
Hard Real-Time Stationary GANG-Scheduling
Niklas Ueter #

Department of Computer Science, TU Dortmund University, Germany

Mario Günzel #

Department of Computer Science, TU Dortmund University, Germany

Georg von der Brüggen #

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Jian-Jia Chen #

Department of Computer Science, TU Dortmund University, Germany

Abstract
The scheduling of parallel real-time tasks enables the efficient utilization of modern multiprocessor
platforms for systems with real-time constrains. In this situation, the gang task model, in which
each parallel sub-job has to be executed simultaneously, has shown significant performance benefits
due to reduced context switches and more efficient intra-task synchronization.

In this paper, we provide the first schedulability analysis for sporadic constrained-deadline
gang task systems and propose a novel stationary gang scheduling algorithm. We show that
the schedulability problem of gang task sets can be reduced to the uniprocessor self-suspension
schedulability problem. Furthermore, we provide a class of partitioning algorithms to find a stationary
gang assignment and show that it bounds the worst-case interference of each task. To demonstrate the
effectiveness of our proposed approach, we evaluate it for implicit-deadline systems using randomized
task sets under different settings, showing that our approach outperforms the state-of-the-art.

2012 ACM Subject Classification Computing methodologies → Concurrent algorithms; Computer
systems organization → Embedded and cyber-physical systems; Computer systems organization →
Real-time operating systems

Keywords and phrases Real-Time Systems, Gang Scheduling, Parallel Computing, Scheduling
Algorithms

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.10

Funding This work has been supported by Deutsche Forschungsgemeinschaft (DFG), as part of
Sus-Aware (Project no. 398602212). This result is part of two projects (PropRT and TOROS) that
have received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreements No. 865170 and No. 803111).

1 Introduction

In hard real-time systems, it is mandatory to verify the temporal behavior of the application,
e.g., the compliance to deadline constraints, by means of timing analysis. Due to the
high computational demands of modern real-time systems, multiprocessor platforms are
increasingly utilized since they potentially allow parallel tasks to be executed efficiently.
In parallel task scheduling, inter- and intra-task parallelism has to be considered in the
timing analysis, where inter-task parallelism refers to the co-scheduling of different tasks
and intra-task parallelism refers to parallel execution of a single task. In the context of task
models for parallel computing, fork/join models [26], synchronous parallel task models, and
DAG (directed-acyclic graph) based task models [4, 5, 10,11,18,19,28] have been proposed
and analyzed with respect to real-time constraints.

© Niklas Ueter, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georg.von-der-brueggen@tu-dortmund.de
https://orcid.org/0000-0002-6722-4805
mailto:mario.guenzel@tu-dortmund.de
https://orcid.org/0000-0001-7575-7014
mailto:vdb@mpi-sws.org
https://orcid.org/0000-0002-8137-3612
mailto:jian-jia.chen@cs.uni-dortmund.de
https://orcid.org/0000-0001-8114-9760
https://doi.org/10.4230/LIPIcs.ECRTS.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Hard Real-Time Stationary Gang-Scheduling

The scheduling algorithms for parallel tasks can be classified into three models: rigid,
moldable, and malleable tasks. A parallel task is called rigid if the number of processors
assigned to it is specified externally to the scheduler a priori and does not change throughout
its execution; moldable if the number of processors assigned to it is determined by the scheduler
and does not change throughout its execution; and malleable if the number of processors
assigned to it can be changed by the scheduler during its execution. Such classifications can
be found in the literature of multiprocessor scheduling and real-time systems such as [20].

In the gang task model, a set of threads is grouped together into a so called gang with
the additional constraint that all threads of a gang must be co-scheduled at the same time
on available processors. It has been demonstrated that gang-based parallel computing can
improve the performance in many cases [17, 23]. Even more, Wasly et al. [32] provided
experimental evidence of negative effects of non-gang scheduling with respect to the number
of context-switches and increased thread execution time due to blocking when threads are
not executed together. Moreover, the authors argue that by scheduling all threads of a task
in-parallel, the communication time can be easily accounted for, given that the inter-processor
interconnect provides real-time bounds. Due to its practicability, the gang model is supported
by many parallel computing standards, e.g., MPI, OpenMP, Open ACC, or GPU computing.

One advantage of the rigid gang model is that the interference caused by shared resource
and intra-task parallelism can potentially be quantified better, thus reducing the worst-
case execution time of the gang. Within a gang, co-scheduling of memory accesses and
computation is possible, which can also potentially reduce the worst-case execution time of
the gang. Specifically, one strict view of this is the RT-Gang model by Ali and Yun [1], in
which all processors are allocated to a gang at the same time.

The computational complexity of the rigid gang scheduling problem was studied back
in 1980s. Specifically, it has been shown that finding the optimal schedule for the rigid
gang scheduling problem is NP-hard in the strong sense even when all the tasks have the
same period and the same deadline [25]. Even simpler cases, like three machines [9] or unit
execution time per task [22] are also shown to be NP-hard in the strong sense.

To schedule a set of ordinary periodic [27] or sporadic [29] real-time tasks on a multi-
processor platform, three paradigms have been widely adopted: partitioned, global, and
semi-partitioned multiprocessor scheduling. A comprehensive survey can be found in [15].
For the rigid gang scheduling problem, the three scheduling paradigms are slightly modified
and called stationary, global, and semi-stationary (rigid) gang scheduling. The stationary
gang scheduling paradigm statically assigns a gang task to a set of processors, in which
the cardinality of the set is equal to the gang size of the task. After this assignment is
done, a gang task is only eligible to be executed on stationary processors assigned to it.
The semi-stationary scheduling paradigm allows a gang task to execute on any subset of
processors within a given set of processors that is larger than the gang size itself. That is, it
allows a job of the gang task to migrate from one subset of processors to another sub set
of the given processors at any time. The global rigid gang scheduler allows a gang task to
migrate to any available set of processors as long as the gang size constraints are met.

Note that when the gang size is 1 for each task (i.e., tasks are not executed in parallel
and are ordinary periodic or sporadic tasks), the stationary, global, and semi-stationary
gang scheduling paradigms correspond to the partitioned, global, and semi-partitioned
multiprocessor scheduling paradigms, respectively.

In real-time systems, rigid gang scheduling has been mostly studied under global earliest-
deadline-first (EDF) scheduling, in which the set of processors used by a gang task is not fixed
and can be dynamically relocated at runtime, e.g., [16,24,30]. Specifically, in [24], the authors

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:3

extended Baruah’s [3] multiprocessor global EDF analysis for ordinary sporadic real-time tasks
to deal with global EDF gang scheduling, which has been disproved by Richard et al. [30].
The only valid analysis for global EDF gang scheduling is from Dong and Liu [16] and
restricted to implicit-deadline sporadic real-time rigid gang task systems. They provide two
utilization-based analyses, one optimized and one approximated.

Goossens and Richard [20] studied fixed-priority scheduling for the rigid gang scheduling
problem for implicit-deadline periodic real-time task systems. They presented two algorithms,
one based on linear programming and another based on a heuristic algorithm, providing
exact and sufficient schedulability tests. Moreover algorithms based on deadline partitioning
(DP-Fair) for periodic gang systems have been proposed. However the many preemptions of
DP-Fair make this algorithm impractical and the complexity of the proposed algorithms is
high especially for a large number of processors. The authors themselves discuss the problems
to extend their algorithms to sporadic job arrival sequences due to its non-determinism.

For classical multiprocessor scheduling, is has been recently shown that global static-
priority scheduling [31] and global EDF as well as global FIFO scheduling [8] are dominated by
partitioned scheduling under state-of-the-art efficient sufficient schedulability tests, e.g., [6,21].
The main reason is due to the inherited pessimism in those tests, which all stem from the work
by Baker [2]. Hence, they all use carry-in interference to compensate the lack of a critical
instant theorem and divide the higher-priority interference by the number of processors, i.e.,
they have a multiplicative factor of 1/M in the corresponding analyses. We note that the
factor 1/M also appears in the schedulability tests in [16].

Contributions: In this paper we explore stationary gang scheduling for a set of sporadic real-
time tasks with constrained deadlines (i.e., the relative deadline of a task is no more than its
minimum inter-arrival time) on a homogeneous symmetric multiprocessor system consisting
of M processors. We develop the corresponding schedulability analyses for fixed-priority
scheduling and a heuristic algorithm for stationary gang assignments.

The contributions of this paper are as follows:

We present schedulability tests for stationary gang assignments for constrained-deadline
sporadic real-time tasks in Section 3. To the best of our knowledge, this is the
first schedulability analysis that is capable of verifying the schedulability of sporadic
constrained-deadline gang task systems, whilst the analysis in [16] is limited to implicit-
deadline sporadic real-time rigid gang task systems and the algorithm in [20] is limited to
implicit-deadline periodic tasks. Our success is due to the observation of self-suspension
behavior in Section 3.2 and the recent improvement of optimizations and analyses for
dynamic self-suspension task behavior [12,13].

We propose a class of partitioning algorithms based on the concept of consecutive
stationary gang assignment in Section 4. Furthermore, we show that consecutive stationary
gang assigments yield beneficial theoretical properties that can be used to upper-bound
the worst-case interference suffered by any task according to the ratio of gang sizes of
two tasks.

In Section 5, we compare our algorithm to the state-of-the-art schedulability analysis for
global EDF by Dong and Liu [16] by evaluation synthetically generated sporadic real-time
task systems with implicit deadlines. The evaluation results show that our algorithm
outperforms the algorithm by Dong and Liu [16]. Furthermore, we conducted evaluations
for constrained-deadline task systems and observe reasonable schedulability.

ECRTS 2021

10:4 Hard Real-Time Stationary Gang-Scheduling

2 System Model and Stationary GANG Scheduling

In this paper we consider a symmetric multiprocessor (SMP) system composed of M identical
processors and analyze the response-times of a gang task set with constrained deadlines using
our proposed stationary gang scheduler.

We consider a set T = {τ0, τ1, ..., τn−1} of n constrained-deadline gang tasks to be
scheduled on a set P = {P0, P1, . . . , PM−1} of M identical processors using fixed-priority
rigid gang schedulers under the additional constraint of stationary gang assignments. Each
task has a fixed-priority that is inherited by each instantiated job. We use πi to denote the
priority of task τi and say τj has higher priority than τi if and only if πj > πi. We assume
that no two tasks have the same priority, i.e., there are sufficient priority levels. Moreover,
each task is assigned and restricted to a subset of processor, namely its stationary gang
assignment, to execute on. This subset does not change in time, i.e., it is rigid. Throughout
this section, we will assume that a stationary gang assignment is given for each task and
revisit the problem to generate provably good stationary assignments in Section 4.

▶ Definition 1. A sporadic constrained-deadline gang task τi is defined by (Ci, Ei, Di, Ti) and
releases an infinite number of task instances, called jobs. Each job of a task releases a gang
of Ei sub-jobs with worst-case execution time Ci, that have to be executed in parallel. That
is, either all Ei sub-jobs are scheduled simultaneously or none is. Hence, a total workload of
Ei ·Ci has to be executed in the time interval between job release and deadline. The period Ti

denotes the minimal inter-arrival time of two jobs of τi and each task has a relative deadline
Di ≤ Ti. Moreover, the utilization of a gang task is given by Ui = Ei · Ci/Ti.

This means that when a job of τi is released at time t, the subsequent job of τi must be
released not earlier than at time t + Ti. Furthermore, to fulfill its timing constraints, this job
must be able to finish its execution not later than its absolute deadline at time t + Di. The
response time of a job of τi is its finishing time minus its release time, and the worst-case
response time Ri of task τi under a given scheduling policy is the maximum response time of
any job of τi for any job arrival sequence possible according to the parameters of tasks in T.

We now define stationary gang assignment and the related schedules.

▶ Definition 2. A stationary gang assignment Ai ⊆ {P0, P1, . . . , PM−1} of a gang task τi is
a subset of processors of size |Ai|= Ei ≤M , that are assigned to execute jobs of task τi.

In order to formalize the properties of a fixed-priority stationary gang scheduler, we first
formalize the definition of an arbitrary schedule.

▶ Definition 3. A schedule σPq
: R 7→ T∪ {⊥} for a processor Pq with q ∈ {0, . . . , M − 1} is

a mapping from the continuous time domain to the task that is executed at time t or to ⊥ if
the processor idles, i.e.,

σPq : R 7→ T ∪ {⊥} , σPq (t) =
{

τi if task τi is executed on Pq at time t

⊥ if Pq is idle at time t
(1)

Despite that a realistic schedule does not perform context switch arbitrarily, e.g., due to
granularity determined by the system tick duration, our analysis can in general be applied in
the continuous time domain. A stationary gang schedule is described as follows.

▶ Definition 4. A schedule for a multiprocessor system satisfies the stationary gang property
if for each task τi and its stationary gang assignment Ai, the following property holds:∧

Pq∈Ai

(σPq
(t) = τi) if and only if τi is scheduled at time t (2)

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:5

Whenever we argue about schedules that satisfy the stationary gang property, we for
example write σAi

(t) = τi, if task τi is scheduled on all the processors in Pq ∈ Ai at time t.
Throughout this paper, we say that a gang task τi is active at time t if a job of τi is released
and not yet finished. The stationary gang scheduler then schedules all active tasks τi that
are the highest-priority tasks with respect to all other tasks that use processors in Ai.

▶ Example 5. Consider the stationary gang schedule illustrated in Figure 1 with two tasks τk

and τi with the stationary gang assignments Ak = {P2, P3} and Ai = {P1, P2, P3}. Moreover,
let πk < πi. Therefore τi that releases a job at time 1 preempts task τk. Whenever τi is
preempted on Ai, τk is the highest-priority task amongst all tasks that compete for processors
P2 and P3 and is thus scheduled. ◀

3 Schedulability Test for Stationary Gang Scheduling

This section presents the schedulability test for stationary gang scheduling, provided that
each task τi has a predefined stationary gang assignment Ai. How to achieve good stationary
gang assignments is discussed in Section 4. Throughout this section, our analysis focuses
on the analysis to validate whether task τk can meet its deadline constraint, provided that
the tasks with higher priorities than τk are validated beforehand. Hence, the validation of
schedulability iterates from the highest-priority task to the lowest-priority task in T.

Towards this, we present methods to analyze the contention between a higher-priority
task τi and the task τk under analysis in Section 3.1. Specifically, our result shows that
τi can be considered as a self-suspending task under certain circumstances. Due to this
observation that some higher-priority tasks can be transformed into self-suspending tasks,
we employ existing suspension-aware schedulability analysis and present our schedulability
test for stationary gang scheduling in Section 3.2.

3.1 Contention Analysis
The preemptive fixed-priority stationary gang scheduler always schedules the active task τk

that has the highest priority with respect to all other tasks that use processors in Ak.

▶ Definition 6. The contention domain δ(Ak) of a set of processors Ak is defined as

δ(Ak) := {τℓ ∈ T |Ak ∩Aℓ ̸= ∅} (3)

Based on this behavior, we can formalize the condition for a higher-priority task τi to be
able to interfere with a task τk (πi > πk) as follows

τi interferes with τk ⇐⇒ τi ∈ δ(Ak) (4)

This is simply due to the fact that a task τi is able to preempt another task τk if and
only if it starts to be executed on a processor Pq on which τk is assigned. In such a case,
Pq ∈ Ak and Pq ∈ Ai and in conclusion Pq ∈ Ak ∩Ai, i.e., τi ∈ δ(Ak).

As a consequence, the schedulability of gang task τk can be reduced to the schedulability of
a single job with worst-case execution time Ck that is subjected to the maximum interference
by jobs of tasks in δ(Ak). In the remainder of this subsection, we show that the interfering
behavior of task τi in δ(Ak) can be over approximated by the interference behaviour of a
corresponding sequential task with dynamic self-suspension behavior, where the suspension-
time depends on the stationary gang assignments of the interfering tasks.

ECRTS 2021

10:6 Hard Real-Time Stationary Gang-Scheduling

0 1 2 3 4 5 6
P1

τi τi τi τi

0 1 2 3 4 5 6
P2

τk τi τi τi τi

0 1 2 3 4 5 6
P3

τk τi τi τi τi

Figure 1 An illustration of the suspension behavior of task τk from the point of view of the
task τi. The gray boxes denote interference due to other higher-priority tasks on processor P1.

▶ Definition 7 (Dynamic Self-Suspension [13, 14]). A task is said to have dynamic self-
suspension behavior if an active task can transition from a ready state into a suspended state,
in which the task is exempted from the scheduling decisions, and resume into a ready state at
any time. The cumulative amount of time that an active task τi can spend in a suspended
state is upper-bounded by a parameter Si. ◀

The link between stationary gang schedules and dynamic self-suspension behavior can be
illustrated in the following example.

▶ Example 8. Assume an arbitrary fixed-priority gang schedule for two tasks τk, τi with
πk < πi and a stationary gang assignments Ak = {P2, P3} and Ai = {P1, P2, P3} as shown in
Figure 1. We analyze the execution of task τk solely from the perspective of the processors
specified in Ak, i.e., P2 and P3. Due to the arrival of the higher-priority task τi at time t = 1,
τk is preempted. However, execution on a processor not in Ak interferes with the execution
of τi. Whenever τi is preempted by some interfering tasks on P1 (denoted by the gray boxes),
τk is scheduled on its assigned processors as described in the definition of the stationary
gang scheduling paradigm. Hence, if we only analyze the execution of τk with respect to its
assigned processors, then transparent preemption of τi equates to self-suspending behavior
that needs to be accounted for in the response-time analysis of τk. ◀

In the following, we formalize and explain how these task model substitutions can be
safely obtained. Before moving into the formal proof, we present the conditions that hold for
our scheduling policy.

▶ Definition 9. A task τj is executed at time t if and only if
1. Task τj is active at time t.
2. There exists no task τℓ ∈ δ(Aj) with higher priority, i.e., πℓ > πj , such that τℓ is executed

at time t.

For further clarification, assume that we are interested in the response-time of task τk

and thus analyze the interference caused by higher-priority tasks that use some processors
in Ak. Assume that τi is active and has the highest priority among all active jobs that use

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:7

some processors in Ak at time t, but is interfered by a higher-priority task τℓ ∈ δ(Ai) (e.g.,
the grey boxes in Figure 1). From the perspective of task τk this job is self-suspended and is
resumed when the interfering task τℓ releases the processor. More specifically, we provide
the following definition.

▶ Definition 10. A task τi ∈ δ(Ak) is in a suspended state at time t with respect to a task
τk under analysis if and only if
1. Task τi is active at time t.
2. Task τi has the highest priority among all active tasks on the processors in Ak, i.e.,

πi ≥ max {πj | τj ∈ δ(Ak) active at t}
3. Task τi is not executed.

We use the following definition to collect the set of tasks that may interfere with a
higher-priority task τi ∈ δ(Ak) but not interfere with the task τk under analysis.

▶ Definition 11 (Self-Suspension Inducing Tasks). The set of tasks that can induce self-
suspending behavior of τi when analyzing task τk is denoted by

Vi,k = {τℓ ∈ δ(Ai) | τℓ /∈ δ(Ak) and πℓ > πi} (5)

We now validate that only these tasks induce self-suspending behavior for τi.

▶ Lemma 12. Suppose that task τi is in a suspended state at time t with respect to a task τk

under analysis, then at least one task in Vi,k is executed at time t.

Proof. By Definition 10, (i) τi is active at time t, (ii) πi ≥ max {πj | τj ∈ δ(Ak) active at t},
and (iii) τi is not executed. Due to Definition 9 and since (i) and (iii) hold, there exists some
task τℓ ∈ δ(Ai) with πℓ > πi that is executed at time t. It remains to show that τℓ /∈ δ(Ak).
Assume that τℓ ∈ δ(Ak), then from (ii) follows that πi > πℓ which contradicts πℓ > πi. ◀

Now, we can provide a safe upper bound of the self-suspension time if Vi,k is not empty.

▶ Theorem 13. Suppose that πi > πk and Ri ≤ Di ≤ Ti, where Ri is an upper bound on the
worst-case response time of task τi, which was already verified beforehand. The amount of
time Si,k that a job of an active task τi self-suspends with respect to τk is at most

Si,k ≤ min

Ri − Ci,
∑

τj∈Vi,k

(
1 +

⌈
Ri

Tj

⌉)
· Cj

 (6)

Proof. Suppose that a job of τi is released at time ti and finished at time at ti + ∆. By the
assumption, ∆ ≤ Ri. Let f(t) be 1 if tasks τk and τi are both active at time t and πi > πk

but task τk is executed at time t; otherwise f(t) is 0. Therefore, the amount of time that
f(t) is set to 1 is the amount of time Si,k that the job of task τi self-suspends instead of
preempting τk. Therefore, Si,k can be calculated by integrating the function f(t) from ti to
ti + ∆, i.e., Si,k =

∫ ti+∆
ti

f(t)dt.
Suppose the amount of time that the job of τi suspends during ti and ti + ∆ is > Ri−Ci

for contradiction. This implies that the job of τi has only completed ∆−Ri + Ci amount of
computation. This violates the assumption that Ri is the worst-case response time of τi.

In addition, the suspension behavior of τi is in fact induced by the tasks in Vi,k when
analyzing task τk. By Lemma 12, we know that such interference can only come from tasks
in Vi,k. Since Rj ≤ Tj for every task τj with πj > πk, we know that the amount of time that
a task τj is executed from ti to ti + ∆ is at most

(
1 +

⌈
∆
Tj

⌉
Cj

)
. This can be proved by

ECRTS 2021

10:8 Hard Real-Time Stationary Gang-Scheduling

showing that the jobs of τj that are executed in the interval [ti, ti + ∆) are (i) at most only
one job released prior to ti, and (ii) the amount of jobs that we get by releasing jobs after t1
as soon as possible.1

Summing all tasks in Vi,k together, we have

Si,k =
∑

τj∈Vi,k

(
1 +

⌈
∆
Tj

⌉
Cj

)
≤

∑
τj∈Vi,k

(
1 +

⌈
Ri

Tj

⌉
Cj

)

where the inequality is due to the assumption that ∆ ≤ Ri.
Putting these two safe conditions together, we reach the conclusion. ◀

Note that the estimation in Theorem 13 may not be precise as it counts the higher-priority
interference of τj ∈ δ(Ai) and τj ∈ δ(Ak) as the suspension time of τi as well. This is in fact
standard higher-priority interference as in uniprocessor systems.

The following corollary is a direct implication from Theorem 13.

▶ Corollary 14. If Vi,k is empty, then task τi does not have any self-suspension behavior,
i.e., Si,k = 0 when analyzing task τk.

Proof. This is because the right-hand side of Equation (6) is 0 under this condition. ◀

3.2 Schedulability Analysis
After analyzing the link between the stationary gang scheduling problem and the dynamic self-
suspension problem, we now construct a worst-case response time analysis and schedulability
analysis for task τk. We provide such a bound based on suspension-aware analyses on
uniprocessor systems.

On the basis of Theorem 13 and Corollary 14, we can safely upper-bound the interference
of task τk. We first collect the higher-priority tasks that interfere with τk in Ψk, i.e.,
Ψk = {τi | τi ∈ δ(Ak) ∧ πi > πk}. For every task in Ψk, we transform it to an equivalent
dynamic self-suspension task as follows:

▶ Definition 15. Let a sporadic gang task τi ∈ Ψk be transformed to the corresponding
self-suspending task τsus

i = (Ci, Di, Ti, Si,k) with the same Ci, Di, and Ti as for τi, where Si,k = min
{

Ri − Ci,
∑

τj∈Vi,k

(
1 +

⌈
Ri

Tj

⌉)
· Cj

}
if Vi,k ̸= ∅

Si,k = 0 otherwise
(7)

and Vi,k is defined as in Definition 11.

The set Ψsus
k is the set of all transformed tasks, i.e., Ψsus

k = ∪τi∈Ψk
τsus

i .

▶ Theorem 16. Suppose that all higher-priority tasks τ0, τ1, . . . τk−1 with given station-
ary gang assignments A0, A1, . . . , Ak−1 are already verified to be schedulable. A sporadic
constrained-deadline gang task τk with stationary gang assignment Ak is schedulable by the
fixed-priority stationary gang scheduling algorithm if the worst-case response time of executing
Ck time units (without suspending task τk) is at most Dk ≤ Tk under the interference of
Ψsus

k on one processor under the same priority assignment.

1 This is typically done with the concept of carry-in jobs. Since Ri ≤ Ti, there is at most one carry-in
job of τj released before ti.

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:9

Proof. Suppose that a job of task τk is released at time tk and there is no other job of τk

active at time tk. From tk, the schedule σ either executes τk or higher-priority jobs on the
processors in Ak. Therefore, the job of τk is either executed or interfered by higher-priority
tasks in δ(Ak). Hence, only tasks in Ψk have interference with τk. The equivalence of the
self-suspension behavior is due to Theorem 13. Therefore, the proof is complete. ◀

We adopt the current sound state-of-the-art self-suspension aware uniprocessor schedulab-
ility analyses by Chen et al. [12] for gang-scheduling, hence the correctness follows directly
from the related proofs in [12] and Theorem 16.

▶ Corollary 17. By the statement in Theorem 16, a gang sporadic task τk is schedulable by
the stationary gang scheduling algorithm if

∃0 < t ≤ Dk, Ck +
∑

τsus
i

∈Ψsus
k

min{Ci, Si,k}+
∑

τsus
i

∈Ψsus
k

⌈
t

Ti

⌉
· Ci ≤ t (8)

▶ Corollary 18. By the statement in Theorem 16, a gang sporadic task τk is schedulable by
the stationary gang scheduling algorithm if

∃0 < t ≤ Dk, Ck +
∑

τsus
i

∈Ψsus
k

⌈
t + Ri − Ci

Ti

⌉
· Ci ≤ t (9)

▶ Corollary 19. Suppose that there are k tasks in Ψsus
k , indexed from the highest priority

to the lowest priority, i.e., τsus
0 is the highest-priority task in Ψsus

k . By the statement in
Theorem 16, a gang sporadic task τk is schedulable by the stationary gang scheduling if there
is a vector x⃗ = (x0, x1, . . . , xk−1) with xi ∈ {0, 1} such that

∃0 < t ≤ Dk, Ck +
∑

τsus
i

∈Ψsus
k

⌈
t + Qi(x) + (1− xi)(Ri − Ci)

Ti

⌉
≤ t (10)

where Qi(x⃗) =
∑k−1

j=i Sj,k · xj.

The provided schedulability analyses in Corollary 17, Corollary 18, and Corollary 19
can be evaluated using fixed-point iteration techniques. More precisely, let Wk(t) denote
the left-hand sides of the inequalities in the above corollaries and ϵ > 0, then we verify all
test-points t0 = Wk(ϵ), t1 = Wk(t0), . . . , tn = Wk(tn−1) until convergence is reached or
tn > Dk. Due to the fact that the above equations are step-functions and can thus only change
at discontinuity points of Wk(t), the amount of test-points is at most k · Dk/mini<k{Ti}
resulting in pseudo-polynomial time-complexity. In the remainder of this paper, we only use
O(kDk) for time-complexity, since the scaling of the deadline does not change the asymptotic
complexity.

As reported in [12], neither of the schedulability analyses in Corollary 17 and Corollary 18
dominate each other analytically and are incomparable. The authors also showed that the
test in Corollary 19 dominates those in Corollary 17 (i.e., Lemma 17 in [12]) and Corollary 18
(i.e., Lemma 16 in [12]). To efficiently find a vector x⃗ for Corollary 19, they suggest to use
three vectors, one is based on a linear approximation, one sets all elements of x⃗ to 0, and
one sets the xi in x⃗ to 1 if Si,k ≤ Ci, and 0 otherwise. Specifically, in the case when the
entries in x⃗ are all 0, Equation (19) is the same as Equation (18). In our evaluations we use
Corollary 19 with the above three vectors and choose the best one, i.e., a task is determined
schedulable if it is schedulable for at least one of the three vectors.

ECRTS 2021

10:10 Hard Real-Time Stationary Gang-Scheduling

4 GANG Assignment Algorithm

Since finding optimal schedules for the rigid gang scheduling problem is NP-hard in the
strong sense even in the simplest settings, we seek for approximation algorithms to solve the
gang assignment problem.

In fixed-priority stationary gang scheduling, next to priority assignments, the gang
assignments determine the schedulability of the task set T. A key problem in finding
stationary gang assignments is the dependency of gang assignments and the resulting
interference behaviour of higher-priority tasks. In general, each task τk under consideration
can have

(
M
Ek

)
many distinct gang assignments in terms of gang to processor mappings.

However, for any given gang assignment of all higher-priority tasks, there may exist subsets
of these distinct gang assignments, in which the interference of all higher-priority tasks of
τk is equivalent. A trivial example is the gang assignment of the first task, in which all
gang assignments are equivalent, since there is no interfering tasks. In that case, all distinct
gang assignments belong to the same equivalence class and any representative can be chosen
for the gang assignment. However, finding all equivalence classes results in an exhaustive
exploration of all possible solutions, which is computationally expensive especially for larger
task sets.

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

Figure 2 Consecutive stationary gang assignments A0
k, A1

k, A2
k, A3

k of a gang task τk with Ek = 3
on a system using 4 processors are generated by a sliding window.

We intend to identify a class of computationally feasible gang assignment algorithms that
allow to formulate worst-case performance guarantees with respect to any optimal rigid gang
scheduling algorithm. In order to get worst-case performance guarantees, it is mandatory to
find (preferably small) upper bounds of interference caused by higher-priority tasks. Thus,
instead of arbitrary gang assignments, we restrict ourselves to consecutive stationary gang
assignments that allow to bound interference. We note however that other gang assignments
can be explored starting from the consecutive assignments. By this, the approximation
properties can be kept whilst improving the schedulability using any heuristic.

▶ Definition 20. A consecutive stationary gang assignment Aℓ
k, ℓ ∈ {0, 1, . . . , M − 1} for a

gang task τk in a system of M processors is a set of consecutive processor indices

ℓ mod M, (ℓ + 1) mod M, . . . , (ℓ + Ek − 1) mod M (11)

where |Aℓ
k|= Ek ≤M .

An example of consecutive stationary gang assignments of a task τk with Ek = 3 on a
platform of 4 processors is illustrated in Figure 2. Intuitively, the consecutive stationary
gang assignments are generated by a sliding window of length 3.

Another restriction in our algorithm is to devise gang assignments in priority-order under
the premise that all higher-priority tasks are verified to be schedulable. By this restriction,
we only have to determine the interference behaviour of each higher-priority task that only
depends on the gang assignment Ak of task τk.

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:11

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

Figure 3 Enumeration of all consecutive stationary gang assignments of a task τk (black window)
under the condition of a given consecutive stationary gang assignment of a higher-priority task (light
blue window).

The above restrictions yield the following two important theoretical properties:
1. There are always M different consecutive stationary gang assignments for each task.
2. Out of these M assignments, we are able to find upper-bounds for the number of

consecutive stationary gang assignments of τk, in which higher-priority tasks have self-
suspension behaviour and non self-suspension behaviour respectively. That means, we are
able to argue that in at most x out of the M consecutive stationary gang assignments, a
higher-priority task τi has self-suspension behaviour irrespective of the actual consecutive
assignment of τi.

In Figure 3, each column illustrates the M consecutive stationary gang assignments of τk,
that is subject to assignment and analysis, given a consecutive stationary gang assignment
of a higher-priority task. Each row shows a different assignment of a higher-priority task τi

indicated by the light blue window. According to the discussion in Section 3, τi interferes
with τk if and only if Ak∩Ai, i.e., whenever the windows in Figure 3 intersect. If for a column
(consecutive assignment of τk) there exists at least one row (consecutive assignment of τi)
in which both windows intersect then τi interferes with τk for the consecutive assignment
under consideration. In the provided example, all consecutive assignments suffer interference
from τi. In Lemma 21 we prove that there are at most Ek + Ei − 1 out of the M consecutive
stationary gang assignments of τk, in which τi interferes with τk.

Moreover, guided by the observation that if Ak ⊆ Ai then τi can not have self-suspension
behaviour with respect to τk under analysis, we can lower-bound the number of consecutive
stationary gang assignments of τk in which τi can not exhibit self-suspension behaviour.
For better illustration of this observation, assume that τi has self-suspension behavior with
respect to τk then there exists a task τℓ with higher priority than τi (and subsequently higher
priority than τk) such that Aℓ ∩Ai ̸= ∅ and Aℓ ∩Ak = ∅. This however implies that Ak ̸⊆ Ai

and contradicts the assumption. This can only happen if Ei ≥ Ek and if so then Ei − Ek

many of the M consecutive stationary assignments satisfy this property. In the next two
lemmas, we formally prove the intuition described above.

▶ Lemma 21. Given a task τk under analysis, each higher-priority task τi causes interference,
i.e., τi ∈ δ(Ak), in at most Ei+Ek−1 of the M -many consecutive stationary gang assignments.

ECRTS 2021

10:12 Hard Real-Time Stationary Gang-Scheduling

Proof. Let the consecutive stationary gang assignments for some higher-priority tasks i < k

be given by the following processor indices:

j mod M, (j + 1) mod M, . . . , (j + Ei − 1) mod M (12)

where j ∈ {0, 1, . . . , M − 1} is already given (fixed). Furthermore, let

ℓ + h mod M, (ℓ + h + 1) mod M, . . . , (ℓ + h + Ek − 1) mod M (13)

denote the processor indices of a consecutive stationary gang assignment of task τk after the
h-iteration for some arbitrary initial ℓ ∈ {0, 1, . . . , M − 1} (we only need this to show that
this works for an arbitrary initial position and can be set to 0 for comprehension). Then let
h′ denote the first iteration such that (ℓ + h′ + Ek − 1) mod M ≡ j − 1 mod M (we shift
the window of Ak to the border of window of Ai, i.e., the two consecutive stationary gang
assignments intersect in the next iteration for the first time. Therefore,

(ℓ + h′) mod M ≡ (j − Ek) mod M.

We have to iterate further z allocations unil the index of the first processor in the allocation
of τk, i.e., (ℓ + h′ + z) mod M ≡ (j + Ei − 1) mod M coincides with the index of the last
processor in the assignment of task τi. More formally, we seek to find the smallest z > 0
such that:

(ℓ + h′ + z) mod M ≡ (j + Ei − 1) mod M

((ℓ + h′) mod M) + (z mod M) ≡ (j + Ei − 1) mod M

(j − Ek + z) mod M ≡ (j + Ei − 1) mod M

which implies that z = Ei + Ek − 1, i.e., z consecutive stationary gang assignments yield an
intersection of both tasks. ◀

We can furthermore bound the interference for self-suspending tasks as follows:

▶ Lemma 22. For task τk (under analysis), there are at most min{2Ek−1, Ei +Ek−1} many
consecutive stationary gang assignments, in which a higher-priority task τi has self-suspension
behavior with respect to task τk.

Proof. From Lemma 21, we know that at most Ek + Ei − 1 many consecutive stationary
gang assigments cause an intersection of consecutive stationary gang assignments of task
τi and task τk. We hence substract max{Ei − Ek, 0}, namely the number of consecutive
stationary gang assignments in which self-suspension behavior of τi is impossible, from the
above. Clearly, in the case that Ek ≤ Ei we have (Ek + Ei − 1)−Ei + Ek = 2Ek − 1. Since
2Ek−1 ≤ Ei +Ek−1 implies that Ek ≤ Ei we can write it as min{2Ek−1, Ei +Ek−1}. ◀

For the rest of this paper, we used deadline-monotonic priority assignment and index the
tasks such that D1 ≤ D2 ≤ · · · ≤ Dn, in which τi has a higher priority than τk if i < k. Due
to the additional restrictions described above, it is possible to prove interference bounds and
in consequence approximation guarantees in terms of schedulability for any stationary gang
assignment algorithm that uses the following algorithm as a basis.

We first sort the tasks according to the relative deadlines. Starting from the highest-
priority task, we consider each of the possible stationary gang assignment candidates
A0

k, A1
k, . . . , AM−1

k and check whether it is feasible to assign task τk to the consecutive

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:13

gang assignment. It starts from ℓ = 0, 1, . . . , M − 1. If the consecutive gang assignment can-
didate Aℓ

k is feasible, we assign the gang task to the consecutive gang assignment; otherwise,
we move to the next candidate. If none of the M possible consecutive gang assignments is
feasible, this assignment step fails and the algorithm returns failure.

In Theorem 16, we assume that all stationary gang assignments Ai are given for all tasks
with higher priority than τk. Based on the information, we need to calculate Vi,k, δ(Ak), and
δ(Ai) before using Theorem 16.

To facilitate efficient implementation, we use a matrix representation to indicate whether
task τi is assigned on processor Pj . Let ρ be a n×M matrix in which

ρ(i, j) :=
{

True Pj ∈ Ai

False Pj /∈ Ai

. (14)

Given the stationary gang assignment matrix ρ, the algorithm constructs the interference
matrix

Γ(i, j) :=
{

True Ai ∩Aj ̸= ∅
False otherwise

(15)

by the boolean matrix multiplication ρ · ρT , where ρT is the transpose matrix of ρ. That
is, the multiplication operation of two elements is replaced with the logical and operation
and the addition operation of two elements is replaced with a logical or operation. More
precisely, each entry in the interference matrix is computed as follows:

Γ(i, j) =
M−1∨
m=0

ρ(i, m) ∧ ρ(j, m)

which is true only if task τi and task τj share at least one processor in their stationary
gang assignments. The asymptotic time-complexity for the matrix multiplication is given by
O(n2M). The space complexity is given by O(nM).

The transformation of the higher-priority tasks in T into Ψk, which is later needed to
construct Ψsus

k , can be done by the following operation:{
τi ∈ Ψk if

∨i−1
ℓ=1 Γ(ℓ, i) ∧ Γ(ℓ, k)

τi /∈ Ψk otherwise
(16)

We now analyze the time-complexity of Algorithm 1. Line 4 requires O(i) for each task τi

and therefore O(k2) for one iteration. Line 5 requires to calculate the right-hand side of
Equation (6), which can be done in O(1) if we only take Ri − Ci or O(i) if both terms are
evaluated in Equation (6) for a task τi ∈ Ψk. Therefore, Line 5 in one iteration requires O(k2).
The schedulability test in Line 6 from Corollaries 17, 18 and 19 is O(kDk). Line 7 is O(M).
Since the loop can run up to O(nM) iterations, the time complexity is O(nM2 + n3MDn).

5 Evaluation

In this section, we present evaluations with synthetically generated gang task sets to evaluate
our proposed algorithm (denoted as OUR-DM here) against the current state-of-the art
by Dong and Liu [16] for sporadic implicit-deadline gang task systems under global EDF.
Specifically, we compare to the optimized schedulability test in [16], denoted as DONG-OPT,
based on the acceptance ratio, i.e., the number of schedulable task sets compared to the
number of tested task sets.

ECRTS 2021

10:14 Hard Real-Time Stationary Gang-Scheduling

Algorithm 1 Deadline-Monotonic Stationary GANG Schedulability Analysis and Assignment.

1: Sort task set T such that Di ≤ Dj for i < j (ties are broken arbitrarily);
2: for k in {1, 2, . . . , n} do {Loop tasks.}
3: for ℓ ∈ {0, 1, . . . , M − 1} do {Loop candidates.}
4: Generate Ψk given the candidate Aℓ

k from Def. 20;
5: Transform Ψk to Ψsus

k using Def. 15;
6: if (Ck, Dk, Tk) ∪ Ψsus

k is schedulable according to any self-suspension aware uni-
processor schedulability test (from Cor. 17, 18 and 19) then

7: Assign Ak ← Aℓ
k;

8: break;
9: return No feasible stationary gang assignments found;

10: return Feasible stationary gang assignment Ai for each task τi;

We also evaluate our algorithm for sporadic constrained-deadline gang task systems under
different settings of gang sizes, but without comparison due to the absence of research results
for constrained-deadline gang tasks. In these experiments, we seek to explore how much the
imposed constraints in terms of stationary gang assignments and fixed-priority scheduling
algorithms impact the schedulability of the tested task sets.

5.1 Experimental Setup

We generate synthetic task sets of sporadic gang tasks with implicit- and constrained-
deadlines in the following way. To generate the task sets, we use the UUniFast algorithm [7]
to draw n samples of xi = Ei · Ci/MTi uniform at random where xi ∈ (0, 1] such that∑n

i=1 xi = x for x ∈ {0.05, 0.1, 0.15, . . . , 1}. Moreover, the periods Ti are drawn from a
log-uniform distribution in the range of [10, 100] ms.

The generated task sets are classified by the range of admissible gang sizes into light,
moderate, and heavy. We differentiate two different settings for these gang sizes:

1. Setting I - with variable gang sizes: In the first setting, each light gang task can have a
gang size in [1, M/8], a moderate task can gang size in [1, M/4], and a heavy task can
have gang size in [M/8, M/2].

2. Setting II - with fixed gang sizes: In this setting, a fixed gang size number is assigned
to each task of a category. Namely, each light task has gang size M/8, each moderate
task has gang size M/4 and each heavy task has a gang size 3M/8.

We avoid the generation of too heavy tasks, since in these cases the scheduling problem
is degraded to uniprocessor scheduling.2 With respect to constrained-deadlines, we only
demonstrate our proposed algorithm by a case of variable gang sizes (Setting I) in Figure 7
and a case of fixed gang sizes (Setting II) in Figure 8.

2 Dong and Liu [16] also performed their evaluations for gang size in [5M/8, M] for all tasks. This
configuration is not considered here as this setup implies that there is no possibility to concurrently
execute two gang tasks in parallel due to the imposed gang size. The problem becomes equivalent to
uniprocessor scheduling by viewing all processors as one virtual group. In this case, preemptive EDF is
the optimal solution and the classical timing analysis for uniprocessor EDF scheduling can be applied.

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:15

5.2 Evaluation Results

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

OUR-DM DONG-OPT

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 4 Acceptance ratio for light sporadic implicit-deadline gang task sets where the gang size
of each task is chosen according Setting II.

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

OUR-DM DONG-OPT

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 5 Acceptance ratio for moderate sporadic implicit-deadline gang task sets where the gang
size of each task is chosen according to Setting I.

5.2.1 Evaluation results for implicit-deadline task sets
For sporadic implicit-deadline gang task systems, we compare our algorithm (OUR-DM) with
the approach by Dong and Liu [16] (DONG-OPT) under the setting with variable gang sizes,
in which each configuration is evaluated with 100 task sets and 20 tasks for each task set. In
all conducted experiments shown in Figures 4, 5, and 6, our algorithm OUR-DM outperforms
DONG-OPT for all evaluated scenarios under the setting with variable gang sizes. The most
significant improvement of OUR-DM compared with DONG-OPT is demonstrated for the
moderate task set in Figure 5 where up to 40% can be achieved for 50% normalized utilization.
The smallest improvement can be observed for heavy gang task sets, where OUR-DM slightly
outperforms DONG-OPT. This is due to the fact that the heavier the task sets are, the more
similar the schedulability is to the uniprocessor schedulability problem. This also implies

ECRTS 2021

10:16 Hard Real-Time Stationary Gang-Scheduling

0 20 40 60 80 100
0

20

40

60

80

100
A

cc
ep

ta
nc

e
R

at
io

(%
)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

OUR-DM DONG-OPT

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 6 Acceptance ratio for heavy sporadic implicit-deadline gang task sets where the gang
size of each task is chosen according to Setting I.

that the stationary gang scheduling has less choices for gang assignments. Since EDF is an
optimal uniprocessor schedulability, the trouble to deal with the heavy gang task sets comes
from the adopted schedulability tests. For OUR-DM, we have to consider more tasks in Ψk

and for DONG-OPT their analysis becomes less pessimistic as the multiplicative of 1/M in
their analysis decreases.

5.2.2 Evaluation results for constrained-deadline task sets
For constrained-deadlines, we show our schedulability test for light, moderate, and heavy
task sets for gang sizes compliant to Setting I in Figure 7 and gang sizes compliant to the
Setting II described in Figure 8, in which each configuration is tested with 100 task sets and
20 tasks per task set. The behavior of Setting I is almost similar to the results in Figures 4, 5,
and 6 but with lower acceptance ratios.

For constrained-deadlines with fixed numbers of gang sizes as explained in Setting II, a
similar trend can be observed. However, moderate as well as heavy task sets almost show
the same acceptance ratio and the acceptance ratio of light tasks also increases. This further
supports the assumption, that the increased number of tasks with self-suspension behaviour
decreases the overall schedulability. This is explained by the fact that it is less likely to have
self-suspension behaviour of interfering tasks if all tasks have the same gang size.

5.3 Summary of Evaluation Results
In summary, the evaluations demonstrate, that the restriction of fixed-priority stationary
gang scheduling does not significantly sacrifice the schedulability of sporadic implicit-deadline
rigid gang task systems, in comparison to the state-of-the-art. In contrast, the schedulability
could be improved slightly without even considering performance benefits of implementations
in real systems, e.g., reduced context switches and migrations.

6 Conclusion and Future Work

In this paper we propose a specialization of the rigid gang scheduling problem for hard real-
time systems. We present how this problem can be analyzed and reduced to the uniprocessor
self-suspension problem and the schedulability analyses thereof. We show how to derive

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:17

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)
(a) M = 16

0 20 40 60 80 100

(b) M = 32

DM-OUR (light) DM-OUR (moderate) DM-OUR (heavy)

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 7 Acceptance ratio for light sporadic constrained-deadline gang task sets according to
Setting I. The deadline is chosen randomly between 70% − 100% of the minimum inter-arrival time.

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

DM-OUR (light) DM-OUR (moderate) DM-OUR (heavy)

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 8 Acceptance ratio for light, moderate, heavy sporadic constrained-deadline gang task
sets according to Setting I. The deadline is chosen randomly between 70% − 100% of the minimum
inter-arrival time.

stationary gang assignments for deadline-monotonic gang scheduling that yields worst-case
interference bounds proportional to parameters defined by the ratios of the gang sizes of
tasks in the task set.

This paper is limited to constrained-deadline task systems, as there is no result known
for schedulability analyses for arbitrary-deadline dynamic self-suspending task systems. The
concept in this paper can be extended to EDF by adopting the proper schedulability tests
and suspension analysis. As future work, we plan to implement a fixed-priority stationary
gang scheduler in real-time operating systems and evaluate if there are significant benefits in
terms of scheduling overheads and investigate potential benefits with respect to improved
worst-case execution time.

ECRTS 2021

10:18 Hard Real-Time Stationary Gang-Scheduling

References
1 W. Ali and H. Yun. RT-Gang: Real-time gang scheduling framework for safety-critical systems.

In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 143–155, 2019. doi:10.1109/RTAS.2019.00020.

2 Theodore P. Baker. Multiprocessor EDF and deadline monotonic schedulability analysis. In
IEEE Real-Time Systems Symposium, pages 120–129, 2003. doi:10.1109/REAL.2003.1253260.

3 Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In Proceedings
of the 28th IEEE International Real-Time Systems Symposium, pages 119–128, 2007.

4 Sanjoy Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, DATE,
pages 1323–1328, 2015. URL: http://dl.acm.org/citation.cfm?id=2757121.

5 Sanjoy Baruah. Federated scheduling of sporadic DAG task systems. In IEEE International
Parallel and Distributed Processing Symposium, IPDPS, pages 179–186, 2015. doi:10.1109/
IPDPS.2015.33.

6 Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In Real-Time Systems Symposium (RTSS), pages 149–160, 2007.
doi:10.1109/RTSS.2007.31.

7 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005. doi:10.1007/s11241-005-0507-9.

8 Alessandro Biondi and Youcheng Sun. On the ineffectiveness of 1/m-based interference bounds
in the analysis of global EDF and FIFO scheduling. Real Time Syst., 54(3):515–536, 2018.
doi:10.1007/s11241-018-9303-1.

9 J. Błażewicz, P. Dell’ Olmo, M. Drozdowski, and M.G. Speranza. Corrigendum to: Scheduling
multiprocessor tasks on three dedicated processors. Inf. Process. Lett., 49(5):269–270, 1994.

10 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese.
Feasibility analysis in the sporadic dag task model. In ECRTS, pages 225–233, 2013.

11 Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C. Buttazzo. Partitioned
fixed-priority scheduling of parallel tasks without preemptions. In RTSS, pages 421–433. IEEE
Computer Society, 2018.

12 Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Huang. A unifying response time analysis
framework for dynamic self-suspending tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 61–71, 2016.

13 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many problems: a re-
view of self-suspending tasks in real-time systems. Real Time Syst., 55(1):144–207, 2019.
doi:10.1007/s11241-018-9316-9.

14 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Cong Liu. State of the
art for scheduling and analyzing self-suspending sporadic real-time tasks. In 23rd IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA 2017, Hsinchu, Taiwan, August 16-18, 2017, pages 1–10. IEEE Computer Society,
2017. doi:10.1109/RTCSA.2017.8046321.

15 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., 43(4):35, 2011. doi:10.1145/1978802.1978814.

16 Zheng Dong and Cong Liu. Analysis techniques for supporting hard real-time sporadic
gang task systems. In IEEE Real-Time Systems Symposium, RTSS, pages 128–138, 2017.
doi:10.1109/RTSS.2017.00019.

17 Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, 16:306–318, 1992.

18 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Improved Response Time Analysis of
Sporadic DAG Tasks for Global FP Scheduling. In Proceedings of the 25th International
Conference on Real-Time Networks and Systems, 2017. doi:10.1145/3139258.3139288.

https://doi.org/10.1109/RTAS.2019.00020
https://doi.org/10.1109/REAL.2003.1253260
http://dl.acm.org/citation.cfm?id=2757121
https://doi.org/10.1109/IPDPS.2015.33
https://doi.org/10.1109/IPDPS.2015.33
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-018-9303-1
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTCSA.2017.8046321
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1109/RTSS.2017.00019
https://doi.org/10.1145/3139258.3139288

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:19

19 José Carlos Fonseca, Geoffrey Nelissen, Vincent Nélis, and Luís Miguel Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In SIES, pages 290–299. IEEE,
2016.

20 Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang tasks. LITES,
3(1):04:1–04:18, 2016. doi:10.4230/LITES-v003-i001-a004.

21 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority
multiprocessor scheduling. In IEEE Real-Time Systems Symposium, pages 387–397, 2009.

22 J.A. Hoogeveen, S.L. van de Velde, and B. Veltman. Complexity of scheduling multiprocessor
tasks with prespecified processor allocations. Discrete Appl. Math., 55(3):259–272, 1994.

23 Morris A. Jette. Performance characteristics of gang scheduling in multiprogrammed envir-
onments. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing, SC ’97,
1997.

24 Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task systems. In IEEE
Real-Time Systems Symposium, RTSS, pages 459–468, 2009. doi:10.1109/RTSS.2009.42.

25 M. Kubale. The complexity of scheduling independent two-processor tasks on dedicated
processors. Inf. Process. Lett., 24(3):141–147, 1987.

26 Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. In Proceedings of the 2010 31st IEEE Real-Time
Systems Symposium, RTSS ’10, pages 259–268, 2010.

27 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1):46–61, 1973.

28 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio C. Buttazzo. Response-Time Analysis of Conditional DAG Tasks in Multiprocessor
Systems. In Proceedings of the 2015 27th Euromicro Conference on Real-Time Systems, 2015.

29 Aloysius K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA,
1983.

30 Pascal Richard, Joël Goossens, and Shinpei Kato. Comments on "gang EDF schedulability
analysis". CoRR, http://arxiv.org/abs/1705.05798, 2017. URL: http://arxiv.org/abs/1705.
05798.

31 Youcheng Sun and Marco Di Natale. Assessing the pessimism of current multicore global
fixed-priority schedulability analysis. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC, pages 575–583. ACM, 2018.

32 Saud Wasly and Rodolfo Pellizzoni. Bundled scheduling of parallel real-time tasks. In RTAS,
pages 130–142. IEEE, 2019.

ECRTS 2021

https://doi.org/10.4230/LITES-v003-i001-a004
https://doi.org/10.1109/RTSS.2009.42
http://arxiv.org/abs/1705.05798
http://arxiv.org/abs/1705.05798

	1 Introduction
	2 System Model and Stationary GANG Scheduling
	3 Schedulability Test for Stationary Gang Scheduling
	3.1 Contention Analysis
	3.2 Schedulability Analysis

	4 GANG Assignment Algorithm
	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation Results
	5.2.1 Evaluation results for implicit-deadline task sets
	5.2.2 Evaluation results for constrained-deadline task sets

	5.3 Summary of Evaluation Results

	6 Conclusion and Future Work

