connection may hang
without immediately processing the latter requests. This liveness bug was out of scope for the
verification of the KVServer due to the partial-correctness nature of VST specifications, but
we have patched the server implementation and related proofs to correctly handle pipelined
requests.

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H Schmitt, and

Mattias Ulbrich. Deductive Software Verification–The KeY Book, volume 10001 of Lecture
Notes in Computer Science. Springer, 2016.

2 Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert Schirmer, and Artem Starostin.
The verisoft approach to systems verification. In Natarajan Shankar and Jim Woodcock,
editors, Verified Software: Theories, Tools, Experiments, Second International Conference,
VSTTE 2008, Toronto, Canada, October 6-9, 2008. Proceedings, volume 5295 of Lecture Notes
in Computer Science, pages 209–224. Springer, 2008. doi:10.1007/978-3-540-87873-5_18.

3 Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao,
Stephanie Weirich, and Steve Zdancewic. Position paper: the science of deep specification.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 375(2104), 2017. doi:10.1098/rsta.2016.0331.

4 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon
Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers. Cambridge
University Press, USA, 2014.

5 Andrew W. Appel and David A. Naumann. Verified sequential malloc/free. In Chen Ding and
Martin Maas, editors, ISMM’20: 2020 ACM SIGPLAN International Symposium on Memory
Management, pages 48–59. ACM, 2020. doi:10.1145/3381898.3397211.

https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1145/3381898.3397211

H. Zhang et al. 32:17

6 Lennart Beringer. Verified software units. In Nobuko Yoshida, editor, Programming Languages
and Systems, pages 118–147, Cham, 2021. Springer International Publishing.

7 Lennart Beringer and Andrew W. Appel. Abstraction and subsumption in modular verification
of C programs. In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors,
Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal,
October 7-11, 2019, Proceedings, volume 11800 of Lecture Notes in Computer Science, pages
573–590. Springer, 2019. doi:10.1007/978-3-030-30942-8_34.

8 Steve Bishop, Matthew Fairbairn, Hannes Mehnert, Michael Norrish, Tom Ridge, Peter
Sewell, Michael Smith, and Keith Wansbrough. Engineering with logic: Rigorous test-
oracle specification and validation for TCP/IP and the Sockets API. J. ACM, 66(1), 2018.
doi:10.1145/3243650.

9 Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith
Wansbrough. TCP, UDP, and Sockets: rigorous and experimentally-validated behavioural
specification. Volume 1: Overview. Technical Report UCAM-CL-TR-624, Computer Laborat-
ory, University of Cambridge, 2005. 88pp. URL: http://www.cl.cam.ac.uk/TechReports/
UCAM-CL-TR-624.html.

10 Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith
Wansbrough. TCP, UDP, and Sockets: rigorous and experimentally-validated behavioural
specification. Volume 2: The specification. Technical Report UCAM-CL-TR-625, Computer
Laboratory, University of Cambridge, March 2005. 386pp. URL: http://www.cl.cam.ac.uk/
TechReports/UCAM-CL-TR-625.html.

11 Paul E. Black. Axiomatic Semantics Verification of a Secure Web Server. PhD thesis, Brigham
Young University, Provo, UT, USA, 1998. AAI9820483.

12 Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zeldovich. Verifying
concurrent software using movers in CSPEC. In Andrea C. Arpaci-Dusseau and Geoff Voelker,
editors, 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages 306–322. USENIX Association, 2018.
URL: https://www.usenix.org/conference/osdi18/presentation/chajed.

13 Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying concur-
rent, crash-safe systems with Perennial. In Tim Brecht and Carey Williamson, editors, Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, pages 243–258. ACM, 2019. doi:10.1145/3341301.3359632.

14 Cristina Cifuentes and Bernhard Scholz. Parfait - designing a scalable bug checker. In Florian
Martin, Hanne Riis Nielson, Claudio Riva, and Markus Schordan, editors, Scalable Program
Analysis, 13.04. - 18.04.2008, volume 08161 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Germany, 2008. URL: http://drops.dagstuhl.de/opus/
volltexte/2008/1573/.

15 Denis Efremov, Mikhail U. Mandrykin, and Alexey V. Khoroshilov. Deductive verification of
unmodified Linux kernel library functions. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation. Verification - 8th
International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings,
Part II, volume 11245 of Lecture Notes in Computer Science, pages 216–234. Springer, 2018.
doi:10.1007/978-3-030-03421-4_15.

16 Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230, 2014. doi:10.17487/RFC7230.

17 Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu,
Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified abstraction
layers. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 595–608. ACM, 2015. doi:10.1145/2676726.
2676975.

ITP 2021

https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1145/3243650
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-624.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-624.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-625.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-625.html
https://www.usenix.org/conference/osdi18/presentation/chajed
https://doi.org/10.1145/3341301.3359632
http://drops.dagstuhl.de/opus/volltexte/2008/1573/
http://drops.dagstuhl.de/opus/volltexte/2008/1573/
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.17487/RFC7230
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/2676726.2676975

32:18 Verifying an HTTP Key-Value Server with Interaction Trees and VST

18 Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016, pages 653–669. USENIX Association, 2016. URL: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/gu.

19 Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm
Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. Certified concurrent
abstraction layers. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 646–661. ACM, 2018. doi:
10.1145/3192366.3192381.

20 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving practical distributed systems
correct. In Ethan L. Miller and Steven Hand, editors, Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, pages
1–17. ACM, 2015. doi:10.1145/2815400.2815428.

21 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/78969.78972.

22 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. Verifast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods Symposium, pages 41–55. Springer, 2011.

23 Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-C: A software analysis perspective. Formal Aspects Comput., 27(3):573–609, 2015.
doi:10.1007/s00165-014-0326-7.

24 Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceedings of the
8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 94–105, 2015. doi:10.1145/2804302.2804319.

25 Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky,
Benjamin C. Pierce, and Steve Zdancewic. From C to interaction trees: Specifying, verifying,
and testing a networked server. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, page 234–248, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3293880.3294106.

26 Adam Koprowski and Henri Binsztok. TRX: A formally verified parser interpreter. Log.
Methods Comput. Sci., 7(2), 2011. doi:10.2168/LMCS-7(2:18)2011.

27 Dirk Leinenbach, Wolfgang J. Paul, and Elena Petrova. Towards the formal verification of a
C0 compiler: Code generation and implementation correctnes. In Bernhard K. Aichernig and
Bernhard Beckert, editors, Third IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2005), 7-9 September 2005, Koblenz, Germany, pages 2–12. IEEE
Computer Society, 2005. doi:10.1109/SEFM.2005.51.

28 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1,
2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages
348–370. Springer, 2010. doi:10.1007/978-3-642-17511-4_20.

29 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
doi:10.1145/1538788.1538814.

30 Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. Modular verification
of programs with effects and effect handlers in Coq. In Formal Methods - 22nd International
Symposium, FM 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 15-17, 2018, Proceedings, pages 338–354, 2018. doi:10.1007/978-3-319-95582-7_20.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.2168/LMCS-7(2:18)2011
https://doi.org/10.1109/SEFM.2005.51
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-319-95582-7_20

H. Zhang et al. 32:19

31 Yishuai Li, Benjamin C. Pierce, and Steve Zdancewic. Model-based testing of networked
applications. In ACM SIGSOFT International Symposium on Software Testing and Analysis,
2021.

32 William Mansky, Wolf Honoré, and Andrew W. Appel. Connecting higher-order separation logic
to a first-order outside world. In Peter Müller, editor, Programming Languages and Systems
- 29th European Symposium on Programming, ESOP 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings, volume 12075 of Lecture Notes in Computer Science, pages 428–455.
Springer, 2020. doi:10.1007/978-3-030-44914-8_16.

33 Conor McBride. Turing-completeness totally free. In Mathematics of Program Construction -
12th International Conference, MPC 2015, Königswinter, Germany, June 29 - July 1, 2015.
Proceedings, pages 257–275, 2015. doi:10.1007/978-3-319-19797-5_13.

34 Yannick Moy and Claude Marché. Modular inference of subprogram contracts for safety
checking. J. Symb. Comput., 45(11):1184–1211, 2010. doi:10.1016/j.jsc.2010.06.004.

35 Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019. doi:10.1145/
3211968.

36 Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed,
Nadim Kobeissi, and Jonathan Protzenko. Everparse: Verified secure zero-copy parsers for
authenticated message formats. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,
pages 1465–1482. USENIX Association, 2019. URL: https://www.usenix.org/conference/
usenixsecurity19/presentation/delignat-lavaud.

37 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.
1029817.

38 Thomas Ridge, Michael Norrish, and Peter Sewell. TCP, UDP, and Sockets: Volume 3: The
Service-level Specification. Technical Report UCAM-CL-TR-742, University of Cambridge,
Computer Laboratory, 2009. 305pp.

39 Artem Starostin. Formal verification of a C-library for strings. Master’s thesis, Saarland
University, Saarbrücken, Germany, 2006.

40 Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido
Martínez. Steelcore: an extensible concurrent separation logic for effectful dependently typed
programs. Proc. ACM Program. Lang., 4(ICFP):121:1–121:30, 2020. doi:10.1145/3409003.

41 Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas
Anderson. Planning for change in a formal verification of the Raft consensus protocol. In
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2016, page 154–165, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2854065.2854081.

42 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,
and Steve Zdancewic. Interaction trees: representing recursive and impure programs in Coq.
Proc. ACM Program. Lang., 4(POPL):51:1–51:32, 2020. doi:10.1145/3371119.

43 Fang Yu, Tevfik Bultan, and Ben Hardekopf. String abstractions for string verification. In Alex
Groce and Madanlal Musuvathi, editors, Model Checking Software - 18th International SPIN
Workshop, Snowbird, UT, USA, July 14-15, 2011. Proceedings, volume 6823 of Lecture Notes
in Computer Science, pages 20–37. Springer, 2011. doi:10.1007/978-3-642-22306-8_3.

ITP 2021

https://doi.org/10.1007/978-3-030-44914-8_16
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1016/j.jsc.2010.06.004
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3409003
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3371119
https://doi.org/10.1007/978-3-642-22306-8_3

	1 Introduction
	2 Background
	2.1 Interaction Trees
	2.2 Verified Software Toolchain
	2.3 Specifying Effects with VST and ITrees
	2.4 HTTP/1.1

	3 Components
	3.1 Infrastructure Modules
	3.2 Application Modules
	3.3 Server I/O Modules
	3.4 Summary

	4 Socket API
	4.1 Connecting VST Specifications to CertiKOS Socket Calls
	4.2 Granularity of ITree Events

	5 C Strings in VST
	5.1 Specifying strstr

	6 Related Work
	7 Conclusions and Future Work

