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Preface

The Annual Symposium on Combinatorial Pattern Matching (CPM) has by now over 30 years
of tradition and is considered to be the leading conference for the community working on
Stringology. The objective of the annual CPM meetings is to provide an international forum
for research in combinatorial pattern matching and related applications such as computational
biology, data compression and data mining, coding, information retrieval, natural language
processing, and pattern recognition.

This volume contains the papers presented at the 32nd Annual Symposium on Combin-
atorial Pattern Matching (CPM 2021) held on July 5–7, 2021 in Wrocław, Poland (in a
hybrid mode due to the continuing Covid-19 pandemic). The conference program includes
22 contributed papers and three invited talks by Hideo Bannai (M&D Data Science Center,
Tokyo Medical and Dental University, Japan), Michal Koucký (Computer Science Institute
of Charles University, Czech Republic), and Nadia Pisanti (University of Pisa, Italy and
Erable Team INRIA, France). For the third time, CPM includes the “Highlights of CPM”
special session, for presenting the highlights of recent developments in combinatorial pattern
matching. In this third edition we invited Travis Gagie (CeBiB – Center for Biotechnology
and Bioengineering, Chile and Dalhousie University, Canada) to present a J. of ACM 2020
paper by T. Gagie, G. Navarro, N. Prezza “Fully Functional Suffix Trees and Optimal Text
Searching in BWT-Runs Bounded Space” and Panagiotis Charalampopoulos (The Interdis-
ciplinary Center Herzliya, Israel) to present a FOCS 2020 paper by P. Charalampopoulos, T.
Kociumaka, P. Wellnitz “Faster Approximate Pattern Matching: A Unified Approach”. The
conference was preceded by a one-day student summer school taught by Jakub Radoszewski
(University of Warsaw, Poland) and Martin Farach-Colton (Rutgers University, USA).

The contributed papers were selected out of 49 submissions, corresponding to an accept-
ance ratio of about 45%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external subreviewers who are
listed below for their hard, invaluable, and collaborative effort that resulted in an excellent
scientific program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv, Warsaw,
Qingdao, Pisa, and Copenhagen. From 1992 to the 2015 meeting, all proceedings were
published in the LNCS (Lecture Notes in Computer Science) series. Since 2016, the CPM
proceedings appear in the LIPIcs (Leibniz International Proceedings in Informatics) series,
as volume 54 (CPM 2016), 78 (CPM 2017), 105 (CPM 2018), 128 (CPM 2019), and 161
(CPM 2020). The entire submission and review process was carried out using the EasyChair
conference system.

We thank the CPM Steering Committee for their support and advice.
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Repetitions in Strings: A “Constant” Problem
Hideo Bannai !

M&D Data Science Center, Tokyo Medical and Dental University, Japan

Abstract
Repeating structures in strings is one of the most fundamental characteristics of strings, and has
been an important topic in the field of combinatorics on words and combinatorial pattern matching
since their beginnings. In this talk, I will focus on squares and maximal repetitions and review
the “runs” theorem [1] as well as related results (e.g. [5, 6, 7, 3, 2, 4]) which address the two main
questions: how many of them can be contained in a string of given length, and algorithms for
computing them.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words

Keywords and phrases Maximal repetitions, Squares, Lyndon words

Digital Object Identifier 10.4230/LIPIcs.CPM.2021.1

Category Invited Talk
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Computing Edit Distance
Michal Koucký !

Computer Science Institute of Charles University, Prague, Czech Republic

Abstract
The edit distance (or Levenshtein distance) between two strings x, y is the minimum number of
character insertions, deletions, and substitutions needed to convert x into y. It has numerous
applications in various fields from text processing to bioinformatics so algorithms for edit distance
computation attract lot of attention. In this talk I will survey recent progress on computational
aspects of edit distance in several contexts: computing edit distance approximately, sketching and
computing it in streaming model, exchanging strings in communication complexity model, and
building error correcting codes for edit distance. I will point out many problems that are still open
in those areas.
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Keywords and phrases edit distance, streaming algorithms, approximation algorithms, sketching
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On-Line Pattern Matching on D-Texts
Nadia Pisanti #

University of Pisa, Italy

Abstract
The Elastic Degenerate String Matching (EDSM) problem is defined as that of finding an occurrence
of a pattern P of length m in an ED-text T . A D-text (Degenerate text) is a string that actually
represents a set of similar and aligned strings (e.g. a pan-genome [5]) by collapsing common fragments
into a standard string, and representing variants with sets of alternative substrings. When such
substrings are not bound to have the same size, then we talk about elastic D-strings (ED-strings).
In [6] we gave an O(nm2 + N) time on-line algorithm for EDSM, where n is the length of T and
N is its size, defined as the total number of letters. A fundamental toolkit of our algorithm is the
O(m2+N) time solution of the later called Active Prefixes problem (AP). In [2], a O(m1.5√

log m+N)
solution for AP was shown, leading to a O(nm1.5√

log m + N) time solution for EDSM. The natural
open problem was thus whether the 1.5 exponent could furtherly be decreased. In [3], we prove
several properties that answer this and other questions: we give a conditional O(nm1.5 + N) lower
bound for EDSM, proving that a combinatorial algorithm solving EDSM in O(nm1.5−ϵ + N) time
would break the Boolean Matrix Multiplication (BMM) conjecture; we use this result as a hint
to devise a non-combinatorial algorithm that solves EDSM in O(nm1.381 + N) time; we do so by
successfully combining Fast Fourier Transform and properties of string periodicity.
In my talk I will overview the results above, as well as some interesting side results: the extension to
a dictionary rather than a single pattern [7], the introduction of errors [4], and a notion of matching
among D-strings with its linear time solution [1].
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Abstract
The main result of the paper is the first polynomial-time algorithm for ranking bracelets. The
time-complexity of the algorithm is O(k2 · n4), where k is the size of the alphabet and n is the
length of the considered bracelets. The key part of the algorithm is to compute the rank of any
word with respect to the set of bracelets by finding three other ranks: the rank over all necklaces,
the rank over palindromic necklaces, and the rank over enclosing apalindromic necklaces. The last
two concepts are introduced in this paper. These ranks are key components to our algorithm in
order to decompose the problem into parts. Additionally, this ranking procedure is used to build a
polynomial-time unranking algorithm.
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1 Introduction

Counting, ordering, and generating basic discrete structures such as strings, permutations,
set-partitions, etc. are fundamental tasks in computer science. A variety of such algorithms
are assembled in the fourth volume of the prominent series “The art of computer programming”
by D. Knuth [10]. Nevertheless, this research direction remains very active [8].

If the structures under consideration are linearly ordered, e.g. a set of words under the
dictionary (lexicographic) order, then a unique integer can be assigned to every structure.
The rank (or index) of a structure is the number of structures that are smaller than it. The
ranking problem asks to compute the rank of a given structure, while the unranking problem
corresponds to its reverse: compute the structure of a given rank. Ranking has been studied
for various objects including partitions [19], permutations [13, 14], combinations [18], etc.
Unranking has similarly been studied for objects such as permutations [14] and trees [7, 15].
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1. aaaaaaaa 7. aaaababb 13. aaabbabb 19. aababbbb 25. ababbabb
2. aaaaaaab 8. aaaabbbb 14. aaabbbbb 20. aabbaabb 26. ababbbbb
3. aaaaaabb 9. aaabaaab 15. aabaabab 21. aabbabbb 27, abbabbbb
4. aaaaabab 10. aaabaabb 16. aabaabbb 22. aabbbbbb 28. abbbabbb
5. aaaaabbb 11. aaababab 17. aabababb 23. abababab 29. abbbbbbb
6. aaaabaab 12. aaabbabb 18. aababbab 24. abababbb 30. bbbbbbbb

Figure 1 List of all bracelets of length 8 over the alphabet {a, b}.

Both ranking and unranking are straightforward for the set of all words over a finite
alphabet (assuming the standard lexicographic order), but they immediately cease to be so,
as soon as additional symmetry is introduced. One of such examples is a class of necklaces [6].
A necklace, also known as a cyclic word, is an equivalence class of all words under the cyclic
shift operation. Necklaces are classical combinatorial objects and they remain an object of
study in other contexts such as total search problems [5] or circular splicing systems [4].

The rank of a word w for a given set S and its ordering is the number of words in S

that are smaller than w. Often the set is a class of words, for instance all words of a given
length over some alphabet. The first class of cyclic words to be ranked were Lyndon words -
fixed length aperiodic cyclic words - by Kociumaka et. al. [11] who provided an O(n3) time
algorithm. An algorithm for ranking necklaces - fixed length cyclic words - was given by
Kopparty et. al. [12], without tight bounds on the complexity. A quadratic algorithm for
ranking necklaces was provided by Sawada et al. [16].

This paper answers the open problem of ranking bracelets, posed by Sawada and Willi-
ams [16]. Bracelets are necklaces that are minimal under both cyclic shifts and reflections.
Figure 1 provides an example of the ranks of length 8 bracelets over a binary alphabet.
Bracelets have been studied extensively, with results for counting and generation in both the
normal and fixed content cases [9, 17].

This paper presents the first algorithm for ranking bracelets of length n over an alphabet
of size k in polynomial time, with a time complexity of O(k2 · n4). This algorithm is further
used to unrank bracelets in O(n5 · k2 · log(k)). time. These polynomial time algorithms
improve upon the exponential time brute-force algorithm.

2 Preliminaries

2.1 Definitions and Notation

Let Σ be a finite alphabet. We denote by Σ∗ the set of all words over Σ and by Σn the set of
all words of length n. For the remainder of this paper, let k = |Σ|. The notation w̄ is used
to clearly denote that the variable w is a word. The length of a word ū ∈ Σ∗ is denoted |ū|.
We use ūi, for any i ∈ {1 . . . |ū|} to denote the ith symbol of ū. The reversal operation on a
word w̄ = w̄1w̄2 . . . w̄n, denoted by w̄R, returns the word w̄n . . . w̄2w̄1.

In the present paper we assume that Σ is linearly ordered. Let [n] return the ordered set
of integers from 1 to n inclusive. Given two words ū, v̄ ∈ Σ∗ where |ū| ≤ |v̄|, ū = v̄ if and
only if |ū| = |v̄| and ūi = v̄i for every i ∈ [|ū|]. A word ū is lexicographically smaller than v̄

if there exists an i ∈ [|ū|] such that ū1ū2 . . . ūi−1 = v̄1v̄2 . . . v̄i−1 and ūi < v̄i. For example,
given the alphabet Σ = {a, b} where a < b, the word aaaba is smaller than aabaa as the first
two symbols are the same and a is smaller than b. For a given set of words S, the rank of v̄
with respect to S is the number of words in S that are smaller than v̄.
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The rotation of a word w̄ = w̄1w̄2 . . . w̄n by r ∈ [n − 1] returns the word
w̄r+1 . . . w̄nw̄1 . . . w̄r, and is denoted by ⟨w̄⟩r, i.e. ⟨w̄1w̄2 . . . w̄n⟩r = w̄r+1 . . . w̄nw̄1 . . . w̄r. Un-
der the rotation operation, ū is equivalent to v̄ if v̄ = ⟨w̄⟩r for some r. The tth power of a word
w̄ = w̄1 . . . w̄n, denoted w̄t, is equal to w̄ repeated t times. For example (aab)3 = aabaabaab.
A word w̄ is periodic if there is some word ū and integer t ≥ 2 such that ūt = w̄. Equivalently,
word w̄ is periodic if there exists some rotation 0 < r < |w̄| where w̄ = ⟨w̄⟩r. A word is
aperiodic if it is not periodic. The period of a word w̄ is the length of the smallest word ū for
which there exists some value t for which w̄ = ūt.

A cyclic word, also called a necklace, is the equivalence class of words under the rotation
operation. For notation, a word w̄ is written as w̃ when treated as a necklace. Given
a necklace w̃, the necklace representative is the lexicographically smallest element of the
set of words in the equivalence class w̃. The necklace representative of w̃ is denoted ⟨w̃⟩,
and the rth shift of the necklace representative is denoted ⟨w̃⟩r. The reversal operation
on a necklace w̃ returns the necklace w̃R containing the reversal of every word ū ∈ w̃, i.e.
w̃R = {ūR : ū ∈ w̃}. Given a word w̄, ⟨w̄⟩ will denote the necklace representative of the
necklace containing w̄, i.e. the representative of ũ where w̄ ∈ ũ.

A subword of the cyclic word w̄, denoted w̄[i,j] is the word ū of length |w̄|+j−i−1 mod |w̄||)
such that ūa = w̄i−1+a mod |w̄|. For notation ū ⊑ w̄ denotes that ū is a subword of w̄. Further,
ū ⊑i w̄ denotes that ū is a subword of w̄ of length i. If w̄ = ūv̄, then ū is a prefix and
v̄ is a suffix. A prefix or suffix of a word ū is proper if its length is smaller than |ū|. For
notation, the tuple S(v̄, ℓ) is defined as the set of all subwords of v̄ of length ℓ. Formally
let S(v̄, ℓ) = {s̄ ⊑ v̄ : |s̄| = ℓ}. Further, S(v̄, ℓ) is assumed to be in lexicographic order, i.e.
S(v̄, ℓ)1 ≥ S(v̄, ℓ)2 ≥ . . .S(v̄, ℓ)|v̄|.

A bracelet is the equivalence class of words under the combination of the rotation and the
reversal operations. In this way a bracelet can be thought of as the union of two necklace
classes w̃ and w̃R, hence ŵ = w̃ ∪ w̃R. Given a bracelet ŵ, the bracelet representative of ŵ,
denoted by [ŵ], is the lexicographically smallest word ū ∈ ŵ.

A necklace w̃ is palindromic if w̃ = w̃R. This means that the reflection of every word
in w̃ is in w̃R, i.e. given ū ∈ w̃, ūR ∈ w̃R. Note that for any word w̄ ∈ ã, where ã is a
palindromic necklace, either w̄ = w̄R, or there exists some rotation i for which ⟨w̄⟩i = w̄R.

Let ũ and ṽ be a pair of necklaces belonging to the same bracelet class. For simplicity
assume that ⟨ũ⟩ < ⟨ṽ⟩. The bracelet û encloses a word w̄ if ⟨ũ⟩ < w̄ < ⟨ṽ⟩. An example of
this is the bracelet û = aabc which encloses the word w̄ = aaca as aabc < aaca < aacb. The
set of all bracelets which enclose w̄ are referred to as the set of bracelets enclosing w̄.

2.2 Bounding Subwords
For both the palindromic and enclosing cases the number of necklaces smaller than v̄ ∈ Σn is
computed by iteratively counting the number of words of length n for which no subword is
smaller than v̄. The set of such words, denoted by Sn, will be analysed iteratively as well,
since it can have an exponential size. In order to relate Si to Si+1, we will split Si into parts
using the positions of length i subwords of v̄ with respect to the lexicographic order on Si.
Informally, every w̄ ∈ Si can be associated with the unique lower bound from S(v̄, i), which
will be used to identify the parts leading us to the following definition.

▶ Definition 1. Let w̄, v̄ ∈ Σ∗ where |w̄| ≤ |v̄|. The word w̄ is bounded (resp. strictly
bounded) by s̄ ⊑|w̄| v̄, if s̄ ≤ w̄ (resp. s̄ < w̄) and there is no ū ⊑|w̄| v̄ such that s̄ < ū ≤ w̄.

The aforementioned parts Si(s̄) contain all words w̄ ∈ Si such that s̄ ⊑|w̄| v̄. The key
observation is that words of the form xw̄ for all w̄ ∈ Si and some fixed symbol x ∈ Σ belong
to the same set Si+1(s̄′), where s̄′ ⊑ v̄. The same holds true for words of the form w̄x.
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Thus, we can compute the corresponding s̄′ for all pairs of s̄ and x in order to derive sizes
of Si+1(s̄′). Moreover, this relation between s̄, x and s̄′ is independent of i allowing us to
store this information in two n2 × k arrays XW and WX. Both arrays will be indexed by
the words s̄ ⊑ v̄ and characters x ∈ Σ. Given a word w̄ strictly bounded by s̄, XW [s̄, x] will
contain the word s̄′ ⊑|s̄|+1 v̄ strictly bounding xw̄. Similarly, WX[s̄, x] will contain the word
s̄′ ⊑|s̄|+1 v̄ strictly bounding w̄x. By precomputing these arrays, the cost of determining
these words can be avoided during the ranking process.

▶ Proposition 2. Let v̄ ∈ Σn. The array XW [s̄ ⊑ v̄, x ∈ Σ] such that XW [s̄, x] strictly
bounds xw̄ for every w̄ strictly bounded by s̄ can be computed in time O(k · n3 · log(n)).

▶ Proposition 3. Let v̄ ∈ Σn. The array WX[s̄ ⊑ v̄, x ∈ Σ], such that WX[s̄, x] strictly
bounds w̄x for every w̄ strictly bounded by s̄, can be computed in O(k · n3 · log(n)) time.

3 Ranking Bracelets

The main result of the paper is the first algorithm for ranking bracelets. In this paper,
we tacitly assume that we are ranking a word v̄ of length n. The time-complexity of the
ranking algorithm is O(k2 · n4), where k is the size of the alphabet and n is the length of the
considered bracelets. The key part of the algorithm is to compute the rank of the word v̄

with respect to the set of bracelets by finding three other ranks: the rank over all necklaces,
the rank over palindromic necklaces, and the rank over enclosing apalindromic necklaces.

A bracelet can correspond to two apalindromic necklaces, or to exactly one palindromic
necklace. If a bracelet b̂ corresponds to two necklaces l̃b and r̃b, then it is important to take
into account the lexicographical positions of these two necklaces l̃b and r̃b with respect to a
given word v̄. There are three possibilities: l̃b and r̃b could be less than v̄; l̃b and r̃b encloses
v̄, e.g. l̃b < v̄ < r̃b, or both of necklaces l̃b and r̃b are greater than v̄. This is visualised in
Figure 2. Therefore the number of bracelets smaller than a given word w can be calculated
by adding the number of palindromic necklaces less than v̄, enclosing bracelets smaller than v̄
and half of all other apalindromic and non-enclosing necklaces smaller than v̄. Let us define
the following notation is used for the rank of v̄ ∈ Σn for sets of bracelets and necklaces.

RN(v̄) denotes the rank of v̄ with respect to the set of necklaces of length n over Σ.
RP (v̄) denotes the rank of v̄ with respect to the set of palindromic necklaces over Σ.
RB(v̄) denotes the rank of v̄ with respect to the set of bracelets of length n over Σ.
RE(v̄) denotes the rank of v̄ with respect to the set of bracelets enclosing v̄.

Bracelets

Necklaces

aaa aab aac aad abb abc abd acc

aaa aab aac aad abb abc abd accacb

acd

acd adb adc add

add

Figure 2 In this example the top line represents the set of bracelets and the bottom line the set
of necklaces, with arrows indicated which necklace corresponds to which bracelet. Assuming we wish
to rank the word acc (highlighted), abc and acb are apalindromic necklaces smaller than acc, while
abd encloses acc. All other necklaces are palindromic.

In Lemma 4 below, we show that RB(v̄) can be expressed via RN(v̄), RP (v̄) and RE(v̄).
The problem of computing RN(v̄) has been solved in quadratic time [16], so the goal of the
paper is to design efficient procedures for computing RP (v̄) and RE(v̄).
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▶ Lemma 4. The rank of a word v̄ ∈ Σn with respect to the set of bracelets of length n over
the alphabet Σ is given by RB(v̄) = 1

2 (RN(v̄) +RP (v̄) +RE(v̄)).

Proof. Simply dividing the number of necklaces by 2 will undercount the number of bracelets,
while doing nothing will overcount. Therefore to get the correct number of bracelets, those
bracelets corresponding to only 1 necklace must be accounted for. A bracelet â will correspond
to 2 necklaces smaller than v̄ if and only if â does not enclose v̄ and â is apalindromic. There-
fore the number of bracelets corresponding to 2 necklaces is 1

2 (RN(v̄) −RP (v̄) −RE(v̄)).
The number of bracelets enclosing v̄ is equal to RE(v̄). The number of bracelets correspond-
ing to palindromic necklaces is equal to RP (v̄). Therefore the total number of bracelets is
1
2 (RN(v̄) −RP (v̄) −RE(v̄)) +RP (v̄) +RE(v̄) = 1

2 (RN(v̄) +RP (v̄) +RE(v̄)). ◀

Lemma 4 provides the basis for ranking bracelets. Theorem 5 uses Lemma 4 to get the
complexity of the ranking process. The remainder of this paper will prove Theorem 5, starting
with the complexity of ranking among palindromic necklaces in Section 4 followed by the
complexity of ranking enclosing bracelets in Section 5.

▶ Theorem 5. Given a word v̄ ∈ Σn, the rank of v̄ with respect to the set of bracelets of
length n over the alphabet Σ, RB(v̄), can be computed in O(k · n4) time.

The remainder of this paper will prove Theorem 5. For simplicity, the word v̄ is assumed to
be a necklace representation. It is well established how to find the lexicographically largest
necklace smaller than or equal to some given word. Such a word can be found in quadratic
time using an algorithm form [16]. Note that the number of necklaces less than or equal to v̄
corresponds to the number of necklaces less than or equal to the lexicographically largest
necklace smaller than v̄. From Lemma 4 it follows that to rank v̄ with respect to the set of
bracelets, it is sufficient to rank v̄ with respect to the set of necklaces, palindromic necklaces,
and enclosing bracelets. The rank with respect to the set of palindromic necklaces, RP (v̄)
can be computed in O(k · n3) using the techniques given in Theorem 25 in Section 4. The
rank with respect to the set of enclosing bracelets, RE(v̄) can be computed in O(k · n4) as
shown in Theorem 30 in Section 5. As each of these steps can be done independently of each
other, the total complexity is O(k · n4).

This complexity bound is a significant improvement over the naive method of enumerating
all bracelets, requiring exponential time in the worst case. New intuition is provided to
rank the palindromic and enclosing cases. The main source of complexity for the problem of
ranking comes from having to consider the lexicographic order of the word under reflection.
New combinatorial results and algorithms are needed to count the bracelets in these cases.

Before showing in detail the algorithmic results that allow bracelets to be efficiently ranked,
it is useful to discus the high level ideas. Lemma 4 shows our approach to ranking bracelets
by dividing the problem into the problems of ranking necklaces, palindromic necklaces and
enclosing bracelets. For both palindromic necklaces and enclosing bracelets, we derive a
canonical form using the combinatorial properties of these objects.

Using these canonical forms, the number of necklaces smaller than v̄ is counted in an
iterative manner. In the palindromic case, this is done by counting the number of necklaces
greater than v̄, and subtracting this from the total number of palindromic necklaces. In the
enclosing case, this is done by directly counting the number of necklaces smaller than v̄. For
both cases, the counting is done by way of a tree comprised of the set of all prefixes of words
of the canonical form. By partitioning the internal vertices of the trees based on the number
of children of the vertices, the number of words of the canonical form may be derived in an
efficient manner, forgoing the need to explicitly generate the tree. This allows the size of
these partitions to be computed through a dynamic programming approach. It follows from
these partitions how to count the number of leaf nodes, corresponding to the canonical form.
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▶ Theorem 6. The zth bracelet of length n over Σ can be computed in O(n5 · k2 · log(k)).

Theorem 6 is proven by using the ranking technique as a black box alongside a simple
binary search in the same manner as [16].

4 Computing the rank RP (v̄)

To rank palindromic necklaces, it is crucial to analyse their combinatorial properties. This
section focuses on providing results on determining unique words representing palindromic
necklaces. We study two cases depending on whether the length n of a palindromic necklace is
even or odd. The reason for this division can be seen by considering examples of palindromic
necklaces. If equivalence under the rotation operation is not taken into account, then a word
is palindromic if w̄ = w̄R. If the length n of w̄ is odd, then if w̄ = w̄R, w̄ can be written
as ϕ̄xϕ̄R, where ϕ̄ ∈ Σ(n−1)/2 and x ∈ Σ. For example, the word aaabaaa is equal to ϕ̄xϕ̄R,
where ϕ̄ = aaa and x = b. If the length n of w is even, then if w̄ = w̄R, w̄ can be written as
ψ̄ψ̄R, where ψ̄ ∈ Σn/2. For example the word aabbaa is equal to ψ̄ψ̄R, where ψ̄ = aab.

Once rotations are taken into account, the characterisation of palindromic necklaces
becomes more difficult. It is clear that any necklace ã that contains a word of the form ϕ̄xϕ̄R

or ϕ̄ϕ̄R is palindromic. However this check does not capture every palindromic necklace.
Let us take, for example, the necklace ã = ababab, which contains two words ababab and
bababa. While ababab can neither be written as ϕ̄xϕ̄R nor ϕ̄ϕ̄R, it is still palindromic as
⟨abababR⟩ = ⟨bababa⟩ = ababab. Therefore a more extensive test is required. As the structure
of palindromic words without rotation is different depending on the length being either odd
or even, it is reasonable to split the problem of determining the structure of palindromic
necklaces into the cases of odd and even length.

The number of palindromic necklaces are counted by computing the number of these
characterisations. This is done by constructing trees containing every prefix of these charac-
terisations. As each vertex corresponds to the prefix of a word, the leaf nodes of these trees
correspond to the words in the characterisations. By partitioning the tree in an intelligent
manner, the number of leaf nodes and therefore number of these characterisations can be
computed. In the odd case this corresponds directly to the number of palindromic necklaces,
while in the even case a small transformation of these sets is needed.

4.1 Odd Length Palindromic Necklaces
Starting with the odd-length case, Proposition 7 shows that every palindromic necklace of
odd length contains exactly one word that can be written as ϕ̄xϕ̄R where ϕ̄ ∈ Σ(n−1)/2 and
x ∈ Σ. This fact is used to rank the number of bracelets by constructing a tree representing
every prefix of a word of the form ϕ̄xϕ̄R that belongs to a bracelet greater than v̄.

▶ Proposition 7. A necklace w̃ of odd length n is palindromic if and only if there exists
exactly one word ū = ϕ̄xϕ̄R such that v̄ ∈ w̃, where ϕ̄ ∈ Σ(n−1)/2 and x ∈ Σ.

Proof Sketch. If a necklace w̃ contains a word of the form ϕ̄xϕ̄R, then clearly w̃ is palin-
dromic. The other direction follows a counting argument. In order for w̃ to be palindromic,
the reflection of every word in w̃ must also be in w̃. As w̃ contains an odd number of words,
there must exist a word that is its own reflection, i.e. ū = ūR. As the length of the word is
odd, the only time this can occur is when ū = ϕ̄xϕ̄R. We show uniqueness by observing that
no two words in w̃ can be mapped to the same palindromic word. ◀

▶ Corollary 8. The number of palindromic necklaces of odd length n over Σ equals k(n+1)/2.
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Figure 3 (Left) The relationship between PO(v̄, i, j, s̄) with the tree T O(v̄) and PO(v̄). (right)
Example of the order for which characters are assigned. Note that at each step the choices for the
symbol w̃i is constrained in the no subword of w̃[1,i]w̃R

[1,i] is greater than or equal to v̄.

The problem now becomes to rank a word v̄ with respect to the odd length palindromic
necklaces utilising their combinatorial properties. Let v̄ ∈ Σn be a word of odd length n. We
define the set PO(v̄), where PO stands for palindromic odd length. The set PO(v̄) contains
one word representing each palindromic bracelet of odd length n that is greater than v̄.

PO(v̄) :=
{
w̄ ∈ Σn : w̄ = ϕ̄xϕ̄R, where ⟨w̄⟩ > v̄, ϕ̄ ∈ Σ(n−1)/2, x ∈ Σ

}
.

As each word will correspond to a unique palindromic necklace of length n greater than
v̄, and every palindromic necklace greater than v̄ will correspond to a word in PO(v̄), the
number of palindromic necklaces greater than v̄ is equal to |PO(v̄)|. Using this set the
number of necklaces less than v̄ can be counted by subtracting the size of PO(v̄) from the
total number of odd length palindromic necklaces, equal to k(n+1)/2 (Corollary 8).

High level idea for the Odd Case. Here we provide a high level idea for the approach we
follow for computing PO(v̄). Let v̄ have a length n. Since PO(v̄) only contains words of the
form ϕ̄xϕ̄R, where ϕ̄ ∈ Σ(n−1)/2 and x ∈ Σ, we have that w̄i = w̄n−i for every w̄ ∈ PO(v̄).
As the lexicographically smallest rotation of every w̄ ∈ PO(v̄) must be greater than v̄, it
follows that any word rotation of w̄ must be greater than v̄ and therefore every subword of
w̄ must also be greater than or equal to the prefix of v̄ of the same length. This property is
used to compute the size of PO(v̄) by iteratively considering the set of prefixes of each word
in PO(v̄) in increasing length representing them with the tree T O(v̄). As generating T O(v̄)
directly would require an exponential number of operations, a more sophisticated approach
is needed for the calculation of |PO(v̄)| based on partial information.

As the tree T O(v̄) is a tree of prefixes, vertices in T O(v̄) are referred to by the prefix
they represent. So ū ∈ T O(v̄) refers to the unique vertex in T O(v̄) representing ū. The root
vertex of T O(v̄) corresponds to the empty word. Every other vertex ū ∈ T O(v̄) corresponds
to a word of length i, where i is the distance between ū and the root vertex. Given two
vertices p̄, c̄ ∈ T O(v̄), p̄ is the parent vertex of a child vertex c̄ if and only if c̄ = p̄x for some
symbol x ∈ Σ. The ith layer of T O(v̄) refers to all representing words of length i in T O(v̄).
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j

wR
[1,i]w[1,i]

St1 St2 St3

wR
[1,i]w[1,i] vSt ≤ ≤ St′

Figure 4 Visual representation of the properties of w̄R
[1,i]w̄[1,i] ∈ PO(v̄, i, j, s̄).

The size of PO(v̄) is equivalent to the number of unique prefixes of length n+1
2 of words of

the palindromic form ϕ̄xϕ̄R in PO(v̄). This set of prefixes corresponds to the vertices in the
layer n+1

2 of T O(v̄). Therefore the maximum depth of T O(v̄) is n+1
2 .

To speed up computation, each layer of T O(v̄) is partitioned into sets that allow the
size of PO(v̄) to be efficiently computed. This partition is chosen such that the size of the
sets in layer i+ 1 can be easily derived from the size of the sets in layer i. As these sets are
tied to the tree structure, the obvious property to use is the number of children each vertex
has. As each vertex ū ∈ T O(v̄) represents a prefix of some word w̄ ∈ PO(v̄), the number of
children of ū is the number of symbols x ∈ Σ such that ūx is a prefix of some word in PO(v̄).
Recall that every word in w̄ ∈ PO(v̄) has the form ϕ̄xϕ̄R, and that there is no subword of w̄
that is less than v̄. Therefore if ū ∈ T O(v̄), there must be no subword of ūRū that is less
than v̄. Hence the number of children of ū is the number of symbols x ∈ Σ such that no
subword of xūRūx is less than the prefix of v̄ of the same length. As ūRū has no subword
less than v̄, xūRūx will only have a subword that is less than v̄ if either (1) xūRūx < v̄ or
(2) there exists some suffix of length j such that (ūRū)[2i−j,2i] = v̄[1,j] and x < v̄j+1. For the
first condition, let s̄ ⊑2i v̄. By the definition of strictly bounding subwords (Definition 1),
xūRūx < v̄ if and only if xs̄x < v̄. Note that this ignores any word ū where ūRū ⊑ v̄. The
restriction to strictly bounded words is to avoid the added complexity caused by Proposition
2, where the word that bounds xs̄x might not be the word that bounds xūRūx. For the
second property, let j be the length of the longest suffix of ūRū that is a prefix of v̄. From
Lemma 1 due to Sawada and Williams [16], there is some suffix of ūRūx that is smaller than
v̄ if and only if x < v̄j+1. The ith layer of T O(v̄) is partitioned into n2 sets PO(v̄, i, j, s̄),
for every i ∈ [ n+1

2 ], j ∈ [2i] and s̄ ⊑2i v̄.

▶ Definition 9. Let i ∈ [ n+1
2 ], j ∈ [2i] and s̄ ⊑2i v̄. The set PO(v̄, i, j, s̄) contains every

prefix ū ∈ T O(v̄) of length i where (1) the longest suffix of ūR
[1,i]ū[1,i] which is a prefix of v̄

has a length of j and (2) The word ūR
[1,i]ū[1,i] is strictly bounded by s̄.

An overview of the properties used by PO(v̄, i, j, s̄) is given in Figures 3 and 4. It
follows from the earlier observations that each vertex in PO(v̄, i, j, s̄) has the same number
of children. Lemma 10 strengthens this observation, showing that given ā, b̄ ∈ PO(v̄, i, j, s̄),
āx ∈ PO(v̄, i+ 1, j′, s̄′) if and only if b̄x ∈ PO(v̄, i+ 1, j′, s̄′).

The remainder of this section establishes how to count the size of PO(v̄, i, j, s̄) and the
number of children vertices for each vertex in PO(v̄, i, j, s̄). The first step is to formally
prove that all vertices in PO(v̄, i, j, s̄) have the same number of children vertices. This is
shown in Lemma 10 by proving that given two vertices ā, b̄ ∈ PO(v̄, i, j, s̄), if the vertex
ā′ = āx for x ∈ Σ belongs to the set PO(v̄, i+ 1, j′, s̄′), so to does b̄′ = b̄x.

▶ Lemma 10. Let ā, b̄ ∈ PO(v̄, i, j, s̄) and let x ∈ Σ. If the vertex ā′ = āx belongs to
PO(v̄, i + 1, j′, s̄′), the vertex b̄′ = b̄x also belongs to PO(v̄, i + 1, j′, s̄′). Furthermore the
value of j′ and s̄′ can be computed in constant time from the values of j, s̄ and x.
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Proof Sketch. The arrays XW and WX are used to determine the value of s̄′. The longest
suffix of both xāx and xb̄x that is a prefix of v̄ is determined by the value of j and x, either
j + 1, if x = v̄j+1, or 0 otherwise. Hence if āx ∈ PO(v̄, i+ 1, j′, s̄′), b̄x ∈ PO(v̄, i+ 1, j′, s̄′).
Further the values of j′ and s̄′ can be determined in constant time. ◀

Computing the size of PO(v̄, i, j′, s̄′). Lemma 10, provides enough information to compute
the size of PO(v̄, i, j′, s̄′) once the size of PO(v̄, i− 1, j, s̄) has been computed for each value
of j ∈ [2(i− 1)] and s̄ ∈ S(v̄, 2(i− 1)). At a high level, the idea is to create an array, SizePO,
storing the size of the PO(v̄, i, j′, s̄′) for every value of i ∈ [ n−1

2 ], j ∈ [2i] and s̄ ⊑2i v̄. For
simplicity, let the value of SizePO[i, j, s̄] be the size of |PO(v̄, i, j, s̄)|.

Lemma 11 formally provides the method of computing SizePO[i, j, s̄] for every j ∈ [2i]
and s̄ ⊑2i v̄ once SizePO[i− 1, j′, s̄′] has been computed for every j′ ∈ [2i− 2] and s̄ ⊑2i−2 v̄.
Observe that each vertex a ∈ PO(v̄, i, j′, s̄′) represents a prefix ā′x where ā′ is either in
PO(v̄, i− 1, j, s̄), for some value of j and s̄, or ā′ ⊑ v̄. Using this, the high level idea is to
derive the values of j′ and s̄′ for each j ∈ [2(i − 1)], s̄ ∈ S(v̄, 2(i − 1)) and x ∈ Σ. Once
the values j′ and s̄′ have been derived, the value of SizePO[i, j′, s̄′] is increased by the
size of PO(v̄, i− 1, j, s̄). Repeating this for every value of j, s̄ and x will leave the value of
SizePO[i, j′, s̄′] as the number of vertices in PO(v̄, i, j′, s̄′) representing words of the form āx

where ā ̸⊑ v̄. As each set PO(v̄, i, j, s̄) may have children in at most k sets PO(v̄, i+1, j′, s̄′),
the number of vertices in PO(v̄, i + 1, j′, s̄′) with a parent vertex in PO(v̄, i, j, s̄) can be
computed in O(k · n2) by looking at every argument of j ∈ [2i] and s̄ ⊑2i v̄.

To account for the vertices in PO(v̄, i, j′, s̄′) of the form b̄x where b̄Rb̄ ⊑ v̄, a similar
process is applied to each pair s̄ ∈ S(v̄, 2(i− 1)) and x ∈ Σ. For each pair, the values s̄′ and
j′ are derived in the same manner as Lemma 10 utilising the tables XW and WX. Once
derived, the value of SizePO[i, j′, s̄′] is increased by one, to account for the vertex s̄x. As
the values of j′ and s̄′ can be computed in O(n) time from the value of x and s̄, the number
of vertices in PO(v̄, i+ 1, j′, s̄′) where the parent vertex is a subword of v̄ can be computed
in O(k · n2) time.

▶ Lemma 11. Given the size of PO(v̄, i, j, s̄) for i ∈
[

n−3
2
]

and every j ∈ [2i], s̄ ⊑2i v̄, the
size of PO(v̄, i+ 1, j′, s̄′) for every j′ ∈ [2i+ 2], s̄′ ⊑2i+2 v̄ can be computed in O(k ·n2) time.

Proof Sketch. SizePO[i+1, j′, s̄′] is computed by looking at every argument of j ∈ [2i], s̄ ⊑2i

v̄ and x ∈ Σ. For each set of arguments, j̄′ and s̄′ are derived by Lemma 10, and the size of
SizePO[i+ 1, j′, s̄′] is increased by SizePO[i, j, s̄]. Similarly, for each x ∈ Σ and s̄ ⊑2i v̄, j̄′

and s̄′ are derived and the size of SizePO[i+ 1, j′, s̄′] is increased by 1. ◀

Once the size of PO(v̄, i, j, s̄) has been computed for every i ∈ [ n−1
2 ], j ∈ [2i], s̄ ∈ S(v̄, 2i),

the final step is to compute |PO(v̄)|. The high level idea is to determine the number of vertices
in PO(v̄) are children of a vertex in PO(v̄, n−1

2 , j, s̄).The set X(v̄, j, s̄) ⊆ Σ is introduced
to help with this goal. Let X(v̄, j, s̄) contain every symbol x ∈ Σ such that āxāR ∈ PO(v)
where ā ∈ PO(v̄, n−1

2 , j, s̄). By the definition of X(v̄, j, s̄), |X(v̄, j, s̄)| · |PO(v̄, n−1
2 , j, s̄)|

equals the number of words w̄ ∈ PO(v̄) where (w̄1 . . . w̄(n−1)/2) ∈ PO(v̄, i, j, s̄). Lemma 12
shows how to compute the size of X(v̄, j, s̄) in O(k · n) time.

▶ Lemma 12. Let X(v̄, j, s̄) contain every symbol in Σ such that āxāR ∈ PO(v) where
ā ∈ PO(v̄, n−1

2 , j, s̄). The size of X(v̄, j, s̄) can be computed in O(k · n) time.

Proof Sketch. The size of X(v̄, j, s̄) is computed by checking if x ∈ X(v̄, j, s̄) for each x ∈ Σ,
where j and s̄ are used to bound x from below. As x must be such that v̄[1,j]xs̄ > v̄, x ≥ v̄j+1.
Further, if s̄ < v̄[j+2,n] then x > v̄j+1. ◀
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Converting SizeP O to |PO(v̄)|. The final step in computing PO(v̄) is to convert the
cardinality of PO(v̄, i, j, s̄) to the size of PO(v̄). Lemma 13 provides a formula for counting
the size of PO(v̄). Combining this formula with the techniques given in Lemma 11 an
algorithm for computing the size of PO(v̄) directly follows.

It follows from Lemma 10 that the number of words in PO(v̄) with a prefix in
PO

(
v̄, n−1

2 , j, s̄
)

is equal to the cardinality of PO
(
v̄, n−1

2 , j, s̄
)

multiplied by the size of
X(v̄, j, s̄). Similarly the number of words in PO(v̄) with a prefix ū of length n−1

2 where
ūRū ⊑ v̄ can be determined using X(v̄, j, ūRū). The main difference in this case is that if
ūRū = v̄[j+2,n+j], where j is the length of the longest suffix of ūRū that is a prefix of v̄, then
the number of words in PO(v̄) where ū is a prefix is 1 fewer than for the number of words
strictly bounded by ūRū, i.e. |X(v̄, J(s̄, v̄), s̄)| − 1. Lemma 13 provides the procedure to
compute |PO(v̄)|.

▶ Lemma 13. Let J(s̄, v̄) return the length of the longest suffix of s̄ that is a prefix of v̄.
The size of PO(v̄) is equal to

∑
s̄∈S(v̄,n−1)

(
n−1∑
j=1

|X(v̄, j, s̄)| · |PO
(
v̄, n−1

2 , j, s̄
)

|

)
+


0 s̄ ̸= ϕϕR

|X(v̄, J(s̄, v̄), s̄)| s̄ ̸= v̄[j+2,n+j]

|X(v̄, J(s̄, v̄), s̄)| − 1 s̄ = v̄[j+2,n+j]

Further this can be computed in O(k · n3 · log(n)) time.

Proof Sketch. By the definition of X(v̄, j, s̄), the number of words in PO(v̄) with a parent
vertex in PO(v̄, n−1

2 , j, s̄) equals |X(v̄, j, s̄)|. Similarly, given s̄ ⊑n−1 v̄, the number words in
PO(v̄) of the form s̄[(n+1)/2,n−1]xs̄[1,(n−1)/2] are equal to either |X(v̄, j, s̄)|, if s̄ ̸= v̄[j+2,n+j],
or |X(v̄, j, s̄)| − 1 if s̄ = v̄[j+2,n+j]. ◀

4.2 Even Length Palindromic Necklaces
Section 4.1 shows how to rank v̄ within the set of odd length palindromic necklaces. This
leaves the problem of counting even length palindromic necklaces. As in the odd case, the
first step is to determine how to characterise these words. Proposition 14 shows that every
palindromic necklace will have at least one word of either the form ϕ̄ϕ̄R, where ϕ̄ ∈ Σn/2, or
xϕ̄yϕ̄R, where x, y ∈ Σ and ϕ̄ ∈ Σ(n/2)−1. Proposition 14 is strengthened by Propositions
15 and 16, showing that each palindromic necklace of even length will have no more than
two words of either form. Lemmas 21, 22, 23 and 24 use these results a similar manner to
Section 4.1 to count the number of palindromic necklaces of even length.

▶ Proposition 14. A necklace w̃ of even length n is palindromic if and only if there exists
some word ū ∈ w̃ where either (1) ū = xϕ̄yϕ̄R where x, y ∈ Σ and ϕ̄ ∈ Σ(n/2)−1, or (2)
ū = ϕ̄ϕ̄R where ϕ̄ ∈ Σn/2.

Proof Sketch. Recall that if the necklace w̃ is palindromic, then for any word ū ∈ w̃, ūR ∈ w̃.
As such, ū = ⟨ūR⟩r for some rotation r. It follows from this that ū1 = ūn−r, ū2 = u(n− r −
1) . . . ūj = ūn−r−j+1. The word ū is split into the subwords ā = ū[1,n−r] and b̄[n−r+1,n]. As
ā = āR and b̄ = b̄R, the smaller subword can be lengthened by appending the first and last
symbol of the longer word while maintaining this property, i.e. b̄′ = ā1b̄ā|ā| = b̄′R. Repeating
this until either both words have length n

2 , or one has length n
2 − 1, allows ū to be rewritten,

using these words to derive the values of ϕ̄ ∈ Σn/2, or x, y ∈ Σ and ϕ̄ ∈ Σ(n/2)−1. ◀

▶ Proposition 15. The word ū ∈ Σ∗ equals both xϕ̄yϕ̄R = ψ̄ψ̄R if and only if ū = xn.
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▶ Proposition 16. For an even length palindromic necklace ã there are at most two words
w̄, ū ∈ ã where either (1) w̄ and ū are of the form xϕ̄yϕ̄R where x, y ∈ Σ and ϕ̄ ∈ Σ(n/2)−1

or (2) w̄ and ū are of the form ϕ̄ϕ̄R where ϕ̄ ∈ Σn/2.

Proof Sketch. For both w̄ = xϕ̄yϕ̄R, and w̄ = ϕ̄ϕ̄R, a similar approach is used. For
w̄ = xϕ̄yϕ̄R assume that ⟨w̄⟩r = ū for the smallest rotation r such that ⟨w̄⟩r ̸= w̄ and
⟨w̄⟩r = xϕ̄yϕ̄R. By showing that the period of w̄ must be 2r, it follows that if there is some
other rotation s such that w̄ ≠ ⟨w̄⟩s ̸= ⟨w̄⟩r and ⟨w̄⟩s is of the form xϕ̄yϕ̄R, s must be less
than r contradicting the initial assumption. For w̄ = ϕ̄ϕ̄R, a similar process is done, showing
that not only must there be no more than two words of the form ϕ̄ϕ̄R, but that if w̄ = ϕ̄ϕ̄R

then ū = ψ̄ψ̄R if and only if ϕ̄ = ψ̄R. ◀

Propositions 14, 15 and 16 show that every palindromic necklace of even length has 1 or 2
words of either the form xϕ̄yϕ̄R or ϕ̄ϕ̄R. To count the number of words of each form, the
problem is split into two sub problems, counting words of the form xϕ̄yϕ̄R and counting the
number of words of the form ϕ̄ϕ̄R. This is done using the same basic ideas as in Section
4.1. Two new sets PE(v̄) and PS(v̄) are introduced, serving the same function as PO(v̄) for
words of the from xϕ̄yϕ̄R and ϕ̄ϕ̄R respectively.

PE(v̄) :=
{
w̄ ∈ Σn : w̄ = xϕ̄yϕ̄R, where ⟨w̄⟩ > v̄, ϕ̄ ∈ Σ(n/2)−1, x, y,∈ Σ

}
PS(v̄) :=

{
w̄ ∈ Σn : w̄ = ϕ̄ϕ̄R, where ⟨w̄⟩ > v̄, ϕ̄ ∈ Σ(n/2)−1

}
Unlike the set PO(v̄) in Section 4.1 the sets PE(v̄) and PS(v̄) do not correspond directly to
bracelets greater than v̄. For notation let GE(v̄) and GS(v̄) denote the number of bracelets
greater than v̄ of the form xϕ̄yϕ̄R and ϕ̄ϕ̄R respectively. The number of even length necklaces
greater than v̄ equals GE(v̄) + GS(v̄) − (k− v̄1), where k− v̄1 denotes the number of symbols
in Σ greater than v̄1. Before showing how to compute the size of these sets, it is useful to
first understand how they are used to compute the rank amongst even length palindromic
necklaces. Lemmas 19 and 18 shows how to covert the cardinalities of these sets into the
number of even length palindromic necklaces smaller than v̄. The main idea is to use the
observations given by Propositions 14 and 16 to determine how many even length palindromic
necklaces have either one or two words of the form xϕ̄yϕ̄R or ϕ̄ϕ̄R.

▶ Proposition 17. Let l = n+2
4 if n

2 is odd or l = n
4 if n

2 is even. The number of even length
palindromic necklaces is given by 1

2
(
kn/2(k + 2) + kl

)
− k.

Proof Sketch. This equation is derived by first determining the number of necklaces that
has only one word of the form xϕ̄yϕ̄R, from which the first kn/2 term comes from. The
number of necklaces with two representatives can be computed by subtracting the number
of necklaces with one representative from the number of words of the form xϕ̄yϕ̄R, giving
1
2 (kn/2+1 − kn/2) By adding these two values together, the total number of necklaces of
this form can be counted as 1

2 (kn/2+1 − kn/2) + kn/2 = 1
2 (kn/2+1 + kn/2). The number of

necklaces with two words of the form ϕ̄ϕ̄R is counted by determining the number of necklaces
with only one word of the form ϕ̄ϕ̄R, giving the kl term. Subtracting this from the number of
words of the form ϕ̄ϕ̄R, giving a total of 1

2 (kn/2 − kl) + kl = 1
2 (kn/2 + kl) necklaces. Finally,

to avoid over counting words of the form xn, the k necklaces of this form are subtracted,
giving a total of 1

2
(
kn/2+1 + kn/2 + kn/2 + kl

)
− k. ◀

▶ Lemma 18. The number of necklaces greater than v̄ containing at least one word of the

form xϕ̄yϕ̄R is given by GE(v̄) = 1
2

(
|PE(v̄)| +

{
|PO(v̄[1,n/2])| n

2 is odd.
GE(v̄[1,n/2]) n

2 is even.

)
.
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Proof Sketch. This claim is shown by dividing necklaces greater than v̄ in to two sets, those
with one word of the form xϕ̄yϕ̄R, and those with two. By subtracting the set of necklaces
with only a single such word from the total set, the number of necklaces with two such
representatives are counted. The equation comes from adding the size of these sets. ◀

▶ Lemma 19. The number of necklaces greater than v̄ containing at least one word of the

form ϕ̄ϕ̄R is given by GS(v̄) = 1
2

(
|PE(v̄)| +

{
|PO(v̄)| n

2 is odd.
GS(v̄[1,n/2]) n

2 is even.

)
.

Proof Sketch. This claim is shown by dividing necklaces greater than v̄ in to two sets, those
with one word of the form ϕ̄ϕ̄R, and those with two. By subtracting the set of necklaces
with only a single such word from the total set, the number of necklaces with two such
representatives can be counted. The final equation comes from adding the size of these sets
together. ◀

High Level Idea for the Even Case. Lemmas 18 and 19 show how to use the sets PS(v̄)
and PE(v̄) to get the number of necklaces of the form xϕ̄yϕ̄R and ϕ̄ϕ̄R respectively. This
leaves the problem of computing the size of both sets. This is achieved in a manner similar
to the one outlined in Section 4.1. At a high level the idea is to use two trees analogous to
T O(v̄) as defined in Section 4.1. The tree T E(v̄) is introduced to compute the cardinality of
PE(v̄) and the tree T S(v̄) is introduced to compute the cardinality of PS(v̄). As in Section
4.1, the trees T E(v̄) and T S(v̄) contain every prefix of a word in PS(v̄) or PE(v̄) respectively.
The leaf vertices of these trees correspond to the words in these sets.

To compute the size of PE(v̄) using T E(v̄), the same approach as in Section 4.1 is used.
A word ū of length less than n

2 is a prefix of some word in PE(v̄) if and only if no subword of
(ū[1,|ū|−1])Rū is less than the prefix of v̄ of the same length. This is slightly different from the
odd case, where ū ∈ PE(v̄) if and only if there is no subword of ūRū smaller than the prefix
of v̄ of the same length. To account for this difference the sets PE(v̄, i, j, s̄) are introduced
as analogies to the sets PO(v̄, i, j, s̄).

▶ Definition 20. Let i ∈ [ n+1
2 ], j ∈ [2i] and s̄ ⊑2i v̄. The set PE(v̄, i, j, s̄) contains every

word ū ∈ T E(v̄) of length i where (1) the longest suffix of (ū[1,i−1])Rū[1,i] which is a prefix of
v̄ has a length of j and (2) the word (ū[1,i−1])Rū[1,i] is strictly bounded by s̄ ⊑2i−1 v̄.

As in Section 4.1, the size of PE(v̄, i, j, s̄) is computed via dynamic programming. The array
SizePE is introduced, storing the size of PE(v̄, i, j, s̄) for every value of i ∈

[
n
2
]
, j ∈ [2i− 1]

and s̄ ⊑2i−1 v̄. Let SizePE be and n×n×n array such that SizePE[i, j, s̄] = |PE(v̄, i, j, s̄)|.
Lemma 21 shows that the techniques used in Lemma 11 can be used to compute SizePE in
O(k · n3 log(n)) time. This is done by proving that the properties established by Lemma 10
regarding the relationship between the sets PO(v̄, i, j, s̄) also hold for the sets PE(v̄, i, j, s̄).
As words in PS(v̄) are of the form ϕ̄ϕ̄R, a word ū is in T S(v̄) if and only if no subword
of ūRū is less than the prefix of v̄ of the same length. Note that this corresponds to the
same requirement as the odd case. As such the internal vertices in the tree T S(v̄) may be
partitioned in the same way as those of T O(v̄). Lemma 23 shows how to convert the array
SizePO as defined is Section 4.1 to the size of PS(v̄).

▶ Lemma 21. Given ū, w̄ ∈ PE(v̄, i, j, s̄) and x ∈ Σ. If ūx ∈ PE(v̄, i + 1, j′, s̄′) then
v̄x ∈ PE(v̄, i + 1, j′, s̄′). Further the values of j′ and s̄′ can be computed in constant time
from the values of j, s̄ and x. Therefore the array SizePE[i, j, s̄] can be computed for every
value i ∈

[
n
2
]
, j ∈ [2i− 1] and s̄ ⊑2i−1 v̄ in O(k · n3 · log(n)) time.
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Proof Sketch. By proving that all properties of PO(v̄, i, j, s̄) from Lemma 10 hold for
PE(v̄, i, j, s̄), the approach in Lemma 11 is used to compute SizePE[i, j, s̄] for every i ∈[

n
2
]
, j ∈ [2i− 1], s̄ ⊑2i−1 v̄ in O(k · n3 · log(n)) time. ◀

▶ Lemma 22. Let v̄ ∈ Σn. The size of PE(v̄) can be computed in O(k · n3 · log(n)) time.

Proof Sketch. The size of PE(v̄) is computed in a similar manner to PO(v̄) using SizePE
in the same manner as SizePO. As before there are two cases to consider for each w̄ ∈
PE(v̄). The first case is where w̄[1,(n/2)] ∈ PE(v̄, n

2 , j, s̄) for some set of arguments j ∈
[n − 1], s̄ ⊑n−1 v̄. The second is where w̄[1,(n/2)−1])Rw̄[1,(n/2)] ⊑n−1 v̄. In both cases the
same approach as used in Lemma 13 can be used, determining the number of symbols x ∈ Σ
where ⟨(w̄[1,(n/2)−1])Rw̄[1,(n/2)]x⟩ ∈ PS(v̄), using the values of j and s̄ rather than directly
computing this value for each word. ◀

The size of PS(v̄) is calculated in a similar manner. As the words in PS(v̄) are of the
form ϕ̄ϕ̄R, the prefixes of length i correspond to subwords of length 2i with the form ūRū.
Note that these are the same as the prefixes used in Section 4.1 for odd length palindromic
necklaces. As such, the sets PO(v̄, i, j, s̄) are used to partition internal vertices of the tree
T S(v̄). Lemma 23 shows how to use these sets to compute the size of PS(v̄).

▶ Lemma 23. Let v̄ ∈ Σn. The size of PS(v̄) can be computed in O(k · n3 · log(n)) time.

Proof Sketch. The size of PS(v̄) is computed using two cases. As before, for every word
w̄ ∈ PS(v̄) either (w̄[1,(n/2)−1])Rw̄[1,(n/2)−1] ⊑ v̄. or there exists some set PO(v̄, n

2 − 1, j, s̄)
such that w̄[1,(n/2)−1] ∈ PS(v̄, n

2 − 1, j, s̄). Following the same approach as in Lemmas 13 and
22, set of arguments j ∈ [n− 2], s̄ ⊑n−2 v̄ are used to compute the number of symbols x ∈ Σ
such that for ū ∈ PS(v̄, n

2 − 1, j, s̄), ⟨ūxxūR⟩ > v̄. Similarly, for every subword ūūR ⊑n−2 v̄,
the number of symbols x ∈ Σ where ⟨ūxxūR⟩ > v̄. ◀

Combining Lemmas 22 and 23 with Lemmas 18 and 19 provides the tools to compute the
rank of v̄ among even length palindromic necklaces. Lemma 24 shows how to combine these
values to get the rank of v̄ among even length palindromic necklaces.

▶ Lemma 24. The rank of v̄ ∈ Σn among even length palindromic necklaces can be computed
in O(k · n3 · log(n)2) time.

Proof. From Proposition 17, the number of even length palindromic necklaces is equal to
1
2
(
kn/2+1 + 2kn/2 + kl

)
− k, where l = n+2

4 if n
2 is odd, or l = n

4 if n
2 is even. Lemma 18

provides an equation to count the number of necklaces greater than v̄ containing at least
one word of the form xϕ̄yϕ̄R. The equation given by Lemma 18 requires the size of PE(v̄)
to be computed, needing at most O(k · n3 · log(n)) operations, and either |PE(v̄[1,n/2])| or
GE(v̄[1,n/2]). As both |PE(v̄)| and |PO(v̄)| require O(k · n3 · log(n)) operations, the total
complexity comes from the number of such sets that must be considered. As the prefixes of v̄
that need to be computed is no more than log2(n), the total complexity of computing GE(v̄)
is O(k · n3 · log2(n)). Similarly as the complexity of computing PS(v̄) is O(k · n3 · log(n)),
the complexity of computing GS(v̄) is O(k · n3 · log2(n)). ◀

▶ Theorem 25. Give a word v̄ ∈ Σn, the rank of v̄ with respect to the set of palindromic
necklaces, RP (v̄), can be computed in O(k · n3 · log2(n)) time.

Proof. The number of odd length palindromic necklaces is given by Proposition 8 as k(n−1)/2.
Lemma 13 shows that the size of set PO(v̄), corresponding to the number of odd length
palindromic bracelets, can be computed in O(k · n3 · log(n)) time. By subtracting the size of
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PO(v̄) from k(n−1)/2, the rank of v̄ can be computed in O(k · n3 · log(n)) time. Lemma 24
shows that of RP (v̄) can be computed in O(k · n3 · log2(n)) time if the length of v̄ is even.
Hence the total complexity is O(k · n3 · log2(n)). ◀

5 Enclosing Bracelets

Following Lemma 4 and Theorem 25, the remaining problem is counting the number of
enclosing words. This section will provide a technique to count the number of necklaces
enclosing some word v̄. As in the palindromic case, the structure of these words will first be
analysed so that a more efficient algorithm can be derived.

▶ Proposition 26. The bracelet representation of every bracelet ŵ enclosing the word v̄ ∈ Σn

can be written as v̄[1,i]xϕ̄ where; x ∈ Σ is a symbol that is strictly smaller than v̄[i+1], and
ϕ̄ ∈ Σ∗ is a word such that every rotation of (v̄[1,i]xϕ̄)R is greater than v̄.

Proof Sketch. The claim is shown by proving that any word not of this form has a rotation
of the reflection smaller than v̄, contradicting the assumption that the bracelet encloses
v̄. ◀

▶ Proposition 27. Given a bracelet ŵ enclosing the word v̄ ∈ Σn of the form v̄[1,j]xϕ̄ as
given in Proposition 26. The value of x must be greater than or equal to v̄[(j+1) mod l] where l
is the length of the longest Lyndon word that is a prefix of v̄[1,j].

High Level Idea for the Enclosing Case. Similar to Sections 4.1 and 4.2, the main idea is
to use the structure given in Proposition 26 as a basis for counting the number of enclosing
bracelets. For each value of i and x, the number of possible values of ϕ̄ are counted. This is
done in a recursive manner, working backwards from the last symbol. For each combination
of i and x, the key properties to observe are that (1) every suffix of ϕ̄ must be greater than
or equal to v̄[1,i]x and (2) every rotation of ϕ̄Rxv̄R

[1,i] is greater than v̄.
These observations are used to create a tree, T EN (v̄, i, x), where each vertex represents

a suffix of some possible value of ϕ̄. Equivalently, the vertices of T EN (v̄, i, x) can be thought
of as representing the prefixes of ϕ̄R. The leaf vertices of T EN (v̄, i, x) represent the possible
values of ϕ̄. As in Section 4, each layer of T EN (v̄, i, x) is grouped into sets based on the
lexicographical value of the reflection of the suffixes, and the prefixes of the suffixes. Let
t ∈ [|w̄| − i], j ∈ [t + i + 1] and s̄ ⊑t+i+1 v̄. For the tth layer of T EN (v̄, i, x), the set
E(v̄, i, x, j, s̄) is introduced containing a subset of the vertices at layer t. The idea is to
use the values of j and s̄ to divide the prefixes at layer t by lexicographic value and suffix
respectively. Let ū ∈ E(v̄, i, x, j, s̄) be a suffix of some word w̄ such that v̄[1,i]xw̄ is a bracelet
enclosing v̄. To ensure that the necklace represented by the reflection is strictly greater than
v̄, j is used to track the longest prefix of ūR that is a prefix of v̄. To ensure that there is
no rotation of xv̄R

[1,i]w̄
R, the subword s̄ ⊑t v̄ is used to bound the value of ūR. Formally,

E(v̄, i, x, j, s̄) contains every suffix ū ∈ T EN (v̄, i, x) of length i where (1) the longest prefix
of ūR that is also a prefix of v̄ and (2) the subword s̄ ⊑t v̄ bounds ūR.

As in Section 4 the number of leaf vertices are calculated by determining the size of the
sets E(v̄, i, x, j, s̄) at layer |v̄| − i− 2, and the number of children of each set. To determine
the size of the sets, two key observations must be made. The first is that given the word
ū ∈ E(v̄, i, x, j, s̄) and the symbol y ∈ Σ, if yū ∈ T EN (v̄, i, x) then there exists some pair
j′ ∈ [n], s̄′ ⊑|ū|+1 v̄ such that yū ∈ E(v̄, i, x, j′, s̄′). Secondly, if yū ∈ E(v̄, i, x, j′, s̄′), then
yw̄ ∈ E(v̄, i, x, j′, s̄′) for every w̄ ∈ E(v̄, i, x, j, s̄). These observations are proven in Lemma
28, as well as showing how to determine the values of j′ and s̄′.



D. Adamson, V. V. Gusev, I. Potapov, and A. Deligkas 4:15

▶ Lemma 28. Given ū ∈ E(v̄, i, x, j, s̄) and symbol y ∈ Σ, the pair j′ ∈ [n], s̄′ ⊑|ū|+1 v̄ such
that yū ∈ E(v̄, i, x, j′, s̄′) can be computed in constant time. Further, if yū ∈ E(v̄, i, x, j′, s̄′),
then yw̄ ∈ E(v̄, i, x, j′, s̄′) for every w̄ ∈ E(v̄, i, x, j, s̄).

Proof Sketch. The proof follows the same arguments as Lemma 10: the value of j′ is either
j + 1 if y = v̄j+1, or 0 otherwise. Then, the value of s̄′ is derived using the array XW . ◀

From Lemma 28, the size of E(v̄, i, x, j, s̄) are computed using the sizes of E(v̄, i, x, j′, s̄′)
for j′ ∈ [0, n] and s̄′ ∈ S(v̄, |s̄| + 1). To compute the value of E(v̄, i, x, j, s̄), an array SE of
size k × n× n× n2 is introduced such that the value of SE[x, i, j, s̄] = |E(v̄, i, x, j, s̄)|.

▶ Lemma 29. Let v̄ ∈ Σn. Let SE be a n×n2 array such that SE[x, i, j, s̄] = |E(v̄, i, x, j, s̄)|
for j ∈ [0, n] and s̄ ⊑ v̄. Every value of SE[x, i, j, s̄] is computed in O(k2 · n4) time.

Proof Sketch. SE is computed using Lemma 28. The value of SE[x, i, j, s̄] is computed
starting with |s̄| = n − 1 for every value of x, i, and j. Then, by iteratively decreasing
the length of s̄, the value of SE[x, i, j, s̄] for each of the n3 · k arguments of x, i, j, s̄ can be
computed in O(n · k) time; hence we need O(k2 · n4) time in total. ◀

Once SE has been computed, the number of enclosing words can be computed using
SE and each valid combination of i and x. This is done in a direct manner. Note that
the number of possible values of ϕ̄ such that v̄[1,i]xϕ̄ represents a bracelet enclosing v̄ is
equal to SE[x, i, j, s̄] where j is the longest suffix of v̄[2,i]x that is a prefix of v̄ and s̄ is the
subword that bounds xv̄R

[1,i]. As both values can be computed naively in O(n2) operations,
the complexity of this problem comes predominately from computing SE.

▶ Theorem 30. The number of bracelets enclosing v̄ ∈ Σn can be computed in O(n4 · k2).

Proof. From Lemma 29 the array SE may be computed in O(n4 · k2) operations. Using
SE, let i ∈ [1, n] and x ∈ Σ. Further let l be the length of the longest Lyndon word that
is a prefix of v̄[1,i]. If the value of x is less than v̄i+1 mod l or greater than or equal to
v̄i+1 then there is no bracelet represented by v̄[1,i]xϕ̄. Similarly if xv̄R

[1,i] < v̄[1,i+1], then
any bracelet of the form v̄1,ixϕ̄ does not enclose v̄. Otherwise, the number of enclosing
bracelets represented by v̄[1,i]xϕ̄ is equal to SE[x, i, j, s̄′] where j is the longest suffix of
v̄[2,i]x that is a prefix of v̄ and s̄ is the subword that bounds xv̄R

[1,i]. By summing the value
of SE[x, i, j, s̄′] for each value of i ∈ [1, n] and x ∈ Σ such that v̄[1,i]x is the prefix of the
representation of some bracelet enclosing v̄ gives the number of enclosing bracelets. Therefore

RE(v̄) =
∑

i∈[1,n−1]

∑
x∈Σ


0 xv̄R

[1,i] < v̄

0 x ≤ v̄i+1 mod l or x > v̄i+1

SE[x, i, j, s̄′] Otherwise.

◀

Proof of Theorem 5. The tools are now available to prove Theorem 5 and show that it is
possible to rank a word v̄ ∈ Σn with respect to the set of bracelets of length n over the
alphabet Σ in O(k2 · n4) steps. To rank bracelets, it is sufficient to use the results of ranking
v̄ with respect to necklaces, palindromic necklaces and bracelets enclosing v̄, combining
them as shown in Lemma 4. Sawada et. al. provided an algorithm to rank v with respect
to necklaces in O(n2) time. It follows from Theorem 25 that the rank with respect to
palindromic necklaces can be computed in O(k · n3) time. Theorem 30 shows that the rank
with respect to bracelets enclosing v can be computed in O(k2 ·n4) time. As combining these
results can be done in O(1) steps, therefore the overall complexity is O(k2 · n4). ◀
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Conclusions and Future Work. In this work we have presented an algorithm for the
ranking of bracelets in O(k · n4) time. Additionally, we have presented a complimentary
O(n4 · k2 · log(k)) time algorithm for unranking. This expands upon the previous work on
ranking necklaces and Lyndon words in O(n2) time, and unranking in O(n3) time. This
leaves the question of if there is a faster algorithm for ranking bracelets, which may be found
by deriving a faster algorithm to count the number of enclosing bracelets.

In addition to the importance of the results from the perspective of combinatorics on
words, a practical application of combinatorial necklaces and bracelets can be found in the
field of chemistry, since they provide discrete representation of periodic motives in crystals.
The problems on finding diverse and representative samples of languages of necklaces and
bracelets has served as a heuristic in the exploration of the space of crystal structures [2, 3],
since the problem is considered to be NP-hard [1]. The essential component for building
representative samples require efficient procedures for ranking bracelets.
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The k-mappability problem has two integers parameters m and k. For every subword of size m in
a text S, we wish to report the number of indices in S in which the word occurs with at most k

mismatches.
The problem was lately tackled by Alzamel et al. [1]. For a text with constant alphabet Σ and

k ∈ O(1), they present an algorithm with linear space and O(n logk+1 n) time. For the case in which
k = 1 and a constant size alphabet, a faster algorithm with linear space and O(n log(n) log log(n))
time was presented in [2].

In this work, we enhance the techniques of [2] to obtain an algorithm with linear space and
O(n log(n)) time for k = 1. Our algorithm removes the constraint of the alphabet being of constant
size. We also present linear algorithms for the case of k = 1, |Σ| ∈ O(1) and m = Ω(

√
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1 Introduction

Many real world applications need to identify events that repeat very often. Examples of
such applications are road traffic peaks [12], load peaks on web servers [9], monitoring events
in computer networks [3], life event histories [10] and many others. Finding such events often
leads to useful insights by shedding light on the structure of the data, and giving a basis
to predicting future events and behavior. Moreover, in some applications frequent events
can point out a problem. In a computer network, for example, repeating error messages can
indicate a misconfiguration, or even a security intrusion such as a port scan [7].

In Stringology, the problem of counting the occurrences of every subword of length m that
appears in text S is a well-known exercise in the power of suffix trees [13] or suffix arrays [6,8].
However, in reality one seldom finds exact repetitions of a substring. The situation becomes
more complex when we seek the most frequent subword that approximately occurs in the
string.
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5:2 The k-Mappability Problem Revisited

Let S[1 . . . n] be a text and k and m two integers. The k-mappability problem is defined
as follows:

▶ Definition 1. For every index i ∈ [1 . . . n − m + 1], report the number of indices j such
that HD(S[i . . . i + m − 1], S[j . . . j + m − 1]) ≤ k. With HD(X, Y ) denoting the Hamming
distance between X and Y .

The k-mappability problem was lately tackled by Alzamel et al. [1]. For a text with
constant alphabet and k ∈ O(1), they present an algorithm with linear space and O(n logk+1 n)
time. Additionally, they present a quadratic algorithm for reporting the k-mappability for a
fixed value of k and every m ∈ [k . . . n] or a fixed value of m and every k ∈ [0 . . . m]. Finally,
they show that the k-mappability problem can not be solved in truly subquadratic time
unless the Strong Exponentional Time Hypothesis is false. For the case in which k = 1 and a
constant size alphabet, a faster algorithm with linear space and O(n log(n) log log(n)) time
was presented in [2]. [2] also presented an algorithm with average case linear time for k = 1,
and provided some experimental results.

Our results:
1. By enhancing the techniques of [2], we construct an algorithm for k-mappability with

linear space and O(n log n) time for k = 1 and infinite integer alphabet. This is an
improvement over the O(n logk+1 n) time achieved by [1] for k ∈ O(1). It also improves
the faster O(n log(n) log log(n)) time for k = 1 achieved by [2]. In the settings in which
infinite integer alphabet is allowed, our algorithm is optimal.

2. We present a linear time algorithm for k-mappability in the case in which k = 1, the
alphabet size is constant and m ∈ Ω(

√
n).

The paper is organized as follows. In Section 2 we define the basic notions used. Section 3
presents a linear space O(n log n) time algorithm for 1-mappability. In Section 4 we present
a linear algorithm for 1-mappability with constant sized alphabet and m ∈ Ω(

√
n).

2 Preliminaries

Let Σ be an alphabet. A string S over Σ is a finite sequence of characters from Σ. By S[i],
for 1 ≤ i ≤ |S|, we denote the ith character of S. The empty string is denoted by ϵ. By
S[i . . . j] we denote the string S[i] . . . S[j] called a substring, or factor, of S (if i > j, then
the substring is the empty string). A substring is called a prefix if i = 1 and a suffix if
j = |S|. The prefix of length j is denoted by S[. . . j], while by S[i . . .] we denote the suffix
which starts from index i in S. We say that a string S of length n has a period p, for some
1 ≤ p ≤ n

2 if S[i] = S[i + p] for every i ∈ [1 . . . n − p]. The period of S, denoted as per(S), is
the smallest p that is a period of S. We say that a substring of S, denoted as A = S[a . . . b] is
a run with period p if its period is p, but S[a − 1] ̸= S[a − 1 + p] and S[b + 1] ̸= S[b + 1 − p].
This means that no substring containing A has a period p. The Hamming distance of two
n-length strings, S1, and S2, denoted as HD(S1, S2), is the number of indices in which they
differ. We say that an m-length word w has a k-ham occurrence in location i of string S if
HD(w, S[i . . . i + m − 1]) ≤ k.

The longest common prefix (suffix) of two indexes i, j ∈ [1 . . . n] is the maximal integer ℓ

such that S[i . . . i + ℓ − 1] = S[j . . . j + ℓ − 1] (S[i − ℓ + 1 . . . i] = S[j − ℓ + 1 . . . j]). We denote
the LCP (i, j) = ℓ (LCS(i, j) = ℓ). LCP and LCS are collectively referred to as longest
common extensions (LCE).
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The suffix tree [13] is a useful string data structure.

▶ Definition 2. Let S1, . . . , Sk be strings over alphabet Σ and let $ ̸∈ Σ.
An uncompacted trie of strings S1, . . . , Sk is an edge-labeled tree with k leaves. Every

path from the root to a leaf corresponds to a string Si with a $ symbol appended to its end.
The edges on this path are labeled by the symbols of Si. Strings with a common prefix start at
the root and follow the same path of the prefix, the paths split where the strings differ.

A compacted trie is the uncompacted trie with every chain of edges connected by degree-2
nodes contracted to a single edge whose label is the concatenation of the symbols on the edges
of the chain.

Let S = S[1], . . . , S[n] be a string over alphabet Σ. Let {S1, . . . , Sn} be the set of suffixes
of S, where Si = S[i . . .], i = 1, . . . , n. A suffix tree of S is the compacted trie of the suffixes
S1, . . . , Sn.

For every node u, we call the concatenation of the labels on the path from the root to u

the locus of u denoted as L(u). For an edge e in the compact trie, we use the same notation
L(e) to denote the label (or the locus) of e. Finally, for a downwards path P in the compact
trie, the locus L(P ) is the concatenation of the loci of the edges in P . In a compact trie, an
edge e can have label s.t. |L(e)| > 1. We refer to the symbol L(e)[1] as the symbol of e.

▶ Theorem 3 (Weiner [13]). For finite alphabet Σ, the suffix tree of a length-n string can
be constructed in time O(n). For general alphabets it can be constructed in time O(n log σ),
where σ = min(|Σ|, n).

The suffix tree can be preprocessed in O(n) [4] to be used as a data structure for LCE

queries with O(1) query time.
We assume that every node u in the suffix tree contains some auxiliary information about

L(u), that is the number of occurrences of L(u) in the text S and a pointer to the list of
indices in which L(u) occurs. This information can be evaluated for all the nodes of a given
suffix tree ST in O(|ST |) time and require an additional O(|ST |) space.

Over finite alphabet Σ, the adjacency list of a node u ∈ ST is represented as an array
Au[1 . . . |Σ|] with the edge with symbol σ ∈ Σ in Au[σ] (or an emptiness indicator if there is
no edge with that symbol).

Over infinite alphabet, the adjacency list of u ∈ ST is represented as a balanced search
tree storing the edges emerging from u in a sorted order of their symbols. In our algorithm,
we assume that the representation of the adjacency list allows linear time DFS iteration on
the subtree rooted in a node u ∈ ST . This is indeed the case for most balanced trees.

▶ Definition 4. The suffix array of a string S, denoted as SA(S), is an integer array of size
n + 1 storing the starting positions of all (lexicographically) sorted non-empty suffixes of S,
i.e. for all 1 < r ≤ n + 1 we have S[SA(S)[r − 1]..n] < S[SA(S)[r]..n]. Note that the empty
suffix is explicitly added to the array.

The suffix array of S corresponds to a pre-order traversal of all the leaves of the suffix
tree of S. Various algorithms exist for efficient time and space construction of the suffix
array [5, 6, 11]. In particular, the suffix array over a fixed finite alphabet can be constructed
in linear time.

CPM 2021
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3 O(n log(n)) time and O(n) space algorithm for k = 1

3.1 An overview of the O(n log(n) log log(n)) algorithm for k = 1
We start with an overview of the ideas for the O(n log(n) log log(n)) algorithm of [2]. They
present an algorithm for counting the number of occurrences with exactly one mismatch,
for every word of size m. Since there is a textbook algorithm for counting the number of
exact occurrences of every word, this is sufficient for solving the 1-mappability problem.

They start by evaluating the suffix tree T of S and trimming the tree at word length
m. That is, every node v with |L(v)| > m is removed. Implicit nodes with |L| = m are
made explicit leaves in the trimming process. They proceed to evaluate the heavy paths
decomposition of T .

▶ Definition 5 (Heavy Path Decomposition). Let T be a rooted tree. For every non-leaf vertex
u, the edge (u, v) is heavy if |Iu| < 2|Iv| with Ix denoting the set of leaves in the subtree
rooted in the vertex x. An edge that is not heavy is called a light edge. The heavy path of a
vertex v is the maximal path of heavy edges going through v (it may contain 0 edges). For
every heavy path P , a vertex u ∈ P , and a light edge (u, v) emerging from u, we call T (v) a
sidetree of P (emerging from u).

It is easy to observe that every root-to-leaf path in T consists of at most log(n) heavy
paths and log(n) light edges. The following observation is the key for the complexity achieved
by [2]:

▶ Observation 6. For every w = S[i . . . i + m − 1], every 1-ham occurrence of w w′ =
w[1 . . . x − 1]σw[x + 1 . . . m] with a mismatch in index x corresponds to a node u in T with
L(u) = w[1 . . . x − 1]. u must have two edges e1, e2 s.t. there is a downwards path starting
with e1 (resp. e2) and ending in a leaf with path label w[x . . . m] (resp. σw[x + 1 . . . n]).

Consider the following procedure: For every node u ∈ T with path label w, let the heavy
edge emerging from u be eh with label d. Inspect every light edge e = (u, v) with label c

emerging from u. For every leaf z ∈ T (v) with label L(z) = w · c · wz and for every c′ ≠ c ∈ Σ,
find the leaf z′ with label L(z′) = w · c′ · wz, if it exists. If it does, add the number of
occurrences of L(z′) to a counter associated with z. For the leaf zd with L(zd) = w · d · wz,
also increment a counter associated with zd by the amount of occurrences of L(z).

It is straightforward from Observation 6 that for every index i, every 1-ham occurrence is
counted by the above procedure. As for complexity - every leaf z is iterated once per light
edge in the path from the root to z. A single iteration on a leaf z consists of a constant
number of counter increments and a single query for finding z′ with L(z′) = w · c′ · wz per
symbol c′ ∈ Σ. Since |Σ| = O(1), the bottleneck of the iteration is finding z′. The following
is proven in [2]:

▶ Theorem 7. A text S[1 . . . n] can be preprocessed in time O(n log log n) and linear space
to allow the following query in O(log log n) time:

Given a node u in the suffix tree of S with L(u) = w1 · c · w2 (w1, w2 ∈ Σ∗ and c ∈ Σ)
and a symbol c ̸= c′ ∈ Σ, find the node u′ with L(u′) = w1 · c′ · w2 if it exists.

We call the queries described in Theorem 7 concatenation queries.
With Theorem 7 the final complexity is clear – every leaf is iterated O(log n) times and

the iteration costs O(log log n) after an O(n log log n) preprocessing time. The overall time
complexity is O(n log(n) log log(n))
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3.2 Linear space O(n log n) algorithm for k = 1

Intuition: Our algorithm is based on the ideas of [2]. For every light edge (u, v) we iterate
every leaf z ∈ T (v) and wish to find the vertices corresponding to a 1-ham occurrence of L(z)
with a mismatch in index |L(u)| + 1. Instead of using concatenation queries, we construct
a lexicographically sorted array of the words W we need to find. Given the sorted array
of words, finding the vertices corresponding to these words in the suffix tree can be done
in O(|W |). If we manage to construct this sorted array in O(|W |), the amortized time for
inspecting a leaf is constant (rather than O(log log n)).

Terminology. Let P = (u1, u2, . . . ux) be a heavy path in the heavy path decomposition of
the suffix tree ST of S. Let L(ui) = wi and let ei = (ui, ui+1) be the i’th heavy edge in P

with symbol di. Let (ui, v) be a light edge emerging from ui with symbol c and let z ∈ T (v)
be a leaf. It holds that L(z) = wi · c · sz for some suffix sz ∈ Σ∗.

▶ Definition 8. The node z′ ∈ ST is a P -light occurrence of z if L(z′) = wi · c′ · sz for
some c′ ∈ Σ \ {c, di}. We call the word hw(z) = wi · di · sz the P -heavy word of z. The node
z′ ∈ ST is a P -heavy occurrence of z if L(z′) = hw(z).

Note that the above definitions are with respect to a heavy path P . z may be a leaf in
the sidetrees of multiple heavy paths. In every such path, the P -light occurrences, P -heavy
occurrence and the P -heavy word of z are different. Also note that the P -heavy word and
the P -heavy occurrence are undefined for leaves in the sidetrees emerging from ux, as the
last heavy edge in P is ex−1.

In our algorithm, we count the P -heavy occurrences and the P -light occurrences of every
node z in a sidetree of P independently. For every heavy occurrence z′, we also count the
occurrences of w(z) as 1-ham occurrences of w(z′). We do this for every heavy path P .
Surely, this process counts all the 1-ham occurrences.

We start by showing how to efficiently count the P -light occurrences.

▶ Observation 9. For every vertex z with L(z) = w in a sidetree T (v) emerging from ui,
all the P -light occurrences of z are also leaves in (different) sidetrees emerging from ui.
Furthermore, a leaf z′ with L(z′) = w′ in a sidetree T (v′) ̸= T (v) emerging from ui is a light
occurrence of z iff w[|wi + 2| . . . m] = w′[|wi + 2| . . . m].

Observation 9 is directly derived from the definition of a light occurrence. For every
ui ∈ P , we wish to construct a sorted array consisting of the suffixes starting in index |wi| + 2
of the labels of the leaves of the sidetrees emerging from ui.

We present the following routine:

Algorithm 1 Suffix Sorting.

As a preprocess procedure, construct the suffix array SA of S.

Initialize an array A of size n consisting of empty lists

Alignment step: Iterate the leaves in the sidetrees of ui. For every leaf z, extract jz - a
starting index of L(z). We add z to A[jz + |wi| + 2].

Insertion step: Initialize an empty list L. Iterate SA from left to right. When iterating
SA[j], add all the nodes in A[SA[j]] to the end of L.

CPM 2021
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▷ Claim 10. After running Suffix Sorting, L is sorted by the lexicographic order of the
suffixes starting in index |wi| + 2 of z. The running time is O(n + |SE|) with SE being the
set of sorted elements.

Proof. leaf z with L(z) = wz occurring in index jz is inserted to L before the leaf y

with L(y) = wy occurring in index jy only if the suffix of S starting in jz + |wi| + 2 is
lexicographically smaller or equal to the suffix of S starting in jy + |wi| + 2. Therefore, it
can not be the case that wz[|wi| + 2 . . . m] >L wy[|wi| + 2 . . . m].

As for complexity- the alignment step takes O(|SE|) time as it executes a constant amount
of list insertions and basic arithmetic operations for every leaf. The insertion step takes
O(|SE| + n) time as it iterates over the entire suffix array. The sum of the sizes of the lists
in A is identical to the amount of iterated leaves in the alignment step. We assume that
the suffix array was evaluated prior to the run of Suffix Sorting. Therefore, we exclude the
complexity of computing the suffix array from our running time. ◁

This is not exactly what we want. If we execute Suffix Sorting for every node, the n

factor will dominate the complexity and the overall time will be quadratic. To avoid that,
we present the following algorithm for sorting a batch of sidetrees.

Algorithm 2 Batched Suffix Sorting.

As a preprocess procedure, construct the suffix array SA of S.

Input: A batch of vertices v1, v2 . . . vb

Initialize an array A of size n consisting of empty lists.

Batched Alignment step:

For every i ∈ [1 . . . b]:
1. Initialize an empty list Li

2. Iterate the leaves in the sidetrees of vi with L(vi) = wi. For every leaf z, extract jz - a
starting index of L(z). Add the pair (z, Li) to A[jz + |wi| + 2].

Batched Insertion step: Iterate SA from left to right. When iterating SA[j], for every
(z, L) ∈ A[SA[j]], add z to the end of L.

The same arguments as in the proof of claim 10 can be made to prove the following:

▷ Claim 11. After running Batched Suffix Sort, every list Li has the leaves in the sidetrees
of vi sorted by the lexicographic order of the suffixes starting in index |wi| + 2 of z. The
running time is O(n + |SE|) with SE being the set of sorted elements in the batch.

To sort the sidetrees in amortized linear time, we set a counter se = 0 for the amount of
leaves in the sidetrees that need to be sorted and an empty list Sort. We iterate the vertices
in ST . For every vertex u, we count the number of leaves in the sidetrees of u, add this
number to se and add u to Sort. Once se > n, we execute Batched Suffix Sort on Sort.

Since the number of leaves in the sidetrees of a vertex u never exceeds n, it is guaranteed
that se ≤ 2n when we execute Batched Suffix Sorting. Therefore, the overall complexity is
O(n + 2n) = O(n). Since we only execute the batched insertion with se ≥ n, the amortized
time for placing every leaf in the sorted list is constant.

Once we have the sorted list L = z1, z2 . . . zt of the leaves in the sidetrees emerging from
ui ∈ P , a simple iteration can be implemented to count the number of P -light occurrences
for every node in L. We start by preprocessing S for constant time lcp queries. We iterate
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L. For every consecutive pair of leaves za and za+1 with L(za) = s1 occurring in j1 and
L(za+1) = s2 occurring in j2, we query l = lcp(j1 + |wi| + 2, j2 + |wi| + 2). If we have
l ≥ m − |wi| − 1, then za and za+1 are P -light occurrences of each other (Observation 9).
Once we identify a pair za, za+1 of P -light occurrences, we proceed in L until we reach a
leaf zb+1 that is not a P -light occurrence. Of course, all the pairs zx, zy with x ̸= y and
x, y ∈ [a . . . b] are P -light occurrences of each other. We evaluate the sum Oc of occurrences
of L(zx) for x ∈ [a . . . b] and increment the counter of ham-1 occurrences of zx by Oc−Oc(zx)
with Oc(zx) being the number of occurrences of L(zx).

It can be easily verified that the iteration is linear. For every leaf we execute a single lcp
query and a constant number of basic arithmetic operations. We conclude the handling of
P -light occurrences with the following theorem:

▶ Theorem 12. The 1-ham occurrences of L(z) that are corresponding to P -light occurrences
of some heavy path P can be computed for every leaf z ∈ ST , in O(n log n) time and linear
space.

Proof. For every heavy path P and vertex ui ∈ P , we compute the sorted list of the suffixes
starting in |wi| + 2 of the words of the leaves of the sidetrees emerging from ui. We use the
sorted list to find the P -light occurrences of the leaves in the sidetrees of ui. Sorting the
leaves is done using Batched Suffix Sorting with batches of size between n and 2n and takes
a constant amortized time per sorted leaf. There may be one ’remainder’ batch with size
se < n that takes an additional O(n) time to sort. Given the sorted lists, finding the P -light
occurrences is linear in the number of leaves in the sidetrees of ui. Every leaf z participates
in at most log(n) different sidetrees, so the overall time is O(n log n). We also build the
Suffix array as a preprocess step, which takes an additional O(n log n) time.

As for space - the only non-trivially linear part of our solution is the array A used in
Batched Suffix Sort. Since we never let se the number of sorted elements exceed 2n, the
lists in A never contain more than 2n elements collectively. So the size of A is always
linear. After executing the Batched Suffix Sorting, we iterate the sorted lists to count the
P -light occurrences and then reuse the space occupied by these lists as they are no longer
required. ◀

We are left with the task of counting the P -heavy occurrences of every leaf z. Consider a
heavy path P = u1, u2 . . . ux. Our key sub-task for finding all the P -heavy occurrences of
all the leaves in the sidetrees of P is constructing a sorted list of the P -heavy words of the
leaves.

Note that unlike P -light occurrences, P -heavy occurrences of a leaf z of a sidetree emerging
from ui can not be in a sidetree emerging from ui. However, they must be leaves of a sidetree
emerging from uj for some j > i.

The process of building the sorted list of P -heavy words relies on the same principles we
used for the P -light occurrences. However, there is a further difficulty to tackle. With P -light
occurrences that lie on the same ui - we have a guarantee that the words match until the
index |wi|. Therefore, it is sufficient to sort by the suffixes starting right after the mismatch
in index |wi| + 2. With the P -heavy words, we may have to compare P - heavy words from
sidetrees of different nodes ui and uj with i < j. In this case, there is no guarantee that the
words match in the indices in [|wi + 1| . . . |wj |].

To handle this difficulty, we partition the leaves into classes prior to sorting them. Our
partition will have the property that the P -heavy words of leaves in the same class have a
certain common prefix that exceeds the index in which the error occurs (c is replaced by di).
This property will allow us to sort the P -heavy words in every class using Batched Suffix
Sorting.
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The first step for sorting the P -heavy words is to partition the leaves in the sidetrees of
P = u1, u2 . . . ux by the lcp of their P -heavy words with wx. This is done with the following
procedure:

Algorithm 3 LCP Partition.
Input: A heavy path P = u1, u2 . . . ux

Initialize an array LCP [1 . . . m] of size m of empty lists. Let jx be an index in which wx

occurs.

Alignment Step: For every i ∈ [1 . . . x]:
For every leaf z in a sidetree emerging from ui:
1. Extract an index jz in which L(z) occurs in S.
2. Find lz = lcp(hw(z), wx) by computing lz = min(|wi| + 1 + lcp(jz + |wi| + 2, jx + |wi| +

2), |wx|).
3. Compare between the symbols in index lz + 1 in hw(z) and in wx in order determine

the lexicographical order oz ∈ {<, >, =} between hw(z) and wx (For example, oz =< if
hw(z) <L wx). If lz = |wx|, oz is set to ′ =′.

4. Add the tuple (z, oz) to LCP [lz].
Insertion Step:
For every l ∈ [1 . . . |wx| − 1] (in increasing order):
1. If the list L = LCP [l] is empty - do nothing.
2. Otherwise, create 2 lists L>

l and L<
l .

3. For every tuple (z, oz), add z to Loz

l .

If L = LCP [|wx|] is not empty, construct a new list L|wx| and add z to L|wx| for every pair
(z, =) ∈ L.

Note that lz ≥ |wi|+1 since hw(z)[1 . . . |wi|] = wi = wx[1 . . . |wi|] and hw(z)[|wi +1|] = di.
With that observation, it is clear that the formula for finding lz in Step 2 works.

We make the following observation:

▶ Observation 13. For every list L>
l (or L<

l or L|wx|), every vertex z ∈ L>
l has

lcp(hw(z), wx) = l and hw(z)[l + 1 . . . m] = L(z)[l + 1 . . . m]. The running time of LCP
partition is O(m + |SE|) with SE being the set of leaves in sidetrees of P .

Proof. The lcp property is derived directly from the construction of LCP [1 . . . m]. As for
complexity, every leaf is processed with a single lcp query and a constant amount of basic
operations. The iteration and construction of LCP takes an additional O(m) ◀

It follows from Observation 13 that the lexicographical order between the P -heavy words
of the vertices in L>

l (or L<
l or Lwx

) are determined by the suffixes starting in index l + 1 of
L(z). Therefore, sorting L>

l by the lexicographical order of the heavy words can be done
using the algorithm Batched Suffix Sorting.

▶ Theorem 14. The lexicographically sorted list of P -heavy words of a heavy path P can be
evaluated in O(|SL|) amortized time with SL the set of leaves in the sidetrees of P

Proof. We want to use LCP Partition on a batch of heavy paths. Transforming LCP
Partition to a batched algorithm can be done with the same technique that was used to
generate Batched Suffix Sorting from Suffix Sorting.
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As in the Batched Suffix Sorting algorithm, we execute the alignment step of LCP Partition
for possibly multiple heavy paths P until the collective amount of leaves considered is between
n and 2n. Once this amount is met, we construct the lists L>

l , L<
l and L|wx| for all the paths

in the batch by applying the insertion step. We then sort the lists by the lexicographic order
of hw(z) with Batched Suffix Sorting. The overall time is O(n + m) = O(n).

We are left with the task of merging the sorted lists L>
l ,L<

l and L|wx| into a single sorted
list L containing all the P -heavy words. This is done by applying the following observation:

▶ Observation 15. Let l1, l2, . . . lc be the set of indices for which either L<
li

or L>
li

is
constructed for the path P by LCP Partition. The sorted list L of the P -heavy words is of the
form L = L<

l1
, L<

l2
, . . . L<

lc
, L|wx|, L>

lc
, L>

lc−1
. . . L>

l1
. (If Lli

was not constructed, it is considered
as an empty list)

Proof. We start by showing that the lists L<
li

must appear in increasing order of li in L. Let
a, b ∈ {l1, l2 . . . lc} be two indices for which a < b. Let wa ∈ L<

a and wb ∈ w<
b . Since the

LCP of wb and wx is b ≥ a + 1, we have wb[a + 1] = wx[a + 1]. Since the LCP of wa and
wx is a and wa <L wx, we have lcp(wa, wb) = a and wa[a + 1] <L wx[a + 1] = wb[a + 1]
and therefore wa <L wb. Similar arguments can be made to prove that wb <L wa for every
wa ∈ L>

li
and wb ∈ L>

b . It is straight forward from the construction of the lists L<
li

and L>
li

that for every li and every W ∈ L>
li

, w ∈ L<
li

and w′ ∈ L|wx| we have w <L w′ <L W . ◀

With Observation 15, the construction of the sorted P -heavy words list is completed.
Observe that LCP Partition naturally generates L>

l and L<
l in increasing order of l. Therefore,

the concatenation of the lists in the order dictated by Observation 15 does not require
any further sorting and can be executed in linear time, and the proof of Theorem 14 is
completed. ◀

Given the sorted list LP [1 . . . h] of the P -heavy words, we are interested in finding the
node z′ with L(z′) = hw(z) for every word hw(z) ∈ LP . We can do this in linear time as
follows: First, observe that every P -heavy word has the prefix w1. So z′ ,if it exists, must be
a descendant of u1 and therefore is a leaf in a sidetree of P . Let L[1 . . . l] be the sorted list
of occurrences of w1 stored in u1. These are actually all the leaves in the sidetrees of P . The
following procedure matches every hw(z) ∈ LP with its corresponding z′:

Algorithm 4 Count P -Heavy.

Input: The lexicographically sorted lists LP [1 . . . h] of P -heavy words and L[1 . . . l] the list of
lexicographically sorted vertexes in the sidetrees of P

Initialize two indices i = j = 1.

While i ≤ h and j ≤ l:
1. Let hw(z) = LP [i] and L(z′) = L[j]
2. If hw(z) = L(z′):

a. Increase the counter associated with z by Oc(z′).
b. Increase the counter associated with z′ by Oc(z).
c. Increase i by 1.

3. If hw(z) <L L(z′): Increase i by 1.
4. If hw(z) >L L(z′): Increase j by 1.
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It can be easily verified that Count P -Heavy counts the P -heavy occurrence z′ of every
leaf z in a sidetree of P . Notice that double counting will not occur. That is due to the
following:

▶ Fact 16. Let z and z′ be two leaves in sidetrees of P emerging from ui and uj respectively
such that hw(z) = L(z′). It must be the case that i < j.

Fact 16 guarantees that if we count the occurrences of z as 1-ham occurrences of z′ and vice
versa when hw(z) and L(z′) are be visited in Count P -Heavy, we will not count them as
1-ham occurrences of each other again, because it can’t be the case that hw(z′) = L(z).

The lexicographic comparisons between hw(z) and L(z′) can be executed in constant time
using lcp queries. To efficiently execute an lcp query with a P -heavy word, we store the
P -heavy word hw(z) as a pair (z, i) with i the index in which L(z) is modified. With that
representation, two lcp queries can be used to find a = lcp(hw(z), L(z′)) in a ’kangooroo’
jump manner. If a < m, the following symbol can be compared to determine the lexicographic
order between hw(z) and L(z′). With the constant time lexicographic comparing, it is easy
to see that the complexity of Count P -Heavy is O(|LP | + |L|) = O(|SE|) with SE being the
set of leaves in the sidetrees of P .

Note that when the equality hw(z) = L(z′) is met, it is crucial to increase i rather than
j. That is due to the fact that LP may contain duplicates while L does not. Alternatively,
LP can be preprocessed to group duplicates together. We conclude the counting of P -heavy
occurrences with the following:

▶ Theorem 17. The P -heavy occurrences of every leaf z can be counted over all the heavy
paths P such that z is a leaf in a sidetree of P in O(n log n) time and linear space.

Proof. For every heavy path P = u1, u2 . . . ux, we use Theorem 14 to obtain the list LP of
sorted P -heavy words and obtain L from u1. We then apply Count P -Heavy on LP and
P to match every hw(z) ∈ LP with its P -heavy occurrence z′ if exists, and update the
corresponding counters accordingly.

The amortized time for applying Theorem 14 for a path P is O(|SE(P )|) with SE(P )
being the set of leaves in the sidetrees of P . Every leaf in ST is a leaf in the sidetree of at
most log(n) heavy paths, so the overall complexity is O(n log n). We also construct the suffix
array as a preprocess procedure, which takes an additional O(n log n) time.

As for space, the only non-trivially linear part is the array LCP [1 . . . m] used in LCP
Partition. As before, we apply LCP Partition on batches of size at most 2n, so the collective
size of the lists in LCP [1 . . . m] never exceeds O(n). After obtaining LP for all the paths in
the batch, we apply Count P -Heavy for every path in the batch and then reuse the space
occupied by the sorted lists LP as they are no longer required. ◀

When put together, Theorem 12 and Theorem 17 yield the main result of this section:

▶ Theorem 18. The 1-mappability problem can be solved using O(n log n)-time and linear
space on a text with infinite integer alphabet.

Note that for infinite integer alphabet, better time can not be achieved unless certain
values of m are excluded. For example:

▶ Observation 19. For a text S over infinite integer alphabet and m = 2, there is an index
i ∈ [1 . . . n] with at least 1-ham occurrence iff the symbols of S · σ′ are not distinct for some
σ′ /∈ Σ.
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The above straight forward observation shows a trivial relation between the k-mappability
problem and reporting whether or not all the elements of a set are distinct - which can not
be done in o(n log n). It can be easily generalized for every fixed value of m.

4 O( n2

m2 + n) and Linear Space Algorithm for 1-Mappability with
Constant sized Alphabet

As a warm up, we present a technique for counting the 1-ham occurrence of a word with size
m in O( n

m ) time. Applying this technique to every m-sized word yields an O( n2

m ) algorithm
for 1-mappability. We then proceed to show how to process all the words of size m not one
by one, but in batches of size O(m). We extend the technique used in the warm up to handle
a batch in O( n

m + m) time. Since there are O( n
m ) batches, this yields an O(( n

m )2 + n) time
algorithm.

4.1 Warm up – O(n2

m
+ n)

Let w = S[i . . . i + m − 1] be a subword of S with length m.

▶ Definition 20. Let w1 = S[j . . . j+m−1] be a 1-ham occurrence of w. w1 is an l-occurrence
of w if w1[1 . . . ⌈ m

2 ⌉] = w[1 . . . ⌈ m
2 ⌉]. w1 is an r occurrence of w if w1[⌈ m

2 ⌉ + 1 . . . m] =
w[⌈ m

2 ⌉ + 1 . . . m]. We respectively denote as Lo(w) and Ro(w) the sets of l-occurrences and
r-occurrences of w in S.

It is easy to see that |Lo(w)| + |Ro(w)| − #w is the number of 1-ham occurrences of w,
with #w denoting the number of proper occurrences of w in S. In this section, we show how
to evaluate the number of l-occurrences of a given word w in O( n

k ) time. A symmetrical
approach can be applied to count the number of r-occurrences of w. #w can be evaluated
for all the subwords of S in O(n) time using the suffix tree.

▶ Theorem 21. All the occurrences of a string w of size m in a text of size n can be represented
by a set of O( n

m ) arithmetic progressions of the form A = (s, e, d) such that A = (s, e, d)
represent a sequence of occurrences with starting indexes {ix = s + d · x|x ≥ 0, ix ≤ e}. If
w is periodic, every arithmetic progression A = (s, e, d) has d = per(w). |A| = e − s + 1
represents the number of occurrences represented by A. Every arithmetic progression that has
A > 1 corresponds to a periodic set of instances contained within a run with period d. This
representation is called the periodic occurrences representation of w and it can be obtained in
O( n

m ) time from the suffix tree following an O(n) time preprocessing.

A proof for the above can be found in Section A.2.
Given a words w = S[i . . . i + m − 1], we use Theorem 21 to obtain all the occurrences of

wL = w[1 . . . ⌈ m
2 ⌉] in periodic occurrences representation. For every occurrence of wL in this

representation, we wish to check if it is a prefix of an l-occurrence.
We process every arithmetic progression A = (s, e, d) of occurrences of wL. If A only

represents a single occurrence of wL in index s, we query l1 = LCP (s, i). If l1 ≥ m,
we have a proper instance of w. Otherwise, we have a mismatch. Proceed to query
l2 = LCP (s + l1 + 1, i + l1 + 1). If it is the case that l2 + l1 + 1 ≥ m, we count s as an
l-occurrence of w.

If A = (s, e, d) represents multiple occurrences of wL, then wL must have a period d. We
exploit the periodic structure of the occurrences represented by A to compute l2 for all the
occurrences in A using constant time. The following lemma proven in Section A.2 is the key
for doing so.
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▶ Lemma 22. Let A = (s, e, d) be an arithmetic progression representing a set of indexes
sj = s + j · d for j ∈ [0 . . . |A| − 1] within a run with period d.

Let i ∈ [1 . . . n] be an index and let lp = lcp(i, s). Let Exi be the maximal extension of a
run with period d containing i to the right of i (regardless of periodicity, Exi ≥ d), and let
Exs be the maximal extension of the period d to the right of s.

1. If lp < d: LCP (i, sj) = lp for every j ∈ [0 . . . |A| − 2].
2. Otherwise, LCP (i, sj) = min(Exi, Exs − j · d) for every j ∈ [0 . . . |A| − 1] such that

Exi ̸= Exs − j · d.

We exploit Lemma 22 to efficiently implement the following subroutine (details proof for
the following can be found in Section A.2.

▶ Lemma 23. Given an arithmetic progression A = (s, e, d) representing the indexes {sj =
i + j · d|j ∈ [0 . . . |A| − 1]} that are contained within the same run with period d, and an
index s ∈ [1 . . . n]. The values lcpj = LCP (s, sj) can be evaluated and represented in O(1)
following O(n) preprocess time on S.

The representation consists of pairs (I, L) such that I = [a . . . b] is a consecutive interval of j

values and L is an integer such that one of the following holds:
1. lcpj = L for every j ∈ I

2. lcpj = L − j · d for every j ∈ I.
Every pair is stored alongside with a bit indicating which one of the above holds for this pair.

In the process of evaluating the representation of lcpj for A = (s, e, d) and i, at most one
of the indexes in A is called the aligned index. In the case in which lp < d, the aligned index
is |A| − 1. In the case in which lp ≥ d, j∗ such that Exs − j∗ · d is the aligned index, provided
that it is an integer. We mark the pair representing the LCP value of the aligned index.

We employ Lemma 23 to obtain a representation of lj
1 for every j ∈ [0 . . . |A| − 1]. After

obtaining this representation, we are left with the task of applying a second LCP query
after the mismatch index for every sj (That will be the equivalent of finding l2). Namely, for
every sj we need to compute lj

2 = LCP (i + lj
1 + 1, sj + lj

1 + 1). More precisely , we need to
count the number of j values for which lj = lj

1 + lj
2 + 1 ≥ m.

For every pair (I = [a . . . b], L), we wish to evaluate lj
2 for j ∈ I by employing Lemma 23

again. In order to do that, we first need to prove that the settings of Lemma 23 are satisfied
in the second evaluation. We prove the following lemma in Section A.2.

▶ Lemma 24. For every pair (I, L) in the output of Lemma 23 on A = (s, e, d) and i that is
not corresponding to an aligned occurrence, one of the below holds for j ∈ I.
1. i + lcpj + 1 is a fixed value and sj + lcpj + 1 is an arithmetic progression of indexes within

a run with period d with difference d.
2. i + lcpj + 1 is an arithmetic progression of indexes within a run with period d with

difference d and sj + lcpj + 1 is a fixed value

It follows from Lemma 24 that Lemma 23 can be applied to each of the pairs representing
the non aligned indexes to evaluate a representation of lcpj

2 for every non aligned index j in
O(1) time. The aligned index, if exists, has its lj

2 evaluated individually.
The above process outputs a set of (at most) 4 non-singular intervals for which the values

of lj
2 and lj

1 are represented either as an arithmetic progression or as a fixed value. We can
easily deduce the amount of occurrences sj with lj

1 + lj
2 + 1 ≥ m from this representation. We

sum the amount of occurrences of wL with lj
1 + lj

2 +1 ≥ m over all the arithmetic progressions
of occurrences to obtain |Lo(w)|. A symmetric procedure can be constructed to evaluate
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|Ro(w)| using occurrences of wR = w[⌈ m
2 + 1⌉ . . . m]. We can use the suffix tree to obtain

#w (the number of occurrences of w within S) for every m-length word in S in O(n) time.
The number of occurrences of w with at most one mismatch is |Ro(w)| + |Lo(w)| − #w.
substracting #w is required to omit double counting. We do this process for every word of
size m.

Complexity. For a word w of size m, we process the arithmetic progressions of occurrences
of wL. For every arithmetic progression A, we evaluate a representation of lcpj

1 and lcpj
2 in

constant time using Lemma 23. We deduce the number of l-occurrences corresponding to
the occurrence of wL represented by A from the representation of lcpj

1 and lcpj
2 in constant

time. We execute a symmetric procedure to deduce the number of r-occurrences of w as
well. There are O( n

m ) arithmetic progressions in periodic occurrences representation of wL,
so counting the 1-ham occurrences of a single word takes O( n

m ). We do this for every word
of size m, so it adds up to O( n2

m ). There is an additional O(n) preprocessing time prior to
the iteration on the words to enable LCP queries, suffix tree construction and access to the
periodic occurrences representation. The overall complexity is O( n2

m + n) = O( n2

m ).

4.2 Reducing the complexity to O( n2

m2 + n)

For reducing the complexity by a factor of m, we present a technique for obtaining |Lo(w)| for
a batch containing O(m) words in O( n

m +m) time. Consider the consecutive set of words with
length m starting in the indices [i . . . i+ m

4 ]. For every word wt = S[i+ m
4 −t . . . i+ m

4 −t+m−1]
with t ∈ [0 . . . m

4 ] in this set, the left half of wt denoted as wt
L = S[i+ m

4 −t . . . i+ m
4 −t+⌈ m

2 ⌉]
contains the word wi

L = S[i + m
4 . . . i + m

2 − 1]. We use the occurrences of wi
L to evaluate

|Lo(wt)| for every t ∈ [0 . . . m
4 ] as we did in the previous section. A symmetric process can

be constructed for computing |Ro(w)|.
We start by finding the arithmetic progression representation of the occurrences of wi

L.
For simpler notation, we denote the starting and ending indices of wi

L as wi
L = S[si . . . ei].

For every cluster A with occurrences {sj = s + d · j|j ∈ [0 . . . |A| − 1]}, let rj
1 = lcp(sj , si)

and rj
2 = lcp(sj + rj

1 + 1, si + rj
1 + 1). As in the previous section, we use Lemma 23 to obtain

a compact representation of rj = rj
1 + rj

2 + 1 for every index sj represented by A.
Using the following Lemma ,that can be proved similarly to Lemma 23, we obtain a

compact representation of lj = LCS(si − 1, sj − 1) for every j ∈ [0 . . . |A| − 1].

▶ Lemma 25. Given an arithmetic progression A = (s, e, d) representing the indexes {sj =
i + j · d|j ∈ [0 . . . |A| − 1]} that are contained within the same run with period d, and an
index s ∈ [1 . . . n]. The values lcsj = LCS(s, sj) can be evaluated and represented in O(1)
following O(n) preprocess time on S.

The representation consists of pairs (I, L) such that I = [a . . . b] is a consecutive interval of j

values and L is an integer such that one of the following holds:
1. lcsj = L for every j ∈ I

2. lcsj = L + j · d for j ∈ I.

After obtaining the values of lj and rj , our next task is deducing for every sj represented
by A, what are the values of t for which sj is corresponding to an l-occurrence of wt. The
following observation is the key for doing so.

▶ Observation 26. sj − t is an l-occurrence of wt iff rj ≥ m − t and lj ≥ t.
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Observation 26 allows us to associate every occurrence sj with a continuous interval
I = [a . . . b] such that sj is extendable to an l-occurrence of wt for and only for t ∈ I.

We initialize a data structure D for maintaining m
4 counters C0, C1, C2 . . . C m

4
. Ct counts

l-occurrences of wt. Initially, Ct = 0 for every t ∈ [0 . . . k
4 ]. We already know from observation

26 that for every sj , the indexes Ct with t ∈ [m − rj . . . lj ] need to be increased by 1. We call
this type of updates, in which a consecutive interval of counters is increased by a constant
value, an interval increment update. There are folklore techniques for applying this kind of
updates to an array of counters efficiently.

Unfortunately, an efficient data structure for applying interval increment updates will not
be sufficient for our cause, as we wish to process the effect of a set of occurrences on D. We
therefore need to explore the structure of the set of updates [m − rj . . . lj ] derived from the
occurrences sj represented by a cluster A.

We present the following types of updates to be applied to an array of counters D.

▶ Definition 27. An interval increment is represented by a triplet (a, b, x). Applying (a, b, x)
to D results in every counter Ct with t ∈ [a . . . b] being increased by x.

An increasing stairs update is represented by a triplet (a, b, p). The update requires
applying the following modifications on D:

For every d ∈ 1 . . . ⌊ b−a+1
x ⌋ Counters Ci with i ∈ [a + p · (d − 1) . . . a + p · d − 1] are

increased by d. The counters with t ∈ [a + p · ⌊ b−a+1
x ⌋ . . . b] are increased by ⌊ b−a+1

x ⌋ + 1
A decreasing stairs update is also represented by a triplet (a, b, p). The update requires

applying the following modifications on D:
For every d ∈ 1 . . . ⌊ b−a+1

x ⌋ Counters Ci with i ∈ [b − p · d + 1 . . . b − p · (d − 1)] are
increased by d. The counters with t ∈ [a . . . b − p · ⌊ b−a+1

x ⌋] are increased by ⌊ b−a+1
x ⌋ + 1

We call the interval [a . . . b] the span of the stairs. We call the interval that is increased
by d the dth step of the update. p is called the width of the stairs update.

A negative stairs update (either increasing or decreasing) is a stairs update in which the
counter in the dth step is decreased by d rather than being increased by d.

▶ Example 28. Let x = 10 and an array D = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). An increasing
stairs update (3, 8, 2) on D will result in the counters being set to (0, 0, 1, 1, 2, 2, 3, 3, 4, 0, 0).
Applying a decreasing stairs update (1, 5, 2) on the updated counters in D will result in the
counters being set to (3, 2, 3, 2, 3, 2, 3, 3, 4, 0, 0).

It turns out that a constant number of interval updates and stairs updates can be used to
express the updates derived from the occurrences sj represented by a cluster A. In Section
A.2, we prove the following:

▶ Lemma 29. Given a cluster A of occurrences of wi
L, the set of updates that need to be

applied to D in order to represent the l-occurrences corresponding to occurrences sj with
j ∈ [0 . . . |A| − 1] can be represented by a constant number of stairs updates and interval
increment updates. Given A and the representation of lj and rj , this set of stairs and interval
increment updates can be retrieved in O(1) time.

Over all the clusters representing occurrences of wi
L, every stairs update (a, b, p) in the

representation has the same stairs width p which is the period of wi
L.

Our algorithm runs as follows: Initialize a data structure D for maintaining a set of m
4

counters. Find all the occurrences of wi
L in arithmetic progression representation. For every

one of the O( n
m ) arithmetic progressions, find the arithmetic progressions representing rj

and lj . Apply Lemma 29 to obtain an O(1) size set of interval increment update and stairs
update that represents the required modifications to be applied to D. The final ingredient
for our algorithm is a data structure that enables the efficient application of these updates.
In the full version of this paper, we prove the following.
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▶ Theorem 30. An array of t counters can be maintained to support stairs updates in O(1)
time per update. Retrieving the values of all the counters in the array takes O(t+u) time with
u being the amount of applied updates. The data structure works in the restricted settings in
which every update (a, b, p) has the same p value.

Note that the restriction on the queries hold in our case, since the step width is always p

the period of wi
L in all the stairs updates constructed in Lemma 29.

Every update corresponding to a set of occurrences of a certain type is applied to D in
O(1) by employing the data structure of Theorem 30 all the updates take O( n

m ) by applying
Theorem 30.

Note that we need a data structure for handling interval increment updates with the same
complexities as the data structure of Theorem 30. The construction of such a data structure
is quite simple and may be considered folklore. We therefore omit the implementation details
of this data structure.

After applying the updates, we query our data structure for the values of all the counters.
This process takes O(m + n

m ) time. This is done for batches of m
4 consecutive indices.

The indices of S are partitioned to 4 n
m such batches. We also preprocess the text for

constant time lcp and lcs queries and construct the suffix tree. The total running time is
O(n + n

m (m + n
m )) = O(n + n2

m2 ). Recall that we described a procedure for evaluating |Lo(w)|.
A symmetric procedure can be constructed to evaluate |Ro(w)|.

Note that for m ∈ Ω(
√

n), O( n2

m2 + n) is dominated by O(n). The main result of this
section immediately follows.

▶ Theorem 31. For constant size alphabet and m ∈ Ω(
√

n), the 1-mappability problem can
be solved in time O(n).
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A Appendix

A.1 Complementary Figures
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Figure 1 An illustration of the stairs update derived from a set of type 2 occurrences. Note that
for every type 2 occurrence, the red arrow representing lj represents the interval of values of t for
which Ct should be incremented due to an occurrence of wt in sj − t. The p indices that are only
contained by the lowest step will be increased by 1. The next p indices are contained within two
stairs and will be increased by 2. And so on.
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Figure 2 A demonstration of wi
L aligned with an occurrence sj . Every m sized word that fits

within the interval spanned by lj and rj (Red arrow and blue arrow, respectively) is an l-occurrence
of a word wt that occurs in sj − t.

A.2 Complementary Proofs For Section 4
Proof for Theorem 21. The existence of the representation specified by Theorem 21 follows
directly from the following facts:

▶ Fact 32. An aperiodic string of length m can have up to O( n
m ) occurrences in a string S

of length n

▶ Fact 33. Let w be a periodic word with period p and length k. The distance between the
starting points of two occurrences of w in a string S is either p or greater than m

2 .

As for efficiently obtaining the periodic occurrences representation from the suffix tree,
we present the following algorithm for preprocessing the suffix tree.

Algorithm 5 Periodic Occurrences Representation Preprocess.

Input: A suffix tree ST

For every node v ∈ ST with |L(v)| = m:
1. Initialize an empty list Lv that is linked to v.
2. Initialize a period pv = −1
3. Initialize two auxiliary integers prev = 0 and runstartv = 0.

Initialize an array A[1 . . . n − m + 1] with A[i] = v such that v is the node in ST with
L(v) = S[i . . . i + m − 1].

For every i ∈ [1 . . . n]:
1. Let v = A[i]
2. If prev = 0, set prev = i and runstartv = i.
3. Otherwise:

a. If i−prev > m
2 , add the pair (runstartv, prev) to Lv and set prev = i and runstartv =

i.
b. Otherwise, set i − prev = pv and prev = i.

For every Lv:
1. Add the pair (runstartv, prev) to Lv.
2. Replace every pair (s, e) ∈ Lv with the tuple (s, e, pv).
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▷ Claim 34. Lv contains the periodic occurrences representation of L(v).

Proof. For a periodic L(v), the correctness of Claim 34 directly follows from Fact 32 and
the value of pv is irrelevant since every arithmetic progression will be a singleton. If L(v)
is periodic, every sequence of occurrences such that every occurrence starts p = per(L(v))
indexes to the right of the previous one will be represented as a single arithmetic progression.
According to Fact 33, the distance between the starting indexes of two such sequences of
occurrences is at least m

2 , and therefore |Lv| ∈ O( n
m ). ◁

A can be initialized in time O(n) using the suffix tree. The rest of the algorithm is obviously
linear. With that, the proof of Theorem 21 is complete. ◀

Proof for Lemma 22. The correctness of the first case follows from the fact that every sj

within the run has the same d symbols to its right, possibly excluding the rightmost sj .
As for the second case, note that the extension of the period from occurrence sj is

Exs − j · d. It holds that S[i + x] = S[sj + x] for every d ≤ x < min(Exi, Exs − j · d).
This is due to the fact that for every such x , S[i + x − d] = S[i + x]. And the first d

symbols to the right of sjand i are equal. If Exi < Exs − j · d, The equality is broken in
S[i + Exi] ̸= S[sj + Exi] since S[sj + Exi] = S[sj + Exi − d] = S[i + Exi − d] ̸= S[i + Exi].
Symmetrical arguments can be made for the case in which Exi > Exs − j · d. ◀

Proof for Lemma 23. We preprocess S for constant time LCP queries. Given A and s,
we evaluate lp = lcp(s, i) using an lcp query. We find the extension of the period d to the
right from i and to the right from s in constant time by querying Exi = LCP (i, i + d) and
Exs = LCP (s, s + d) respectively.

If lp < d, Observation 22 suggests that lcpj = lp for [1 . . . |A| − 2]. lcp|A|−1 can be
evaluated independently using an additional LCP query. Our representation consists of the
pairs ([1 . . . |A| − 2], lp) and (|A − 1 . . . |A| − 1], l|A|−1). Both are pairs of type (1).

In the case in which lp ≥ d, let j∗ be the number satisfying Exi = Exs − j∗ · d. The
following fact is directly derived from Lemma 22:

▶ Fact 35.
1. lcpj = Exi for j ∈ [0 . . . min(⌈j∗⌉ − 1, |A| − 1)]
2. lcpj = Exs − j · d for j ∈ [max(⌊j∗⌋ + 1, 0) . . . |A| − 1]

The above fact provides a representation for lcpj for every j ̸= j∗. Specifically, the pair
([0 . . . min(⌈j∗⌉−1, |A|−1)], Exi) of type (1) and the pair ([max(⌊j∗⌋+1, 0) . . . |A|−1], Exs)
of type (2). In the case in which j∗ is an integer, another pair of type (1) with a singleton
interval is required to represent lcpj∗ . lcpj∗ can be independently evaluated using an LCP
query.

The evaluation of lp, Exs, Exi, lcp|A|−1 and lcpj∗ is done using a constant LCP query
each and therefore consumes constant time. j∗ can be calculated from Exs, Exi and d

using a constant number of basic arithmetic operations. The overall time for obtaining the
representation of lcpj is constant. ◀

Proof of Lemma 24. In the case in which lp < d, we have one pair (I = [0 . . . |A| − 2], lp)
that is corresponding to the non aligned occurrences. i + lp + 1 is a fixed value and sj + lp + 1
is an arithmetic progression with difference d. Let R be the run with period d containing
the indexes of A. Since lp < d, and I does not contain the rightmost index in the run , for
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every j ∈ I sj has at least d indexes to its right contained within R. Therefore, the index
sj + lp + 1 ≤ sj + d is within R for every j ∈ I and condition (1) in the statement of the
lemma holds.

In the case in which lp ≥ d, we distinguish between the two pairs corresponding to the
non-aligned indexes in the representation of lcpj .

The indexes represented by the pair (I = [0 . . . min(⌈j∗⌉ − 1, |A| − 1)], Exi) have Exi <

Exs − j · d. Since lcpj = Exi is a fixed value for j ∈ I, the sequence i + lcpj + 1 is fixed and
sj + lcpj + 1 is an arithmetic progression with difference d. we also have sj + lcpj + 1 =
sj + Exi + 1 ≤ Exs − j · d = s + Exs. Recall that s + Exs is the right border of R, so
s ≤ sj + lcpj + 1 ≤ sExs suggests that sj + lcpj + 1 is within R. We therefore proved that
condition (1) holds in this case.

The indexes represented by the pair (I = [max(⌊j∗⌋ + 1, 0) . . . |A| − 1], Exs) have Exi >

Exs − j · d. Since lcpj = Exs − j · d is an arithmetic progression with difference −d for j ∈ I,
i + lcpj + 1 is an arithmetic progression with difference −d and sj + lcpj + 1 is a fixed value.
Symmetric arguments to the ones in the previous case can be made to show that the indexes
i + lcpj + 1 are within the run with period d containing i and condition (2) holds. ◀

Proof for Lemma 29. We partition the occurrences sj into four distinct types:
1. sj with rj ≥ m and lj

e ≥ m
4 . According to Observation 26, sj − t is an l-occurrence of wt

for every t ∈ [0 . . . m
4 ].

2. sj with rj ≥ m and lj < m
4 . According to Observation 26, sj − t is an l-occurrence of wt

for t ∈ [0 . . . lj ].
3. sj with rj < m and lj ≥ m

4 . According to Observation 26, sj − t is an l-occurrence of wt

for t ∈ [m − rj . . . m
4 ] in this case.

4. sj with rj < m and lj ≥ m
4 . According to Observation 26, sj − t is an l-occurrence of wt

for t ∈ [m − rj . . . lj ] in this case.
Fig. 2 demonstrates the fourth type listed above and can be used to understand the rest of
the types. Recall that rj (resp. lj) is partition into a constant number of intervals of values
of j. For every such interval I = [s . . . e], an arithmetic progression represents the values of
rj (resp. lj) with j ∈ I. This representation can be easily processed in O(1) time to obtain
a partition P of the values of j into a constant number of intervals, such that every interval
I = [a . . . b] ∈ P contains occurrences of exactly one of the types listed above.

We treat every type independently.

Type 1: An interval I = [a . . . b] of type 1 occurrences contributes b − a + 1 l-occurrences
of wt for every t ∈ [0 . . . m

4 ]. This is naturally represented by the interval increment update
(0, m

4 , b − a + 1)

Type 2: Consider an interval I = [a . . . b] of type 2 occurrences. sj − t with j ∈ I is an
l-occurrence for every wt with t ∈ [0 . . . lj ]. Recall lj is either an increasing arithmetic
progression or a fixes value in [a . . . b]. If it is a fixed value l′, every occurrence sj with
j ∈ I contributes an l-occurrence of wt for the same interval of t values [0 . . . l′]. The
overall contribution of all the occurrences in I can be therefore represented with the interval
increment update (0, l′, b − a + 1).

The more complicated case is the case in which lj is an increasing arithmetic progression.
Recall that the difference p of this arithmetic progression is the period of wi

L. The occurrence
sb with the maximal LCP value lb contributes an l-occurrence of wt for t ∈ [0 . . . lb]. The
occurrence sb−1 contributes an l-occurrence for wt for t ∈ [0 . . . lb − p] and so on. The effect
of the entire progression on the counters Ct can be described as follows: The counters Ct
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for t ∈ [lb − p + 1 . . . lb] are increased by 1, the counters with t ∈ [lb − 2p + 1 . . . lb − p] are
increased by 2 and so on. In general: the counters Ct with t ∈ [lb − x · p + 1 . . . lb − (x − 1) · p]
are increased by x for x ∈ [1 . . . b − a] and the counters Ct with t ∈ [0 . . . la] are increased
by b − a + 1. The modification of indexes in [la + 1 . . . lb] can be equivalently described as
an application of a decreasing stairs update (la + 1, lb, p). The modification of the indexes
[0 . . . la] can be described as an interval increment update (0, la, b − a + 1). See Fig. 1 for an
illustration of the stairs update derived from type 2 occurrences.

Type 3: Having a symmetric structure to an interval of type 2 occurrences, the effect of an
interval of type 3 occurrences on D can be represented by a stairs update and an interval
increment update as well.

Type 4: Consider a consecutive interval I = [a . . . b] of type 4 occurrences. Recall that,
similarly to lj , the arithmetic progression rj must be either decreasing or a fixed value. If
both lj and rj are fixed in I, the counters Ct with t ∈ [m − rb . . . la] need to be increased
by a − b + 1 which can be represented with an interval increment update. If either lj or rj

are fixed, and the other is an increasing or decreasing arithmetic progression, the required
modification for D can be represented with a stairs update and an interval increment update
similarly to the representation of type 2 updates.

If both rj and lj are arithmetic progressions, the updates to Ct have a “sliding window”
structure. Namely, Counters with t ∈ [m − ra . . . la] are increased due to occurrence sa.
Counters with t ∈ [m − ra + p . . . la + p] are increased due to occurrence sa+1 and so on
(Notice that these intervals may overlap). We proceed to show how to represent this kind of
modification to the clusters using a constant number of stairs updates and interval increment
updates.

For clearer presentation, assume that the required modification to be applied to the
counters is given as a pair (x, y) such that for every j ∈ [0 . . . |I| − 1] the interval [x + j ·
p . . . y + j · p] is increased by 1. Every such interval [x + j · p . . . y + j · p] is called a window,
with x + j · p being the start of the window and y + j · p being the end of the window. We
represent the modification to the updates using two increasing stairs updates and one interval
increment update.

The first increasing stairs update is Starts = (x, x + (|I| − 1) · p − 1, p). Note the the d-th
step of Starts starts in the same index as the start of the d-th window. The second update
is a negative increasing stairs updates Ends = (y + 1, y + (|I| − 1) · p, p). Note that the d-th
step of Ends starts one index to the right of the end of the d-th window. Finally, we have the
interval increment update Remainder = (x + (|I| − 1) · p, y + (|I| − 1) · p, |I|) which can be
considered an extended last step for Starts. It is easy to see that all the updates only apply
to the indexes affected by the sliding window. Furthermore, a counter Ct is increased by
Starts (or by Remainders) by the number of starting indexes of windows that are not to the
right of t. Ct is decreased by Ends by the number of windows with ending indexes strictly
to the left of t. Overall, the counter Ct is increased by the number of windows containing
it. With this, we proved that Starts, Ends and Remainders are equivalent to the sliding
window update given as (x, y).

Every stairs or interval update we constructed in the above discussion can be easily
obtained in O(1) time from I and from the representation of lj and rj . The proof of the
Lemma 29 is completed. ◀
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1 Introduction

Range queries are a classic data structure topic [63, 13, 12]. In 1d, a range query q =
f(A, i, j) on an array of n elements over some set U , denoted by A[1 . . n], takes two indices
1 ≤ i ≤ j ≤ n, a function f defined over arrays of elements of U , and outputs f(A[i . . j]) =
f(A[i], . . . , A[j]). Range query data structures in 1d can thus be viewed as data structures
answering queries on a string in the internal setting, where U is the considered alphabet.

Asking internal queries on a string has received much attention in recent years. In the
internal setting, we are asked to preprocess a string T of length n over an alphabet Σ of
size σ, so that queries about substrings of T can be answered efficiently. Note that an
arbitrary substring of T can be encoded in O(1) words of space by the indices i, j of an
occurrence of it as a fragment T [i] · · · T [j] = T [i . . j] of T . Data structures for answering
internal queries are interesting in their own sake, but also have numerous applications in
the design of algorithms and (more sophisticated) data structures in stringology. Because
of these numerous applications, we usually place particular emphasis on the construction
time – other than on space/query-time tradeoffs, which is the main focus in the classic data
structure literature.

The most widely-used internal query is that of asking for the longest common prefix
of two suffixes T [i . . n] and T [j . . n] of T . The classic data structure for this problem [48]
consists of the suffix tree of T [25] and a lowest common ancestor data structure [37] over the
suffix tree. It occupies O(n) space, it can be constructed in O(n) time, and it answers queries
in O(1) time. In the word RAM model of computation with word size Θ(log n) bits the
construction time is not necessarily optimal. A sequence of works [61, 52, 14] has culminated
in the recent optimal data structure of Kempa and Kociumaka [40]: it occupies O(n/ logσ n)
space, it can be constructed in O(n/ logσ n) time, and it answers queries in O(1) time.
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6:2 Internal Shortest Absent Word Queries

Another fundamental problem in this setting is the internal pattern matching (IPM)
problem. It consists in preprocessing T so that we can efficiently compute the occurrences of
a substring U of T in another substring V of T . For the decision version of the IPM problem,
Keller et al. [39] presented a data structure of nearly-linear size supporting sublogarithmic-
time queries. Kociumaka et al. [45] presented a data structure of linear size supporting
constant-time queries when the ratio between the lengths of V and U is bounded by a constant.
The O(n)-time construction algorithm of the latter data structure was derandomised in [42].
In fact, Kociumaka et al. [45], using their efficient IPM queries as a subroutine, managed to
show efficient solutions for other internal problems, such as for computing the periods of a
substring (period queries, introduced in [44]), and for checking whether two substrings are
rotations of one another (cyclic equivalence queries). Other problems that have been studied
in the internal setting include string alignment [62, 18], approximate pattern matching [21],
dictionary matching [20, 19], longest common substring [4], counting palindromes [59], range
longest common prefix [3, 1, 49, 34], the computation of the lexicographically minimal
or maximal suffix, and minimal rotation [7, 41], as well as of the lexicographically kth
suffix [8]. We refer the interested reader to the Ph.D dissertation of Kociumaka [42], for a
nice exposition.

In this work, we extend this line of research by investigating the following basic internal
query, which, to the best of our knowledge, has not been studied previously. Given a string T

of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)}, preprocess T so that given a range [i, j],
we can return a shortest string over Σ that does not occur in T [i . . j]. The latter shortest
string is also known as a shortest absent word in the literature. We work on the standard
unit-cost word RAM model with machine word-size w = Θ(log n) bits. We measure the
space used by our algorithms and data structures in machine words, unless stated otherwise.
We assume that we have random access to T and so our algorithms return a constant-space
representation of a shortest string (a witness) consisting of a substring of T and a letter. A
naïve solution for this problem precomputes a table of size O(n2) that stores the answer for
every possible query [i, j]. Our main result is the following.

▶ Theorem 1. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, for any positive integer k ∈ [1, log logσ n], we can construct a data structure of size
O((n/k) · log logσ n), in O(n logσ n) time, so that if query [a, b] is given, we can compute a
shortest string over Σ that does not occur in T [a . . b] in O(log logσ k) time.

By setting k = 1 we get an O(n log logσ n)-size data structure with O(1) query time.
In the related range shortest unique substring problem, defined by Abedin et al. [2], the task

is to construct a data structure over T to be able to answer the following type of online queries
efficiently. Given a range [i, j], return a shortest string with exactly one occurrence (starting
position) in [i, j]. Abedin et al. presented a data structure of size O(n log n) supporting
O(logw n)-time queries, where w = Θ(log n) is the word size. Additionally, Abedin et al. [2]
presented a data structure of size O(n) supporting O(

√
n logϵ n)-time queries, where ϵ is an

arbitrarily small positive constant.

Our Techniques

For clarity of exposition, in this overview, we skip the time-efficient construction algorithms
of our data structures and only describe how to compute the length of a shortest absent word
(without a witness) in T [a . . b]; note that this length is at most logσ n. Let us also note that
the length of a shortest absent word of T can be computed in O(n) time using the suffix
tree of T [25]. It suffices to traverse the suffix tree of T recording the shortest string-depth ℓ,
where an implicit or explicit node has less than σ outgoing edges.
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First approach: We precompute, for each position i and for each length j ∈ [1, logσ n],
the ending position of the shortest prefix of T [i . . n] that contains an occurrence of each of
the σj distinct words of length j. Then, a query for the length of a shortest absent word of
T [a . . b] reduces to a predecessor query among the ending positions we have precomputed for
position a. By maintaining these O(logσ n) ending positions in a fusion tree [32], we obtain
a data structure of size O(n logσ n) supporting queries in O(logw log n) = O(1) time.

Second approach: We precompute, for each length j ∈ [1, logσ n], all minimal fragments of
T that contain an occurrence of each of the distinct σj words of length j. As these fragments
are inclusion-free, we can encode them using two n-bit arrays storing their starting and
ending positions in T , respectively. We thus require O(n) words of space in total over all js.
Observe that T [a . . b] does not have an absent word of length j if and only if it contains a
minimal fragment for length j; we can check this condition in O(1) time after augmenting
the computed bit arrays with succinct rank and select data structures [38]. Finally, due to
monotonicity (if T [a . . b] contains all strings of length j + 1 then T contains all strings of
length j), we can binary search for the answer in O(log logσ n) time.

Third approach: We rely on the following combinatorial observation: if the length of a
shortest absent word of a string X over Σ is λ, we need to prepend Ω(σd−1 · λ) letters to X

in order to obtain a string with a shortest absent word of length λ + d. (For intuition, think
of |X| as a constant; then, we essentially need to prepend the de Bruijn sequence of order d

over Σ to X in order to achieve the desired result.) This observation allows us to sparsify
the information we stored in our first approach: for each length j ∈ [1, logσ n], we use the
value (previously) stored for some position i for an interval of positions. We then maintain
a dynamic fusion tree over the stored values, which are now o(n logσ n) in total, and make
it persistent so that we can later query any version of it. As we will show, in the end we
get the correct answer up to a small additive error, which we then eliminate by utilising the
data structure developed in our second approach.

Let us remark that our partially persistent fusion trees allow us to obtain an alternative
time-optimal data structure for the weighted ancestors problem [26] when the input tree
of size n is of depth polylogarithmic in n. Such a data structure can be also easily derived
from [47, 36].

Other Related Work

Let us recall that a string S that does not occur in T is called absent from T , and if all its proper
substrings appear in T it is called a minimal absent word of T . It should be clear that every
shortest absent word is also a minimal absent word. Minimal absent words (MAWs) are used
in many applications [60, 56, 29, 35, 15, 54, 24] and their theory is well developed [51, 28, 30],
also from an algorithmic and data structure point of view [50, 22, 9, 17, 16, 6, 33, 10, 23].
For example, it is well known that, given two strings X and Y , one has X = Y if and only if
X and Y have the same set of MAWs [51].

Paper Organization

Section 2 provides some preliminaries. The first approach is detailed in Section 3 and the
second one in Section 4. Section 5 provides the combinatorial foundations for the third
approach, which is detailed in Section 6.
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2 Preliminaries

An alphabet Σ is a finite nonempty set whose elements are called letters. A string (or word)
S = S[1 . . n] is a sequence of length |S| = n over Σ. The empty string ε is the string of
length 0. The concatenation of two strings S and T is the string composed of the letters
of S followed by the letters of T . It is denoted by S · T or simply by ST . The set of all
strings (including ε) over Σ is denoted by Σ∗. The set of all strings of length k > 0 over Σ is
denoted by Σk. For 1 ≤ i ≤ j ≤ n, S[i] denotes the ith letter of S, and the fragment S[i . . j]
denotes an occurrence of the underlying substring P = S[i] · · · S[j]. We say that P occurs at
(starting) position i in S. P is called absent from S if it does not occur in S. A substring
S[i . . j] is a suffix of S if j = n and it is a prefix of S if i = 1.

The following proposition is straightforward (as explained in Section 1).

▶ Proposition 2. Let T be a string of length n. A shortest absent word of T can be computed
in O(n) time.

Given an array A of n items taken from a totally ordered set, the range minimum query
RMQA(ℓ, r) = arg min A[k] (with 1 ≤ ℓ ≤ k ≤ r ≤ n) returns the position of the minimal
element in A[ℓ . . r]. The following result is known.

▶ Theorem 3 ([12]). Let A be an array of n integers. A data structure of size O(n) can be
constructed in O(n) time supporting RMQs on A in O(1) time.

We make use of rank and select data structures constructed over bit vectors. For a bit
vector H we define rankq(i, H) = |{k ∈ [1, i] : H[k] = q}| and selectq(i, H) = min{k ∈ [1, n] :
rankq(k, H) = i}, for q ∈ {0, 1}. The following result is known.

▶ Theorem 4 ([38, 53]). Let H be a bit vector of n bits. A data structure of o(n) additional
bits can be constructed in O(n) time supporting rank and select queries on H in O(1) time.

The static predecessor problem consists in preprocessing a set Y of integers, over an
ordered universe U , so that, for any integer x ∈ U one can efficiently return the predecessor
pred(x) := max{y ∈ Y : y ≤ x} of x in Y . The successor problem is defined analogously:
upon a queried integer x ∈ U , the successor min{y ∈ Y : y ≥ x} of x in Y is to be returned.
Willard and Fredman designed the fusion tree data structure for this problem [32]. In the
dynamic variant of the problem, updates to Y are interleaved with predecessor and successor
queries. Pătraşcu and Thorup [57] presented a dynamic version of fusion trees, which, in
particular yields an efficient construction of this data structure.

▶ Theorem 5 ([32, 57]). Let Y be a set of at most n w-bit integers. A data structure of size
O(n) can be constructed in O(n logw n) time supporting insertions, deletions, and predecessor
queries on Y in O(logw n) time.

If |U | = O(n), then, after an O(n)-time preprocessing, we can answer predecessor queries
in O(1) time. For each y ∈ Y , we set the yth bit of an initially all-zeros |U |-size bit vector.
We then preprocess this bit vector as in Theorem 4. Then, a predecessor query for any
integer x can be answered in O(1) time due to the following readily verifiable formula:
pred(x) = select1(rank1(x)).

The main problem considered in this paper is formally defined as follows.

Internal Shortest Absent Word (ISAW)
Input: A string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ > 1.
Output: Given integers a and b, with 1 ≤ a ≤ b ≤ n, output a shortest string in Σ∗

with no occurrence in T [a . . b].
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If a = b then the answer is trivial. So, in what follows we assume that a < b. Let us
also remark that the output (shortest absent word) can be represented in O(1) space using:
either a range [i, j] ⊆ [1, n] and a letter α of Σ, such that the shortest string in Σ∗ with
no occurrence in T [a . . b] is T [i . . j]α; or simply a range [i, j] ⊆ [1, n] such that the shortest
string in Σ∗ with no occurrence in T [a . . b] is T [i . . j].

▶ Example 6. Given the string T = abaabaaabbabbbaaab and the range [a, b] = [8, 14]
(shown in red), the only shortest absent word of T [8 . . 14] is T [i . . j] = T [7 . . 8] = aa.

3 O(n logσ n) Space and O(1) Query Time

Let T be a string of length n. We define ST (j) as the function counting the cardinality of the
set of length-j substrings of T . This is known as the substring complexity function [27, 58].
Note that ST (j) ≤ n, for all j. We have the following simple fact.

▶ Fact 7. The length ℓ of a shortest absent word of a string T of length n over an alphabet
of size σ is equal to the smallest j for which ST (j) < σj and hence ℓ ∈ [1, ⌊logσ n⌋].

We denote the set of shortest absent words of T by SAWT . Recall that, by Proposition 2,
a shortest absent word of T can be computed in O(n) time. We denote the length of the
shortest absent words of T by ℓ. By Fact 7, ℓ ≤ ⌊logσ n⌋. Since ℓ is an upper bound on the
length of the answer for any ISAW query on T , in what follows, we consider only lengths in
[1, ℓ − 1]. Let one such length be denoted by j. By constructing and traversing the suffix tree
of T , we can assign to each T [i . . i + j − 1] its lexicographic rank in Σj . The time required
for each length j is O(n), since the suffix tree of T can be constructed within this time [25].
Thus, the total time for all lengths j ∈ [1, ℓ − 1] is O(n logσ n) by Fact 7.

We design the following warm-up solution to the ISAW problem. For all j ∈ [1, ℓ − 1]
we store an array RNKj of n integers such that RNKj [i] is equal to the lexicographic rank
of T [i . . i + j − 1] in Σj . Then, given a range [a, b], in order to check if there is an absent
word of length j in T [a . . b] we only need to compute the number of distinct elements in
RNKj [a . . b − j + 1]. It is folklore that using a persistent segment tree, we can preprocess an
array A of n integers in O(n log n) time so that upon a range query [a, b] we can return the
number of distinct elements in A[a . . b] in O(log n) time. Thus, we could use this tool as a
black box for every array RNKj resulting, however, in Ω(log n)-time queries. We improve
upon this solution as follows.

We employ a range minimum query (RMQ) data structure [12] over a slight modification
of RNKj . For each j, we have an auxiliary procedure checking whether all strings from Σj

occur in T [a . . b] or not (i.e., it suffices to check whether any lexicographic rank is absent
from the corresponding range). Similar to the previous solution, we rank the elements of
Σj by their lexicographic order. We append RNKj with all integers in [1, σj ]. Let this array
be APPj . By Fact 7, we have that |APPj | ≤ 2n. Then, we construct an array PREj of size
|APPj |: PREj [i] stores the position of the rightmost occurrence of APPj [i] in APPj [1 . . i − 1]
(or 0 if such an occurrence does not exist). This can be done in O(n) time per j by sorting
the list of pairs (T [i . . i + j − 1], i), for all i, using the suffix tree of T to assign ranks for
T [i . . i + j − 1] and then radix sort to sort the list of pairs.

We now rely on the following fact.

▶ Fact 8. ST [a. .b](j) = σj if and only if min{PREj [i] : i ∈ [b − j + 2, |PREj |]} ≥ a.
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a b
ranks appended

to RNK

the minimum

PREj

b− j + 2

Figure 1 Illustration of the setting in Fact 8.

Proof. If the smallest element in PREj [b−j+2 . . |PREj |], say PREj [k], is such that PREj [k] ≥
a, then all ranks of elements in Σj occur in APPj [a . . b − j + 1]. This is because all elements
(ranks) in Σj occur at least once after b − j + 2 (due to appending all integers in [1, σj ] to
RNKj), thus all must have a representative occurrence after b − j + 2. Inspect Figure 1 for
an illustration. (The opposite direction is analogous.) ◀

The following two examples illustrate the construction of arrays RNKj , APPj , and PREj

as well as Fact 8.

▶ Example 9 (Construction). Let T = abaabaaabbabbbaaab and Σ = {a, b}. The set SAWT

of shortest absent words of T over Σ, each of length ℓ = 4, is {aaaa, abab, baba, bbbb}.
Arrays RNKj , APPj , and PREj , for all j ∈ [1, ℓ − 1], are as follows: For instance, RNK2[15] =

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
T a b a a b a a a b b a b b b a a a b
RNK1 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2
APP1 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2 1 2
PRE1 0 0 1 3 2 4 6 7 5 9 8 10 12 13 11 15 16 14 17 18
RNK2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2
APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
RNK3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2
APP3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2 1 2 3 4 5 6 7 8
PRE3 0 0 0 1 2 0 3 0 0 0 8 0 9 5 6 7 15 16 4 11 14 10 13 12

APP2[15] = 1 denotes that the lexicographic rank of aa in Σ2 is 1; and PRE2[15] = 7 denotes
that the previous rightmost occurrence of aa is at position 7.

▶ Example 10 (Fact 8). Let [a, b] = [7, 11] and j = 2 (see Example 9). The smallest element in
{PRE2[11], . . . , PRE2[21]} is PRE2[15] = 7 ≥ a = 7, which corresponds to rank APP2[15] = 1.
Indeed all other ranks 2, 3, 4 have at least one occurrence within APP2[7 . . 11] = 1, 2, 4, 3, 2.

To apply Fact 8, we construct an RMQ data structure over PREj . By Theorem 3 it takes
O(n) time and space and answers RMQs in O(1) time. This results in O(nℓ) = O(n logσ n)
preprocessing time and space for all j.

For querying, let us observe that σj − ST [a. .b](j), for any T, a, b and increasing j, is
non-decreasing. We can thus apply binary search on j to find the smallest length j such
that ST [a. .b](j) < σj . This results in O(log ℓ) = O(log logσ n) query time. We obtain the
following proposition (retrieving a witness shortest absent word is detailed later).

▶ Proposition 11. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, we can construct a data structure of size O(n logσ n) in O(n logσ n) time, so that if
query [a, b] is given, we can compute a shortest string over Σ that does not occur in T [a . . b]
in O(log logσ n) time.
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We further improve the query time via employing fusion trees as follows. We create a 2d
array FTR[1 . . ℓ − 1][1 . . n] of integers, where

FTR[j][i] = min{PREj [i − j + 2], . . . , PREj [|PREj |]},

for all j ∈ [1, ℓ − 1] and i ∈ [1, n]. Intuitively, FTR[j][i] is the rightmost index of T such that
T [FTR[j][i] . . i] contains all strings of length j over Σ.

Array FTR can be constructed in O(nℓ) = O(n logσ n) time by scanning each array
PREj from right to left maintaining the minimum. Within the same complexities we also
maintain satellite information specifying the index k ∈ [i − j + 2, |PREj |] where the range
minimum FTR[j][i] came from in the sub-array PREj [i − j + 2 . . |PREj |]. We then construct
n fusion trees, one for every collection of ℓ − 1 integers in FTR[1 . . ℓ − 1][i]. This takes total
preprocessing time and space O(nℓ) = O(n logσ n) by Theorem 5. Given the range query
[a, b], we need to find the smallest j ∈ [1, ℓ − 1] such that FTR[j][b] < a. By Theorem 5, we
find where the predecessor of a lies in FTR[1 . . ℓ − 1][b] in O(logw ℓ) time, where w is the
word size; this time cost is O(1) since w = Θ(log n).

We finally retrieve a witness shortest absent word as follows. If there is no j < ℓ such
that FTR[j][b] < a, then we output any shortest absent word of length ℓ of T arbitrarily. If
such a j < ℓ exists, by the definition of FTR[j], we output T [FTR[j][b] . . FTR[j][b] + j − 1] if
FTR[j][b] > 0 or T [k . . k + j − 1] if FTR[j][b] = 0, where k is the index of PREj , where the
minimum came from. Inspect the following illustrative example.

▶ Example 12 (Querying). We construct array FTR for T from Example 9. For a given [a, b]
we look up column b, and find the topmost entry whose value is less than a. If all entries
have values greater than or equal to a, we output any element from SAWT arbitrarily.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a b a a b a a a b b a b b b a a a b
FTR[1] 0 1 2 2 4 5 5 5 8 8 10 11 11 11 14 14 14 17
FTR[2] 0 0 0 0 0 0 0 0 0 5 7 7 7 7 7 11 11 13
FTR[3] 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4

If [a, b] = [3, 14] then no entry in column b = 14 is less than a = 3, which means the length
of the shortest absent word is 4; we output one from {aaaa, abab, baba, bbbb} arbitrarily. If
[a, b] = [5, 14] then FTR[3][14] = 4 < 5 so the length of a shortest absent word of T [5 . . 14] is
3; a shortest absent word is T [FTR[3][14] . . FTR[3][14] + 3 − 1] = T [4 . . 6] = aba.

If [a, b] = [7, 9], FTR[2][9] = 0 < 7 so the length of a shortest absent word is
2; a shortest absent word is T [k . . k + j − 1] = T [9 . . 10] = bb because FTR[2][9] =
min{PRE2[9], . . . , PRE2[|PRE2|]} = PRE2[9] = 0 tells us that the minimum in this range came
from index k = 9.

We obtain the following result.

▶ Theorem 13. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ,
we can construct a data structure of size O(n logσ n) in O(n logσ n) time, so that if query
[a, b] is given, we can compute a shortest string over Σ that does not occur in T [a . . b] in
O(1) time.
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4 O(n) Space and O(log logσ n) Query Time

▶ Definition 14 (Order-j Fragment). Given a string T over an alphabet of size σ and an
integer j, V is called an order-j fragment of T if and only if V is a fragment of T and
SV (j) = σj. V is further called a minimal order-j fragment of T if SU (j) < σj and
SZ(j) < σj for U = V [1 . . |V | − 1] and Z = V [2 . . |V |].

In particular, minimal order-j fragments are pairwise not included in each other. The
following fact follows directly.

▶ Fact 15. Given a string T of length n over an alphabet of size σ and an integer j we have
O(n) minimal order-j fragments. Moreover, an arbitrary fragment F of T has SF [j] = σj if
and only if it contains at least one of these minimal fragments.

For each j ∈ [1, logσ n], we consider all minimal order-j fragments T , separately. We
encode the minimal order-j fragments of T using two bit vectors SPj and EPj , standing for
starting positions and ending positions. Inspect the following example.

▶ Example 16. We consider T from Example 9 and j = 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T a b a a b a a a b b a b b b a a a b
APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
SP2 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
EP2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

For instance, SP2[13] = 1 and EP2[18] = 1 denote the minimal order-2 fragment V =
T [13 . . 18] = bbaaab.

We construct a rank and select data structure on SPj and EPj , for all j ∈ [1, ℓ − 1]
supporting O(1)-time queries. The overall space is O(n) by Theorem 4 and Fact 7.

Let us now explain how this data structure enables fast computation of absent words of
length j. Given a range [a, b], by Fact 15, we only need to find whether T [a . . b] contains
a minimal order-j fragment. We can do this in O(1) time using one rank and two select
queries: t = rank1(a − 1, SPj) + 1; and select1(t, SPj) and select1(t, EPj).

▶ Example 17. We consider T , SP2 and EP2 from Example 16. Let [a, b] = [5, 14]. We have
t = rank1(a−1, SP2)+1 = rank1(4, SP2)+1 = 1, select1(t, SP2) = select1(1, SP2) = 5 < b = 14
and select1(t, EP2) = select1(1, EP2) = 10 < b = 14, which means T [5, 14] contains a minimal
order-2 fragment.

Let us now describe a time-efficient construction of SPj and EPj . We use arrays PREj

and APPj of T , which are constructible in O(n) time (see Section 3). Recall that PREj [i]
stores the starting position of the rightmost occurrence of rank APPj [i] in APPj [1 . . i − 1] (or
0 if such an occurrence does not exist). We apply Fact 8 as follows. We start with all bits of
SPj and EPj unset. Then, for each b ∈ [1, n] for which PREj [b − j + 1] < min{PREj [i] : i ∈
[b − j + 2, |PREj |]} = a, we set the bth bit of EPj and the ath bit of SPj . This can be done
online in a right-to-left scan of PREj in O(n) time.

▶ Example 18. We consider T , SP2 and EP2 from Example 16. We start by setting b = n = 18
and scan PRE2 from right to left: we have a = 13 because min{PRE2[21] = 13 : i ∈ [18, 21]} ≥
a = 13. This gives fragment T [13 . . 18]. Then we set b = n − 1 = 17 and have a = 11 because
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min{PRE2[21] = 13 : i ∈ [17, 20]} ≥ a = 11. This gives fragment T [11 . . 17]. Then we set
b = n − 2 = 16 and have a = 11 because min{PRE2[21] = 13 : i ∈ [16, 19]} ≥ a = 11. This
gives fragment T [11 . . 16]. At this point note that T [11 . . 17] contains T [11 . . 16], and so
T [11 . . 17] is removed as it is non-minimal.

▶ Lemma 19. SPj and EPj can be constructed in O(n) time.

For all j, the construction time is O(nℓ) = O(n logσ n) by Theorem 4, Lemma 19, and
Fact 7. We obtain the following lemma.

▶ Lemma 20. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ,
we can construct a data structure of size O(n) in O(n logσ n) time, so that if query (j, [a, b])
is given, we can check in O(1) time whether there is any string in Σj that does not occur in
T [a . . b], and if so return such a string.

We can now apply Lemma 20 using binary search on j to find the smallest length j such
that ST [a. .b](j) < σj . This results in O(log ℓ) = O(log logσ n) query time by Fact 7. It should
now be clear that when we find the j corresponding to the length of a shortest absent word,
we can output the length-j suffix of the leftmost minimal order-j fragment starting after a.
Note that outputting this suffix is correct by the definition of minimal order-j fragments.

▶ Example 21. We consider T , SP2 and EP2 from Example 16. Let [a, b] = [2, 7]. The length
of a shortest absent word of T [2 . . 7] is 2. We output bb, which is the length-2 suffix of the
leftmost minimal order-2 fragment T [5 . . 10] = baaabb starting after a = 2.

We obtain the following result.

▶ Theorem 22. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, we can construct a data structure of size O(n) in O(n logσ n) time, so that if query
[a, b] is given, we can compute a shortest string over Σ that does not occur in T [a . . b] in
O(log logσ n) time.

5 Combinatorial Insights

A positive integer p is a period of a string S if S[i] = S[i + p] for all i ∈ [1, |S| − p]. We refer
to the smallest period as the period of the string. Let us state the periodicity lemma, one of
the most elegant combinatorial results on strings.

▶ Lemma 23 (Periodicity Lemma (weak version) [31]). If a string S has periods p and q such
that p + q ≤ |S|, then gcd(p, q) is also a period of S.

▶ Lemma 24. If all strings in {WU : U ∈ Σk} for W ̸= ε occur in some string S, then
|S| ≥ |W | · σk/4.

Proof. Let p be the period of W , and let a ∈ Σ be such so that the period of Wa is also p.
All strings WbZ for a letter b ̸= a and Z ∈ Σk−1 must occur in S. Let A = {WU : U ∈
Σk} \ {WaZ : Z ∈ Σk−1}, and note that it is of size σk − σk−1 ≥ σk/2. The following claim
immediately implies the statement of the lemma.

▷ Claim. Let i and j be starting positions of occurrences of different strings WU, WV ∈ A

in S, respectively. Then, we have |j − i| ≥ |W |/2.
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Proof. Let us assume, without loss of generality, that j > i. Further, let us assume towards
a contradiction that j − i < |W |/2. Then, j − i is a period of W and p + j − i ≤ |W | since
p ≤ j − i. Therefore, due to the periodicity lemma (Lemma 23), j − i must be divisible by
the period p of W . Hence, U starts with the letter a and WU /∈ A, a contradiction. ◁

This concludes the proof of this lemma. ◀

▶ Lemma 25. If a shortest absent word of a string Y is of length λ, then the length of a
shortest absent word of XY is in [λ, λ + max{10, 4 + logσ(|X|/λ)}].

Proof. Let W and W ′ be shortest absent words of Y and XY , respectively. Further, let
d = |W ′| − |W |. In order to have d > 0, all strings WU for U ∈ Σd−1 must occur in XY ,
and hence in X · Y [1 . . |WU | − 1], since none of them occurs in Y . Lemma 24 implies
that |X| + λ + d > λ · σd−1/4. Then, since λ + d ≤ 2λd for any positive integers λ, d, we
have |X| > λ · (σd−1/4 − 2d). Assuming that d ≥ 10, and since σ ≥ 2, we conclude that
|X| > λ · σd−1/8. Consequently, logσ(8|X|/λ) + 1 > d. Since logσ 8 ≤ 3 we get the claimed
bound. ◀

▶ Lemma 26. If a shortest absent word of XY is of length m, a shortest absent word of Y

is of length λ, and |X| ≤ m · τ , for a positive integer τ ≥ 16, then m − λ ≤ 10 + 2 logσ τ .

Proof. From Lemma 25 we have λ ∈ [m − max{10, 4 + logσ(|X|/λ)}, m]. If max{10, 4 +
logσ(|X|/λ)} = 10, then m − λ ≤ 10 and we are done.

In the complementary case, since |X| ≤ m · τ , we get the following:

λ ≥ m − logσ(m · τ/λ) − 4 ⇐⇒ λ ≥ m + logσ λ − logσ m − logσ τ − 4.

In particular, λ ≥ m − logσ m − logσ τ − 4.
From the above, if m ≤ τ , then m − λ ≤ 4 + 2 logσ τ .
In what follows we assume that m > τ ≥ 16. Rearranging the original equation, and

since logσ(·) is an increasing function and λ ≥ m − logσ m − logσ τ − 4, we have

m − λ ≤ 4 + logσ(m · τ/λ) ≤ 4 + logσ

(
m

m − logσ m − logσ τ − 4

)
+ logσ τ

≤ 4 + logσ

(
m

m − 2 logσ m − 4

)
+ logσ τ.

Then, we have m−2 logσ m−4 ≥ m/5 since, for any σ ≥ 2, 4x/5−2 logσ x−4 is an increasing
function on [16, ∞) and positive for x = 16. Hence, m − λ ≤ 4 + logσ 5 + logσ τ ≤ 7 + logσ τ .

By combining the bounds on m − λ we get the claimed bound. ◀

6 O(n log logσ n) Space and O(1) Query Time

Recall that we denote by ℓ the length of a shortest absent word of T . We start by constructing
the 2d array FTR[1 . . ℓ − 1][1 . . n] from Section 3 in time O(nℓ) = O(n logσ n). Further recall
that FTR[j][i] is the rightmost index of T such that T [FTR[j][i] . . i] contains all strings of
length j over Σ. Then, to answer a query [a, b], it suffices to find the smallest j such that
FTR[j][b] < a. We do this by finding where the predecessor of a lies in FTR[1 . . ℓ − 1][b]. To
this end, we construct n fusion trees: one per FTR[1 . . ℓ − 1][i], resulting in a data structure
of size Θ(nℓ) = O(n logσ n) with O(1) query time.
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The main idea in this section is to rather maintain a collection of lazy dynamic fusion
trees going from position n to 1, and apply the combinatorial lemmas from Section 5 to
answer the query. Using the lazy dynamic fusion trees, for a parameter τ , we will compute
an interval of size Θ(logσ τ) that contains the length of a shortest absent word of T [a . . b].
Then we will perform binary search employing Lemma 20 to compute the desired length and
output a shortest absent word.

6.1 Lazy FTR Arrays
With lazy we mean that instead of array FTR, we consider array

LFTR[j][i] = FTR[j][i + ((n − i) (mod τ · j))],

for an integer parameter τ ≥ 16. We will later set τ to be some function of n – the reader
may think of it as a constant. Intuitively, for an integer k, we use the value FTR[j][n−τ · j ·k]
for τ · j positions, namely for LFTR[j][i], i ∈ (n − τ · j · (k − 1), n − τ · j · k]. Overall, the
number of values that we consider is∑

j∈[1,ℓ−1]

n

τ · j
= O

(
n log logσ n

τ

)
.

Inspect Figure 2 in this regard.

1 2 n
1

2

`− 1

n− 11

5

. . . . . .

...

...

n− 4 . . .

Figure 2 For simplicity, we have set τ = 1. The black dots represent the entries stored in
LFTR[1 . . 5][n − 11 . . n] and the red line represents LFTR[1 . . 5][n − 4].

We implement LFTR array using a collection of 1d arrays that occupy O((n/τ) · log logσ n)
space in total and allow O(1)-time access to LFTR[j][i] for any j, i. Specifically, we store in
array Rj , for all j ∈ [1, ℓ − 1] and in decreasing order of i, the entries FTR[j][i] with n − i ≡ 0
(mod τ · j). Then, we have LFTR[j][i] = Rj [1 + ⌊(n − i)/(τ · j)⌋].

▶ Fact 27. LFTR[j][i] ≥ FTR[j][i], for all i, j.

Proof. It follows by the definition of LFTR and the fact that FTR[j][i] is monotonically
non-decreasing for increasing i and fixed j. ◀

Note that the fact that FTR[1 . . ℓ−1][i] is decreasing for all i allowed us to use predecessor
queries in our previous solution. We prove an analogous, slightly weaker, statement for LFTR.

▶ Lemma 28. Let j1, j2 ∈ [1, ℓ−1] such that j2 − j1 > 10+ 2 logσ τ , and suppose that τ ≥ 16.
Then, for all i, LFTR[j1][i] > LFTR[j2][i].
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Proof. Let X1 = T [LFTR[j1][i] + 1 . . i]. Then, X1Y1 has a shortest absent word of length j1,
for some Y1 with |Y1| ≤ τ · j1.

Let X2 = T [LFTR[j2][i] + 1 . . i]. Then, X2Y2 has a shortest absent word of length j2, for
some Y2 with |Y2| ≤ τ · j2.

Note that ||Y2| − |Y1|| ≤ τ · j2.
Suppose, towards a contradiction, that LFTR[j1][i] ≤ LFTR[j2][i], and hence |X1| ≥ |X2|.

Then, we must have |Y2| > |Y1| as otherwise X2Y2 would be a substring of X1Y1 and its
shortest absent word cannot be longer than the one of X1Y1. Let Y2 = Y1V , with |V | ≤ τ · j2.

Then, we have that a shortest absent word of X1Y2 is of length at least j2, since
X2Y2 is a suffix of X1Y2. By Lemma 26 applied to X1Y2 = X1Y1V and X1Y1, we have
j2 − j1 ≤ 10 + 2 logσ τ , a contradiction. ◀

In particular, Lemma 28 tells us that in column i of LFTR, we cannot have too many
values that are equal. More formally, for each j, we have O(logσ τ) indices j′ ̸= j such that
LFTR[j′][i] = LFTR[j][i]. Our goal is to have, for every position i, a snapshot of one of
our dynamic fusion trees to contain as keys the entries of LFTR[1 . . ℓ − 1][i]. The satellite
information (value) of key LFTR[j][i] is a bit vector of size ℓ − 1 bits. For each key, we
maintain the corresponding lengths j in the bit vector. Whenever a key is returned, we can
also return the largest of the lengths j stored in the bit vector: it corresponds to the highest
set bit. In the next subsection we show the following result.

▶ Lemma 29. We can preprocess LFTR in O((n/τ) · log logσ n) time and space to answer
predecessor and successor queries over LFTR[1 . . ℓ − 1][i], for any i ∈ [1, n], in O(1) time.

We denote by top(a, b) the largest j such that LFTR[j][b] is equal to the successor of a in
LFTR[1 . . ℓ − 1][b].

▶ Lemma 30. Given LFTR, after O((n/τ) · log logσ n) time and space preprocessing, we can
answer top(a, b) queries in O(1) time.

Proof. At preprocessing, construct the data structure underlying Lemma 29. Upon a query
top(a, b), answer a successor query for a in LFTR[1 . . ℓ − 1][b] using this data structure.
For the corresponding bit vector, we find the highest set bit in O(1) time, thus retrieving
top(a, b). ◀

Our data structure mainly relies on what we show next using Lemma 26: the sought
answer is “close” to top(a, b). Let us denote the length of a shortest absent word of T [c . . b]
by ℓ[c,b] and the length of a shortest absent word of T [a . . b] by ℓ[a,b].

By the definition of top(a, b), we have that for some c = LFTR[top(a, b)][b] ≥ a and a
prefix X of T [b + 1 . . n] with |X| ≤ top(a, b) · τ , the length of a shortest absent word of
T [c . . b]X is top(a, b)+1. By Lemma 26, top(a, b)−ℓ[c,b] ≤ 10+2 logσ τ . Thus ℓ[a,b] ≥ ℓ[c,b] ≥
top(a, b) − 10 − 2 logσ τ .

In addition, we have LFTR[top(a, b)][b] ≥ a > LFTR[j][b], for all j > top(a, b)+10+2 logσ τ ,
by Lemma 28 and the definition of top(a, b). Hence, ℓ[a,b] ≤ top(a, b)+11+2 logσ τ by Fact 27.

Thus, the sought answer ℓ[a,b] is in [top(a, b) − 10 − 2 logσ τ, top(a, b) + 11 + 2 logσ τ ]. We
employ Lemma 20 to perform binary search over this interval in O(log logσ τ) time – after an
O(n)-time preprocessing. Recall that Lemma 20 also gives us a witness shortest absent word.

We thus arrive at the main result of this paper, by setting τ = 15 + k, for any positive
integer k ∈ [1, log logσ n].
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▶ Theorem 1. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, for any positive integer k ∈ [1, log logσ n], we can construct a data structure of size
O((n/k) · log logσ n), in O(n logσ n) time, so that if query [a, b] is given, we can compute a
shortest string over Σ that does not occur in T [a . . b] in O(log logσ k) time.

In particular, we get the following tradeoffs:
an O(n log logσ n)-size data structure with O(1) query time (for k = 1);
an O(n)-size data structure with O(log logσ log logσ n) query time (for k = ⌊log logσ n⌋).

6.2 Partially Persistent Fusion Trees (using Fusion Trees)
We now describe the construction of the fusion trees over the LFTR array, which under-
lies Lemma 29. We provide the description for answering predecessor queries but it can
be trivially adapted for successor queries. We will make our fusion trees “static partially
persistent”: for each position i ∈ [1, n], we will be able to answer predecessor queries in the
version of the fusion tree corresponding to LFTR[1 . . ℓ − 1][i].

Recall that we work in the word RAM model. For implementing partially persistent
fusion trees, we view each memory cell as a collection of pairs of values and timestamps; a
timestamp indicates when the respective value was written in the cell. (This is a standard
persistence trick, see e.g. [55].) For each cell, we want to construct a predecessor data
structure over the timestamps to simulate these operations. The key idea is that, in each
such cell, we would like to keep the number of updates small so as to employ fusion trees for
implementing it as a predecessor data structure. Let us stress that the latter fusion trees
should not be confused with the partially persistent fusion trees we construct over the LFTR
array for our problem.

We now process T from right to left to construct the collection of partially persistent fusion
trees. For each position of T , we perform the updates as per the LFTR array. Specifically,
for position n, we initialise the partially persistent fusion tree with keys LFTR[1 . . ℓ − 1][n].
Then, for position i from n − 1 to 1, for all j ∈ [1, ℓ − 1], such that (n − i) (mod τ · j) = 0,
we remove key LFTR[j][i + τ · j] and insert key LFTR[j][i]. However, after processing every
τ · log n/ log log n positions of T , and hence

∑
j∈[1,ℓ−1](τ log n/ log log n)/(τ · j) = Θ(log n)

updates have been performed, we create a completely new instance of a partially persistent
fusion tree. We initialise this new instance with the LFTR values of the currently unprocessed
position of T . Let us note that the O(logσ n) time cost for reinitialisation amortises, because
we can charge it to the Θ(log n) O(1)-time updates we have previously performed. For each
position i of T , we store the timestamp t(i) at which its processing ended and a pointer to
the partially persistent fusion tree of the collection corresponding to it.

Upon a query [a, b], we wish to find the smallest j such that LFTR[j][b] < a. We thus
need to find where the predecessor of a lies in LFTR[1 . . ℓ − 1][b]. We retrieve the partially
persistent fusion tree and ask the query, using timestamp t(b). Note that each memory
access performed by the query requires O(1) time, as it translates to a predecessor query in
a fusion tree with O(log n) keys; and there are O(1) such accesses because this is a (partially
persistent) fusion tree with O(logσ n) keys. The query thus takes O(1) time.

6.3 Weighted Ancestor Data Structure for Shallow Trees
A tree is a weighted tree if it is a rooted tree with an integer weight on each node v, denoted
by w(v), such that the weight of the root is zero and w(u) < w(v) if u is the parent of v. We
say that a node v is a weighted ancestor at depth δ of a node u if v is the highest ancestor of
u with weight of at least δ. The problem of constructing a data structure to answer weighted
ancestor queries was introduced by Farach and Muthukrishnan in [26].
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After O(n)-time preprocessing, weighted ancestor queries for nodes of a weighted tree T of
size n with integer weights from a universe [1 . . U ] can be answered in O(log log U) time [26, 5].
Later, it was shown that a dynamic variant of the weighted ancestors problem admits a
solution with the same time bounds as those for dynamic predecessor structures [47, 36].
Further, Kopelowitz et al. [46] introduced another O(n)-size data structure that achieves
faster query time in many special cases. For the offline version, Kociumaka et al. [43] showed
how to answer a batch of q weighted ancestor queries in the optimal O(n + q) time.

The weighted ancestors problem has numerous applications if the input tree is a suffix
tree of some string; see [36] for a nice exposition of these applications. In this context, the
weighted ancestors problem translates to preprocessing the suffix tree of a string T [1 . . n], so
that, given i and j, we can retrieve the implicit or explicit node corresponding to substring
T [i . . j]. Observe that, since the weighted ancestor is a generalisation of the predecessor
problem, it cannot admit better bounds. Nevertheless, the problem on suffix trees is a
special case of the general problem. This led to the challenge of solving the problem on suffix
trees in O(n) preprocessing time and O(1) query time [26]. Gawrychowski et al. [36] partly
settled this question by presenting an O(n)-size data structure with O(1) query time; the
construction time, however, is superlinear in n. Very recently, Belazzougui et al. [11] have
settled this question by presenting an O(n)-size data structure for weighted ancestors in
suffix trees with O(1) query time and an O(n)-time construction algorithm.

Given a tree T of size n and depth d, we can do the following trick to reduce the weighted
ancestors problem to O(n/d) instances on trees of both size and depth O(d): Cut along
every dth root-to-leaf path in T , and duplicate its nodes and edges. Then, we can apply
the result of Kopelowitz and Lewenstein [47, 36] to each of the O(n/d) smaller trees. In the
specific case of d = logO(1) n, this gives an O(n)-size data structure that answers weighted
ancestor queries in O(1) time. By applying the machinery we have developed in the previous
subsection, we achieve the same result for this special case in an alternative way. For each
of the O(n/d) trees of size and depth O(d), we perform a depth-first traversal, maintaining
a partially persistent fusion tree that when visiting node v stores the weights of all (weak)
ancestors of v. We obtain the following corollary for shallow trees.

▶ Corollary 31. Let T be a weighted tree of size n and depth d = logO(1) n, with weights
polynomial in n. We can preprocess T in O(n) time so that weighted ancestor queries on T
can be answered in O(1) time.
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Abstract
The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in data
compression and text indexing. The bijective BWT (BBWT) is a bijective variant of it. Although it
is known that the BWT can be constructed in linear time for integer alphabets by using a linear
time suffix array construction algorithm, it was up to now only conjectured that the BBWT can also
be constructed in linear time. We confirm this conjecture in the word RAM model by proposing a
construction algorithm that is based on SAIS, improving the best known result of O(n lg n/ lg lg n)
time to linear. Since we can reduce the problem of constructing the extended BWT to constructing
the BBWT in linear time, we obtain a linear-time algorithm computing the extended BWT at the
same time.
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1 Introduction

The Burrows–Wheeler transform (BWT) [4] is a transformation permuting the characters of
a given string T$, where $ is a character that is strictly smaller than all characters occurring
it T . The i-th entry of the BWT of T$ is the character preceding the i-th lexicographically
smallest suffix of T$, or $ if this suffix is T$ itself. Strictly speaking, the BWT is not a
bijection since its output contains $ at an arbitrary position while it requests the input T

to have $ as a delimiter at its end in order to restore T . A variant, called the bijective
BWT [19, 12], is a bijective transformation, which does not require the artificial delimiter $.
It is based on the Lyndon factorization [5] of T . In this variant, the output consists of the
last characters of the lexicographically sorted cyclic rotations of all factors composing the
Lyndon factorization of T .

In the following, we call the BWT traditional to ease the distinguishability of both
transformations. It is well known that the traditional BWT has many applications in data
compression [1] and text indexing [8, 9, 10]. Recently, such a text index was adapted to work
with the bijective BWT [2].

© Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piątkowski;
licensed under Creative Commons License CC-BY 4.0

32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021).
Editors: Paweł Gawrychowski and Tatiana Starikovskaya; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hdbn.dsc@tmd.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:juha.karkkainen@cs.helsinki.fi
mailto:koeppl.dsc@tmd.ac.jp
https://dkppl.de/
https://orcid.org/0000-0002-8721-4444
mailto:marcin.piatkowski@mat.umk.pl
https://orcid.org/0000-0001-5636-9497
https://doi.org/10.4230/LIPIcs.CPM.2021.7
https://arxiv.org/abs/1911.06985
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Constructing the Bijective and the Extended BWT

Related Work. In what follows, we review the traditional BWT construction via suffix arrays,
and some algorithms computing the BBWT or the extended BWT. For the complexity
analysis, we take a text T of length n whose characters are drawn from a polynomial
bounded integer alphabet {1, . . . , nO(1)}. Let us start with the traditional BWT, which
we can construct thanks to linear time suffix array construction algorithms [23, 17] in
linear time. That is because the traditional BWT, denoted by BWT[1..n], is determined
by BWT[i] = T [SA[i] − 1] for SA[i] > 1 and BWT[i] = T [n] for SA[i] = 1. Considering the
bijective BWT, Gil and Scott [12] postulated that it can be built in linear time, but did
not give a construction algorithm. It is clear that the time is upper bounded by the total
length of all conjugates [22, after Example 9], which is O(n2). In the same paper, Mantaci
et al. [22] also introduced the extended BWT, a generalization of the BBWT in that it is
a BWT based on a set S of primitive strings, i.e., strings that are not periodic. Hon et
al. [15] provided an algorithm building the extended BWT in O(n lg n) time. Their idea is
to construct the circular suffix array SA◦ such that the i-th position of the extended BWT
is given by T [SA◦[i] − 1], where T is the concatenation of all strings in S. Bonomo et al. [3]
presented the most recent algorithm building the bijective BWT online in O(n lg n/ lg lg n)
time. In [3, Sect. 6], they also gave a linear time reduction from computing the extended BWT
to computing the BBWT. Knowing that an irreducible word has exactly one conjugate being
a Lyndon word, the reduction is done by exchanging each element of the set of irreducible
strings S by the conjugate being a Lyndon word, and concatenating these Lyndon words
after sorting them in descending order. Consequently, a linear-time BBWT construction
algorithm can be used to compute the extended BWT in linear time.

On the practical side, we are aware of the work of Branden Brown1, Yuta Mori in his
OpenBWT library2, and of Neal Burns3. While the first is a naive but easily understandable
implementation calling a general sorting algorithm on all conjugates to directly compute the
BBWT, the second seems to be an adaptation of the suffix array – induced sorting (SAIS)
algorithm [23] to induce the BBWT. The last one takes an already computed suffix array SA
as input, and modifies SA such that reading the characters T [SA[i] − 1] gives the BBWT.
For that, this algorithm shifts entries in SA to the right until they fit. Hence, the running
time is based on the lengths of these shifts, which can be O(n2), but seem to be negligible in
practice for common texts.

Our Result. In this article, we present a linear time algorithm computing the BBWT in
the word RAM model. The main idea is to adapt SAIS to compute the circular suffix array
of the Lyndon factors. We obtain linear running time by exploiting some facts based on the
nature of the Lyndon factorization.

2 Preliminaries

Our computational model is the word RAM model with word size Ω(lg n). Accessing a word
costs O(1) time. In this article, we study strings on an integer alphabet Σ = {1, . . . , σ} with
size σ = nO(1).

1 https://github.com/zephyrtronium/bwst
2 https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?

attachmentid=959&d=1249146089
3 https://github.com/NealB/Bijective-BWT

https://github.com/zephyrtronium/bwst
https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?attachmentid=959&d=1249146089
https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?attachmentid=959&d=1249146089
https://github.com/NealB/Bijective-BWT
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Figure 1 Constructing BBWT of T = cbbcacbbcadacbadacba. The Lyndon factors are high-
lighted ( ). Reading the characters of the penultimate column top-down yields BBWT. The last
column shows in its i-th row the starting position of the i-th smallest conjugate of a Lyndon factor
in the text. It is the circular suffix array studied later in Sect. 4.1. Note that cbb ≺lex cbbcada, but
cbbcada ≺ω cbb.

Strings. We call an element T ∈ Σ∗ a string. Its length is denoted by |T |. Given an
integer j ∈ [1..|T |], we access the j-th character of T with T [j]. Given a string T ∈ Σ∗,
we denote with T k that we concatenate k times the string T . When T is represented by
the concatenation of X, Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y , and Z are called a prefix,
substring, and suffix of T , respectively. A prefix X, substring Y , or suffix Z is called proper
if X ≠ T , Y ̸= T , or Z ̸= T , respectively. A proper prefix X of T is called a border of T if it
is also a suffix of T . T is called border-free if it has no border. For two integers i and j with
1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends at
position j in T . If i > j, then T [i..j] is the empty string. In particular, the suffix starting at
position j of T is denoted with T [j..n]. A string T is called primitive if it cannot be written
as T = Sk for a string S ∈ Σ+ and k ≥ 2.

Orders on Strings. We denote the lexicographic order with ≺lex. Given two strings S and T ,
then S ≺lex T if S is a proper prefix of T or there exists an integer ℓ with 1 ≤ ℓ ≤ min(|S|, |T |)
such that S[1..ℓ−1] = T [1..ℓ−1] and S[ℓ] < T [ℓ]. We write S ≺ω T if the infinite concatenation
Sω := SSS · · · is lexicographically smaller than T ω := TTT · · · . For instance, ab ≺lex aba
but aba ≺ω ab. The relation ≺ω induces an order on the set of primitive strings4, which we
call ≺ω-order.

4 The order cannot be generalized to strings in general since a ̸= aa but neither a ≺ω aa nor aa ≺ω a
holds.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a
L S* S L S* L S* S L S* L S* L L S* L S* L L S*

T =
1 2 3 4 5 6 7 8

E C E D B D B A
L S* L L S* L L S*

T (1) =

Figure 2 Splitting T and T (1) into LMS substrings. The rectangular brackets below the types
represent the LMS substrings. T (1) is T after the replacement of its LMS substrings with their
corresponding ranks defined in Sect. 4.3 and on the left of Fig. 3.

Lyndon Words. Given a primitive string T = T [1..n], its i-th conjugate conji(T ) is defined
as T [i + 1..n]T [1..i] for an integer i ∈ [0..n − 1]. Since T is primitive, all its conjugates
are distinct. We say that T and every one of its conjugates belongs to the conjugate class
conj(T ) := {conj0(T ), . . . , conjn−1(T )}. If a conjugate class contains exactly one conjugate
that is lexicographically smaller than all other conjugates, then this conjugate is called a
Lyndon word [21]. Equivalently, a string T is said to be a Lyndon word if and only if T ≺ S

for every proper suffix S of T . A consequence is that a Lyndon word is border-free.
The Lyndon factorization [5] of T ∈ Σ+ is the unique factorization of T into a sequence

of Lyndon words F1 · · · Fz, where (a) each Fx ∈ Σ+ is a Lyndon word, and (b) Fx ⪰lex Fx+1
for each x ∈ [1..z).

▶ Lemma 1 ([7, Algo. 2.1]). The Lyndon factorization of a string can be computed in linear
time.

Each Lyndon word Fx for x ∈ [1..z] is called a Lyndon factor. For what follows, we fix a
string T [1..n] over an alphabet Σ of size σ. We use the string T := cbbcacbbcadacbadacba
as our running example. Its Lyndon factorization is c, bbc, acbbcad, acbad, acb, a.

Bijective Burrows–Wheeler Transform. We denote the bijective BWT of T by BBWT,
where BBWT[i] is the last character of the i-th string in the list storing the conjugates of all
Lyndon factors F1, . . . , Fz of T sorted with respect to ≺ω. Figure 1 shows the BBWT of our
running example.

3 Reviewing SAIS

Our idea is to adapt SAIS to compute SA◦ instead of the suffix array. To explain this
adaptation, we briefly review SAIS. First, SAIS assigns each suffix a type, which is either L
or S:

T [i..|T |] is an L suffix if T [i..|T |] ≻lex T [i + 1..|T |], or
T [i..|T |] is an S suffix otherwise, i.e., T [i..|T |] ≺lex T [i + 1..|T |],

where we stipulate that T [|T |] is always type S. Since it is not possible that T [i..|T |] =
T [i + 1..|T |], SAIS assigns each suffix a type. An S suffix T [i..|T |] is additionally an S∗ suffix
(also called LMS suffix in [23]) if T [i − 1..|T |] is an L suffix. The substring between two
succeeding S∗ suffixes is called an LMS substring. In other words, a substring T [i..j] with
i < j is an LMS substring if and only if T [i..|T |] and T [j..|T |] are S∗ suffixes and there is
no k ∈ (i..j) such that T [k..|T |] is an S∗ suffix. A border case is T [|T |..|T |], which has to
be the smallest suffix of T (and can be achieved by appending the artificial character $ to
T lexicographically smaller than all other characters appearing it T ) such that T ||T |..|T |]
in an S∗ suffix. We additionally treat T [|T |..|T |] as an LMS substring. The types for the
suffixes of our running example are given in Fig. 2. Regarding the defined types, we make no
distinction between suffixes and their starting positions (e.g., the statements that (a) T [i] is
type L and (b) T [i..|T |] is an L suffix are equivalent).
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LMS Substring Contents Non-Terminal

T [2..5] bbca E
T [5..7] acb C
T [7..10] bbca E
T [10..12] ada D
T [12..15] acba B
T [15..17] ada D
T [17..20] acba B
T [20..20] a A

S∗ Suffix Contents

T [20] a
T [17..20] acba
T [12..20] acbadacba
T [5..20] acbbcadacbadacba
T [15..20] adacba
T [10..20] adacbadacba
T [2..20] bbcacbbcadacbadacba
T [7..20] bbcadacbadacba

Figure 3 Ranking of the LMS substrings and the S∗ suffixes of our running example given in
Sect. 4.3 and Fig. 2. Left: LMS substrings assigned with non-terminals reflecting their corresponding
rank in ≺LMS-order. Right: S∗ suffixes of T sorted in ≺lex-order. Note that T [5..7] = acb ≺lex

acba = T [12..15] = T [17..20], but acba ≺LMS acb.

Next, Nong et al. [23, Def. 3.3] define a relation ≺LMS on substrings of T based on the
lexicographic order and the types: Given two substrings S and U . Let i be the smallest
integer such that (1) S[i] < U [i] or (2) S[i] is type L and U [i] is type S or S∗. If such an
i exists, then we write S ≺LMS U . For two LMS substrings S and U with S ̸= U , either
S ≺LMS U or U ≺LMS S, even if S is a prefix of U (cf. the discussion below of Def. 3.3
in [23]). So ≺LMS is an order on the LMS substrings. The ≺LMS-order is shown on the left
side of Fig. 3 for the LMS substrings listed of the left side of Fig. 2. The crucial observation
is that the ≺LMS-order of the LMS substrings coincides with the lexicographic order of the
suffixes starting with the LMS substrings [23, Lemma 3.8].

Nong et al. [23, A3.4] compute the ≺LMS-order of all LMS substrings with the induced
sorting (which we describe below for the step of computing the rank of all suffixes). Figure 4
visualizes this computation on our running example. Hence, we can assign each LMS substring
a rank based on the ≺LMS-order. Next, we build a string T (1) of LMS substring ranks with
T (1)[i] being the rank of the i-th LMS substring of T in text order.5 See the right side of
Fig. 2 for our running example. We recursively call SAIS on this text of ranks until the ranks
of all LMS substrings are distinct. Given that we have computed T (k) and all characters of
T (k) (i.e., the ranks of the respective LMS substrings) are distinct, then these ranks determine
the order of the S∗ suffixes of T (k). The order of the S∗ suffixes of our running example are
given in Fig. 3 on the right side. Having the order of the S∗ suffixes, we allocate space for
the suffix array, and divide the suffix array into buckets, grouping each suffix with the same
starting character and same type (either L or S) into one bucket. Among all suffixes with
the same starting character, the L suffixes precede the S suffixes [18, Corollary 3]. Putting
S∗ suffixes in their respective buckets according to their order (smallest elements are the
leftmost elements in the buckets), we can induce the L suffixes, as these precede either L or
S∗ suffixes. For that, we scan SA from left to right, and take action only for suffix array
entries that are not empty: When accessing the entry SA[k] = i with i > 1, write i − 1 to the
leftmost available slot of the L bucket with the character T [i − 1] if T [i − 1..|T |] is an L suffix.
Finally, we can induce the ≺lex-order of the S suffixes by scanning the suffix array from right

5 We can obtain T (1) by scanning T from left to right and replacing each LMS substring by its respective
rank, but keep its last character in T if this character is the first character of the subsequent LMS
substring. We further omit the first characters of T that are not part of an LMS substring (which must
be of type L).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 5 10 12 15 17 2 7 4

19 14 4 9 18 13 1 6 11 16 5

17 12 5 10 15 2 7 3 8 6

A A B C C D D 7

S∗ suffixes
L suffixes

S suffixes

≺LMS-ranks

S L S L L

a b c d
2

1

types

starting
character

Figure 4 Inducing LMS substrings. Rows 1 and 2 show the partitioning of SA into buckets, first
divided by the starting characters of the respective LMS substrings, and second by the types L and
S. In Row 4, the S∗ suffixes are inserted into their respective S buckets. Here it is sufficient to only
put the smallest S∗ suffix in the correct order among all other S∗ suffixes in the same bucket. This
suffix is T [20..20] in our example, stored at the suffix array entry 1. The S∗ (resp. L) suffixes induce
the L (resp. S) suffixes in Row 5 (resp. Row 6). The last row assigns each S∗ suffix a meta-character
representing its ≺LMS-rank. We can compute two subsequent suffixes by character-wise comparison,
spending O(|T |) time in total since the LMS substrings have a total length of O(|T |).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 17 12 5 15 10 2 7 4

19 14 4 9 18 13 1 6 16 11 5

3 8 6

20 17 12 5 15 10 19 14 2 7 3 8 4 9 18 13 1 6 16 11 7

19 16 11 4 14 9 18 13 1 6 2 7 3 8 17 12 20 5 15 10 8

b d d c b c c c c c b b b b a a a a a a 9

S∗ suffixes

L suffixes
S suffixes

BWT =
SA − 1 =

SA =

S L S L L

a b c d
2

1

types

starting
character

Figure 5 Inducing L and S suffixes from the ≺lex-order of the S∗ suffixes given in Fig. 2. Rows 1
and 2 show the partitioning of SA into buckets, first divided by the starting characters of the
respective suffixes, and second by the types L and S. Row 4 is SA after inserting the S∗ suffixes
according to their ≺lex-order rank obtained from the right of Fig. 3. The S∗ (resp. L) suffixes induce
the L (resp. S) suffixes in Row 5 (resp. Row 6). Putting all together yields SA in Row 7. In the
penultimate row SA − 1, each text position stored in SA is decremented by one, or set to n if this
position was 1. The last row shows T [(SA − 1)[i]] = BWT[i] in its i-th column, which is the BWT
of T . This BWT is not reversible since the input is not terminated with a unique character like $.
To obtain the BWT of T $, we first write T [SA[1]] = T [20] = a to the output, and then BWT, but
exchanging BWT[SA−1[1]] = BWT[17] = a with $, i.e., abddcbcccccbbbbaa$aaa.
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U V ≺lex ≺ω ≺LMS

aba aca < < <

adc adcb < < >

acb acba < > >

Figure 6 Comparison of the three orders studied in this paper applied to LMS substrings. Assume
that U and V are substrings of the text surrounded by a character d (i.e., T = . . . dUd . . . dV d . . .)
such that the first and the last character of both U and V start with an S∗ suffix. We mark with the
signs < and > whether U is smaller or respectively larger than V according to the corresponding
order. The orders can differ only when one string is the prefix of another string, as this is the case in
the last two rows. Finally, occurrences of U and V can be ≺LMS-incomparable in different contexts
such as . . . dUa . . . dV d . . ., for instance.

to left: When accessing the entry SA[k] = i, write i − 1 to the rightmost available slot of the
S type bucket with the character T [i − 1] if T [i − 1..|T |] is an S suffix. As an invariant, we
always fill an L bucket and an S bucket from left to right and from right to left, respectively.
So we can think of each L bucket and each S bucket as a list with an insertion operation at
the end or at the beginning, respectively. We conduct these steps for our running example
in Fig. 5.

In total, the induction takes O(|T |) time. The recursion step takes also O(|T |) time since
there are at most |T |/2 LMS substrings (there are no two text positions T [i] and T [i + 1]
with type S∗ for i ∈ [1..n − 1]). This gives T (n) = T (n/2) + O(n) = O(n) total time, where
T (n) denotes the time complexity for computing a suffix array of length n.

However, with SAIS we cannot obtain SA◦ ad-hoc since we need to exchange ≺lex with
≺ω. Although these orders are the same for Lyndon words [3, Thm. 8], they differ for LMS
substrings as can be seen in Fig. 6. Hence, we need to come up with an idea to modify SAIS
in such way to compute SA◦.

4 Our Adaptation

We want SAIS to sort Lyndon conjugates in ≺ω-order instead of suffixes in ≺lex-order.
For that, we first get rid of duplicate Lyndon factors to facilitate the analysis, and then
subsequently introduce a slightly different notion to the types of suffixes and LMS substrings,
which translates the suffix sorting problem into computing the BBWT.

4.1 Reduced String and Composed Lyndon Factorization
In a pre-computation step, we want to facilitate our analysis by removing all identical Lyndon
factors from T yielding a reduced string R. We want to remove them to make conjugates
unique; thus we can linearly order them. Consequently, the first step is to show that we
can obtain the BBWT of T from the circular suffix array of R (which we will subsequently
define):

The (composed) Lyndon factorization [5] of T ∈ Σ+ is the factorization of T into
T τ1

1 · · · T τt
t = T , where T1, . . . , Tt is a sequence of lexicographically decreasing Lyndon words

and τx ≥ 1 for x ∈ [1..t]. Let R := T1 · · · Tt denote the text, in which all duplicate Lyndon
factors are removed. Obviously, the Lyndon factorization of R is T1, . . . , Tt. Let b(Tx)
and e(Tx) denote the starting and ending position of the x-th Lyndon factor in R, i.e.,
R[b(Tx)..e(Tx)] is the x-th Lyndon factor Tx of R.
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Our aim is to compute the ≺ω-order of all conjugates of all Lyndon factors of R, which
are given by the set S :=

⋃t
x=1 conj(Tx). Like Hon et al. [14], we present this order in the

so-called circular suffix array SA◦ of {T1, . . . , Tt}, i.e., an array of length |R| with SA◦[k] = i

if R[i..e(Tx)]R[b(Tx)..i − 1] is the k-th smallest string in S with respect to ≺ω, where
i ∈ [b(Tx)..e(Tx)]. The length of SA◦ is |R| since we can associate each text position SA◦[k]
in R with a conjugate starting with R[SA◦[k]].

Having the circular suffix array SA◦ of {T1, . . . , Tt}, we can compute the BBWT of T

by reading SA◦[k] for k ∈ [1..|R|] from left to right: Given SA◦[k] = i ∈ [b(Tx)..e(Tx)], we
append T [i−] exactly τx times to BBWT, where i− is i − 1 or e(Tx) if i = b(Tx). (This is
analogous to the definition of BWT where we set BWT[i] = T [n] for SA[i] = 1, but here we
wrap around each Lyndon factor.)

4.2 Translating Types to Inf-Suffixes
In what follows, we continue working with R defined in Sect. 4.1 instead of T . Let R[i..]
denote the infinite string R[i..e(Tx)]TxTx · · · = conjk(Tx)conjk(Tx) · · · with x such that
i ∈ [b(Tx)..e(Tx)] and k = i − b(Tx). We say that R[i..] is an inf-suffix. As a shorthand, we
also write Tx[i..] = conji−1(Tx)conji−1(Tx) · · · for the inf-suffix starting at R[b(Tx) + i − 1].
In particular, Tx[|Tx| + 1..] = Tx[1..] = TxTx · · · .

Like in SAIS, we distinguish between L and S inf-suffixes:
R[i..] is an L inf-suffix if R[i..] ≻lex R[i+..], and
R[i..] is an S inf-suffix if R[i..] ≺lex R[i+..],

where i+ is either i + 1 or b(Tx) if i = e(Tx), and x is given such that i ∈ [b(Tx)..e(Tx)].
Finally, we introduce the S∗ inf-suffixes as a counterpart to the S∗ suffixes: If R[i..] is an S
inf-suffix, it is further an S∗ inf-suffix if R[i−..] is an L inf-suffix with i− being either i − 1 or
e(Tx) if i = b(Tx), and x ∈ [1..t] chosen such that i ∈ [b(Tx)..e(Tx)].

When speaking about types, we do not distinguish between an inf-suffix and its starting
position in R. This definition assigns all positions of R a type except those belonging to a
Lyndon factor of length one. We solve this by stipulating that all Lyndon factors of length
one start with an S∗ inf-suffix. However, in what follows, we temporarily omit all Lyndon
factors of length one because we will later see that they can be placed at the beginning
of their corresponding buckets in the circular suffix array. They nevertheless appear in
the examples for completeness. To show that suffixes and inf-suffixes starting at the same
position have the same type (except for some border-cases), the following lemma will be
particularly useful:

▶ Lemma 2 ([3, Lemma 7]). For i, j ∈ [1..|Tx|] and x ∈ [1..t], the following statements are
equivalent:
1. conji−1(Tx) = Tx[i..|Tx|]Tx[1..i − 1] ≺lex Tx[j..|Tx|]Tx[1..j − 1] = conjj−1(Tx);
2. conji−1(Tx) ≺ω conjj−1(Tx), i.e., Tx[i..] ≺lex Tx[j..];
3. Tx[i..|Tx|] ≺lex Tx[j..|Tx|].

▶ Lemma 3. Omitting all Lyndon factors of length one from R, the types of all positions
match the original SAIS types, except maybe R[1] and R[b(Tt) + 1..|R|], where R[1..] and
R[|R|..|R|] are always an S∗ inf-suffix and an S∗ suffix, respectively.

Proof. We show that inf-suffixes as well as suffixes starting with Lyndon factors have the
same type S∗:
inf-suffxes. Assume that R[b(Tx)..] is an L inf-suffix for an x ∈ [1..t]. According to the

definition R[b(Tx) + 1..] ≺lex R[b(Tx)..], i.e., Tx[2..] ≺lex Tx[1..], and with Lemma 2,
Tx[2..|Tx|] ≺lex Tx, contradicting that Tx is a Lyndon word. Finally, R[b(Tx)..] is an S∗

inf-suffix because Tx ≺lex Tx[|Tx|] and hence Tx[1..] ≺lex Tx[|Tx|..], again with Lemma 2.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a
S* S* S L S* L S* S L S* L S* L L S* L S* L L S*

T1 T2 T3 T4 T5 T6

R =
1 2 3 4 5 6 7

E B D C A C A
S* S* L L S* L S*

T
(1)
1 T

(1)
2 T

(1)
3 T

(1)
4

R(1) =

Figure 7 Splitting R and R(1) into LMS inf-substrings. The rectangular brackets below the types
represent the LMS inf-substrings. Broken brackets denote that the corresponding LMS inf-substring
ends with the first character of the Lyndon factor in which it is contained. They are colored in
green ( ); all other LMS inf-substrings are represented by brackets colored in blue ( ). R(1) is R

after the replacement of its LMS inf-substrings with their corresponding ranks defined in Sect. 4.3
and on the left of Fig. 8.

suffixes. Due to the Lyndon factorization, R[b(Tx)..|R|] ≻lex R[b(Tx+1)..|R|] for x ∈ [1..t−1].
Hence, the suffix R[e(Tx)..|R|] starting at R[e(Tx)] has to be lexicographically larger than
the suffix R[e(Tx) + 1..|R|] = R[b(Tx+1)..|R|], otherwise we could extend the Lyndon
factor Tx.

Consequently, R[b(Tx)..|R|] and R[b(Tx)..] are an S∗ suffix and an S∗ inf-suffix, respectively,
and R[e(Tx)..|R|] and R[e(Tx)..] are an L suffix and an L inf-suffix.

The claim for all other positions (
⋃t−1

x=1[b(Tx) + 1..e(Tx) − 1]) follows by observing that
Tx[1..] is the ≺lex-smallest inf-suffix among all inf-suffixes starting in Tx and R[b(Tx+1)..|R|]
is ≺lex-smaller than all suffixes starting in R[b(Tx)..e(Tx)] for x ∈ [1..t − 1]. ◀

A corollary is that R[i..|R|] ≺lex R[i..] for i ∈ [b(Tx)..e(Tx)] and x ∈ [1..t − 1] since Tx+1 ≺lex
Tx.6 Next, we define the equivalent to the LMS substrings for the inf-suffixes, which we
call LMS inf-suffixes: For 1 ≤ i < j ≤ |Tx| + 1, the substring (TxTx)[i..j] is called an LMS
inf-substring if and only if Tx[i..] and Tx[j..] are S∗ inf-suffixes and there is no k ∈ (i..j)
such that Tx[k..] is an S∗ inf-suffix. This definition differs from the original LMS substrings
(omitting the last one R[|R|..|R|] being a border case) only for the last LMS inf-substring of
each Lyndon factor. Here, we append Tx[1] instead of Tx+1[1] to the suffix starting with the
last type S∗ position of Tx.

4.3 Example

The LMS inf-substrings of our running example T := cbbcacbbcadacbadacba with R = T

are given in Fig. 7. Their ≺LMS-ranking is given on the left side of Fig. 8, where we associate
each LMS inf-substring, except those consisting of a single character, with a non-terminal
reflecting its rank. By replacing the LMS inf-substrings by their ≺LMS-ranks in the text while
discarding the single character Lyndon factors, we obtain the string T (1) := EBDCACA, whose
LMS inf-substrings are given on the right side of Fig. 7. Among these LMS inf-substrings, we
only continue with BDC and AC. Since all LMS-inf substrings are distinct, their ≺LMS-ranks
determine the ≺ω-order of the S∗ inf-suffixes as shown on the right side of Fig. 8. It is left to
induce the L and S suffixes, which is done exactly as in the SAIS algorithm. We conduct
these steps in Fig. 9, which finally lead us to SA◦.

6 Consequently, for transforming SA into SA◦, one only needs to shift values in SA to the right, as this is
done by one of the implementations mentioned in the related work.
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LMS Inf-Substring Contents Non-Terminal

R[1]R[1] cc -
R[2..4]R[2] bbcb E
R[5..7] acb B
R[7..10] bbca D
R[10..11]R[10] ada C
R[12..15] acba A
R[15..16]R[12] ada C
R[17..19]R[17] acba A
R[20]R[20] aa -

S∗ Inf-Suffix Contents

R[20..] a . . .

R[17..] acb . . .

R[12..] acbad . . .

R[5..] acbbcad . . .

R[15..] adacb . . .

R[10..] adacbbc . . .

R[7..] bbcadac . . .

R[2..] bbc . . .

R[1..] c . . .

Figure 8 Ranking of the LMS inf-substrings and the S∗ suffixes of our running example T = R

given in Sect. 4.3 and Fig. 7. Left: LMS inf-substrings assigned with non-terminals reflecting their
corresponding rank in ≺LMS-order. They have the same color as the respective rectangular brackets
on the left of Fig. 7. The first and the last LMS substring do not receive a non-terminal since their
lengths are one (remember that we omit Lyndon factors of length 1 in the recursive call). Right: S∗

inf-suffixes of T sorted in ≺lex-order, which corresponds to the ≺ω of the conjugate starting with
this inf-suffix. Compared with Fig. 3, the suffixes R[2..20] and R[7..20] in the ≺lex-order are order
differently than their respective inf-suffixes R[2..] and R[7..] in the ≺lex-order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 17 12 5 15 10 7 2 1 4

19 14 9 18 13 6 4 16 11 5

8 3 6

20 17 12 5 15 10 19 14 7 2 8 3 9 18 13 6 4 1 16 11 7

20 19 16 11 14 9 18 13 6 4 7 2 8 17 12 5 3 1 15 10 8

a b d d b c c c c c b b b a a a b c a a 9

S∗ suffixes

L suffixes
S suffixes

BBWT =
SA◦ − 1 =

SA◦ =

S L S L S L

a b c d
2

1

types

starting
character

Figure 9 Inducing L and S inf-suffixes from the ≺lex-order of the S∗ inf-suffixes given in Fig. 7.
Rows 1 and 2 show the partitioning of SA◦ into buckets, first divided by the starting characters of
the respective inf-suffixes, and second by the types L and S. Row 4 is SA◦ after inserting the S∗

inf-suffixes according to their ≺lex-order rank obtained from the right of Fig. 8. The S∗ (resp. L)
inf-suffixes induce the L (resp. S) inf-suffixes in Row 5 (resp. Row 6). Putting all together yields
SA◦ in Row 7. In the penultimate row SA◦ − 1, each text position stored in SA◦ is decremented by
one, wrapping around a Lyndon factor if necessary (for instance, (SA◦ − 1)[2] = 19 = e(T5) since
SA◦[2] = 17 = b(T5)). The last row shows R[(SA◦ − 1)[i]] in its i-th column, which is the BBWT
of R as given in Fig. 1.
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4.4 Correctness and Time Complexity
Let us recall that our task is to compute the ≺ω-order of the conjugates conjix−1(Tx) for
ix ∈ [1..|Tx|] of all Lyndon factors T1, . . . , Tt of R. We will frequently use that conjix−1(Tx) ≺ω

conjiy−1(Ty) is equivalent to Tx[ix..] ≺lex Ty[iy..] for ix ∈ [1..|Tx|] and iy ∈ [1..|Ty|]. We start
with showing that the ≺LMS-ranks of the LMS inf-substrings determine the ≺lex-order of the
S∗ inf-suffixes7, whenever the LMS inf-suffixes are all distinct.

▶ Lemma 4. Let Sx and Sy be two LMS inf-substrings that are prefixes of Tx[ix..] and Ty[iy..],
respectively, for ix ∈ [1..|Tx|] and iy ∈ [1..|Ty|]. If Sx ≺LMS Sy then Tx[ix..] ≺lex Ty[iy..].

Proof. Given Sx ≺LMS Sy, there is a position i such that (a) Sx[i] < Sy[i] or (b) Sx[i] is
type L and Sy[i] is type S; let i be the smallest such position. In the latter case (b), there is
a position j > i such that Tx[ix + j − 1] = Sx[j] < Sx[i] = Sy[i] < Sy[j] = Ty[iy + j − 1] and
Tx[ix..ix + j − 2] = Ty[iy..iy + j − 2], where we abused the notation that Tx[k] = (TxTx · · · )[k]
for a k ∈ [1..2|Tx|]. In both cases (a) and (b), Tx[ix..] ≺lex Tx[iy..]. ◀

Exactly as in the SAIS recursion step, we map each LMS inf-substring to its respective
meta-character via its ≺LMS-rank, obtaining a string R(1) whose characters are ≺LMS-ranks.
The lexicographic order ≺lex induces a natural order on the strings whose characters are
drawn from the ≺LMS-ranks. With that, we can determine the Lyndon factorization on R(1),
which is given by the following connection:

▶ Lemma 5. There is a one-to-one correspondence between Lyndon factors of R and R(1),
meaning that each Lyndon factor of R(1) generates a Lyndon factor in R by expanding each of
its ≺LMS-ranks to the characters of the respective LMS inf-substring (while omitting the last
character if it is the beginning of another LMS inf-substring), and vice-versa by contracting
the characters of R to non-terminals.

Proof. We first observe that each LMS inf-substring is contained in Tx[1..|Tx|]Tx[1] for
an x ∈ [1..t]. Now, let L be a Lyndon factor of R(1) with L = r1 · · · rℓ such that each
ri is a ≺LMS-rank. Suppose that there is a d ∈ [1..ℓ − 1] such that r1 · · · rd expands
to a suffix Tx[s..|Tx|] of Tx (again omitting the last character of each expanded LMS
inf-substring) and rd+1 · · · rℓ expands to a prefix P of Tx+1. Since L is a Lyndon word,
r1 · · · rd ≺lex r1 · · · rℓ ≺lex rd+1 · · · rℓ. Hence, Tx[s..|Tx|] ≺LMS Tx[s..|Tx|]Tx[1] ≺LMS P , and
with Lemma 4, Tx[1..] ≺lex Tx[s..] ≺lex Tx+1[1..], contradicting the Lyndon factorization of R

with Lemma 2.
Finally, suppose that a Lyndon factor L1 of R(1) expands to a proper prefix of a Lyndon

factor Tx. Let L2 be its subsequent Lyndon factor, which has to end inside Tx according to
the above observation. Then L2 ≺lex L1, which means that Tx contains an inf-suffix smaller
than Tx due to Lemma 2, contradicting that Tx is a Lyndon factor. ◀

Thanks to Lemma 5, we do not have to compute the Lyndon factorization of R(1) needed
in the recursive step, but can infer it from the Lyndon factorization of R. Additionally,
we have the property that the order of the LMS inf-substrings in the recursive step only
depends on the Lyndon factors they are (originally) contained in. It remains to show how
the ≺LMS-ranks of the LMS inf-substrings can be computed:

▶ Lemma 6. We can compute the ≺LMS-ranks of all LMS inf-substrings in linear time.

7 This is a counterpart to the property that the ≺LMS-ranks of the LMS substrings determine the
≺lex-order of the S∗ suffixes [23, Theorem 3.12].
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3
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Figure 10 Inducing LMS inf-substrings. Thanks to the Lyndon factorization, we know the ≺ω-
order of the inf-suffixes starting with the Lyndon factors, which is T [20..] ≺ω T [17..] ≺ω T [12..] ≺ω

T [5..] ≺ω T [2..] ≺ω T [1..]. We insert the starting positions of these inf-suffixes in this order into
their respective buckets, and fill the S∗ buckets with the rest of S∗ inf-suffixes by an arbitrary order
(here we used the text order). Like Fig. 4, the S∗ (resp. L) suffixes induce the L (resp. S) suffixes in
Row 5 (resp. Row 6), but we skip those belonging to Lyndon factors of length one, since each of
them is always stored at the leftmost position of its respective bucket. In the last row, we assign
each LMS inf-substring a non-terminal based on its ≺LMS-rank, but omitting those that correspond
to factors of length one.

Proof. We follow the proof of [23, Theorem 3.12]. The idea is to know the ≺lex-order
among some smallest S∗ inf-suffixes with which we can induce the ≺LMS-ranks of all LMS
inf-substrings. Here, we use the one-to-one correlation between each LMS inf-substring R[i..j]
and the respective S∗ inf-suffix R[i..] by using the starting position i for identification. To
compute the order of the (traditional) LMS substrings, it sufficed to know the lexicographically
smallest S∗ suffix (cf. Fig. 4), which can be determined by appending an artificial character
such as $ to R with the property that it is smaller than all other characters appearing
in R. Here, we need to know the order of at least one S∗ inf-suffix per Lyndon factor.
That is because an inf-suffix can only induce the order of another inf-suffix of the same
Lyndon word. However, this is not a problem since we know that the inf-suffix starting
with a Lyndon factor Tx is smaller in ≺ω-order than all other inf-suffixes of Tx, for each
x ∈ [1..t]. In particular, we know that Tx ≻lex Tx+1 is equivalent to Tx ≻ω Tx+1 due to [3,
Thm. 8], and hence we know the ≺lex-ranks among all inf-suffixes starting with the Lyndon
factors.8 In what follows, we use the inf-suffixes starting with the Lyndon factors to induce
the ≺LMS-ranks of all LMS inf-substrings.

However, the inducing only works if we include all text positions: While an ordered
suffix R[i..|R|] induces the order of R[i − 1..|R|] in the traditional SAIS, here we want an
inf-suffix R[i..] to induce the order of R[i − 1..]. For that, we define a superset of the LMS
inf-substrings, whose elements are called LMS-prefixes [23, Sect. 3.4]: Let i ∈ [b(Tx)..e(Tx)]
for an x ∈ [1..t] be a text position, and let j > i be the next S∗ position in R. Then the
LMS-prefix Pi starting at position i is Pi := R[i..j] if j ≤ e(Tx) or Pi := R[i..j − 1]b(Tx)

8 Since Tt is the smallest Lyndon word, we have the invariants that SA◦[1] = b(Tt) and BBWT[1] =
R[e(Tt)] = R[|R|].
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if j = b(Tx+1). In particular, if i is the starting position of an LMS inf-substring S, then
Pi = S. The LMS-prefixes inherit the types (L or S) from their starting positions. We show
that we can compute the ≺LMS-ranks of all Pi’s by induce sorting:

Initialize the Suffix Array. We create SA◦ of size |R| to store the ≺LMS-ranks of all LMS-
prefixes, where the entries are initially empty. Like in SAIS, we divide SA◦ into buckets,
and put the LMS-prefixes corresponding to the LMS inf-substrings into the S buckets of
the respective starting characters in lexicographically sorted order. See also Fig. 10 for an
example.

Inducing L LMS-prefixes. We scan the suffix array from left to right, and take action
whenever we access a non-empty value i stored in SA◦: Given i ∈ [b(Tx)..e(Tx)] and i− = i−1
or i− = e(Tx) for i = b(Tx), we insert i− into the L bucket of the character Tx[i−] if R[i−..] is
an L inf-suffix. By doing so, we compute the ≺LMS -order of all L LMS-prefixes in ascending
lexicographic order per L bucket. The correctness follows by induction over the number k of
inserted L LMS-prefixes. Since we know that all LMS-prefixes Pb(Tx) for x ∈ [1..t] starting
with the Lyndon factors are stored correctly in ≺LMS-order, and each of them is preceded
by an L LMS-prefix, we perform the insertion of the first L LMS-prefix correctly, which
is induced by the lexicographically smallest S∗ LMS-prefix PTt[1]. For the induction step,
assume that there is a k > 1 such that when we append the (k + 1)-th L LMS-prefix Pi into
its corresponding bucket, we have stored an L LMS-prefix Pj with larger ≺LMS-rank in the
same bucket. In this case, we have that R[i] = R[j], Pj+1 ≻LMS Pi+1 and Pj+1 is stored to
the left of Pi+1. This implies that when we scanned SA◦ from left to right, before appending
Pi to its bucket, we already did a mistake.

The inducing step for the S LMS-prefixes works exactly in the same way by symmetry.
Finally, we scan the computed SA◦, and for each pair of subsequent positions i and j with
i < j corresponding to the starting positions of two LMS inf-suffixes, we perform a character-
wise comparison whether the LMS inf-substring starting at i is ≺LMS-smaller than the one
starting at j. By doing so, we can compute the ≺LMS-ranks of all LMS inf-substrings in linear
time because the number of character comparisons is bounded by the number of characters
covered by all LMS inf-substrings, which is O(|R|). ◀

With Lemma 6, we can determine the ≺ω -order of the S∗ inf-suffixes R. It is left to
perform the induction step to induce first the order of the L inf-suffixes, and subsequently
the S inf-suffixes, which we do in the same manner as SAIS, but access (TxTx · · · )[i−] instead
of R[i − 1] when accessing a suffix array entry with value i, where x chosen such that
i ∈ [b(Tx)..e(Tx)] and i− = i − 1 or i− = e(Tx) if i = b(Tx). The correctness follows by
construction: Instead of partitioning the suffixes into LMS substrings (maybe omitting
a prefix of R with L suffixes), we refine the Lyndon factors into a partitioning of LMS
inf-substrings.

Lyndon Factors of Length One. It is left to reintroduce the Lyndon factors of lengths one
to obtain the complete SA◦ of R. Remember that we omitted these factors at the recursive
call. After the recursive call, we reinsert each of them at the smallest position in the S bucket
of its respective starting character. By doing so, we correctly sort them due to the following
observation: Suppose that there is a Lyndon factor consisting of a single character b (the
following holds if b ∈ Σ or if b is a rank of an LMS substring considered in the recursive call).
All LMS inf-substrings larger than one starting with b are larger than bb in the ≺ω-order
because such an LMS inf-substring starting with R[i] having type S∗ is lexicographically
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smaller than R[i + 1..]. Consequently, bb · · · ≺lex R[i..] = bR[i + 1..] since b · · · ≺lex R[i + 1..].
Thus, the Lyndon factor consisting of the single character b does not have to be tracked
further in the recursive call since we know that its rank precedes the ranks of all other LMS
inf-substrings starting with b.

Time Complexity. By omitting Lyndon factors in the recursive calls, reducing R to a
string R′ where no two subsequent inf-suffixes R[i..] and R[i + 1..] are S∗, we can bound the
maximum number of all S∗ inf-suffixes by n/2 for the recursive call. After the recursion, we
can simply insert all omitted LMS inf-substrings into the order returned by the recursive call
by a linear scan. Hence, we obtain that T (n) = T (n/2) + O(n) = O(n), where T (n) is the
time complexity for computing a circular suffix array of length n. Note that the omission of
the single character Lyndon factors is crucial for obtaining this time complexity. Without,
there may be more than n/2 many S∗ inf-suffixes, and because we keep the same Lyndon
factorization in all recursive levels, we could have Θ(n) LMS inf-suffixes at each recursion
level. The final step of computing the BBWT of T from the circular suffix array SA◦ of R

can be done in linear time with a linear scan of SA◦ as described in Sect. 4.1.

4.5 Space Complexity
Given that z =

∑t
x=1 τx is the number of all non-composed Lyndon factors F1 · · · Fz, the

algorithm of Lemma 1 computing the Lyndon factorization online only needs to maintain
three integer variables of O(lg n) bits to find F1 · · · Fz. We can represent the non-composed
Lyndon factorization by a bit vector B of length n marking the ending position of each factor
Fx (x ∈ [1..z]) with a one. We additionally create a bit vector B2 of length z, and mark the
first occurrence of each non-composed Lyndon factor Fx in B2 for x ∈ [1..z] such that B2
stores t ones. Then the x-th ‘1’ in B2 corresponds to the x-th composed Lyndon factor Tx,
and the number of ‘0’s between the x-th and (x + 1)-th ‘1’ in B2 is τx − 1. It is now possible
to replace T by R and store the Lyndon factorization of R in B (and resizing B to length |R|)
since we can restore T later with B2. (Alternatively, we can simulate R having T and B2.)
This saves at least (z − t) lg σ ≥ z − t bits, such that our working space is at most n+ t+n lg σ

bits including the text space, before starting the actual algorithm computing SA◦. Building
a rank-support data structure on B helps us to identify the Lyndon factor covering a text
position of R in constant time [16]. A rank-support data structure provides support for a
rank query, i.e., retrieving the number of ones up to a queried position in B. Since a recursive
call of SAIS works on a text instance of at most |R|/2 characters, we can rebuild B from
scratch by rerunning the algorithm of Lemma 1 on R(1) or after finalizing the recursive call.
In total, we can maintain the Lyndon factorization in n + o(n) bits with O(n) total time
throughout all recursive calls. When a recursive call ends, we need to insert the omitted
Lyndon factors of length one into the list of sorted S∗ inf-suffixes. But this can be done with
a linear scan of the sorted S∗ inf-suffixes and their initial characters, since we know that the
omitted Lyndon factors have to be inserted at the first position among all inf-suffixes sharing
the same initial character. Additionally, we can achieve this within the space used for storing
the circular suffix array SA◦, since all S∗ inf-suffixes use up at most half of the positions of
the inf-suffix array. Overall, we have an algorithm running with n + t + o(n) bits on top of
our modified SAIS, which uses O(σ lg n) bits of working space additionally to SA◦. If σ is not
constant, one may consider an option to get rid of this additional space requirement. Luckily,
we can do so with the in-place suffix array construction algorithm of Goto [13] (or similarly
with [20]), which is a variation of SAIS, storing an implicit representation of these O(σ lg n)
bits within the space of SA◦. Since B2 is only needed for the final step computing the BBWT
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of T , we can compute SA◦ with n + o(n) additional bits of working space, and BBWT with
|SA◦| + n + t + o(n) additional bits of working space, where |SA◦| = n lg n denotes the size of
SA◦ in bits.

5 Conclusion

We proposed an algorithm computing the bijective Burrows–Wheeler transform (BBWT) in
linear time. Consequently, we can also compute the extended Burrows–Wheeler transform
(eBWT) within the same time bounds by a linear-time reduction of the problem to compute
the eBWT to computing the BBWT.

Our trick was to first reduce our input text T to a text R by removing all duplicate Lyndon
factors. Second, we slightly modified the suffix array – induce sorting (SAIS) algorithm to
compute the ≺ω-order of the conjugates of all Lyndon factors of R instead of the ≺lex-order
of all suffixes of R. For that, we introduced the notion of inf-suffixes and inf-substrings,
and adapted the typing system of L, S, and S∗ types from SAIS. By some properties of the
Lyndon factors, we could show that there are only some border cases, where a text position
receives a different type in our modification. Thanks to that, we could directly translate the
induce sorting techniques of SAIS, and obtain the correctness of our result.

Open Problems
The BBWT is bijective in the sense that it transforms a string of Σn into another string
of Σn while preserving distinctness. Consequently, given a string of length n, there is an
integer k ≥ 1 with BBWTk(T ) = BBWTk−1(BBWT(T )) = T . With our presented algorithm
we can compute the smallest such number k in O(nk) time. However, we wonder whether we
can compute this number faster, possible by scanning only the text in O(n) time independent
of k.

We also wonder whether we can define the BBWT for the generalized Lyndon factor-
ization [6]. Contrary to the Lyndon factorization, the generalized Lyndon factorization
uses a different order, called the generalized lexicographic order ≺gen. In this order, two
strings S, T ∈ Σ∗ are compared character-wise like in the lexicographic order. However,
the generalized lexicographic order ≺gen can use different orders <1, <2, . . . for each text
position, i.e., S ≺gen T if and only if S is a proper prefix of T or there is an integer ℓ with
1 ≤ ℓ ≤ min(|S|, |T |) such that S[1..ℓ − 1] = T [1..ℓ − 1] and S[ℓ] <ℓ T [ℓ].

Recently, Gibney and Thankachan [11] showed that finding an order of the alphabet
such that the number of Lyndon factors of a given string is minimized or maximized is
NP-complete. This is an important but negative result for finding an advantage of the BBWT
over the BWT, since the hope is to find a way to increase the number of Lyndon factors
and therefore the chances of having multiple equal factors that are contracted to a single
composed factor in the BBWT index of [2]. However, it is left open, whether we can find an
efficient algorithm that approximates the alphabet order maximizing the number of Lyndon
factor.

Another direction would be to find a string family for which we SA◦ and SA differ, for
instance, with a relatively high Hamming distance.
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Abstract
The weighted ancestor problem is a well-known generalization of the predecessor problem to trees.
It is known to require Ω(log log n) time for queries provided O(n polylog n) space is available and
weights are from [0..n], where n is the number of tree nodes. However, when applied to suffix trees,
the problem, surprisingly, admits an O(n)-space solution with constant query time, as was shown
by Gawrychowski, Lewenstein, and Nicholson (Proc. ESA 2014). This variant of the problem can
be reformulated as follows: given the suffix tree of a string s, we need a data structure that can
locate in the tree any substring s[p..q] of s in O(1) time (as if one descended from the root reading
s[p..q] along the way). Unfortunately, the data structure of Gawrychowski et al. has no efficient
construction algorithm, limiting its wider usage as an algorithmic tool. In this paper we resolve
this issue, describing a data structure for weighted ancestors in suffix trees with constant query
time and a linear construction algorithm. Our solution is based on a novel approach using so-called
irreducible LCP values.
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1 Introduction

The suffix tree is one of the central data structures in stringology. Its primary application is
to determine whether an arbitrary string t occurs as a substring of another string, s, which
can be done in time proportional to the length of t by traversing the suffix tree of s downward
from the root and reading off the symbols of t along the way. Many algorithms using suffix
trees perform this procedure for substrings t = s[p..q] of s itself. In this important special
case, the traversal can be executed much faster than O(q − p+ 1) time provided the tree has
been preprocessed to build some additional data structures [1, 11, 13]; particularly surprising
is that the traversal can be performed in constant time using only linear space, as shown by
Gawrychowski et al. [13]. In this paper, we describe the first linear construction algorithm for
such a data structure. The lack of an efficient construction algorithm for the result of [13] has
been, apparently, the main obstacle hindering its wider adoption. Our solution is completely
different from that of [13] and is based on a combinatorial result of Kärkkäinen et al. [17]
(see also [16]) that estimates the sum of irreducible LCP values (precise definitions follow).
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As one might expect, the described data structure has a multitude of applications: [1, 7,
8, 11, 19, 20, 21], to name a few. We, however, do not dive further into a discussion of these
applications and refer the reader to the overview in [13, Sect. 1] and references therein for
more details.

In order to “locate” a substring t = s[p..q] in the suffix tree of s, it suffices to answer
the following query: given a node of the tree that corresponds to the suffix of s starting at
position p (usually, it is a leaf), we should find the farthest (closest to the root) ancestor v of
this node such that the string written on the root–v path has length at least q − p+ 1. This
problem is a particular case of the general weighted ancestor problem [1, 11, 22]: given a tree
whose nodes are associated with integer weights such that the weights decrease if one ascends
from any node to the root (the weight of a node in the suffix tree is the length of the string
written on the root–node path), the tree should be preprocessed in order to answer weighted
ancestor queries that, for a given node v and a number w, return the farthest ancestor of v
whose weight is at least w. The problem can be viewed as a generalization to trees of the
predecessor search problem, in which we preprocess a set of integers to support predecessor
queries: for any given number w, return the largest integer from the set that precedes w.

Clearly, any linear-space solution for weighted ancestors can be used as a solution for
predecessor search. As was shown in [22] and [13], a certain converse reduction is also
possible: the weighted ancestor queries for a tree with n nodes and integer weights from a
range [0..U ] can be answered in O(pred(n,U)) time using linear space, where pred(n,U) is
the time required to answer predecessor search queries for any set of k ≤ n integers from the
range [0..U ] using O(k) space. Therefore, when U = n (as in the case of suffix tree), both
problems can be solved in linear space with O(log log n)-time queries using the standard van
Emde Boas or y-fast trie data structures [30, 31].

Due to the lower bound of Pătraşcu and Thorup [25], the time O(log log n) is optimal
for U = n when the available space is linear, and moreover, any solution of the weighted
ancestor problem that uses O(n polylog n) space must spend Ω(log log n) time on queries
(see [13, Appendix A]). In view of this lower bound, it is all the more unexpected that the
special case of suffix trees admits an O(n)-space solution with constant query time. In order
to circumvent the lower bound, Gawrychowski et al. [13] solve predecessor search problems
on some paths of the suffix tree using O(n) bits of space (or slightly less), which admits a
constant time solution by a so-called rank data structure; because of the internal repetitive
structure of the suffix tree, the solution for one path can be reused in many different paths
in such a way that, in total, the utilized space is linear. Our approach essentially relies on
the same intuition but we perform path predecessor queries on different trees closely related
to the suffix tree and the advantages of repetitive structures come implicitly; in particular,
we do not explicitly treat periodic regions of the string separately so that, in this regard, our
solution is more “uniform”, in a sense, than that of [13].

This paper is organized as follows. In Section 2 the problem is reduced to certain
path-counting queries using (unweighted) level ancestor queries. Section 3 describes a
simple solution for the queries locating substrings s[p..q] whose position p corresponds to an
irreducible LCP value. In Section 4 we reduce general queries to the queries at irreducible
positions and a certain geometric orthogonal predecessor problem. Section 5 describes a
solution for this special geometric problem. Conclusions and reflections are then offered in
Section 6.
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2 Basic Data Structures

Let us fix a string s of length n, denoting its letters by s[0], s[1], . . . , s[n−1]. We write s[p..q]
for the substring s[p]s[p+1] · · · s[q], assuming it is empty if p > q; s[p..q] is called a suffix
(resp., prefix) of s if q = n− 1 (resp., p = 0). For any string t, let |t| denote its length. We
say that t occurs at position p in s if s[p..p+|t|−1] = t. Denote [p..q] = {k ∈ Z : p ≤ k ≤ q}.

A suffix tree of s is a compacted trie containing all suffixes of s. The labels on the edges
of the tree are stored as pointers to corresponding substrings of s. For each tree node v,
denote by str(v) the string written on the root–v path. The number | str(v)| is called the
string depth of v. The locus of a substring s[p..q] is the (unique) node v of minimal string
depth such that s[p..q] is a prefix of str(v).

The string s and its suffix tree T are the input to our algorithm. To simplify the exposition,
we assume that s[n−1] is equal to a special letter $ that is smaller than all other letters in s,
so that there is a one-to-one correspondence between the suffixes of s and the leaves of T .
Our computational model is the word-RAM and space is measured in Θ(log n)-bit machine
words. Our goal is to construct in O(n) time a data structure that can find in the tree the
locus of any substring s[p..q] of s in O(1) time.

A level ancestor query in a tree asks, for a given node v and an integer d ≥ 1, the dth
node on the v–root path (provided the path has at least d nodes). It is known that any
tree can be preprocessed in linear time to answer such queries in constant time [5, 6]. With
such a structure, the locus of a substring s[p..q] can be found by first locating the leaf
v of T corresponding to s[p..n−1] (i.e., str(v) = s[p..n−1], which can be located using a
precomputed array of length n) and, then, counting the number d of nodes u on the v–root
path such that | str(u)| > q − p; then, evidently, the locus of s[p..q] is given by the level
ancestor query on v and d.

We have to complicate this scheme slightly since the machinery that we develop in the
sequel allows us to count only those nodes u on the v–root path that have a branch to the
“left” of the path (or, symmetrically, to the “right”). More formally, given a node v, a node u
on the v–root path is called left-branching (resp., right-branching) if there is a suffix s[p..n−1]
that is lexicographically smaller (resp., greater) than the string str(v) and its longest common
prefix with str(v) is str(u). For instance, the path from the leaf corresponding to the string
sippi$ in Figure 1 has four nodes but only one of them (namely, the root) is left-branching.

▶ Lemma 1. For any suffix tree, one can build in linear time a data structure that, for any
node v and integer d ≥ 1, can return in O(1) time the dth left-branching (or right-branching)
node on the v–root path.

Proof. Traversing the suffix tree, we construct another tree on the same set of nodes in which
the parent of each non-root node is either its nearest left-branching ancestor in the suffix
tree (if any) or the root. The queries for left-branching nodes can be answered by the level
ancestor structure [5, 6] built on this new tree. The right-branching case is symmetric. ◀

Thus, to find the locus for s[p..q], we have to count on a leaf–root path the number of
left- and right-branching nodes whose string depths are greater than the threshold q − p; we
then use these two numbers in the data structure of Lemma 1 in order to find two candidate
nodes and the node with smaller string depth is the locus. In the remaining text, we focus
only on this counting problem and only on left-branching nodes as the right-branching case
is symmetric. First, however, we define a number of useful standard structures.

The suffix array of s is an array sa[0..n−1] containing integers from 0 to n − 1 such
that s[sa[0]..n−1] < s[sa[1]..n−1] < · · · < s[sa[n−1]..n−1] lexicographically [23]. The inverse
suffix array, denoted isa[0..n−1], is defined as sa[isa[p]] = p, for all p ∈ [0..n−1]. For any
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positions p and q, denote by lcp(p, q) the length of the longest common prefix of s[p..n−1]
and s[q..n−1]. The longest common prefix (LCP) array is an array lcp[0..n−1] such that
lcp[0] = 0 and lcp[i] = lcp(sa[i−1], sa[i]), for i ∈ [1..n−1]. The permuted longest common
prefix (PLCP) array is an array plcp[0..n−1] such that plcp[p] = lcp[isa[p]], for p ∈ [0..n−1].
The Burrows–Wheeler transform [9] is a string bwt[0..n−1] such that bwt[i] = s[sa[i]−1] if
sa[i] ̸= 0, and bwt[i] = s[n−1] otherwise. All the arrays sa, isa, lcp, plcp and the string bwt
can be built from T in O(n) time. Some of these structures are depicted in Figure 1.
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i lcp sa bwt sorted suffixes
0 0 11 i $
1 0 10 p i$
2 1 7 s ippi$
3 1 4 s issippi$
4 4 1 m ississippi$
5 0 0 $ mississippi$
6 0 9 p pi$
7 1 8 i ppi$
8 0 6 s sippi$
9 2 3 s sissippi$
10 1 5 i ssippi$
11 3 2 i ssissippi$

Figure 1 The suffix tree T , lcp, sa, and bwt of the string s = mississippi$. All irreducible LCP
values are in bold and their sum is 7; all positions of s except 2, 3, 4 are irreducible.

3 Queries at Irreducible Positions

An LCP value lcp[i] is called irreducible if either i = 0 or bwt[i−1] ̸= bwt[i]. In other
words, the irreducible LCP values are those values of lcp[0..n−1] that correspond to the first
positions in the runs of bwt (e.g., all values lcp[i] except for i = 3, 9, 11 in Figure 1). The
central combinatorial fact that is at the core of our construction is the following surprising
lemma proved by Kärkkäinen et al. [17].

▶ Lemma 2 (see [17]). The sum of all irreducible LCP values is at most 2n log n.

We say that a position p of the string s is irreducible if lcp[isa[p]] (=plcp[p]) is an irreducible
LCP value.

Consider a query that asks to find the locus of a substring s[p..q] such that p is an
irreducible position. Denote ℓ = q − p + 1. We first locate in O(1) time the leaf v
corresponding to s[p..n−1] using a precomputed array. As was discussed above, the problem
is reduced to the counting of left-branching nodes u on the v–root path such that | str(u)| ≥ ℓ.
We will construct for p a bit array bp[0..ℓp−1] of length ℓp = plcp[p] such that, for any d,
bp[d] = 1 iff there is a left-branching node with string depth d on the v–root path. Since the
suffix s[p..n−1] and its lexicographical predecessor among all suffixes (if any, i.e., if isa[p] ̸= 0)
have the longest common prefix of length plcp[p], the lowest left-branching node on the
v–root path has string depth plcp[p]. Therefore, the number of left-branching nodes u on the
v–root path such that | str(u)| ≥ ℓ is equal to the number of ones in the subarray bp[ℓ..ℓp−1]
plus 1. The bit counting query is answered using the following rank data structure.

▶ Lemma 3 (see [10, 15]). For any bit array b[0..m−1] packed into O(m/w) w-bit machine
words, one can construct in O(m/w) time a rank data structure that can count the number
of ones in any range b[p..q] in O(1) time, provided a table computable in o(2w) time and
independent of the array has been precomputed.
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By Lemma 2, the total length of all arrays bp for all irreducible positions p of s is
O(n log n). Therefore, one can construct the rank data structures of Lemma 3 for them
in O(n) overall time provided w = ⌊log n⌋. It remains to build the arrays bp themselves.

To this end, we traverse the suffix tree T in depth first (i.e., lexicographical) order,
maintaining along the way a bit array b of length n such that, when we are in a node v, the
subarray b[0..| str(v)|−1] marks the string depths of all left-branching ancestors of v, i.e., for
0 ≤ d < | str(v)|, we have b[d] = 1 iff there is a left-branching node with string depth d on
the v–root path. The array is stored in a packed form in ⌊log n⌋-bit machine words. For each
node v, we consider its outgoing edges. Each pair of adjacent edges (in the lexicographical
order of their labels) corresponds to a unique value lcp[i] such that s[sa[i]..n−1] is the suffix
corresponding to the leftmost (lexicographically smallest) leaf of the subtree connected
to the larger one of the two edge labels. We check whether the value lcp[i] is irreducible
comparing bwt[i−1] and bwt[i] and, if so, store the subarray b[0..| str(v)|−1] into bsa[i] in
O(1 + | str(v)|/ log n) time. As we touch in this way every value lcp[i] only once, the overall
time is O(n) by the same argument using Lemma 2.

4 Reduction to Irreducible Positions

Consider a query for the locus of a substring s[p..q] such that the position p is not irreducible.
Let v be the leaf corresponding to s[p..n−1]. As was discussed in Section 2, to answer the
query, we have to count the number of left-branching nodes with string depths at least
q− p+ 1 on the v–root path. As a first approach, we do the following precalculations for this.

We build in O(n) time on the suffix tree T a data structure that allows us to find the
lowest common ancestor for any pair of nodes in O(1) time [4, 14]. In one tree traversal,
we precompute in each node u the number of left-branching nodes on the u–root path.
We create two arrays R≤[0..n−1] and R≥[0..n−1] such that, for any i, R≤[i] = max{j ≤
i : j = 0 or bwt[j−1] ̸= bwt[j]} and R≥[i] = min{j ≥ i : j = 0 or bwt[j−1] ̸= bwt[j]}
(R≥[i] is undefined if there is no such j), i.e., R≤[i] and R≥[i] are indexes of irreducible
LCP values, respectively, preceding and succeeding lcp[i]. Thus, for any suffix s[p..n−1],
the suffixes s[sa[R≤[isa[p]]]..n−1] and s[sa[R≥[isa[p]]]..n−1] are, respectively, the closest
lexicographical predecessor and successor of s[p..n−1] with irreducible starting position.
The closest irreducible lexicographical neighbour of s[p..n−1] is that suffix s[r..n−1] among
these two that has longer common prefix with s[p..n−1], i.e., r = sa[R≤[isa[p]]] if either
lcp(sa[R≤[isa[p]]], p) ≥ lcp(sa[R≥[isa[p]]], p) or R≥[isa[p]] is undefined, and r = sa[R≥[isa[p]]]
otherwise. Since lcp(t, p) can be calculated in O(1) time for any positions t and p by one lowest
common ancestor query on their corresponding leaves, the closest irreducible lexicographical
neighbour can be computed in O(1) time.

Now, consider a query for the locus of s[p..q] with non-irreducible p. We first find in O(1)
time the closest irreducible lexicographical neighbour s[r..n−1] for s[p..n−1]. Let v′ and v

be the leaves corresponding to s[r..n−1] and s[p..n−1], respectively. We compute in O(1)
time the lowest common ancestor u of v′ and v. Thus, | str(u)| = lcp(r, p). Using the number
of left-branching nodes on the v–root and u–root paths that were precomputed in v and u,
we calculate in O(1) time the number k of left-branching nodes on the v–root path that lie
between the nodes v and u (inclusively).

Denote ℓ = q− p+ 1. If ℓ ≤ | str(u)|, then we can count in the v–root path the number of
left-branching nodes w such that | str(w)| ≥ ℓ as follows. The number of nodes w such that
| str(w)| ≥ | str(u)| is equal to k. The number of nodes w such that ℓ ≤ | str(w)| < | str(u)|
can be found by counting the number of ones in the subarray br[ℓ..| str(u)|−1] of the bit
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array br associated with the irreducible position r (assuming that all values br[t] with t ≥ ℓr
are zeros in case the length ℓr of br is less than | str(u)|), which can be performed in O(1)
time by Lemma 3. Thus, the problem is solved for the case ℓ ≤ | str(u)|.

To address the case ℓ > | str(u)|, we have to develop more sophisticated techniques that
allow us to reduce the counting of left-branching nodes on the v–root path to counting on a
different leaf–root path with a different threshold ℓ′ that meets the condition ℓ′ ≤ | str(u′)|,
for an analogously appropriately defined node u′. The remainder of the text describes the
reduction.

Similar to irreducible positions, let us define, for each non-irreducible position p, a number
ℓp = plcp[p] and an array bp[0..ℓp−1] such that, for any d, bp[d] = 1 iff there is a left-branching
node of string depth d on the path from the leaf corresponding to s[p..n−1] to the root. We
do not actually store the arrays bp and use them only in the analysis.

▶ Lemma 4. For any non-irreducible position p, we have ℓp−1 = ℓp + 1 and, if bp−1[d+1] = 1
for some d ≥ 0, then bp[d] = 1.

Proof. Let s[t..n−1] be the suffix lexicographically preceding s[p..n−1], i.e., t = sa[isa[p]−1]
and ℓp = lcp(t, p). Since p is not irreducible, we have bwt[isa[t]] = bwt[isa[p]], i.e., s[t−1] =
s[p−1]. Hence, s[t−1..n−1] is the suffix lexicographically preceding s[p−1..n−1]: isa[t−1] =
isa[p−1] − 1. Therefore, ℓp−1 = lcp(t− 1, p− 1), which is equal to lcp(t, p) + 1 = ℓp + 1.

If bp−1[d+1] = 1 for d ≥ 0, then there is a suffix s[r..n−1] that is smaller than s[p−1..n−1]
and lcp(r, p− 1) = d+ 1. Then, lcp(r + 1, p) = d, which implies that bp[d] = 1. ◀

Consider two consecutive irreducible positions p′ and p′′ in s (i.e., all positions r between
p′ and p′′ are not irreducible). Lemma 4 states that the arrays bp′ , bp′+1, . . . , bp′′−1 form a
trapezoidal structure as depicted in Figure 2 in which each 1 value is inherited by all arrays
above it while it fits in their range.

p′ p′′

b
p′ :

. . .

b
p′+4

:

. . .

b
p′+8

:

s = . . . . . .

Figure 2 Here, p′ and p′′ are consecutive irreducible positions. Each line of the trapezoid depicts
an array bp[0..ℓp−1], for p ∈ [p′..p′′−1], in which gray and white positions signify, respectively, ones
and zeros.

The query for the locus of s[p..q] was essentially reduced to the counting of ones in the
subarray bp[ℓ..ℓp−1], where ℓ = q− p+ 1. The problem now is that the array bp is not stored
explicitly since the position p is not irreducible. Denote the length of bp[ℓ..ℓp−1] by m = ℓp−ℓ,
so that bp[ℓ..ℓp−1] = bp[ℓp−m..ℓp−1], which is a more convenient notation for what follows.
Let p′ be the closest irreducible position preceding p, i.e., p′ = max{r ≤ p : r is irreducible}.
If we are lucky and neither of the arrays bp′+1, bp′+2, . . . , bp introduces new 1 values in the
subarray bp′ [ℓp′−m..ℓp′−1] (in other words if bp′ [ℓp′−m..ℓp′−1] = bp[ℓp−m..ℓp−1]), then we
can simply count the number of ones in bp′ [ℓp′−m..ℓp′−1] in O(1) time using Lemma 3 and,
thus, solve the problem. Unfortunately, new 1 values indeed could be introduced. But, as it
turns out, such new values are, in a sense, “covered” by other arrays br at some irreducible
positions r as the following lemma suggests.
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▶ Lemma 5. Let p be a non-irreducible position and s[r..n−1] be the closest irreducible
lexicographical neighbour of s[p..n−1]. Denote cp = lcp(r, p). If, for some d, we have bp[d] = 1
but bp−1[d+1] = 0, then d ≤ cp.

Proof. The condition bp[d] = 1 implies that there is a suffix s[t..n−1] that is smaller than
s[p..n−1] and lcp(t, p) = d. If bwt[isa[t]] = bwt[isa[p]], then s[t−1] = s[p−1] and, hence, the
suffix s[t−1..n−1] is smaller than s[p−1..n−1] and lcp(t − 1, p − 1) = d + 1. This gives
bp−1[d+1] = 1, which contradicts the equality bp−1[d+1] = 0. Hence, bwt[isa[t]] ̸= bwt[isa[p]].
Thus, at least one of the values lcp[isa[t]+1], lcp[isa[t]+2], . . . , lcp[isa[p]−1] must be irreducible
(note that isa[t] + 1 < isa[p] since otherwise p would be irreducible). Let r′ be an irreducible
position such that isa[t] < isa[r′] < isa[p]. We obtain lcp(r, p) ≥ d since lcp(r′, p) ≥ lcp(t, p) =
d and, for any irreducible r′′ (in particular, for r′), we have lcp(r, p) ≥ lcp(r′′, p). ◀

Observe that cp in Lemma 5 is equal to | str(u)|, where u is the lowest common ancestor
of the leaves v′ and v corresponding to s[r..n−1] and s[p..n−1]. Thus, the numbers cp
can be precomputed for all non-irreducible positions p in O(n) time using lowest common
ancestor queries and the arrays R≤ and R≥ described in the beginning of the present section.
For irreducible positions p′, we put cp′ = ℓp′ by definition. To illustrate Lemma 5 and its
consequences, we depict in Figure 3 the same trapezoidal structure as in Figure 2 coloring in
each bp a prefix of length cp + 1 (and also depicting the range bp[ℓp−m..ℓp−1]).

p′ p′′
s = . . . . . .

Figure 3 The yellow stripe in each array bp is a prefix of length min{cp + 1, ℓp}. Note that,
according to Lemma 5, each gray position whose corresponding position below is white is covered in
yellow. The blue stripe is bp[ℓp−m..ℓp−1], where p = p′ + 4. It coincides with two corresponding
regions below it that are in light blue. Here we have t = p − 2.

The problematic condition ℓ > | str(u)| that we consider can be reformulated as ℓp−m > cp.
It follows from Lemmas 4 and 5 that in this case bp[ℓp−m..ℓp−1] = bp−1[ℓp−1−m..ℓp−1−1].
Let t be the first position preceding p such that ℓt −m ≤ ct. Note that t ≥ p′ since cp′ = ℓp′

by definition and, thus, ℓp′ −m ≤ cp′ . Then, applying Lemma 5 consecutively to all positions
p, p− 1, . . . , t+ 1, we conclude that bt[ℓt−m..ℓt−1] = bp[ℓp−m..ℓp−1].

Informally, in terms of Figure 3, the searching of t corresponds to the moving of the
range bp[ℓp−m..ℓp−1] down until we encounter an “obstacle”, a colored part of bt of length
ct + 1. The specific algorithm finding t is discussed in Section 5; let us assume for the time
being that t is already known. Then, Lemma 5 implies that all the ranges br[ℓr−m..ℓr−1]
with r ∈ [t..p] coincide and, thus, the whole problem was reduced to the counting of ones
in the subarray bt[ℓt−m..ℓt−1]. But since ℓt − m ≤ ct, the problem can be solved by the
method described at the beginning of the section: we find an irreducible position r such
that lcp(r, t) = ct, then locate the leaves v′ and v′′ corresponding to s[r..n−1] and s[t..n−1],
respectively, find the lowest common ancestor u′ of v′ and v′′, and separately count the
number of left-branching nodes w on the v′′–root path such that | str(w)| ≥ ct and such that
ℓt −m ≤ | str(w)| < ct.

Let us briefly recap the reductions described above: the searching for the locus of
s[p..q] was essentially reduced to the counting of ones in the subarray bp[ℓp−m..ℓp−1], where
m = ℓp−(q−p+1), for which we first compute the position t = max{t ≤ p : ℓt−m ≤ ct} (this
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is discussed in Section 5) and, then, count the number of ones in the subarray bt[ℓt−m..ℓt−1]
(the subarray coincides with bp[ℓp−m..ℓp−1] by Lemmas 4 and 5) using lowest common
ancestor queries, the arrays R≤ and R≥, and some precomputed numbers in the nodes.

5 Reduction to Special Weighted Ancestors

We are to compute t = max{t ≤ p : ℓt −m ≤ ct}, for a non-irreducible position p. As is seen
in Figure 3, this is a kind of geometric “orthogonal range predecessor” problem.

For each irreducible position p′ in s, we build a tree Ip′ with p′′ −p′ nodes, where p′′ is the
next irreducible position after p′ (so that all r with p′ < r < p′′ are not irreducible): Each
node of Ip′ is associated with a unique position from [p′..p′′−1] and the root is associated with
p′. A node associated with position r ̸= p′ has weight wr = r − p′ + cr; the root has weight
wp′ = +∞. The parent of a non-root node associated with r is the node associated with the
position r′ = max{r′ < r : wr′ > wr}. Thus, the weights strictly increase as one ascends to
the root. The tree Ip′ is easier to explain in terms of the trapezoidal structure drawn in
Figure 4: the parent of a node associated with r is its closest predecessor r′ whose colored
range br′ [r′..r′+cr′−1] goes at least one position farther to the right than br[r..r+cr−1]. By
Lemma 4, r − p′ + ℓr = ℓp′ and, hence, each weight wr such that cr ≤ ℓr is upperbounded
by ℓp′ . However, it may happen that cr > ℓr and, thus, wr > ℓp′ . In this case, the colored
range br[r..r+cr−1] stretches beyond the length ℓr of br (for simplicity, Figure 4 does not
have such cases). Such large weights are a source of technical complications in our scheme.

p′ p′′
s = . . . . . .

Figure 4 Each stripe of the trapezoid depicts an array br, for r ∈ [p′..p′′−1], and its prefix of
length cr (possibly empty) is colored in yellow (not min{cr + 1, ℓr} like in Figure 3). Each yellow
prefix corresponds to a node of Ip′ and it is connected to the yellow prefix corresponding to its
parent in Ip′ . To avoid overloading the picture, gray positions signifying 1s in br are not drawn.

The tree can be constructed in linear time inserting consecutively the nodes associated
with p′, p′ + 1, . . . and maintaining a stack that contains all nodes of the path from the last
inserted node to the root: to insert a new node with weight w, we pop from the stack all
nodes until a node heavier than w is encountered to which the new node is attached.

In terms of the tree Ip′ , the node associated with the sought position t is the nearest
ancestor of the node associated with p such that wt ≥ ℓ+ p− p′, where ℓ = q − p+ 1: the
condition wt ≥ ℓ+ p− p′ is equivalent to ℓt −m ≤ ct since wt = t− p′ + ct, m = ℓp − ℓ, and
ℓt − ℓp = p− t. Since the threshold ℓ+ p− p′ in the condition does not exceed ℓp′ , we will
be able to ignore differences between weights larger than ℓp′ in our algorithm by “cutting”
them in a way. Still, even with this restriction, at first glance this looks like quite a general
weighted ancestor problem that admits no constant time solution in the space available.
However, we will be able to use a structure common to such trees in order to speed up the
computation. The idea is to decompose the tree into heavy paths (see below), as is usually
done for weighted ancestor queries, and perform fast queries on the paths via the use of more
memory; the trick is that, with some care, this space can be shared among “similar” trees
and can be “traded” for irreducible LCP values relying again on Lemma 2.
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Consider the tree Ip′ . An edge (v, u) connecting a child v to its parent u is called heavy
if size(v) > size(u)/2, and light otherwise, where size(w) denotes the number of nodes in
the subtree rooted at w. Thus, at most one child can be connected to u by a heavy edge.
One can easily show that any leaf–root path contains at most log n light edges. All nodes
of Ip′ are decomposed into disjoint heavy paths, maximal paths with only heavy edges in
them. Note that in this version of the heavy-light decomposition [28] the number of heavy
edges incident to a given non-leaf node can be zero (it then forms a singleton path). The
decomposition can be constructed in linear time in one tree traversal.

The predecessor search problem, for a set of increasing numbers w1, w2, . . . , wk and a
given threshold w ≤ wk, is to find min{wi : w ≤ wi}. Although the problem, in fact, searches
for a successor, we call it “predecessor search” as it is essentially an equivalent problem.

▶ Lemma 6 ([13, Lem. 11]). Consider a tree on m nodes with weights from [0..n] such that
some of the nodes are marked, any leaf–root path contains at most O(log n) marked nodes,
and the weights on any leaf–root path increase. One can preprocess the tree in O(m) time so
that predecessor search can be performed among the marked ancestors of any node in O(1)
time, provided a table computable in o(n) and independent of the tree is precalculated.1

For each heavy path, we mark the node closest to the root. Then, the data structure
of Lemma 6 is built on each tree Ip′ , which takes O(n) total time for all the trees Ip′ . To
answer a weighted ancestor query on Ip′ , we find in O(1) time the heavy path containing the
answer using this data structure and, then, consider the predecessor problem inside the path.

Consider a heavy path whose node weights are wi1 , wi2 , . . . , wik in increasing order. We
have to answer a predecessor query on the path for a threshold w such that w ≤ ℓp′ (recall
that only thresholds ≤ℓp′ are of interest for us) and it is known that its result is in the
path, i.e., w ≤ wik . Let wim = max{wij : wij ≤ ℓp′}. A trivial constant-time solution for
such queries is to construct a bit array a[0..c], where c = wim − wi1 , endowed with a rank
data structure such that, for any d, we have a[d] = 1 iff d = wij − wi1 , for some j ∈ [1..m].
Then, the predecessor query with a threshold w such that w ≤ min{ℓp′ , wik } can be answered
by counting the number h of 1s in the subarray a[0..w − wi1 − 1], thus giving the result
wih+1 = min{wij : w ≤ wij }. The array a occupies O(1 + ℓp′/ log n) space since c ≤ ℓp′ .

It turns out that, with minor changes, the arrays a can be shared among many heavy
paths in different trees. However, this approach per se leads to O(n log n) time and space, as
will be evident in the sequel. We therefore need a slightly more elaborate solution.

Instead of the array a[0..c], we construct a bit array â[0..⌊c/⌊log n⌋⌋] endowed with a rank
data structure such that, for any d, â[d] = 1 iff the subarray a[d⌊log n⌋..(d+1)⌊log n⌋−1]
contains non-zero values (assuming that a[i] = 0, for i > c). The bit array â packed
into O(1 + c/ log2 n) machine words of size ⌊log n⌋ bits can be built from the numbers
wi1 , wi2 , . . . , wik in one pass in O(k + c/ log2 n) time. For each 1 value, â[d] = 1, we collect
all weights wij such that d⌊log n⌋ ≤ wij − wi1 < (d+1)⌊log n⌋ into a set Sd. The sets Sd,
for all d such that â[d] = 1, are disjoint and non-empty, and can be assembled in one pass
through the weights in O(k) time. We also store pointers Ph, with h = 1, 2, . . . (h ≤ m),
such that Ph refers to a non-empty set Sd such that â[d] = 1 is the hth 1 value in â (i.e., h is
the number of 1s in the subarray â[0..d]). Each set Sd is equipped with the following fusion
heap data structure.

▶ Lemma 7 (see [12, 26]). For any set S of O(log n) integers from [0..n], one can build in
O(|S|) time a fusion heap that answers predecessor queries in O(1) time.

1 Although Lemma 11 in [13] does not claim linear construction time, it easily follows from its proof.

CPM 2021



8:10 Weighted Ancestors in Suffix Trees Revisited

With this machinery, a predecessor query with a threshold w ≤ min{ℓp′ , wik } can be
answered by first counting the number h of 1s in the subarray â[0..⌊(w − wi1)/⌊log n⌋⌋−1]
and, then, finding in O(1) time the predecessor of w in the fusion heap referred by Ph+1.

The array â occupies O(1 + c/ log2 n) space, which is O(1 + ℓp′/ log2 n) since c ≤ ℓp′ . The
computation of â, which takes O(k+ ℓp′/ log2 n) time, is the most time and space consuming
part of the described construction; all other structures take O(k) time and space. We are to
show that the computation of â can sometimes be avoided if (almost) the same array was
already constructed for a different path. The following lemma is the key for this optimization.

▶ Lemma 8. Given a tree Ip′ for an irreducible position p′, consider its node x associated
with a non-irreducible position p > p′. Let s[r..n−1] be the closest irreducible lexicographical
neighbour of s[p..n−1] and let cp = lcp(r, p). Then, the subtree of Ip′ rooted at x coincides
with the tree Ir in which all children of the root with weights ≥cp are cut, then all weights
are increased by p− p′, and the weight of the root is set to the weight of x (see Figure 5).

Proof. Denote by I the subtree rooted at x. Observe that all nodes of I are exactly all nodes
of Ip′ associated with positions from a range [p..p+i], for some i < cp (see Figure 5). The
position p+ i+ 1 is either irreducible or cp+i+1 + i+ 1 ≥ cp. In order to prove the lemma, it
suffices to show that (1) all positions from [r+1..r+i] are not irreducible, (2) cp+j = cr+j ,
for any j ∈ [1..i], and (3) the position r + i+ 1 is either irreducible or cr+i+1 + i+ 1 ≥ cp.

(1) Suppose, to the contrary, that a position r + j, for some j ∈ [1..i], is irreducible.
Then, since lcp(r, p) = cp and j ≤ i < cp, we have lcp(r + j, p+ j) = cp − j. Therefore, cp+j ,
the length of the common prefix of s[p+j..n−1] and its closest irreducible lexicographical
neighbour, must be at least cp − j (since it was assumed that r + j is irreducible). But then
the weight wp+j of the node associated with p+j is at least (cp−j)+(p+j−p′) = cp+p−p′,
which is equal to the weight wp = cp + p − p′ of x. Thus, x cannot be an ancestor of the
node, which is a contradiction.

(2) For j ∈ [1..i], s[p+j..n−1] and s[r+j..n−1] share a common prefix of length cp−j since
lcp(r, p) = cp and j ≤ i < cp. Further, cp+j < cp−j since the weight wp+j = cp+j+p+j−p′ is
smaller than the weight wp = cp+p−p′ of its ancestor x. Suppose, without loss of generality,
that s[r+j..n−1] is lexicographically smaller than s[p+j..n−1] (the case when it is greater is
analogous). Then, neither of the suffixes s[t..n−1] lexicographically lying between s[r+j..n−1]
and s[p+j..n−1] can start with an irreducible position, for otherwise cp+j ≥ lcp(t, p+ j) ≥
lcp(r + j, p + j) ≥ cp − j. Therefore, the closest irreducible lexicographical neighbours of
s[p+j..n−1] and s[r+j..n−1] coincide and cp+j = cr+j (< cp − j ≤ lcp(p+ j, r + j)).

(3) Suppose that r + i+ 1 is not irreducible and, by contradiction, cr+i+1 < cp − i− 1.
The suffixes s[p+i+1..n−1] and s[r+i+1..n−1] have a common prefix of length cp − i − 1
(note that i + 1 ≤ cp). The position p + i + 1 is not irreducible since otherwise cr+i+1 ≥
lcp(p+ i+ 1, r + i+ 1) ≥ cp − i− 1. Then, we have cp+i+1 ≥ cp − i− 1 because otherwise
the node corresponding to p + i + 1 would have weight wp+i+1 = cp+i+1 + p + i + 1 − p′

that is smaller than the weight wp = cp + p− p′ of x and, thus, would be a descendant of x.
Let s[t..n−1] be the closest irreducible lexicographical neighbour of s[p+i+1..n−1] so that
lcp(t, p+ i+ 1) = cp+i+1. Since cp+i+1 ≥ cp− i− 1 and lcp(p+ i+ 1, r+ i+ 1) ≥ cp− i− 1, we
obtain lcp(t, r+ i+1) ≥ cp− i−1. Because t is irreducible, we deduce that cr+i+1 ≥ cp− i−1,
which is a contradiction. ◀

An array â corresponding to a heavy path in a tree Ip′ , for an irreducible position p′,
occupies O(1 + ℓp′/ log2 n) space. Recall that ℓp′ = plcp[p′] is an irreducible LCP value since
p′ is an irreducible position. Therefore, we can afford, for each tree Ip′ , the construction and
storage of the array â corresponding to the unique heavy path containing the root of Ip′ .
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p′ p′′
s = . . . . . .

r r′

Figure 5 For irreducible positions p′ and r, the subtree of Ip′ highlighted by the left blue rectangle
is isomorphic to Ir after cutting the children of the root of Ir outside of the right blue rectangle.

The overall space required for this is O(n+
∑
p′ ℓp′/ log2 n), where the sum is through all

irreducible positions p′, which is upperbounded by O(n+ n/ log n) = O(n) due to Lemma 2.
Other heavy paths are processed as follows.

Suppose that we are to preprocess a heavy path x1 → x2 → · · · → xk with node weights
wi1 , wi2 , . . . , wik in a tree Ip′ such that xk (the node closest to the root) is not the root of Ip′ .
We compute sets Sd and pointers Ph corresponding to the path in O(k) time. As for the array
â, we either construct it for the path from scratch or reuse a suitable array from another path;
the details follow. Let wim = max{wij : wij ≤ ℓp′}. As was discussed, the array â encodes, in
a sense, a predecessor data structure for the weights wi1 , wi2 , . . . , wim . In order to have some
flexibility for the reuse of arrays, we modify this scheme slightly so that sometimes â does
not encode the last two weights wim−1 and wim . The algorithm that answers a predecessor
query for a threshold w ≤ min{ℓp′ , wik } on the path is altered accordingly: we first compare
w to wim−1 and wim , and only then, if necessary, use the array â as described above.

Let xk correspond to a non-irreducible position p and let s[r..n−1] be the closest irreducible
lexicographical neighbour of s[p..n−1]. As was shown in Section 4, the position r can be
found in O(1) time. By Lemma 8, the subtree I rooted at xk is isomorphic to the tree Ir
in which all children of the root with weights greater than or equal to cp are cut, then all
weights are increased by p− p′, and the root weight is set to wik . Denote this isomorphism
by ϕ. Note that ϕ(xk) is the root of Ir. The main corollary of Lemma 8 is that in the subtree
I any edge u → v that is not incident to xk is heavy iff the corresponding edge ϕ(u) → ϕ(v)
in Ir is heavy. Therefore, all edges in the path ϕ(x1) → ϕ(x2) → · · · → ϕ(xk) are heavy,
except, possibly, the last edge ϕ(xk−1) → ϕ(xk), and no heavy edge enters the node ϕ(x1)
in Ir. By Lemma 8, the weights of the nodes ϕ(x1), ϕ(x2), . . ., ϕ(xk−1) are wi1 − (p− p′),
wi2 − (p− p′), . . ., wik−1 − (p− p′), respectively. We proceed further in three separate cases.

Heavy ϕ(xk−1) → ϕ(xk) and ℓr is large enough. Suppose that the edge ϕ(xk−1) → ϕ(xk)
is heavy. Then, ϕ(x1) → ϕ(x2) → · · · → ϕ(xk) is the unique heavy path of Ir that contains
the root. Let âϕ[0..cϕ] be an array for predecessor queries that was explicitly stored in
O(1 + ℓr/ log2 n) space for the path ϕ(x1) → ϕ(x2) → · · · → ϕ(xk). By definition, for
any d ∈ [0..cϕ], we have âϕ[d] = 1 iff, for some j ∈ [1..k], the number (wij − (p − p′)) −
(wi1 − (p − p′)) = wij − wi1 lies in the range [d⌊log n⌋..(d + 1)⌊log n⌋−1]. Since the latter
is also a criterium for â[d] = 1, the array âϕ can therefore be reused to imitate â if âϕ is
sufficiently long to “encode” the weights wi1 , wi2 , . . . , wim−2 . More precisely, this is the case
iff ℓr ≥ wim−2 −(p−p′). Thus, if the edge ϕ(xk−1) → ϕ(xk) is heavy and ℓr ≥ wim−2 −(p−p′),
then the overall preprocessing of the path x1 → x2 → · · · → xk takes only O(k) time since
we can store a pointer to the array âϕ and reuse âϕ to imitate the array â.

Unfortunately, neither of these two conditions necessarily holds in general: the edge
ϕ(xk−1) → ϕ(xk) might be light in Ir and ℓr might be less than wim−2 − (p− p′).
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Light ϕ(xk−1) → ϕ(xk) and ℓr is large enough. Suppose that the edge ϕ(xk−1) → ϕ(xk)
is light in Ir and ℓr ≥ wim−2 − (p− p′). By Lemma 8, the edge necessarily becomes heavy
if we cut all children of the root of Ir with weights greater than or equal to cp. We assign
numbers 1, 2, . . . to the children of each node in the trees Ir and Ip′ according to the order
in which they were attached during the construction of the trees, i.e., in the increasing order
of their associated positions. It follows from the proof of Lemma 8 that if xk−1 is the hth
child of xk, then ϕ(xk−1) is the hth child of the root of Ir. Therefore, the node ϕ(xk−1) can
be located in O(1) time.

We associate with each child of the root of Ir a pointer, initially set to null. If the
pointer in ϕ(xk−1) is still null at the time we access it while preprocessing the heavy path
x1 → x2 → · · · → xk, then we create from scratch a new array âϕ for the heavy path
ϕ(x1) → ϕ(x2) → · · · → ϕ(xk−1) in O(k + ℓr/ log2 n) time and set the pointer of ϕ(xk−1)
to refer to this array. Since ℓr ≥ wim−2 − (p− p′), the array âϕ can be reused to imitate â
for the path x1 → x2 → · · · → xk in the same way as was described above. If the pointer
in the node ϕ(xk−1) is not null, then it already refers to a suitable array âϕ that can be
reused (note that ϕ(x1) → ϕ(x2) → · · · → ϕ(xk−1) is the unique heavy path of the tree Ir
that contains the node ϕ(xk−1)). Thus, the preprocessing takes O(k) time plus, if necessary,
O(k + ℓr/ log2 n) time required to construct a new array âϕ.

The following lemma shows that a non-null pointer to an array âϕ might be assigned to at
most log n distinct children of the root of Ir (namely, those children that become connected
to the root by a heavy edge after a number of children with greater weights were removed).
This implies that the overall construction time for all the arrays âϕ throughout the whole
algorithm is O(n+

∑
r(ℓr/ log2 n) log n) = O(n), where the sum is through all irreducible

positions r (so that
∑
r ℓr = O(n log n) by Lemma 2).

▶ Lemma 9. Let S be a tree with at most n nodes whose root r has m children ordered
arbitrarily. Suppose that we remove the children of the root (with the subtrees rooted at them)
from right to left, one by one, thus producing trees S1, S2, . . . , Sm. Let zi be a node of the
tree Si such that zi is connected to r by a heavy edge, or zi is r itself if r has no incident
heavy edges in Si. Then, the set {z1, z2, . . . , zm} contains at most log n distinct nodes.

Proof. If zi → r is a heavy edge in Si, then size(zi) > size(r)/2 in Si. Therefore, if we cut
any other child of r in Si, only the number size(r) decreases and, thus, the edge remains
heavy. But when we remove zi and its subtree from Si, the number size(r) decreases by more
than half. Such halving may happen at most log n− 1 times, and the result follows. ◀

Small ℓr. Suppose that ℓr < wim−2 − (p− p′). Let p̄ be the position associated with the
node xk−1 in the tree Ip′ and let s[r̄..n−1] be the closest irreducible lexicographical neighbour
of s[p̄..n−1]. By analogy to the isomorphism ϕ, we define using Lemma 8 an isomorphism
ψ that maps the subtree of Ip′ rooted at the node xk−1 onto a “pruned” tree Ir̄ in which
all children of the root with weights greater than or equal to cp̄ are cut. Note that ψ(xk−1)
is the root of Ir̄. By Lemma 8, the weights of the nodes ψ(x1), ψ(x2), . . ., ψ(xk−2) are
wi1 − (p̄− p′), wi2 − (p̄− p′), . . ., wik−2 − (p̄− p′), respectively.

It turns out that, instead of imitating the array â for the path x1 → x2 → · · · → xk using
an array âϕ from the tree Ir, one can in quite the same way imitate â using an appropriate
array âψ from Ir̄, which must be sufficiently long in the case ℓr < wim−2 − (p− p′). More
precisely, we are to prove that ℓr̄ ≥ wim−2 −(p̄−p′), which guarantees that essentially the same
approach works well: if the edge ψ(xk−2) → ψ(xk−1) is heavy, then âψ is an array associated
with the unique heavy path containing the root of Ir̄ and, since ℓr̄ ≥ wim−2 − (p̄− p′), the
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array âψ is long enough to imitate â; if the edge ϕ(xk−2) → ψ(xk−1) is light, then we either
reuse a suitable array âψ that was already stored in the child ψ(xk−2) of the root of Ir̄ (again
âψ can imitate â since ℓr̄ ≥ wim−2 − (p̄− p′)) or we create this array âψ from scratch for the
path ψ(x1) → ψ(x2) → · · · → ψ(xk−2) in O(k + ℓr̄/ log2 n) time and store a pointer to it in
ψ(xk−2). We do not go further into details since they are essentially the same as above.

We actually prove a stronger condition ℓr̄ ≥ wim−1 − (p̄ − p′), which implies ℓr̄ ≥
wim−2 − (p̄ − p′) since wim−1 > wim−2 . Recall that wim−1 = cp̄ + p̄ − p′. Hence, the
stronger condition is equivalent to ℓr̄ ≥ cp̄. If the suffix s[r̄..n−1] is lexicographically larger
than s[p̄..n−1], then we immediately obtain ℓr̄ = plcp[r̄] ≥ lcp(p̄, r̄) = cp̄. Assume that
s[r̄..n−1] is lexicographically smaller than s[p̄..n−1]. Let us show that this case is actually
impossible since it contradicts the condition of “small ℓr” that was assumed in the beginning:
ℓr < wim−2 − (p − p′). Denote j = p̄ − p. Since lcp(p, r) = cp and j < cp, we obtain
lcp(p̄, r+ j) = cp − j. Further, cp̄ < cp − j because the weight wim−1 = cp̄ + p̄− p′ of the node
xm−1 is less than the weight wik = cp+p−p′ of xk. Since lcp(p̄, r̄) = cp̄ < cp−j = lcp(p̄, r+j),
we obtain lcp(r̄, r + j) = cp̄ < lcp(p̄, r + j) and, further, since we assumed that s[r̄..n−1] is
lexicographically smaller than s[p̄..n−1], the suffix s[r̄..n−1] is lexicographically smaller than
s[r+j..n−1]. Hence, ℓr+j ≥ lcp(r̄, r + j) = cp̄. It follows from Lemma 4 that ℓr = ℓr+j + j.
Then, ℓr ≥ cp̄ + j. Conversely, we deduce ℓr < wim−2 − (p − p′) < wim−1 − (p − p′) and,
substituting wim−1 = cp̄ + p+ j − p′, we obtain ℓr < cp̄ + j, which is a contradiction.

To sum up, we spend linear time preprocessing each heavy path in every tree Ip′ plus
O(n) total time to construct arrays âϕ and âψ, each of which is associated with one of log n
particular children of the root in one of the trees (according to Lemma 9). Therefore, since
all the trees Ip′ contain n nodes in total, the overall time is O(n).

6 Concluding Remarks

We believe that the presented solution, while certainly still quite complicated and impractical,
is more implementable than that of [13]. We expect that, with additional combinatorial
insights, one can simplify it even further, perhaps eventually arriving at a practical data
structure for the problem. A number of natural and less vaguely formulated problems also
arise. For example, can we maintain the weighted ancestor data structure during an online
construction of the suffix tree? Is it possible to reduce the space usage and support weighted
ancestors in compact suffix trees [24, 27] with O(n) or O(n log σ) additional bits of space,
where σ is the alphabet size?

To the best of our knowledge, the lemma about the sum of irreducible LCP values has
found relatively few applications other than in the construction of LCP and PLCP arrays
(e.g., see references in [16]): [2, 3, 18, 29] (the application in [18], however, is somewhat
spectacular). The techniques developed in our paper might be interesting by themselves and
pave the way to more applications of irreducible LCPs in algorithms on strings.
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Abstract
We consider the problem of constructing strings over an alphabet Σ that start with a given prefix u,
end with a given suffix v, and avoid occurrences of a given set of forbidden substrings. In the decision
version of the problem, given a set Sk of forbidden substrings, each of length k, over Σ, we are asked
to decide whether there exists a string x over Σ such that u is a prefix of x, v is a suffix of x, and no
s ∈ Sk occurs in x. Our first result is an O(|u| + |v| + k|Sk|)-time algorithm to decide this problem.
In the more general optimization version of the problem, given a set S of forbidden arbitrary-length
substrings over Σ, we are asked to construct a shortest string x over Σ such that u is a prefix of x,
v is a suffix of x, and no s ∈ S occurs in x. Our second result is an O(|u| + |v| + ||S|| · |Σ|)-time
algorithm to solve this problem, where ||S|| denotes the total length of the elements of S.

Interestingly, our results can be directly applied to solve the reachability and shortest path
problems in complete de Bruijn graphs in the presence of forbidden edges or of forbidden paths.

Our algorithms are motivated by data privacy, and in particular, by the data sanitization process.
In the context of strings, sanitization consists in hiding forbidden substrings from a given string by
introducing the least amount of spurious information. We consider the following problem. Given a
string w of length n over Σ, an integer k, and a set Sk of forbidden substrings, each of length k,
over Σ, construct a shortest string y over Σ such that no s ∈ Sk occurs in y and the sequence of all
other length-k fragments occurring in w is a subsequence of the sequence of the length-k fragments
occurring in y. Our third result is an O(nk|Sk| · |Σ|)-time algorithm to solve this problem.
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9:2 Constructing Strings Avoiding Forbidden Substrings
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1 Introduction

We start with some basic definitions and notation from [20]. An alphabet Σ is a finite nonempty
set of elements called letters. We assume throughout an integer alphabet Σ = [1, |Σ|]. A string
x = x[1] . . . x[n] is a sequence of length |x| = n of letters from Σ. The empty string, denoted
by ε, is the string of length 0. The fragment x[i . . j] is an occurrence of the underlying
substring s = x[i] . . . x[j]; s is a proper substring of x if x ̸= s. We also say that s occurs
at position i in x. A prefix of x is a fragment of x of the form x[1 . . j] and a suffix of x is a
fragment of x of the form x[i . . n]. An infix of x is a fragment of x that is neither a prefix nor
a suffix. The set of all strings over Σ (including ε) is denoted by Σ∗. The set of all length-k
strings over Σ is denoted by Σk.

We consider the following basic problem on strings.

String Existence Avoiding Forbidden Length-k Substrings (SEFS)
Input: An integer k > 0, two strings u, v ∈ Σ∗, and a set Sk ⊂ Σk.
Output: YES if there exists a string x ∈ Σ∗ such that u is a prefix of x, v is a suffix of
x, and no s ∈ Sk occurs in x; or NO otherwise.

In what follows we refer to set Sk as the set of forbidden substrings.

▶ Example 1. Consider Σ = {a, b}, k = 4, Sk = {bbbb, aaba, abba}, u = aab, and v = aba.
SEFS has a positive answer, as there exists, for instance, string x = aabbbaba with u as a
prefix, v as a suffix, and with no occurrence of any s ∈ Sk.

In Section 3, we show the following result.

▶ Theorem 2. Given an integer k > 1, two strings u, v ∈ Σ∗, and a set Sk ⊂ Σk, SEFS can
be solved in O(|u| + |v| + k|Sk|) time.

We also consider the following more general optimization version of the SEFS problem.

Shortest String Avoiding Forbidden Substrings (SSFS)
Input: Two strings u, v ∈ Σ∗ and a set S ⊂ Σ∗.
Output: A shortest string x ∈ Σ∗ such that u is a prefix of x, v is a suffix of x, and no
s ∈ S occurs in x; or FAIL if no such x exists.

Note that in SSFS the set S of forbidden substrings contains strings of arbitrary lengths.
In Section 4, we show the following result.

▶ Theorem 3. Given two strings u, v ∈ Σ∗, and a set S ⊂ Σ∗, SSFS can be solved in
O(|u| + |v| + ||S|| · |Σ|) time, where ||S|| =

∑
s∈S |s|, using O(|u| + ||S|| · |Σ|) space.

Related Work. Crochemore, Mignosi and Restivo [21] showed how to construct a complete
deterministic finite automaton (DFA) accepting strings over Σ which do not contain any
forbidden substring from a finite anti-factorial language S (see also [8]). This DFA has O(||S||)
states, Θ(||S|| · |Σ|) edges in the worst case, and it can be constructed in Θ(||S|| · |Σ|) time.
Thus using this DFA for deciding SEFS would entail a time complexity of Ω(|u|+|v|+k|Sk|·|Σ|)
in the worst case. We show a fundamentally different non-constructive approach to decide
SEFS in O(|u| + |v| + k|Sk|) time, which is based on combinatorial properties of complete
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de Bruijn graphs. For solving the optimization version SSFS, we make use of the DFA
complemented with an efficient way to compute the appropriate source and sink nodes. This
is because u (as a prefix) and v (as a suffix) must occur in string x (possibly overlapping).

Following the definition in [15], a language L ⊆ Σ∗ is strictly locally testable if there
exist an integer k and finite sets F, U, V ⊆

⋃k−1
i=1 Σi and W ⊆ Σk such that L = ((UΣ∗ ∩

Σ∗V ) \ Σ∗WΣ∗) ∪ F . Therefore SEFS can be reduced to determining whether or not some
specific strictly locally testable language is nonempty, while SSFS can be reduced to finding
a minimum-length string in its corresponding language.

Our Motivation. We are motivated by applications in data privacy, and in particular, in
data sanitization. Data sanitization, also known as knowledge hiding, is a privacy-preserving
data mining process, which aims at preventing the mining of confidential knowledge from
published datasets. Data sanitization has been an active area of research for the past 25
years [18, 38, 42, 29, 43, 30, 1, 2, 28, 31, 37, 13]. Informally, it is the process of disguising
(hiding) confidential information in a given dataset. This process typically incurs some data
utility loss that should be minimized. Naturally, privacy constraints and utility objective
functions lead to the formulation of combinatorial optimization problems. From a fundamental
perspective, it is thus relevant to be able to establish some formal guarantees.

In the context of strings, data sanitization consists in hiding forbidden substrings from
a given string by introducing the least amount of spurious information [9, 10, 11, 12]. In
previous works [9, 10, 11], we considered various combinatorial optimization problems for
string sanitization, all of which receive as input a string w of length n over Σ, an integer k,
and a set Sk of forbidden substrings, and conceal the occurrences of forbidden substrings
in w through the use of a special letter # /∈ Σ. In particular, the TFS problem [9] asks to
construct a shortest string x such that no string in Sk occurs in x and the order of occurrence
of all other length-k substrings over Σ (and thus their frequency) is the same in w and in x.
We developed an algorithm that solves the TFS problem in the optimal O(n + |x|) time [9],
assuming that the list of all occurrences of forbidden substrings in w are given at input.

▶ Example 4. Let w = abbbbaaabaa, Σ = {a, b}, k = 4, and Sk = {bbbb, aaba, abba}. All
occurrences of forbidden substrings are underlined. The solution to the TFS problem is string
x = abbbaaab#abaa, where # /∈ Σ: it is the shortest string in which the occurrences of the
strings in Sk are concealed and the order of all other length-k substrings over Σ is preserved.

However, as already noted in [9], the occurrences of # in x may reveal the locations of the
forbidden substrings in w and should therefore be ultimately replaced by letters or strings
over Σ in several applications of interest. The problem of replacing the occurrences of # in
x with single letters of Σ without reintroducing any forbidden substrings and with different
optimization criteria has been considered in [9, 10, 12]. Replacing #’s with single letters,
though, may be too restrictive, and even “easy” instances may admit no feasible solution.

▶ Example 5. Consider the instance from Example 4. The occurrence of # in x =
abbbaaab#abaa reveals the location in w of the forbidden substring aaba. Note that deleting
# would reinstate aaba; and # cannot be replaced by a single letter from Σ, as both a and
b create occurrences of the forbidden substrings aaba and abba, respectively.

We thus consider a more general string sanitization problem in which we allow # replacements
with strings of any length over Σ, so as to widen the set of instances that admit a feasible
solution. Given a string w over an alphabet Σ, an integer k > 1, and a set Sk ⊂ Σk, we
denote by S(w, Sk) the sequence over Σk \ Sk in which the ith element (from left to right) is
the ith length-k substring occurrence in w that is not in Sk. In other words, S(w, Sk) is the
sequence of non-forbidden length-k fragments of w. This allows us to reformulate SFSS:
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Shortest Fully-Sanitized String (SFSS)
Input: A string w ∈ Σn, an integer k > 1, and a set Sk ⊂ Σk.
Output: A shortest string y ∈ Σ∗ such that no s ∈ Sk occurs in y and S(w, Sk) is a
subsequence of S(y, Sk); or FAIL if no such y exists.

▶ Example 6. Consider again the instance from Example 4. We have S(w, Sk) = abbb, bbba,

bbaa, baaa, aaab, abaa. A solution to the SFSS problem is string y = abbbaaabbbabaa. We
have that S(w, Sk) is a subsequence of S(y, Sk) = abbb, bbba, bbaa, baaa, aaab, aabb, abbb,

bbba, bbab, baba, abaa. Moreover, no s ∈ Sk occurs in y and y is a shortest such string.

A solution y to the SFSS problem has the following attractive properties, which are
related to privacy or utility: (i) no forbidden substring occurs in y (privacy); (ii) y has as a
subsequence the sequence of non-forbidden length-k substrings of w (utility); and (iii) y is
the shortest possible (utility).

In Section 5, we reduce the SFSS problem to d ≤ n special instances of the SSFS problem.
Each such special instance can be seen as seeking for a shortest path in the complete de
Bruijn graph of order k over Σ [22] in the presence of forbidden edges. The complete de Bruijn
graph of order k over an alphabet Σ is a directed graph Gk = (Vk, Ek), where the set of nodes
Vk = Σk−1 is the set of length-(k − 1) strings over Σ. There is an edge (u, v) ∈ Ek if and only
if the length-(k − 2) suffix of u is the length-(k − 2) prefix of v. There is therefore a natural
correspondence between an edge (u, v) and the length-k string u[1]u[2] . . . u[k − 1]v[k − 1].
We will thus sometimes abuse notation and write Sk ⊂ Ek. In particular, one such instance
asks for constructing a shortest path from node u to node v, with u, v ∈ Vk, avoiding edges
Sk ⊂ Ek. We thus finally apply Theorem 3, with k − 1 = |u| = |v| and S = Sk, d ≤ n times
to obtain Theorem 7.

▶ Theorem 7. Given a string w of length n over an alphabet Σ, an integer k > 1, and a set
Sk ⊂ Σk, SFSS can be solved in O(nk|Sk| · |Σ|) time.

Other Related Work. Graph reachability is a classic problem in computer science [34, 39,
19, 40]. It refers to the ability to get from one node to another within a graph. In particular,
computing shortest paths is one of the most well-studied algorithmic problems. Graph
reachability and shortest path computation in the presence of failing nodes or of failing
edges becomes a much more challenging task [14, 7, 6, 4, 17, 5, 16, 3, 32]. One obvious, yet
important, application of accommodating such failures is in geographic routing [36].

To the best of our knowledge, reachability and shortest path computation in complete de
Bruijn graphs in the presence of failing edges has not been considered before. Theorem 2
and Theorem 3 directly solve the reachability and shortest path versions, respectively.
Interestingly, Theorem 3 constructs a shortest path in the presence of arbitrarily-long failing
paths. Our results, other than in data sanitization, may thus be of independent interest.

2 Algorithmic Toolkit

Let M be a finite nonempty set of strings over Σ of total length m. The trie of M , denoted by
TR(M), is a deterministic finite automaton that recognizes M with the following features [20].
Its set of states (nodes) is the set of prefixes of the elements of M ; the initial state (root
node) is ε; the set of terminal states (leaf nodes) is M ; and edges are of the form (u, α, uα),
where u and uα are nodes and α ∈ Σ. The size of TR(M) is thus O(m). The compacted
trie of M , denoted by CT(M), contains the root node, the branching nodes, and the leaf
nodes of TR(M). The term compacted refers to the fact that CT(M) reduces the number of
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nodes by replacing each maximal branchless path segment with a single edge, and it uses a
fragment of a string s ∈ M to represent the label of this edge in O(1) machine words. The
size of CT(M) is thus O(|M |). When M is the set of suffixes of a string y, then CT(M) is
called the suffix tree of y, and we denote it by ST(y). The suffix tree of a string of length n

over an alphabet Σ = {1, . . . , nO(1)} can be constructed in O(n) time [26]. The generalized
suffix tree of strings y1 . . . , yk over Σ, denoted by GST(y1, . . . , yk), is the suffix tree of string
y1$1 . . . yk$k, where $1, . . . , $k are distinct letters not from Σ.

We next recall some basic concepts on randomized algorithms. For an input of size n and
an arbitrarily large constant c fixed prior to the execution of a randomized algorithm, the term
with high probability (whp), or inverse-polynomial probability, means with probability at least
1 − n−c. When we say that the time complexity of an algorithm holds with high probability,
it means that the algorithm terminates in the claimed complexities with probability 1 − n−c.
Such an algorithm is referred to as Las Vegas whp. When we say that an algorithm returns a
correct answer with high probability, it means that the algorithm returns a correct answer
with probability 1 − n−c. Such an algorithm is referred to as Monte Carlo whp.

A static dictionary is a data structure that maintains a set K of items that are known
in advance. Each item may be associated with some satellite information. A perfect hash
function for a set K is a hash function that maps the items in K to a set of integers with
no collisions. There exists a Las Vegas whp algorithm that constructs a linear-sized static
dictionary to maintain S that employs a perfect hash function and supports look-up queries
in constant time per query [27]. A dynamic dictionary is a data structure that maintains a
dynamic set K of items; i.e., a set of items that are not known in advance. Each item may
be associated with some satellite information. There exists a Monte Carlo whp algorithm
that constructs a linear-sized dynamic dictionary to maintain K that employs a perfect hash
function dynamically and supports insert and look-up queries in constant time per query [24].

The Karp-Rabin fingerpint (KRF) of a string y over an integer alphabet is defined as
ϕq,r(y) =

∑|y|
i=1 y[i]r|y|−i mod q, where q is a prime number and r is a random integer in

[1, q] [35]. A crucial property of KRFs is that, with high probability, no collision occurs
among the length-k substrings of a given string. To see this, consider two strings s ̸= t each
of length k. The polynomial ϕq,r(s) − ϕq,r(t) has at most k roots modulo (prime) q, so the
two strings collide, i.e., ϕq,r(s) = ϕq,r(t), with probability no more than k

q−1 . Thus, for
sufficiently large q, we can avoid all possible collisions between the length-k substrings of a
string of length n. In particular, for a sufficiently large prime q such that log q ∈ Θ(log n),
ϕq,r is collision-free over all length-k substrings of any fixed string y of length n with high
probability. If, however, n is not known in advance, we take log q ∈ Θ(w) instead, where w is
the machine word size. We thus work in the word RAM model, where the word size always
satisfies w = Ω(log n), for any input of size n. We also assume that all standard arithmetic
operations between O(w)-bits integers take constant time. The following result is known.

▶ Lemma 8 ([35]). For any strings a and b, if we are given ϕq,r(a) and ϕq,r(b), then ϕq,r(ab)
can be computed in O(1) time. If we are given ϕq,r(ab) and ϕq,r(a), then ϕq,r(b) can be
computed in O(1) time.

Proof. For any a and b, we have ϕq,r(ab) = (ϕq,r(a)r|b| + ϕq,r(b)) mod q and ϕq,r(b) =
(ϕq,r(ab) − ϕq,r(a)r|b|) mod q by the rules of modular arithmetic. Thus we can compute
ϕq,r(ab) from ϕq,r(a) and ϕq,r(b), and ϕq,r(b) from ϕq,r(ab) and ϕq,r(a) in O(1) time. ◀
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3 String Existence Avoiding Forbidden Length-k Substrings

In this section we solve the SEFS problem: is there a string x ∈ Σ∗ such that u is a prefix of
x, v is a suffix of x, and no s ∈ Sk occurs in x, where u, v ∈ Σ∗ and Sk is a subset of Σk?

We start by showing how to solve SEFS efficiently when the strings u, v are of fixed length
k − 1. We will later show how to generalize this result to u and v of any length. We follow a
graph-theoretic approach by modelling the problem in terms of complete de Bruijn graphs.

Recall that the complete de Bruijn graph of order k over an alphabet Σ is a directed
graph Gk = (Vk, Ek) with Vk = Σk−1 and Ek = {(u, v) ∈ Vk × Vk | u[1] · v = u · v[k − 1]}. A
path in Gk is a finite sequence of elements from Ek, which joins a sequence of elements from
Vk. The de Bruijn sequence of order k over Σ is a string in which each element of Σk occurs
as a substring exactly once [33].

By reachability, we refer to a path in Gk, which starts with a fixed starting node u, its
infix is a sought (possibly empty) middle path, and it ends with a fixed ending node v. We
consider this notion of reachability in Gk in the presence of forbidden edges (or failing edges)
represented by the set Sk of forbidden length-k substrings over alphabet Σ.

We say that a subgraph GS
k = (V S

k , ES
k ) of a complete de Bruijn graph Gk avoids Sk ⊂ Σk

if it consists of all nodes of Gk and all edges of Gk but the ones that correspond to the
strings in Sk, that is, if V S

k = Vk and ES
k = Ek \ {(u, v) ∈ Ek | u · v[k − 1] ∈ Sk}. Given

u, v ∈ Σk−1 and Sk ⊂ Σk, it can be readily verified that there is a bijection between strings
in Σn with prefix u and suffix v that do not contain any strings in Sk and paths of length
n − k + 1 that start at u and end at v in GS

k . In what follows, we show that one can quickly
decide whether a node v is reachable from a node u (cf. the SEFS problem) by visiting only
a limited portion of GS

k , even though a shortest such path may be very long.
Our result relies on the notion of the isoperimetric number (a.k.a. Cheeger constant or

conductance) of a graph. The isoperimetric number measures the “bottleneckedness” of a
graph, that is, whether there is a way to partition the nodes into two sets such that the
number of edges connecting the two is small compared to the size of the smaller set. More
formally, given an undirected graph Gu = (V, E) and a subset of nodes A ⊂ V , the edge
boundary of A is ∂uA = {{x, y} ∈ E | x ∈ A, y ∈ V \ A}: in other words, ∂uA is the cut-set
of the cut (A, V \ A). The isoperimetric number of Gu is then hu(Gu) = min1≤|A|≤ |V |

2

|∂uA|
|A| .2

Since we consider directed de Bruijn graphs, we will make use of the following notion
of isoperimetric number, tailored for the directed case: h(G) = min1≤|A|≤ |V |

2

|∂A|
|A| , where

∂A = {(x, y) ∈ E | x ∈ A, y ∈ V \ A} is the directed edge boundary of A, that is, the set of
edges outgoing from A. The next lemma, which bounds the isoperimetric number h(G) of
a complete directed de Bruijn graph G, was given in [25, Lemma 3.5]. The proof is based
on an analogous result on undirected de Bruijn graphs by Delorme and Tillich [23], and we
report it here for completeness.

▶ Lemma 9 ([25]). Let Gk = (Vk, Ek) be the complete de Bruijn graph of order k over an
alphabet Σ. Then

h(Gk) = min
1≤|A|≤ |Vk|

2

|∂A|
|A|

≥ |Σ|
4(k − 2) , (1)

where A ⊂ Vk is a subset of nodes and ∂A is the edge boundary of A.

2 In the literature, the isoperimetric number of G is also often denoted by ϕ(G).
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Proof. Let A ⊆ Vk be a cut. The nodes of A have exactly |Σ| · |A| ingoing and outgoing
edges in total (including self-loops), as in a complete de Bruijn graph each node has exactly
|Σ| ingoing and |Σ| outgoing edges. Let E[A] be the set of edges of which both endpoints are
in A. Then |∂A| = |Σ| · |A| − |E[A]| = |∂(Vk \ A)|. Note that the undirected edge boundary
of A is ∂uA = ∂A ∪ ∂(Vk \ A), and |∂A| = (|∂A| + |∂(Vk \ A)|)/2 ≥ |∂A ∪ ∂(Vk \ A)|/2.
Therefore

h(Gk) = min
1≤|A|≤ |Vk|

2

|∂A|
|A|

≥ 1
2 min

1≤|A|≤ |Vk|
2

|∂A ∪ ∂(Vk \ A)|
|A|

= hu(Gu
k)/2 ≥ |Σ|

4(k − 2) ,

where hu(Gu
k) is the isoperimetric number of the simple, undirected version of the complete

de Bruijn graph Gk, and the last inequality follows from [23, Theorem 9]. ◀

Main Idea. Lemma 9 states, roughly speaking, that complete de Bruijn graphs have quite
a high isoperimetric number, meaning that the edge boundary of any subset of nodes is large
compared to the number of nodes in the subset. This implies that eliminating (relatively) few
edges from a complete de Bruijn graph is not enough to separate a (relatively) large set of
nodes from the rest. Since our goal is to decide whether there exists a path in GS

k connecting
u and v, and Sk has the effect of removing a number of edges from the complete de Bruijn
graph Gk, Lemma 9 implies that Sk is large enough to have u and v being separate only if
either the set of nodes reachable from u or the set of nodes from which v can be reached is
(relatively) small: Figure 1 illustrates this concept.

Our idea is thus to check whether the set of nodes reachable from u or the set of nodes
from which v can be reached in GS

k is small enough to have them separated by Sk or not. If
these sets are small enough our algorithm answers NO; otherwise it answers YES. Let us
remark that our input consists only of u ∈ Σ∗, v ∈ Σ∗, k > 0 and Sk ⊂ Σk, and thus GS

k is
not given explicitly: we will generate only the portion of GS

k that is sufficient to decide SEFS.

The Algorithm
The algorithm relies on the bound given by Lemma 9. Rearranging the factors we get

|A| ≤ 4(k − 2)
|Σ|

|∂A| (2)

for all A ⊂ Vk with |A| ≤ |Vk|/2 in the complete de Bruijn graph Gk = (Vk, Ek). Lemma 10
formalizes the main idea and gives a linear-time algorithm for deciding SEFS when |u| = k −1
and |v| = k − 1. We then extend the algorithm for u or v of arbitrary length.

▶ Lemma 10. Given an integer k > 1, two strings u, v ∈ Σk−1, and a set Sk ⊂ Σk, SEFS
can be solved in O(k|Sk|) time.

Proof. We start by generating the portion of GS
k = (V S

k , ES
k ) that can be reached from u in a

breadth-first fashion, thus generating an edge only if the corresponding length-k string is not
in Sk. We stop when we cannot reach any new nodes or if we have reached ⌊ 4(k−2)|Sk|

|Σ| ⌋ + 1

distinct nodes. Let A be this set of reachable nodes from u. If |A| <
⌊

4(k−2)|Sk|
|Σ|

⌋
+ 1 then A

contains all and only the nodes which can be reached from u. In this case there exists a path
from u to v if and only if v ∈ A, i.e., v is one of the reachable nodes. Otherwise, we repeat the
same procedure, this time using v as the starting point and traversing the edges backwards:
let B be set of nodes we reached backwards from v. Again, if |B| < ⌊ 4(k−2)|Sk|

|Σ| ⌋ + 1, then
there exists a path from u to v if and only if u ∈ B.
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Figure 1 A schematic representation of the complete de Bruijn graph of order 4 over an alphabet
of size 2. The dotted edges correspond to a set S4 of size 2, showing that its size is enough to
separate a set of up to two nodes from the rest, and thus, in this example, to make v unreachable
from u. It can be easily verified that |S4| = 2 is not enough to separate any 3 nodes from the rest.

Suppose however that |A| = |B| = ⌊ 4(k−2)|Sk|
|Σ| ⌋ + 1, and thus A and B do not contain all

the nodes that are reachable from u and from which can reach v, respectively. We claim that
in this case v is always reachable from u. In fact, if A and B have a nonempty intersection,
then clearly there exists a path from u to v. Otherwise, suppose for a contradiction that there
does not exist any path from u to v in the whole GS

k . Let Vk ⊇ A′ ⊇ A be set of nodes which
are reachable from u in the whole GS

k and let Vk ⊇ B′ ⊇ B be the set of nodes which can reach
v. Since there is no path from u to v in GS

k , the sets A′ and B′ are disjoint. Therefore one
of them contains at most half the nodes, that is, ⌊ 4(k−2)|Sk|

|Σ| ⌋ + 1 ≤ min{|A′|, |B′|} ≤ |Vk|/2.
Applying Equation (2) to the smallest of the two, we get |∂A′| > |Sk| or |∂B′| > |Sk|. However
note that, since there does not exist a path from u to v in GS

k , ∂A′ ∪ ∂B′C ⊆ Ek \ ES
k , where

∂B′C denotes the directed edge boundary of the complement of B′ in Vk. Since in a complete
de Bruijn graph each node has the same number of incoming and outgoing edges, it holds
|∂B′| = |∂B′C |. This is a contradiction. Therefore, we conclude that there exits a path from
u to v whenever |A| = |B| = ⌊ 4(k−2)|Sk|

|Σ| ⌋ + 1.

Now that we have bounded the total number of nodes of GS
k that are needed to decide

SEFS, let us describe how we can generate them efficiently. We start by computing the KRF
of every forbidden substring, and maintain them in a static dictionary F(Sk) [27]. This can
be done in O(k|Sk|) time. During the whole process, we also maintain a dynamic dictionary
GN [24], where we insert the KRFs of the generated nodes. From each generated node
w = w[1 . . k − 1], we thus need to (i) compute the KRF of string wα corresponding to an
outgoing edge in the complete de Bruijn graph Gk, for all α ∈ Σ; (ii) check whether the KRF
of string wα, for all α ∈ Σ, is in F(Sk); (iii) check which of the non-forbidden edges wα lead
to a node w[2 . . k − 1]α whose KRF is not in GN; and (iv) update GN by adding the KRFs of
the latter nodes w[2 . . k − 1]α to GN. Since the portion of GS

k that we generate is connected,
the strings of which we compute the KRFs at any step of this procedure can be obtained by
appending α to w, and then by chopping off the first letter of w to obtain w[2 . . k]α, for all
α ∈ Σ. By using Lemma 8, we can compute each such KRF in O(1) time per α, except for
the first node, where we spend O(k) time. Since in Gk there are |Σ| edges outgoing from
each node, we can compute all KRFs at w and look them up in F(Sk) and in GN in O(|Σ|)
time in total. The new nodes can be inserted in GN in O(|Σ|) time in total as well.

Since we generate O(k|Sk|/|Σ|) nodes in total, and since we spend O(|Σ|) time to process
each such node, the overall time required by the above algorithm is O(k|Sk|). ◀



G. Bernardini, A. Marchetti-Spaccamela, S. P. Pissis, L. Stougie, and M. Sweering 9:9

Let us now discuss the case where u or v are not of fixed length k − 1: note that we
still consider forbidden substrings of fixed length k, which determines the order of Gk. In
particular, we consider the case where u or v are of length smaller than k − 1 (Case 1) and
the case where u or v are longer than k − 1 (Case 2). We finally combine all possible cases.

Case 1: |u| < k − 1 or |v| < k − 1. When |u| < k − 1 (resp. |v| < k − 1) we should add
to the set of reachable nodes A (resp. to B) all the nodes that have u as a suffix (resp. v

as a prefix), and then generate the portion of GS
k reachable from each of them (resp. that

can reach each of them), adding the new reached nodes to A (resp. to B) until either its
size exceeds the bound given by Lemma 9 or we cannot find any new nodes, again as we
described in the proof of Lemma 10.

To show that this can be done efficiently, let us start by observing that the number of
nodes from which we start generating the graph increases when the length of u (resp. of
v) decreases. As a consequence, for u or v short enough we can decide the problem in
constant time. Indeed, if max(|u|, |v|) < (k − 1) − log|Σ|

(
4(k−1)|Sk|

|Σ|

)
, then the answer is

always positive. This is because of a simple counting argument: let us focus on u, as the
argument for v is the same. The number of nodes of Gk of which u is a suffix is |Σ|(k−1)−|u|,
which is greater than 4(k−1)|Sk|

|Σ| whenever |u| < (k − 1) − log|Σ|

(
4(k−1)|Sk|

|Σ|

)
, implying the

existence of a path from u to v.
We thus only need to consider the case where u (resp. v) is of length between (k − 1) −

log|Σ|

(
4(k−1)|Sk|

|Σ|

)
and k − 2. Let us focus on u, as the procedure for v is entirely analogous.

Let d = (k − 1) − |u|. The starting nodes that we need to generate are all and only the
length-(k − 1) strings over Σ of the form pu, where p is one of the |Σ|d strings of length
k − 1 − |u| over Σ. To obtain them and compute their KRFs efficiently we proceed as follows.
We first compute the KRF of u in O(|u|) = O(k) time. We then construct the de Bruijn
sequence of order d over Σ in time O(|Σ|d) [33], which is in O(k|Sk|/|Σ|) as we are considering
|u| > (k − 1) − log|Σ|

(
4(k−1)|Sk|

|Σ|

)
. We then use a sliding window of size d over the de Bruijn

sequence to compute the KRFs of its length-d fragments in overall O(|Σ|d) = O(k|Sk|/|Σ|)
time using Lemma 8. For each length-d fragment p, we apply Lemma 8 again to compute the
KRF of node pu in O(1) time from the KRFs of u and p. Therefore the whole algorithm takes
O(k|Sk|/|Σ|) time to generate the starting nodes and compute their KRFs, plus O(k|Sk|)
time to apply the algorithm described in the proof of Lemma 10 from these starting nodes.

Case 2: |u| > k − 1 or |v| > k − 1. When |u| > k − 1 (resp. |v| > k − 1) it suffices
to construct the path which spells u (resp. v) in GS

k and run the algorithm described in
the proof of Lemma 10 from the last node of the path (resp. from the first node). While
constructing the path, we compute the KRFs of the length-k substrings of u (resp. v) and
check on the dictionary of forbidden substrings whether they are forbidden. If any substring
of u (resp. v) is forbidden, then the answer to SEFS is clearly NO. This process requires
O(|u|) (resp. O(|v|)) time in addition to the time required by Lemma 10.

The correctness of the algorithm follows by Lemma 9. Then combining Lemma 10, Case 1,
and Case 2 leads to the main result of this section.

▶ Theorem 2. Given an integer k > 1, two strings u, v ∈ Σ∗, and a set Sk ⊂ Σk, SEFS can
be solved in O(|u| + |v| + k|Sk|) time.

▶ Remark 11. The algorithm for obtaining Theorem 2 is Monte Carlo whp due to the use of
KRFs and dynamic dictionaries.
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Reachability in Complete de Bruijn Graphs
Note that since Gk is complete, it can be specified by k and Σ in O(1) machine words. Let
us now formally define the following reachability problem on complete de Bruijn graphs.

Reachability in de Bruijn Graphs Avoiding Forbidden Edges (RFE)
Input: The complete de Bruijn graph Gk = (Vk, Ek) of order k > 1 over an alphabet Σ,
nodes u, v ∈ Vk, and a set Sk ⊂ Ek.
Output: YES if there exists a path from u to v avoiding any e ∈ Sk; or NO otherwise.

Lemma 10 directly translates to the following corollary.

▶ Corollary 12. Given the complete de Bruijn graph Gk = (Vk, Ek) of order k over an
alphabet Σ, nodes u, v ∈ Vk, and a set Sk ⊂ Ek, RFE can be solved in O(k|Sk|) time.

4 Shortest String Avoiding Forbidden Substrings

In this section we solve the SSFS problem: construct a shortest x ∈ Σ∗ such that u is a prefix
of x, v is a suffix of x, and no s ∈ S occurs in x, where u, v ∈ Σ∗ and S ⊂ Σ∗.

Let ||S|| =
∑

s∈S |s|. We make the standard assumption that Σ is a subset of [1, |u| + |v| +
||S|| + 1]. If this is not the case, we use a static dictionary [27] to do so in O(|u| + |v| + ||S||)
time. Note that all letters of Σ which are neither in u or in v nor in one of the strings in
S are interchangeable. They can therefore all be replaced by a single new letter, reducing
the alphabet to a size of at most |u| + |v| + ||S|| + 1. We will henceforth assume that
Σ is such a reduced alphabet. Further note that the input size of the SSFS instance is
(||S|| + |u| + |v|) log |Σ| bits or ||S|| + |u| + |v| machine words. We further assume that set S

is anti-factorial, i.e., no s1 ∈ S is a proper substring of another element s2 ∈ S. If that is
not the case, we take the set without such s2 elements to be S. This can be done in O(||S||)
time by constructing the generalized suffix tree of the original S after reducing Σ [26].

Main Idea. We say that a string y is S-dangerous if y = ε or y is a proper prefix of an
s ∈ S; we drop S from S-dangerous when this is clear from the context. We aim to construct
a labeled directed graph G(D, E) as follows. The set of nodes is the set D of dangerous
strings. There exists a directed edge labeled with α ∈ Σ in the set E of edges from node w1
to node w2, if w1α is not in S and w2 is the longest dangerous suffix of w1α.

Recall that u and v must be a prefix and a suffix of the string x we need to construct,
respectively. We set the longest dangerous string in D that is a suffix of u to be the source
node. We set every node w, such that wv does not contain a string of S, to be a sink node.
A shortest path from the source node to any sink node corresponds to a shortest such x,
where u and v are not allowed to overlap. The overlap case is treated separately.

The Algorithm
The algorithm has two main stages. In the first stage, we construct the graph G(D, E). In
the second stage, we find the source and the sinks, and we construct a shortest string x.

Crochemore, Mignosi and Restivo [21] showed how to construct a complete DFA accepting
strings over Σ, which do not contain any forbidden substring from S. This is precisely the
directed graph G(D, E).3 We show that this DFA has Θ(||S||) states and Θ(||S|| · |Σ|) edges

3 In what follows, we use the term graph and automaton interchangeably, depending on the context.
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in the worst case. If we take this DFA and multiply it with the automaton accepting strings
of the form uwv, with w ∈ Σ∗, we get another automaton accepting all strings of length
at least |u| + |v| starting with u, ending with v and not containing any element s ∈ S as a
substring. Since this product automaton would have O((|u| + |v|)||S||) nodes, we will instead
show an efficient way to compute the appropriate source and sink nodes on G(D, E) in
O(|u|+|v|+||S||) time resulting in a total time cost of O(|u|+|v|+||S||·|Σ|) (Theorem 3). We
start by showing how G(D, E) can be constructed efficiently for completeness (see also [21]).

Constructing the Graph

First, we construct the trie of the strings in S. This takes O(||S||) time [20]. We merge the
leaf nodes, which correspond to the strings in S, into one forbidden node s′. Note that all
other nodes correspond to dangerous strings. We can therefore identify the set of nodes
with D′ = D ∪ {s′}. We turn this into an automaton by computing a transition function
δ : D′ × Σ → D′, which sends each pair (w, α) ∈ D × Σ to the longest dangerous or forbidden
suffix of wα and (s′, α) ∈ {s′} × Σ to s′. We can then draw the edges corresponding to the
transitions to obtain the graph G(D, E). To help constructing this transition function, we
also define a failure function f : D → D that sends each dangerous string to its longest
proper dangerous suffix, which is well-defined because the empty string ε is always dangerous.

In the trie, we already have the edges corresponding to δ(w, α) = wα if wα ∈ D′. We
first add δ(s′, α) = s′, for all α ∈ Σ. For the failure function, note that f(ε) = f(α) = ε.

To find the remaining values, we traverse the trie in a breadth first search manner. Let w

be an internal node of the trie, that is, a dangerous string of length ℓ > 0. Then

f(w) = δ(f(w[1 . . ℓ − 1]), w[ℓ]) and δ(w, α) =
{

wα if wα ∈ D′

δ(f(w), α) if wα /∈ D′
.

Note that this is well defined, because w[1 . . ℓ − 1] and f(w) are dangerous strings shorter
than w, so the corresponding function values are already known.

Once we have computed the transition function and created the corresponding automaton,
we delete s′ and all its edges thus obtaining G(D, E). To ensure that we can access the node
δ(w, α) in constant time we use a static dictionary on the nodes of G(D, E) [27]. We can
alternatively implement the transition functions by arrays in Θ(|Σ|) space per array.

Observe that we need to traverse |D| nodes and compute |Σ| + 1 function values at each
node (one value for f and |Σ| values for δ). Every function value is computed in constant
time, and therefore the total time complexity of the construction step is O(||S|| + |D| · |Σ|).

▶ Lemma 13. G(D, E) has Ω(||S||) states and Ω(||S|| · |Σ|) edges in the worst case. G(D, E)
can be constructed in the optimal O(||S|| · |Σ|) time.

Proof. For the first part, consider the instance where S consists of all strings of the form ww

with w ∈ Σk′ . Then the input size is ∥S∥ = 2k′|Σ|k′ , while there are more than k′|Σ|k′ states
and k′|Σ|k′+1 edges. The second part follows from the above discussion (see also [21]). ◀

Constructing a Shortest String

To find the source node, that is, the longest dangerous string that is a suffix of u, we start
at the node of G(D, E) that used to be the root of the trie, which corresponds to ε, and
follow the edges labeled with the letters of u one by one. This takes O(|u|) time. Finding
the sink nodes directly is more challenging. The trick is to compute the non-sink nodes first
instead. The non-sink nodes are those dangerous strings d ∈ D such that the string dv has a
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forbidden string s ∈ S as a substring. To this end, we construct the generalized suffix tree of
the strings in S. Recall that this is the compressed trie containing all suffixes of all forbidden
strings in S. This takes O(||S||) time [26]: let us remark that this step has to be done only
once. In order to access the children of an explicit suffix tree node by the first letter of their
edge label a static dictionary is used [27]. We then find, for each nonempty prefix p of v,
all suffixes of all forbidden substrings that are equal to p. We do that by spelling v from
the root of the suffix tree of S. There are no more than ||S|| such suffixes in total, thus the
whole process takes O(|v| + ||S||) time. For each such suffix p, we set the prefix q of the
corresponding forbidden substring to be a non-sink node, i.e., we have that qp ∈ S, q is a
non-sink, and p is a prefix of v. Recall that all proper prefixes of the elements of S are nodes
of G(D, E), and so this is well defined. Any other node is set to be a sink node.

We next consider two cases: |x| ≤ |u| + |v| (Case 1) and |x| ≥ |u| + |v| (Case 2).

Case 1: |x| ≤ |u| + |v|. In this case, u and v have a suffix/prefix overlap: a nonempty
suffix of u is a prefix of v. We can compute the lengths of all possible suffix/prefix overlaps
in O(|u| + |v|) time and O(|u|) space by, for instance, constructing the suffix tree of u

and spelling the prefixes of v from the root. In order to access the children of an explicit
suffix tree node by the first letter of their edge label, a static dictionary is used [27]. We
still have to check whether the strings created by such suffix/prefix overlaps contain any
forbidden substrings. We do that by starting at ε in G(D, E) and following the edges
corresponding to u one by one. If we are at a sink node after following i edges and we have
that u[i + 1 . . |u|] = v[1 . . |u| − i], then we output x = u[1 . . i]v and halt. Processing all these
edges takes O(|u|) time.

Case 2: |x| ≥ |u|+ |v|. Suppose that Case 1 did not return any feasible path. We then use
breadth first search on G(D, E) from the source node to the nearest sink node to find a path.
If we are at a sink node after following a path spelling string h, then we output x = uhv and
halt. In the worst case, we traverse the whole G(D, E). It takes O(|E|) = O(|D| · |Σ|) time.

In case no feasible path is found in G(D, E), we report FAIL.

Correctness

The paths we find in the algorithm correspond exactly to strings p such that x = pv has u as
a prefix and x does not contain any forbidden substrings. Since we search for these paths in
order of increasing length, the algorithm will find the shortest p and hence the shortest x, if
it exists or report FAIL otherwise.

Complexities

Constructing G(D, E) takes O(||S||+ |D| · |Σ|) time (see also [21]). Finding the source and all
sink nodes takes O(|u| + |v| + ||S||) time. Checking Case 1 takes O(|u| + |v|) time. Checking
Case 2 takes O(|D| · |Σ|) time. It should also be clear that the following bound on the size of
the output holds: |x| ≤ |u| + |v| + |D|. The total time complexity of the algorithm is thus

O(||S|| + |u| + |v| + |D| · |Σ|) = O(|u| + |v| + ||S|| · |Σ|).

▶ Remark 14. By symmetry, we can obtain a time complexity of O(||S||+ |u|+ |v|+ |Ds| · |Σ|),
where Ds is the set including ε and the proper suffixes of forbidden substrings.
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The algorithm uses O(||S|| · |Σ| + |u|) working space, which is the space occupied by
G(D, E) and the suffix tree of u.

We obtain the main result of this section.

▶ Theorem 3. Given two strings u, v ∈ Σ∗, and a set S ⊂ Σ∗, SSFS can be solved in
O(|u| + |v| + ||S|| · |Σ|) time, where ||S|| =

∑
s∈S |s|, using O(|u| + ||S|| · |Σ|) space.

▶ Remark 15. The algorithm for obtaining Theorem 3 is Las Vegas whp due to the use of
static dictionaries, which is a standard assumption in algorithms with large alphabets. If |Σ|
is polynomially bounded in the input size, it can be made deterministic at no extra cost.

A Full Example

In Figure 2, we illustrate the difference between the de Bruijn graph perspective and the
automaton perspective. Let u = ab, v = ca, and S = {bc}. We start at node ε of the
automaton. After processing u we are at source node b. The suffix tree of S contains suffixes
c and bc. Since c is a prefix of v, the complementary prefix b of the forbidden substring
bc is a non-sink and thus ε a sink. Note that u and v do not have any suffix/prefix overlap.
Hence we use breadth first search (Case 2). The shortest path from source b to sink ε is
a. Therefore x = abaca is a shortest string with prefix u and suffix v not containing any
substring from S.

ca

ab

bb

aa

ac

cb bc

cc

ba

b

a
b

a

c b

Figure 2 Recall that we have one forbidden substring, bc, of length 2. One could then construct
the complete de Bruijn graph of order 3 over alphabet Σ = {a,b,c} (Top); and find the sequence
of nodes ab → ba → ac → ca, which gives a shortest path starting from node ab, ending at node
ca, and avoiding the forbidden node bc. (Bottom) the graph G(D, E) after we have computed the
source node b and the only sink node ε. The shortest path is then a which gives x = ab · a · ca.

Shortest Path in Complete de Bruijn Graphs

We also consider the following more general optimization version of the RFE problem, the
reachability problem in complete de Bruijn graphs:
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Shortest Path in de Bruijn Graphs Avoiding Forbidden Edges (SPFE)
Input: The complete de Bruijn graph Gk = (Vk, Ek) of order k > 1 over an alphabet Σ,
nodes u, v ∈ Vk, and a set Sk ⊂ Ek.
Output: A shortest path from u to v avoiding any e ∈ Sk; or FAIL if no such path
exists.

Note that SPFE is a special case of SSFS. Theorem 3 yields the following corollary.

▶ Corollary 16. Given the complete de Bruijn graph Gk = (Vk, Ek) of order k over an
alphabet Σ, nodes u, v ∈ Vk, and a set Sk ⊂ Ek, SPFE can be solved in O(k|Sk| · |Σ|) time.

5 Shortest Fully-Sanitized String

In this section, we show how to solve the SFSS problem: given w ∈ Σn and Sk ⊂ Σk, construct
a shortest y ∈ Σ∗ such that no s ∈ Sk occurs in y and the sequence of non-forbidden length-k
substrings of w is a subsequence of the sequence of the length-k substrings of y.

We show that Corollary 16 can be applied on the output of the TFS problem, which
we denote by string x, to solve the SFSS problem. Recall from the introduction that x is
a shortest string such that no string in Sk occurs in x and the order of all other length-k
fragments over Σ is the same in w and in x. In [9], we showed that x is unique and it is
always of the form x = x0#1x1#2 · · · #dxd, with xi ∈ Σ∗ and |xi| ≥ k. It is easy to see why:
if we had an occurrence of #ixi#i+1 with |xi| ≤ k − 1 in x then we could have deleted #ixi

to obtain a shorter string x, which is a contradiction. Let us summarize the results related
to string x from [9].

▶ Theorem 17 ([9]). Let x be a solution to the TFS problem. Then x is unique, it is of the
form x = x0#1x1#2 · · · #dxd, with xi ∈ Σ∗, |xi| ≥ k, and d ≤ n, it can be constructed in
the optimal O(n + |x|) time, and |x| = Θ(nk) in the worst case.

Since |xi| ≥ k, each # replacement in x with a letter from Σ can be treated separately.
In particular, an instance xi#i+1xi+1 of this problem can be formulated as a shortest path
problem in the complete de Bruijn graph of order k over alphabet Σ in the presence of
forbidden edges. Corollary 16 can thus be applied d times on x = x0#1x1#2 · · · #dxd to
replace the d occurrences of # in x and obtain a final string over Σ: given an instance
xi#i+1xi+1, we set u to be the length-(k − 1) suffix of xi and v to be the length-(k − 1)
prefix of xi+1. Let us denote by y the string obtained by this algorithm.

▶ Example 18. Let w = abbbbaaabaa, Σ = {a, b}, k = 4, and Sk = {bbbb, aaba, abba}
(the instance from Example 4), and the solution x = abbbaaab#abaa of the TFS problem.
By setting u = aab and v = aba in the SPFE problem, we obtain as output the path
corresponding to string p = aabbbaba. The prefix aab of p corresponds to the starting node
u, its infix bb corresponds to the middle path found, and its suffix aba corresponds to the
ending node v. We use p to replace aab#aba and obtain the final string y = abbbaaabbbabaa.

However, to prove that y is a solution to the SFSS problem, we further need to prove
that S(w, Sk) is a subsequence of S(y, Sk), and that y is a shortest possible such string.

▶ Lemma 19. Let x = x0#1x1#2 · · · #dxd, with xi ∈ Σ∗ and |xi| ≥ k, be a solution to the
TFS problem on a string w, and let y be the string obtained by applying Corollary 16 d times
on x to replace the occurrences of #. String y is a shortest string over Σ such that S(w, Sk)
is a subsequence of S(y, Sk) and no s ∈ Sk occurs in y.



G. Bernardini, A. Marchetti-Spaccamela, S. P. Pissis, L. Stougie, and M. Sweering 9:15

Proof. No s ∈ Sk occurs in y by construction. With a slight abuse of notation, let S(x, Sk)
be the sequence of length-k substrings over Σ occurring in x from left to right. Since x

is a solution to the TFS problem, we have that S(x, Sk) = S(w, Sk). Since x0, x1, . . . , xd

occur in y in the same order as in x by construction, it follows that S(x, Sk) = S(w, Sk) is a
subsequence of S(y, Sk). We now need to show that there does not exist another string y′

shorter than y such that S(w, Sk) is a subsequence of S(y′, Sk) and no s ∈ Sk occurs in y′.
Suppose for a contradiction that such a shorter string y′ does exist. Since x is the shortest
string such that S(x, Sk) = S(w, Sk) and no s ∈ Sk occurs in x, all the length-k substrings
of x0, x1, . . . , xd are also a subsequence of S(y′, Sk) by hypothesis.

Let y[ℓi . . ri] and y′[ℓ′
i . . r′

i] be the shortest substrings of y and y′, respectively, where the
length-k substrings of xi and xi+1 appear and such that |y[ℓi . . ri]| > |y′[ℓ′

i . . r′
i]| (there must

be an i such that this is the case, as we supposed |y| > |y′|). Since y[ℓi . . ri] is obtained by
applying Corollary 16 to the length-(k − 1) suffix of xi and the length-(k − 1) prefix of xi+1,
it is a shortest string that has xi as a prefix and xi+1 as a suffix, implying that y′[ℓ′

i . . r′
i] can

only be shorter if it is not of the same form: have xi as a prefix and xi+1 as a suffix. Suppose
then that xi is not a prefix of y′[ℓ′

i . . r′
i], and thus there exist two consecutive length-k

substrings of xi that are not consecutive in y′[ℓ′
i . . r′

i]. But then it is always possible to
remove any letters between the two in y′[ℓ′

i . . r′
i] to make them consecutive and obtain a string

shorter than y′[ℓ′
i . . r′

i]. This operation does not introduce any occurrences of some s ∈ Sk, as
the two length-k substrings are consecutive in xi which, in turn, does not contain any s ∈ Sk.
By repeating this reasoning on any two length-k substrings of xi and xi+1, we obtain a string
y′′

i that has xi as a prefix, xi+1 as a suffix and such that |y′′
i | < |y′[ℓ′

i . . r′
i]| < |y[ℓi . . ri]|.

This is a contradiction, as y[ℓi . . ri] is a shortest string that has xi as a prefix and xi+1 as a
suffix. ◀

By Theorem 17, Corollary 16, and Lemma 19 we obtain the main result of this section.

▶ Theorem 7. Given a string w of length n over an alphabet Σ, an integer k > 1, and a set
Sk ⊂ Σk, SFSS can be solved in O(nk|Sk| · |Σ|) time.

▶ Remark 20. The algorithm for obtaining Theorem 7 is Las Vegas whp due to the use of
Corollary 16 (which relies on Theorem 3). If |Σ| is polynomially bounded in the size of the
input, the algorithm can be made deterministic at no extra cost.

We stress that the fact that y is the shortest possible is important for utility. Let G(x)[v]
denote the total number of occurrences of string v in string x. The k-gram profile of x is the
vector Gk(x) = (G(x)[v]), v ∈ Σk. The k-gram distance between two strings is defined as the
L1-norm of the difference of their k-gram profiles. The k-gram distance is a pseudo-metric
that is widely used (especially in bioinformatics), because it can be computed in linear time in
the sum of the lengths of the two strings [41]. It is now straightforward to see that the k-gram
distance between strings w (input of SFSS) and y (output of SFSS), such that S(w, Sk) is a
subsequence of S(y, Sk) and no s ∈ Sk occurs in y, is minimal. Thus, conceptually, SFSS
introduces in y the least amount of spurious information.

6 Open Questions

We leave the following questions unanswered:
1. Can the SEFS problem be solved deterministically in O(|u| + |v| + k|Sk|) time? One could

investigate whether the use of KRFs and dynamic dictionaries can be avoided.
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2. Can the SSFS problem be solved faster than O(|u| + |v| + ||S|| · |Σ|) time? One should
perhaps design a fundamentally different technique that avoids the DFA construction,
because, as we have shown, the latter has Ω(||S||) states and Ω(||S|| · |Σ|) edges.

3. Sometimes we may want to solve many instances of the SSFS problem having the same
set of forbidden substrings but different u and v; for example, in the SFSS problem (see
Section 5). Can we solve q such instances faster than applying Theorem 3 q times?
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Abstract
The classic string indexing problem is to preprocess a string S into a compact data structure that
supports efficient pattern matching queries. Typical queries include existential queries (decide if
the pattern occurs in S), reporting queries (return all positions where the pattern occurs), and
counting queries (return the number of occurrences of the pattern). In this paper we consider a
variant of string indexing, where the goal is to compactly represent the string such that given two
patterns P1 and P2 and a gap range [α, β] we can quickly find the consecutive occurrences of P1
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lower bound based on the set intersection problem showing that any solution using Õ(n) space must
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1 Introduction

The classic string indexing problem is to preprocess a string S into a compact data structure
that supports efficient pattern matching queries. Typical queries include existential queries
(decide if the pattern occurs in S), reporting queries (return all positions where the pattern
occurs), and counting queries (return the number of occurrences of the pattern). An
important variant of this problem is the gapped string indexing problem [6,8,10,14,27,28,31].
Here, the goal is to compactly represent the string such that given two patterns P1 and
P2 and a gap range [α, β] we can quickly find occurrences of P1 and P2 with distance
in [α, β]. Searching and indexing with gaps is frequently used in computational biology
applications [6, 11,13,14,19,21,22,32,35,38].
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Another variant is string indexing for consecutive occurrences [9, 40]. Here, the goal is to
compactly represent the string such that given a pattern P and a gap range [α, β] we can
quickly find consecutive occurrences of P with distance in [α, β], i.e., pairs of subsequent
occurrences with distance within the range.

In this paper, we consider the natural combination of these variants that we call gapped
indexing for consecutive occurrences. Here, the goal is to compactly represent the string such
that given two patterns P1 and P2 and a gap range [α, β] we can quickly find the consecutive
occurrences of P1 and P2 with distance in [α, β].

We can apply standard techniques to obtain several simple solutions to the problem. To
state the bounds, let n be the size of S. If we store the suffix tree for S, we can answer queries
by searching for both query strings, merging the results, and removing all non-consecutive
occurrences. This leads to a solution using O(n) space and Õ(|P1|+|P2|+occP1 +occP2) query
time, where occP1 and occP2 denote the number of occurrences of P1 and P2, respectively1.
However, occP1 + occP2 may be as large as Ω(n) and much larger than the size of the output.

Alternatively, we can obtain a fast query time in terms of the output at the cost of
increasing the space to Ω(n2). To do so, store for each node v in the suffix tree the set of all
consecutive occurrences (i, j) where i is the suffix number of a leaf below v in a standard 2D
range searching data structure organized by the lexicographic order of j and the distance of
the consecutive occurrence. To answer a query, we then perform a 2D range search in the
structure corresponding to the locus of P1 using the lexicographic range in the suffix tree
defined by P2 and the gap range. This leads to a solution for reporting queries using Õ(n2)
space and Õ(|P1| + |P2| + occ) time, where occ is the size of the output. For existence and
counting, we obtain the same bound without the occ term.

In this paper, we introduce new solutions that significantly improve the above time-space
trade-offs. Specifically, we present data structures that use Õ(n) space and query time
Õ(|P1| + |P2| + n2/3) for existence and counting and Õ(|P1| + |P2| + n2/3occ1/3) for reporting.
We complement this with a conditional lower bound based on the set intersection problem
showing that any solution using Õ(n) space must use Ω̃(|P1| + |P2| +

√
n) query time. To

obtain our results we develop new techniques and ideas of independent interest including a
new suffix tree decomposition and hardness of a variant of the set intersection problem.

1.1 Setup and Results

Throughout the paper, let S be a string of length n. Given two patterns P1 and P2 a
consecutive occurrence in S is a pair of occurrences (i, j), 0 ≤ i < j < |S| where i is an
occurrence of P1 and j an occurrence of P2, such that no other occurrences of either P1 or
P2 occurs in between. The distance of a consecutive occurrence (i, j) is j − i. Our goal is to
preprocess S into a compact data structure that given pattern strings P1 and P2 and a gap
range [α, β] supports the following queries:

Exists(P1, P2, α, β): determine if there is a consecutive occurrence of P1 and P2 with
distance within the range [α, β].
Count(P1, P2, α, β): return the number of consecutive occurrences of P1 and P2 with
distance within the range [α, β].
Report(P1, P2, α, β): report all consecutive occurrences of P1 and P2 with distance within
the range [α, β].

1 Õ and Ω̃ ignores polylogarithmic factors.
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We present new data structures with the following bounds:

▶ Theorem 1. Given a string of length n, we can
(i) construct an O(n) space data structure that supports Exists(P1, P2, α, β) and

Count(P1, P2, α, β) queries in O(|P1| + |P2| + n2/3 logϵ n) time for constant ϵ > 0,
or

(ii) construct an O(n log n) space data structure that supports Report(P1, P2, α, β) queries
in O(|P1| + |P2| + n2/3occ1/3 log n log log n) time, where occ is the size of the output.

Hence, ignoring polylogarithmic factors, Theorem 1 achieves Õ(n) space and query time
Õ(|P1| + |P2| + n2/3) for existence and counting and Õ(|P1| + |P2| + n2/3occ1/3) for reporting.
Compared to the above mentioned simple suffix tree approach that finds all occurrences of
the query strings and merges them, we match the Õ(n) space bound, while reducing the
dependency on n in the query time from worst-case Ω(|P1| + |P2| + n) to Õ(|P1| + |P2| + n2/3)
for Exists and Count queries and Õ(|P1| + |P2| + n2/3occ1/3) for Report queries.

We complement Theorem 1 with a conditional lower bound based on the set intersection
problem. Specifically, we use the Strong SetDisjointness Conjecture from [20] to obtain the
following result:

▶ Theorem 2. Assuming the Strong SetDisjointness Conjecture, any data structure on a
string S of length n that supports Exists queries in O(nδ + |P1| + |P2|) time, for δ ∈ [0, 1/2],
requires Ω̃

(
n2−2δ−o(1)) space. This bound also holds if we limit the queries to only support

ranges of the form [0, β], and even if the bound β is known at preprocessing time.

With δ = 1/2, Theorem 2 implies that any near linear space solution must have query time
Ω̃(|P1| + |P2| +

√
n). Thus, Theorem 1 is optimal within a factor roughly n1/6. On the other

hand, with δ = 0, Theorem 2 implies that any solution with optimal Õ(|P1| + |P2|) query
time must use Ω̃(n2−o(1)) space. Note that this matches the trade-off achieved by the above
mentioned simple solution that combines suffix trees with two-dimensional range searching
data structures.

Finally, note that Theorem 2 holds even when the gap range is of the form [0, β]. As a
simple extension of our techniques, in the appendix we show how to improve our solution
from Theorem 1 to match Theorem 2 in this special case.

1.2 Techniques
To obtain our results we develop new techniques and show new interesting properties of
consecutive occurrences. We first consider Exists and Count queries. The key idea is to
split gap ranges into large and small distances. For large distances there can only be a
limited number of consecutive occurrences and we show how these can be efficiently handled
using a segmentation of the string. For small distances, we cluster the suffix tree and store
precomputed answers for selected pairs of nodes. Since the number of distinct distances is
small we obtain an efficient bound on the space.

We extend our solution for Exists and Count queries to handle Report queries. To do so we
develop a new decomposition of suffix trees, called the induced suffix tree decomposition that
recursively divides the suffix tree in half by index in the string. Hence, the decomposition is
a balanced binary tree, where every node stores the suffix tree of a substring of S. We show
how to traverse this structure to efficiently recover the consecutive occurrences.

For our conditional lower bound we show a reduction based on the set intersection problem.
Along the way we show that set intersection remains hard even if all elements in the instance
have the same frequency.

CPM 2021



10:4 Gapped Indexing for Consecutive Occurrences

1.3 Related Work
As mentioned, string indexing for gaps and consecutive occurrences are the most closely
related lines of work to this paper. Another related area is document indexing, where the
goal is to preprocess a collection of strings, called documents, to report those documents that
contain patterns subject to various constraints. For a comprehensive overview of this area
see the survey by Navarro [36].

A well studied line of work within document indexing is document indexing for top-k
queries [12, 23, 24, 25, 26, 33, 34, 37, 39, 42, 43]. The goal is to efficiently report the top-k
documents of smallest weight, where the weight is a function of the query. Specifically, the
weight can be the distance of a pair of occurrences of the same or two different query patterns
[25, 33, 37, 42]. The techniques for top-k indexing (see e.g. Hon et al. [25]) can be adapted to
efficiently solve gapped indexing for consecutive occurrences in the special case when the gap
range is of the form [0, β]. However, since these techniques heavily exploit that the goal is to
find the top-k closest occurrences, they do not generalize to general gap ranges.

There are several results on conditional lower bounds for pattern matching and string
indexing [4, 5, 20, 29, 30]. Notably, Ferragina et al. [16] and Cohen and Porat [15] reduce
the two dimensional substring indexing problem to set intersection (though the goal was to
prove an upper, not a lower bound). In the two dimensional substring indexing problem
the goal is to preprocess pairs of strings such that given two patterns we can output the
pairs that contain a pattern each. Larsen et al. [30] prove a conditional lower bound for the
document version of indexing for two patterns, i.e., finding all documents containing both of
the two query patterns. Goldstein et al. [20] show that similar lower bounds can be achieved
via conjectured hardness of set intersection. Thus, there are several results linking indexing
for two patterns and set intersection. Our reduction is still quite different, since we need a
translation from intersection to distance.

1.4 Outline
The paper is organized as follows. In Section 2 we define notation and recall some useful
results. In Section 3 we show how to answer Exists and Count queries, proving Theorem 1(i).
In Section 4 we show how to answer Report queries, proving Theorem 1(ii). In Section 5 we
prove the lower bound, proving Theorem 2. In Appendix A we apply our techniques to solve
the variant where α = 0.

2 Preliminaries

Strings

A string S of length n is a sequence S[0]S[1] . . . S[n − 1] of characters from an alphabet Σ. A
contiguous subsequence S[i, j] = S[i]S[i + 1] . . . S[j] is a substring of S. The substrings of the
form S[i, n − 1] are the suffixes of S. The suffix tree [44] is a compact trie of all suffixes of S$,
where $ is a symbol not in the alphabet, and is lexicographically smaller than any letter in
the alphabet. Each leaf is labelled with the index i of the suffix S[i, n − 1] it corresponds to.
Using perfect hashing [18], the suffix tree can be stored in O(n) space and solve the string
indexing problem (i.e., find and report all occurrences of a pattern P ) in O(m + occ) time,
where m is the length of P and occ is the number of times P occurs in S.

For any node v in the suffix tree, we define str(v) to be the string found by concatenating
all labels on the path from the root to v. The locus of a string P , denoted locus(P ), is the
minimum depth node v such that P is a prefix of str(v). The suffix array stores the suffix
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indices of S$ in lexicographic order. We identify each leaf in the suffix tree with the suffix
index it represents. The suffix tree has the property that the leaves below any node represent
suffixes that appear in consecutive order in the suffix array. For any node v in the suffix tree,
range(v) denotes the range that v spans in the suffix array. The inverse suffix array is the
inverse permutation of the suffix array, that is, an array where the ith element is the index
of suffix i in the suffix array.

Orthogonal range successor

The orthogonal range successor problem is to preprocess an array A[0, . . . , n − 1] into a data
structure that efficiently supports the following queries:

RangeSuccessor(a, b, x): return the successor of x in A[a, . . . , b], that is, the minimum
y > x such that there is an i ∈ [a, b] with A[i] = y.
RangePredecessor(a, b, x): return the predecessor of x in A[a, . . . , b], that is, the maximum
y < x such that there is an i ∈ [a, b] with A[i] = y.

3 Existence and Counting

In this section we give a data structure that can answer Exists and Count queries. The main
idea is to split the query interval into “large” and “small” distances. For large distances
we exploit that there can only be a small number of consecutive occurrences and we check
them with a simple segmentation of S. For small distances we cluster the suffix tree and
precompute answers for selected pairs of nodes.

We first show how to use orthogonal range successor queries to find consecutive occurrences.
Then we define the clustering scheme used for the suffix tree and give the complete data
structure.

3.1 Using Orthogonal Range Successor to Find Consecutive Occurrences
Assume we have found the loci of P1 and P2 in the suffix tree. Then we can answer the
following queries in a constant number of orthogonal range successor queries on the suffix
array:

FindConsecutiveP2(i): given an occurrence i of P1, return the consecutive occurrence (i, j)
of P1 and P2, if it exists, and No otherwise.
FindConsecutiveP1(j): given an occurrence j of P2, return the consecutive occurrence (i, j)
of P1 and P2, if it exists, and No otherwise.

Given a query FindConsecutiveP2(i), we answer as follows. First, we compute the index
j = RangeSuccessor(range(locus(P2)), i) to get the closest occurrence of P2 after i. Then,
we compute i′ = RangePredecessor(range(locus(P1)), j) to get the closest occurrence of P1
before j. If i = i′ then no other occurrence of P1 exists between i and j and they are
consecutive. In that case we return (i, j). Otherwise, we return No.

Similarly, we can answer FindConsecutiveP1(j) by first doing a RangePredecessor and then
a RangeSuccessor query. Thus, given the loci of both patterns and a specific occurrence
of either P1 or P2, we can in a constant number of RangeSuccessor and RangePredecessor
queries find the corresponding consecutive occurrence, if it exists.

3.2 Data Structure
To build the data structure we will use a cluster decomposition of the suffix tree.
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10:6 Gapped Indexing for Consecutive Occurrences

Cluster Decomposition

A cluster decomposition of a tree T is defined as follows: For a connected subgraph C ⊆ T , a
boundary node v is a node v ∈ C such that either v is the root of T , or v has an edge leaving
C – that is, there exists an edge (v, u) in the tree T such that u ∈ T \ C. A cluster is a
connected subgraph C of T with at most two boundary nodes. A cluster with one boundary
node is called a leaf cluster. A cluster with two boundary nodes is called a path cluster. For
a path cluster C, the two boundary nodes are connected by a unique path. We call this
path the spine of C. A cluster partition is a partition of T into clusters, i.e. a set CP of
clusters such that

⋃
C∈CP V (C) = V (T ) and

⋃
C∈CP E(C) = E(T ) and no two clusters in

CP share any edges. Here, E(G) and V (G) denote the edge and vertex set of a (sub)graph
G, respectively. We need the next lemma which follows from well-known tree decompositions
[1, 2, 3, 17] (see Bille and Gørtz [7] for a direct proof).

▶ Lemma 3. Given a tree T with n nodes and a parameter τ , there exists a cluster partition
CP such that |CP | = O(n/τ) and every C ∈ CP has at most τ nodes. Furthermore, such a
partition can be computed in O(n) time.

Data Structure

We build a clustering of the suffix tree of S as in Lemma 3, with cluster size at most τ , where
τ is some parameter satisfying 0 < τ ≤ n. Then the counting data structure consists of:

The suffix tree of S, with some additional information for each node. For each node v we
store:

The range v spans in the suffix array, i.e., range(v).
A bit that indicates if v is on a spine.
If v is on a spine, a pointer to the lower boundary node of the spine.
If v is a leaf, the local rank of v. That is, the rank of v in the text order of the leaves
in the cluster that contains v. Note that this is at most τ .

The inverse suffix array of S.
A range successor data structure on the suffix array of S.
An array M(u, v) of length ⌊ n

τ ⌋ + 1 for every pair of boundary nodes (u, v). For 1 ≤ x ≤
⌊ n

τ ⌋, M(u, v)[x] is the number of consecutive occurrences (i, j) of str(u) and str(v) with
distance at most x. We set M(u, v)[0] = 0.

Denote M(u, v)[α, β] = M(u, v)[β] − M(u, v)[α − 1], that is, M(u, v)[α, β] is the number
of consecutive occurrences of str(u) and str(v) with a distance in [α, β].

Space Analysis

We store a constant amount of words per node in the suffix tree. The suffix tree and inverse
suffix array occupy O(n) space. For the orthogonal range successor data structure we use
the data structure of Nekrich and Navarro [41] which uses O(n) space and O(logϵ n) time,
for constant ϵ > 0. There are O

(
n2/τ2) pairs of boundary nodes and for each pair we store

an array of length O (n/τ). Therefore the total space consumption is O
(
n + n3/τ3).

3.3 Query Algorithm
We now show how to count the consecutive occurrences (i, j) with a distance in the interval,
i.e. α ≤ j − i ≤ β. We call each such pair a valid occurrence.

To answer a query we split the query interval [α, β] into two: [α, ⌊ n
τ ⌋] and [⌊ n

τ ⌋ + 1, β],
and handle these separately.
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3.3.1 Handling Distances > n
τ

We start by finding the loci of P1 and P2 in the suffix tree. As shown in Section 3.1, this allows
us to find the consecutive occurrence containing a given occurrence of either P1 or P2. We
implicitly partition the string S into segments of (at most) ⌊n/τ⌋ characters by calculating τ

segment boundaries. Segment i, for 0 ≤ i < τ , contains characters S[i · ⌊ n
τ ⌋, (i + 1) · ⌊ n

τ ⌋ − 1]
and segment τ (if it exists) contains the characters S[τ ·⌊ n

τ ⌋, n−1]. We find the last occurrence
of P1 in each segment by performing a series of RangePredecessor queries, starting from the
beginning of the last segment. Each time an occurrence i is found we perform the next
query from the segment boundary to the left of i, continuing until the start of the string
is reached. For each occurrence i of P1 found in this way, we use FindConsecutiveP2(i) to
find the consecutive occurrence (i, j) if it exists. We check each of them, discard any with
distance ≤ n

τ and count how many are valid.

3.3.2 Handling Distances ≤ n
τ

In this part, we only count valid occurrences with distance ≤ n
τ . Consider the loci of P1 and

P2 in the suffix tree. Let Ci denote the cluster that contains locus(Pi) for i = 1, 2. There are
two main cases.

At least one locus is not on a spine

If either locus is in a small subtree hanging off a spine in a cluster or in a leaf cluster, we
directly find all consecutive occurrences as follows: If locus(P1) is in a small subtree then we
use FindConsecutiveP2(i) on each leaf i below locus(P1) to find all consecutive occurrences,
count the valid occurrences and terminate. If only locus(P2) is in a small subtree then we
use FindConsecutiveP1(j) for each leaf j below locus(P2), count the valid occurrences and
terminate.

Both loci are on the spine

If neither locus is in a small subtree then both are on spines. Let (b1, b2) denote the lower
boundary nodes of the clusters C1 and C2, respectively. There are two types of consecutive
occurrences (i, j):

(i) Occurrences where either i or j are inside C1 resp. C2.
(ii) Occurrences below the boundary nodes, that is, i is below b1 and j is below b2.

See Figure 1(a). We describe how to count the different types of occurrences next.

Type (i) occurrences. To find the valid occurrences (i, j) where either i ∈ C1 or j ∈ C2
we do as follows. First we find all the consecutive occurrences (i, j) where i is a leaf in C1
by computing FindConsecutiveP2(i) for all leaves i below locus(P1) in C1. We count all valid
occurrences we find in this way. Then we find all remaining consecutive occurrences (i, j)
where j is a leaf in C2 by computing FindConsecutiveP1(j) for all leaves j below locus(P2) in
C2. If FindConsecutiveP1(j) returns a valid occurrence (i, j) we use the inverse suffix array
to check if the leaf i is below b1. This can be done by checking whether i’s position in the
suffix array is in range(b1). If i is below b1 we count the occurrence, otherwise we discard it.

Type (ii) occurrences. Next, we count the consecutive occurrences (i, j), where both i

and j are below b1 and b2, respectively. We will use the precomputed table, but we have to
be a careful not to overcount. By its construction, M(b1, b2)[α, min(⌊ n

τ ⌋, β)] is the number
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10:8 Gapped Indexing for Consecutive Occurrences

Figure 1 (a) Any consecutive occurrences (i, j) of P1 and P2 is either also a consecutive occurrence
of str(b1) and str(b2), or i or j are within the respective cluster. The suffix array is shown in the
bottom with the corresponding ranges marked. (b) Example of a false occurrence. Here (i′, j′) is a
consecutive occurrence of str(b1) and str(b2), but not a consecutive occurrence of P1 and P2 due
to i. The string S is shown in bottom with the positions of the occurrences marked.

of consecutive occurrences (i′, j′) of str(b1) and str(b2), where α ≤ j′ − i′ ≤ min(⌊ n
τ ⌋, β).

However, not all of these occurrence (i′, j′) are necessarily consecutive occurrences of P1 and
P2, as there could be an occurrence of P1 in C1 or P2 in C2 which is between i′ and j′. We
call such a pair (i′, j′) a false occurrence. See Figure 1(b). We proceed as follows.

1. Set c = M(b1, b2)[α, min(⌊ n
τ ⌋, β)].

2. Construct the lists Li containing the leaves in Ci that are below locus(Pi) sorted by text
order for i = 1, 2. We can obtain the lists as follows. Let [a, b] be the range of locus(Pi)
and [a′, b′] = range(bi). Sort the leaves in [a, a′ − 1] ∪ [b′ + 1, b] using their local rank.

3. Until both lists are empty iteratively pick and remove the smallest element e from the
start of either list. There are two cases.

e is an element of L1.
Compute j′ = RangeSuccessor(range(b2), e) to get the closest occurrence of str(b2)
after e.
Compute i′ = RangePredecessor(range(b1), j′) to get the closest occurrence of str(b1)
before j′.

e is an element of L2.
Compute i′ = RangePredecessor(range(b2), e) to get the previous occurrence i′ of
str(b1).
Compute j′ = RangeSuccessor(range(b1), j′) to get the following occurrence j′ of
str(b2).

If α ≤ j′ − i′ ≤ min(⌊ n
τ ⌋, β) and i′ < e < j′ decrement c by one. We skip any subsequent

occurrences that are also inside (i′, j′). As the lists are sorted by text order, all occurrences
that are within the same consecutive occurrence (i′, j′) are handled in sequence.

Finally, we add the counts of the different type of occurrences.

Correctness

Consider a consecutive occurrence (i, j) where j − i > n
τ . Such a pair must span a segment

boundary, i.e., i and j cannot be in the same segment. As (i, j) is a consecutive occurrence,
i is the last occurrence of P1 in its segment and j is the first occurrence of P2 in its segment.
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With the RangePredecessor queries we find all occurrences of P1 that are the last in their
segment. We thus check and count all valid occurrences of large distance in the initial pass
of the segments.

If either locus is in a small subtree we use FindConsecutiveP2(.) or FindConsecutiveP1(.)
on the leaves below that locus, which by the arguments in Section 3.1 will find all consecutive
occurrences.

Otherwise, both loci are on a spine. To count occurrences of type (i), we first compute
FindConsecutiveP2(i) for all leaves i below locus(P1) in C1 and then FindConsecutiveP1(j) for
all leaves j below locus(P2) in C2. However, any valid occurrence (i, j) where both i ∈ C1
and j ∈ C2 is found by both operations. Therefore, whenever we find a valid occurrence (i, j)
via i = FindConsecutiveP1(j) for j ∈ C2, we only count the occurrence if i is below b1. Thus
we count all type (i) occurrences exactly once.

To count type (ii) occurrences we start with c = M(b1, b2)[α, min(⌊ n
τ ⌋, β)], which is

the number of consecutive occurrences (i′, j′) of str(b1) and str(b2), where α ≤ j′ − i′ ≤
min(⌊ n

τ ⌋, β). Each (i′, j′) is either also a consecutive occurrence of P1 and P2, or there
exists an occurrence of P1 or P2 between i′ and j′. Let (i′, j′) be a false occurrence and
let w.l.o.g. i be an occurrence of P1 with i′ < i < j′. Then i is a leaf in C1, since (i′, j′) is
a consecutive occurrence of str(b1) and str(b2). In step 3 we check for each leaf inside the
clusters below the loci, if it is between a consecutive occurrence (i′, j′) of str(b1) and str(b2)
and if α ≤ j′ − i′ ≤ min(⌊ n

τ ⌋, β). In that case (i′, j′) is a false occurrence and we adjust the
count c. As (i′, j′) can have multiple occurrences of P1 and P2 inside it, we skip subsequent
occurrences inside (i′, j′). After adjusting for false occurrences, c is the number of type (ii)
occurrences.

Time Analysis

We find the loci in O(|P1| + |P2|) time. Then we perform a number of range successor and
FindConsecutive queries. The time for a FindConsecutive query is bounded by the time to do
a constant number of range successor queries. To count the large distances we check at most
τ segment boundaries and thus perform O(τ) range successor and FindConsecutive queries.

For small distances, if either locus is not on a spine we check the leaves below that locus.
There are at most τ such leaves due to the clustering. To count type (i) occurrences we check
the leaves below the loci that are inside the clusters. There are at most 2τ such leaves in
total. To count type (ii) occurrences we check two lists constructed from the leaves inside
the clusters below the loci. There are again at most 2τ such leaves in total. For each of these
O(τ) leaves we use a constant number of range successor and FindConsecutive queries. Thus
the time for this part is bounded by the time to perform O(τ) range successor queries.

Using the data structure of Nekrich and Navarro [41], each range successor query takes
O(logϵ n) time so the total time for these queries is O(τ logϵ n). For type (ii) occurrences
we sort two lists of size at most τ from a universe of size τ , which we can do in O(τ) time.
Thus, the total query time is O(|P1| + |P2| + τ logϵ n).

Setting τ = Θ(n2/3) we get a data structure that uses O
(
n + n3/τ3) = O(n) space and

has query time O(|P1| + |P2| + τ logϵ n) = O(|P1| + |P2| + n2/3 logϵ n), for constant ϵ > 0.
We answer an Exists query with a Count query, terminating when the first valid occurrence
is found. This concludes the proof of Theorem 1(i).
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Figure 2 The suffix tree of NANANANABATMAN$ together with its children trees T [0, 7] and T [8, 14].
The red crosses show a node in the parent tree and and its successor nodes in the two children trees.

4 Reporting

In this section, we describe our data structure for reporting queries. Note that in Section 3,
we explicitly find all valid occurrences except for type (ii) occurrences, where we use the
precomputed values. In this section, we describe how we can use a recursive scheme to report
these.

The main idea, inspired by fast set intersection by Cohen and Porat [15], is to build a
recursive binary structure which allows us to recursively divide the problem into subproblems
of half the size. Intuitively, the subdivision is a binary tree where every node contains the
suffix tree of a substring of S. We use this structure to find type (ii) occurrences by recursing
on smaller trees. We define the binary decomposition of the suffix tree next. The details of
the full solution follow after that.

4.1 Induced Suffix Tree Decomposition

Let T be a suffix tree of a string S of length n. For an interval [a, b] of text positions, we
define T [a, b] to be the subtree of T induced by the leaves in [a, b]: That is, we consider
the subtree consisting of leaves in [a, b] together with their ancestors. We then delete each
node that has only one child in the subtree and contract its ingoing and outgoing edge. See
Figure 2.

The induced suffix tree decomposition of T now consists of a higher level binary tree
structure, the decomposition tree, where each node corresponds to an induced subtree of
the suffix tree. The root corresponds to T [0, n − 1], and whenever we move down in the
decomposition tree, the interval splits in half. We also associate a level with each of the
induced subtrees, which is their depth in the decomposition tree. In more detail, the
decomposition tree is a binary tree such that:

The root of the decomposition tree corresponds to T [0, n − 1] and has level 0.
For each T [a, b] of level i in the decomposition, if b − a > 1, its two children in the
decomposition tree are T [a, c] and T [c + 1, b] where c = ⌊ a+b

2 ⌋; we will sometimes refer to
these as “children trees” to differentiate from children in the suffix tree.
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The decomposition tree is a balanced binary tree and the total size of the induced subtrees
in the decomposition is O(n log n): There are at most 2i decomposition tree nodes on level i,
each of which corresponds to an induced subtree of size O

(
n
2i

)
, and thus the total size of the

trees on each of the O(log n) levels is O(n).
For each node v in T [a, b], we define the successor node of v in each of the children trees

of T [a, b] in the following way: If v exists in the child tree, the successor node is v. Else, it is
the closest descendant which is present. Note that from the way the induced subtrees are
constructed, v has at most one successor node in each child tree.

The induced suffix tree decomposition of S consists of:
Each T [a, b] stored as a compact trie.
For each T [a, b] we store a sparse suffix array SA[a,b], that is, the suffix array of S[a, b]
with the original indices within S.
For each node v in T [a, b] we store a pointer from v to its successor nodes in each child
tree, if it exists, and the interval in SA[a,b] that corresponds to the leaves below v.

Since we store only constant information per node in any T [a, b], the total space usage of
this is O(n log n).

4.2 Data Structure
The reporting data structure consists of:

The induced suffix tree decomposition for S,
An orthogonal range successor data structure on the suffix array, and
The data structure from Section 3 for each T [a, b] in the induced suffix tree decomposition
with parameters ni and τi, where ni = ⌊ n

2i ⌋ and τi = Θ(n2/3
i ), such that ni/τi = ⌊n

1/3
i ⌋.

The only change is that we do not store an orthogonal range successor data structure for
each of the induced subtrees.

Space Analysis

We use the O(n log log n) space and O(log log n) time orthogonal range successor structure of
Zhou [45]. The data structure from Section 3 for each T [a, b] of level i is linear in ni. Thus,
by the arguments of Section 4.1, the total space is O(n log n).

4.3 Query Algorithm
The main idea behind the algorithm is the following: For large distances, as in Section 3,
we implicitly segment S to find all consecutive occurrences of at least a certain distance.
For small distances, we are going to use the cluster decomposition and counting arrays to
decide whether valid occurrences exist. That is, if one of the loci is in a small subtree, we
use FindConsecutiveP2(.) resp. FindConsecutiveP1(.) to find all consecutive occurrences. Else,
we perform a query as in Section 3 to decide whether any valid occurrences exist, and if yes,
we recurse on smaller subtrees.

The idea here is, that in the induced suffix tree decomposition, the trees are divided
in half by text position - therefore, a consecutive occurrence either will be fully contained
in the left child tree, fully contained in the right child tree, or have the property that the
occurrence of P1 is the maximum occurrence in the left child tree and the occurrence of P2
is the minimum occurrence in the right child tree. We will check the border case each time
when we recurse.
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In detail, we do the following: We find the loci of P1 and P2 in the suffix tree. As in the
previous section, we check τ0 segment boundaries with τ0 = Θ(n2/3) to find all consecutive
occurrences with distance within [max(α, ⌊n1/3⌋), β]. Now, we only have to find consecutive
occurrences of distance within [α, min(β, ⌊n1/3⌋)] in T = T [0, n − 1]. In general, let ni = ⌊ n

2i ⌋
and βi = min(β, ⌊n

1/3
i ⌋) and let T [a, b] be an induced subtree of level i.

To find all consecutive occurrences with distance within [α, βi] in T [a, b] of level i, given
the loci of P1 and P2 in T [a, b], recursively do the following:

If any of the loci is not on a spine of a cluster, we find all consecutive occurrences using
FindConsecutiveP2(.) resp. FindConsecutiveP1(.) and check for each of them if they are
valid; we report all such, then terminate.
Else, we use the query algorithm for small distances from Section 3 to decide whether a
valid occurrence with distance within [α, βi] exists in T [a, b].
If such a valid occurrence exists, we recurse; that is, set c = ⌊ a+b

2 ⌋. We use RangePre-
decessor to find the last occurrence of P1 before and including c, and RangeSuccessor to
find the first occurrence of P2 after c. Then we check if they are consecutive (again using
RangePredecessor and RangeSuccessor), and if it is a valid occurrence. If yes, we add it
to the output. Then, for both S[a, c] and S[c + 1, b], we implicitly partition them into
segments of size ⌊n

1/3
i+1⌋ and find and output all valid occurrences of distance > n

1/3
i+1.

Then we follow pointers to the successor nodes of the current loci to find the loci of P1
and P2 in the children trees T [a, c] and T [c + 1, b] and recurse on those trees to find all
consecutive occurrences of distance within [α, βi+1]

Correctness

At any point before we recurse on level i, we check all consecutive occurrences of distance
> n

1/3
i+1 by segmenting the current substring of S. By the arguments of the previous section,

we will find all such valid occurrences. Thus, on the subtrees of level i + 1, we need only care
about consecutive occurrences with distance in [α, βi+1].

By the properties of the induced suffix tree decomposition, a consecutive occurrence of P1
and P2 that is present in T [a, b] will either be fully contained in T [a, c], or in T [c+1, b], or the
occurrence of P1 is the last occurrence before and including c and the occurrence of P2 is the
first occurrence after c. We check the border case each time we recurse. Thus, no consecutive
occurrences get lost when we recurse. If we stop the recursion, it is either because one of the
loci was in a small subtree or that no valid occurrences with distance within [α, βi] exists in
T [a, b]. In the first case we found all valid occurrences with distance within [α, βi] in T [a, b]
by the same arguments as in Section 3. Thus, we find all valid occurrences of P1 and P2.

Time Analysis

For finding the loci, we first spend O(|P1| + |P2|) time in the initial suffix tree T [0, n − 1];
after that, we spend constant time each time we recurse to follow pointers. The rest of the
time consumption is dominated by the number of queries to the orthogonal range successor
data structure, which we will count next.

Consider the recursion part of the algorithm as a traversal of the decomposition tree, and
consider the subtree of the decomposition tree we traverse. Each leaf of that subtree is a
node where we stop recursing. Since we only recurse if we know there is an occurrence to be
found, there are at most O(occ) leaves. Thus, we traverse at most O(occ log n) nodes.

Each time we recurse, we spend a constant number of RangeSuccessor and RangePredecessor
queries to check the border cases. Additionally, we spend O(n2/3

i ) such queries on each node
of level i that we visit in the decomposition tree: For finding the “large” occurrences, and
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additionally either for reporting everything within a small subtree or doing an existence
query. For finding large occurrences, there are O(n2/3

i ) segments to check. The number of
orthogonal range successor queries used for existence queries or reporting within a small
subtree is bounded by the number of leaves within a cluster, which is also O(n2/3

i ).
Now, let x be the number of decomposition tree nodes we traverse and let li, i = 1, . . . , x,

be the level of each such node. The goal is to bound
∑x

i=1
(

n
2li

)2/3. By the argument
above, x = O(occ log n). Note that because the decomposition tree is binary we have that∑x

i=1
1

2li
≤ log n. The number of queries to the orthogonal range successor data structure is

thus asymptotically bounded by:

x∑
i=1

( n

2li

)2/3
= n2/3

x∑
i=1

(
1

2li

)2/3
· 1

≤ n2/3

(
x∑

i=1

(
1

2li

) 2
3 · 3

2
)2/3( x∑

i=1
13

)1/3

= n2/3

(
x∑

i=1

1
2li

)2/3

x1/3

= O(n2/3occ1/3 log n)

For the inequality, we use Hölder’s inequality, which holds for all (x1, . . . , xk) ∈ Rk and
(y1, . . . , yk) ∈ Rk and p and q both in (1, ∞) such that 1/p + 1/q = 1:

k∑
i=1

|xiyi| ≤

(
k∑

i=1
|xi|p

)1/p( k∑
i=1

|yi|q
)1/q

(1)

We apply (1) with p = 3/2 and q = 3.
Since the data structure of Zhou [45] uses O(log log n) time per query, the total running

time of the algorithm is O(|P1| + |P2| + n2/3occ1/3 log n log log n). This concludes the proof
of Theorem 1(ii).

5 Lower Bound

We now prove the conditional lower bound from Theorem 2 based on set intersection. We
use the framework and conjectures as stated in Goldstein et al. [20]. Throughout the section,
let I = S1, , . . . , Sm be a collection of m sets of total size N from a universe U . The
SetDisjointness problem is to preprocess I into a compact data structure, such that given
any pair of sets Si and Sj , we can quickly determine if Si ∩ Sj = ∅. We use the following
conjecture.

▶ Conjecture 4 (Strong SetDisjointness Conjecture). Any data structure that can answer
SetDisjointness queries in t query time must use Ω̃

(
N2

t2

)
space.

5.1 SetDisjointness with Fixed Frequency
We define a weaker variant of the SetDisjointness problem: the f -FrequencySetDisjointness
problem is the SetDisjointness problem where every element occurs in precisely f sets. We
now show that any solution to the f -FrequencySetDisjointness problem implies a solution to
SetDisjointness, matching the complexities up to polylogarithmic factors.
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▶ Lemma 5. Assuming the Strong SetDisjointness Conjecture, every data structure that
can answer f-FrequencySetDisjointness queries in time O(N δ), for δ ∈ [0, 1/2], must use
Ω̃
(
N2−2δ−o(1)) space.

Proof. Assume there is a data structure D solving the f -FrequencySetDisjointness problem
in time O(N δ) and space O

(
N2−2δ−ϵ

)
for constant ϵ with 0 < ϵ < 1. Let I = S1, . . . , Sm be

a given instance of SetDisjointness, where each Si is a set of elements from universe U , and
assume w.l.o.g. that m is a power of two.

Define the frequency of an element, fe, as the number of sets in I that contain e. We
construct log m instances I1, . . . , Ilog m of the f -FrequencySetDisjointness problem. For each
j, 1 ≤ j ≤ log m, the instance Ij contains the following sets:

For each i ∈ [1, m] a set Sj
i containing all e ∈ Si that satisfy 2j−1 ≤ fe < 2j ;

2j−1 “dummy sets”, which contain extra copies of elements to make sure that all elements
have the same frequency. That is, we add every element with 2j−1 ≤ fe < 2j to the first
2j − fe dummy sets. These sets will not be queried in the reduction.

Instance Ij has O(m) sets and every element occurs exactly 2j times. Further, the total
number of elements is at most 2N . We now build f -FrequencySetDisjointness data structures
Dj = D(Ij) for each of the log m instances.

To answer a SetDisjointness query for two sets Si1 and Si2 , we query Dj for the sets Sj
i1

and Sj
i2

, for each 1 ≤ j ≤ log m . If there exists a j such that Sj
i1

and Sj
i2

are not disjoint,
we output that Si and Sj are not disjoint. Else, we output that they are disjoint.

If there exists e ∈ Si1 ∩ Si2 , let j be such that 2j−1 ≤ fe < 2j . Then e ∈ Sj
i1

∩ Sj
i2

, and
we will correctly output that the sets are not disjoint. If Si1 and Si2 are disjoint, then, since
Sj

i1
is a subset of Si1 and Sj

i2
is a subset of Si2 , the queried sets are disjoint in every instance.

Thus we also answer correctly in this case.
Let Nj denote the total number of elements in Ij . For each j, we have Nj ≤ 2N and

thus N2−2δ−ϵ
j ≤ (2N)2−2δ−ϵ. Thus, the space complexity is asymptotically bounded by

⌈log m⌉∑
j=1

N2−2δ−ϵ
j = O(N2−2δ−ϵ log m).

Similarly, we have N δ
j = O(N δ) and so the time complexity is asymptotically bounded by

⌈log m⌉∑
j=1

N δ
j = O(N δ log m).

This is a contradiction to Conjecture 4. ◀

5.2 Reduction to Gapped Indexing
We can reduce the f -FrequencySetDisjointness problem to Exists queries of the gapped
indexing problem: Assume we are given an instance of the f -FrequencySetDisjointness
problem with a total of N elements. Each distinct element occurs f times. Assume again
w.l.o.g. that the number of sets m is a power of two. Assign to each set Si in the instance a
unique binary string wi of length log m. Build a string S as follows: Consider an arbitrary
ordering e1, e2, ... of the distinct elements present in the f -FrequencySetDisjointness instance.
Let $ be an extra letter not in the alphabet. The first B = f · log m + f letters are a
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Figure 3 Instance of f -FrequencySetDisjointness problem reduced to Exists. Alphabet Σ = {0, 1}
and fixed frequency f = 2, resulting in block size B = 2 · 2 + 2 = 6.

concatenation of wi$ of all sets Si that e1 is contained in, sorted by i. This block is followed
by B copies of $. Then, we have B symbols consisting of the strings for each set that e2 is
contained in, again followed by B copies of $, and so on. See Figure 3 for an example.

For a query for two sets Si and Sj , where i < j, we set P1 = wi and P2 = wj , α = 0, and
β = B. If the sets are disjoint, then there are no occurrences which are at most B apart.
Otherwise wi and wj occur in the same block, and wj comes after wi. The length of the
string S is 2N log m + 2N : In the block for each element, we have log m + 1 letters for each
of its occurrences, and it is followed by a $ block of the same length.

This means that if we can solve Exists queries in s(n) space and t(n) + O(|P1| + |P2|) time,
where n is the length of the string, we can solve the f -FrequencySetDisjointness problem in
s(2N log m + 2N) space and t(2N log m + 2N) + O(log m) time. Together with Lemma 5,
Theorem 2 follows.

6 Conclusion

We have considered the problem of gapped indexing for consecutive occurrences. We have
given a linear space data structure that can count the number of such occurrences. For the
reporting problem, we have given a near-linear space data structure. The running time for
both includes an O(n2/3) term, which forms a gap of O(n1/6) to the conditional lower bound
of O(

√
n). Thus, the most obvious open question is whether we can close this gap, either by

improving the data structure or finding a stronger lower bound.
Further, we have used the property that there can only be few consecutive occurrences

of large distances. Thus, our solution cannot be easily extended to finding all pairs of
occurrences with distance within the query interval. An open question is if it is possible
to get similar results for that problem. Lastly, document versions of similar problems have
concerned themselves with finding all documents that contain P1 and P2 or the top-k of
smallest distance; conditional lower bounds for these problems are also known. It would be
interesting to see if any of these results be extended to finding all documents that contain a
(consecutive) occurrence of P1 and P2 that has a distance within a query interval.
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A Gapped Indexing for [0, β] Gaps

In this section, we consider the special case where the queries are one sided intervals of the
form [0, β]. We give a data structure supporting the following tradeoffs:

▶ Theorem 6. Given a string of length n, we can
(i) construct an O(n) space data structure that supports Exists(P1, P2, 0, β) queries in

O(|P1| + |P2| +
√

n logϵ n) time for constant ϵ > 0, or
(ii) construct an O(n log n) space data structure that supports Count(P1, P2, 0, β) and

Report(P1, P2, 0, β) queries in O(|P1| + |P2| + (
√

n · occ) log log n) time, where occ is
the size of the output.

Note that since the results match (up to log factors) the best known results for set intersection,
this is about as good as we can hope for. We mention here that for this specific problem,
a similar tradeoff follows from the strategies used by Hon et al. [25]. The results from
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that paper include (among others) a data structure for documents such that given a query
of two patterns P1 and P2 and a number k, one can output the k documents with the
closest occurrences of P1 and P2. Thus, the problem is slightly different, however, with some
adjustments, the results from Theorem 6 follow (up to a log factor). We show a simple,
direct solution.

The data structure is a simpler version of the data structure considered in the previous
sections. The main idea is that for each pair of boundary nodes u and v, we do not have
to store an array of distances, but only one number that carries all the information: the
smallest distance of a consecutive occurrence of str(u) and str(v). Thus, for existence, we
can cluster with τ =

√
n to achieve linear space, and we do not need to check large distances

separately. For the reporting solution, we store the decomposition from Section 4.1, and use
the matrix M to decide where to recurse. In the following we will describe the details.

Existence data structure

For solving Exists queries in this setting, we cluster the suffix tree with parameter τ =
√

n.
Again, we store the linear space orthogonal range successor data structure by Nekrich and
Navarro [41] on the suffix array. For each pair of boundary nodes (u, v), we store at M(u, v)
the minimum distance of a consecutive occurrence of str(u) and str(v). The total space is
linear. To query, we proceed similarly as in Section 3 for the “small distances”: We find the
loci of P1 and P2. If any of the loci is not on the spine, we check all consecutive occurrences
using FindConsecutiveP2(.) resp. FindConsecutiveP1(.). If both loci are on the spine, denote
b1, b2 the lower boundary nodes of the respective clusters. Find M(b1, b2). If M(b1, b2) ≤ β,
we can immediately return Yes: If a valid occurrence (i′, j′) of str(b1) and str(b2) exists,
then either (i′, j′) is a consecutive occurrence of P1 and P2, or there exists a consecutive
occurrence of smaller distance. Otherwise, that is if M(b1, b2) > β, all valid occurrences
(i, j) have the property that either i is in the cluster of locus(P1) or j is in the cluster of
locus(P2), and we check all such pairs using FindConsecutiveP2(.) resp. FindConsecutiveP1(.).
The running time is O(|P1| + |P2| +

√
n logϵ n).

Reporting data structure

For the reporting data structure, we store the decomposition of the suffix tree as described in
Section 4.1 and the O(n log n) space orthogonal range successor data structure by Zhou [45]
on the suffix array. For each induced subtree of level i in the decomposition, we store the
existence data structure we just described.

Reporting algorithm

The algorithm follows a similar, but simpler, recursive structure as in Section 4. We begin
by finding the loci of P1 and P2. If either of the loci is not on a spine, we find all consecutive
occurrences using FindConsecutiveP2(.) resp. FindConsecutiveP1(.), check if they are valid,
report these, and terminate. If both loci are on a spine, we check M(b1, b2) for the lower
boundary nodes b1 and b2. If M(b1, b2) > β, all valid occurrences (i, j) have the property
that either i is in the cluster of locus(P1) or j is in the cluster of locus(P2). We check all such
pairs using FindConsecutiveP2(.) resp. FindConsecutiveP1(.), report the valid occurrences, and
terminate. If M(b1, b2) ≤ β, we recurse on the children trees. That is, we check the border
case and follow pointers to the loci in the children trees.



P. Bille, I. L. Gørtz, M. R. Pedersen, and T. A. Steiner 10:19

Analysis

The space is O(n log n), just as in Section 4.
For time analysis, we spend O(

√
n

2li
) orthogonal range successor queries on the nodes

in the decomposition tree of level li where we stop the recursion. For all other nodes we
visit in the tree traversal, we only spend a constant number of queries. In total, we visit
O(occ log(n/occ) + occ) decomposition tree nodes (by following the analysis in [15]), and we
spend O(

√
n

2li
) orthogonal range successor queries on O(occ) many such nodes.

We use the same notation as in Section 4. By x = O(occ) we now denote the number of
nodes where we stop the algorithm and output. Since each such node can be seen as a leaf in
a binary tree,

∑x
i=1

1
2li

≤ 1. We use the Cauchy-Schwarz inequality (which is a special case
of Hölders with p = q = 2). We get as an asymptotic bound for the number of orthogonal
range successor queries:

x∑
i=1

√
n

2li
=

√
n

x∑
i=1

√
1

2li
· 1

≤
√

n

√√√√ x∑
i=1

1
2li

√√√√ x∑
i=1

1

≤
√

nx = O(
√

n · occ).

Note that since occ log(n/occ) = O(occ
√

n/occ) = O(
√

n · occ), this brings the total number
of orthogonal range successor queries to O(occ +

√
n · occ). Using the data structure by

Zhou [45], the time bound from Theorem 6 follows.
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Abstract
The additive x-disorder of a permutation is the sum of the absolute differences of all pairs of
consecutive elements. We show that the additive x-disorder of a permutation of S(n), n ≥ 2, ranges
from n − 1 to

⌊
n2/2

⌋
− 1, and we give a complete characterization of permutations having extreme

such values. Moreover, for any positive integers n and d such that n ≥ 2 and n − 1 ≤ d ≤
⌊
n2/2

⌋
− 1,

we propose a linear-time algorithm to compute a permutation π ∈ S(n) with additive x-disorder d.

2012 ACM Subject Classification Mathematics of computing → Permutations and combinations

Keywords and phrases Permutation, Algorithm

Digital Object Identifier 10.4230/LIPIcs.CPM.2021.11

1 Introduction

Here we follow a young researcher in computer science who is about to pass an audition for
a permanent position in a prestigious university. As she arrived early in the main building of
the university, she decides to use one of the elevators to change her mind before reaching the
audition room on time. The chosen elevator has n buttons to move to the floor 1, 2, . . . ,
n of the building. To move from a floor a to a floor b, the elevator takes |b − a| seconds,
regardless of whether it goes up or down. Our candidate, loving the challenge herself, decides
to visit all floors once and only once each. Knowing that she arrived d seconds early, how
can she propose a route that takes exactly that long? And for which values d is there at
least one solution? It is assumed that the candidate can reach the initial floor of her ballad
instantly from the university entry hall and reach the dreaded audition room instantly from
the last visited floor. Fig. 1 shows an example.

We tackle this combinatorial problem by studying additive disorders of permutations.
Let π ∈ S(n) be a permutation of size n ≥ 2. The x-difference sequence of π is the (n− 1)-
sequence constructed by considering the absolute difference of all pairs of adjacent letters
of π, and its y-difference sequence is constructed by considering all distances between two
consecutive values in π. Moreover, the additive x-disorder of π is the sum of the integers
in its x-difference sequence and the additive y-disorder of π is the sum of the integers in
its y-difference sequence. For example, the x-difference sequence of π = 514263 ∈ S(6) is
(4, 3, 2, 4, 3), its y-difference sequence is (2, 2, 3, 2, 4), its additive x-disorder is 16, and its
additive y-disorder is 13.

These values associated with permutations are actually statistics: they are maps from
combinatorial objects to integers. The literature in algorithmic and combinatorics abounds
with examples and studies of similar statistics on permutations. One can cite for instance
the major index [5], the inversion number [4], the total displacement [4] (Problem 5.1.1.28),
the descent number [2], and the number of cycles [6] of permutations. The present paper is
intended to be a first study of these just described disorder statistics.
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Figure 1 The candidate has to visit exactly each of the six floors of the building. She visits
them in following order: 5, 1, 4, 2, 6, and 3. The total duration is 16 s. The candidate would have
achieved the maximum duration by visiting floors in the following order: 4, 1, 5, 2, 6, and 3. In this
case, the total duration is 17 s (the solution is not unique as the order 3, 5, 1, 6, 2 and 4 provides
another solution with total duration 17 s).

The maximum additive x-disorder of a permutation in S(n), n ≥ 2, is given by Sequence
A047838 of the OEIS1. More precisely, this sequence is concerned with maximum additive
y-disorder, but as we will show soon, the maximum additive x-disorder and the maximum
additive y-disorder of permutations in S(n) coincide. It is conjectured2 that the maximum
additive x-disorder of a permutation in S(n) is

⌊
n2/2

⌋
− 1. We prove that the conjecture is

correct.
Given an (n− 1)-sequence of positive integers D, it is shown in [3] that deciding whether

there exists some permutation π ∈ S(n) such that D is the x-difference sequence of π is
NP-complete. Pursuing this line of research, we complement [3] by showing that for any
integer d with n− 1 ≤ d ≤

⌊
n2/2

⌋
− 1, there exists a permutation π ∈ S(n) with additive

x-disorder d. The proof is constructive. Note that, given an n-sequence of positive integers
D = (d1, d2, . . . , dn), deciding whether there exist two permutations π, σ ∈ S(n) such that
di = π(i) + σ(i) for 1 ≤ i ≤ n is NP-complete [7].

This paper is organized as follows. Section 2 gives concise background and notation for
the disorder setting. We prove that the maximum additive x-disorder of a permutation in
S(n) is

⌊
n2/2

⌋
− 1 in Section 3, and in Section 3.4 that there exists a permutation that

achieves any legal additive x-disorder (our approach is constructive).

1 https://oeis.org/A047838
2 More precisely, the upper bound relies on correctness of Sequence A007590 of the OEIS.

https://oeis.org/A047838
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(c) πc = 352146
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(d) πi = 625134

Figure 2 Trivial bijections of π = 425631.

2 Definitions

For any non-negative integer n, we let [n] stand for the set {1, 2, . . . , n}. A permutation of
size n is a one-to-one mapping [n]→ [n]. The set of all permutations of size n is denoted by
S(n). For a permutation π ∈ S(n), we write π(i) for the integer at position i, i ∈ [n].

Let π ∈ S(n). The reverse of π is the permutation πr defined by πr(i) = π(n− i + 1) for
every i ∈ [n]. The complement of π is the permutation πc defined by πc(i) = n− π(i) + 1
for every i ∈ [n]. The inverse is the regular group theoretical inverse on permutations, πi

is defined by πi(i) = j if and only if π(j) = i for every i ∈ [n]. See Fig. 2. The reverse,
complement, and inverse are called the trivial bijections from S(n) to itself [1].

Let π ∈ S(n), n ≥ 2. The x-difference sequence [3] of π, denoted ∆x(π), is the (n− 1)-
sequence defined by

∆x(π) = (|π(2)− π(1)|, |π(3)− π(2)|, . . . , |π(n)− π(n− 1)|) .

The y-difference sequence of π, denoted ∆y(π), is the (n− 1)-sequence defined by ∆y(π) =
∆x(πi). See Fig. 3 for an illustration.

The additive x-disorder (resp. additive y-disorder) of π, denoted by δ+
x (π) (resp. δ+

y (π)),
is defined by δ+

x (π) =
∑

d∈∆x(π) d (resp. δ+
y (π) =

∑
d∈∆y(π) d).

▶ Example 1. See Fig. 3 for two examples. Besides, by setting π = 251463, we have
∆x(π) = (3, 4, 3, 2, 3), ∆y(π) = (2, 5, 2, 2, 3), δ+

x (π) = 3 + 4 + 3 + 2 + 3 = 15 and δ+
y (π) =

2 + 5 + 2 + 2 + 3 = 14.
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1 2 3 4 5 6 7 8 9 10

1
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4
5
6
7
8
9
10

2

2

2

2

9
8

2

2

2

5

9

8

7

6

5

4

3

2

∆
x (π)=

(2
,2,2,2,9,8,2,2,2)

δ +x
(π)=

31
∆y(π) = (5, 9, 8, 7, 6, 5, 4, 3, 2)

δ+
y (π) = 49

Figure 3 The x-difference sequence, the y-difference sequence, the additive x-disorder, and the
additive y-disorder of the permutation π = 2468A19753 (“A” stands for “10”).

3 Bounds on Additive Disorder

In this section, we show that the additive x-disorder and y-disorder of a permutation of S(n)
ranges from n − 1 to

⌊
n2/2

⌋
− 1. More precisely, we give a complete characterization of

permutations having extreme such values (Theorems 3 and 8), and show that every value in
this range is the additive x-disorder or y-disorder of some permutation (Theorem 10).

3.1 Basic properties
▶ Lemma 2. For every π ∈ S(n), n ≥ 2, the four following assertions hold:
1. (∆x(π))r = ∆x (πr);
2. ∆x(π) = ∆x (πc);
3. δ+

x (π) = δ+
y

(
πi);

4. δ+
y (π) = δ+

x

(
πi).
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Proof. The equality (∆x(π))r = ∆x (πr) is obvious. As for ∆x(π) = ∆x (πc), it is enough
to observe that, for every 1 ≤ i < n,

|π(i + 1)− π(i)| = |π(i + 1)− (n + 1)− π(i) + (n + 1)|
= |(n− π(i + 1) + 1)− (n− π(i) + 1)|
= |πc(i + 1)− πc(i)| .

The last two assertions are direct consequences of the definition of the y-difference sequence
of π as the x-difference sequence of the inverse of π. ◀

The last two assertions of Lemma 2 imply that all results about additive x-disorders
of permutations can be rephrased in terms of additive y-disorders and conversely. For this
reason, in what follows we shall focus on additive x-disorder and refer to it simply as additive
disorder.

3.2 Minimum disorder
▶ Theorem 3. The minimum possible additive disorder of a permutation of S(n) is n− 1.
It is attained exactly by the identity permutation and its reverse.

Proof. In any permutation π ∈ S(n), |π(i + 1) − π(i)| ≥ 1, so δ+
x (π) ≥ n − 1. The bound

is reached if π(i + 1) ∈ {π(i + 1), π(i − 1)} for all i. In particular, if π(i) ∈ {1, n}, then
i ∈ {1, n} as well (otherwise one of π(i− 1), π(i + 1) would not be at distance 1 from π(i)).
Assume π(1) = 1, then for each j, π(j) = j (by induction, π(j + 1) ∈ {π(j) + 1, π(j)− 1},
and π(j + 1) ̸= π(j − 1) = π(j)− 1). So π is the identity. Similarly if π(1) = n, then π is the
reverse of the identity. ◀

3.3 Maximum disorder
A permutation π ∈ S(n) is bipartite with threshold k if k ∈ {⌊n/2⌋ , ⌈n/2⌉} and for every
i ∈ [n − 1], either π(i) ≤ k and π(i + 1) > k, or π(i) > k and π(i + 1) ≤ k. Such a
permutation has centered endpoints if {π(1), π(n)} is either {⌊n/2⌋ , ⌊n/2⌋+ 1} (if k = ⌈n/2⌉)
or {⌈n/2⌉ , ⌈n/2⌉+ 1} (if k = ⌊n/2⌋).

▶ Example 4. The permutation π = 25371648 of S(8) is bipartite with threshold 4 and has
no centered endpoints. The permutation π = 46172835 of S(8) is bipartite with threshold 4
and has centered endpoints. The permutation π = 41523 of S(5) is bipartite with threshold 2
and has centered endpoints. The permutation π = 34152 of S(5) is bipartite with threshold
3 and has centered endpoints.

We say that permutation π has pattern P1, P2, or P3 if it satisfies the following prop-
erties, respectively (see Fig. 4, we then show that as forbidden patterns they characterize
permutations with maximal disorder):

Pattern P1 (extreme endpoint). There is j ∈ [n− 1] such that
1. π(1) < π(j) < π(j + 1),
2. or π(1) > π(j) > π(j + 1),
3. or π(j) < π(j + 1) < π(n),
4. or π(j) > π(j + 1) > π(n).
Pattern P2 (two separated pairs). There are i, j ∈ [n− 1] and k ∈ [n] such that

1. π(i), π(i + 1) ≤ k,
2. and π(j), π(j + 1) > k.
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11:6 Disorders and Permutations

Pattern P3 (three in a row). There is j ∈ [n− 2] such that
1. π(j) < π(j + 1) < π(j + 2),
2. or π(j) > π(j + 1) > π(j + 2).

•

1

•

i

•

i+1

P1
π(1) < π(i) < π(i + 1)

•

j

•

j+1

•

i

•

i+1
P2

π(i), π(i + 1) ≤ 3
and π(j), π(j + 1) > 3

3

•

i

•

i+1

•

i+2

P3
π(i) > π(i + 1) > π(i + 2)

Figure 4 Forbidden patterns in maximal disorder permutations.

▶ Lemma 5. A permutation that does not have patterns P1, P2, and P3 is bipartite and has
centered endpoints.

Proof. Let a = maxi∈[n−1](min{π(i), π(i + 1)}) and b = mini∈[n−1](max{π(i), π(i + 1)}).
If b < a, then for some i, j we have π(i), π(i + 1) ≤ b < a ≤ π(j), π(j + 1), i.e., π has

pattern P2.
If a = b, let j such that π(j) = a = b. Then one of π(j − 1), π(j + 1) must be larger than

π(j) (by definition of a), and the other must be smaller than π(j) (by definition of b). In
particular, j ̸= 1, n and π has pattern P3.

If a > b. Let A = {h | π(h) ≤ a} and B = {h | π(h) ≥ b}. Then A and B are disjoint,
a = |A| and b = n + 1− |B|. Moreover, each set {i, i + 1} contains one element in A and one
in B, so A, B is a partition of [n] (in other words, b = a + 1), and a = |A| ∈ {⌊n/2⌋ , ⌈n/2⌉}.
Overall for every i ̸= n, max{π(i), π(i + 1)} > a and min{π(i), π(i + 1)} ≤ a, so π is bipartite
with threshold a.

To show that endpoints are centered, first note that if n is even, then {1, n} has one
element in A, the other in B. If n is odd, either a = ⌈n/2⌉ and {1, n} ⊆ A, or a = ⌊n/2⌋
and {1, n} ⊆ B.

If π(1) < a let h be any position such that π(1) < π(h) ≤ a. Then h = n (otherwise, by
definition of a, π(1) < π(h) < π(h + 1) and π has pattern P1 version 1). So in particular,
there can be only one such value of h, so π(1) = a− 1. Furthermore, {1, n} ⊆ A so n is odd
and {π(1), π(n)} = {a, a− 1} = {⌊n/2⌋ , ⌊n/2⌋+ 1}, so π has centered endpoints.

Similarly if π(1) > b, we have π(1) = b + 1, π(n) = b and n is odd with {π(1), π(n)} =
{⌈n/2⌉ , ⌈n/2⌉+ 1} and π has centered endpoints.

The same arguments apply if π(n) < a or π(n) > b, so the only case left is {π(1), π(n)} =
{a, b}, which yields that n is even and {π(1), π(n)} = {n

2 , n
2 +1}, so π has centered endpoints.

◀

▶ Lemma 6. If π has one of patterns P1, P2, or P3, then there exists π′ such that δ+
x (π′) >

δ+
x (π).
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Proof. Pattern P1 version 1: for some j, π(1) < π(j) < π(j + 1). Let π′ be the permutation
obtained from π by reversing positions 1 to j. Then δ+

x (π′) = δ+
x (π)− (π(j + 1)− π(j)) +

(π(j + 1) − π(1)) = δ+
x (π) + π(j) − π(1) > δ+

x (π). Patterns P1 versions 2, 3, and 4 are
symmetrical.

Pattern P2: Depending on the relative order of i and j, of π(i) and π(i + 1), and of π(j)
and π(j + 1) we have a total of eight cases to check. Assuming i < j leaves the four following
alternatives, which correspond to two distinct patterns, up to symmetry:

Pattern P′
2 (monotonous pairs). There are i < j ∈ [n− 1] such that

1. π(i) < π(i + 1) < π(j) < π(j + 1)
2. or π(i + 1) < π(i) < π(j + 1) < π(j).
Pattern P′′

2 (non-monotonous pairs).There are i < j ∈ [n− 1] such that
1. π(i) < π(i + 1) < π(j + 1) < π(j)
2. or π(i + 1) < π(i) < π(j) < π(j + 1).

Pattern P′
2 version 1: for some i < j, π(i) < π(i + 1) < π(j) < π(j + 1). Let π′

be the permutation obtained from π by reversing positions i + 1 to j. Then δ+
x (π′) =

δ+
x (π) − (π(i + 1) − π(i)) − (π(j + 1) − π(j)) + (π(j) − π(i)) + (π(j + 1) − π(i + 1)) =

δ+
x (π) + 2(π(j)− π(i + 1)) > δ+

x (π).
Pattern P′′

2 version 1: for some i < j, π(i) < π(i + 1) < π(j + 1) < π(j). Let π′

be the permutation obtained from π by reversing positions i + 1 to j. Then δ+
x (π′) =

δ+
x (π) − (π(i + 1) − π(i)) − (π(j) − π(j + 1)) + (π(j) − π(i)) + (π(j + 1) − π(i + 1)) =

δ+
x (π) + 2(π(j + 1)− π(i)) > δ+

x (π).
This completes the proof of P2.
Pattern P3 version 1: for some j, π(j) < π(j + 1) < π(j + 2). Let π′ be the permutation

obtained from π by moving π(j + 1) to position 1. Then δ+
x (π′) = δ+

x (π)− (π(j + 1)−π(j))−
(π(j +2)−π(j +1))+(π(j +2)−π(j))+ |π(j +1)−π(1)| = δ+

x (π)+ |π(j +1)−π(1)| > δ+
x (π).

Pattern P3 version 2 is symmetrical. ◀

▶ Lemma 7. The additive disorder of a bipartite permutation π ∈ S(n) is

δ+
x (π) =

⌊
n2/2

⌋
− |π(1)− ⌈n/2⌉| − |π(n)− ⌈n/2⌉| .

Proof. Let m = ⌊n/2⌋, and k be a threshold for which π is bipartite. If n is even then⌊
n2/2

⌋
−1 = 2m2−1, and for n = 2m+1,

⌊
n2/2

⌋
−1 = 1

2 ((2m+1)2−1)−1 = 2m2 +2m−1
By the definition of bipartite, for any i, |π(i + 1) − π(i)| = |π(i) − k| + |π(i + 1) − k|.

Thus,

δ+
x (π) + |π(1)− k|+ |π(n)− k| = |π(1)− k|+

(
n−1∑
i=1
|π(i + 1)− π(i)|

)
+ |π(n)− k|

= 2
n∑

i=1
|π(i)− k|.

We introduce the partition H ∪ L of [1, n] as L = {i | π(i) ≤ k} and H = {i | π(i) > k} (in
particular, |L| = k and |H| = n− k). Note that i→ π(i)− k is a bijection between H and
[1, n− k], and that i→ k − π(i) is a bijection between L and [0, k − 1]. We have

∑
i∈H

|π(i)− k| =
∑
i∈H

(π(i)− k) =
n−k∑
j=1

j = (n− k)(n− k + 1)
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11:8 Disorders and Permutations

and∑
i∈L

|π(i)− k| =
∑
i∈L

(k − π(i)) =
k−1∑
j=0

j = (k − 1)k.

So overall

2
n∑

i=1
|π(i)− k| = (n− k)(n− k + 1) + (k − 1)k

= (n− k)2 + k2 + n− 2k.

If n is even (n = 2m), then k = n− k = m and n− 2k = 0.

2
n∑

i=1
|π(i)− k| = 2m2 = n2

2 .

Also, |π(i)− k| = |π(i)− ⌈n/2⌉| for i = 1 and i = n, so this concludes the proof when n

is even.
If n is odd (n = 2m + 1), k can be m or m + 1. If k = m, then n − k = m + 1 and

n− 2k = 1.

2
n∑

i=1
|π(i)− k| = (m + 1)2 + m2 + 1.

Also, π(1) and π(n) are both greater than k and k = ⌈n/2⌉ − 1, so

|π(1)− k|+ |π(n)− k| = |π(1)− ⌈n/2⌉|+ |π(n)− ⌈n/2⌉|+ 2.

This gives the following disorder:

δ+
x (π) = m2 + (m + 1)2 − |π(1)− ⌈n/2⌉| − |π(n)− ⌈n/2⌉| − 1.

Otherwise, if k = m + 1, then n− k = m and n− 2k = −1.

2
n∑

i=1
|π(i)− k| = m2 + (m + 1)2 − 1.

Also, k = ⌈n/2⌉, so

|π(1)− k|+ |π(n)− k| = |π(1)− ⌈n/2⌉|+ |π(n)− ⌈n/2⌉| .

This gives the same formula for the additive disorder:

δ+
x (π) = m2 + (m + 1)2 − |π(1)− ⌈n/2⌉| − |π(n)− ⌈n/2⌉| − 1.

Note that m2 + (m + 1)2− 1 = 2m2 + 2m = 1
2 ((2m + 1)2− 1) =

⌊
n2/2

⌋
, so this completes

the proof when n is odd. ◀

▶ Theorem 8. The maximum possible additive disorder of a permutation of S(n) is
⌊
n2/2

⌋
−1.

It is attained exactly by bipartite permutations with centered endpoints.

Proof. First, note that according to Lemma 7, any bipartite permutation with centered
endpoints has disorder

⌊
n2/2

⌋
− 1.

Conversely, let π be a permutation with maximal disorder. It may not have any of
the patterns P1, P2, or P3 by Lemma 6, hence it is bipartite with centered endpoints by
Lemma 5. ◀
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Algorithm 1 Given positive integers n and d, the algorithm returns a permutation
π ∈ S(n) such that δ+

x (π) = d.

1 Realization(n, d)

2 if d < n− 1 or d >
⌊
n2/2

⌋
− 1 then

3 return error

4 else if d = n− 1 then
5 return 12 . . . n

6 else if d ≤
⌊
(n− 1)2/2

⌋
+ 1 then

7 π ← Realization(n− 1, d− 2)
8 i← max(2, Position(π, n− 1))
9 return Insertion(π, i, n)

10 else
11 d′ ←

⌊
n2/2

⌋
− d

12 π ← 12 . . . ⌈n/2⌉
13 σ ← n(n− 1) . . . (⌈n/2⌉+ 1)
14 if d′ ≤ ⌊n/2⌋ then
15 i← ⌊n/2⌋+ 1
16 j ← i− d′

17 else
18 i← ⌊n/2⌋+ 1 + (−1)n mod 2(d′ − ⌊n/2⌋)
19 j ← 1
20 π ← PutFirst(π, j)
21 if i ∈ π then
22 π ← PutLast(π, i)

23 else
24 σ ← PutLast(σ, i)

25 return Interleave(π, σ)

3.4 All disorders in the range can be achieved
To state the upcoming algorithm, let us set some definitions. For any word u of length n,
any word v of length m, any i ∈ [n], and any letter a, let

Position(u, a) be the position of a in u when a occurs in u;

Insertion(u, i, a) be the word u(1) . . . u(i− 1)au(i) . . . u(n);

PutFirst(u, a) (resp. PutLast(u, a)), where a is at position i in u, be the word
au(1) . . . u(i− 1)u(i + 1) . . . u(n) (resp. u(1) . . . u(i− 1)u(i + 1) . . . u(n)a);

Interleave(u, v) be the word u(1)v(1)u(2)v(2) . . . u(k)v(k)w where k = min{n, m} and
w is the suffix of u of length n − m if n − m ≥ 0 or the suffix of v of length m − n

otherwise.

Let us now consider the algorithm Realization, taking as inputs a value n ≥ 2 and an
integer d, and outputting when this is possible a permutation of S(n) having d as additive
disorder (see Algorithm 1).

▶ Example 9. Table 1 shows some permutations built by Realization(n, d).
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Table 1 The permutations built by Realization(n, d), where 2 ≤ n ≤ 7 and 1 ≤ d ≤ 23.

n

d 1 2 3 4 5 6 7

1 12
2 123
3 132 1234
4 1243 12345
5 1432 12354 123456
6 1423 12543 123465 1234567
7 2413 15432 123654 1234576
8 15423 126543 1234765
9 25413 165432 1237654
10 15243 165423 1276543
11 25143 265413 1765432
12 165243 1765423
13 265143 2765413
14 162435 1765243
15 162534 2765143
16 261534 1762435
17 361524 1762534
18 2761534
19 3761524
20 1726453
21 1726354
22 2716354
23 3716254

We note that Algorithm 1 runs in polynomial time in n and d. In fact, provided the data
structure used for permutations allows constant-time insertions of elements before and after
n, then it is actually linear. To this end, double-ended queues with a pointer to the highest
value are a solution.

▶ Theorem 10. For any n and any n−1 ≤ d ≤
⌊
n2/2

⌋
−1, Algorithm 1 yields a permutation

π ∈ S(n) with δ+
x (π) = d in linear-time w.r.t. n.

Proof. The proof is by induction on n, assume that the theorem is true for n − 1. We
write π∗ for the permutation returned by Realization(n, d). We distinguish three cases
depending on the value of d.

If d = n− 1, then π∗ is the identity permutation and δ+
x (π∗) = d.

If n ≤ d ≤
⌊
(n− 1)2/2

⌋
+ 1, then by induction π (line 7) is a permutation of [n− 1] with

δ+
x (π′) = d−2 (since n−2 ≤ d−2 ≤

⌊
(n− 1)2/2

⌋
−1). By the choice of i, we have 2 ≤ i ≤ n

and {πi−1, πi} = {n− 1, x} for some 1 ≤ x < n− 1. Then π∗ = (π1, . . . , πi−1, n, πi, . . . , πn),
so

δ+
x (π∗) = δ+

x (π)− |πi−1 − πi|+ |n− πi|+ |n− πi−1|
= δ+

x (π)− (n− 1− x) + (n− (n− 1)) + (n− x)
= (d− 2) + 2 = d.
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Finally, if
⌊
(n− 1)2/2

⌋
+ 2 ≤ d ≤

⌊
n2/2

⌋
− 1. We have d′ =

⌊
n2/2

⌋
− d (line 11). The

value of d′ is bounded as follows

1 ≤ d′ ≤
⌊
n2/2

⌋
−
⌊
(n− 1)2/2

⌋
− 2 =

⌊
n2/2

⌋
−
⌊
(n2 + 1)/2

⌋
+ n− 2 ≤ n− 2.

Note that π∗ is built as the interleaving of π (containing {1, . . . , ⌈n/2⌉}) and σ (containing
{⌈n/2⌉+ 1, . . . , n}), so it is a bipartite permutation. By Lemma 7, it suffices to verify that
|π∗(1)− ⌈n/2⌉|+|π∗(n)− ⌈n/2⌉| = d′. Values i and j are defined lines 14 to 19. First remark,
using d′ ≤ n − 2, that 1 ≤ j ≤ n, 1 ≤ i ≤ n, and i ̸= j. We show that (i) π∗(1) = j, (ii)
π∗(n) = i, and (iii) |j − ⌈n/2⌉|+ |i− ⌈n/2⌉| = d′. Property (i) is clear since 1 ≤ j ≤ ⌊n/2⌋
by construction, so π(1) = j after line 20, and finally π∗(1) = j. Towards (ii), note that i is
the last element of either π or σ after line 24, so it suffices to show that i ≤ ⌈n/2⌉ if and only
if n is odd. We now discuss specific cases depending on the value of d′ and the parity of n.

If d′ ≤ ⌊n/2⌋, we have i = ⌊n/2⌋+1, so i ≤ ⌈n/2⌉ iff n is odd (so π∗(n) = i). Furthermore,
j ≤ ⌈n/2⌉ ≤ i, so |j − ⌈n/2⌉|+ |i− ⌈n/2⌉| = i− j = d′.

If d′ > ⌊n/2⌋, we have j = 1 and i = ⌊n/2⌋+1+(−1)n mod 2(d′−⌊n/2⌋). So |j − ⌈n/2⌉| =
⌈n/2⌉−1. If n is odd, i < ⌈n/2⌉ and |i− ⌈n/2⌉| = d′−⌈n/2⌉+1 and |i− ⌈n/2⌉|+|j − ⌈n/2⌉| =
d′. If n is even, i = d′ + 1 ≥ ⌈n/2⌉, and |i− ⌈n/2⌉|+ |j − ⌈n/2⌉| = d′.

The linearity of the algorithm w.r.t. n is clear. Indeed, the only trick consists, in the
case starting at line 7, in having a constant-time insertion of the letter n in the permutation
π returned by the recursive call. Since n is always inserted adjacent to the letter n− 1, it is
enough to store the position of the last letter to achieve the claimed complexity. ◀

4 Concluding remarks

There are many questions left open in this paper. Below we briefly discuss three directions
for further research.

1. Sure enough, our candidate that arrived d seconds early has to start at some given floor i

to reach the audition at some another floor j. How can she propose a route that starts
at floor i, ends at floor j and takes exactly that long? And for which values d is there
at least one solution? Note that for n = 4, if one focus on permutations that start with
1 and end with 4, we have δ+

x (1234) = 3, δ+
x (1324) = 5 but no permutation π ∈ S(4)

starting with 1 and ending with 4 achieves δ+
x (π) = 4.

2. Given an (n − 1)-sequence Dx, it is NP-complete to decide whether there exists a
permutation π ∈ S(n) such that ∆x(π) = Dx. This was proved by M. De Biasi [3]. It
is natural to ask for the following extension: Given two (n− 1)-sequences Dx and Dy,
how hard is the problem to decide whether there exists a permutation π ∈ S(n) such
that ∆x(π) = Dx and ∆y(π) = Dy? What about the case Dx = Dy? See Table 2 for the
landscape of S(4).

3. We have shown that for any positive integer dx, n − 1 ≤ dx ≤
⌊
n2/2

⌋
− 1, one can

construct in linear-time a permutation π ∈ S(n) such that dx = δ+
x (π). The most natural

question to ask is: Given two positive integers dx and dy, how hard is the problem to
decide whether there exists a permutation π such that dx = δ+

x (π) and dy = δ+
y (π)?

Again, what about the case dx = dy? See Table 3 for the landscape of S(4) and refer
to Fig. 5 for visualizing the distribution of points (δ+

x (π), δ+
y (π)) for all permutations

π ∈ S(n), 4 ≤ n ≤ 11. More generally, towards a better understanding of the important
aspects of differences in large permutations, the study of the distribution of the points
(δ+

x (π), δ+
y (π)) for π ∈ S(n) is likely to be a promising direction (see Fig. 6 and Fig. 5).

CPM 2021



11:12 Disorders and Permutations

Table 2 Permutations of S(4) with given difference sequences.

Dx Dy π ∈ S(4) with ∆x(π) = Dx and ∆y(π) = Dy

(1, 1, 1) (1, 1, 1) 1234, 4321

(1, 1, 3) (1, 1, 3) 3214

(1, 1, 3) (3, 1, 1) 2341

(1, 2, 1) (1, 2, 1) 1243, 2134, 3421, 4312

(1, 2, 3) (2, 1, 2) 2314, 3241

(1, 3, 1) (1, 3, 1) 2143, 3412

(2, 1, 2) (1, 2, 3) 3124, 4213

(2, 1, 2) (2, 1, 2) 1324, 4231

(2, 1, 2) (3, 2, 1) 1342, 2431

(2, 3, 2) (2, 3, 2) 2413, 3142

(3, 1, 1) (1, 1, 3) 4123

(3, 1, 1) (3, 1, 1) 1432

(3, 2, 1) (2, 1, 2) 1423, 4132

Table 3 Permutations of S(4) with given disorders.

dx dy π ∈ S(4) with δ+
x (π) = dx and δ+

x (π) = dy

3 3 1234, 4321

4 4 1243, 2134, 3421, 4312

5 5 1324, 1432, 2143, 2341, 3214, 3412, 4123, 4231

5 6 1342, 2431, 3124, 4213

6 5 1423, 2314, 3241, 4132

7 7 2413, 3142
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(a) π ∈ S(4) (b) π ∈ S(5)

(c) π ∈ S(6) (d) π ∈ S(7)

(e) π ∈ S(8) (f) π ∈ S(9)

(g) π ∈ S(10) (h) π ∈ S(11)

Figure 5 Bivariate histograms of pairs (δ+
x (π), δ+

y (π)) for all permutations π ∈ S(n), 4 ≤ n ≤ 11.
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(a) π ∈ S(25) (b) π ∈ S(50)

(c) π ∈ S(75) (d) π ∈ S(100)

Figure 6 Kernel Density Estimate (KDE) of pairs (δ+
x (π), δ+

y (π)) for 107 random permutations
π ∈ S(n), n ∈ {25, 50, 75, 100}.
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Abstract
We consider two notions of covers of a two-dimensional string T . A (rectangular) subarray P of T is
a 2D-cover of T if each position of T is in an occurrence of P in T . A one-dimensional string S is a
1D-cover of T if its vertical and horizontal occurrences in T cover all positions of T . We show how to
compute the smallest-area 2D-cover of an m × n array T in the optimal O(N) time, where N = mn,
all aperiodic 2D-covers of T in O(N log N) time, and all 2D-covers of T in N4/3 · logO(1) N time.
Further, we show how to compute all 1D-covers in the optimal O(N) time. Along the way, we show
that the Klee’s measure of a set of rectangles, each of width and height at least

√
n, on an n × n

grid can be maintained in
√

n · logO(1) n time per insertion or deletion of a rectangle, a result which
could be of independent interest.
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1 Introduction

We say that a string C is a cover of a string S if each position of S is inside an occurrence of
C in S. In other words, S can be obtained from several copies of C by concatenations with
possible overlaps. As an example, string abaababaabaaba has proper covers aba and abaaba.
The shortest cover and all covers of a string can be computed in linear time; see [2, 7] and
[16, 17], respectively.

We consider two notions of covers of 2D-strings, 1D-covers and 2D-covers. We say that
a 2D-string C is a 2D-cover of a 2D-string T if each position of T is inside an occurrence
of C in T . For an example, see Figure 1. Let T be an m × n 2D-string with N = m · n.
An O(N2)-time algorithm for computing all 2D-covers of T and an O(N) average-time
algorithm for computing the smallest-area 2D-cover of T were shown in [19]. They also
present applications of the 2D-covers problem. The problem was also mentioned recently in
the context of string recovery in [1].
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An O(N)-time algorithm for computing the 2D-covers of T that are of a square shape
n × n, in the case that T is a square matrix itself, was shown in [11]. Let us note that there
is a big difference between square-shaped 2D-covers and rectangular 2D-covers: we have
only O(n) square-shaped covers of an n × n 2D-string, while there may be Ω(n2) distinct
rectangular 2D-covers. This makes the rectangular case much harder.

0 2 0 2 0 0 2 0
1 3 1 3 1 1 3 1
0 2 0 2 0 0 2 0
1 3 1 3 1 1 3 1
0 2 0 2 0 0 2 0

0 2 0
1 3 1
0 2 0
1 3 1
0 2 0

0 2 0 2 0 0 2 0
1 3 1 3 1 1 3 1
0 2 0 2 0 0 2 0

0 2 0
1 3 1
0 2 0

Figure 1 A 2D-string and its proper 2D-covers (the first one is vertically periodic, the two others
are aperiodic).

We further say that a (1D) string C is a 1D-cover of a 2D-string T if each position of
T is inside an occurrence of C in a row, read from left to right, or in a column of T , read
top-down. For an example, see Figure 2.

Let us define the two types of covers of 2D-strings more formally. A subarray T [i . . j, i′ . . j′]
is called a 2D-substring of T . For an m′ × n′ 2D-string S, we denote:

Occ(S, T ) = {(i, j) : T [i . . i + m′ − 1, j . . j + n′ − 1] = S}, and

Cov(S, T ) =
⋃

{[i . . i + m′ − 1] × [j . . j + n′ − 1] : (i, j) ∈ Occ(S, T )}.

▶ Definition 1 (2D-cover). A 2D-string S is a 2D-cover of an m × n 2D-string T if
Cov(S, T ) = [1 . . m] × [1 . . n].

A 1D-string (or simply a string) can be considered as a 2D-string of height 1. We denote
by trans(S) the transpose of a 2D-string S. If S is a 1D-string, then trans(S) is a single
column. We say that a position (i, j) of a 2D-string T is horizontally covered by a 1D-string
S if (i, j) ∈ Cov(S, T ), and it is vertically covered by S if (i, j) ∈ Cov(trans(S), T ).

a a b a a b a a
b b a b a a b a
a a b a a b a b
a a a a b a a a
a b a a b a a a

Figure 2 The string abaa is a 1D-cover of this 2D-string, i.e., its occurrences as a horizontal strip,
read left-to-right, and as a vertical strip, read top-down, cover the 2D-string. Note that aaba is not
a 1D-cover here.

▶ Definition 2 (1D-cover). A 1D-string S is a 1D-cover of a 2D-string T if each position of
T is covered horizontally or vertically by S.

When restricted to 2D-strings T of height 1, i.e. 1D-strings, both definitions yield the
standard definition of a cover of a string.
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Our Results. For an m × n 2D-string T of size N = mn over an integer alphabet, we show
the following:

The smallest-area 2D-cover of T can be computed in O(N) time.
All aperiodic 2D-covers of T can be computed in O(N log N) time.
All 2D-covers of T can be computed in Õ(N4/3) time, or in Õ(N

√
max(m, n)) time.1

All 1D-covers of T can be computed in O(N) time.

The results concerning 2D- and 1D-covers can be found in Sections 3 and 5 and in
Section 6, respectively. First, in Section 2 we show several connections between covers and
periodicity in 2D. In the intermediate Section 4 we show a solution to an auxiliary geometric
problem that employs a solution to dynamic Klee’s measure for fat rectangles in a grid of
size N and is the cornerstone of our algorithm for computing all 2D-covers.

2 Preliminaries

Let T be an m × n 2D-string of height m and width n, T = T [1 . . m, 1 . . n]. We write
m = height(T ) and n = width(T ) and say that N = mn is the size of T , which we denote as
size(T ) = N . We assume that the 2D-string T for which covers are to be computed is over
an integer alphabet [1 . . NO(1)].

For an m × n 2D-string T , by hstr(T ) we denote a length-n 1D-string over alphabet
[1 . . n] such that hstr(T )[i] = hstr(T )[j] if and only if the i-th and j-th columns of T are
equal. Similarly we define vstr(T ), a length-m vertical string over alphabet [1 . . m], by taking
rows instead of columns. Let us denote by T (h), T <h>, T(w) the 2D-substrings consisting of
the first h rows, the last h rows, and the first w columns of T , respectively.

▶ Lemma 3. For an m × n 2D-string T , strings hstr(T (h)), hstr(T <h>), vstr(T(w)) for all
h, w can be computed in O(N) time.

Proof. We consider computing all strings hstr(T (h)) for h = 1, . . . , m; the other cases are
symmetric. First of all, we renumber consistently the characters in each row of T separately
so that they are in [1 . . n]. This can be done in O(N) time using one global radix sort. Thus
we have already computed hstr(T (1)). Assume now we have computed hstr(T (h−1)). Then
we compose a 2D-string T ′ of height 2, the first row is hstr(T (h−1)), the second one is the
h-th row of T . It is enough now to encode consistently the columns of T ′, which can be done
in O(n) time using radix sort as each column of T ′ is a pair of integers in [1 . . n]. ◀

Let us introduce a function Is2DCover(X, Y ) which tests if a 2D-string X is a 2D-cover of
a 2D-string Y . In [19], a 2D pattern matching algorithm [3, 6] and 2D dynamic programming
were used to show the following result.

▶ Lemma 4 ([19]). Is2DCover(X, Y ) can be computed in O(size(Y )) time.

A string B is a border of a string S if and only if B is both a prefix and a suffix of S. It
is readily verified that each cover of S is a border of S. A similar relation holds for covers of
2D-strings. A 2D-border of a 2D-string T is a 2D-string U that occurs in each of the four
corners of T . A 1D-border of a 2D-string is a 1D-string which is a prefix of the first row or
the first column of T and also a suffix of the last row or the last column of T ; see Figure 3.

▶ Observation 5. A 2D-/1D-cover of a 2D-string T is also a 2D-/1D-border of T .

1 The Õ(·) notation suppresses polylogarithmic factors.
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T

A

A

A

A

T

B

B

T

C

C

Figure 3 A is a 2D-border of T and B, C are 1D-borders of T (the cases when the top-left corner
is covered horizontally; there are two other cases).

All 1D-borders of a 2D-string can be computed in linear time using the Knuth-Morris-
Pratt (KMP) algorithm [14] as borders of strings of the form X#Y , for a sentinel letter #
that is not in the alphabet, where X and Y are the first row or column and the last row or
column of T , respectively. Moreover, all 2D-borders of a 2D-string can be computed in linear
time, as shown in the following lemma (which works for any alphabet with constant-time
letter comparisons).

▶ Lemma 6 ([11, Theorem 3.2]). All 2D-borders of a 2D-string T of size N can be computed
in O(N) time.

We say that a string S of length |S| has period p if S[i] = S[i + p] for all i = 1, . . . , |S| − p.
By per(S) we denote the smallest period of S. String S is called periodic if 2 · per(S) ≤ |S|
and aperiodic otherwise. Let us state the periodicity lemma, one of the most classical results
in combinatorics on strings.

▶ Lemma 7 (Periodicity Lemma (weak version) [13]). If a string S has periods p and q such
that p + q ≤ |S|, then gcd(p, q) is also a period of S.

We say that p is a vertical (resp. horizontal) period of a 2D-string T if it is a period of
each column (resp. row) of T . We denote the smallest vertical and horizontal periods of T by
vper(T ) and hper(T ), respectively. A 2D-string T is called periodic if 2 · vper(T ) ≤ height(T )
or 2 · hper(T ) ≤ width(T ), and aperiodic otherwise.

The shortest cover of a string is aperiodic [2]. A similar observation can be made in 2D.

▶ Observation 8. The shortest 1D-cover and the smallest-area 2D-cover of a 2D-string are
aperiodic.

▶ Lemma 9. For two 2D-borders of T of widths w and w′ with w < w′ ≤ 3
2 w, the one with

the smaller height is horizontally periodic. Symmetrically, for two 2D-borders of heights h

and h′ with h < h′ ≤ 3
2 h, the one with smaller width is vertically periodic.

Proof. Both 2D-borders occur in the top-left and the top-right corners. This means that,
for h equal to the minimum of the heights of the two 2D-borders, hstr(T (h))[1 . . w] appears
both as prefix and as suffix of hstr(T (h))[1 . . w′].

Hence, p = w′−w ≤ w
2 is a horizontal period of T [1 . . h, 1 . . w′]. Then, p is also a horizontal

period of the 2D-border of height h, as this 2D-border is a 2D-substring of T [1 . . h, 1 . . w′].
For the symmetric statement, it suffices to transpose all involved 2D-strings. ◀

3 Computing aperiodic 2D-Covers

We first consider computation of the smallest 2D-cover, which is also (automatically) aperiodic
and of all aperiodic 2D-covers. Later, in Section 5, we consider the more involved computation
of all 2D-covers.
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3.1 Computing Smallest 2D-Cover in Linear Time
A 2D-substring of height h and width w is called a candidate if it is the smallest-area 2D-cover
of height h of both T (h) and T <h>, and the smallest-area 2D-cover of width w of T(w); see
Figure 4. Note that there is at most one candidate for each height h: the smallest-area
2D-cover of T (h) of height h. Further, note that each candidate is a 2D-border of T .

0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0

0 0 0
0 1 0
0 0 0

0

Figure 4 This 2D-string has two candidates, shown on the right. The 3 × 3 candidate is the
smallest-area 2D-cover.

Correctness of the algorithm is based on the following lemma.

▶ Lemma 10. If X, Y are candidates and height(X) < height(Y ), then
(a) width(X) ≤ width(Y ); (b) height(Y ) > 3

2 height(X);
(c) if X is a 2D-cover of T , then it is also a 2D-cover of Y .

Proof. If we had width(Y ) < width(X), then T (height(X)) would have a 2D-cover of height
height(X) and width width(Y ) (composed of the first height(X) rows of Y ), so X would not
be a candidate for its height. This proves part (a).

Now, recall that X and Y are 2D-borders of T . If we had height(Y ) ≤ 3
2 height(X), then

point (a) and Lemma 9 would imply that X is vertically periodic. Hence, X would not be
the smallest-area 2D-cover of T(width(X)) of width width(X) (Observation 8).

Part (c) follows from the fact that Y is a 2D-border of T , similarly to the fact that a
cover C of a 1D-string S is a cover of every border B of S that satisfies |C| ≤ |B|; see [2]. ◀

▶ Remark 11. Lemma 10 (a) implies that there is exactly one smallest-area 2D-cover of T . In
particular, [19] also considered the problem of computing an h × w 2D-cover that is minimal
in terms of h + w or max(h, w), and our algorithm below solves these variants as well.

Algorithm 1 Smallest 2D-cover.

CAND := the set of candidates;
X := the element of CAND of smallest height;
remove X from CAND;
foreach Y in CAND, in increasing order of heights do

if not Is2DCover(X, Y ) then X := Y ;
return X;

▶ Theorem 12. The smallest-area 2D-cover of a 2D-string T of size N can be computed in
O(N) time.

Proof. We linearize in O(N) time all 2D-strings T (h), T <h>, T(w) using Lemma 3, and
compute their shortest covers in the sense of 1D-strings. Then T [1 . . h, 1 . . w] is a candidate
if and only if the shortest covers of hstr(T (h)), hstr(T <h>) are of length w and the shortest
cover of vstr(T(w)) is of length h.
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We proceed as in Algorithm 1. The most expensive part of the algorithm is the operation
Is2DCover(X, Y ). It costs O(size(Y )) time. The sum of these costs is linear since the sizes
of Y are geometrically growing (in each step by a factor at least 3/2) due to points (a) and
(b) of Lemma 10. The largest among them has size O(N).

The correctness of the algorithm follows from point (c) of Lemma 10. More precisely, an
invariant holds that among all the candidates that were considered in the foreach-loop up to
a given point, only X can be the smallest-area 2D-cover of T . Indeed, if Is2DCover(X, Y ) is
true, then Y is not the smallest-area 2D-cover because it has a 2D-cover itself, and otherwise
X cannot be a 2D-cover of T by point (c) of Lemma 10. ◀

3.2 Computing All Aperiodic 2D-Covers
We start with a tight asymptotic bound on the number of aperiodic 2D-covers.

▶ Lemma 13. A 2D-string T of size N has O(log2 N) distinct aperiodic 2D-covers. Moreover,
there is an infinite family of binary 2D-strings with Ω(log2 N) distinct aperiodic 2D-covers.

Proof. Lemma 9 implies that there are O(log2 N) distinct aperiodic 2D-borders of T : at
most one of height in [( 3

2 )i . . ( 3
2 )i+1) and width in [( 3

2 )j . . ( 3
2 )j+1) for each pair of non-negative

integers i, j. The same bound applies to 2D-covers due to Observation 5.
For i = 1, 2, let Ci be the set of lengths of covers of a string Si of length ni over alphabet Σi.

Then, an n1 × n2 2D-string T over alphabet Σ1 × Σ2 defined as T [i, j] = (S1[i], S2[j]) has
2D-covers of all dimensions in C1 × C2.

A binary Fibonacci string of length n has Θ(log n) aperiodic covers [10]. Hence, with
the above construction we can obtain a 2D-string of size N = n2 over the alphabet with 4
letters with Ω(log2 N) aperiodic 2D-covers. We can encode each letter by its 2-digit binary
representation, obtaining a binary 2D-string with Ω(log2 N) aperiodic 2D-covers. ◀

A direct application of the bound from Lemma 13 and the Is2DCover routine would
yield an O(N log2 N)-time algorithm. The theorem below, whose proof can be found in
Appendix B, shaves a log N factor from this complexity. Let us note that it uses the same
order of inspecting candidates as the algorithm Simple-All-2D-covers below.

▶ Theorem 14. All aperiodic 2D-covers of a 2D-string of size N can be computed in
O(N log N) time.

4 Rectangle Cover Problem

In the Klee’s measure problem in 2D, we are given M rectangles in the plane and are to
output the area of the union of these rectangles. This problem can be solved in O(M log M)
time in the offline setting [4, 8]. In the dynamic variant of the problem, where rectangles can
be inserted and deleted, Klee’s measure can be maintained in Õ(

√
M) time per update [18].

Below, we consider a special version of the Klee’s measure problem with fat rectangles in
a grid of size bounded by N and use it to solve an auxiliary problem called Rectangle
Cover. Details omitted due to space constraints can be found in Appendix A.

For a set F of rectangles let us denote by Fh,w the subset of rectangles with height at
least h and width at least w.

Rectangle Cover
Input: A set F consisting of M rectangles in [0 . . m] × [0 . . n], where N = m · n, n ≥ m.
Output: All pairs (h, w) (called good pairs) for which |

⋃
Fh,w| = N .
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We will reduce Rectangle Cover to a restricted variant of the following problem.

Dynamic Klee’s Measure
Input: An initially empty set of rectangles R in [0 . . m] × [0 . . n]; N = mn, n ≥ m.
Updates: Insert or delete a rectangle to R and return the area of

⋃
R.

We start by a direct reduction that we then refine in Lemma 16.

▶ Lemma 15. The Rectangle Cover problem reduces in O(M + N) time to the Dynamic
Klee’s Measure problem with a grid of the same dimensions and O(M) updates.

Proof. Note that if (h, w) is a good pair, then (h − 1, w) and (h, w − 1) are good pairs as
well. Hence, we will compute for each h, the maximum w for which (h, w) is good, as shown
in Algorithm 2. We use the following equality and a symmetric one.

Fh,w = Fh,w+1 ∪ {X ∈ F : width(X) = w, height(X) ≥ h}.

Algorithm 2 Rectangle Cover via Dynamic Klee’s Measure.

w := n + 1; R := ∅;
for h := 1 to m do

while w > 0 and |
⋃

R| ̸= N do
// Invariant: R = Fh,w

w := w − 1;
R := R ∪ {X ∈ F : width(X) = w, height(X) ≥ h};

Report (h, 1), . . . , (h, w);
R := R \ {X ∈ F : height(X) = h};

Let us note that each rectangle from F is inserted at most once to R and deleted at
most once from R. The condition in the while-loop can be checked by computing R’s Klee’s
measure. Rectangles that are to be inserted to R and deleted from R in subsequent steps
can be easily determined if all rectangles in F are pre-sorted by their widths and heights,
via bucket sort, in O(M + N) time. ◀

A rectangle will be called a fat rectangle if both its width and height are at least
√

n.

▶ Lemma 16. The Rectangle Cover problem reduces in Õ(M min{m,
√

n} + N) time
to the Dynamic Klee’s Measure problem on a grid of the same dimensions and O(M)
insertions and deletions of fat rectangles.

Proof. For every h ≤ min{m,
√

n}, we compute the maximum w such that (h, w) is a good
pair using binary search. In order to test a candidate (h, w), we compute the area of the
union of rectangles from Fw,h (i.e., solve static Klee’s measure problem in 2D) using one of
the classic O(M log M)-time approaches [4, 8]. If m >

√
n, the same approach is then used

for every w ≤
√

n. Finally, for h, w >
√

n we use Algorithm 2 from the proof of Lemma 15.
More precisely, we start the for-loop with h = ⌈

√
n⌉ and break when w drops below ⌈

√
n⌉.

Thus, the set R contains only fat rectangles throughout the execution of the algorithm. ◀

A proof of the following lemma can be found in Appendix A.

▶ Lemma 17. The Dynamic Klee’s Measure problem with fat rectangles can be solved in
Õ(

√
n) time per operation, after Õ(N)-time preprocessing.
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12:8 Computing Covers of 2D-Strings

▶ Lemma 18. The Rectangle Cover problem can be solved in Õ(M · min{m,
√

n} + N)
time.

Proof. We use Lemma 16 to reduce the problem to Dynamic Klee’s Measure problem on
fat rectangles with O(M) updates in Õ(M · min{m,

√
n} + N) time, and Lemma 17 to solve

the latter problem with Õ(
√

n) update time. Note that the Dynamic Klee’s Measure
problem is void if m ≤

√
n (no fat rectangle exists). ◀

▶ Remark 19. To solve the Rectangle Cover problem it is not necessary to compute the
exact area of union of the fat rectangles but just to check if they cover the whole grid. This
would slightly simplify the solution, as shown in Appendix A.1, but the main idea would stay
intact. We decided to state the auxiliary problem as a variant of dynamic Klee’s measure
since it could find other applications.

5 Computing All 2D-Covers

Let us start with simple but less efficient algorithms. We say that (h, w) is a weak candidate
if T [1 . . h, 1 . . w] is a 2D-cover of T (h) and of T(w). Let us denote by Lh the sorted list of
widths of weak candidates of height h.

For a list L of integers we denote by cut(L, y) the list of elements x ∈ L such that x ≤ y.
We next present two preliminary algorithms for computing all 2D-covers of T .

Algorithm 3 Simple-All-2D-covers.

Result := ∅;
for h := 1 to m do

foreach z ∈ Lh, in decreasing order do
if Is2DCover(T [1 . . h, 1 . . z], T ) then

Result := Result ∪ {(h, w) : w ∈ cut(Lh, z)}; break;
else remove z from all lists Lt;

return Result;

Algorithm 4 Binary-Search-All-2D-covers.

Result := ∅;
for h := 1 to m do

// Binary search with O(log n) instances of Is2DCover
z := max ({w ∈ Lh : Is2DCover(T [1 . . h, 1 . . w], T )} ∪ {0}));
if z > 0 then Result := Result ∪ {(h, w) : w ∈ cut(Lh, z)};

return Result;

▶ Proposition 20. The algorithm Simple-All-2D-covers outputs all 2D-covers of T in O(N3/2)
time if T is a square matrix, and O(N max(m, n)) time in general. The algorithm Binary-
Search-All-2D-covers computes all 2D-covers in O(N3/2 log N) time.

Proof. In the algorithm Simple-All-2D-covers in each column we make at most one negative
test of Is2DCover and in each row at most one positive test. Hence, the time complexity is
O(N max(m, n)).
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We run the algorithm Binary-Search-All-2D-covers for T if m ≤ n and otherwise for
T transposed. For each h we execute O(log n) instances of Is2DCover, which require time
O(N log n) in total for a given h. Summing over all heights, this yields O(Nm log n) =
O(N3/2 log N) time. ◀

We proceed with faster computation of all 2D-covers. Henceforth let us assume w.l.o.g.
that n ≥ m. Let T be an m × n 2D-string of size N = mn. We say that a 2D-string U is an
(x, y)-array if

height(U) ∈ [
( 3

2
)x

. .
( 3

2
)x+1) and width(U) ∈ [

( 3
2
)y

. .
( 3

2
)y+1).

We call a 2D-border of T that is an (x, y)-array an (x, y)-border of T .
We say that a 2D-string U is of periodic type (p, q, a, b) if vper(U) = p, hper(U) = q,

height(U) mod p = a, and width(U) mod q = b.

▶ Lemma 21. For given x, y, all (x, y)-borders of T are of the same periodic type.

Proof. Assume there are two (x, y)-borders U and V of T . Let us show that vper(U) =
vper(V ). If height(U) = height(V ), then each column of U occurs as a column of V and
vice versa. Hence, vper(U) = vper(V ). If height(U) ̸= height(V ), then p := |height(U) −
height(V )| ∈ [1 . . 1

2 · ( 3
2 )x) is a vertical period of both U and V , so both are vertically periodic

with period p (c.f. Lemma 9). Let p′ = vper(U) and p′′ = vper(V ). Then p′ ≤ p and both p

and p′ are periods of each column of U . Hence, by the periodicity lemma (Lemma 7), p′ | p.
Similarly for p′′. Hence, p′ (p′′) is the least common multiple of smallest periods of the set
of length-p prefixes of columns of U (resp. V ). The sets of length-p prefixes of columns of
U and V are the same. We thus have vper(U) = p′ = p′′ = vper(V ). Moreover, p′ divides
|height(U) − height(V )|, which shows that height(U) mod p = height(V ) mod p. The proof
for the horizontal period is symmetric. ◀

Let us recall that all 2D-borders of T can be computed in O(N) time (Lemma 6). For
each non-empty group of (x, y)-borders, we can compute the periodic type of one of its
representatives U in O(( 3

2 )x+y) time using the KMP algorithm for each column and row.
This gives O(N) time in total. Below we show how to compute all 2D-covers of T of a given
periodic type (p, q, a, b) in Õ(N · min{m,

√
n}) time.

Let us henceforth fix a periodic type (p, q, a, b) and denote X = T [1 . . p + a, 1 . . q + b].
We call X the root of all 2D-covers of this periodic type. We denote by VX the set of top-left
corners of occurrences of X in T . It can be computed using 2D pattern matching for X.

A grid of points {(u + ip, v + jq) : 0 ≤ i < α, 0 ≤ j < β} for any u, v will be called an
(α, β)-r-grid, or simply an r-grid. If a 2D-string U of height h and width w has a periodic
type (p, q, a, b), then its occurrence in T implies a (⌊h/p⌋, ⌊w/q⌋)-grid subset of VX . See
Figure 5. Moreover, such an r-grid in VX always generates an occurrence of U in T . An
(α, β)-r-grid D in VX is called maximal if there is no (α′, β′)-r-grid D′ in VX such that D is
a proper subset of D′. The next lemma follows from [9, Section 5].

▶ Lemma 22. The set of maximal r-grids in VX can be computed in O(N) time.

Every r-grid in VX can be extended to a maximal r-grid in VX . This suggests the following
important observation.

▶ Observation 23. A 2D-string of height h and width w and of periodic type (p, q, a, b) is a
2D-cover of T if and only if T is covered by substrings of T that are generated by maximal
(α, β)-r-grids satisfying α ≥ ⌊h/p⌋, β ≥ ⌊w/q⌋.
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Figure 5 Let (p, q, a, b) = (3, 3, 0, 0). Some (not all) occurrences of X in T are shown, with the
corresponding elements of VX drawn as dots. The (2, 4)-r-grid in the black frame is maximal, whereas
the yellow (2, 3)-r-grid is not; it is a part of two maximal r-grids: blue+yellow and red+yellow.

From now on we will treat 2D-substrings generated by maximal r-grids in T as rectangles.
The following lemma follows directly from the above discussion.

▶ Lemma 24. The problem of computing all 2D-covers of T of a given periodic type reduces
in O(N) time to an instance of Rectangle Cover with M = O(N) and the same N .

▶ Theorem 25. All 2D-covers of a 2D-string of size N = m × n, n ≥ m, can be computed
in Õ(N · min{m,

√
n}) time or Õ(N4/3) time.

Proof. For each of the Õ(1) groups of (x, y)-borders, we apply Lemma 24 to reduce the
problem in scope to Rectangle Cover in O(N) time, then we apply the algorithm from
Lemma 18. In total we obtain Õ(N · min{m,

√
n}) time, and we can use the fact that

min{m,
√

n} ≤ (m · n)1/3 = N1/3. ◀

6 Computing 1D-Covers

Let us recall that a 1D-cover of an m × n 2D-string T must be a 1D-border of T (see Obser-
vation 5 and Figure 3). We will only show how to compute 1D-covers of T which are prefixes
of the first row and suffixes of the last row. The three other cases can be treated analogously.
Henceforth we denote W = T [1, 1 . . n]#T [m, 1 . . n], where # is some sentinel letter not in
the alphabet.

6.1 An O(N log N)-Time Algorithm Computing All 1D-Covers
We will partition the 1D-borders in scope in O(log n) groups based on their periods. Then,
we will show how to process each group in O(N) time, relying on the following property:
each element of a group G can be covered by each of the elements of G that are shorter
than it. Hence, it will suffice to compute the longest element of each group that covers T .

For a (1D-)string S, let us denote by B(S) all borders of S which are either aperiodic
or are the longest ones with a given smallest period. Let us denote by A(S) the set of all
aperiodic borders of S; A(S) ⊆ B(S).

▶ Fact 26 ([12]). The size of B(S) is O(log |S|).

By a big border of a string X, we mean X itself or any border Z of X such that
|Z| ≥ 2 · per(X). Given a string S of length n, due to Fact 26, we can partition its borders
into O(log n) groups, such that the following holds for each group G: G is the set of big



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 12:11

borders of its longest element X ∈ B(S). We denote such a group by Group(X) and call
per(X) the period of the group. In particular, for a string X ∈ B(S) of the form UkV with
k ≥ 2, per(X) = |U | and 0 ≤ |V | < per(X), we have Group(X) = {U jV : j ∈ [2 . . k]}.

▶ Observation 27. The defined groups form a partition of the set of borders of S.

▶ Example 28. For S = (abaab)5a, we have B(S) = {a, aba, abaaba, S} and Group(S) =
{(abaab)ia : i = 2, . . . , 5}. The groups of the remaining elements of B(S) are singletons.

The following lemma will be used in Section 6.3, but we state it here as the required
definitions have been already introduced. Its proof can be found in Appendix B.

▶ Lemma 29. For X, Y ∈ B(S) with |X| < |Y |, we have per(Y ) ≥ per(X) · |Group(X)|.
Moreover, for X, Y, Z, W ∈ B(S) with |X| < |Y | < |Z| < |W |, we have per(W ) ≥ 9

8 per(X).

Every 1D-cover of T that is a prefix of the first row of T and a suffix of the last row
of T is in Group(X) for some X ∈ B(W ). The following lemma gives us the monotonicity
property that was mentioned before, which will allow us to handle each group efficiently.

▶ Lemma 30. If some Z ∈ Group(X) for X ∈ B(W ) is a 1D-cover of T , then all elements
of Group(X) that are shorter than Z are also 1D-covers of T .

Proof. If |Group(X)| > 1, then X is periodic. Thus, the elements of Group(X) are of the
form U jV , where V is a (possibly empty) prefix of U and j ≥ 2. It is then readily verified
that Z = UkV , and hence each of its occurrences in T , can be covered by U jV for all
j ∈ [2 . . k). ◀

Let us introduce two arrays that are building blocks of the algorithm. For a family F of
subintervals of [1 . . n], for each k ∈ [1 . . n], let us denote by F -Cov[k] the length of the longest
interval in F containing k. If there is no such interval for a given k, then F -Cov[k] = 0. The
table F -Cov can be computed in O(|F| + n) time by sorting the intervals using radix sort,
and then performing a standard line sweeping algorithm.

For two strings X and Y , we define the table LBBX,Y such that LBBX,Y [i] is the length
of the longest big border in Group(X) which starts at position i in Y ; LBBX,Y [i] = 0 if there
is no such big border.

Algorithm 5 1D-Covers from a group.

Input: A 2D-string T and X ∈ B(W ), where W = T [1, 1 . . n]#T [m, 1 . . n].
Output: The elements of Group(X) that cover T .
processing rows:
for i := 1 to m do

Y := i-th row of T ; F := { [ j . . j + LBBX,Y [j] − 1 ] : j ∈ [1 . . n]};
for j := 1 to n do maxCov[i, j] := F -Cov[j];

processing columns:
for j := 1 to n do

Y := j-th column of T ; F := { [ i . . i + LBBX,Y [i] − 1 ] : i ∈ [1 . . m]};
for i := 1 to m do maxCov[i, j] := max(maxCov[i, j], F -Cov[i]);

min := min{maxCov[i, j] : 1 ≤ i ≤ m, 1 ≤ j ≤ n};
return {Z ∈ Group(X) : |Z| ≤ min};
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12:12 Computing Covers of 2D-Strings

▶ Lemma 31. Given strings X and Y and integers |X| and per(X), LBBX,Y can be computed
in time O(|Y |).

Proof. If X is not periodic, Group(X) = {X} and it suffices to find all occurrences of X in
Y using the KMP algorithm. Otherwise, let p = per(X). We use the KMP algorithm to
find all occurrences of U := X[1 . . 2p + (|X| mod p)] in Y . We compute the LBBX,Y array
right-to-left. If there is an occurrence of U in Y starting at position i, then LBBX,Y [i] =
max(|U |, p + LBBX,Y [i + p]). Otherwise, LBBX,Y [i] = 0. ◀

The algorithm processing a single group is specified in the pseudocode above. Each row
and column of T is processed separately. The goal is to compute, for each position of T ,
the longest element of Group(X) that covers it, eventually stored in maxCov[i, j]. Then, by
taking the minimum over all positions of T , due to Lemma 30, we can identify the elements
of Group(X) that cover T . Each row/column Y is processed according to the following
observation, in time proportional to its length due to efficient computation of F -Cov and
LBB arrays (Lemma 31).

▶ Observation 32. Let X and Y be two strings and k be an integer, such that X ∈ B(Y )
and k ∈ [i . . i + LBBX,Y [i] − 1]. Then, all elements of {Z ∈ Group(X) : |Z| ≤ LBBX,Y [i]}
cover the position k in Y . If [i . . i + LBBX,Y [i] − 1] is the maximal (over all i’s) fragment in
Y containing position k, then LBBX,Y [i] is the length of the longest element of Group(X)
covering position k in Y .

▶ Lemma 33. Algorithm 5 computes all the 1D-borders from a single group Group(X) that
cover T in O(N) time.

We thus obtain an O(N log N)-time algorithm for the problem in scope. We first compute
all borders of W and organize them in groups Group(X) for X ∈ B(W ) in O(n) time. Then,
we process each group separately, obtaining the following preliminary result.

▶ Proposition 34. All 1D-covers of a 2D-string of size N can be computed in O(N log N)
time.

6.2 A Linear-Time Algorithm Computing Aperiodic 1D-Covers
We will now show how to compute in linear time all aperiodic 1D-covers of T . The developed
tools will also be useful in obtaining a general algorithm that computes all 1D-covers. A
shortest 1D-cover is aperiodic (Observation 8), so in this section we also obtain a linear-time
algorithm for computing all shortest 1D-covers.

We first prove a lemma that will allow us to efficiently process aperiodic borders of W .

▶ Lemma 35. We have
∑

B∈A(W ) |Occ(B, T )| = O(N).

Proof. Let B1, . . . , Bk be all aperiodic 1D-borders of W . First, two occurrences of an
aperiodic string S can overlap by up to |S|/2 − 1 letters. Hence, |Occ(Bi, T )| = O(N/|Bi|).
Further, for each i ∈ [1 . . k), Bi is a border of Bi+1 and hence, since the two occurrences of
Bi overlap by less than |Bi|/2 letters, we have |Bi+1| > 3|Bi|/2. This implies the lemma. ◀

By the next lemma, we can compute all sets Occ(B, T ), for B ∈ A(W ), in time O(N).
The lemma can be proved using the PREF array [12], as shown in Appendix B, or the more
heavyweight internal pattern matching queries [15].

▶ Lemma 36. Let S1, . . . , Sk be prefixes of W . Then we can compute all the sets Occ(Si, T )
in O(N +

∑k
i=1 |Occ(Si, T )|) time.
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We reduce our problem to the following auxiliary problem.

Coloured Strips Problem
Input: O(N) horizontal/vertical line segments on an m × n grid, where N = mn. Each
line segment has a colour in 1, . . . , ⌊log N⌋.
Output: For each colour answer YES iff segments of this colour cover the whole grid.

▶ Lemma 37. Computing all aperiodic 1D-covers of a 2D-string of size N = mn can be
reduced in O(N) time to an instance of Coloured Strips Problem with the same m, n.

Proof. We construct an instance of the Coloured Strips Problem by choosing line
segments of colour i ∈ [1 . . k] to be inclusion-maximal fragments of rows/columns of T

covered by Bi, where A(W ) = {B1, . . . , Bk}.
The set of horizontal line segments of colour i is {[x, y . . y+|Bi|−1] : (x, y) ∈ Occ(Bi, T )},

and the set of vertical line segments is {[x . . x + |Bi| − 1, y] : (x, y) ∈ Occ(trans(Bi), T )}.

Lemmas 35 and 36 show that the total number of line segments is indeed O(N) and that
they can be computed in linear time, respectively. ◀

▶ Lemma 38. The Coloured Strips Problem can be solved in O(N) time.

Proof. We first use radix sort to merge horizontal line segments of the same colour as long as
any two intersect. We then repeat this for vertical line segments. Now no two line segments
of the same direction and colour intersect.

We will assign in O(N) time to each grid cell (i, j) a bitmask hcol(i, j), such that its
kth bit is set iff cell (i, j) is covered by a horizontal line segment of colour k. We explicitly
store hcol(i, j) in O(1) words of space. We process each row using a line sweeping algorithm,
updating the maintained bitmask whenever we encounter the endpoint of a horizontal line
segment. We similarly compute an analogously defined bitmask vcol(i, j) for vertical line
segments, for each cell (i, j).

In the end, we return all colours in the bitmask
∧
i,j

(hcol(i, j) ∨ vcol(i, j)). ◀

The last two lemmas imply immediately the following preliminary result.

▶ Proposition 39. All aperiodic 1D-covers of a 2D-string of size N can be computed in
O(N) time.

Next, we will present a more involved algorithm that computes all 1D-covers in linear
time. It will rely on several additional technical concepts.

6.3 A Linear-Time Algorithm Computing All 1D-Covers
We will first show how to efficiently process all groups with large periods, using the fact that
a pattern P in a text Y has O(|Y |/per(P )) occurrences. For each group with period p greater
than log N , we will compute all occurrences of its shortest element in each row/column in
O(N/p) total time, after a global O(N)-time preprocessing, using Lemma 36. Then, using
this representation, we will be able to compute the elements of the group that cover T in
O(N log N/p) time. The periods grow geometrically by Lemma 29 and are at least log N , so
this yields O(N) time in total.

Then, we could employ Lemma 33 for each group with period at most log N . There are
only O(log log N) such groups, as the period of each group is at least a constant factor larger
than the period of the previous group. Thus, we could process these groups in O(N log log N)
time in total.
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We will conclude this section by showing how to process in linear time all groups with
periods not larger than log N using a variant of the Coloured Strips Problem, thus
obtaining a linear-time algorithm for the problem in scope.

6.3.1 Handling Groups with Large Periods
We will rely on the fact that the total number of essential intervals in the families F
in Algorithm 5 is of linear size.

For each group Group(X) with period greater than log N , we first invoke Lemma 36 for
the shortest element S ∈ Group(X). Then we perform the following strip-merging routine:
In each row/column, we merge any two occurrences of S that are exactly per(S) positions
apart as long as we can. If occurrences are treated as segments, this produces O(N/per(S))
horizontal/vertical line segments; each segment stores a weight equal to its length. We have
thus reduced the problem in scope to the following problem.

Restricted 2D Manhattan Skyline Problem
Input: M horizontal/vertical line segments with positive weights in an m × n grid.
Output: A point of the grid with minimum weight; the weight of a point is equal to
the maximum weight of a line segment that covers it or 0 if the point is not covered by
any segment.

▶ Lemma 40. The Restricted 2D Manhattan Skyline Problem can be solved in time
O(M log M).

Proof. We first sort the endpoints of line segments in O(M log M) time; first by their x

coordinate and then by their y coordinate. We now present a top-to-bottom line sweeping
algorithm. The broom stores, for each point in [1 . . n], the maximum weight of a vertical
segment that contains it provided that the weight is positive. We implement the broom as a
balanced BST. When processing a row with k horizontal segments, [1 . . n] can be split into
O(k) pairwise-disjoint intervals with equal maximum weight of a horizontal segment covering
them. Then, by asking a query to the broom for each of the O(k) pairwise-disjoint intervals,
we are able to compute the maximum weight of a vertical segment that intersects each of the
intervals; consequently, a point of this row with minimum weight. Each query to the balanced
BST is answered in O(log M) time, so a row with k horizontal line segments is processed
in O(k log M) time. The total number of updates to the broom is upper bounded by the
number of endpoints of vertical line segments, and each of them is processed in O(log M)
time. The stated complexity follows. ◀

▶ Lemma 41. All 1D-covers with period greater than log N of a 2D-string T of size N can
be computed in time O(N).

Proof. We have O(log n) groups to process, each with period greater than log N . We
showed that we can reduce, in O(N) time, the problem in scope to O(log n) instances of the
Restricted 2D Manhattan Skyline Problem; for each group with period p an instance
with M = O(N/p). The periods grow geometrically (Lemma 29) and are at least log N , so
the time needed to solve all these instances is O(N/ log N · log N) = O(N) by Lemma 40. ◀

6.3.2 Handling Groups with Small Periods
Let us consider all groups with periods at most log N . If any of the considered groups contains
at least log n strings, we treat it in O(N) time, invoking Algorithm 5 (see Lemma 33). Note
that, due to Lemma 29, we can have at most one such group.
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▶ Lemma 42. The remaining groups with periods at most log N have O(log N) elements in
total.

Proof. The number of groups is O(log log N) since their periods are geometrically increasing
by Lemma 29. Moreover, if n1, . . . , nk are sizes of the non-singleton groups, then by Lemma 29
we have

∏k
i=1 ni = O(log N), which implies that

∑k
i=1 ni = O(log N). ◀

We now have only O(log N) strings to test. Unfortunately, we cannot use the Coloured
Strips Problem directly, because the reduction of Lemma 37 could yield ω(N) line segments,
as now we take several strings from each group. However, we can treat the elements of each
group as a batch. Let us consider the following variant of the Coloured Strips Problem.

Coloured Strips Problem with Shades
Input: O(N) horizontal/vertical line segments on an m × n grid, where N = mn. Each
line segment has a colour i and a shade in [1 . . si], such that

∑
i si = O(log N). The

shades of a colour i are sorted from the lightest (1) to the darkest (si). No three line
segments of the same colour intersect and none is contained in another line segment of
the same colour.
Output: For each colour i, its darkest shade x such that line segments of colour i and
shades non-darker than x cover the grid, if any.

Note that the above problem with one colour is a variant of the Restricted 2D
Manhattan Skyline Problem.

For each group that we are to process, we invoke Lemma 36 for its shortest element, and
then perform the strip-merging routine, outlined in Section 6.2 – the group number is the
colour of the line segment and the length of a line segment is now its shade. Over all groups
this takes O(N) time. We summarize the above discussion in the following statement.

▶ Lemma 43. Computing all 1D-covers of a 2D-string of size N = m × n with period
not larger than log N can be reduced in O(N) time to an instance of Coloured Strips
Problem with Shades with the same m, n.

The Coloured Strips Problem with Shades could be solved in O(N) time even
without the assumptions on the intersections of segments of the same colour, but their
presence makes the solution simpler.

▶ Lemma 44. The Coloured Strips Problem with Shades can be solved in time O(N).

Proof. The proof mimics that of Lemma 38, with a few differences. We compute for each
grid cell (i, j) a bitmask hcol(i, j) of size

∑
i si that specifies, for each colour k and shade

a, if the cell is covered by a horizontal line segment of colour k and a shade of darkness
at least a. Now a horizontal line segment of shade a sets all bits of shades 1, . . . , a in the
bitmask, which can be done in O(1) time with standard word-RAM operations.

With the presence of shades, we can no longer merge intersecting horizontal line segments
of the same colour. However, when processing each row using a line sweeping algorithm, the
simplifying assumptions in the problem guarantee that we may have at most two active line
segments of the same colour. We maintain their shades explicitly, which lets us update the
maintained bitmask.

We then compute vcol-bitmasks and return the darkest shade of each colour whose
corresponding bit is set in the bitmask

∧
i,j

(hcol(i, j) ∨ vcol(i, j)). ◀

By combining Lemmas 41, 43 and 44 we arrive at the main result of this section.

▶ Theorem 45. All 1D-covers of a 2D-string of size N can be computed in time O(N).
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A Special Case of Klee’s Measure Problem

In this section we show a solution to a special case of a dynamic version Klee’s measure
problem. Let us start with an auxiliary lemma.

We say that a rectangle is a corner rectangle in a grid if one of its corners coincides with
a corner of the grid. We say that a rectangle is a side rectangle of a grid if its width or height
is equal to k and one of its sides coincides with one of the sides of the grid. Our solution is
based on the following key lemma.

▶ Lemma 46. Dynamic Klee’s Measure problem on a k × k grid with only corner and
side rectangles inserted to R can be solved in Õ(k) time per insertion/deletion of a corner
rectangle and Õ(1) time per insertion/deletion of a side rectangle.

Proof. Let us first consider operations on corner rectangles. Each corner rectangle covers a
top or bottom interval of positions in each grid column. Hence, the total area that is not
covered by corner rectangles consists of at most one interval of positions in each column; see
Figure 6. This representation of the non-covered area can be computed in O(k) time if, for
each type of a corner rectangle (top-left, top-right etc.) we store the maximum-height corner
rectangle of each possible width. These values can be updated in Õ(k) time per insertion or
deletion of a corner rectangle if all corner rectangles are stored in a balanced binary search
tree (BST).

Figure 6 The intersection of the region that is not covered by corner rectangles with each column
consists of at most one interval (left). The region that is not covered by side rectangles is a rectangle
(right). The non-covered regions are shown in white.

The area not covered by side rectangles is a rectangle that only depends on the two
highest side rectangles that contain the horizontal sides of grid and the two widest side
rectangles that contain the vertical sides; see Figure 6 again. The rectangle can be updated
in Õ(1) time after an insertion or a deletion of a side rectangle if all side rectangles are stored
in a balanced BST. We construct a data structure that is recomputed from scratch after
each insertion or deletion of a corner rectangle and allows us to compute the area of the
intersection of the region that is not covered by corner rectangles with a query rectangle.

The area of each column covered by corners can be represented by (at most) two disjoint
vertical strips (i.e., width-1 rectangles), each adjacent to the boundary of the grid. Let us
focus on handling vertical strips with opposite corners (x, 0) and (x + 1, y), as vertical strips
with corners (x, y) and (x + 1, k) can be handled symmetrically. No two vertical strips in our
collection intersect, and hence we can indeed handle each case separately.

We will maintain a set of (weighted) points P in 2D, such that a vertical strip with
corners (x, 0) and (x + 1, y) will be represented by point (x, y) with weight y. We will store a
2D range query data structure over P , capable of returning the number and the total weight
of points inside any queried axes-parallel rectangle. Consider such a rectangle R with corners
(i, a) and (j, b), i ≤ j, a ≤ b.
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We have the following cases for the intersection of a vertical strip β (as above) and R.
Case I: b ≤ y. In this case, the intersection of β and R has area b − a. The total area
of R covered by such vertical strips is equal to the product of b − a and the number of
points of P in [i . . j − 1] × [b . . ∞).
Case II: a < y < b. In this case, the intersection of β and R has area y − a. The total
area of R covered by such vertical strips is equal to the total weight of points of P in
[i . . j − 1] × [a . . b) minus the product of their number and a.

We can implement the 2D range query data structures with Õ(1) query time and Õ(k)
space and construction time using range trees [5]. ◀

Let us recall that a rectangle is called a fat rectangle if its width and height are at least
√

n.

▶ Lemma 17. The Dynamic Klee’s Measure problem with fat rectangles can be solved in
Õ(

√
n) time per operation, after Õ(N)-time preprocessing.

Proof. Let us partition the grid into unit squares of height and width ⌈
√

n⌉. Each fat
rectangle in the grid is thus partitioned into: corner rectangles in at most 4 unit squares,
side rectangles in O((n + m)/

√
n) = O(

√
n) unit squares, and several consecutive full unit

squares in each column; see Figure 7.

⌈
√

n⌉

Figure 7 To the left: a fat rectangle decomposed into 4 corner rectangles, 8 side rectangles and 4
full unit squares. To the right: the structure of range trees that forms a kd-tree.

Each unit square stores the data structure of Lemma 46 that returns the covered area
in this unit square. We also build range trees over each column of unit squares, and one
range tree over the set of columns (see Figure 7 again), in order to support intervals of full
unit squares in rectangle decompositions. We can use the range tree by Bentley [4] that
allows insertions and deletions of intervals and counting the length of the union of intervals
in O(log N) time. This construction of range trees is similar to the kd-tree used in [18]. Let
us mention that the range trees need to be slightly adjusted in order to account for the values
returned by the data structure of Lemma 46 for unit squares that are not covered in full by
any rectangle. ◀

A.1 Checking if the Whole Grid is Covered
If we are only interested in checking if the union of all rectangles in the dynamic problem
covers the whole grid, which is the case in our application, the approach can be simplified as
follows.

In Lemma 17, the data structure for each unit square returns a single bit of information,
so simply no modification is needed in the range tree by Bentley [4].

The 2D range query data structure from the proof of Lemma 46 can be substituted
with range minimum queries on a 1D array as follows. The complement of the union of
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corner rectangles consists of horizontal and vertical strips, at most one vertical strip in a
column and at most one horizontal strip in a row. Consequently, the complement of union
of corner rectangles can be described in O(k) space using distN , distE , distS , distW arrays
that measure the distance (respectively in the direction North, South, East, West) from
each half-integral point in the corresponding side of the whole grid to the first non-covered
position in a given direction (see Figure 8).

7
7
7
7

10
2
2
5
5
5

distE

10 10 5 5 5 5 10 0 3 10
distN

Figure 8 Representation of the regions not covered by corner rectangles from Figure 6. The
sequences of numbers in the left/bottom sides are the arrays distE , distN . The (similar) arrays
distS , distW are not shown here.

Using four range minimum queries over dist arrays we can check in O(1) time if there
exists some non-covered grid cell in a query rectangle. More precisely, a rectangle with
corners (i, a) and (j, b), i ≤ j, a ≤ b, does not contain any non-covered cell if and only if at
least one of the following conditions is satisfied:

min distE [i . . j − 1] ≥ b,
min distW [i . . j − 1] ≥ k − a,
min distN [a . . b − 1] ≥ j,
min distS [a . . b − 1] ≥ k − i.

B Remaining Proofs

▶ Theorem 14. All aperiodic 2D-covers of a 2D-string of size N can be computed in
O(N log N) time.

Proof. By Lemma 9, aperiodic 2D-borders have only O(log m) and O(log n) possible heights
and widths, respectively. All periodic 2D-borders can be filtered out in O(N) time using
the border arrays of hstr(T (h)) and vstr(T(w)) for all h, w. Let us leave only those aperiodic
2D-borders as candidates which cover both T (h) and T(w) for their respective height h and
width w. They can be identified using an algorithm for finding all covers in a 1D-string [16, 17]
applied to hstr(T (h)) and vstr(T(w)).

If a candidate T [1 . . h, 1 . . w] is a 2D-cover of T , then candidates T [1 . . h′, 1 . . w] and
T [1 . . h, 1 . . w′] for h′ ≤ h, w′ ≤ w are also 2D-covers of T . We check the candidates
sorted by non-increasing height (and by non-decreasing width in case of draws), using the
Is2DCover(C, T ) routine for each candidate C. If the candidate in question turns out to be a
2D-cover, then we approve all the remaining ones with the same width as well, and if it is not,
then we can remove all the remaining ones of the same height. Hence, we can charge each
test to a unique width or height, which means that we perform O(log n + log m) = O(log N)
tests in total. Each test can be performed in O(N) time due to Lemma 4. ◀
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▶ Lemma 29. For X, Y ∈ B(S) with |X| < |Y |, we have per(Y ) ≥ per(X) · |Group(X)|.
Moreover, for X, Y, Z, W ∈ B(S) with |X| < |Y | < |Z| < |W |, we have per(W ) ≥ 9

8 per(X).

Proof. We first state a definition and a few facts. A string U is called primitive if it cannot
be expressed as V k for a string V and an integer k > 1. The synchronization property states
that a non-empty string U is primitive if and only if it occurs only twice in UU : as a prefix
and as a suffix. Moreover, any |per(U)|-length fragment of a string U is primitive [12].

Let us now prove the first statement of the lemma. If X is aperiodic, then the conclusion
is clear. Henceforth let us assume that X is periodic. In this case we have per(Y ) > per(X).
Towards a contradiction, suppose that

per(Y ) < per(X) · |Group(X)| ≤ |X| − per(X).

First, it cannot be that per(X) divides per(Y ), since this would contradict the primitivity of
S[1 . . per(Y )].

In the complementary case that per(X) does not divide per(Y ), we have that

per(Y ) + per(X) < |X| < |Y | implies [1 . . per(X)] = S[per(Y ) + 1 . . per(Y ) + per(X)].

We thus have an occurrence of U = S[1 . . per(X)] in X that starts in a position that is
not a multiple of per(X). This contradicts the primitivity of U , due to the synchronization
property.

We now move to the proof of the second statement of the lemma. First, let us note that
for U, V ∈ B(S) with |U | < |V | we have |V | ≥ 3

2 |U |. Let us distinguish between two cases.

Case I: per(W ) = per(Z).
In this case, Z must be aperiodic by the definition of B(S), i.e. per(Z) > |Z|/2. Then, Z’s
longest border cannot be longer than |Z| − per(Z) < per(Z). As Y must be a border of Z,
we have |Y | < per(Z). Then, the fact that 3

2 per(X) ≤ 3
2 |X| ≤ |Y | proves the statement.

Case II: per(W ) > per(Z).
In this case, by the periodicity lemma (Lemma 7) we have |Z| ≤ 2per(W ). We thus have
9
8 per(X) ≤ 9

8 |X| ≤ 3
4 |Y | ≤ |Z|/2 ≤ per(W ). ◀

▶ Lemma 36. Let S1, . . . , Sk be prefixes of W . Then we can compute all the sets Occ(Si, T )
in O(N +

∑k
i=1 |Occ(Si, T )|) time.

Proof. Let us recall the PREF array of a string S that stores, for each i ∈ [2 . . |S|], the
length of the longest common prefix of S[i . . |S|] and S. This array can be computed in
linear time [12]. We use the PREF array to compute the sets Occ(Si, T ) in time linear in
their total size plus O(N) as follows. Let us assume that Si are sorted by increasing lengths.
We store a doubly-linked list L of pairs, initially containing all pairs from [1 . . m] × [1 . . n].
Moreover, each pair stores a pointer to its corresponding element in the list L, if such
an element exists. For each row r, we compute the table PREFr as the PREF array of
T [1, 1 . . n]#T [r, 1 . . n]. We construct n buckets and store in the j-th bucket all pairs (r, c)
such that PREFr[n + 1 + c] = j. Then, for each j = 1, . . . , n, we report L as Occ(Si, T ) if
j = |Si| and then remove from L all pairs from the j-th bucket. ◀
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Abstract
The r -index (Gagie et al., JACM 2020) represented a breakthrough in compressed indexing of
repetitive text collections, outperforming its alternatives by orders of magnitude. Its space usage,
O(r) where r is the number of runs in the Burrows–Wheeler Transform of the text, is however
larger than Lempel–Ziv and grammar-based indexes, and makes it uninteresting in various real-life
scenarios of milder repetitiveness. In this paper we introduce the sr -index, a variant that limits a
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pattern matching with guaranteed performance. Our experiments demonstrate that the sr -index
sharply outperforms virtually every other compressed index on repetitive texts, both in time and
space, even matching the performance of the r -index while using 1.5–3.0 times less space. Only some
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1 Introduction

The rapid surge of massive repetitive text collections, like genome and sequence read sets
and versioned document and software repositories, has raised the interest in text indexing
techniques that exploit repetitiveness to obtain orders-of-magnitude space reductions, while
supporting pattern matching directly on the compressed text representations [10, 21].

Traditional compressed indexes rely on statistical compression [22], but this is ineffective
to capture repetitiveness [15]. A new wave of repetitiveness-aware indexes [21] build on other
compression mechanisms like Lempel–Ziv [16] or grammar compression [14]. A particularly
useful index of this kind is the rlfm-index [18, 19], because it emulates the classical suffix
array [20] and this simplifies translating suffix-array based algorithms to run on it [17].
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The rlfm-index represents the Burrows–Wheeler Transform (BWT) [3] of the text in
run-length compressed form, because the number r of maximal equal-letter runs in the BWT
is known to be small on repetitive texts. A problem with the rlfm-index is that, although it
can count the number of occurrences of a pattern using O(r) space, it needs to sample the
text at every sth position, for a parameter s, in order to locate each of those occurrences in
time proportional to s. The O(n/s) additional space incurred on a text of length n ruins
the compression on very repetitive collections, where r ≪ n. The recent r -index [11] closed
the long-standing problem of efficiently locating the occurrences within O(r) space, offering
pattern matching time orders of magnitude faster than previous repetitiveness-aware indexes.

In terms of space, however, the r -index is considerably larger than Lempel–Ziv based
indexes of size O(z), where z is the number of phrases in the Lempel–Ziv parse. Gagie
et al. [11] show that, on extremely repetitive text collections where n/r = 500–10,000, r

is around 3z and the r -index size is 0.06–0.2 bits per symbol (bps), about twice that of
the lz-index [15], a baseline Lempel–Ziv based index. However, r degrades faster than z

as repetitiveness drops: in an experiment on bacterial genomes in the same article, where
n/r ≈ 100, the r -index space approaches 0.9 bps, 4 times that of the lz-index; r also approaches
4z. Experiments on other datasets show that the r -index tends to be considerably larger
[23, 5, 6, 1].Indeed, in some realistic cases n/r can be over 1,500, but in most cases it is well
below: 40–160 on versioned software and document collections and fully assembled human
chromosomes, 7.5–50 on virus and bacterial genomes (with r in the range 4z–7z), and 4–9 on
sequencing reads; see Section 5. An r -index on such a small n/r ratio easily becomes larger
than the plain sequence data.

In this paper we tackle the problem of the (relatively) large space usage of the r -index. This
index manages to locate the pattern occurrences by sampling r text positions (corresponding
to the ends of BWT runs). We show that one can remove some carefully chosen samples so
that, given a parameter s, the index stores only O(min(r, n/s)) samples while its locating
machinery can still be used to guarantee that every pattern occurrence is located within O(s)
steps. We call the resulting index the subsampled r-index, or sr -index. The worst-case time
to locate the occ occurrences of a pattern of length m on an alphabet of size σ then rises
from O((m + occ) log(σ + n/r)) in the implemented r -index to O((m + s · occ) log(σ + n/r))
in the sr -index, which matches the search cost of the rlfm-index.

The sr -index can then be seen as a hybrid between the r -index (matching it when s = 1)
and the rlfm-index (obtaining its time with less space; the spaces become similar when
repetitiveness drops). In practice, however, the sr -index performs much better than both
on repetitive texts, sharply dominating the rlfm-index, the best grammar-based index [5],
and in most cases the lz-index, both in space and time. The sr -index can also get as fast as
the r -index while using 1.5–4.0 times less space. Its only remaining competitor is a hybrid
between a Lempel–Ziv based and a statistical index [7]. This index can use up to half the
space of the sr -index, but it is an order of magnitude slower. Overall, the sr -index stays
orders of magnitude faster than all the alternatives while using practical amounts of space in
a wide range of repetitiveness scenarios.

2 Background

The suffix array [20] SA[1..n] of a string T [1..n] over alphabet [1..σ] is a permutation of the
starting positions of all the suffixes of T in lexicographic order, T [SA[i]..n] < T [SA[i + 1]..n]
for all 1 ≤ i < n. The suffix array can be binary searched in time O(m log n) to obtain
the range SA[sp..ep] of all the suffixes prefixed by a search pattern P[1..m] (which then
occurs occ = ep − sp + 1 times in T ). Once they are counted (i.e., their suffix array range is
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determined), those occurrences are located in time O(occ) by simply listing their starting
positions, SA[sp], . . . , SA[ep]. The suffix array can then be stored in n⌈lg n⌉ bits (plus the
n⌈lg σ⌉ bits to store T ) and searches for P in T in total time O(m log n + occ).

Compressed suffix arrays (CSAs) [22] are space-efficient representations of both the suffix
array (SA) and the text (T ). They can find the interval SA[sp..ep] corresponding to P[1..m]
in time tsearch(m) and access any cell SA[j] in time tlookup(n), so they can be used to search
for P in time O(tsearch(m) +occ tlookup(n)). Most CSAs need to store sampled SA values to
compute any SA[j] in order to support the locate operation, inducing the tradeoff of using
O((n/s) log n) extra bits to obtain time tlookup(n) proportional to a parameter s.

The Burrows–Wheeler Transform [3] of T is a permutation BWT[1..n] of T [1..n] defined
as BWT[i] = T [SA[i] − 1] (and T [n] if SA[i] = 1), which boosts the compressibility of T .
The fm-index [8, 9] is a CSA that represents SA and T within the statistical entropy of T , by
exploiting the connection between the BWT and SA. For counting, the fm-index resorts to
backward search, which successively finds the suffix array ranges SA[spi..epi] of P[i..m], for
i = m to 1, starting from SA[spm+1..epm+1] = [1..n] and then

spi = C[c] + rankc(BWT, spi+1 − 1) + 1,

epi = C[c] + rankc(BWT, epi+1),

where c = P[i], C[c] is the number of occurrences of symbols smaller than c in T , and
rankc(BWT, j) is the number of times c occurs in BWT[1..j]. Thus, [sp, ep] = [sp1, ep1] if
spi ≤ epi holds for all 1 ≤ i ≤ m.

For locating the occurrences SA[sp], . . . , SA[ep], the fm-index uses SA sampling as de-
scribed: it stores sampled values of SA at regularly spaced text positions, say multiples of s.
This is done via the so-called LF-steps: The BWT allows one to efficiently compute, given j

such that SA[j] = i, the value j′ such that SA[j′] = i− 1, called j′ = LF(j). The formula is

LF(i) = C[c] + rankc(BWT, i),

where c = BWT[i]. Note that the LF-steps virtually traverse the text backwards. By marking
with 1s in a bitvector B[1..n] the positions j∗ such that SA[j∗] is a multiple of s, we can start
from any j and, in k < s LF-steps, find some sampled position j∗ = LFk(j) where B[j∗] = 1.
By storing those values SA[j∗] explicitly, we have SA[j] = SA[j∗] + k.

By implementing BWT with a wavelet tree, for example, access and rankc on BWT can
be supported in time O(log σ), and the fm-index searches in time O((m + s · occ) log σ) [9].

Since the statistical entropy is insensitive to repetitiveness [15], however, the fm-index is
not adequate for repetitive datasets. The Run-Length FM-index, rlfm-index (and its variant
rlcsa) [18, 19], is a modification of the fm-index aimed at repetitive texts. Say that the
BWT[1..n] is formed by r maximal runs of equal symbols, then r is relatively small in
repetitive collections (in particular, r = O(z log2 n), where z is the number of phrases of the
Lempel–Ziv parse of T [13]). The rlfm-index supports counting within O(r log n) bits, by
implementing the backward search over alternative data structures. In particular, it marks
in a bitvector Start[1..n] with 1s the positions j starting BWT runs, that is, where j = 1
or BWT[j] ̸= BWT[j − 1]. The first letter of each run is collected in an array Letter[1..r ].
Since Start has only r 1s, it can be represented within r lg(n/r) + O(r) bits. Within
this space, one can access any bit Start[j] and support operation rank1(Start, j), which
counts the number of 1s in Start[1..j], in time O(log(n/r)) [25]. Therefore, we simulate
BWT[j] = Letter[rank1(Start, j)] in O(r log n) bits. The backward search formula can be
efficiently simulated as well, leading to O((m + s · occ) log(σ + n/r)) search time. However,
the rlfm-index still uses SA samples to locate, and when r ≪ n (i.e., on repetitive texts), the
O((n/s) log n) added bits ruin the O(r log n)-bit space (s is typically O(log n) or close).
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The r -index [11] closed the long-standing problem of efficiently locating the occurrences
of a pattern in a text using O(r log n)-bit space. The experiments showed that the r -index
outperforms all the other implemented indexes by orders of magnitude in space or in time to
locate pattern occurrences on highly repetitive datasets. However, other experiments on more
typical repetitiveness scenarios [23, 5, 6, 1] showed that the space of the r -index degrades
very quickly as repetitiveness decreases. For example, a grammar-based index (which can be
of size g = O(z log(n/z))) is usually slower but significantly smaller [5], and an even slower
Lempel–Ziv based index of size O(z) [15] is even smaller. Some later proposals [24] further
speed up the r -index by increasing the constant accompanying the O(r log n)-bit space. The
unmatched time performance of the r -index comes then with a very high price in space on all
but the most highly repetitive text collections, which makes it of little use in many relevant
application scenarios. This is the problem we address in this paper.

3 The r-index Sampling Mechanism

Gagie et al. [11] provide an O(r log n)-bits data structure that not only finds the range
SA[sp..ep] of the occurrences of P in T , but also gives the value SA[ep], that is, the text
position of the last occurrence in the range. They then provide a second O(r log n)-bits data
structure that, given SA[j], efficiently finds SA[j − 1]. This suffices to efficiently find all the
occurrences of P, in time O((m + occ) log log(σ + n/r)) in their theoretical version.

In addition to the theoretical design, Gagie et al. and Boucher et al. [11, 2] provided a
carefully engineered r -index implementation. The counting data structures (which find the
range SA[sp..ep]) require, for any small constant ϵ > 0, r · ((1 + ϵ) lg(n/r) + lg σ +O(1)) bits
(largely dominated by the described arrays Start and Letter), whereas the locating data
structures (which obtain SA[ep], and SA[j − 1] given SA[j]), require r · (2 lg n +O(1)) further
bits. The locating structures are then significantly heavier in practice, especially when n/r
is not that large. Together, the structures use r · ((1 + ϵ) lg(n/r) + 2 lg n + lg σ +O(1)) bits
of space and perform backward search steps and LF-steps in time O( 1

ϵ log(σ + n/r)), so they
search for P in time O( 1

ϵ (m + occ) log(σ + n/r)).
For conciseness we do not describe the counting data structures of the r -index, which are

the same of the rlfm-index and which we do not modify in our index. The r -index locating
structures, which we do modify, are formed by the following components:

First[1..n]: a bitvector marking with 1s the text positions of the letters that are the first in
a BWT run. That is, if j = 1 or BWT[j] ̸= BWT[j − 1], then First[SA[j]− 1] = 1. Since
First has only r 1s, it is represented in compressed form using r lg(n/r)+O(r) bits, while
supporting rank1 in time O(log(n/r)) and, in O(1) time, the operation select1(First, j)
(the position of the jth 1 in First) [25]. This allows one find the rightmost 1 up to
position i, pred(First, i) = select1(First, rank1(First, i)).

FirstToRun[1..r]: a vector of integers (using r⌈lg r⌉ bits) mapping each letter marked in
First to the BWT run where it lies. That is, if the pth BWT run starts at BWT[j], and
First[i] = 1 for i = SA[j]− 1, then FirstToRun[rank1(First, i)] = p.

Samples[1..r]: a vector of ⌈lg n⌉-bit integers storing samples of SA, so that Samples[p] is
the text position SA[j]− 1 corresponding to the last letter BWT[j] in the pth BWT run.

These structures are used in the following way in the r -index implementation [11]:

Problem 1: When computing the ranges SA[sp..ep] along the backward search, we must also
produce the value SA[ep]. They actually compute all the values SA[epi]. This is stored
for SA[epm+1] = SA[n] and then, if BWT[epi+1] = P[i], we know that epi = LF(epi+1)
and thus SA[epi] = SA[epi+1]− 1. Otherwise, epi = LF(j) and SA[epi] = SA[j]− 1, where
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Figure 1 Schematic example of the sampling mechanism of the r -index. There is a run border
between j3 − 1 and j3.

j ∈ [spi+1..epi+1] is the largest position with BWT[j] = P[i]. The position j is efficiently
found with their counting data structures, and the remaining problem is how to compute
SA[j]. Since j must be an end of run, however, this is simply computed as Samples[p] + 1,
where p = rank1(Start, j) is the run where j belongs.

Problem 2: When locating we must find SA[j − 1] from i = SA[j]− 1. There are two cases:
j − 1 ends a BWT run, that is, Start[j] = 1, and then SA[j − 1] = Samples[p− 1] + 1,
where p is as in Problem 1;
j−1 is in the same BWT run of j, in which case they compute SA[j−1] = ϕ(i), where1

ϕ(i) = Samples[FirstToRun[rank1(First, i)]− 1] + 1 + (i− pred(First, i)). (1)

This formula works because, when j and j − 1 are in the same BWT run, it holds that
LF(j − 1) = LF(j) − 1 [8]. Figure 1 explains why this property makes the formula work.
Consider two BWT positions, j = j0 and j′ = j − 1 = j0 − 1, that belong to the same
run. The LF formula will map them to consecutive positions, j1 and j′

1 = j1 − 1. If j1 and
j1 − 1 still belong to the same run, LF will map them to consecutive positions again, j2
and j′

2 = j2 − 1, and once again, j3 and j′
3 = j3 − 1. Say that j3 and j3 − 1 do not belong

to the same run. This means that j3 − 1 ends a run (and thus it is stored in Samples)
and j3 starts a run (and thus SA[j3] − 1 is marked in First). To the left of the BWT
positions we show the areas of T virtually traversed as we perform consecutive LF-steps.
Therefore, if we know i = SA[j] − 1 = SA[j0] − 1, the nearest 1 in First to the left is at
pred(First, i) = SA[j3]− 1 (where there is an e in T ) and p = FirstToRun[rank(i)] is the
number of the BWT run that starts at j3. If we subtract 1, we have the BWT run ending
at j3 − 1, and then Samples[p− 1] is the position preceding SA[j3 − 1] (where there is a d
in T ). We add 1 + (i− pred(First, i)) = 4 to obtain SA[j0 − 1] = SA[j − 1].

These components make up, effectively, a sampling mechanism of O(r log n) bits (i.e.,
sampling the end of runs), instead of the traditional one of O((n/s) log n) bits (i.e., sampling
every sth text position).

1 The special case where rank1(First, i) = 0 is handled separately.
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4 Our Subsampled r-index

Despite its good performance on highly repetitive texts, the sampling mechanism introduced
by the r -index is excessive in areas where the BWT runs are short, because those induce
oversampled ranges on the text. In this section we describe an r -index variant we dub
subsampled r-index, or sr-index, which can be seen as a hybrid between the r -index and the
rlfm-index. The sr -index samples the text at end of runs (like the r -index), but in oversampled
areas it removes some samples to ensure that no three consecutive samples lie within distance
s (roughly as in the rlfm-index). It then handles text areas with denser and sparser sampling
in different ways.

4.1 Subsampling
The sr -index subsampling process removes r -index samples in oversampled areas. Concretely,
let t′

1 < · · · < t′
r be the text positions of the last letters in BWT runs, that is, the sorted

values in array Samples. For any 1 < i < r , we remove the sample t′
i if t′

i+1− t′
i−1 ≤ s, where

s is a parameter. This condition is tested and applied sequentially for i = 2, . . . , r − 1 (that
is, if we removed t′

2 because t′
3 − t′

1 ≤ s, then we next remove t′
3 if t′

4 − t′
1 ≤ s; otherwise we

remove t′
3 if t′

4 − t′
2 ≤ s). Let us call t1, t2, . . . the sequence of the remaining samples.

The arrays First, FirstToRun, and Samples are built on the samples ti only. That is,
if we remove the sample Samples[p] = t′, we also remove the 1 in First corresponding to
the first letter of the (p + 1)th BWT run, which is the one Eq. (1) would have handled
with Samples[p]. We also remove the corresponding entry of FirstToRun. Note that, if
j is the first position of the (p + 1)th run and j − 1 the last of the pth run, then if we
remove Samples[p] = SA[j − 1]− 1, we remove the corresponding 1 at position SA[j]− 1 in
First. Finally, note that FirstToRun must be adapted to point to the corresponding entry
of Samples, once some entries of the latter are removed.

It is not hard to see that subsampling avoids the excessive space usage when r is not
small enough, reducing it from O(r) to O(min(r , n/s)) entries for the locating structures.

▶ Lemma 1. The subsampled structures First, FirstToRun, and Samples use
min(r , 2⌈n/(s + 1)⌉) · (2 lg n +O(1)) bits of space.

Proof. This is the same space as in the implemented r -index, with the number of samples
reduced from r to min(r , 2⌈n/(s + 1)⌉). We start with r samples and remove some, so there
are at most r. By construction, any remaining sample ti satisfies ti+1 − ti−1 > s, so if we cut
the text into blocks of length s + 1, no block can contain more than 2 samples. ◀

Our index adds the following small structure on top of the above ones, so as to mark the
removed samples:

Removed[1..r]: A bitvector telling which of the original samples have been removed, that
is, Removed[p] = 1 iff the sample at the end of the pth BWT run was removed. We can
compute any rank1(Removed, p) in constant time using r + o(r) bits [4].

It is easy to see that, once the r -index structures are built, the sr -index subsampling, as
well as building and updating the associated structures, are lightweight tasks, easily carried
out in O(r) space and O(r log r) time. It is also possible to build the subsampled structures
directly without building the full sr -index sampling first, in O(n log(σ + n/r)) time: we
simulate a backward text traversal using LF-steps, so that we can build bitvector Removed.
A second similar traversal fills the 1s in First and the entries in FirstToRun and Samples
for the runs whose sample was not removed.
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4.2 Solving Problem 1
For Problem 1, we must compute SA[j], where j is the end of the pth run, with p =
rank1(Start, j). This position is sampled in the r -index, where the problem is thus trivial:
SA[j] = Samples[p] + 1. However, in the sr -index it might be that Removed[p] = 1, which
means that the subsampling process removed SA[j]. In this case, we compute jk = LFk(j)
for k = 1, 2, . . . until finding a sampled value SA[jk] (i.e., jk = n or Start[jk + 1] = 1)
that is not removed (i.e., q = rank1(Start, jk) and Removed[q] = 0). We then compute
q′ = q − rank1(Removed, q), and SA[j] = Samples[q′] + k + 1.

The next lemma shows that we find a nonremoved sample for some k < s.

▶ Lemma 2. If there is a removed sample t′
j such that ti < t′

j < ti+1, then ti+1 − ti ≤ s.

Proof. Since our subsampling process removes samples left to right, by the time we removed
t′
j , the current sample ti was already the nearest remaining sample to the left of t′

j . If the
sample following t′

j was the current ti+1, then we removed t′
j because ti+1 − ti ≤ s, and we

are done. Otherwise, there were other samples to the right of t′
j , say t′

j+1, t′
j+2, . . . , t′

j+k, that
were consecutively removed until reaching the current sample ti+1. We removed t′

j because
t′
j+1− ti ≤ s. Then, for 1 ≤ l < k, we removed t′

j+l (after having removed t′
j , t′

j+1, . . . , t′
j+l−1)

because t′
j+l+1 − ti ≤ s. Finally, we removed t′

j+k because ti+1 − ti ≤ s. ◀

This implies that, from a removed sample Samples[p] = t′, surrounded by the remaining
samples ti < t′ < ti+1, we can perform only k = t′ − ti < s LF-steps until jk = LF(k)(j)
satisfies SA[jk]− 1 = ti and thus it is stored in Samples[q] and not removed.

If we followed verbatim the modified backward search of the r -index, finding every
SA[epi], we would perform O(m · s) steps on the sr -index. We now reduce this to O(m + s)
steps by noting that the only value we need is SA[ep] = SA[ep1]. Further, we need to
know SA[epi+1] to compute SA[epi] only in the easy case where BWT[epi+1] = P[i] and so
SA[epi] = SA[epi+1]− 1. Otherwise, the value SA[epi] is computed afresh.

We then proceed as follows. We do not compute any value SA[epi] during backward
search; we only remember the last (i.e., smallest) value i′ of i where the computation was not
easy, that is, where BWT[epi′+1] ̸= P[i′]. Then, SA[ep1] = SA[epi′ ]− (i′ − 1) and we need to
apply the procedure described above only once: we compute SA[j], where j is the largest
position in [spi′+1..epi′+1] where BWT[j] = P [i′], and then SA[epi′ ] = SA[j]− 1.

Algorithm 1 gives the complete pseudocode that solves Problem 1. Note that, if P does
not occur in T (i.e., occ = 0) we realize this after the O(m) backward steps because some
spi > epi, and thus we do not spend the O(s) extra steps.

4.3 Solving Problem 2
For Problem 2, finding SA[j − 1] from i = SA[j]− 1, we first proceed as in Problem 1, from
j−1. We compute j′

k = LFk(j−1) for k = 0, . . . , s−1. If any of those j′
k is the last symbol of

its run (i.e., j′
k = n or Start[j′

k + 1] = 1), and the sample corresponding to this run was not
removed (i.e., Removed[q] = 0, with q = rank1(Start, j′

k)), then we can obtain immediately
SA[j′

k] = Samples[q′] + 1, where q′ = q− rank1(Removed, q), and thus SA[j − 1] = SA[j′
k] + k.

Unlike in Problem 1, SA[j − 1] is not necessarily an end of run, and therefore we are not
guaranteed to find a solution for 0 ≤ k < s. However, the following property shows that, if
there were some end of runs j′

k, it is not possible that all were removed from Samples.

▶ Lemma 3. If there are no remaining samples in SA[j − 1]− s, . . . , SA[j − 1]− 1, then no
sample was removed between SA[j − 1]− 1 and its preceding remaining sample.

CPM 2021
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Algorithm 1 Counting pattern occurrences on the sr -index.
Input : Search pattern P[1..m].
Output : Returns suffix array range [sp, ep] for P and SA[ep].

1 sp ← 1; ep ← n + 1
2 i← m; i′ ← m + 1
3 while i ≥ 1 and sp ≤ ep do
4 p← rank1(Start, ep)
5 if Letter[p] ̸= P[i] then
6 i′ ← i; p′ ← p

7 c← P[i]
8 sp ← C[c] + rankc(BWT, sp − 1) + 1
9 ep ← C[c] + rankc(BWT, ep)

10 if sp > ep then return “P does not occur in T ”
11 if i′ = m + 1 then return [sp, ep] and SA[ep] = SA[n]−m (SA[n] is stored)
12 c← P[i′]
13 q ← selectc(Letter, rankc(Letter, p′)) (supported by the rlfm-index/r -index)
14 j ← select1(Start, q + 1)− 1
15 k ← 0
16 while (j < n and Start[j + 1] = 0) or Removed[q] = 1 do
17 j ← LF(j)
18 q ← rank1(Start, j)
19 k ← k + 1
20 return [sp, ep] and SA[ep] = Samples[q − rank1(Removed, q)] + k + 1− (i′ − 1)

Proof. Let ti < SA[j − 1] − 1 < ti+1 be the samples surrounding SA[j − 1] − 1, so the
remaining sample preceding SA[j − 1] − 1 is ti. Since ti < SA[j − 1] − s, it follows that
ti+1 − ti > s and thus, by Lemma 2, no samples were removed between ti and ti+1. ◀

This means that, if the process above fails to find an answer, then we can directly use
Eq. (1), as we prove next.

▶ Lemma 4. If there are no remaining samples in SA[j − 1] − s, . . . , SA[j − 1] − 1, then
subsampling removed no 1s in First between positions i = SA[j]− 1 and pred(First, i).

Proof. Let ti < SA[j − 1] − 1 < ti+1 be the samples surrounding SA[j − 1] − 1, and
k = SA[j − 1]− 1− ti. Lemma 3 implies that no sample existed between SA[j − 1]− 1 and
SA[j−1]−k = ti +1, and there exists one at ti. Consequently, no 1 existed in First between
positions SA[j]− 1 and SA[j]− k (inclusively), and there exists one in SA[j]− 1− k. Indeed,
pred(First, i) = SA[j]− 1− k. ◀

A final twist, which does not change the worst-case complexity but improves performance
in practice, is to reuse work among successive occurrences. Let BWT[sm..em] be a maximal
run inside BWT[sp..ep]. For every sm ≤ j ≤ em, the first LF-step will lead us to LF(j) =
LF(sm) + (j − sm); therefore we can obtain them all with only one computation of LF.
Therefore, instead of finding SA[sp], . . . , SA[ep] one by one, we report SA[ep] (which we know)
and cut BWT[sp..ep − 1] into maximal runs using bitvector Start. Then, for each maximal
run BWT[sm..em], if the end of run BWT[em] is sampled, we report its position and continue
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Algorithm 2 Locating pattern occurrences on the sr -index.
Input : Global array Res[1..occ] of results, range [sp, ep] to report, SA[ep].
Output : Fills Res[i] = SA[sp − 1 + i] for all 1 ≤ i ≤ occ.

1 Res[ep − sp + 1]← SA[ep] (known from backward search)
2 if sp < ep then locate(sp, ep − 1, 0)

3 Proc locate(sm, em, k)
4 if k = s then
5 for im = em, . . . , sm do
6 i← Res[im− sp + 2]− 1
7 Res[im− sp + 1]← ϕ(i) (Eq. (1))

8 else
9 if Start[em + 1] = 1 then

10 q ← rank1(Start, em)
11 if Removed[q] = 0 then
12 Res[em− sp + 1]← Samples[q − rank1(Removed, q)] + 1 + k

13 em← em− 1

14 q ← rank1(Start, sm)
15 while sm ≤ em do
16 im← select1(Start, q + 1)
17 if im− 1 > em then im← em + 1
18 locate(sm, im− 1, k + 1)
19 sm← im

20 q ← q + 1

recursively reporting SA[LF(sm)..LF(sm) + (em− sm)− 1]; otherwise we continue recursively
reporting SA[LF(sm)..LF(sm) + (em− sm)]. Note that we must add k to the results reported
at level k of the recursion. By Lemma 2, every end of run found in the way has been
reported before level k = s. When k = s, then, we use Eq. (1) to obtain SA[em], . . . , SA[sm]
consecutively from SA[em + 1], which must have been reported because it is ep or was an
end of run at some level of the recursion.

Algorithm 2 gives the complete procedure to solve Problem 2.

4.4 The basic index, sr-index0

We have just described our most space-efficient index, which we call sr -index0. Its space and
time complexity is established in the next theorem.

▶ Theorem 5. The sr-index0 uses r ·((1+ϵ) lg(n/r)+lg σ+O(1))+min(r, 2⌈n/(s+1)⌉) ·2 lg n

bits of space, for any constant ϵ > 0, and finds all the occ occurrences of P[1..m] in T in
time O( 1

ϵ (m + s · occ) log(σ + n/r)).

Proof. The space is the sum of the counting structures of the r -index and our modified
locating structures, according to Lemma 1. The space of bitvector Removed is O(r) bits,
which is accounted for in the formula.

As for the time, we have seen that the modified backward search requires O(m) steps if
occ = 0 and O(m + s) otherwise (Problem 1). Each occurrence is then located in O(s) steps
(Problem 2). In total, we complete the search with O(m + s · occ) steps.
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Each step involves O( 1
ϵ log(σ + n/r)) time in the basic r -index implementation, including

Eq. (1). Our index includes additional ranks on Start and other constant-time operations,
which are all in O(log(n/r)). Since the First now has O(min(r, n/s)) 1s, however, operation
rank1 on it takes time O(log(n/ min(r, n/s))) = O(log max(n/r, s)) = O(log(n/r + s)). Yet,
this rank is computed only once per occurrence reported, when using Eq. (1), so the total
time per occurrence is still O(log(n/r + s) + s · log(σ + n/r)) = O(s · log(σ + n/r)). ◀

Note that, in asymptotic terms, the sr -index is never worse than the rlfm-index with
the same value of s and, with s = 1, it boils down to the r -index. Using predecessor data
structures of the same asymptotic space of our lighter sparse bitvectors, the logarithmic
times can be reduced to loglogarithmic [11], but our focus is on low practical space usage.

Note also that this theorem can be obtained by simply choosing the smallest between
the r -index and the rlfm-index. In practice, however, the sr -index performs much better than
both extremes, providing a smooth transition that retains sparsely indexed areas of T while
removing redundancy in oversampled areas. This will be demonstrated in Section 5.

4.5 A faster and larger index, sr-index1

The sr -index0 guarantees locating time proportional to s and uses almost no extra space. On
the other hand, on Problem 2 it performs up to s LF-steps for every occurrence, even when
this turns out to be useless. The variant sr -index1 adds a new component, also small, to
speed up some cases:

Valid: a bitvector storing one bit per (remaining) sample in text order, so that Valid[q] = 0
iff there were removed samples between the qth and the (q + 1)th 1s of First.

With this bitvector, if we have i = SA[j]− 1 and Valid[rank1(First, i)] = 1, we know
that there were no removed samples between i and pred(First, i) (even if they are less than
s positions apart). In this case we can skip the computation of LFk(j − 1) of sr -index0, and
directly use Eq. (1). Otherwise, we must proceed exactly as in sr -index0 (where it is still
possible that we compute all the LF-steps unnecessarily). More precisely, this can be tested
for every value between sm and em so as to report some further cells before recursing on the
remaining ones, in lines 14–19 of Algorithm 2.

The space and worst-case complexities of Theorem 5 are preserved in sr -index1.

4.6 Even faster and larger, sr-index2

Our final variant, sr -index2, adds a second and significantly larger structure:

ValidArea: an array whose cells are associated with the 0s in Valid. If Valid[q] = 0, then
d = ValidArea[q − rank1(Valid, q)] is the distance from the qth 1 in First to the next
removed sample. Each entry in ValidArea requires ⌈lg s⌉ bits, because removed samples
must be at distance less than s from their preceding sample, by Lemma 2.

If Valid[rank1(First, i)] = 0, then there was a removed sample at pred(First, i) + d,
but not before. So, if i < pred(First, i) + d, we can still use Eq. (1); otherwise we must
compute the LF-steps LFk(j − 1) and we are guaranteed to succeed in less than s steps. This
improves performance considerably in practice, though the worst-case time complexity stays
as in Theorem 5 and the space increases by at most r lg s bits.
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5 Experimental Results

We implemented the sr -index in C++14, on top of the SDSL library2, and made it available
at https://github.com/duscob/sr-index.

We benchmarked the sr -index against available implementations for the r -index, the
rlfm-index, and several other indexes for repetitive text collections.

Our experiments ran on a hardware with two Intel(R) Xeon(R) CPU E5-2407 processors at
2.40 GHz and 250 GB RAM. The operating system was Debian Linux kernel 4.9.0-14-amd64.
We compiled with full optimization and no multithreading.

Our reported times are the average user time over 1000 searches for patterns of length
m = 10 obtained at random from the texts. We give space in bits per symbol (bps) and
times in microseconds per occurrence (µs/occ). Indexes that could not be built on some
collection, or that are out of scale in space or time, are omitted in the corresponding plots.

5.1 Tested indexes
We included the following indexes in our benchmark; their space decrease as s grows:

sr-index: Our index, including the three variants, with sampling values s = 4, 8, 16, 32, 64.
r-index: The r -index implementation we build on.3
rlcsa: An implementation of the run-length CSA [19], which outperforms the actual rlfm-index

implementation.4 We use text sampling values s = n/r × f/8, with f = 8, 10, 12, 14, 16.
csa: An implementation of the CSA [28], which outperforms in practice the fm-index [8, 9].

This index, obtained from SDSL, acts as a control baseline that is not designed for
repetitive collections.We use text sampling parameter s = 16, 32, 64, 128.

g-index: The best grammar-based index implementation we are aware of [5].5 We use
Patricia trees sampling values s = 4, 16, 64.

lz-index and lze-index: Two variants of the Lempel–Ziv based index [15].6
hyb-index: A hybrid between a Lempel–Ziv and a BWT-based index [7].7 We build it with

parameters M = 8, 16, the best for this case.

5.2 Collections
We benchmark various repetitive text collections; Table 1 gives some basic measures on them.

PizzaChili: A generic collection of real-life texts of various sorts and repetitiveness levels,
which we use to obtain a general idea of how the indexes compare. We use 4 collections of
microorganism genomes (influenza, cere, para, and escherichia) and 4 versioned document
collections (the English version of einstein, kernel, worldleaders, coreutils).8

Synthetic DNA: A 100KB DNA text from PizzaChili, replicated 1,000 times and each copied
symbol mutated with a probability from 0.001 (DNA-001, analogous to human assembled
genomes) to 0.03 (DNA-030, analogous to sequence reads). We use this collection to study
how the indexes evolve as repetitiveness decreases.

2 From https://github.com/simongog/sdsl-lite.
3 From https://github.com/nicolaprezza/r-index.
4 From https://github.com/adamnovak/rlcsa.
5 From https://github.com/apachecom/grammar_improved_index.
6 From https://github.com/migumar2/uiHRDC.
7 From https://github.com/hferrada/HydridSelfIndex.
8 From http://pizzachili.dcc.uchile.cl/repcorpus/real.
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Table 1 Basic characteristics of the repetitive texts used in our benchmark. Size is given in MB.

Collection Size n/r Collection Size n/r

influenza 147.6 51.2 DNA-001 100.0 142.4
cere 439.9 39.9 DNA-003 100.0 58.3
para 409.4 27.4 DNA-010 100.0 26.0
escherichia 107.5 7.5 DNA-030 100.0 11.6
einstein 447.7 1611.2 HLA 53.7 161.4
kernel 238.0 92.4 Chr19 2,819.3 89.2
worldleaders 44.7 81.9 Salmonella 3,840.5 43.9
coreutils 195.8 43.8 Reads 2,565.5 8.9

Real DNA: Some real DNA collections to study other aspects:
HLA: A dataset with copies of the short arm (p arm) of human chromosome 6 [27].9

This arm contains about 60 million base pairs (Mbp) and it includes the 3 Mbp HLA
region. That region is known to be highly variable, so the r -index sampling should be
sparse for most of the arm and oversample the HLA region.

Chr19 and Salmonella: Human and bacterial assembled genome collections, respectively,
of a few billion base pairs. We include them to study how the indexes behave on more
massive data. Chr19 is the set of 50 human chromosome 19 genomes taken from the
1000 Genomes Project [30], whereas Salmonella is the set of 815 Salmonella genomes
from the GenomeTrakr project [29].

Reads: A large collection of sequence reads, which tend to be considerably less repetitive
than assembled genomes.10 We include this collection to study the behavior of the
indexes on a popular kind of bioinformatic collection with mild repetitiveness. In
Reads the sequencing errors have been corrected, and thus its n/r ≈ 9 is higher than
the n/r ≈ 4 reported on crude reads [6].

5.3 Results
Figures 2 and 3 show the space taken by all the indexes and their search time.

A first conclusion is that sr -index2 always dominates sr -index0 and sr -index1, so we will
refer to it simply as sr -index from now on. The plots show that the extra information we
associate to the samples makes a modest difference in space, while time improves considerably.
This sr -index can be almost as fast as the r -index, and an order of magnitude faster than
all the others, while using 1.5–4.0 less space than the r -index. Therefore, as promised, we
are able to remove a significant degree of redundancy in the r -index without affecting its
outstanding time performance.

In all the PizzaChili collections, the sr -index dominates almost every other index, out-
performing them both in time and space. The only other index on the Pareto curve is the
hyb-index, which can use as little as a half of the space of the sweet spot of the sr -index, but
still at the price of being an order of magnitude slower. This holds even on escherichia, where
n/r is well below 10, and both the rlcsa and the csa become closer to the sr -index.

In general, in all the collections with sufficient repetitiveness, say n/r over 25, the sr -index
sharply dominates as described. As repetitiveness decreases, with n/r reaching around 10,
the rlcsa and the csa approach the sr -index and outperform every other repetitiveness-aware
index, as expected. This happens on escherichia (as mentioned) and Reads (where the sr -index,

9 From ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/fasta/hla_gen.fasta.
10 From https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR008613.

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR008613
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Figure 2 Space-time tradeoffs for the PizzaChili collections.
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Figure 3 Space-time tradeoffs for the synthetic and real DNA datasets.
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the rlcsa, and the csa behave similarly). This is also the case on the least repetitive synthetic
DNA collection, DNA-030, where the mutation rate reaches 3%. In this collection, the
repetitiveness-unaware csa largely dominates all the space-time map.

We expected the sr -index to have a bigger advantage over the r -index on the HLA dataset
because its oversampling is concentrated, but the results are similar to those on randomly
mutated DNA with about the same n/r value (DNA-001). In general, the bps used by the
sr -index can be roughly predicted from n/r; for example the sweet spot often uses around
40r total bits, although it takes 20r–30r bits in some cases. The r -index uses 70r–90r bits.

The bigger collections (Chr19, Salmonella, Reads), on which we could build the BWT-
related indexes only, show that the same observed trends scale to gigabyte-sized collections
of various repetitiveness levels.

6 Conclusions

We have introduced the sr -index, an r -index variant that solves the problem of its relatively
bloated space while retaining its high search performance. The sr -index is orders of magnitude
faster than the other repetitiveness-aware indexes, while outperforming most of them in
space as well. It matches the time performance of the r -index while using 1.5–4.0 less space.

Unlike the r -index, the sr -index uses little space even in milder repetitiveness scenarios,
which makes it usable in a wider range of bioinformatic applications. For example, it
uses 0.25–0.60 bits per symbol (bps) while reporting each occurrence within a microsecond
on gigabyte-sized human and bacterial genomes, where the original r -index uses 0.95–1.90
bps. In general, the sr -index outperforms classic compressed indexes on collections with
repetitiveness levels n/r over as little as 7 in some cases, though in general it is reached
by repetitiveness-unaware indexes when n/r approaches 10, which is equivalent to a DNA
mutation rate around 3%.

Compared to the rlfm-index, which for pattern searching is dominated by the sr -index, the
former can use its regular text sampling to compute any entry of the suffix array or its inverse
in time proportional to the sampling step s. Obtaining an analogous result on the sr -index,
for example to implement compressed suffix trees, is still a challenge. Other proposals for
accessing the suffix array faster than the rlfm-index [12, 26] illustrate this difficulty: they
require even more space than the r -index.
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Abstract
Longest Run Subsequence is a problem introduced recently in the context of the scaffolding
phase of genome assembly (Schrinner et al., WABI 2020). The problem asks for a maximum length
subsequence of a given string that contains at most one run for each symbol (a run is a maximum
substring of consecutive identical symbols). The problem has been shown to be NP-hard and to
be fixed-parameter tractable when the parameter is the size of the alphabet on which the input
string is defined. In this paper we further investigate the complexity of the problem and we show
that it is fixed-parameter tractable when it is parameterized by the number of runs in a solution,
a smaller parameter. Moreover, we investigate the kernelization complexity of Longest Run
Subsequence and we prove that it does not admit a polynomial kernel when parameterized by the
size of the alphabet or by the number of runs. Finally, we consider the restriction of Longest Run
Subsequence when each symbol has at most two occurrences in the input string and we show that
it is APX-hard.
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1 Introduction

A fundamental problem in computational genomics is genome assembly, whose goal is
reconstructing a genome given a set of reads (a read is a sequence of base pairs) [2, 5].
After the generation of initial assemblies, called contigs, they have to be ordered correctly,
in a phase called scaffolding. One of the commonly used approaches for scaffolding is to
consider two (or more) incomplete assemblies of related samples, thus allowing the alignment
of contigs based on their similarities [7]. However, the presence of genomic repeats and
structural differences may lead to misleading connections between contigs.

Consider two sets X, Y of contigs, such that the order of contigs in Y has to be inferred
using the contigs in X. Each contig in X is divided into equal size bins and each bin is
mapped to a contig in Y (based on best matches). As a consequence, each bin in X can be
partitioned based on the mapping to contigs of Y . However this mapping of bins to contigs,
due to errors (in the sequencing or in the mapping process) or mutations, may present some
inconsistencies, in particular bins can be mapped to scattered contigs, thus leading to an
inconsistent partition of X, as shown in Fig. 1. In order to infer the most likely partition
of X (and then distinguish between the transition from one contig to the other and errors
in the mapping), the method proposed in [10] asks for a longest subsequence of the contig
matches in X such that each contig run occurs at most once (see Fig. 1 for an example).
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Figure 1 An example of matching a binned contig (X) with the unordered contigs of Y . The
string inferred from this matching is S = y1 y1 y2 y1 y4 y2 y4 y3 y3. Notice that S induces an
inconsistent partition of the bins of X, for example for the mapping of Y1 and Y2. Indeed, Y1 is
mapped in the first, second and fourth bin of X, while Y2 is mapped in the third and sixth bin of X.
A longest run subsequence R of S is R = y1 y1 y1 y4 y4 y3 y3, that induces a partition of some bins
of X.

This problem, called Longest Run Subsequence, has been recently introduced and
studied by Schrinner et al. [10]. Longest Run Subsequence has been shown to be NP-
hard [10] and fixed-parameter tractable when the parameter is the size of the alphabet on
which the input string is defined [10]. Furthermore, an integer linear program has been given
for the problem [10]. Schrinner et al. let as future work approximability and parameterized
complexity results on the problem [10]. Note that this problem could be seen as close to the
“run-length encoded” string problems in the string literature, where a string is described as a
sequence of symbols followed by the number of its consecutive occurrences, i.e. a sequence of
runs where only its symbol and its length is stored (see for example [3]). While finding the
longest common subsequence between two of such strings is a polynomial task, our problem is,
to the best of our knowledge, not studied in literature before the work of Schrinner et al. [10].

In this paper we further investigate the complexity of the Longest Run Subsequence
problem. We start in Section 2 by introducing some definitions and by giving the formal
definition of the problem. Then in Section 3 we give a randomized fixed-parameter algorithm,
where the parameter is the number of runs in a solution, based on the multilinear detection
technique. In Section 4, we investigate the kernelization complexity of Longest Run
Subsequence and we prove that it does not admit a polynomial kernel when parameterized
by the size of the alphabet or by the number of runs. Notice that the problem admits a
polynomial kernel when parameterized by the length of the solution (see Observation 6).
Finally, in Section 5 we consider the restriction of Longest Run Subsequence when each
symbol has at most two occurrences in the input string and we show that it is APX-hard.
We conclude the paper with some open problems.

2 Definitions

In this section we introduce the main definitions we need in the rest of the paper.

Problem Definition. Given a string S, |S| denotes the length of the string; S[i], with
1 ⩽ i ⩽ |S|, denotes the symbol of S in position i, S[i, j], with 1 ⩽ i ⩽ j ⩽ |S|, denotes the
substring of S that starts in position i and ends in position j. Notice that if i = j, then
S[i, i] is the symbol S[i]. Given a symbol a, we denote by ap, for some integer p ⩾ 1, a string
consisting of the concatenation of p occurrences of symbol a.
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A run in S is a substring S[i, j], with 1 ⩽ i ⩽ j ⩽ |S|, such that S[z] = a, for each
i ⩽ z ⩽ j, with a ∈ Σ. Given a ∈ Σ, an a-run is a run in S consisting of repetitions of symbol
a. Given a string S on alphabet Σ, a run subsequence S′ of S is a subsequence that contains
at most one run for each symbol a ∈ Σ.

Now, we are ready to define the Longest Run Subsequence problem.

Longest Run Subsequence
• Input: A string S on alphabet Σ, an integer k.
• Output: Does there exist a run subsequence R of length k?

A string S[i, j] contains an a-run with a ∈ Σ, if it contains a run subsequence which is an
a-run. A run subsequence of S which is an a-run, with a ∈ Σ, is maximal if it contains all
the occurrences of symbol a in S. Note that an optimal solution may not take maximal runs.
For example, consider

S = abacaabbab

an optimal run subsequence in S is

R = aaaabbb

Note that no run in R is maximal and even that some symbol of Σ may not be in an optimal
solution of Longest Run Subsequence, in the example no c-run belongs to R.

Graph Definitions. Given a graph G = (V, E), we denote by N(v) = {u : {u, v} ∈ E}, the
neighbourhood of v. The closed neighbourhood of v is N [v] = N(v) ∪ {v}. V ′ ⊂ V is an
independent set when {u, v} /∈ E for each u, v ∈ V ′. We recall that a graph G = (V, E) is
cubic when |N(v)| = 3 for each v ∈ V .

Parameterized Complexity. A parameterized problem is a decision problem specified together
with a parameter, that is, an integer k depending on the instance. A problem is fixed-parameter
tractable (FPT for short) if it can be solved in time f(k) · |I|c (often briefly referred to as
FPT-time) for an instance I of size |I| with parameter k, where f is a computable function
and c is a constant. Given a parameterized problem P , a kernel is a polynomial-time
computable function which associates with each instance of P an equivalent instance of P

whose size is bounded by a function h of the parameter. When h is a polynomial, the kernel
is said to be polynomial. See the book [6] for more details.

In order to prove that such polynomial kernel is unlikely, we need additional definitions
and results.

▶ Definition 1 (Cross-Composition [4]). We say that a problem L cross-composes to a
parameterized problem Q if there is a polynomial equivalence relation R and an algorithm
which given t instances x1, x2, . . . , xt of L belonging to the same equivalence class R, computes
an instance (x∗, k∗) of Q in time polynomial in

∑t
i=1 |xi| such that (i) (x∗, k∗) ∈ Q ⇐⇒

xi ∈ L for some i and (ii) k∗ is bounded by a polynomial in (maxi |xi| + log t).

This definition is useful for the following result, which we will use to prove that a
polynomial kernel for Longest Run Subsequence with parameter |Σ| is unlikely.

▶ Theorem 2 ([4]). If an NP-hard problem L has a cross-composition into a parameterized
problem Q and Q has a polynomial kernel, then NP ⊆ coNP/poly.
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For our FPT algorithm, we will reduce our problem to another problem, called k-
Multilinear Detection problem (k-MLD), which can be solved efficiently. In this
problem, we are given a polynomial over a set of variables X, represented as an arithmetic
circuit C, and the question is to decide if this polynomial contains a multilinear term of
degree exactly k. A polynomial is a sum of monomials. The degree of a monomial is the
sum of its variables degrees and a monomial is multilinear if the degree of all its variables is
equal to 1 (therefore, a multilinear monomial of degree k contains k different variables). For
example, x2

1x2 + x1x2x3 is a polynomial over 3 variables, both monomials are of degree 3
but only the second one is multilinear.

Note that the size of the polynomial could be exponentially large in |X| and thus we
cannot just check each monomial. We will therefore encode the polynomial in a compressed
form: the circuit C is represented as a Directed Acyclic Graph (DAG), where leaves are
variables X and internal nodes are multiplications or additions. The following result is
fundamental for k-MLD.

▶ Theorem 3 ([8, 11]). There exists a randomized algorithm solving k-MLD in time O(2k|C|)
and O(|C|) space.

Approximation. In Section 5, we prove the APX-hardness of Longest Run Subsequence
with at most two occurrences for each symbol in Σ, by designing an L-reduction from
Maximum Independent Set on cubic graphs. We recall here the definition of L-reduction.
Notice that, given a solution S of a problem (A or B in the definition), we denote by val(S)
the value of S (for example, in our problem, the length of a run subsequence).

▶ Definition 4 (L-reduction [9]). Let A and B be two optimization problems. Then A is said
to be L-reducible to B if there are two constants α, β > 0 and two polynomial-time computable
functions f, g such that: (i) f maps an instance I of A into an instance I ′ of B such that
optB(I ′) ⩽ α · optA(I), (ii) g maps each solution S′ of I ′ into a solution S of I such that
|val(S) − optA(I)| ⩽ β · |val(S′) − optB(I ′)|.

L-reductions are useful in order to apply the following theorem.

▶ Theorem 5 ([9]). Let A and B be two optimization problems. If A is L-reducible to B

and B has a PTAS, then A has a PTAS.

Parameterized Complexity Status of the Problem
In the paper, we consider the parameterized complexity of Longest Run Subsequence
under the different parameterizations. We consider the following parameters:

The length k of the solution of Longest Run Subsequence
The size |Σ| of the alphabet
The number r of runs in a solution of Longest Run Subsequence

Notice that r ⩽ |Σ| ⩽ k. Indeed, there always exists a solution consisting of one occurrence
for each symbol in Σ, hence we can assume that |Σ| ⩽ k. Clearly, r ⩽ |Σ|, since each run in
a solution of Longest Run Subsequence is associated with a distinct symbol of Σ.

In Table 1, we present the status of the parameterized complexity of Longest Run
Subsequence for these parameters.

It is easy to see that Longest Run Subsequence has a polynomial kernel for para-
meter k.
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Table 1 Parameterized complexity status for the three different parameters considered in this
paper. Since these parameters are in decreasing value order, note that positive results propagate
upwards, while negative results propagate downwards. In bold the new results we present in this
paper.

FPT Poly Kernel
k Yes (Obs. 6) Yes (Obs. 6)

|Σ| Yes [10] No (Th. 9)
r Yes & Poly Space (Th. 8 ) No (Cor. 10)

▶ Observation 6. Longest Run Subsequence has a k2 kernel.

Proof. First, notice that if there exists an a-run R′ of length at least k, for some a ∈ Σ,
then R′ is a solution of Longest Run Subsequence. Also note that if |Σ| ⩾ k, let R+ be
a subsequence of S consisting of one occurrence of each symbol of Σ (notice that it is always
possible to define such a solution). Then R+ is a solution of Longest Run Subsequence
of sufficient size.

Therefore, we can assume that S is defined over an alphabet |Σ| < k and that each
symbol has less then k occurrences (otherwise there exists an a-run of length at least k for
some a ∈ Σ). Hence Longest Run Subsequence has a kernel of size k2. ◀

Schrinner et al. prove that Longest Run Subsequence is in FPT for parameter |Σ|,
using exponential space [10]. Due to a folklore result [6], this also implies that there is a
kernel for this parameter. We will prove that there is no polynomial kernel for this parameter
in Section 4.

3 An FPT Algorithm for Parameter Number of Runs

In this section, we consider Longest Run Subsequence when parameterized by the number
of different runs, denoted by r, in the solution, that is whether there exists a solution of
Longest Run Subsequence consisting of exactly r runs such that it has length at least k.
We present a randomized fixed-parameter algorithm for Longest Run Subsequence based
on multilinear monomial detection.

The algorithm we present is for a variant of Longest Run Subsequence that asks for
a run subsequence R of S such that (1) |R| = k and (2) R contains exactly r runs. In order
to solve the general problem where we only ask for a solution of length at least k, we need to
apply the algorithm for each k, with r ⩽ k ⩽ |S|.

Now, we describe the circuit on which our algorithm is based on. The set of variables is:

{xa : a ∈ Σ}

Essentially, xa represents the fact that we take an a-run (not necessarily maximal) in a
substring of S.

Define a circuit C as follows. It has a root P and a set of intermediate vertices Pi,l,h, with
1 ⩽ i ⩽ |S|, 1 ⩽ l ⩽ r and 1 ⩽ h ⩽ k. The multilinear monomials of Pi,l,h informally encode
a run subsequence of S[1, i] having length h and consisting of l runs. Pi,l,h is recursively
defined as follows:
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Pi,l,h =



Pi−1,l,h +
∑

j:1⩽j⩽i−1 Pj,l−1,h−zxa if i ⩾ 1, l ⩾ 1, h ⩾ 1,

1 ⩽ z ⩽ i − j − 1, S[i] = a, a ∈ Σ,
and S[j + 1, i] contains an a-run
of length z

1 if i ⩾ 0, l = h = 0,

0 if i = 0, l > 0 or h > 0.

(1)

Then, define P = P|S|,r,k.
Next, we show that we can consider the circuit C to compute a run subsequence of S.

▶ Lemma 7. There exists a run subsequence of S of length h consisting of l runs over symbols
a1, . . . al if and only if there exists a multilinear monomial in C consisting of l monomials
xa1 , . . . , xal

.

Proof. We will prove that there is a run subsequence of S of length k consisting of l runs over
symbols a1, . . . al if and only if there exists a multilinear monomial in C of degree l, consisting
of l distinct variables xa1 , . . . , xal

. In order to prove this result, we prove by induction on
i , 1 ⩽ i ⩽ |S|, that there exists a run subsequence R of S[1...i], such that |R| = h and R

contains l runs, an az-run for each az ∈ Σ, 1 ⩽ z ⩽ l, if and only if there exists a multilinear
monomial xa1 . . . xal

in Pi,l,h.
We start with the case i = 1. Assume that there is a run subsequence consisting of

a single run of length 1 (say an a1-run). It follows that S[1] = a1 and, by Equation 1,
P1,1,1 = P0,0,0 · xa1 = xa1 . Conversely, if P1,1,1 = P0,0,0 · xa1 = xa1 , then by construction
S[1] = a1, which is a run of length 1.

Assume that the lemma holds for j < i, we prove that it holds for i.
(⇒) Assume that there exists a run subsequence R of S[1, i] that consists of l runs and that

has length h. Let the l runs in R be over symbols a1, . . . , al and assume that the rightmost
run in R is an al-run. If S[i] does not belong to the al-run in R, then R is a run subsequence
in S[1, i − 1] and by induction hypothesis Pi−1,l,h contains a multilinear monomial of degree
l over variables xa1 . . . xal

. If S[i] belongs to the al-run in R, then consider the al-run in R

and assume that it belongs to substring S[j + 1, i] of S, with 1 ⩽ j + 1 ⩽ i, and that it has
length z. Consider the run subsequence R′ of S obtained from R by removing the al-run.
Then, R′ is a run subsequence of S[1, j] that does not contain al (hence it contains l − 1 runs)
and has length h − z. By induction hypothesis, Pj,l−1,h−z contains a multilinear monomial
of length l − 1 over variables xa1 . . . xal−1 . Hence by the first case of Equation 1, it follows
that Pi,l,h contains a multilinear monomial of length l over variables xa1 . . . xal

.
(⇐) Assume that Pi,l,h contains a multilinear monomial of length l over variables

xa1 . . . xal
, we will prove that there is a run subsequence of S of length k consisting of

l runs. By Equation 1, it follows that (1) Pi−1,l,h contains a multilinear monomial of length
l over variables xa1 . . . xal

or (2) Pj,l−1,h−z, for some 1 ⩽ j ⩽ i − 1, contains a multilinear
monomial of length l − 1 that does not contain one of xa1 . . . xal

(without loss of generality
xal

) and S[j + 1, i] contains an al-run of length z.
In case (1), by induction hypothesis there exists a run subsequence in S[1, i − 1] (hence

also in S[1, i]) of length h consisting of l runs over symbols a1, . . . , al.
In case (2), by induction hypothesis there exists a run subsequence R′ of S[1, j] of length

h − z consisting of l − 1 runs over symbols a1, . . . , al−1. Now, by concatenating R′ with the
al-run of length z in S[j + 1, i], we obtain a run subsequence of R of S[1, i] consisting of l

runs and having length h. ◀
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▶ Theorem 8. Longest Run Subsequence can be solved by a randomized algorithm in
O(2rr|S|3) time and polynomial space.

Proof. The correctness of the randomized algorithm follows by Lemma 7.
We compute P in polynomial time and we decide if P|S|,r,k contains a multilinear monomial

of degree r in O(2rr|S|2) time and polynomial space. The result follows from Lemma 7,
Theorem 3, and from the observation that |C| = |S| · l · r, with l ⩽ |S|. Finally, we have
to iterate the algorithm for each k, with r ⩽ k ⩽ |S|, thus the overall time complexity is
O(2rr|S|3). ◀

4 Hardness of Kernelization

As discussed in Section 2, Longest Run Subsequence has a trivial polynomial kernel for
parameter k and its FPT status implies an (exponential) kernel for parameters |Σ| and r. In
the following, we will prove that it is unlikely that Longest Run Subsequence admits a
polynomial kernel for parameter |Σ| and parameter r.

▶ Theorem 9. Longest Run Subsequence does not admit a polynomial kernel for
parameter |Σ|, unless NP ⊆ coNP/poly.

Proof. We will define an OR-cross-composition (see Definition 1) from the Longest Run
Subsequence problem itself, whose unparameterized version is NP-Complete [10].

Consider t instances (S1, Σ1, k1), (S2, Σ2, k2), . . . , (St, Σt, kt) of Longest Run Sub-
sequence, where, for each i with 1 ⩽ i ⩽ t, Si is the input string built over the alphabet
Σi, and ki ∈ N is the length of the solution, respectively. We will define an equivalence
relation R such that strings that are not encoding valid instances are equivalent, and two
valid instances (Si, Σi, ki), (Sj , Σj , kj) are equivalent if and only if |Si| = |Sj |, |Σi| = |Σj |,
and ki = kj . We now assume that |Si| = n, |Σi| = m and ki = k for all 1 ⩽ i ⩽ t.

We will build an instance of Longest Run Subsequence (S′, k′, Σ′) where S′ is a string
built over the alphabet Σ′ and k′ an integer such that there is a solution of size at least k′

for S′ iff there is an i, 1 ⩽ i ⩽ t such that there is a solution of size at least k in Si.
We first show how to redefine the input strings S1, S2, . . . , St, such that they are all over

the same alphabet. Notice that this will not be an issue, since we will construct a string S′

such that a solution of Longest Run Subsequence is not spanning over two different input
strings. For all instances (Si, Σi, ki), 1 ⩽ i ⩽ t, we consider any ordering of the symbols in
Σi and we define a string σ(Si) starting from Si, by replacing the j-th, 1 ⩽ j ⩽ m, symbol
of Σi by j, that is its position in the ordering of Σi. That way, it is clear that all strings
σ(Si), 1 ⩽ i ⩽ t , are built over the same alphabet {1, 2, . . . , m}.

Now, the instance (S′, k′, Σ′) of Longest Run Subsequence is build as follows. First,
Σ′ is defined as follows:

Σ′ = {1, 2, . . . , m} ∪ {#, $}

where # and $ are two symbols not in Σ.
The string S′ is defined as follows:

S′ = $2nσ(S1)#2n$2nσ(S2)#2n, ..., $2nσ(St)#2n

where $2n (#2n, respectively) is a string consisting of the repetition 2n times of the symbol
$ (#, respectively).
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Finally,

k′ = k + (t + 1)(2n).

Since we are applying OR-cross-composition for parameter |Σ|, we need to show that
property (ii) of Definition 1 holds. By construction, we see that |Σ′| = m + 2, which is
independent of n and t and it is bounded by the size of the largest input instance.

We now show that S′ contains a run subsequence of size at least k′ if and only if there
exists at least one string Si, 1 ⩽ i ⩽ t, that contains a run subsequence of size at least k.

(⇐) First, assume that some Si, with 1 ⩽ i ⩽ t, contains a run subsequence Ri of length
at least k. Then, define the following run subsequence R′ of S′, obtained by concatenating
these substrings of S′:

The concatenation of the leftmost i-th substrings $2n of S′,
The substring σ(Ri) of Si,
The concatenation of the rightmost (t − i + 1)-th substrings #2n of S′.

It follows that S′ contains a run subsequence of length at least i×(2n)+k+(t−i+1)×(2n) = k′.

(⇒) Conversely, assume now that S′ contains a run subsequence R′ of length at least k′.
First, we prove that R′ contains exactly one $-run and one #-run. Indeed, if it is not the
case, we can add the leftmost (the rightmost, respectively) substring $2n (#2n, respectively)
as a run of R′.

Consider a run r in R′, which is either the $-run or the #-run of R′. Assume that R′

contains a substring

rR′(Si)R′(Sj)

or a substring

R′(Si)R′(Sj) r

with 1 ⩽ i < j ⩽ t, where R′(Si) (R′(Sj), respectively) is a substring of σ(Si) (of σ(Sj),
respectively). We consider without loss of generality the case that rR′(Si)R′(Sj) is a substring
of R′. Then, we can modify R′, increasing its length, as follows: we remove R′(Si) and
extend the run r with a string $2n or a string #2n (depending on the fact that r is a $-run
or a #-run, respectively) that is between σ(Si) and σ(Sj). The size of R′ is increased, since
|R′(Si)| ⩽ n.

Now, assume that R′ contains a substring

r = #2n R′(Si) $2n

where R′(Si) is a substring of σ(Si). We can replace r with the substring #2n#2n$2n, where
#2n is the substring between σ(Si) and σ(Si+1) in S′. Again, the size of R′ is increased,
since |R′(Si)| ⩽ n.

By iterating these modifications on R′, we obtain that R′ is one of the following string:

1. A prefix $j(2n) concatenated with a substring R′(Sj) of σ(Sj), for some 1 ⩽ j ⩽ t,
concatenated with a suffix #2n(t−j+1)

2. A substring R′(S1) of σ(S1) concatenated with a string of #2nj concatenated with a
string of $2n(t−j) concatenated with a substring R′(St) of σ(St).
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Notice that in this second case, it holds that |R′| = (t × 2n) + |R′(S1)| + |R′(St)| < k′,
since |R′(S1)| + |R′(St)| ⩽ 2n, and we can assume that k ⩾ 1. Hence R′ must be a string
described at point 1. It follows that

|R′| = 2n(t + 1) + |R′(Sj)|

Since |R′| = 2n(t + 1) + |R′(Sj)|, then R′(Sj) has length at least k.
We have described an OR-cross-composition of Longest Run Subsequence to itself.

By Theorem 2, it follows that Longest Run Subsequence does not admit a polynomial
kernel for parameters |Σ|, unless NP ⊆ coNP/poly. ◀

We can complement the FPT algorithm of Section 3, with a hardness of kernelization for
the same parameter.

▶ Corollary 10. Longest Run Subsequence does not admit a polynomial kernel for
parameters r, unless NP ⊆ coNP/poly.

Proof. The result follows from Theorem 9 and from the fact that r ⩽ |Σ|. ◀

5 APX-hardness for Bounded Number of Occurrences

In this section, we show that Longest Run Subsequence is hard even when the number
of occurrences of a symbol in the input string is bounded by two. We denote this restriction
of the problem by 2-Longest Run Subsequence. Notice that if the number of occurrences
of a symbol is bounded by one, then the problem is trivial, as a solution of Longest Run
Subsequence can have only runs of length one.

We prove the result by giving a reduction from the Maximum Independent Set
problem on Cubic Graphs (MISC), which is known to be APX-hard [1]. We recall the
definition of MISC:

Maximum Independent Set problem on Cubic Graphs (MISC)
• Input: A cubic graph G = (V, E).
• Output: Does there exist an independent set in G of size at least q?

Given a cubic graph G = (V, E), with V = {v1, . . . vn} and |E| = m, we construct a
corresponding instance S of 2-Longest Run Subsequence (see Fig. 2 for an example of
our construction). First, we define the alphabet Σ:

Σ = {wi : 1 ⩽ i ⩽ n} ∪ {xi
i,j , xj

i,j , e1
i,j , e2

i,j : {vi, vj} ∈ E, i < j} ∪ {♯i,z : 1 ⩽ i ⩽ m + n, 1 ⩽ z ⩽ 3}

This alphabet is of size n + 4m + 3(m + n) = 4n + 7m.
Now, we define a set of substrings of the instance S of 2-Longest Run Subsequence

that we are constructing.

For each vi ∈ V , 1 ⩽ i ⩽ n, such that vi is adjacent to vj , vh, vz, 1 ⩽ j < h < z ⩽ n, we
define a substring S(vi):

S(vi) = wix
i
i,jxi

i,hxi
i,zwi

Notice that in the definition of S(vi) given above, we have assumed without loss of
generality that 1 ⩽ i < j < h < z ⩽ n. If, for example, 1 ⩽ j < i < h < z ⩽ n, the
symbol associated with {vi, vj} is then xi

j,i and S(vi) is defined as follows:

S(vi) = wix
i
j,ix

i
i,hxi

i,zwi
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v1 v2

v3 v4

S =w1x1
1,2x1

1,3x1
1,4w1♯1,1♯1,2♯1,3

w2x2
1,2x2

2,3x2
2,4w2♯2,1♯2,2♯2,3

w3x3
1,3x3

2,3x3
3,4w3♯3,1♯3,2♯3,3

w4x4
1,4x4

2,4x4
3,4w4♯4,1♯4,2♯4,3

e1
1,2x1

1,2e2
1,2e1

1,2x2
1,2e2

1,2♯5,1♯5,2♯5,3

e1
1,3x1

1,3e2
1,3e1

1,3x3
1,3e2

1,3♯6,1♯6,2♯6,3

e1
1,4x1

1,4e2
1,4e1

1,4x4
1,4e2

1,4♯7,1♯7,2♯7,3

e1
2,3x2

2,3e2
2,3e1

2,3x3
2,3e2

2,3♯8,1♯8,2♯8,3

e1
2,4x2

2,4e2
2,4e1

2,4x4
2,4e2

2,4♯9,1♯9,2♯9,3

e1
3,4x3

3,4e2
3,4e1

3,4x4
3,4e2

3,4♯10,1♯10,2♯10,3

Figure 2 A sample cubic graph (with 4 nodes and 6 edges) and the associated sequence. Black
vertex of the graph corresponds to an independent set (of size 1 here), red symbols in the sequence
correspond to the subsequence (of size 5 · 1 + 4 · 3 + 3 · 6 + 3 · 10 = 65).

For each edge {vi, vj} ∈ E, with 1 ⩽ i < j ⩽ n, we define a substring S(eij):

S(eij) = e1
i,jxi

i,je2
i,je1

i,jxj
i,je2

i,j

We define separation substrings SSep,i, with 1 ⩽ i ⩽ m + n:

SSep,i = ♯i,1♯i,2♯i,3

Now, given the lexical ordering1 of the edges of G, the input string S is defined as follows
(we assume that {v1, vz} is the first edge and {vp, vt} is the last edge in the lexicographic
ordering of E):

S = S(v1)SSep,1S(v2)SSep,2 . . . S(vn)SSep,nS(e1,z)SSep,n+1 . . . S(ep,t)SSep,n+m

Now, we prove some properties on the string S.

▶ Lemma 11. Let G = (V, E) be an instance of MISC and let S be the corresponding built
instance of 2-Longest Run Subsequence. Then S contains at most two occurrences for
each symbol of Σ.

Proof. Notice that each symbol wi, 1 ⩽ i ⩽ n, appears only in substring S(vi) of S. Symbols
e1

i,j , e2
i,j , with {vi, vj} ∈ E and 1 ⩽ i < j ⩽ n, appear only in substring S(ei,j) of S. Each

symbol ♯i,z, with 1 ⩽ i ⩽ m + n and 1 ⩽ z ⩽ 3, appears only in substring SSep,i of S. Finally,
each symbol xi

i,j , with {vi, vj} ∈ E, appears once in exactly two substrings of S, namely
S(vi) and S(ei,j). ◀

Now, we prove a property of solutions of 2-Longest Run Subsequence relative to
separation substrings.

▶ Lemma 12. Let G = (V, E) be an instance of MISC and let S be the corresponding
instance of 2-Longest Run Subsequence. Given a run subsequence R of S, if R does
not contain some separation substring SSep,i, with 1 ⩽ i ⩽ m + n, then there exists a run
subsequence R′ of S that contains SSep,i and such that |R′| > |R|.

1 {vi, vj} < {vh, vz} (assuming i < j and h < z) if and only if i < h or i = h and j < z.
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Proof. Notice that, since R does not contain substring SSep,i, with 1 ⩽ i ⩽ m + n, it must
contain a run r that connects two symbols that are on the left and on the right of SSep,i in
S, otherwise SSep,i can be added to R increasing its length. Since each symbol in S, hence
also in R, has at most two occurrences (see Lemma 11), then |r| = 2. Then, starting from R,
we can compute in polynomial time a run subsequence R′ by removing run r and by adding
substring SSep,i. Notice that, after the removal of r, we can add SSep,i since it contains
three symbols each one having a single occurrence in S. Since |SSep,i| = 3, it follows that
|SSep,i| > r and |R′| > |R|. ◀

Given a cubic graph G = (V, E) and the corresponding instance S of 2-Longest Run
Subsequence, a run subsequence R of 2-Longest Run Subsequence on instance S is
called canonical if:

for each SSep,i, 1 ⩽ i ⩽ m + n, R contains SSep,i (a substring denoted by RSep,i)
for each S(vi), with vi ∈ V , R contains a substring R(vi) such that either R(vi) = wiwi

or it is a substring of length 4 (wix
i
i,jxi

i,hxi
i,z or xi

i,jxi
i,hxi

i,zwi); moreover if {vi, vj} ∈ E,
then at least one of R(vi) or R(vj) has length 4
for each S(ei,j), with {vi, vj} ∈ E, R contains a substring R(ei,j) such that R(ei,j) is
either of length 4 (e1

i,jxi
i,je2

i,je2
i,j or e1

i,je1
i,jxj

i,je2
i,j), if one of R(vi), R(vj) has length 2, or

of length 3 (e1
i,je1

i,je2
i,j or e1

i,je2
i,je2

i,j).

▶ Lemma 13. Let G = (V, E) be an instance of MISC and let S be the corresponding
instance of 2-Longest Run Subsequence. Given a run subsequence R of S, we can
compute in polynomial time a canonical run subsequence of S of length at least |R|.

Proof. Consider a run subsequence R of S. First, notice that by Lemma 12 we assume that
R contains each symbol ♯i,p, with 1 ⩽ i ⩽ n + m and 1 ⩽ p ⩽ 3. We start by proving some
bounds on the run subsequence of S(vi) and S(ei,j).

Consider a substring R(vi) of S(vi), 1 ⩽ i ⩽ n. Each run subsequence of S(vi) can have
length at most 4, since |S(vi)| = 5 and if run wiwi belongs to R(vi), then R(vi) = wiwi.
It follows that if |R(vi)| > 2, then it cannot contain the two occurrences of symbol wi.
Notice that the two possible run subsequences of length 4 of S(vi) are xi

i,jxi
i,hxi

i,zwi and
wix

i
i,jxi

i,hxi
i,z.

Consider a run subsequence R(ei,j) of S(eij) = e1
i,jxi

i,je2
i,je1

i,jxj
i,je2

i,j . First, we prove that
a run subsequence of S(eij) has length at most 4 and in this case it must contain at least one
of xi

i,j , xj
i,j . By its interleaved construction, at most one of runs e1

i,je1
i,j , e2

i,je2
i,j can belong

to R(ei,j). Moreover if e1
i,je1

i,j (e2
i,je2

i,j , respectively) belongs to R(ei,j), then |R(ei,j)| ⩽ 4,
since the longest run in S(ei,j) is then e1

i,je1
i,jxj

i,je2
i,j (e1

i,jxi
i,je2

i,je2
i,j , respectively). If none

of runs e1
i,je1

i,j , e2
i,je2

i,j belongs to R(ei,j), then |R(ei,j)| ⩽ 4, since |S(ei,j)| = 6; in this case
both xi

i,j and xj
i,j must be in R(ei,j) to have |R(ei,j)| = 4.

Now, we compute a canonical run subsequence R′ of S of length at least |R|. Consider
R(vi), 1 ⩽ i ⩽ n, and R(ei,j), with {vi, vj} ∈ E.

If |R(vi)| = 4, then define R′(vi) = wix
i
i,jxi

i,hxi
i,z (or equivalently define R′(vi) =

xi
i,jxi

i,hxi
i,zwi).

If |R(vi)| = 3, then by construction of S(vi) at least two of xi
i,j , xi

i,h, xi
i,z belong to

R(vi). Then, at most one of R(ei,j), R(ei,h), R(ei,z) can contain a symbol in {xi
i,j , xi

i,h, xi
i,z},

assume w.lo.g. that xi
i,j belongs to R(ei,j). We define R′(vi) = wix

i
i,jxi

i,hxi
i,z (or equivalently

R′(vi) = xi
i,jxi

i,hxi
i,zwi) and R′(ei,j) = e1

i,je1
i,je2

i,j (or equivalently R′(ei,j) = e1
i,je2

i,je2
i,j).
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Since |R(ei,j)| ⩽ 4, we have that

|R′(ei,j)| ⩾ |R(ei,j)| − 1

and

|R′(vi)| = |R(vi)| + 1.

It follows that the size of R′ is not decreased with respect to the length of R.
If |R(vi)| = 2, then define R′(vi) = wiwi.
By construction of R′, either |R′(vi)| = 4 and

R′(vi) = wix
i
i,jxi

i,hxi
i,z or R′(vi) = xi

i,jxi
i,hxi

i,zwi

or |R′(vi)| = 2 and

R′(vi) = wiwi.

Again the size of R′ is not decreased with respect to the size of R.
In order to compute a canonical run subsequence, we consider an edge {vi, vj} ∈ E and

the run subsequences R′(vi) and R′(vj) of S(vi), S(vj), respectively. Consider the case that
R′(vi) = wiwi and R′(vj) = wjwj . Then by construction |R′(ei,j)| = 4 and assume with loss
of generality that R′(ei,j) = e1

i,je1
i,jxj

i,je2
i,j . Now, we can modify R′ so that

R′(vi) = wix
i
i,jxi

i,hxi
i,z

by eventually removing xi
i,h, xi

i,z from R′(ei,h) and R′(ei,z). In this way, we decrease by
at most one the length of each of R′(ei,h), R′(ei,z) and we increase of two the length of
R′(vi). It follows that the length of R′ is not decreased by this modification. By iterating
this modification, we obtain that for each edge {vi, vj} ∈ E at most one of R′(vi), R′(vj)
has length two.

The run subsequence R′ we have built is then a canonical run subsequence of S such that
|R′| ⩾ |R|. ◀

Now, we are ready to prove the main results of the reduction.

▶ Lemma 14. Let G = (V, E) be an instance of MISC and let S be the corresponding
instance of 2-Longest Run Subsequence. Given an independent set I of size at least
q in G, we can compute in polynomial time a run subsequence of S of length at least
5q + 4(n − q) + 3m + 3(n + m).

Proof. We construct a subsequence run R of S as follows:
For each vi ∈ I, define for the substring S(vi) the run subsequence R(vi) = wiwi;
For each vi ∈ V \ I, define for the substring S(vi) the run subsequence R(vi) =
wix

i
i,jxi

i,hxi
i,z;

For each {vi, vj} ∈ E, if vi ∈ I (or vj ∈ I, respectively) define for the substring S(ei,j) the
run subsequence R(ei,j) = e1

i,jxi
i,je2

i,je2
i,j (R(ei,j) = e1

i,je1
i,jxj

i,je2
i,j , respectively); if both

vi, vj ∈ V \ I, define for the substring S(ei,j) the run subsequence R(ei,j) = e1
i,je1

i,je2
i,j

Moreover, R contains each separation substring of S, denoted by RSep,i, 1 ⩽ i ⩽ n + m.
First, we prove that R is a run subsequence, that is R contains a single run for each symbol

in Σ. This property holds by construction for each symbol in Σ having only occurrences in
R(vi), with vi ∈ V , R(ei,j), with {vi, vj} ∈ E, and RSep,i, 1 ⩽ i ⩽ n + m. What is left to
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prove is that xi
i,j appears in at most one of R(vi), with vi ∈ V , R(ei,j), with {vi, vj} ∈ E.

Indeed, by construction, R(ei,j) contains xi
i,j only if R(vi) = wiwi. It follows that R is a run

subsequence of S.
Consider the length of R. For each vi ∈ V \ I, R contains a run subsequence of S(vi) of

length 4. For each vi ∈ I, R contains a run subsequence of length 2. For each {vi, vj} ∈ E,
with vi, vj ∈ V \ I, R contains a run subsequence of S(ei,j) of length 3; for each {vi, vj} ∈ E,
with vi ∈ I or vj ∈ I, R contains a run subsequence of S(ei,j) of length 4. Finally, each
separation substring RSep,i, 1 ⩽ i ⩽ n + m, in R has length 3. Hence the total length of R

is at least 5q + 4(n − q) + 3m + 3(n + m) (by accounting, for each R(vi) of length 2, the
increasing of the length of the three run subsequences R(ei,j), R(ei,h), R(ei,z) from 3 to 4 to
R(vi)). ◀

▶ Lemma 15. Let G = (V, E) be an instance of MISC and let S be the corresponding
instance of 2-Longest Run Subsequence. Given a run subsequence of S of length at least
5q + 4(n − q) + 3m + 3(n + m), we compute in polynomial time an independent of G of size
at least q.

Proof. Consider a run subsequence R of S of length at least 5q + 4(n − q) + 3m + 3(n + m).
By Lemma 13, we assume that R is a canonical run subsequence of S. It follows that we can
define an independent V ′ of size at least q in G as follows:

V ′ = {vi : |R(vi)| = 2}

By the definition of canonical run subsequence, it follows that V ′ is an independent set,
since if |R(vi)| = |R(vj)| = 2, with 1 ⩽ i, j ⩽ n, then {vi, vj} /∈ E. Furthermore, by
the definition of canonical run subsequence, since |R| ⩾ 5q + 4(n − q) + 3m + 3(n + m),
there are at least q run subsequences R(vi), with 1 ⩽ i ⩽ n, of length two such that
|R(ei,j)| = |R(ei,h)| = |R(ei,z)| = 4, with {vi, vj}, {vi, vh}, {vi, vz} ∈ E. It follows that
|V ′| ⩾ q. ◀

Now, we can prove the main result of this section.

▶ Theorem 16. 2-Longest Run Subsequence is APX-hard.

Proof. We have shown a reduction from MISC to 2-Longest Run Subsequence. By
Lemma 11, the instance of 2-Longest Run Subsequence we have built consists of a string
with at most two occurrences for each symbol. We will now show that this reduction is an
L-reduction from MISC to 2-Longest Run Subsequence (see Definition 4).

Consider an instance I of MISC and a corresponding instance I ′ of 2-Longest Run
Subsequence. Then, given any optimal solution opt(I ′) of 2-Longest Run Subsequence
on instance I ′, by Lemma 15 it holds that

opt(I ′) ⩽ 5 · opt(I) + 4(n − opt(I)) + 3m + 3(n + m) = opt(I) + 7n + 6m

In a cubic graph G = (V, E), |E| = 3
2 |V |, hence m = 3

2 n. Furthermore, we can assume
that an independent set has size at least n

4 . Indeed, such an independent set V ′ can be
greedily computed as follows: pick a vertex v in the graph, add it to V ′ and delete N [v] from
G. At each step, we add one vertex in V ′ and we delete at most 4 vertices from G.

Since m = 3
2 n and n ⩽ 4 · opt(I), we thus have that

opt(I ′) ⩽ opt(I) + 7n + 6m = opt(I) + 16 · n ⩽ opt(I) + 64 · opt(I)

and then α = 65 in Definition 4.
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Conversely, consider a solution S′ of length 5q + 4(n − q) + 3m + 3(n + m) of 2-Longest
Run Subsequence on instance I ′. First, notice that by Lemma 13, we can assume
that S′ and opt(I ′) are both canonical. By Lemma 14, if opt(I) = p, then opt(I ′) ⩾
5p + 4(n − p) + 3m + 3(n + m). By Lemma 15, starting from S′, we can compute in
polynomial time a solution V ′ of MISC on instance I, with |V ′| ⩾ q. It follows that

|opt(I) − |V ′|| ⩽ |opt(I) − q| = |p − q| =

|5p + 4(n − p) + 3m + 3(n + m) − (5q + 4(n − q) + 3m + 3(n + m))| ⩽

|opt(I ′) − (5q + 4(n − q) + 3m + 3(n + m))|

Then β = 1 in Definition 4. Thus we indeed have designed an L-reduction, therefore,
the APX-hardness of 2-Longest Run Subsequence follows from the APX-hardness of
MISC [1] and from Theorem 5. ◀

6 Conclusion

In this paper, we deepen the understanding of the complexity of the recently introduced
problem Longest Run Subsequence. We show that the problem remains hard (even from
the approximation point of view) also in the very restricted setting where each symbol occurs
at most twice. We also complete the parameterized complexity landscape. From the more
practical point of view, it is however unclear how our FPT algorithm could compete with
implementations done in [10].

An interesting future direction is to further investigate the approximation complexity
of the Longest Run Subsequence problem beyond APX-hardness. Note that a trivial
min(|Σ|, occ)-approximation algorithm (occ is the maximum number of occurrences of a
symbol in the input S) can be designed by taking the solution having maximum length
between: (1) a solution having one occurrence for each symbol in Σ and (2) a solution
consisting of the a-run of maximum length, among each a ∈ Σ. This leads to a

√
|S|-

approximation algorithm. Indeed, if the a-run of maximum length is greater than
√

|S|, then
solution (2) has length at least

√
|S|, thus leading to the desired approximation factor. If

this is not the case, then each symbol in Σ has less then
√

|S| occurrences, thus a solution of
Longest Run Subsequence on instance S has at length smaller than |Σ|

√
|S|. It follows

that (1) is a solution with the desired approximation factor. We let for future work closing
the gap between the APX-hardness and the

√
|S|-approximation factor of Longest Run

Subsequence.
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Abstract
Consider an ordinal tree T on n nodes, each of which is assigned a category from an alphabet
[σ] = {1, 2, . . . , σ}. We preprocess the tree T in order to support categorical path counting queries,
which ask for the number of distinct categories occurring on the path in T between two query nodes
x and y. For this problem, we propose a linear-space data structure with query time O(

√
n lg lg σ

lg w
),

where w = Ω(lg n) is the word size in the word-RAM. As shown in our proof, from the assumption
that matrix multiplication cannot be solved in time faster than cubic (with only combinatorial
methods), our result is optimal, save for polylogarithmic speed-ups. For a trade-off parameter
1 ≤ t ≤ n, we propose an O(n + n2

t2 )-word, O(t lg lg σ
lg w

) query time data structure. We also consider
c-approximate categorical path counting queries, which must return an approximation to the number
of distinct categories occurring on the query path, by counting each such category at least once and
at most c times. We describe a linear-space data structure that supports 2-approximate categorical
path counting queries in O(lg n/ lg lg n) time.

Next, we generalize the categorical path counting queries to weighted trees. Here, a query
specifies two nodes x, y and an orthogonal range Q. The answer to thus formed categorical path
range counting query is the number of distinct categories occurring on the path from x to y, if only
the nodes with weights falling inside Q are considered. We propose an O(n lg lg n + (n/t)4)-word
data structure with O(t lg lg n) query time, or an O(n + (n/t)4)-word data structure with O(t lgϵ n)
query time. For an appropriate choice of the trade-off parameter t, this implies a linear-space
data structure with O(n3/4 lgϵ n) query time. We then extend the approach to the trees weighted
with vectors from [n]d, where d is a constant integer greater than or equal to 2. We present a data
structure with O(n lgd−1+ϵ n + (n/t)2d+2) words of space and O(t lgd−1 n

(lg lg n)d−2 ) query time. For an

O(n · polylog n)-space solution, one thus has O(n
2d+1
2d+2 · polylog n) query time.

The inherent difficulty revealed by the lower bound we proved motivated us to consider data
structures based on sketching. In unweighted trees, we propose a sketching data structure to solve the
approximate categorical path counting problem which asks for a (1 ± ϵ)-approximation (i.e. within
1 ± ϵ of the true answer) of the number of distinct categories on the given path, with probability
1 − δ, where 0 < ϵ, δ < 1 are constants. The data structure occupies O(n + n

t
lg n) words of space,

for the query time of O(t lg n). For trees weighted with d-dimensional weight vectors (d ≥ 1), we
propose a data structure with O((n + n

t
lg n) lgd n) words of space and O(t lgd+1 n) query time.

All these problems generalize the corresponding categorical range counting problems in Euclidean
space Rd+1, for respective d, by replacing one of the dimensions with a tree topology.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases data structures, weighted trees, path queries, categorical queries, coloured
queries, categorical path counting, categorical path range counting
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1 Introduction

In orthogonal range searching, one preprocesses a given finite set S ⊂ Rd into a data structure
so that the points inside an axis-aligned query (hyper-)rectangle can be efficiently searched.
For example, orthogonal range counting asks for the number of points falling inside the
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query rectangle, whereas the orthogonal range reporting problem asks to enumerate all such
points. We refer the reader to [28, 7, 1] and references therein for the state-of-the-art in the
discipline.

In some applications, of the actual interest may be the number of distinct types, or
categories, of points that fall within the query rectangle. Apart from uses in business
intelligence (enshrined in SQL keywords DISTINCT and GROUP BY), these distinct values find
uses in SQL query optimization [9], too. Categorical (also known as coloured) range searching
is thus an area of active research in computer science [22, 2, 29, 30, 31, 21, 33, 19, 8, 6].

A few aspects render the categorical variants of range searching harder than their “plain”
counterparts. First, there can be far fewer categories than points. Second, such problems are
not easily decomposable – for two disjoint regions S1 and S2, knowing just the number of
distinct categories in each of them is insufficient to infer the count for the union S1 ∪ S2.

For all the progress in categorical reporting queries (where one enumerates the distinct
categories in the query region) [8, 6], with results almost matching the state of the art in
regular 2D reporting [7], efficient categorical counting remains elusive, with the currently
best results of O(n2 lg2 n) words and O(lg2 n) query time [22, 29], or O(n lg6 n) words and
O(

√
n lg7 n) query time [29], versus the optimal linear-space and O( lg n

lg lg n )-time data structure
for 2D orthogonal range counting [28]. In the exact opposite to the “plain” case, the categorical
version of range counting is deemed to be harder than its reporting counterpart [29], when
d ≥ 2.

Meanwhile, given the versatility of trees as a data organization tool, information retrieval
from tree-structured hierarchies is set to gain in importance. Hence researchers considered
the generalizations of orthogonal range searching, where one of the dimensions is replaced
by a tree topology, whereas the remaining coordinates of the points become the weights of
the nodes [23]. Such a weight can be either a scalar, which corresponds to generalizing a
Euclidean 2D point-set to trees, or a vector , when extending from Rd, d ≥ 3. Therefore, a
tree weighted with d-dimensional weight vectors generalizes a point-set from Rd+1. (Note
that when d = 0, an unweighted tree thus generalizes a 1D set.)

The generalization from point-sets to trees gives rise to path queries, which ask a question
about the nodes on the query path, whose weights fall inside the query rectangle; for example,
a path counting query asks only for the number of such nodes, whereas the reporting variant
asks to enumerate them [34, 26]. Research on path queries has spawned a wide range of
metrics, such as range quantiles [26], minimum/maximum [5], mode/minority [12], and
(α-)majority/minority [17].

Analogously to the Euclidean scenario, the qualitative side of the relation between node-
entities is best captured in categorical variants of path queries. For example, let us annotate
a phylogenetic tree for a set of genomes by marking each divergence with a type of mutation.
The number of distinct mutation event types between two given species then could serve as
a proxy for evolutionary “distance” between them. A categorical path counting query, which
asks for the number of distinct categories on a query path, provides an adequate model in
this case.

Generalizing the 1D categorical reporting problem, Durocher et al. [12] solved the top-k
colour reporting problem on unweighted trees. We believe that in trees, neither the counting
problem in the categorical setting, nor the scenario of weighted nodes has been studied before.
In this paper, we formalize these problems and propose solutions to them.
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We consider an ordinal tree1 T on n nodes, such that each node z of T is associated
with a category c(z) ∈ [σ]. 2 Specified at query time is a query path Px,y between two nodes
x, y in T. We are to preprocess T into a data structure to compute in an efficient manner
the number nreal = |{c(z) | z ∈ Px,y}|. This is the categorical path counting problem
studied in this paper.

Next, for d ≥ 1, we consider a tree T in which each node, along with a category, is
associated with a certain weight vector w(z) ∈ [n]d. In addition to a query path Px,y, at query
time specified also is an axis-aligned (hyper-)rectangle Q from [n]d. We are to preprocess
T into a data structure to compute in an efficient manner the number nreal = |{c(z) | z ∈
Px,y ∧ w(z) ∈ Q}|. This is the categorical path range counting problem studied in the
present paper.

For both problems, a c-approximate (for c > 1) answer is a number nappr such that
nreal ≤ nappr ≤ c · nreal. A (1 ± ϵ)-approximate (for 0 < ϵ < 1) answer is a number nappr

such that |nappr−nreal|
nreal

≤ ϵ.

1.1 Previous Work
For points on a line, Gagie and Kärkkäinen [18] have proposed an O(n)-word solution to the
1D categorical counting problem, with query time O(lg1+ϵ n), 3 for any ϵ > 0. Nekrich [33]
proposed another O(n)-space solution with query time O( lg σ

lg lg n ), where σ is the number of
categories.

Grossi and Vind [21] solve the 2D categorical range counting problem in linear space
and O(n) time, and higher-dimensional variants in almost-linear space and O(n) time. The
core idea is to divide the universe of categories into chunks of size lg n, and use bitwise-OR
when querying the restriction of the input set to each such chunk. The best result with
polylogarithmic time in the 2D categorical counting problem remains at O(n2 lg2 n) words
and O(lg2 n) query time [22, 29], with [29] also proposing an O(X lg7 n) query-time data
structure with O(( n

X )2 lg6 n + n lg4 n) storage space, for a trade-off parameter 1 ≤ X ≤ n;
for X =

√
n, the space is thus O(n lg6 n) and the query time is O(

√
n lg7 n). Whereas Gupta

et al. [22] use persistence, Kaplan et al. [29] proceed by a disjoint decomposition of the
region covering an individual category, with the subsequent reduction to rectangle-stabbing.
In higher dimensions (d > 2), [29] proposed an O(nd lg2d−2 n)-word data structure with
O(lg2d−2 n) query time. They also show that an algorithm for categorical range counting in
R2 that answers m queries over the set of O(n) points in O(min{n, m}ω/2) time would yield
an algorithm for obtaining the matrix product MM⊺ in O(kω/2) time, for any k ×k matrix M

over {0, 1}, where ω is the best current exponent for Boolean matrix multiplication. Further,
Kaplan et al. [29] proposed an O(( n

X )2d + n lgd−1 n)-word data structure with O(X lgd−1 n)
query time, for a trade-off parameter 1 ≤ X ≤ n. This implies an Õ(n)-space4 data structure
with Õ(n 2d−1

2d ) query time.
Nekrich [33] proposed an O(n(lg lg n)2)-word data structure for (4 + ϵ)-approximate 2D

categorical counting in O((lg lg n)2) time; this translates to a linear-space data structure for
an n × n grid, that returns in O(1) time a (1 + ϵ)-approximation for the number of points in
a 3-sided 2D query range, for a constant 0 < ϵ < 1. El-Zein et al. [13] solved the approximate

1 i.e. a tree in which the children of a node are ordered
2 We set [n] ≜ {1, 2, . . . , n} for any n ∈ N.
3 We use lg n ≜ log2 n, and explicitly specify the base otherwise.
4 Notation Õ leaves out polylogarithmic factors.
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categorical range counting problem in 1D in succinct O(n) bits of space and O(1) time. The
core technique is to sample the prefixes of an array with exponentially increasing number
of distinct categories covered, and “sandwich” the query point between two sampled values
using transdichotomous data structures [14].

Lai et al. [30] used sketching data structures [10] to solve the approximate categorical
range counting problem in a probabilistic setting. In d dimensions, they proposed an
O(dn lgd−1 n)-words-of-space data structure, to support queries in O(d lgd+1 n) time, with
probability 1 − δ, where 0 < δ < 1 is a given constant. Sketches approximate the number of
distinct categories occurring in a collection; being small and additive, in the solution of Lai
et al. they serve as summary structures.

To the best of our knowledge, the only categorical range searching problem considered so
far for tree topologies is the top-k colour reporting problem. Therein, the categories have
priorities, and the k highest-priority categories occurring on the given path are to be reported.
Durocher et al. [11] introduce and solve this problem in (optimal) O(n) space and O(1 + k)
time. They use heavy-path decomposition and chaining [32] to reduce the problem to 2D
reporting in a narrow grid.

1.2 Our Contribution
For the categorical path counting problem, we propose a linear-space data structure with
query time O(

√
n lg lg σ

lg w ), where w is the word size on the word-RAM model. We show,
by a reduction from Boolean matrix multiplication, that the query time is optimal within
polylogarithmic factors, with current knowledge and when only combinatorial methods are
allowed. This conditional lower bound is surprising, because the 1D counterpart in the
Euclidean case admits a linear-space solution with a sub-logarithmic query time, and a similar
conditional lower bound can only be proven in 2D. In other words, having a tree structure in
the presence of categories is about as hard as having a second dimension, making the query
time go up from polylogarithmic to polynomial, when the space usage is linear. This however
is not the case in the previous work on path queries [12, 26, 23]. Specifically, for a trade-off
parameter 1 ≤ t ≤ n, we propose an O(n + n2

t2 )-word, O(t lg lg σ
lg w ) query time data structure

(which corresponds to a linear-space data structure with O(
√

n lg lg σ
lg w ) query time). We also

describe a linear-space data structure that supports 2-approximate categorical path counting
queries in O( lg n

lg lg n ) time. These problems have not been considered in trees before.
We also generalize the categorical path counting queries to weighted trees. For d = 1,

we propose an O(n lg lg n + (n/t)4)-word data structure with O(t lg lg n) query time, or an
O(n + (n/t)4)-word data structure with O(t lgϵ n) query time. This implies a linear-space
data structure with O(n3/4 lgϵ n) query time. The corresponding O(n lg6 n)-word solution to
categorical range counting in R2 by [29] achieves O(

√
n lg7 n) query time. Compared to the

best result in the Euclidean counterpart, we thus sacrifice an Õ( 4
√

n)-factor in query time, to
accommodate the tree structure.

We further extend the approach to the trees weighted with multidimensional vectors from
[n]d, where d is a constant integer greater than or equal to 2. We describe an O(n lgd−1+ϵ n +
(n/t)2d+2)-word data structure with O(t lgd−1 n

(lg lg n)d−2 ) query time. For an Õ(n)-space solution,

this yields Õ(n
2d+1
2d+2 ) query time. When d ≥ 2, this result matches the best corresponding

result in Rd+1 by Kaplan et al. [29], within polylogarithmic factors.
Our sketching data structure for unweighted trees solves the approximate categorical

path counting problem, which asks for a (1 ± ϵ)-approximation for the number of distinct
categories on the given path, with probability 1−δ. The data structure occupies O(n+ n

t lg n)
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words of space, for the query time of O(t lg n). For trees weighted with d-dimensional weight
vectors (d ≥ 1), we propose an O((n + n

t lg n) lgd n)-word data structure with O(t lgd+1 n)
query time. Here, 0 < ϵ, δ < 1 are arbitrarily small constants.

2 Preliminaries

In this section we introduce the notation and give background on the concepts used in the
paper.

2.1 Concepts and Notation
We denote by |T | the size (i.e. the number of nodes) of the tree T, whose set of nodes is
denoted as V (T ). For x, y ∈ V (T ), the path between x and y is denoted as Px,y. For brevity,
if no confusion ensues, we write x ∈ T to denote x ∈ V (T ). We write Px,y ⊆ T to indicate
that a path belongs to a tree. We denote the root of T by ⊥; thus Px,⊥ is the root-to-x path.
In all our input trees, each x ∈ T has a certain category c(x) ∈ [σ] associated with it. In
addition, each x ∈ T can be associated with a weight w(x) ∈ [n]. In general, w(x) can be
a weight vector drawn from [n]d, for d ≥ 1, and the ith component of the weight vector is
the ith weight. In line with the current trends in orthogonal range searching, we assume the
weights to be in the rank space [16]. For brevity, we shall also use Iverson notation [20]:
For a Boolean predicate P , the symbol JP K ∈ {0, 1} equals 1 iff P = true. A sequence of
objects I1, I2, . . . , Ik is denoted as {Ij}k

j=1. Finally, unless otherwise indicated, w denotes
the word size in the word-RAM machine; one typically has w = Ω(lg n).

2.2 Compact Representation of Ordinal Labeled Trees
Fast navigation in compactly-represented ordinal labeled trees and tree extractions are central
to our solutions. In this section we review the pertinent results.

▶ Lemma 1 (He et al. [24]). Let T be an ordinal tree on n nodes. Then, T can be represented
in 2n + O(n) bits of space, to support the following operations in O(1) time, for any x, y ∈ T :
(a) depth(x) the number of ancestors of x; and (b) level_anc(x, i) the ith nearest ancestor
of x (level_anc(x, 1) being x itself); and (c) LCA(x, y) the lowest common ancestor of x

and y.

When the tree T is labeled over [σ], with label(z) denoting the label assigned to z ∈ T,

the common operators can be sub-scripted. Indeed, let a node (resp. ancestor) labeled α

be referred to as an α-node (resp. α-ancestor). The following result is our main tool in
navigating labeled trees:

▶ Lemma 2 (He et al. [25]). Let T be an ordinal tree on n nodes, each of which is assigned
a label over [σ], σ ≤ n. Then, under the word-RAM with word size w = Ω(lg n), T can
be represented using O(n) words of space to support the following operations in O(lg lg σ

lg w )
time, for any x, y ∈ T and any α ∈ [σ]: (a) depthα(x) the number of α-nodes on Px,⊥;
and (b) level_ancα(x, i) the ith nearest α-ancestor of x (level_anc(x, 1) = x if x is an
α-node); and (c) pre_rankα(x) the number of α-nodes preceding x in preorder; and (d)
pre_selectα(j) the jth α-node in preorder.

Labeled versions of the common operators serve to restrict the queries to the given labels
only. For example, the number depthα(x) + depthα(y) − 2 · depthα(z) + Jlabel(z) = αK,
where z = LCA(x, y), equals the number of α-labeled nodes on the given path Px,y.
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15:6 Data Structures for Categorical Path Counting

2.3 Tree Extraction
Tree extraction [26] selects a subset of nodes while preserving the relative preorder ranks,
as well as the hierarchical relations among the nodes. Precisely, given a subset X ⊆ V of
nodes (X is called the extracted nodes), the extracted tree TX is constructed from T via the
following edit operations. Fix an arbitrary node y /∈ X, and let p ∈ T be the parent of y.

Let y be the ith child of p, in preorder. Let us erase, from T, the node y together with its
incident edges. This frees the ith slot in the list of children of p, as well as the k children
y1, y2, . . . , yk of the node y. Then, y1 becomes the ith child of p, y2 becomes its (i + 1)st child,
and so on, until yk becomes p’s (i + k − 1)st child. The node that was the (i + 1)st child
of p prior to deletion becomes the (i + k)th child of p, i.e. all the initial children occurring
after the ith are shifted to k positions to the right. After erasing all the nodes y /∈ X in the
described way, the resulting forest FX is either a tree (in which case we do nothing), or a
forest, in which case we create a dummy root r (with preorder rank and depth set to 0) that
becomes the parent of all the roots of the trees in FX , again preserving the relative preorder
ranks of the roots.

2.4 Semigroup Path Sum Query Problem
Trees with nodes associated with semigroup elements give rise to semigroup path sum
problems:

▶ Definition 3. Let us be given a semigroup (G, ⊕) with the sum operator denoted as ⊕,

and the set of the semigroup’s elements denoted as G. Furthermore, let T be an ordinal tree
on n nodes, each node x of which is assigned a d-dimensional weight vector w(x), as well
as a semigroup element g(x). Then, in a d-dimensional semigroup path sum problem, one
is given a query path Px,y ⊆ T, a query range Q in d-dimensional space, and is asked to
evaluate

⊕
z∈Px,y∧w(z)∈Q

g(z).

The framework of [23] can be used to extend a solution to the multidimensional semigroup
path sum query problem in the sense of Definition 3 from (d − 1) to d dimensions (here, the
size of a problem refers to the corresponding |T |):

▶ Lemma 4 (Lemma 5 in [23]). Let d be a positive integer constant. Let G(d−1) be an
s(n)-word data structure for a (d − 1)-dimensional semigroup path sum problem of size n.
Then, there is an O(s(n) lg n + n)-word data structure G(d) for a d-dimensional semigroup
path sum problem of size n, whose components include O(lg n) structures of type G(d−1),
each of which is constructed over a tree on n + 1 nodes. Furthermore, G(d) can answer a
d-dimensional semigroup path sum query by performing O(lg n) (d − 1)-dimensional queries
using these components and returning the semigroup sum of the answers. Determining which
queries to perform on structures of type G(d−1) requires O(1) time per query.

3 Categorical Path Counting

In this section, we consider the categorical path counting problem in the exact and approxim-
ate formulations. First, in Section 3.1 we prove a conditional lower bound on the categorical
path counting problem in unweighted trees. Then, Section 3.2 offers some background on
the techniques used to solve the categorical path counting problem. Further, we design a
data structure that matches the lower bound within polylogarithmic factors when using only
combinatorial approaches (Section 3.3). We conclude by designing a 2-approximate solution
with a much faster query time (Section 3.4).
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Figure 1 Two matrices A and B each of size
√

n ×
√

n with n = 9 give rise to a tree over
√

n + 1
categories. The dummy root is the node marked r, and the numbers inside circles, as well as the
distinct colours, denote the category of the corresponding node. The path shown in thick coloured
line corresponds to a path queried when computing the cell (2, 1) of the product A × B. This entry
corresponds to the product of the second row and the first column, respectively of the matrices A

and B (which are also coloured).

3.1 Hardness of Categorical Path Counting
In this section we show a reduction from the Boolean matrix multiplication problem to the
categorical path counting problem over unweighted trees. Namely, we prove

▶ Theorem 5. Let p(n) (for n ∈ N) be the preprocessing time of a categorical path counting
data structure and q(n) its query time, over an ordinal tree T on n nodes, each of which
is assigned a category over a finite alphabet. Then Boolean matrix multiplication on two√

n ×
√

n matrices can be solved in O(p(n) + nq(n) + n) time.

Proof. Let A and B be two
√

n ×
√

n Boolean matrices, and we are to compute the product
C = A × B. Let ai,j , bi,j and ci,j be the elements in row i and column j of the matrices A, B

and C, respectively. For the ith row of A we construct the set Ai = {j | ai,j = 1}, and for the
jth column of B we construct the set Bj = {i | bi,j = 1}. We notice that ci,j = JAi ∩ Bj ̸= ∅K.

As |Ai ∩ Bj | = |Ai| + |Bj | − |Ai ∪ Bj |, it is sufficient to focus on computing |Ai ∪ Bj |,
which in turn motivates the following construction of a tree T of size O(n) :
1. We create a dummy root r with dummy category

√
n + 1;

2. The root r has 2
√

n children x1, x2, . . . , x√
n and y1, y2, . . . , y√

n;
3. The subtree rooted at each xi, 1 ≤ i ≤

√
n, is a single path of length mi = |Ai|, consisting

of nodes xi,1, xi,2, . . . , xi,mi , listed in preorder, i.e. with xi = xi,1 and xi,mi being the
leaf;

4. The subtree rooted at each yj , 1 ≤ j ≤
√

n, is a single path of length nj = |Bj |, consisting
of nodes yj,1, yj,2, . . . , yj,nj , listed in preorder, i.e. with yj = yi,1 and yj,nj being the leaf;

5. ∀ 1≤ i ≤
√

n and ∀ 1≤j ≤ mi, the node xi,j is assigned a category – the rank-j entry of Ai;
6. ∀ 1≤j ≤

√
n and ∀ 1≤ i ≤ nj , the node yj,i is assigned a category – the rank-i entry of Bj .

Thus T is a tree of size O(n), in which each node is assigned a category from [
√

n + 1]. (See
Figure 1 for an example of the tree constructed for two matrices A and B.) Now, it is clear
that computing |Ai ∪ Bj | is nothing but a categorical path query with query parameters
xi,mi

and yj,nj
(subtracting 1 from the result, to correct for the root r). Processing

√
n ×

√
n

queries each in time q(n), the claimed time bound follows. ◀

The best algebraic methods of multiplying two t × t Boolean matrices are known to have
complexity O(tω) with ω < 2.3727 (Williams [35]). Two

√
n ×

√
n matrices can therefore

be multiplied in O(nω/2) time. This means that, with current knowledge, one can not have
preprocessing time p(n) better than O(nω/2) and query time q(n) better than O(nω/2−1)
simultaneously, i.e. it must be either that p(n) is Ω(n1.18635) or q(n) is Ω(n0.18635).
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15:8 Data Structures for Categorical Path Counting

The best known combinatorial algorithm for multiplying two n × n Boolean matrices
is only polylogarithmically better than cubic [3, 4, 36]. Theorem 5 therefore implies that
preprocessing time p(n) can not be better than n3/2 and query time q(n) can not be better
than

√
n at the same time, by purely combinatorial methods with current knowledge, save

for polylogarithmic speed-ups.

3.2 Uniform Partitioning of the Tree
Next, we review a tree mark-up technique that we use in our solutions in Sections 3.3 and 4.2.

▶ Lemma 6 (Lemma 9 in [12]). Given an ordinal tree T on n nodes and an integer 1 ≤ t ≤ n

which is called the blocking factor, a subset V ′ ⊆ V (T ) of the nodes, called the marked nodes,
can be selected in O(n) time so that: (i) |V ′| = O(n/t); (ii) for any x, y ∈ V ′ it follows that
LCA(x, y) ∈ V ′; and (iii) a path containing unmarked nodes only consists of less than t nodes
and the edges between them.

As Durocher et al. [12] only described which nodes should be marked without showing
how to mark them in O(n) time, we propose a linear-time algorithm to mark these nodes,
which is presented in the full version of the paper.

Path decomposition using the marked nodes (or, generally, nodes with certain labels)
is encapsulated in a decompose-operator of Definition 7. Lemma 8 implements decompose,
as a simple corollary to Lemma 2. In Definition 7 and Lemma 8, T is an ordinal tree on n

nodes, each of which is assigned a label over an alphabet [σ], where σ ≤ n.

▶ Definition 7. For any pair of nodes x, y of T, for any α ∈ [σ], consider the closest α-nodes
x′, y′ ∈ Px,y, to respectively x and y. Then, the operation decompose(x, y, α) returns the pair
of nodes x′ and y′, or a special symbol undefined when no such x′ and y′ exist.

▶ Lemma 8. The tree T represented via Lemma 2 supports decompose(x, y, α) in O(lg lg σ
lg w )

time.

Proof. Let us preprocess the input tree T using Lemma 2. One then has the following cases
and the corresponding courses of action:
Case 1 If LCA(x, y) = y, we have x′ = level_ancα(x, 1). Node y′ is set to be y itself if y is

an α-node; otherwise, y′ = level_ancα(x, a), where a = depthα(x) − depthα(y). The
result is undefined if y is not an α-node and a = 0. The case when x is the ancestor of y

is symmetrical.
Case 2 If x and y are not ancestors of each other, we set z = LCA(x, y). There are four sub-

cases, depending on the values a = depthα(x)−depthα(z) and b = depthα(y)−depthα(z).
a > 0, b > 0: One has x′ = level_ancα(x, 1), y′ = level_ancα(y, 1);
a > 0, b = 0: This case is reduced to Case 1 by setting y := z;
a = 0, b > 0: This case is reduced to Case 1 by setting x := z;
a = 0, b = 0: The result is undefined if z is not an α-node, and x′ = y′ = z, otherwise;

With O(1) amount of O(lg lg σ
lg w )-time operations, the claimed running time follows. ◀

From the properties of tree extraction and Lemmas 2 and 8 it follows that

▶ Proposition 9. In the conditions of Lemma 8, let Px,y ⊆ T be an arbitrary path and
α ∈ [σ] an arbitrary label. Let Tα be a tree extraction from T of the node-set X = {z ∈
V (T ) | label(z) = α}. Let x′ and y′ be the nodes returned by decompose(x, y, α). Then, all the
nodes in Px,y∩X form a contiguous path π in Tα, with end-points xα = 1+pre_rankα(x′) and
yα =1+pre_rankα(y′). Furthermore, decompose(x, y, α) returns undefined iff Px,y∩X = ∅.
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3.3 Categorical Path Counting in Unweighted Trees
In this section, we solve the exact the categorical path counting problem. We do so by
precomputing certain information, with additional work at query time. Hence the storage
space and the explicit query-time work are balanced by a trade-off parameter.

Namely, the tree T is subject to the following preprocessing:
Nodes marking For the parameter t ≤ n to be chosen later, we mark O(n/t) nodes in T

using Lemma 6. Let K be a copy of T labeled over {0, 1} in such a way that a node
z ∈ V (K) has label 1 iff its copy in T is marked. We preprocess K via Lemma 2 thereby
enabling the use of Lemma 8;

Path emptiness Let G be a copy of T labeled over [σ] in such a way that the node z ∈ V (G)
has label α iff its copy in T has category α. We preprocess G via Lemma 2 thereby
enabling the use of Lemma 8;

Tabulation We store a table M such that, for the xth and yth (in preorder) marked node of
T , one has M [x, y] ≜ |{c(z) | z ∈ Px′,y′}| (i.e. M [x, y] is the number of distinct categories
occurring on the path – the span – Px′,y′ ⊆ T ). Here, x′ and y′ are found via Proposition 9
as the corresponding nodes to respectively x and y.

The data structures built in Section 3.3 result in the following

▶ Theorem 10. Let T be an ordinal tree on n nodes, each of which is assigned a category
over an alphabet [σ], where σ ≤ n. Then, T can be preprocessed into a data structure of size
O(n + n2

t2 ), for a given 1 ≤ t ≤ n, so that a categorical path counting query is answered in
O(t lg lg σ

lg w ) time. The preprocessing time is O( n2

t lg lg σ
lg w ). In particular, setting t =

√
n yields

a linear-space data structure with O(
√

n lg lg σ
lg w ) query time, and O(n3/2 lg lg σ

lg w ) preprocessing
time.

Proof. We preprocess the input tree T as described in Section 3.3. The structures K, G and
M contribute respectively O(n),O(n) and O(n2/t2) words, and hence the claimed space.

We thus turn to answering queries and analyzing the query time. As answering the query
when |Px,y| ≤ t is subsumed in our analysis, we let |Px,y| > t.

A call to decompose(x, y, 1) on K returns two nodes x′ and y′ such that |Px,x′ |, |Py,y′ | ≤ t,

and x′, y′ are marked.
Let xM and yM respectively be the relative preorder ranks of x′ and y′ among the marked

nodes of T ; one computes xM and yM using Proposition 9. We use xM and yM to address
the table M.

The answer to our query is contained in the following sets of nodes: Group 0 : Px′,y′

(the span); Group 1 : Px,x′ \ {x′}; and Group 2 : Py,y′ \ {y′}. We note that Groups 1-2
are each of size at most t.

The strategy is to process each group sequentially, so that a category contributes to the
answer as long as it appears neither in the groups one has so far traversed, nor in the portion
of the path preceding the current node, in the current group.

Namely, the processing of Group 0 reduces to initializing the result counter res with
M [xM , yM ]. Next, one traverses Group 1 in the direction towards x. Let q be the current
node, and p be the node immediately preceding q, on the current path Px,x′ consistent with
the direction of traversal. We check whether c(q) occurs in Pp,y′ using the data structure G

and Proposition 9; if not, we increment res. Finally, we traverse Group 2 in the direction
towards y. Let q be the current node, and p be the node immediately preceding q, on the
current path Py,y′ and in the direction of traversal. We check whether c(q) occurs in Px,p

using the data structure G and Proposition 9; if it does not, we increment res.
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We call the operations in Lemmas 2 and 8 O(t) times; the claimed query time bound
follows.

To analyze the preprocessing time, consider the list L of all the pairs (u, v), u < v of
marked nodes, ordered non-decreasingly by |Pu,v|. The list L has length O( n2

t2 ) and can be
ordered in O( n2

t2 ) time using e.g. counting sort (because the values |Pu,v| are non-negative
integers that are at most n). We compute the entries of the table M traversing L from
left to right. For the given pair (u, v) ∈ L, it is either (i) |Pu,v| ≤ t, or (ii) the operation
decompose(u′′, v′′), called on the nodes u′′ ∈ Pu,v and v′′ ∈ Pu,v respectively closest to u

and v, returns two marked nodes u′ and v′ with the properties claimed in Definition 7. If (i)
holds, one explicitly traverses the path Pu,v in time O(t lg lg σ

lg w ), as previously described. In
case (ii), one has |Pu′,v′ | < |Pu,v| and the answer for the span Pu′,v′ is available; hence, one
again uses the algorithm described in the beginning of this proof. ◀

Under the assumption that matrix multiplication cannot be solved faster than cubic time
[4, 36], the bounds given in Theorem 10 are optimal, save for polylogarithmic speed-ups.

3.4 2-Approximate Categorical Path Counting
We provide a 2-approximation for the number of distinct categories on Px,y by decomposing
the path Px,y as Px,z followed by Py,z, with z = LCA(x, y), and computing the answers in
Px,z and Py,z separately. It turns out that in contrast to general paths, a query path in
which one end is an ancestor of the other lends itself to an efficient categorical counting.

We apply the chaining approach [32], by assigning weights to the nodes of T as follows.
If for q ∈ T one has c(q) = γ, then we identify q’s lowest proper γ-ancestor p and set
w(q) = depth(p). We set w(q) = −1, if there is no such p. It can be seen that counting the
number of distinct categories on Pp,q is equivalent to counting the number of nodes on Pp,q

with weights in the range (−∞, depth(p)). We use the result of He et al. [26] to encode, in
a structure C, the weighted tree and support path counting queries (for a path Px,y and a
range Q, a path counting query returns the number |{z ∈ Px,y | w(z) ∈ Q}|):

▶ Lemma 11 (He et al. [26]). Let T be an ordinal tree on n nodes, each having a weight
drawn from [m]. Under the word-RAM model, T can be encoded in O(n) words to support
path counting queries in O( lg m

lg lg n + 1) time.

For the data structures built in Section 3.4, one thus has

▶ Theorem 12. An ordinal tree T on n nodes, each of which assigned a category, can be
preprocessed into an O(n)-word data structure to solve the 2-approximate categorical path
counting problem in O( lg n

lg lg n ) time. When one query node is an ancestor another, the answer
is exact.

Proof. The input tree T is preprocessed as described in Section 3.4.
The dominant-size data structure C is linear in size (Lemma 11), hence the claimed space.
We focus on answering the query on the path Px,z, where z = LCA(x, y), for the query

nodes x and y. Given the query Px,z, we execute a path counting query in C with arguments
Px,z and (−∞, depth(z)). After the verbatim procedure for Py,z, we return the sum of (the
answers to) the two queries as the sought 2-approximation. We note that when y is an
ancestor of x, the answer is exact.

The total running time is dominated by at most two path counting queries; the claimed
query time bound follows. ◀
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4 Categorical Path Range Counting

In this section, we solve the categorical path counting problem in the case of weighted trees,
including those weighted with multidimensional weight vectors. We assume that the number,
d, of dimensions is a constant.

In solving the categorical path range counting problem, we still apply the marking
technique of Lemma 6. The core idea remains, but we guard against over-counting using
somewhat more complex data structures. Namely, in Section 4.1 we extend the repertoire of
useful tree operations (Section 2.2) by a path range emptiness query, which, in the case of
unweighted trees (Section 3.3), was simulated using labeled ancestors and labeled depths
(Lemma 2).

4.1 Path Range Emptiness Queries
First, let us formally introduce path range emptiness queries:

▶ Definition 13. For a constant d ∈ N, let T be an ordinal tree on n nodes, each node
z of which is assigned a weight vector w(z) ∈ [n]d. For any two nodes x, y ∈ T and any
axis-aligned hyper-rectangle Q from [n]d, a path range emptiness query is a path query that
returns false if the set {z ∈ T | z ∈ Px,y ∧ w(z) ∈ Q} is empty, and true, otherwise.

It follows from the solutions to the path reporting problem of [5] 5 and Lemma 4 that

▶ Lemma 14 ([5, 23]). Let T be an ordinal tree on n nodes, each of which is assigned a
weight vector from [n]d. Then, T can be preprocessed into a data structure so that a path
emptiness query is answered in
d = 1: either (a) O(lg lg n); or (b) in O(lgϵ n) time. The data structures occupy respectively

(a) O(n lg lg n); and (b) O(n) words of space.
d ≥ 2: O( lgd−1 n

(lg lg n)d−2 ) time, for an O(n lgd−1+ϵ n)-word data structure.

Lemma 14 presents different trade-offs to be used in our solutions for different values of
d. For brevity, we shall refer to the query time as τd(n) and to the space cost as sd(n).

4.2 Categorical Path Range Counting in d Dimensions
As in Section 3, here, too, we trade off explicit traversals for the storage for precomputed
information. There are a few notable differences to accommodate weights. Precisely, the tree
T is preprocessed as follows:
Nodes marking. We mark the nodes of T using Lemma 6, with blocking factor t;
Weights partitioning. Along each of the d dimensions, we partition the space [n]d into ⌈n/t⌉

slabs, using axis-aligned hyper-planes, in such a way that each slab contains exactly t

(except, possibly, for the last slab, which may contain less than t) nodes of the tree T

(this is always possible, as the weights are in rank space). Precisely, we maintain a list
λi of slabs per weight component: λi,j ≜ {z ∈ T | (j − 1)t < wi(z) ≤ min{jt, n}}, for
1 ≤ i ≤ d and 1 ≤ j ≤ ⌈n/t⌉. Somewhat abusing notation, we use “slab λi,j” to denote
both the orthogonal range and the corresponding set of nodes defined above;

5 The original works state the results for path reporting, but these results imply the results on path
emptiness as stated in Lemma 14.
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Path emptiness. For each category γ ∈ [σ], we build the tree extraction Tγ of all the nodes
with category γ. The nodes of Tγ inherit the weights of the original nodes in T . Each Tγ ,

in turn, is associated with the following data structures:
The path emptiness data structure Cγ of Lemma 14;
y-fast tries [15] {Yγ,i}d

i=1 such that Yγ,j maps the jth weights of Tγ into rank space
[|Tγ |];

Mapping structures. Maintained using Lemma 2 are also trees K and G with the topology
of T :

K is labeled over {0, 1} such that a node z ∈ K is labeled with 1 iff its copy in T is
marked;
G is labeled over [σ] such that a node z ∈ G is given a label γ iff its copy in T has
category γ;

Tabulation. For each of the Θ((n/t)2d+2) spans we store, in a table M, the number of distinct
categories occurring in the span. Precisely, let the indices i1, i2, . . . , id, j1, j2, . . . , jd

be such that ∀k1 ≤ ik ≤ jk ≤ ⌈n/t⌉ and two nodes x′ and y′ be marked. Then,
the span corresponding to these indices is the set {z ∈ Px′,y′ | z ∈ ∩d

k=1(∪jk

l=ik
λk,l)}

(i.e. the set of nodes on the path Px′,y′ such that their weights fall into the relevant
rectangle in [n]d). To save space, the nodes x′ and y′ are referred to by their relative
preorder ranks xM and yM among the marked nodes. Now, M is a table whose entry
M [xM , yM , i1, j1, i2, j2, . . . , id, jd] stores the number of distinct categories in the span
corresponding to the given indices.

▶ Lemma 15. The data structures built in Section 4.2 occupy O(sd(n) + (n/t)2d+2) words
of space.

Due to space considerations, we consign the proof of Lemma 15 to the full version of the
paper.

We next describe how to resolve queries and analyze the query time:

▶ Lemma 16. The data structures built in Section 4.2 answer a categorical path range
counting query in O(t · τd(n)) time.

Proof. Let Px,y and Q =
∏d

k=1[ak, bk] be the query arguments. If |Px,y| ≤ t, we explicitly
traverse the path Px,y and count the number of unique categories encountered; the exact
procedure is subsumed in the discussion that follows. We therefore assume |Px,y| > t, and
split the path Px,y into Px,x′ , Px′,y′ , and Py,y′ , as described in the proof of Theorem 10. One
has that |Px,x′ |, |Py,y′ | ≤ t.

The grid of the marked nodes and the slabs induce a decomposition of the query region
into the span and the “rim” – the parts of the query region abutting the span. Of these, only
the rim is meant to be explicitly traversed. The details follow.

First, we initialize the indices i1, i2, . . . , id and j1, j2, . . . , jd as ik := ⌈ak/t⌉ and jk :=
⌈bk/t⌉, for all 1 ≤ k ≤ d. That is, ith

k range contains ak, and jth
k range contains bk. Further-

more, let x′ and y′ be respectively the xth
M and yth

M marked node, in preorder; one computes xM

and yM using Proposition 9. Now the tuple (xM , yM , i1+1, j1−1, i2+1, j2−1, . . . , id+1, jd−1)
determines a span, for which the answer – the number of distinct categories occurring therein
– is already precomputed. We initialize the counter variable res holding the answer to
the query with the table entry M [xM , yM , i1 + 1, j1 − 1, i2 + 1, j2 − 1, . . . , id + 1, jd − 1].
With this span, we also associate the pair of query arguments P (span) = Px′,y′ and
Q(span) =

∏d
k=1[ikt + 1, min{(jk − 1)t, n}].
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Next, our goal is to traverse the rim systematically, scanning for categories, while being
careful not to double-count nor miss them. A description of such a traversal follows.

We split the query path Px,y into the “prefix” Px,x′ \ {x′}, the middle Px′,y′ , and the
“suffix” Py,y′ \ {y′}, using marked nodes x′ and y′ found earlier as in the proof of Theorem 10.
Consider all the nodes z ∈ Px′,y′ whose weight vector w(z) pushes z outside of the span.
The loci of such vectors in [n]d clearly can be covered with O(d) = O(1) disjoint axis-aligned
rectangles – henceforth canonical rectangles – in such a way that each canonical rectangle
r ∈ D lies entirely within some λi,j . For each dimension k, there are at most two canonical
rectangles within slabs λk,ik

and λk,jk
. We assume the availability of such a cover D. From

each canonical rectangle r ∈ D, a canonical set s(r) ≜ {z ∈ Px′,y′ | w(z) ∈ r} is constructed.
As each r lies inside a slab, one has |s(r)| ≤ t.

We enumerate the nodes in the rim in (say) the following order: the nodes of the prefix,
the nodes of the suffix, and the nodes in each canonical set. Within each set, the nodes
are conceptually ordered in the direction from x to y (the traversal order is ascertained via
Lemma 1). We walk through these sets, while referring as previously seen to the union of the
span and the processed sets.

Let z, with γ = c(z), be the current node in our traversal of the rim. The category γ

contributes towards res iff each query from the following list E of path range emptiness
queries comes back as false. All queries in E are launched on Cγ , the query parameters
being restrictions of previously seen sets to the tree Tγ . Namely, we (i) adjust the weights to
the rank space of Tγ using the y-fast tries {Yγ,k}d

k=1; and (ii) map the associated path to Tγ

using Proposition 9 (the path component of a canonical set is Px′,y′ , whereas for the span
we use the previously defined P (span) and Q(span)). Finally, we also check the part of the
current set (be it the prefix, the suffix, or a canonical set) that precedes z in our conventional
x-to-y ordering. If the current set is the prefix, we launch a path range emptiness query for
the path Px,z \ {z} and the range Q on Cγ . (For the suffix and canonical sets, this last step
is analogous.)

Mapping the query path takes O(lg lg σ
lg w ) time (Lemma 8); the mapping of the weight-

ranges using the y-fast tries is an additive O(lg lg n) time. We note that both time bounds do
not exceed τd(n) (the query time stated in Lemma 14). The rim consisting of O(d) = O(1) sets
of O(t) nodes, with O(1) time per fetching an entry, the claim for the query time follows. ◀

As the procedure of zooming into Tγs can be of independent interest, we formalize it in
the full version of the paper.

Combining Lemmas 15 and 16 one has

▶ Theorem 17. Let d ∈ N be a constant. Let T be an ordinal tree on n nodes, each node
z ∈ T of which is assigned a category c(z) ∈ [σ], as well as a d-dimensional weight vector
w(z), in rank space. Let, furthermore, 1 ≤ t ≤ n be a parameter set prior to construction.
Then, for the categorical path range counting problem there exists a data structure such that
it uses
d = 1: either

O(n lg lg n + (n/t)4) words of space for the query time of O(t lg lg n); or
O(n + (n/t)4) words of space for the query time of O(t lgϵ n);

In particular, a linear-space data structure has the query time O(n3/4 lgϵ n);
d ≥ 2: O(n lgd−1+ϵ n + (n/t)2d+2) words of space for the query time of O(t lgd−1 n

(lg lg n)d−2 ). In

particular, a linear-space data structure has the query time Õ(n
2d+1
2d+2 ).
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5 Sketching Data Structures for Approximate Categorical Path Range
Counting

In this section we consider a probabilistic approach to the approximate categorical path
range counting problem. Section 5.1 reviews sketches [10, 30] that we use to approximate
the number of distinct categories. Then, in Section 5.2, we solve the (1 ± ϵ)-approximate
categorical counting problem proper, with probability 1 − δ, for arbitrarily small constants
0 < ϵ, δ < 1.

5.1 Sketches
For an arbitrary vector a = (a1, a2, . . . , aσ) ∈ Rσ, Cormode et al. [10] introduce Hamming
norm |a|H of a, defined as |a|H ≜

∑σ
i=1 |ai|0, with |0|0 ≜ 0. It is clear that |a|H = |{ai | ai ̸=

0}|, i.e. the Hamming norm equals the number of non-zero components in a. For our purposes,
this original vector a is the frequency array (a1, a2, . . . , aσ), with ai standing for the number
of the occurrences of the category i. While referring the reader to [10] and references therein
for discussion in depth, we state the main result we build on:

▶ Lemma 18 ([10, 30]). Let 0 < ϵ, δ < 1 be constants. Given a vector a, there exists a sketch,
h(a), that requires m = O( 1

ϵ2 · lg 1
δ ) words and allows approximation of |a|H within a factor

of 1 ± ϵ of the true answer with probability 1 − δ. Updating the sketch and computing |a|H
both take O(m) time. Furthermore, if a and b are two vectors, then h(a ± b) = h(a) ± h(b).

A clarification is in order regarding the update operation referred to in Lemma 18. The scenario
of Cormode et al. [10] is that of observing a stream while maintaining an approximation to
the number of the distinct values seen so far. Update refers to updating the approximation
upon observing the next value in the stream. The gist of our solution is in treating certain
paths Px,⊥ each as a stream of its own and maintaining several sketch-summaries thereof.
Our adaptation comprises (i) using the same transformation matrix [10, 30] throughout
the computations; and (ii) building the sketches using δ′ = δ

n2d+2 . Ensured by (i) is the
“compatibility” of any two arbitrarily chosen summaries – sketches are obtained by a linear
transformation [10] of (in our case) the frequency array, with linearity implying additivity.
With (ii), the value of m in Lemma 18 works out to be m = O( 1

ϵ2 lg 1
δ/n2d+2 ) = O(lg n).

5.2 (1 ± ϵ)-Approximate Categorical Path Range Counting
We first solve the (1± ϵ)-approximate categorical path counting problem for unweighted trees;
then we use Lemma 4 to extend the data structures to trees weighted with d-dimensional
weight vectors.

First, we apply Lemma 19 (whose proof easily follows from the Pigeonhole Principle)
with parameter t to mark O(n/t) nodes in the tree:

▶ Lemma 19 ([27]). Let 1 ≤ t ≤ n be an integer parameter. There exists a level l′ no deeper
than t such that, when one marks the nodes on every tth level of the tree T, starting from l′,

then there are O(n/t) marked nodes in total.

Next, at each marked node z ∈ T, one stores the sketch h(z) as a summary of the categories
occurring on the path Pz,⊥. Indeed, let a(z) be the (conceptual) frequency vector for the
categories on the path Pz,⊥. Then we associate with z a length-m vector h(z) – the sketch of
a(z). One thus obtains
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▶ Lemma 20. The data structures built in Section 5.2 occupy O(n + (n/t) lg n) words and
answer a (1±ϵ)-approximate categorical path counting query in O(t lg n) time, with probability
1 − δ.

Proof. There are O(n/t) marked nodes, each storing m = O(lg n) words, hence the claimed
space.

By the additivity stated in Lemma 18, the answer to a query with arbitrary query nodes
x and y is simply h(x) + h(y) − 2 · h(LCA(x, y)), corrected for c(LCA(x, y)) using Lemma 18.
Therefore, it is sufficient to show how to compute h(x) for an arbitrary node x.

The path Px,⊥ can be represented as Px,x′ ∪Px′,⊥, where x′ is the closest marked ancestor
of x. If there is no such x′, then, by construction, the depth of x is no greater than t; this
case is solved by an explicit traversal, as shown below. We therefore assume the existence of
such x′. The case x = x′ is trivial, as we use h(x′) directly. If x ̸= x′, then by construction
|Px,x′ | ≤ t. We initialize a zero-vector s of length m and the current node to x. We then start
ascending the path Px,x′ in the direction of x′ until the current node equals x′. (Informally,
the path Px,x′ in the direction towards x′ is our “stream”, and the “next value” is the category
of the next node encountered on this path.) For the category of the node currently being
observed, the current sketch s is updated using Lemma 18. This increment thus being an
O(m) = O(lg n)-time operation, the traversal’s time cost is O(tm) = O(t lg n). At the node
x′, we return the sum of s and of h(x′) (which is precomputed), as the sketch for Px,⊥. ◀

When the marked nodes in Lemma 20 are assigned the sketches, they are assigned
semigroup elements in the sense of Definition 3, the regular component-wise addition in
vectors being the corresponding semigroup sum operator. Unmarked nodes are assigned
conceptual zero-vectors in view of formal compliance with Definition 3; as the sketches stored
at unmarked nodes are never consulted, this has no effect on our algorithm.

The combination of Lemma 20 and Lemma 4 thus yields the following

▶ Theorem 21. Let 0 < ϵ, δ < 1 be arbitrarily small constants, and d ≥ 1 be an integer
constant. Let, furthermore, T be an ordinal tree on n nodes, each node z of which is assigned
a weight w(z) ∈ [n]d, as well as a category c(z) ∈ [σ]. Then, there exists a data structure of
O((n + n

t lg n) lgd n) words that solves a (1 ± ϵ)-approximate categorical path range counting
query in O(t lgd+1 n) time, with success probability no less than 1 − δ.

Proof. We iteratively apply Lemma 4 to Lemma 20. Since we start with G0 (supplied by
Lemma 20) and apply Lemma 4 exactly d times, the space cost of O((n + n

t lg n) lgd n) words
and the query time of O(t lgd+1 n) follows.

Our data structure fails iff at least one of the Θ(n2d+2) possible queries fails. The
total probability of failure therefore is at most the sum of the failure probabilities of each
of these Θ(n2d+2) queries. When building the data structure, we thus use a stronger
guarantee of δ′ = δ

n2d+2 , which also means that the length m of the vectors storing sketches
is O(lg 1

δ′ ) = O(lg n). ◀
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We propose a new compressed representation for weighted de Bruijn graphs, which is based on the
idea of delta-encoding the variations of k-mer abundances on a spanning branching of the graph.
Our new data structure is likely to be of practical value: to give an idea, when combined with the
compressed BOSS de Bruijn graph representation, it encodes the weighted de Bruijn graph of a
16x-covered DNA read-set (60M distinct k-mers, k = 28) within 4.15 bits per distinct k-mer and can
answer abundance queries in about 60 microseconds on a standard machine. In contrast, state of
the art tools declare a space usage of at least 30 bits per distinct k-mer for the same task, which
is confirmed by our experiments. As a by-product of our new data structure, we exhibit efficient
compressed data structures for answering partial sums on edge-weighted trees, which might be of
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1 Introduction

A DNA resequencing experiment consists of reconstructing the nucleotide sequence of large
collections of short DNA fragments sampled from a reference genome [16, 18]. Depending
on the genome’s length and on the number of sampled fragments, each genome position is
typically covered several times (up to a few hundred on average) by different fragments. One
of the most common (lossy) representations of such a dataset is a de Bruijn graph of order
k (k is usually chosen around 30) introduced in [31] and used by the majority of genome
and transcriptome assemblers [2, 24, 20, 37]: this is a combinatorial structure storing all
k-mers occurring in the DNA fragments, and connecting two k-mers with an edge when their
length-(k +1) concatenation also occurs in the dataset. While such a representation is already
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useful to discover important features of the sequenced genome (for example, single-point
mutations correspond to bubbles in De Bruijn graphs, see e.g., [35, 36]), a much more useful
representation should also record the abundance of each k-mer, i.e., how often it appears in
the dataset. This augmented structure takes the name weighted de Bruijn graph and has
many applications in both genome and transcriptome analysis. For instance, in de novo
genome projects it can be used for error correction [22, 37] or to infer genome characteristics
as repeat structures or rate of heterozygosity [21]. In transcriptome projects the role of
k-mer abundances is even more important as the abundance of a gene does not only reflect
its copy-number in the genome, but also and mostly its expression level. Hence, k-mer
abundances are crucial for quantifying the expression level of transcripts [26, 30] but also for
distinguishing SNPs from sequencing errors, or between different types of alternative splicing
events [17, 23].

Due to the massive size of sequencing data, the main challenge is to design data structures
for weighted de Bruijn graphs, which can scale up to very large instances such as genomes,
genome collections or metagenomics datasets (see for example [24]). In this paper, we tackle
exactly this problem and present new space-efficient data structures for storing weighted de
Bruijn graphs.

1.1 State of the art
As far as (unweighted) de Bruijn graphs are concerned, Bowe et al. in [3] presented a
space-efficient data structure – BOSS in the following – based on the concept of prefix sorting.
Their idea is to sort co-lexicographically the k-mers appearing in the dataset and to append
their outgoing labels to a sequence. It turns out that this sequence is a generalization to de
Bruijn graphs of the celebrated Burrows-Wheeler transform [4], the text permutation at the
core of the FM-index [12]. In its most basic form, the BOSS representation requires just 4
bits per edge to be stored and supports fast navigation queries on the de Bruijn graph.

It would be highly desirable to achieve the same rate of space efficiency also for weighted
de Bruijn graphs. A naive strategy to extend the BOSS representation to weighted de Bruijn
graphs could be to associate to each node a counter explicitly storing k-mer abundances.
The large variance of these counters (that is, difference between the largest and mean
abundance), however, requires some compression strategy in order to save space with respect
to a straightforward uncompressed solution.

Although many data structures already present in the literature could support k-mer
quantification, their representations are not space efficient [24]. For instance an extension
of Bloom filters, known as counting Bloom filters [19], allocates a fixed number of bits per
k-mer to store its count. This is clearly not space efficient for datasets where most of the
k-mers have low abundance. To deal with this, variable-length counters have been proposed.
Among them the counting quotient filter has been introduced in [28] and based on it two
tools have been proposed: deBGR [27] and Squeakr [29]. Both tools are approximate in the
sense that the returned counters could be wrong with low probability, but can also store exact
counts at the price of a higher space usage. On a RNA-seq Human experiment composed of
1.4 billion distinct k-mers (k = 28) with average abundance per k-mer equal to 27, deBGR
[27] reports a space usage of 37 bit/k-mer, while Squeakr [29] uses 79.8 bit/k-mer. Another
experiment on k-mer counting tools [29] reports that, on a dataset composed of 6.6 billion
distinct k-mers (k = 28) with average abundance per k-mer equal to 14.9, the RAM usage of
Squeakr [29] is of 77.8 bit/k-mer, the RAM usage of KMC2 [8] (signature-based) is of 139
bit/k-mer, and the RAM usage of Jellyfish2 [25] (hash-based) is of 80 bit/k-mer.
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Finally, in [33] an approximate data structure called Set-Min sketch has been proposed.
This method takes advantage of the power-law distribution of the k-mer counts to reduce
the error rate of the returned results. Set-Min sketch is implemented in the tool fress which
achieves better memory consumption but does not guarantee exact counts. For a dataset
of 6.6 billion distinct k-mers (k = 28) with average abundance per k-mer equal to 14.9, the
declared RAM usage of fress is 16.9 bit/k-mer with an error rate of 0.01.

1.2 Our contribution
In this paper we propose a new representation for weighted de Bruijn graphs, which is based
on the idea of delta-encoding the abundance variations on a spanning branching of the graph.
To show the usefulness of our representation we test it on different real datasets obtaining
each time a significant space improvement with respect to the state of the art. As an example,
when combined with the compressed BOSS de Bruijn graph representation [3], our new data
structure stores the weighted de Bruijn graph of a 16x-covered DNA read-set (60M distinct
k-mers, k = 28) within 4.15 bits per distinct k-mer: just 1.4 bits per k-mer on top of the
BOSS representation1 [3].

Our data structure does not make any assumption on the distribution of the k-mer counts,
which makes it appropriate to any dataset for both DNA and RNA. As a by-product of our
data structure, we exhibit efficient compressed data structures for answering partial sums on
edge-weighted trees, which might be of independent interest.

2 Notation

Logarithms are to the base 2. To simplify notation, we take log 1 = 1. Notation [n]
denotes the set {1, 2, . . . , n}. Throughout the paper, we work with the DNA alphabet
Σ = {A, C, G, T }. A k-mer is a string from Σk. If w ∈ Σ∗ is a string, then w[i, j] denotes
substring w[i]·w[i+1] · · · w[j], where the symbol “·” represents the concatenation of characters.

De Bruijn graphs. A de Bruijn graph is a directed graph G = (V, E) whose nodes are in
bijection with the k-mers appearing in the dataset. To distinguish between k-mers and the
corresponding nodes of G, we use the notation ŝ to denote the node of G corresponding to
k-mer s ∈ Σk.

Let s, s′ ∈ Σk be two k-mers. We say that s is adjacent to s′ if s[2, k] = s′[1, k − 1] and
the (k + 1)-mer s · s′[k] occurs in the dataset. The directed edges of G are in bijection with
all pairs of adjacent k-mers: (ŝ, ŝ′) belongs to E if and only if s is adjacent to s′. A weighted
de Bruijn graph associates an integer positive weight c(ŝ) to each of its nodes. Weight c(ŝ)
(equivalently, c(s) when we refer to the corresponding k-mer) is called the abundance of s

and corresponds to the number of times that k-mer s appears in the dataset.

3 Compressed Weighted de Bruijn Graphs

To compress the weights (abundances) of a de Bruijn graph, one could exploit the following
observation: since consecutive genomic positions generate adjacent k-mers, weights of adjacent
nodes in the de Bruijn graph are likely to be very similar. Let s, s′ ∈ Σk be such that s is

1 Note that we divide the total space by the number of distinct k-mers rather than the number of de
Bruijn graph edges as done in [3]. More details on this in Section 4.
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adjacent to s′. Recall that with c(s) we denote the k-mer’s abundance and we extend this
notation to the nodes of G as c(ŝ) = c(s). Let (ŝ, ŝ′) be the corresponding edge of G, and let
w(ŝ, ŝ′) = c(ŝ) − c(ŝ′) be the difference between the weights of ŝ and ŝ′. Note that w(ŝ, ŝ′)
might be negative.

A first idea could be to store (i) the compressed integer w(ŝ, ŝ′) on each edge, and (ii)
the explicit value c(û) whenever û has in-degree equal to 0. In this case, we say that û is
a sampled node. At this point, one could retrieve c(ŝ) also for any non-sampled node ŝ by
summing c(û) to the weights of the edges on a path from ŝ to û, where û is a sampled node.
This solution has two main drawbacks: it is not time-efficient (in the worst case we need to
visit the whole graph G to compute one single weight) and it stores one integer per edge,
whereas the original graph contained one integer per node (the abundance).

In fact, all we need is a spanning branching2 T = (V, E) of G. The idea is to store (i) the
compressed weight w(ŝ, ŝ′) only for the edges of T and (ii) the weights c(r̂1), . . . , c(r̂t) for
the t roots r̂1, . . . , r̂t of T . To simplify the description, in the following we will assume that
c(r̂i) = 0 for 1 ≤ i ≤ t. This information is sufficient to reconstruct the weight of each node
of T , but still leaves us with a few issues:

(1) We would like to design a fast data structure to compute the partial sum of the values
w(ŝ, ŝ′) on the edges of an arbitrary node-to-root path in T ;

(2) We have to decide how to encode each w(ŝ, ŝ′) on the edges of T . This may affect the
computation of a branching that minimizes such cost;

(3) We do not know to which k-mer (node of G) each node of T corresponds to.

Issues (1) and (2) can be solved with a compressed data structure for answering partial
sums on trees. In Section 3.1 we first discuss our new compressed solution to partial sums
on the special case of arrays, which may be of independent interest. Then, in Section 3.2
we generalize this solution to partial sums on trees. The solution will introduce a cost in
bits for encoding each weight w(ŝ, ŝ′). The branching T = (V, E) will then be chosen so
as to minimize the sum of the costs on its edges. Issue (3) requires us to keep a mapping
between the nodes of G and T . In Section 3.3 we show how to solve this problem with a
simplified (and practical) variant of the structure of Section 3.2. Finally, in Section 4 we
present experimental results on real DNA datasets, comparing the space usage of our data
structure with the state of the art.

3.1 Partial Sums on Arrays
Given a (static) sequence s[1, n] of positive integers such that u =

∑n
i=1 s[i], we would

like to design a data structure to support partial sum operations, i.e., to answer queries
sum(i) =

∑i
j=1 s[j], for any i ∈ [n]. Note that there are succinct data structures that are

able to support sum queries in constant time [10, 11, 32] within the information-theoretic
lower bound of ⌈log

(
u
n

)
⌉ = n log u

n + O(n) bits. These classic results are summarized in the
following theorem.

▶ Theorem 1 ([10, 11, 32]). Given a (static) sequence s[1, n] of positive integers such that
u =

∑n
i=1 s[i], there exists a data structure that can answer any sum query in O(1) time

using n log(u/n) + O(n) bits of space.

2 In this paper spanning branching stands for spanning forest of arborescences, that is, a collection of
disjoint directed trees spanning the de Bruijn graph. We note that a spanning forest of undirected trees
would work as well; however, as we discuss in Section 3.3 this introduces some technical complications.



G. F. Italiano, N. Prezza, B. Sinaimeri, and R. Venturini 16:5

This space bound is always at most the space required by writing down all partial sums
explicitly, i.e., n⌈log u⌉ bits. However, it is possible to get a better space bound in terms
of a well-known data-aware measure called gap measure [15], where the gap measure of the
sequence s is defined as gap(s) =

∑n
i=1⌈log(s[i] + 1)⌉ bits. Notice that in general it is not

possible to represent each s(i) with ⌈log(s(i) + 1)⌉ bits, and thus data structures must incur
a space overhead on top of the gap measure. Note that the gap measure is always at most
the information-theoretic lower bound of ⌈log

(
u
n

)
⌉ bits: this is because the gap measure is

maximised when s[i] = u/n for every i. However, in practice the gap measure could be much
smaller than the information-theoretic lower bound.

Gupta et al. [15] designed a data structure that is able to answer each sum query
in O(log log u) time and uses gap(s) + O(n log log(u/n) + n log(u/n)/ log n) bits of space.
Delpratt et al. [7] defined the delta measure ∆(s) =

∑n
i=1 |δ(s[i])|, where |δ(x)|, for x ≥ 1, is

the size in bits of encoding the number x with Elias’ δ coding. They present a data structure
that answers each sum query in O(log log u) time using ∆(s) + o(n) bits of space. Since for
any x we have δ(x) = log x + 2 log log x + O(1) bits, ∆(s) ≤ gap(s) + 2n log log(u/n) + O(n)
bits [7]. This improves over Gupta et al. due to the lower order term in the space bound.

In the remainder of this section we prove the following theorem. Even if our result on
de Bruijn graphs requires partial sums on trees instead of arrays, we present this result on
arrays here mainly for two reasons. First, it will be used to solve partial sums on trees in
Section 3.1. Second, we believe it can be of independent interest since it provides different
query-time/space trade-offs for partial sums on arrays.

▶ Theorem 2. Given a (static) sequence s[1, n] of positive integers such that u =
∑n

i=1 s[i],
there exists a data structure that answer sum queries in O( 1

ϵ ) time using (1 + ϵ)gap(s) +
O(n log log(u/n) + u

1
c ) bits of space, for any 0 < ϵ ≤ 1 and any constant c ≥ 1.

We first present a solution using standard ideas and tools. This solution will be then
refined to obtain the claimed result. We start by concatenating in a vector D the Elias’
δ encoding of each value of s. Elias’ γ and δ codes [10] are two standard encodings for
positive integers. Notice that binary encoding could also suffice however we believe that the
proof is clearer using the Elias’s one. Elias’ γ(x) of an integer x > 0 is obtained by writing
⌊log x⌋ in unary, followed by the value x − 2⌊log x⌋ written with ⌊log x⌋ bits. Elias’ δ instead
encodes x by writing ⌊log x⌋ + 1 with Elias’ γ, followed by the value x − 2⌊log x⌋ written with
⌊log x⌋ bits. We would like also to be able to compute the starting position in D of the
encoding of any integers of s. This can be easily done by representing the sequence L[1, n]
with the data structure of Theorem 1. The entry L[i] equals the length of the encoding of
s[i]. This way, the starting position of the encoding of s[i] in D is sum(i) in L. Note that
D and L suffice to decompress any value of the original sequence s in constant time. The
space required by these two vectors is bounded by gap(s) + O(n log log(u/n)) bits. In order
to support sum queries, we can partition s into blocks of size b = ⌈ 1

ϵ ⌉ each. We store in
an array B = [1, n/b] the partial sums in s up to the beginning of each block. This way
we can easily support any sum(i) in O( 1

ϵ ) time. We first get from B the sum up to the
block, say j, that contains the ith element of s. Then, we decompress the elements in the
jth blocks one after the other up to the element s[i]. This clearly requires O(1/ϵ) time per
operation. However, the space needed by B is ϵn log u bits. This gives an overall space usage
of gap(s) + ϵn log u + O(n log log(u/n) + n) bits, which is worse than what is claimed in
Theorem 2, since the term ϵn log u may be potentially larger than the term ϵgap(s).

To improve the space bound, we use a different partitioning strategy. The goal is to
partition s into variable size blocks such that the cost of encodings the values in each block
(but the last one) is between log u

ϵ bits and 3 log u
ϵ bits. This guarantees that there are at most

ϵgap(s)
log u + 1 blocks and, thus, the cost of storing the vector B is at most ϵgap(s) + log u bits.
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16:6 Compressed Weighted de Bruijn Graphs

We observe that a partition with the above characteristics is always possible. For example
we can use the following greedy algorithm. We start with an empty block and we process
the sequence from left to right. While processing an element we have two possibilities: we
either include the element in the current block or we create a new block with this element.
We take the former decision only if the overall cost of encoding the elements in the block is
less than log u

ϵ bits. As the code of an element is at most log u + O(log log u) bits, the above
partitioning strategy gives blocks of size between log u

ϵ bits and 3 log u
ϵ bits as claimed.

As now we have variable-size blocks, we need to store a binary vector V of size n bits to
keep track of blocks boundaries: an entry V [i] is 1 if and only if the ith element of s is the
first element in a block. We use a data structure to support rank/select operations on V in
constant time [32].

A query sum(i) is answered as follows. We first use rank/select operations on V to
compute the block j of position i and its offset p within this block. We now need to decode
the first p elements of the jth block and sum them to the value B[j]. Unfortunately, there
may be Θ(log u) elements encoded in a block and, thus, we cannot use a trivial decoding.
Instead, we conceptually split each block into subblocks such that each subblock is either
(i) formed of elements whose overall encoding sizes is no more than 1

2 log u bits, or (ii) a
single element. This split into subblocks can be done by an easy variant of the greedy
partitioning strategy above. Note that there are O( 1

ϵ ) subblocks per block. We use a table of
size O(

√
u log u) bits to precompute the sum of any prefix of any subblock given its encoding.

This way, computing the sum of the first p elements in jth block costs O( 1
ϵ ) time as required.

Note that the splitting above can be changed to use 1
c log u bits, for any constant c ≥ 1

instead 1
2 log u bits. This way we need a table of size O(2 1

c log u log u) = O(u 1
c log u) bits and

the query time remains O( 1
ϵ ). By adjusting infinitesimally the constant c, the table takes

O(u 1
c ) bits of space.

We conclude by showing how to adapt any solution for the partial sums problem to the
variant of the problem in which the sequence s has both positive and negative integers. Let
us define gap±(s) =

∑n
i=1⌈log(|s[i]| + 1)⌉

This variant can be easily reduced to two instances of the original problem as follows. We
first use a binary vector S[1, n] that records the signs of the values in s, i.e., S[i] = 1 if and
only if s < 0, S[i] = 0 otherwise. We use the data structure by Raman et al. [32] to support
constant time rank/select operation on S using log

(
n
p

)
+ o(n) bits of space, where p is the

number of positive integers in s. Then, we create two sequences s+[1, p] and s−[1, n − p]
that store positive and negative integers of s, respectively. Any partial sum query can now
be answered with two partial sums queries on s+ and s−. Combining this reduction with
Theorem 2 yields the following corollary.

▶ Corollary 3. Given a (static) sequence s[1, n] of positive and negative integers such that
u =

∑n
i=1 |s[i]|, there exists a data structure that answer each sum operation in O( 1

ϵ ) time
using (1 + ϵ)gap±(s) + log

(
n
p

)
+ O(n log log(u/n) + u

1
c ) bits of space, for any 0 < ϵ ≤ 1 and

any constant c ≥ 1, where p is the number of positive integers.

3.2 Partial Sums on Trees
Let T = (V, E) be a rooted weighted tree and let w(i, j) denote the (possibly negative)
integer weight of edge (i, j) ∈ E. We would like to build a space-efficient data structure
that answers partial sum queries of the form sum(v) =

∑
(i,j)∈Π(v) w(i, j) on paths, i.e., that

reports the sum of the weights on the path Π(v) connecting node v to the root, where v is
represented in pre-order (the solution for post-order is symmetrical and we do not discuss it).
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Chan et al. [5] tackle this problem in a more general framework, where weights belong to
a semigroup of size γ. Let n = |V | be the number of nodes. In this model, they provide a
data structure taking n log γ + o(n log γ) + 2n bits and answering queries in O(α(n)) (inverse
Ackermann) time. Note that this space is succinct but does not achieve compression: each
weight w(i, j) is stored in log γ bits, independently of its magnitude. Typically, one would like
a data structure using much less space: ideally, close to gap±(T ) =

∑
(i,j)∈E⌈log(|w(i, j)|+1)⌉

bits of space.
A folklore approach can reduce partial sums on trees to partial sums on arrays. The

idea consists of linearizing the weights according to a Euler tour of the tree. Recall that
tree edges are directed towards the root and note that the Euler tour visits each tree edge
(i, j) twice: the first time in the direction (j, i) and the second time in the direction (i, j).
If (i, j) ∈ E, we assign to the reverse edge (j, i) weight w(j, i) = −w(i, j). We initialize an
empty sequence W and, for each edge (i, j) visited along the tour (that is, in the direction
i → j), append −w(i, j) at the end of W . Then, it holds that sum(v) =

∑t
j=1 W [j], where

t is the index corresponding to the first time we see node v in the Euler tour (i.e., W [t]
contains the weight w(π(v), v), where π(v) is the parent of v). This equality holds because,
in W [1], . . . , W [t], all values that correspond to edges not belonging to the path from v to
the root appear two times with opposite signs and thus they cancel out.

We can use the data structure of Corollary 3 on the sequence W to have O( 1
ϵ ) query

time. The space is (2 + ϵ)gap±(s) + O(n log log(u/n) + u
1
c ) bits because every gap occurs

twice in W .
Another folklore approach uses the Heavy-Light decomposition of the dynamic trees

of Sleator and Tarjan [34]. The idea is to split the tree into heavy paths and use a data
structure for prefix sums on each of these heavy paths. By virtues of the decomposition,
any root-to-a-node path crosses O(log n) heavy paths and, thus, a query can be answered
with O(log n) prefix sums on arrays. This solution has a better space bound as every gap is
represented exactly once, but its query time is logarithmic.

In the remainder of this section we prove the following theorem, which improves over the
two folklore solutions above.

▶ Theorem 4. Given a (static) rooted tree T = (V, E) with positive integer weights w(i, j)
associated with each edge (i, j) ∈ E such that u =

∑
(i,j)∈E w(i, j), there exists a data

structure that answers sum queries in O( 1
ϵ ) time using (1 + ϵ)gap(T ) + O(n log log(u/n) + u

1
c )

bits of space, for any 0 < ϵ ≤ 1 and any constant c ≥ 1.

The following corollary generalizes the solution to trees with positive and negative weights.

▶ Corollary 5. Given a (static) rooted tree T = (V, E) with positive and negative integer
weights w(i, j) associated with each edge (i, j) ∈ E such that u =

∑
(i,j)∈E |w(i, j)|, there

exists a data structure that solves queries sum in O( 1
ϵ ) time using (1 + ϵ)gap±(T ) + log

(
n
p

)
+

O(n log log(u/n) + u
1
c ) bits of space, for any 0 < ϵ ≤ 1 and any constant c ≥ 1, where p is

the number of positive integers.

These results are obtained by adapting to trees the solutions of Theorem 2 and Corollary 3,
respectively.

The high level ideas behind our approach are as follows. We first partition the tree into
subtrees. Subtrees are either disjoint or intersect only at their common root. Then, we
store the sums on the paths from the tree’s root to each subtree root. The sum sum(v) is
computed by taking the sum up to the root of v’s subtree and summing up the sum of the
path within the subtree. The sum within each subtree is computed by using an approach
similar to the one in the previous subsection.
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The partitioning of the tree is crucial for the space and time efficiency of the solution.
For this aim we use a weighted variant of the tree covering procedure described by Geary et
al. [14, Sec. 2.1] to decompose T into subtrees. Given any parameter M > 2, the original
tree covering procedure as described in [14, Sec. 2.1] is used to decompose T into Θ(n/M)
sub-trees containing O(M) nodes each. Two subtrees are either disjoint or intersect only at
their common root. The covering is built by visiting the tree in post-order and by grouping
nodes into components. The procedure lets the current component grow until its size falls in
the range [M, 3M −4]. When a component reaches the required size, a new empty component
is created. This greedy procedure guarantees that every component (except for the one
containing the root) has between M and 3M − 4 nodes. See Geary et al. [14, Sec. 2.1] for
more details.

In our solution we use a simple variant of this covering procedure. We fix M to be log u
ϵ

and we use the greedy procedure above with the only difference that every node i has an
encoding cost which equals the size of encoding w(π(i), i), where π(i) is the parent of i. We
build our components to have a cost bounded by M . This way, we can control the size of the
encoding of each subtree, which is between log u

ϵ bits and 3 log u
ϵ + 2 log u bits. We now need

to δ-encode the weights w of a subtree one after the other by following an ordering (specified
later) which is suitable for solving queries efficiently. Our goal is, given a node v represented
in pre-order, to compute the sum from tree’s root to node v. This is solved by summing up:
i) the sum from the tree’s root to the root of the subtree containing v; ii) the sum of the
weights on the path from the subtree’s root to node v. Geary et al. [14, Sec. 4.3] show how
to find the pre-order number of the root of the subtree containing v in constant time and
o(n) bits of space. This index can be used to access a vector containing the sum mentioned
at point (i). Point (ii) is computed in O( 1

ϵ ) time in a way similar to what we have done for
arrays. We split the representation of a subtree into O( 1

ϵ ) subblocks and use tables storing
precomputed answers to all the possible subblocks representations. However, the solution
here is more involved than the one we used for arrays because we need to compute the sum
only of some of the elements of a subblock, i.e., those elements that belong to the query
path, and exclude the other elements. This can be done by using a mask that marks the
elements belonging to the query path. Given the representation of a subblock and a mask,
a precomputed table returns the sum of the marked elements only. The main issue is now
to compute the required mask. This can be done by splitting the subtree into subsubtrees
whose encoding takes between 1

12 log u bits and 1
4 log u bits. This is done by using once again

the covering procedure described above. We δ-encode the elements in these subsubtrees
by visiting nodes in BFS order. We also need to store the topology of each subsubtree.
To do that, we can use a balanced sequence representation of each subsubtree so that we
need 2n + o(n) bits overall. Observe that each subsubtree has at most 1

4 log u nodes. Thus,
its balanced parentheses representation always takes at most 1

2 log u bits and we can use a
table of size O(u 1

2 log2 u) bits that, given a subsubtree topology ( 1
2 log u bits) and a node

represented as a pre-order position in the subsubtree topology (O(log log u) bits), returns the
required mask, i.e., a mask of 1

4 log u bits that marks only nodes on the path from the root
to the node. Another table of size O(u 1

2 log u) bits is used to, given any possible combination
of the delta-encoded weights of a subsubtree (at most 1

4 log u bits) and any possible mask
(at most 1

4 log u bits), return the sum of the marked elements only. Note that to perform
the above operations we need, given a pre-order node v, to obtain (a) the packed balanced
parentheses sequence representation of the subsubtree containing v and (b) the pre-order
position of v within its subsubtree. Information (a) can be obtained as done above by using
the procedure described by Geary et al. [14, Sec. 4.3]: we locate the pre-order number of
the root of the subsubtree and use it as index in an array containing the packed balanced
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sequence representations of the subsubtrees (O(n) bits of space). In the same section, Geary
et al. [14, Sec. 4.3] show also how to obtain information (b) in constant time and o(n) bits
of additional space. Finally note that, as done in the previous section, we can replace the
size 1

4 log u of the subsubtrees by 1
c log u for any constant c ≥ 1 and obtain the claimed space

bound.

3.3 Adding the dBg Topology
In this section we discuss how to combine a simplified (and practical) variant of the data
structure of Corollary 5 with the BOSS de Bruijn graph representation of Bowe et al. [3].
Our final data structure represents a weighted de Bruijn graph in compressed space and
supports computing the abundance of any given input k-mer. In Section 4 we present
experimental results based on our data structure. Our implementation is available at
https://github.com/nicolaprezza/cw-dBg/.

Let n and m be the number of nodes and edges of the input de Bruijn graph G, respectively.
First of all, we compute a branching T of G minimizing measure gap±(T ). This can be
achieved using Gabow et al.’s optimized version [13] of Edmonds’ algorithm [9], running in
O(m + n log n) time.

The second step is to observe that, by definition of branching, its topology is embedded in
the topology of the de Bruijn graph. Consider the list ŝ1, . . . , ŝn of the n nodes of the de Bruijn
graph sorted by the co-lexicographic order of their corresponding k-mers. Note that this is
precisely the order in which nodes are stored in the BOSS representation [3]. Let e1

i , . . . , eti
i

be the ti incoming edges of node ŝi, and consider the list e1, . . . , em = ⟨e1
i , . . . , eti

i ⟩i=1,...,n of
all the m edges in the graph, sorted by their target node. We keep one bitvector IN_B[1, m]
marking the edges, in the above order, that are included in the branching. It is clear that
the topology of the de Bruijn graph, combined with bitvector IN_B, fully specifies the
topology of the branching. Importantly, we observe that de Bruijn graphs are usually very
sparse, i.e., m ≈ n. This implies that IN_B is composed mostly of bits equal to 1, thus
its zero-order entropy ⌈log

(
m
n

)
⌉ is likely to be very small. We thus store IN_B with the

zero-order compressed representation of Raman et al. [32], supporting constant-time rank
and select queries.

The third step is to build a simplified version of the structure of Corollary 5 over each
arborescence of the branching. We do this as follows. Given a parameter ρ (the sample
rate), 1 ≤ ρ ≤ n, we use the tree covering procedure of Geary et al. [14, Sec. 2.1] to
decompose each arborescence into Θ(n′/ρ) subtrees of O(ρ) nodes each, where n′ is the
number of nodes of the arborescence. We furthermore explicitly store the abundances of the
subtree’s roots in a vector, sorting them by the order in which nodes appear in the BOSS
data structure (that is, by the co-lexicographic order of their corresponding k-mers). The
sampled abundances take O(( n

ρ + t) log u) bits, where t is the number of arborescences. An
additional zero-order compressed bitvector marks sampled nodes. Using the representation
of Raman et al. [32], this bitvector takes O(( n

ρ + t) log ρ) + o(n) bits and supports access,
rank, and select operations in constant time.

We store the weight of each edge of T (that is, the difference between the abundances
of its endpoint k-mers) using a version of Elias’ gamma encoding supporting fast random
access queries. First, we convert each (possibly negative) weight w into a positive integer
w′ ≥ 1 using the formula

w′ =
{

−2w, if w < 0
2w + 1, otherwise
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In practice, using the above conversion, rather than storing explicitly the sign of w in
a separate bitvector, has an important practical advantage, as the minimum branching
algorithm compresses also the sign of the weights. Indeed, we observed experimentally that
this choice compresses each sign to about 0.3 bits on average (rather than 1 bit per sign
required when storing them in a plain bitvector). The random access gamma-compressed
weights are implemented as follows. We concatenate the binary representation of each w′

(devoid of its most significant bit) in an uncompressed bitvector X, and its length in unary
in a bitvector Y (for example: w′ = 27 would be encoded as 1011 in X and 10000 in Y ). We
compress Y using the representation of Raman et al. [32]. The i-th weight can be extracted
from this representation in O(1) time with one select operation on Y and one packed access
operation on X. Since we compress Y , it is not hard to see that our representation takes
at most gap±(T ) + O(n log log(u/n)) bits of space. Finally we mention that, in order to
achieve further compression, we used the compressed bitvector of Raman et al. [32] also to
implement the components of the BOSS representation [3].

Let s be a k-mer. To retrieve its abundance, we do the following:
1. We use the de Bruijn graph representation to retrieve the node ŝ (in the BOSS repre-

sentation, a position in the Burrows-Wheeler transform of the graph) corresponding to
s. This step takes O(k) time via the backward search algorithm (see [3] for full details)
since we assume constant-sized DNA alphabet Σ = {A, C, G, T }.

2. Starting from ŝ, we move upward towards the root of the tree containing ŝ in the branching,
stopping as soon as a sampled node ŝ′ is found (that is, a node whose abundance has been
stored explicitly). Each move in the tree is implemented with a constant-time application
of the FL function [3]. Along the walk, we sum the abundance of the sampled node ŝ′ to
the weights of the edges on the path connecting ŝ′ with ŝ. Overall, this step takes O(ρ)
time.

Observe that Step 1 can be avoided if we are already given the representation of a node
in the de Bruijn graph (for example, if we are navigating it). Now we can also explain why
we use a branching instead of a minimum spanning undirected forest. With a branching,
the parent of node ŝ (in its corresponding arborescence) is always one of its incoming edges
(precisely, the one marked in bitvetor IN_B). With an undirected spanning forest, instead, the
parent of node ŝ could be one of its outgoing edges; this would force us to use an additional
bitvector, increasing the overall space and slowing down operations.

To sum up, our implementation offers the following trade-offs. Let G be a de Bruijn
graph with m edges and n nodes, w(̂i, ĵ) = c(̂i) − c(ĵ) be the weight associated with each
edge (̂i, ĵ) of G, where c(̂i) is the abundance of node î, T = (V, E) be a branching of G

with t connected components minimizing measure gap±(T ) =
∑

(̂i,ĵ)∈E⌈log(|w(̂i, ĵ)| + 1)⌉,
u =

∑
(̂i,ĵ)∈E |w(̂i, ĵ)|, and 1 ≤ ρ ≤ n be the user-defined sample rate. Our data structure

uses gap±(T ) + O
(

n log log(u/n) +
(

n
ρ + t

)
log u

)
+ log

(
m
n

)
bits on top of the compressed

BOSS representation [3] and allows us to retrieve:
(1) the abundance of a given k-mer s ∈ Σk in O(k + ρ) time, and
(2) the abundance of a given node in the de Bruijn graph (represented as a position in BOSS)

in O(ρ) time.

Note that, in practice, ρ is usually chosen to be ρ ≫ k (in our experiments, ρ = 64 and
k = 28) so the two query times are not expected to differ much in practical applications.

Our experiments (see next section) highlight that, in practice, the number t of arbores-
cences is negligible compared to the size of the graph.
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4 Experiments

In order to get a feeling of its practical value, we implemented a first preliminary version of
our compressed representation of weighted de Bruijn graphs. In the following, we refer to
this implementatio as cw-dBg; its code is available at https://github.com/nicolaprezza/
cw-dBg.

Tools. We ran cw-dBg on four datasets and compared the results obtained against the
state-of-the-art algorithms for this problem: Squeakr [29], deBGR [27], and the very recent tool
fress [33] which appeared online in November 2020. Both Squeakr and deBGR are based on
the so-called counting quotient filter (CQF) data structure [28]. Squeakr supports two modes:
approximate and exact. When run in exact mode, the k-mers are inserted in the CQF using
an invertible 2k-bit hash function. In approximate mode, Squeakr uses a p-bit hash function,
with p ≤ 2k, and thus can have false positives with an error rate depending on the chosen
p. deBGR is based on Squeakr and builds an approximate data structure with smaller error
rate by increasing the space complexity of approximate Squeakr by just 18% − 20%. Finally,
fress [33] implements an approximate data structure called Set-Min sketch, inspired by the
Count-Min sketch data structure [6], that takes advantage of the power-law distribution of
the k-mer counts to reduce both the error rate of the returned results and the space usage
(by an entropy-compression mechanism). Similarly to Count-Min sketch, Set-Min sketch uses
several hash functions to map a given k-mer to sketches of its abundance; at query time,
the abundance of the k-mer is computed by combining the retrieved sketches. As shown by
the authors, Set-Min sketch is more space-efficient than minimal perfect hash functions and
provides better error guarantees compared to equally-dimensioned Count-Min sketches.

Datasets. We selected datasets to cover applications that could be as widely different as
possible. In particular, we tested the above tools against the following datasets:

IAVs Inf. 1 (1.2Gbp) and IAVs Inf. 2 (578Mbp) are samples from the dataset presented in
[1] of human lung cells infected by Influenza A viruses (IAVs) and correspond to a sample
of 10 millions reads and a sample of 4, 814, 148 reads from chromosome 2, respectively.
E. coli (2.3Gbp) consists of 22, 720, 100 Illumina reads of E. Coli K-12 strain MG1655
(available in the ENA repository under the following study: PRJEB2323, https://www.
ebi.ac.uk/ena/browser/view/ERR022075).
Human (6.5Gbp) consists of 63, 917, 134 Illumina reads of human RNA (available in the
ENA repository under the following study: PRJNA609878, https://www.ebi.ac.uk/
ena/browser/view/SRX7829390).

Experimental settings. The experiments were carried out on a single core of an 8-core Intel
i9-9900K server with 64 GB of RAM and running Linux 5.4.0, 64 bits. Our code is written
in C++ and compiled with gcc 9.3.0.

As deBGR assumes k-mers of size 28 (which cannot be changed), for consistency we also
used this value in all our experiments for all tools. Table 1 reports some characteristics of
the datasets. Notice that, as it was previously mentioned, the number of arborescences is
very small, when compared to the size of the graph, and thus negligible in practice. We used
sample rate ρ = 64 for cw-dBg.

deBGR and Squeakr (the latter both in its approximate and exact version) were run using
only 1 thread. When running deBGR, the user needs to specify two parameters related to the
log of the number of slots in the counting quotient filter. The CQF size argument is estimated
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Table 1 Characteristics of the de Bruijn graph resulted from each of the dataset for k-mers of
size 28. The columns correspond to: number of bases and number of distinct k-mers in the dataset,
number of edges and number of arborescences in the de Bruijn graph, average and max abundance
of the k-mers and the total number of distinct abundances in the dataset (which influences fress’
space).

Dataset # bases # k-mers # edges # Arb. Avg ab. Max ab. # ab.
IAVs Inf. 1 1,200,000,000 57,629,309 65,880,010 259 16.14 607,028 13,452
IAVs Inf. 2 577,697,760 34,914,869 41,295,094 100 12.82 55,110 9,007
E. coli 2,317,450,200 87,414,957 281,845,871 1 19.49 8,520,260 2,657
Human 6,455,630,534 362,818,017 463,413,958 1226 13.04 11,054,076 21,472

using the lognumslots.sh script provided by the authors and corresponds approximately to
the log of the number of k-mers. The exact CQF size argument is estimated as 20% less
then the CQF size (personal communication with the authors of deBGR).

Finally, fress is an approximate tool and allows to specify a parameter related to the
error rate: in our experiments, we ran it using an error rate of ϵ = 0.01, as used in fress’
paper [33]. Notice that the error rate estimates the expected number of collision which could
possibly lead to output a wrong abundance. An error rate of 0.01 means that in N queries,
the number of expected collisions in the hash table is ϵN .

Experimental results. In Table 2 we present the detailed space required by our representation
for each of the datasets considered, while Table 3 reports the space usage of all the tools
considered.

The bit/k-mer of each component in Tables 2 and 3 were computed using the number
of distinct k-mers over the alphabet {A, C, G, T } present in the original dataset. We note
that this is not the same calculation performed by Bowe et al. [3] when estimating the size
of their BOSS representation: in that case, the authors divide by the number of edges in
the de Bruijn graph when also including dummy (that is, left-padded) k-mers, obtaining
roughly 4 bits per edge. In fact, the two values (number of edges and number of k-mers) are
close to each other only when the number of dummy k-mers is small (which is not always
the case, as explained below). We believe that dividing the total bit-size by the number
of distinct k-mers appearing in the dataset is more general, since it applies to any k-mer
counting data structure like the ones shown in Table 3. Notice that for this reason in Table
2 the space reported for the BOSS representation of the E. coli dataset is larger than the
typical 4 bit/edge reported by the authors of BOSS [3] as the number of dummy k-mers for
this dataset is significantly large (approximately equal to the number of distinct k-mers).

The results in Table 2 and Table 3 show that our representation uses at most 4.75
bit/k-mer (and as little as 1.42 bit/k-mer) to encode the abundances. Even when adding the
BOSS representation (required to map k-mers to their corresponding abundances), we obtain
at most 12.64 bit/k-mer (and as little as 4.14 bit/k-mer) while the exact version of Squeakr
uses 83.26 bit/k-mer in the best scenario. In almost all our experiments cw-dBg required
substantially much less space, an by several orders of magnitude, than all the other tools.
The only exception occured in the E. coli dataset, where fress performed slightly better than
cw-dBg by using 10.95 bit/k-mer (versus 12.64 bit/k-mer of cw-dBg).

We stress out, however, that fress achieves this slight space saving at the cost of returning
a wrong abundance 1% of the times in the worst case. Indeed, if its error rate is lowered from
0.01 to 0.005, fress uses 14.6 bit/k-mer on this dataset. The efficiency of fress on this dataset
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Table 2 The space required for each dataset by our representation of the weighted de Bruijn
graph. The columns correspond to: the size of the file containing the final representation, the space
required by the BOSS representation of the de Bruijn graph; the space required by the compressed
abundances divided in the space required by the delta-compressed weights (stored on the edges of the
branching) and the one for the branching topology and the sampled abundances on the root of each
subtree; the total space required by our representation and the average query time in microseconds
for retrieving the abundance of a given k-mer (represented as a string). Space is measured in bits
per distinct k-mer (see Table 1) and we used sample rate ρ = 64.

Final BOSS Compressed ab. (bit/k-mer) Total size Query time
Dataset size (MB) (bit/k-mer) weights branching total (bit/k-mer) (µs/query)
IAVs Inf. 1 29 2.73 0.95 0.48 1.43 4.15 47.56
IAVs Inf. 2 20 2.87 1.19 0.53 1.72 4.59 44.24
E. coli 132 7.88 2.93 1.82 4.75 12.64 62.34
Human 223 3.14 1.40 0.61 2.01 5.14 67.42

Table 3 For each dataset we report the space required for the representation of the weighted de
Bruijn graph by each of the considered tools.

IAVs Inf. 1 IAVs Inf. 2 E. coli Human
MB bit/k-mer MB bit/k-mer MB bit/k-mer MB bit/k-mer

cw-dBg 29 4.15 20 4.59 132 12.64 223 5.14
Squeakr approx. 325 47.19 179 42.80 325 31.11 1126 24.05
Squeakr exact 965 140.40 499 119.75 965 92.57 3686 83.26
deBGR 912 132.46 376 89.55 912 87.32 5529 119.00
fress 733 106.56 135 32.35 115 10.95 733 16.90

is explained by the fact that the number of distinct k-mer abundances is much smaller than
in the other three datasets (see Table 1). This is clearly the case where we expect fress to
work well, as it fully takes advantage of the power-law distribution of the abundances by
entropy-compressing their values.

Finally, we estimated the average query time of cw-dBg, by querying a set of 5, 000
randomly chosen 28-mers. The largest measured query time for cw-dBg on our machine
was 67.42 µs/query on the Human dataset (see Table 2 for the query times on all datasets).
As expected, hash-based data structures have better query time: on the same Human
dataset, Squeakr answers queries in average 0.19 µs/query using 1 thread. However, as we
discussed before, hash-based structures have a much higher space usage, in addition to being
approximate. The exact variant of Squeakr uses orders of magnitude more space than cw-dBg.

5 Conclusions and open problems

We propose a new compressed representation for weighted de Bruijn graphs based on the idea
of delta-encoding the variations of k-mer abundances on a spanning branching of the graph.
As a by-product of independent interest, we exhibit efficient compressed data structures for
answering partial sums on edge-weighted trees.

We show both theoretically and experimentally that our approach uses significantly less
memory than the one used by the state-of-the-art exact representations. Our de Bruijn graph
representation is general, in other words it is not restricted by the application (e.g., variation
finding or RNA-seq), and can be used as part of any algorithm that represents NGS data
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with de Bruijn graphs. Future extensions will include implementing a strategy similar to
the one used by fress in order to take advantage of the small number of distinct abundance
observed in practice. The basic idea is to use a table storing all the distinct abundances
sorted and, for each node, encode its abundance’s offset in the table with our data structure
(that is, storing the deltas of these offsets rather than of the original abundances). We also
plan to integrate our structure in a usable bioinformatics tool.
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Optimal Construction of Hierarchical Overlap
Graphs
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Abstract
Genome assembly is a fundamental problem in Bioinformatics, where for a given set of overlapping
substrings of a genome, the aim is to reconstruct the source genome. The classical approaches
to solving this problem use assembly graphs, such as de Bruijn graphs or overlap graphs, which
maintain partial information about such overlaps. For genome assembly algorithms, these graphs
present a trade-off between overlap information stored and scalability. Thus, Hierarchical Overlap
Graph (HOG) was proposed to overcome the limitations of both these approaches.

For a given set P of n strings, the first algorithm to compute HOG was given by Cazaux and
Rivals [IPL20] requiring O(||P || + n2) time using superlinear space, where ||P || is the cumulative
sum of the lengths of strings in P . This was improved by Park et al. [SPIRE20] to O(||P || log n) time
and O(||P ||) space using segment trees, and further to O(||P || log n

log log n
) for the word RAM model.

Both these results described an open problem to compute HOG in optimal O(||P ||) time and space.
In this paper, we achieve the desired optimal bounds by presenting a simple algorithm that does
not use any complex data structures. At its core, our solution improves the classical result [IPL92]
for a special case of the All Pairs Suffix Prefix (APSP) problem from O(||P || + n2) time to optimal
O(||P ||) time, which may be of independent interest.
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1 Introduction

Genome assembly is one of the oldest and most fundamental problems in Bioinformatics [21].
Due to practical limitations, sequencing an entire genome as a single complete string is not
possible, rather a collection of the substrings of the genome (called reads) are sequenced.
The goal of a sequencing technology is to produce a collection of reads that cover the entire
genome and have sufficient overlap amongst the reads. This allows the source genome
to be reconstructed by ordering the reads using this overlap information. The genome
assembly problem thus aims at computing the source genome given such a collection of
overlapping reads. Most approaches of genome assembly capture this overlap information
into an assembly graph, which can then be efficiently processed to assemble the genome. The
prominent approaches use assembly graphs such as de Bruijn graphs [22] and Overlap graphs
(also called string graphs [17]), which have been shown to be successfully used in various
practical assemblers [28, 3, 18, 2, 23, 24].
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The de Bruijn graphs are built over k length substrings (or k-mers) of the reads as nodes,
and arcs denoting k − 1 length overlaps among the k-mers. Their prominent advantage
is that their size is linear in that of the input. However, their limitations include losing
information about the relationship of k-mers with the reads, and in general not being able
to represent overlaps of size other than k − 1 among the reads (except [7, 5, 4]). On the
other hand, Overlap graphs have each read as a node, and edges between every pair of nodes
represent their corresponding maximum overlap. In practice, only the edges having certain
threshold value of overlap are considered. Though they store more overlap information than
de Bruijn graphs, they do not maintain whether two pairs of strings have the same overlap.
Moreover, they are inherently quadratic in size in the worst case, and computing the edge
weights (even optimally [13, 26, 16]) is difficult in practice for large data sets.

As a result, Hierarchical Overlap Graphs (HOG) were proposed in [9, 10] as an alternative
to overcome such limitations of the two types of assembly graphs. The HOG has nodes
for all the longest overlaps between every pair of strings, and edges connecting strings to
their suffix and prefix, using linear space. Note that Overlap graphs have edges representing
longest overlaps between strings requiring quadratic size, whereas HOG has additional nodes
for longest overlaps between strings requiring linear size by exploiting pairs of strings having
the same longest overlaps. Thus, it is a promising alternative to both de Bruijn graph and
Overlap graph to better solve the problem of genome assembly. Also, since it maintains
if two pairs of strings have the same overlap, it also has the potential to better solve the
approximate shortest superstring problem [27] having applications in both genome assembly
and data compression [25, 6]. Some applications of HOG have been studied in [9, 8].

Cazaux and Rivals [10] presented the first algorithm to build HOG efficiently. They
showed how HOG can be computed for a set of n strings P in O(||P || + n2) time, where
||P || represents the cumulative sum of lengths of strings in P . However, they required
O(||P ||+ n×min(n, maxp∈P |p|)) space, which is superlinear in input size. Park et al. [20]
improved it to O(||P || log n) time requiring linear space using Segment trees [11], assuming
a constant sized character set. For the word RAM model, they further improved it to
O(||P || log n

log log n ) time. For practical implementation, both these results build HOG using an
intermediate Extended HOG (EHOG) which reduces the memory footprint of the algorithm.
In both the results, the bottleneck is solving a special case of All Pairs Suffix Prefix (APSP)
problem. Given a set P of n strings, the goal of the APSP problem is to compute the
maximum overlaps between every pair of strings. This classical problem was optimally solved
by Gusfield et al. [13] using O(||P || + n2) time and O(||P ||) space, where the solution is
reported for the n2 pairs. However, for computing HOG we only require the set of maximum
overlaps, and not their association with the corresponding pairs of strings, making the result
suboptimal due to the extra O(n2) factor. Also, both these results [10, 20] mentioned as an
open problem the construction of HOG using optimal O(||P ||) time and space. We answer
this open question positively and solve the special case of APSP optimally as follows.

▶ Theorem 1 (Optimal HOG). For a set of strings P , the Hierarchical Overlap Graph can be
computed using O(||P ||) time and space.

Moreover, unlike [20] our algorithm does not use any complex data structures for its
implementation. Also, we do not assume any limitations on the character set. Finally,
like [10, 20] our algorithm can also use EHOG as an intermediate step for improving memory
footprint in practice. Note that the size EHOG and HOG can even be identical for some
instances, but their ratio can tend to infinity for some families of graphs [10]. Thus, despite
the existence of optimal algorithm for computing EHOG, an optimal algorithm for computing
HOG is significant from both theoretical and practical viewpoints.
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Note. Another result [19] simultaneously achieve the same optimal bound by reducing the
problem to computing borders [15]. However, our result is simpler and more self-contained.

Outline of the paper. We first describe notations and preliminaries that are used in our
paper in Section 2. In Section 3, we briefly describe the previous approaches to compute HOG.
Thereafter, Section 4 describes our core result in three stages for simplicity of understanding,
each building over the previous, to give the optimal algorithm. Finally, we present the
conclusions in Section 5.

2 Preliminaries

Given a finite set P = {p1, ..., pn} of n non-empty strings over a finite set of characters, we
denote the size of a string pi by |pi| and the cumulative size of P by ||P || =

∑n
i=1 |pi| (≥ n

as strings are not empty). For a string p, any substring that starts from the first character of
p is called a prefix of p, whereas any substring which ends at the last character of p is called
a suffix of p. A prefix or suffix of p is called proper if it is not same as the whole p. For an
ordered pair of string (p1, p2), a string is called their overlap if it is both a proper suffix of p1
and a proper prefix of p2, where ov(p1, p2) denotes the longest such overlap. Also, for the
set of strings P , Ov(P ) denotes the set of all ov(pi, pj) for 1 ≤ i, j ≤ n. An empty string is
denoted by ϵ. We also use the notions of HOG, EHOG and the Aho-Corasick trie as follows.

▶ Definition 2 (Hierarchical Overlap Graph [10]). Given a set of strings P = {p1, · · · , pn},
its Hierarchical Overlap Graph is a directed graph H = (V, E), where

V = P ∪Ov(P ) ∪ {ϵ} and E = E1 ∪ E2, having
E1 = {(x, y) : x is the longest proper prefix of y in V } as tree edges, and
E2 = {(x, y) : y is the longest proper suffix of x in V } as suffix links.

The extended HOG of P (referred as E) is also similarly defined [10], having additional
nodes corresponding to every overlap (not just longest) between each pair of strings in
P , with the same definition of edges. The construction of both these structures uses the
Aho-Corasick Trie [1] which is computable in O(||P ||) time and space. The Aho-Corasick Trie
of P (referred as A) contains all prefixes of strings in P as nodes, with the same definition
for edges. All these structures are essentially trees having the empty string ϵ as the root, and
the strings of P as its leaves. A tree edge (x, y) is labelled with the substring of y not present
in x. Hence, despite being a graph due to the presence of suffix links (also called failure
links), we abuse the notions used for tree structures when applying to A, E or H (ignoring
suffix links). Also, while referring to a node v of A, E or H, we represent its corresponding
string with v as well.

Consider Figure 1 for a comparison of A, E and H for P = {aabaa, aadbd, dbdaa}. Since
A contains all prefixes as nodes, the tree edges have labels of a single character. However,
E contains all overlaps among strings of P , so it can potentially have fewer internal nodes
({a, aa, db, dbd}) than A. Further, H contains only longest overlaps so it can potentially have
even fewer internal nodes ({aa, dbd}).

Now, to compute E or H one must only remove some internal nodes from A and adjust
the edge labels accordingly. This requires the computation of all overlaps among strings in P

for E , which is further restricted to only the longest overlaps for H. For a string pi ∈ P (leaf
of A), all its prefixes are its ancestors in A, whereas all its suffixes are on the path following
the suffix links from it (referred as suffix path). Thus, every internal node is implicitly the
prefix of its descendant leaves, and to be an overlap it must merely be a suffix of some string

CPM 2021
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Figure 1 Given P = {aabaa, aadbd, dbdaa}, the figure shows from left to right the Aho-Corasick
Trie (A), Extended Hierarchical Overlap Graph (E) and Hierarchical Overlap Graph (H) of P .

in P [27]. Hence to compute internal nodes of E (or overlap) from A one simply traverses
the suffix paths from all the leaves of A, and remove the non-traversed internal nodes (see
Figure 1). However, to compute H from A (or E) we need to find only the longest overlaps,
which is equivalent to solving a special case of the APSP problem, requiring only the set
of all maximum overlaps. We use the following criterion (also used by [13]) to identify the
internal nodes of H.

▶ Lemma 3 ([13]). An internal node v in A (or E) of P , is ov(pi, pj) for two strings
pi, pj ∈ P iff v is an overlap of (pi, pj) and no descendant of v is an overlap of (pi, pj).

Proof. The ancestor of a node v in A is its proper prefix and hence is shorter than v. Since
two internal nodes of A which are both overlaps of (pi, pj), are prefixes of pj and hence have
an ancestor-descendant relationship, where the descendant is longer in length. Thus, the
longest overlap ov(pi, pj) cannot have a descendant which is an overlap of (pi, pj). ◀

Hence to compute Ov(P ) (or nodes of H), we need to check each internal node v if it is
the lowest overlap (in A) for some pair (pi, pj). This implies that v is a suffix of some pi,
such that for some descendant leaf pj , no suffix of pi is on path from v to pj (see Figure 1).

3 Previous results

Cazaux and Rivals [10] were the first to study H, where they used E [8] as an intermediate step
in the computation of H. They showed that E can be constructed in O(||P ||) time and space
from A [1], which itself is computable in O(||P ||) time and space. In order to compute H,
the main bottleneck is the computation of Ov(P ) (i.e. solving APSP), after which we simply
remove the internal nodes not in Ov(P ) from E (or A), in O(||P ||) time and space. They gave
an algorithm to compute Ov(P ) in O(||P ||+ n2) time using O(||P ||+ n×min(n, max{|pi|}))
space. This procedure was recently improved by Park et al. [20] to require O(||P || log n)
time and O(||P ||) space using segment trees, assuming constant sized character set. For the
word RAM model they further improve the time to O(||P || log n

log log n ). The main ideas of the
previous results can be summarized as follows.

Computing Ov(P ) in O(||P || + n2) time [10]

The algorithm computes Ov(P ) by considering the internal nodes in a bottom-up manner,
where a node is processed after its descendants. Firstly, for each internal node u, they
compute the list Rl(u) (called Lu in our algorithm) of all leaves having u as a suffix. Now,
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while processing a node u, they check whether u = ov(v, x), i.e., u is a suffix of some leaf v

such that the path to at least one of u’s descendant leaf (say x) does not have a suffix of v.
To perform this task, they maintain a bit-vector for all leaves (suffix v), which is marked if no
such descendant path exists from u for such leaves. For a leaf v, the bit is implicitly marked
if all children of u have the bit for v marked. Otherwise, if v ∈ Rl(u) it is marked adding u

to H, else left unmarked. The space requirement is dominated by that of this bit-vector, and
it is computed only for the branching nodes, taking total O(||P ||+ n2) time.

Computing Ov(P ) in O(||P || log n) time [20]

The algorithm firstly orders the strings in P lexicographically in O(||P ||) time (requires
constant sized character set). This allows them to define an interval of leaves which are
the descendants of each internal node in E . Now, for each leaf v (suffix) they start with an
unmarked array corresponding to all leaves (prefix). Then starting from v they follow its
suffix path and at each internal node u, check if some descendant leaf x (prefix) is unmarked.
In such a case u = ov(v, x) and hence u is added to H. Before moving further in the next
suffix path the interval corresponding to all the descendant leaves (prefix) of u is marked in
the array. Since both query and update (mark) over an interval can be performed in O(log n)
time using a segment tree, the total time taken is O(||P || log n) using O(||P ||) space.

4 Our algorithm

Our main contribution is an alternative procedure to compute Ov(P ) in O(||P ||) time and
space which results in an optimal algorithm for computing H for P in O(||P ||) time and space.
Our overall approach is similar to that of the original algorithm [10] with the exception of a
procedure to mark the internal nodes that belong to H, i.e., MarkH. The algorithm except
for the procedure MarkH takes O(||P ||) time and space (also shown in [10]). We describe
our algorithm for MarkH in three stages, first for a single prefix leaf requiring O(||P ||) time,
and then for all prefix leaves requiring overall O(||P ||+ n2) time, and finally improving it to
overall O(||P ||) time, which is optimal. The algorithm can be applied to any of A or E , both
computable in O(||P ||) time and space.

Note: The second stage of our algorithm is equivalent to [13], and achieves the same bounds
as [10] for computing H, though using a simpler technique and linear space.

4.1 Outline of Approach
We first describe our overall approach in Algorithm 1. After computing A, for each internal
node v, we compute the list Lv of all the leaves having v as its suffix. As described earlier,
this can be done by following the suffix path of each leaf x, adding x to Ly for every internal
node y on the path. Using this information of suffix (in Lv) and prefix (implicit in A) we
mark the nodes of A to be added in the HOG H. We shall describe this procedure MarkH
later on. Thereafter, in order to compute H we simply merge the unmarked internal nodes of
A with its parents. This process is carried on using a DFS traversal of A (ignoring suffix links)
where for each unmarked internal node v, we move all its edges to its parent, prepending
their labels with the label of the parent edge of v.

As previously described, A can be computed in O(||P ||) time and space [1]. Computing
Lv for all v ∈ A requires each leaf pi to follow its suffix path in O(|pi|) time, and add pi to
at most |pi| different Ly, requiring total O(||P ||) time for all pi ∈ P . This also limits the

CPM 2021
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Algorithm 1 Hierarchical Overlap Graphs.

A ← Aho-Corasik Trie of P // Trie with suffix links

foreach internal node v of A do Lv ← ∅ // List of leaves with suffix v

foreach leaf x of A do // Compute all Lv

y ← Suffix link of x in A
while y ̸= ϵ do // ϵ is the root of A

Add x to Ly

y ← Suffix link of y in A

inH ←MarkH(A,L) // Procedure to mark nodes of H in flags inH

foreach node v ∈ A in DFS order do // Compute H
if inH[v] = 0 then Merge v with its parent

Figure 2 Overlaps of v with all leaves, where c = ov(x, v) and b = ov(z, v) are in Ov(P ).

size of Lv for all v ∈ A to O(||P ||). Since merge operation on a node v requires O(deg(v))
cost, computing H using inH requires total O(|A|) = O(||P||) time as well. Thus, we have
the following theorem (also proved in [10]).

▶ Theorem 4. For a set of strings P , the computation of Hierarchical Overlap Graph except
for MarkH operation requires O(||P ||) time and space.

4.2 Marking the nodes of H
We shall describe our procedure to mark the nodes of H in three stages for simplicity of
understanding. First, we shall describe how to mark all internal nodes representing all
longest overlaps ov(·, v) from a single leaf v (prefix) in A, using O(||P ||) time. Thereafter, we
extend this to compute such overlaps from all leaves in A together using O(||P ||+ n2) time
(equivalent to [13]). Finally, we shall improve this to our final procedure requiring optimal
O(||P ||) time. All the three procedures require O(||P ||) space.

Marking all nodes ov(·, v) for a leaf v

In order to compute all longest overlaps of a leaf v (see Figure 2), we need to consider all
its prefixes (ancestors in A) according to Lemma 3. Here the internal nodes a, b and c are
prefixes of v and also suffixes of x, whereas z only has suffixes a and b. Thus, we have
La = Lb = {x, z} and Lc = {x}. Thus, given that a, b and c are ancestors of v, a and b are
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valid overlaps of (x, v) and (z, v), whereas c is only a valid overlap of (x, v). Using Lemma 3,
for being the longest overlap of a pair of strings, no descendant should be an overlap of the
same pair of strings. Hence, c = ov(x, v) and b = ov(z, v), but a is not the longest overlap
for any pair of strings because of b and c. Processing Lu for all nodes on the ancestors of the
leaf (prefix) requires O(||P ||) time. Thus, a simple way to mark all the longest overlaps of
strings with prefix v in O(||P ||) time, is as follows:

MarkH for ov(·, v):
Traverse the ancestral path of v from the root to v, storing for each leaf x of A the last
internal node y having x in Ly. On reaching v, mark the stored internal nodes for each x.

Algorithm 2 MarkH(A, L).

foreach internal node v of A do inH[v]← 0 // Flag for membership in H
foreach leaf v of A do inH[v]← 1 // Leaves implicitly in H
inH[ϵ]← 1 // Root implicitly in H

foreach leaf v of A do Sv ← ∅ // Stack of exposed suffix

foreach node v ∈ A in DFS order do // Compute all inH[v]
if internal node v first visited then

foreach leaf x in Lv do Push v on Sx // Expose v on stacks of Lv

if internal node v last visited then
foreach leaf x in Lv do Pop v from Sx // Remove v from stacks of Lv

if leaf v visited then
foreach leaf node x do

if Sx ̸= ∅ then
inH[Top of Sx]← 1 // Mark ov(x, v)

Return inH

Marking all nodes in Ov(P )

We now describe how to perform this procedure for all leaves (prefix) together (see Algorithm 2)
using stacks to keep track of the last encountered internal node for each leaf (suffix). The
main reason behind using stacks is to avoid processing Lu multiple times (for different
prefixes). For each internal node, we initialize the flag denoting membership in H to zero,
whereas the root and leaves of A are implicitly in H. For each leaf (suffix) we initialize an
empty stack. Now, we traverse A in DFS order (ignoring suffix links). As in the case for
single leaf (prefix), the stack Sx maintains the last internal node v containing a leaf x (suffix)
in Lv. This node v is added to the stack Sx of the leaf x (suffix) when v is first visited by the
traversal, and removed from the stack Sx when it is last visited. This exposes the previously
added internal nodes on the stack. Finally, on visiting a leaf v (prefix), each non-empty stack
Sx of a leaf x (suffix) exposes the internal node last added on its top, which is the longest
overlap ov(x, v) by Lemma 3. We mark such internal nodes as being present in H. The
correctness follows from the same arguments used for the first approach.

CPM 2021
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In order to analyze the procedure we need to consider the processing of Lv and Sx for all
v, x ∈ A, in addition to traversing A. Since the total size of all Lv is O(||P ||), processing it
twice (on the first and last visit of v) requires O(||P ||) time. This also includes the time to
push and pop nodes from the stacks, requiring O(1) time while processing Lv. However, on
visiting the leaf (prefix) by the traversal, we need to evaluate all Sx and mark the top of
non-empty stacks. Since we consider n leaves (prefix), each processing all stacks of n leaves
(suffix), we require O(n2) time. For analyzing size, we need to consider only Sx in addition
to Lv. Since the nodes in all Sx are added once from some Lv, the total size of all stacks Sx

is bounded by the size of all lists Lv, i.e. O(||P ||) (as proved earlier). Thus, this procedure
requires O(||P ||+ n2) time and O(||P ||) space to mark all nodes in Ov(P ).

Optimizing MarkH

As described earlier, the only operation not bounded by O(||P ||) time is the marking of
internal nodes, while processing the leaves (prefix) considering the stacks of all leaves (suffix).
Note that this procedure is overkill as the same top of the stack can be marked again when
processing different leaves (prefix), whereas total nodes entering and leaving stacks are
proportional to total size of all Lu, i.e., O(||P ||). Thus, we ensure that we do not have to
process stacks of all leaves (suffix) on processing the leaves (prefix) of A, and instead, we
only process those stacks which were not processed earlier to mark the same top. Note that
the same internal node may be marked again when exposed in different stacks, but we ensure
that it is not marked again while processing the same stack.

Consider Algorithm 3 (showing modified code in red and additions in blue), we maintain
a doubly linked-list S of non-empty stacks whose tops are not marked. Now, whenever a new
node is added to a stack, it clearly has an unmarked top, so it is added to S. And when a
node is removed from a stack, the stack is added to S if the new top is not previously marked
and stack in not already in S. Similarly, if the stack is empty or has a previously marked top,
it is removed from S if it was present in S. Since S is a list, its members are additionally
maintained using flags inS for each stack corresponding to leaves (suffix) of A, so that the
same stack is not added multiple times in S. Also, each stack in S maintains a pointer to its
location in S, so that it can be efficiently removed if required. Now, on processing the leaves
(prefix) of A, we only process the stacks in S, marking their tops and removing them from S.
Clearly, stacks are added to S only while processing Lv, hence overall we can mark O(|Lv|)
nodes for all v, requiring total O(||P ||) time. And the time taken in removing stacks from S
is bounded by the total size of all Sx, which is also O(||P ||). Thus, we can perform MarkH
using optimal O(||P ||) time and space, which results in our main result (using Theorem 4).

▶ Theorem 1 (Optimal HOG). For a set of strings P , the Hierarchical Overlap Graph can be
computed using O(||P ||) time and space.

Remark: The classical result for APSP [13] (equivalent to our second stage) was optim-
ized [12] to get output-sensitive O(||P ||+ n′) time (where n′ is number of pairs with non-zero
overlap) by maintaining a list of non-empty stacks (similar to our list S of stacks with
non-marked heads). However, their approach does not suffice for computing H optimallty as
in the worst case n′ = O(n2) >> O(||P ||) .
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Algorithm 3 MarkH(A, L)

foreach internal node v of A do inH[v]← 0 // Flag for membership in H
foreach leaf v of A do inH[v]← 1 // Leaves implicitly in H
inH[root]← 1 // Root implicitly in H

foreach leaf v of A do Sv ← ∅ // Stack of exposed suffix
S ← ∅ // List of stacks with unmarked tops
foreach leaf v of A do inS[v]← 0 // Flag for membership of Sv in S

foreach node v ∈ A in DFS order do // Compute all inH[v]
if internal node v first visited then

foreach leaf x in Lv do // Expose v on stacks of Lv

Push v on Sx

if inS[x] = 0 then // Add Sx to S if not present
inS[x]← 1
Add Sx to S

if internal node v last visited then
foreach leaf x in Lv do // Remove v from stacks of Lv

Pop v from Sx

if Sx ̸= ∅ and inH[Top of Sx] = 0 then // Sx eligible in S
if inS[x] = 0 then // Sx not present in S

inS[x]← 1
Add Sx to S

else // Sx either empty or with marked top
if inS[x] = 1 then // Sx present in S

inS[x]← 0
Remove Sx from S

if leaf v visited then
foreach Sx ∈ S do

inH[Top of Sx]← 1 // Mark ov(x, v)
inS[x]← 0
Remove Sx from S // Remove Sx with marked top from S

Return inH

5 Conclusions

Genome assembly is one of the most prominent problems in Bioinformatics, and it tradi-
tionally relies on de Bruijn graphs or Overlap graphs, each having limitations of either loss
of information or quadratic space requirements. Hierarchical Overlap Graphs provide a
promising alternative that may result in better algorithms for genome assembly. The previous
results on computing these graphs were not scalable (due to the quadratic time-bound) or
required complicated data structures (segment trees). Moreover, computing HOG in optimal
time and space was mentioned as an open problem in both the previous results [10, 20]. We
present a simple algorithm that achieves the desired bounds, using only elementary data
structures such as stacks and lists. At its core, we present an improved algorithm for a
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special case of All Pairs Suffix Prefix problem. We hope our algorithm directly, or after
further simplification, results in a greater adaptability of HOGs in developing better genome
assembly algorithms.

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975.
2 Dmitry Antipov, Anton I. Korobeynikov, Jeffrey S. McLean, and Pavel A. Pevzner. hybrid-

spades: an algorithm for hybrid assembly of short and long reads. Bioinform., 32(7):1009–1015,
2016.

3 Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin,
Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son K. Pham, Andrey D.
Prjibelski, Alex Pyshkin, Alexander Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev,
and Pavel A. Pevzner. Spades: A new genome assembly algorithm and its applications to
single-cell sequencing. J. Comput. Biol., 19(5):455–477, 2012.

4 Djamal Belazzougui and Fabio Cunial. Fully-functional bidirectional burrows-wheeler indexes
and infinite-order de bruijn graphs. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual
Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy,
volume 128 of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

5 Djamal Belazzougui, Travis Gagie, Veli Mäkinen, Marco Previtali, and Simon J. Puglisi.
Bidirectional variable-order de bruijn graphs. Int. J. Found. Comput. Sci., 29(8):1279–1295,
2018.

6 Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approximation
of shortest superstrings. J. ACM, 41(4):630–647, 1994.

7 Christina Boucher, Alexander Bowe, Travis Gagie, Simon J. Puglisi, and Kunihiko Sadakane.
Variable-order de bruijn graphs. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà,
and James A. Storer, editors, 2015 Data Compression Conference, DCC 2015, Snowbird, UT,
USA, April 7-9, 2015, pages 383–392. IEEE, 2015.

8 Rodrigo Cánovas, Bastien Cazaux, and Eric Rivals. The compressed overlap index. CoRR,
abs/1707.05613, 2017. arXiv:1707.05613.

9 Bastien Cazaux, Rodrigo Cánovas, and Eric Rivals. Shortest DNA cyclic cover in compressed
space. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors,
2016 Data Compression Conference, DCC 2016, Snowbird, UT, USA, March 30 - April 1,
2016, pages 536–545. IEEE, 2016.

10 Bastien Cazaux and Eric Rivals. Hierarchical overlap graph. Inf. Process. Lett., 155, 2020.
11 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational

geometry: algorithms and applications, 3rd Edition. Springer, 2008.
12 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.
13 Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the all pairs

suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, 1992.
14 Shahbaz Khan. Optimal construction of hierarchical overlap graphs. CoRR, abs/2102.02873,

2021. arXiv:2102.02873.
15 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in

strings. SIAM J. Comput., 6(2):323–350, 1977.
16 Jihyuk Lim and Kunsoo Park. A fast algorithm for the all-pairs suffix-prefix problem. Theor.

Comput. Sci., 698:14–24, 2017.
17 Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(2):79–85, 2005.

doi:10.1093/bioinformatics/bti1114.

http://arxiv.org/abs/1707.05613
http://arxiv.org/abs/2102.02873
https://doi.org/10.1093/bioinformatics/bti1114


S. Khan 17:11

18 Sergey Nurk, Dmitry Meleshko, Anton I. Korobeynikov, and Pavel A. Pevzner. metaspades:
A new versatile de novo metagenomics assembler. In Mona Singh, editor, Research in
Computational Molecular Biology - 20th Annual Conference, RECOMB 2016, Santa Monica,
CA, USA, April 17-21, 2016, Proceedings, volume 9649 of Lecture Notes in Computer Science,
page 258. Springer, 2016.

19 Sangsoo Park, Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals. A linear time
algorithm for constructing hierarchical overlap graphs. CoRR, abs/2102.12824, 2021 (accepted
for publishing at CPM 2021). arXiv:2102.12824.

20 Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals. Efficient construction of
hierarchical overlap graphs. In Christina Boucher and Sharma V. Thankachan, editors, String
Processing and Information Retrieval - 27th International Symposium, SPIRE 2020, Orlando,
FL, USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture Notes in Computer
Science, pages 277–290. Springer, 2020.

21 Hannu Peltola, Hans Söderlund, Jorma Tarhio, and Esko Ukkonen. Algorithms for some string
matching problems arising in molecular genetics. In IFIP Congress, pages 59–64, 1983.

22 P. A. Pevzner. l-Tuple DNA sequencing: computer analysis. Journal of Biomolecular Structure
& Dynamics, 7(1):63–73, 1989.

23 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An eulerian path approach to dna
fragment assembly. Proceedings of the National Academy of Sciences of the United States of
America, 98(17):9748–9753, 2001.

24 Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph
using the fm-index. Bioinform., 26(12):367–373, 2010.

25 Z. Sweedyk. A 2½-approximation algorithm for shortest superstring. SIAM J. Comput.,
29(3):954–986, 1999.

26 William H. A. Tustumi, Simon Gog, Guilherme P. Telles, and Felipe A. Louza. An improved
algorithm for the all-pairs suffix-prefix problem. J. Discrete Algorithms, 37:34–43, 2016.

27 Esko Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.
Algorithmica, 5(3):313–323, 1990.

28 Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome research, 18(5):821—829, May 2008. doi:10.1101/gr.074492.107.

CPM 2021

http://arxiv.org/abs/2102.12824
https://doi.org/10.1101/gr.074492.107




A Compact Index for Cartesian Tree Matching
Sung-Hwan Kim !

Pusan National University, South Korea

Hwan-Gue Cho !

Pusan National University, South Korea

Abstract
Cartesian tree matching is a recently introduced string matching problem in which two strings match
if their corresponding Cartesian trees are the same. It is considered appropriate to find patterns
regarding their shapes especially in numerical time series data. While many related problems have
been addressed, developing a compact index has received relatively less attention. In this paper, we
present a 3n + o(n)-bit index that can count the number of occurrences of a Cartesian tree pattern
in O(m) time where n and m are the text and pattern length. To the best of our knowledge, this
work is the first O(n)-bit compact data structure for indexing for this problem.
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1 Motivation

String matching is an important and fundamental problem that is widely applied in various
applications of computer science and engineering. Many practical problems involve a large
volume of sequential data and hence string matching problems in finding particular patterns
therein. Owing to many reasons such as noise in data, and a variety forms of isomorphism,
many variants of the string matching problem have been introduced from various perspectives
and different application domains, e.g., parameterized string matching [3] for program
source codes, δ-approximate [7] and order preserving matching [22] for numerical time series,
structural pattern matching for biological sequences [29], as well as general approximate
matching problems such as jumbled pattern matching with Parikh vectors [1] and pattern
matching with mismatches [5] and gaps [25].

Developing an indexing method for these approximate string matching problems is
important particularly when either the text or the patterns are provided in advance and the
other is given online. We are interested in indexing the provided text before pattern queries
are given. By indexing the text appropriately, pattern search can be performed efficiently
during the query time compared with scanning the text repeatedly for every single pattern.
However, indexing strings for approximate string matching problems is usually challenging
because of their complex nature. Whereas many problems involve significant space and time
complexities [5, 25, 1], some problems may involve efficient data structures [3, 14, 8, 13].

Cartesian tree matching is a variant of the string matching problem that was recently
introduced by Park et al. [28]. In this problem, two strings over a totally ordered set U
match if their corresponding Cartesian trees are identical. It is considered appropriate to find
patterns regarding their shapes and suitable for time series data. Many interesting properties
of Cartesian trees have attracted a lot of interest regarding this matching problem, and
researches have been conducted in many perspectives such as multiple pattern matching [18],
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dictionary matching [19], cover [21], longest common substring [10], and indeterminate
matching [15] since the problem was introduced. Meanwhile, the development of a compact
index for this problem has received relatively less attention. In the original paper [28], the
authors show that the suffix tree for Cartesian tree matching can be built efficiently using the
suffix tree construction algorithm for generalized matching problems [6]. Some researchers
have addressed this problem as a special case of their indexing framework [2, 23]. However,
all these methods are from the standpoint of generalized indexing methods, and the index
size is O(n lg n) in bits. Because a Cartesian tree of size n can be represented in 2n− o(n)
bits, it is distant from the optimal space.

The main challenge of the compact data structure for Cartesian tree matching is how we
achieve space compactness within O(n) bits while keeping the search time bounded within a
time linear to the pattern length. As mentioned in [28], an the unary code can be used, which
allows us to achieve 2n bits to represent the text string. However, one single character can
be of length O(n) in its unary code in the worst case. This would cause O(n) time required
to search for a pattern, thereby preventing the index from performing searches efficiently.

In this paper, we present a 3n + o(n)-bit data structure1 that supports a counting query
in O(m) time where n and m are the text and pattern lengths, respectively. We introduce
a novel concept of the trimmed LF-mapping, which allows us to develop a data structure
supporting time-efficient queries for counting the number of occurrences within the space
bound. To the best of our knowledge, this is the first O(n)-bit index introduced for this
problem.

The main theorem of this paper is as follows.

▶ Theorem 1. There exists a 3n + o(n)-bit data structure that can count the number of
occurrences of a Cartesian tree pattern in O(m) time where n and m are the text and pattern
length, respectively.

The rest of the paper is organized as follows. In Section 2, we establish some notations
used in the paper and we give a brief review on backgrounds including succinct bitvectors,
which is a building block of the proposed data structure. We define the encoding scheme
used to transform the suffixes of the text string in Section 3. In Section 4, we describe
the underlying information used in the proposed data structure, and we give a conceptual
description of how the searching procedure is performed. In Section 5, we propose a space-
efficient representation of the structure described in the previous section. Then we present
the searching algorithm on the proposed data structure in Section 6, and we conclude the
paper in Section 7.

2 Preliminaries

Notation. By T , P , X and Y , we denote strings over a totally ordered set U; especially,
T and P are called text and pattern string. We assume that every element of these strings
is distinct in each of them; if not, ties can be broken by position. We use 0-based index
for strings and arrays; T [0] indicates the first character. |T | is the length of T . T [i..j] is a
substring T [i] ◦ T [i + 1] ◦ · · · ◦ T [j] of T where ◦ is the concatenation operator. We define
T [i..j] for i > j as an empty string ϵ. For T [0..i] and T [i..|T | − 1], we may use T [..i] and
T [i..] for brevity. lcp(X, Y ) is the length of the longest common prefix of X and Y . For an
integer array A and a property P (·), we denote by ⟨A[i]⟩i|P (A[i]), its subsequence obtained
by concatenating A[i]’s such that P (A[i]) holds.

1 Our data structure can be called an encoding structure in the sense that the text string T is not necessary
during the pattern matching process.
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E(·) is the encoding function described in Section 3.1 that we use to transform suffixes for
indexing. We use ⊕ to represent a prepending operation as described in Section 3.1. SA is the
suffix array and LF is the so-called LF-mapping that represent the correspondence between
adjacent suffixes in terms of the lexicographical rank; these are defined in Section 3.2 L and
F are integer arrays described in Section 4.1. B

(L)
k and B

(F )
k are bitvectors described in

Section 5.1. On these bitvectors we use several navigating operations such as downk(·), upk(·),
mapk(·) as defined in Algorithms 1, with which we also define the trimmed LF-mapping
tLFk(·) in Algorithm 2.

Cartesian Tree. Given a string X over U, its Cartesian tree is a binary tree that is defined
as follows. The element with the smallest value becomes the root. The left (and right) subtree
is constructed recursively with the elements on the left (right) side. The Cartesian tree of a
string of length n can be constructed in O(n) time using a stack-based algorithm. There are
several representation of Cartesian trees regarding our work. These representation use the
relation between the element corresponding to each iteration and the elements popped from
the stack at the iteration during the construction of the Cartesian tree. Cartesian signature
[9] uses the number of pop operations performed on the stack at corresponding iteration,
and the parent-distance representation [28] uses the positional distance between the current
element and the popped element.

Bitvectors. Bitvectors are basic building blocks of the proposed data structure in this paper.
A data structure that supports the following queries in O(1) time for a length-n bit vector B

can be stored in n + o(n) bits [16]:
Accessing B[i].
B.rankx(i): the number of occurrences of x in B[0..i− 1].
B.selectx(i) = j such that B.rankx(j) = i− 1 and B[j] = x.

For convenience, we define B.selectx(0) = −1. We also define rank and select queries on
integer arrays and strings. Although we do not use them in the final searching algorithm, it
is useful for describing how the proposed method works.

3 Encoding and Sorting Suffixes

For many variants of the string matching problem, such as parameterized string matching
[3, 14], structural pattern matching [13], and order-preserving matching [8], and Cartesian
tree matching [28], it is conventional to use an encoding scheme that transforms strings in a
certain form such that two strings match iff their corresponding encoded strings are exactly
the same. After encoding the suffixes of the text provided, we can build a data structure for
standard string matching such as a suffix tree and a suffix array on the encoded suffixes to
enable an efficient pattern search.

In this section, we present the encoding scheme that transforms the suffixes of the given
text string for Cartesian tree matching problem, and define the suffix array on them, which
will be used in the rest of the paper.

3.1 Modified Parent-Distance Representation
The encoding scheme we use in this paper is similar to that in the original paper [28], which
is called parent-distance representation. In this representation, each element has at most
one parent. Let X be a string. For each 0 ≤ i < |X|, X[i] does not have a parent if it is
the smallest one among X[0], · · · , X[i]. If there is an element X[j] that is smaller than X[i]
for some 0 ≤ j < i, X[i] points to the rightmost one among such elements as its parent.
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∞ 1 2 1E(X) ∞∞ 1

X 7 9 8 5 1 2610 11 12

∞ 1 1

Y

4 1 2 1∞7 1

7 9 8 5 1 2610 11 12

1 1 1

4

∞E(Y )

Figure 1 Illustration of changes in encoded strings when a character is prepended. For some k,
the first k ∞’s are substituted with integers according to their positions after prepending a character.
Arcs represent parents. In this case, we represent it as E(Y ) = 3 ⊕ E(X).

The relation between an element and its parent is represented as the distance between their
positions. For the elements that do not have a parent, 0 is used in the original paper. In this
paper, we use ∞ instead of 0, which means the element having no parent will be represented
as the greatest symbol in its encoded form. More formally, the encoding scheme is defined as
follows:

▶ Definition 2 (Encoding). For a string X over U, its encoded string E(X) is defined as
follows. For 0 ≤ i ≤ |X| − 1,

E(X)[i] = i−max πX(i) (1)

where πX(i) = {j | 0 ≤ j < i and X[j] < X[i]} ∪ {−∞}. For convenience, we also define the
encoded string of the empty string to be the empty string: i.e. E(ϵ) = ϵ.

As shown in [28], we can compute the (modified) parent-distance representation of a
string in linear time.

Our index will use a backward searching mechanism as FM-index families do. In order to
devise a backward searching algorithm, we need to find out the relation between adjacent
suffixes T [i− 1..] and T [i..] in terms of their encoded strings. Note that T [i− 1..] is a string
that can be obtained by prepending a character T [i− 1] at the beginning of T [i..].

Let X and Y be strings over U such that Y = x ◦X for some x ∈ U; Y is a string that
can be obtained by prepending a character x at the beginning of X. We want to observe
their differences in terms of their encoded strings. This will be used to proceed from a suffix
T [i..] to its previous suffix T [i− 1..] during the searching process.

Figure 1 shows an example. When we prepend a character x to a string X, we can
observe that, for some k, the first k ∞’s are substituted by some integers in its encoded form;
and the integers with which ∞’s are substituted are determined by their positions. Then a
single ∞ is prepended at the beginning, which completes E(x ◦X) = E(Y ). In other words,
the operation of prepending a character can be characterized by an integer indicating the
number of ∞’s to be substituted. In the rest of the paper, we represent the relation between
two encoded strings such that Y = x ◦X as E(Y ) = k ⊕ E(X).

For an encoded string E(X) and an integer 0 ≤ k ≤ E(X).rank∞(|X|), k ⊕ E(X) is an
encoded string defined as:

(k ⊕ E(X))[i] =


∞ if i = 0,

i if E(X)[i− 1] =∞ and i− 1 ≤ E(X).select∞(k),
E(X)[i− 1] otherwise .

(2)
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∞ 1 2 1∞3 1∞ 1 1E(X)

∞ 1 1∞1 2∞ 1 1E(Y ) ∞
∞ 1 2 1∞3 11 1 11⊕ E(X)

4 1 1∞1 21 1 12⊕ E(Y ) ∞
∞
∞

>

(a) Given encoded strings, t = 2 (b) k1 = 1 < t = 2

4 1 2 193 11 1 13⊕ E(X)

4 1 191 21 1 14⊕ E(Y ) 6

∞
∞

< ∞ 1 2 1∞3 11 1 11⊕ E(X)

∞ 1 1∞1 21 1 11⊕ E(Y ) ∞
∞
∞

<

(c) k1 = 3 ≥ t = 2 (d) k1 = 1 ≥ k2 = 1

Figure 2 Illustration of changes in lexicographical order when a character is prepended. E(X)
and E(Y ) are converted into k1 ⊕ E(X) and k2 ⊕ E(Y ) due to a prepended character. t is the
number of ∞’s within the longest common prefix (indicated with shaded boxes) of E(X) and E(Y ).
Underlined blue characters: changed elements after prepending a character; Red thick boxes: The
position in which the order of two encoded strings is determined.

Given two encoded strings E(X) and E(Y ), prepending characters at their beginning
possibly changes their lexicographical order. Figure 2 decribes how the order can change by
prepending different characters. From this observation, we establish an important lemma
about the lexicographical order after prepending single characters at the beginning of these
strings, which is frequently used throughout the paper.

▶ Lemma 3. Let X and Y be strings over U such that E(X) < E(Y ), and let t =
E(X).rank∞(l) where l = lcp(E(X), E(Y )). For integers 0 ≤ k1 ≤ E(X).rank∞(|X|) and
0 ≤ k2 ≤ E(Y ).rank∞(|Y |), k1 ⊕ E(X) < k2 ⊕ E(Y ) if and only if k1 ≥ t or k1 ≥ k2.

Proof. (⇒) We prove by contrapositive. Let us assume that k1 < t and k1 < k2. Since
k1 < t, the (k1 + 1)-th ∞ is within the longest common prefix of E(X) and E(Y ). Thus
E(X).select∞(k1 + 1) = E(Y ).select∞(k1 + 1). Let i = E(X).select∞(k1 + 1). Then
(k1 ⊕E(X))[i + 1] =∞ > i + 1 = (k2 ⊕E(Y ))[i + 1]. Since (k⊕E(X))[..i] = (k⊕E(Y ))[..i],
this implies k1 ⊕ E(X) > k2 ⊕ E(Y ).

(⇐) We have two cases: (i) k1 ≥ t, and (ii) k1 ≥ k2.

Case 1 (k1 ≥ t): If k2 < t, the (k2 + 1)-th ∞ of E(X) and E(Y ) is within their
longest common prefix. Let i = E(X).select∞(k2 + 1). The (k2 + 1)-th ∞ of E(X) is
to be substituted with i + 1, while the (k2 + 1)-th ∞ of E(Y ) remains the same. Thus
(k1⊕E(X))[i+1] = i+1 <∞ = (k2⊕E(Y ))[i+1], which implies k1⊕E(X) < k2⊕E(Y ).
If k2 ≥ t, all ∞’s within the longest common prefix are to be substituted according to
their positions, and the lexicographical order of k1 ⊕ E(X) and k2 ⊕ E(Y ) is determined
by (k1 ⊕ E(X))[l + 1] and (k2 ⊕ E(Y ))[l + 1] where l = lcp(E(X), E(Y )). If E(Y )[l] ̸=
∞, (k1 ⊕ E(X))[l + 1] = E(X)[l] < E(Y )[l] = (k2 ⊕ E(Y ))[l + 1]. If E(Y )[l] = ∞,
(k1 ⊕ E(X))[l + 1] = E(X)[l] ≤ l < l + 1 = (k2 ⊕ E(Y ))[l + 1]. In both cases, we have
k1 ⊕ E(X) < k2 ⊕ E(Y ).

Case 2 (k1 ≥ k2): Since we have proved the case of k1 ≥ t, we can assume that
t > k1 ≥ k2. Thus all ∞’s being substituted with integers are within their longest
common prefix. Let i = E(X).select∞(k2 + 1) and l = lcp(E(X), E(Y )). If k1 > k2,
(k1 ⊕ E(X))[..i] = (k2 ⊕ E(Y ))[..i], and (k1 ⊕ E(X))[i + 1] = i + 1 < ∞ = E(Y )[i] =
(k2⊕E(Y ))[i+1]. If k1 = k2, (k1⊕E(X))[..l] = (k2⊕E(Y ))[..l], and (k1⊕E(X))[..l+1] =
E(X)[l] < E(Y )[l] = (k2 ⊕ E(Y ))[..l + 1]. Hence k1 ⊕ E(X) < k2 ⊕ E(Y ). ◀
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3.2 Sorting Suffixes

In this subsection, we define the suffix array of a given text string T [0..n− 1]. Let S(T ) be
the set of encoded suffixes:

S(T ) = {E(T [i..]) | 0 ≤ i ≤ n} (3)

Note that we include T [n..] = ϵ, so the size of S(T ) is n + 1. This acts like the unique
termination symbol at the end of the text, which is a standard assumption in many indexing
methods. The suffix array SA is an array of length n + 1 that stores the encoded suffixes in
the lexicographically sorted order. Each encoded suffix is represented by its starting position
on the text; i.e. if E(T [j..]) is the (i + 1)-th smallest string among the encoded suffixes, we
define SA[i] = j: For 0 ≤ i ≤ n,

SA[i] = j iff i =
∣∣{X ∈ S(T ) | X < E(T [j..])}

∣∣ (4)

Since the suffix array is a permutation of ⟨0, · · · , n⟩, we can also define its inverse:
SA−1[i] = j iff SA[j] = i.

3.3 Suffix Range

Remember that P matches T [j..j + |P | − 1] if and only if E(P ) is a prefix of E(T [j..]).
Because we have sorted the encoded suffixes, if E(P ) is a prefix of encoded suffixes
E(T [j1..]), E(T [j2..]), · · · , E(T [jk..]), then these encoded suffixes are consecutive in their
sorted order on the suffix array. Therefore, we can use two integers 0 ≤ ps ≤ pe ≤ n such
that ps ≤ SA−1[jl] ≤ pe for 1 ≤ l ≤ k to represent these encoded suffixes.

▶ Definition 4 (Suffix range). For an encoded pattern E(P ), an integer pair (ps, pe) is called
the suffix range of E(P ) if ps ≤ i ≤ pe ⇔ E(T [SA[i]..])[0..|P | − 1] = E(P ) for all 0 ≤ i ≤ n.

4 Basic Idea on Updating Suffix Ranges

The proposed data structure performs a backward search that processes the pattern in the
right-to-left direction. Assuming that the pattern P [0..m−1] is not an empty string, it starts
with the suffix range of E(P [m− 1..]) =∞. Then it repeatedly updates the suffix range by
prepending P [i] at the beginning of the currently searched pattern from m− 2 to 0. At each
iteration, we compute the suffix range of E(P [i..m− 1]), hence we can obtain the desired
suffix range of the entire pattern in the end.

Each iteration of this procedure can be described as follows. Let P be the currently
searched pattern. When we prepend a character at the beginning of the currently searched
pattern, this updated pattern can be written as k ⊕E(P ). Let (ps, pe) be the suffix range of
an encoded pattern E(P ). What we want is to update the suffix range (ps, pe) into the suffix
range (p′

s, p′
e) of k ⊕ E(P ). It can be seen as two stages:

1. Identifying the target suffixes: from the set of indices I = {i | ps ≤ i ≤ pe}, we identify
the set of indices I ′ = {i | ps ≤ i ≤ pe and E(T [j − 1..])[0..|P |] = k ⊕ E(P ) where j =
SA[i]} ⊂ I whose corresponding suffixes are to be included in the updated suffix range
after prepending their corresponding character T [j − 1].

2. Mapping E(T [SA[i]..]) to its previous suffix E(T [SA[i]− 1..]) for each target suffix: we
compute the set I ′′ = {SA−1[SA[i]− 1] | i ∈ I ′}.
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Figure 3 Underlying information of the proposed index for sequence T = 4 6 9 8 2 10 15 14 12 3
13 1 11 7 5. Examples of suffix ranges are indicated by boxes in column E(T [SA[i]..]). Shaded, red
(with thick borders), and blue (with thin borders) boxes indicate the suffix ranges of P =4 2, P ′ =3
4 2, and P ′′ =1 4 2, respectively. Boxes in columns F [i] and L[i] indicate the entries used to obtain
the suffix ranges of P ′ and P ′′ from that of P .

Computing the new indices in the stage 2 (SA−1[SA[i]− 1]) is the so-called LF-mapping,
which is the core operation of many compact string matching indexes that use the backward
searching mechanism. In this section, we define the LF-mapping along with its representation
with two integer arrays. Then we also present how to identify the target suffixes using these
arrays. Note that this representation using two integer arrays in this section is a conceptual
representation; the space-efficient representation that is actually used in the proposed data
structure is described in Section 5.

4.1 LF-mapping with Two Integer Arrays
In the context of backward searching methods such as FM-index, LF-mapping is a function
indicating the correspondence between two adjacent suffixes E(T [j..]) and E(T [j − 1..]) in
terms of indices on the suffix array.

For an integer 0 ≤ i ≤ n, let T [j..] be a suffix such that SA[i] = j. Let j′ = j + n

mod (n + 1). The correspondence between T [j..] and T [j′..] in the sorted suffixes are stored
in the array LF. More specifically, LF[i] indicates the lexicographical rank of T [j′..].

LF[i] = SA−1[SA[i] + n mod (n + 1)] (5)

We define two integer arrays L and F of length n+1, which contain the essential underlying
information of the proposed data structure. Let us consider a particular suffix T [SA[i]..].
When we prepend a character T [SA[i]− 1] at the beginning of T [SA[i]..], the corresponding
suffix is E(T [SA[i] − 1..]) = E(T [SA[i] − 1] ◦ T [SA[i]..]). We can uniquely determine an
integer k such that E(T [SA[i]− 1..]) = k ⊕ E(T [SA[i]..]). This k is the value related to the
Cartesian tree signature [9], which is also mentioned as an alternative representation for the
matching problem in [28]. It can be computed during the construction of the Cartesian tree
or its parent-distance representation. We define the array L to store such k’s for each of the
suffixes.
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18:8 A Compact Index for Cartesian Tree Matching

L[i] =
{
−1 if SA[i] = 0,

K(SA[i]− 1) otherwise.

where K(j) is the integer k such that E(T [j..]) = k ⊕ E(T [j + 1..]). (6)

We can see that for the suffixes having the same L[i] values, their LF-mapping is order-
preserving.

▶ Lemma 5. For 0 ≤ i < j ≤ n such that L[i] = L[j], LF[i] < LF[j].

Proof. Note that LF[i] < LF[j] iff L[i] ⊕ E(T [SA[i]..]) < L[j] ⊕ E(T [SA[j]..]). Applying
Lemma 3 with X = T [SA[i]..], Y = T [SA[j]..], k1 = L[i], and k2 = L[j], we obtain
L[i]⊕E(T [SA[i]..]) < L[j]⊕E(T [SA[j]..]) because i < j ⇔ E(T [SA[i]..]) < E(T [SA[j]..]) and
L[i] = L[j]. ◀

Using this order-preserving property, we can represent the correspondence between two
adjacent suffixes E(T [SA[LF[i]]..]) and E(T [SA[i]..]) using their associated k-values described
above. As the L array represents k-values for each suffix E(T [SA[i]..]), we write these k-values
for their associated suffixes E(T [SA[LF[i]]..]) to make another array F as follows:

F [LF[i]] = L[i] (7)

Using the arrays L and F , we can conceptually compute LF[i] as follows. Let x = L[i]. We
can compute the number c = L.rankL[i](i+1) of occurrences L[i] in L[0..i]. We find 0 ≤ j ≤ n

such that the number of occurrences of x in F [0..j] is c and F [j] = x: i.e. j = F.selectL[i](c)
is the position of the c-th occurrence of x on F . Then we have j = LF[i].

4.2 Identifying Target Suffixes
To devise a backward searching algorithm, we need to compute the suffix range (p′

s, p′
e) of

k ⊕ E(P ) from the suffix range (ps, pe) of E(P ). As we have mentioned at the beginning
of this section, this update procedure consists of two stages, which is identifying the target
suffixes according to k followed by applying LF-mapping for each of the identified target
suffixes. In this subsection, we present how to identify the target suffixes using L array
during the suffix range update.

We have two cases: (i) there are ∞’s remaining in (k ⊕ E(P ))[1..], and (ii) all ∞’s in
E(P ) are to be substituted into integers so there is no ∞ in (k ⊕ E(P ))[1..]. In the first
case, we know that the same number of ∞’s are to be substituted in the target suffix after
applying the LF-mapping. On the other hand, in the second case, the number of ∞’s that
are to be substituted in the target suffix is not fixed, but k is the lower bound of the number
of substituted ∞’s.

▶ Lemma 6. For an encoded string E(P ) and an integer k such that 0 ≤ k ≤
E(P ).rank∞(|P |), let (ps, pe) and (p′

s, p′
e) be the suffix ranges of E(P ) and k⊕E(P ), respect-

ively. For ps ≤ i ≤ pe, p′
s ≤ LF[i] ≤ p′

e if and only if{
L[i] = k if k < E(P ).rank∞(|P |),
L[i] ≥ k if k = E(P ).rank∞(|P |).

(8)
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Proof. (⇐) We can rewrite the right-hand of the if-and-only-if statement as: (i) L[i] =
k or (ii)L[i] > k and k = E(P ).rank∞(|P |). (Case 1: L[i] = k) Let Q be a string such
that E(Q) = E(P ) ◦ (∞)n. Then the fact that ps ≤ i ≤ pe is equivalent to E(P ) ≤
E(T [SA[i]..]) < E(Q). Also, k ⊕ E(P ) ≤ k ⊕ E(T [SA[i]..]) < k ⊕ E(Q). Since L[i] = k,
k ⊕ E(P ) ≤ L[i] ⊕ E(T [SA[i]..]) = E(T [SA[LF[i]]..]) < k ⊕ E(Q) by Lemma 3. (Case 2:
L[i] > k and k = E(P ).rank∞(|P |)) Note that E(T [SA[i]..]).select∞(k′) ≥ |P | for all k′ > k.
Hence, (L[i]⊕ E(T [SA[i]..]))[0..|P |] = k ⊕ (E(T [SA[i]..])[0..|P | − 1]) = k ⊕ E(P ).

(⇒) We prove by contrapositive. The negation of the right-hand part of the if-and-only-if
statement can be rewritten as follows: (i) L[i] < k or (ii)L[i] > k and k < E(P ).rank∞(|P |).
Note that because i is within the suffix range of E(P ), E(T [SA[i]..]).rank∞(|T [SA[i]..]|) ≥
E(P ).rank∞(|P |) ≥ k; moreover, E(T [SA[i]..]).select∞(j) = E(P ).select∞(j) for 1 ≤ j ≤
E(P ).rank∞(|P |). (Case 1: L[i] < k): Let j = E(T [SA[i]..]).select∞(L[i] + 1) + 1 =
E(P ).select∞(L[i] + 1) + 1. Then we have (L[i]⊕ E(T [SA[i]..])[j] =∞ ≠ j = (k ⊕ E(P ))[j].
(Case 2: L[i] > k and k < E(P ).rank∞(|P |)) Let j = E(T [SA[i]..]).select∞(k + 1) + 1.
(L[i]⊕ E(T [SA[i]..])[j] = j ̸=∞ = E(P )[j − 1] = (k ⊕ E(P ))[j]. ◀

5 3n + o(n)-bit Representation

In this section, we present how to represent two arrays L and F in a space-efficient way.
After we present a 6n + o(n)-bit representation, we show how to reduce the space occupancy
into 3n + o(n) bits by representing 3n + 2 bits among them within O(lg n) = o(n) bits.

5.1 Representation of L and F with Unary Coding
In this subsection, we present how to efficiently represent the two arrays L and F . First, we
define subsequences of L and F for k ≥ −1:

Lk = ⟨L[i]⟩i|L[i]≥k (9)

Similarly,

Fk = ⟨F [i]⟩i|F [i]≥k (10)

We also define bitvectors corresponding to Lk and Fk:

B
(L)
k [i] = 0 iff Lk[i] = k, otherwise 1. (11)

and

B
(F )
k [i] = 0 iff Fk[i] = k, otherwise 1. (12)

Note that the number of bits at level k + 1 is the number of 1-bits at level k. The i-th
1-bit at level k is associated with i-th bit at level k + 1. Using this correspondence between
bits on consecutive levels, we can build tree-like structures on L and F . This is similar to the
(pointer-less) wavelet tree [17, 27] with a non-standard shape. Wavelet tree with different
shapes have been used to compress the space occupancy and speed up the query time [12], in
which Huffman prefix tree is typically used where each element can be seen to be represented
as its Huffman code. For our data structure, it can be seen as representing each element x of
L and F as the unary code of x + 1: i.e. a bit string 1x+10.

Note the sum of L[i] over 0 ≤ i ≤ n such that L[i] ≥ 0 is less than n and there is the
unique i such that L[i] = −1. Thus the sum of L[i] + 1 over all 0 ≤ i ≤ n is less than 2n.
The total number of 0’s is n + 1. The number of bits for representing L and F is at most
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(2n− 1) + (n + 1) = 3n each; thus the total number of bits over the entire data structure
is at most 6n. We build the rank and select dictionaries on these bitvectors, which would
occupy 6n + o(n) bits in total.

▶ Remark. One might also find that it is similar to Direct Addressable Code (DAC,[4]) with
block size b = 1. Each chunk Ci,j of DAC consists of two parts: a single flag bit (Bi[j]), and a
b-bit block of codes (Ai,j). In this case, every block Ai,j has a single bit, Bi indicates whether
this block is the highest one. Each element of L (or F ) can be represented across as many
levels as its value. The bitvector Bi of DAC is actually the same as the bits that comprise
our data structure. Perhaps we may use this observation to extend our data structure into
other string matching problems where L and F values can be represented with a variable
number of integers.

We define the operations that are used to navigate across bitvectors in Algorithm 1.
By downk(i) we can move from a position on B

(L)
−1 to its corresponding position on B

(L)
k .

Similarly, upk(i) computes the corresponding position on B
(F )
−1 to a position on B

(F )
k . We

can use mapk(i) to jump from B
(L)
k to B

(F )
k ; 0’s (resp. 1’s) on B

(L)
k correspond to 0’s (resp.

1’s) on B
(F )
k in order.

Algorithm 1 Navigating operations on B
(L)
k ’s and B

(F )
k ’s.

1 function downk(i):
2 for l = −1 To k − 1 do
3 i← B

(L)
l .rank1(i)

4 end
5 return i

6 function upk(i):
7 for l = k To 0 do
8 i← B

(F )
l−1.select1(i + 1)

9 end
10 return i

11 function mapk(i):
12 x← B

(L)
k [i]

13 return B
(F )
k .selectx(B(L)

k .rankx(i) + 1)

5.2 Trimmed LF-mapping

The unary representation of L and F can reduce the required space into O(n) in bits. However,
accessing a single element L[i] takes Θ(L[i]) time and L[i] ≤ n. As a result, computing the
LF-mapping may take Θ(n) time in the worst case, which would prevent us from achieving
O(m) query time. In this section, we introduce the concept of trimmed LF-mapping, which
enables us to update the suffix range efficiently. Although an individual computation of the
trimmed LF-mapping of a particular suffix may produce an incorrect mapping, it effectively
works for the simultaneous mapping of target suffixes during the suffix range updates. The
trimmed-mapping function tLF(i) is defined as follows.
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Figure 4 Computing tLFk(i), which consists of downk(·), mapk(·), and upk(·). If we arrive at
a 0-bit after executing downk(i), tLFk(i) = LF[i]. If not, tLFk(·) may be jumbled; but it does not
actually matter for updating suffix ranges. In this example, tLF1(10) and tLF1(13) are depicted.

Algorithm 2 Computing Trimmed LF-mapping.

1 function tLFk(i):
2 i← downk(i)
3 i← mapk(i)
4 i← upk(i)
5 return i

An example of tLFk(·) is illustrated in Figure 4, which computes tLF1(10) and tLF1(13).
Let us explain the computation of tLF1(10), which is described as the outer path in Figure 4.
After performing down1(10), we arrive at position 2 at level 1. By map1(2) we move to its
corresponding position on the F -side tree, which is position 5 at level B

(F )
1 . Then we obtain

tLF1(10) = 7 by performing up1(5). Similarly, we can compute tLF1(13) = 5 by performing
downk(·), mapk(·), upk(·) in order, each step of which we arrive at positions 4, 3 and 5
respectively.

Notice the different behavior of mapk(i) depending on the value B
(L)
k (i), in the perspective

of the correspondence that mapk(·) makes between Bk and Lk. Suppose we arrive at position
i at level k. If B

(L)
k [i] = 0, we have Lk[i] = Fk[j] where j = mapk(i). We also observe that

the mapping between Lk and Fk using 0-bits is order-preserving. From this observation, we
can obtain the position of the l-th occurrence of x on F by computing tLFk(i) where i is the
position of the l-th occurrence of x on L if we can reach a 0-bit at the deepest level during
the computation. tLFk(·) can be used to compute LF directly. If we compute tLFL[i](i), we
reach a 0 after calling downL[i](i), which means we reach the end of the unary code of a
particular element. Conceptually, tLFL[i](i) is equivalent to perform a rank query on L for
x = L[i], followed by performing select query for the corresponding occurrence of x on F .
Thus we can successfully compute LF[i].

▶ Lemma 7. For 0 ≤ i ≤ n, we can compute LF[i] in Θ(L[i]) time; more specifically,
tLFL[i](i) = LF[i]

CPM 2021



18:12 A Compact Index for Cartesian Tree Matching

Proof. Let i′ = downL[i](i) and i′′ = mapL[i](i′). Clearly, LL[i][i′] = FL[i][i′′] = L[i] and
LL[i].rankL[i](i′) = FL[i].rankL[i](i′′) because they are order-preserving. Let i∗ = upL[i](i′′).
Then we have L[i] = F [i∗] and L.rankL[i](i) = F.rankL[i](i∗). Therefore LF[i] = i∗ = tLFL[i](i)
by Lemma 5. downL[i](i) and upL[i](i′′) take Θ(L[i]) time each, and mapL[i](i′) takes O(1)
time. Therefore, computing tLFL[i](i) takes Θ(L[i]) time. ◀

On the other hand, when B
(L)
k [i] = 1, Lk[i] is not necessarily the same as Fk[j] where

j = mapk(i). However, we can see that the l-th occurrence of an element on L that is not
less than k is associated with the l-th occurrence of an element on F that is not less than k

by this mapping at level k. Although mapk(i) may not give the exact value of LF[i], we can
effectively use this to update a suffix range, which will be described in Section 6.

5.3 Representing B
(L)
k and B

(F )
k Compactly

The total number of bits to represent all of B
(L)
k ’s and B

(F )
k ’s in their raw form is at most 6n

bits. We can reduce the required number of bits by representing certain levels of bitvectors
compactly. Note that bit vectors at level −1 consist of n + 1 bits, and there is only one 0-bit
in each of B

(L)
−1 and B

(F )
−1 . Thus we can represent them using O(lg n) bits by representing

the position of the unique 0-bit using a single integer. We can also make an observation that
B

(F )
0 is a form of 01p0n−p−1 where p is the number of occurrences of 0’s on F . Therefore

B
(F )
0 can be represented by a pair of integers that represent the interval in which 1-bits are

located. Using this representation, the bitvectors can be represented in up to 3n + o(n) bits
in total.

▶ Lemma 8. B
(L)
−1 , B

(F )
−1 and B

(F )
0 can be stored in O(lg n) bits while supporting rank and

select queries in O(1) time.

Proof. It is trivial for B
(L)
−1 and B

(F )
−1 because the number of 1-bits is 1 so a single integer

occupying O(lg n) bits can represent these bit vectors. For B
(F )
0 , we claim that B

(F )
0

has a form of 01p0n−p−1 for some p. Note that E(T [SA[0]..]) = E(T [|T |..]) = ϵ is the
smallest encoded suffix, and E(T [|T | − 1..]) =∞ is the smallest among non-empty encoded
suffixes because, for 1 ≤ i ≤ n, E(T [SA[i]..]) have a common prefix ∞. It is clear that
L[0] = 0 = F [LF[0]] = F [1]. Since F [0] = −1, F [1] is the first occurrence of 0, thus we have
B

(F )
0 [0] = 0. Because the number of ∞’s in the longest common prefix of any two non-empty

encoded suffixes is at least 1, L[i] ⊕ E(T [SA[i]..]) < L[j] ⊕ E(T [SA[j]..]) if L[i] > 0 and
L[j] = 0 for any 0 < i, j ≤ n by Lemma 3. Therefore, we have LF[i] < LF[j] for such i and j.
By the definition of F , F [LF[i]] ≥ 1 and F [LF[j]] = 0. ◀

6 Searching Algorithm with Trimmed LF-mapping

In this section, we devise a searching algorithm to compute the suffix range of a pattern P in
O(|P |) time using the data structure described in the earlier section. Algorithm 3 shows the
procedure to compute the suffix range of a given pattern. Starting with E(P [|P | − 1..]) =∞,
it prepends P [m− 2], · · · , P [0] at each iteration. Examples of updating a suffix range within
an individual iteration are depicted in Figure 5.

6.1 Identifying the Target Suffixes
We need to identify the target suffixes in order to update the suffix range correctly. As we
have discussed in Section 4.2, given a currently searched encoded pattern E(P ) and an integer
k, we need to identify the suffixes T [SA[i]..]’s such that L[i] = k if k < E(P ).rank∞(|P |),
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Algorithm 3 Compute the suffix range of a pattern.

1 function SuffixRange(P [0..m− 1]):
2 Compute E(P )
3 Set K[i]← 0 for 0 ≤ i ≤ m− 2
4 for i=0 To m− 1 do
5 if E(P )[i] ̸=∞ then
6 K[i− E(P )[i]]← K[i− E(P )[i]] + 1
7 end
8 ps ← 1 // the start position of the current suffix range.
9 pe ← n // the end position of the current suffix range.

10 t← 1 // the number of ∞’s in the currently searched pattern.
11 for i=2 To m do
12 k ← K[m− i] // the number of ∞’s to be substituted.
13 ps ← downk(ps)
14 pe ← downk(pe + 1)− 1
15 if k < t then

// Equivalent to mapk(·) for the left- and rightmost 0’s.

16 ps ← B
(F )
k .select0(B(L)

k .rank0(ps) + 1)
17 pe ← B

(F )
k .select0(B(L)

k .rank0(pe + 1))
18 ps ← upk(ps)
19 pe ← upk(pe)
20 t← t− k + 1
21 end
22 return (ps, pe)

L[i] ≥ k if k = E(P ).rank∞(|P |). This task can be done by computing the interval [is, ie]
at level k that corresponds to the current suffix range [ps, pe] (i.e. the interval on level −1)
where is = downk(ps) and ie = downk(pe + 1)− 1. This is because Lk is a subsequence of L,
whose elements are equal to or greater than k.

If k < E(P ).rank∞(|P |), the target suffixes correspond to the elements that are equal
to k, which can be determined by positions {is ≤ i ≤ ie | B

(L)
k [i] = 0}. For example, in

Figure 5-(a), the corresponding interval at level k = 1 of the suffix range [8, 15] is [2, 5]. We
can have {2} as the set of positions whose value of the bitvector B(L) is 0. This position 2 at
level 1 corresponds to the position 10 at level −1 that represent the entire elements of L. It
means that E(T [SA[10]..]) is the only target suffix, and we need to compute its LF-mapping
to obtain the updated suffix range. We have LF[10] = 7, and the updated suffix range is
[7, 7], which exactly matches the one obtained by the proposed algorithm.

If k = E(P ).rank∞(|P |), all the elements within the interval is ≤ i ≤ ie correspond to the
target suffixes. For example, in Figure 5-(b), we have [is, ie] = [1, 3]. The positions at level
−1 that corresponds to positions 1,2, and 3 at level k = 2, are 12, 13, and 15, respectively.
Since LF[12] = 4, LF[13] = 6, and LF[15] = 5, the updated suffix range is [4, 6].

6.2 Computing the LF-mapping of the Target Suffixes
We have shown that the target suffixes can be correctly identified after calling downk(·).
Thus the correctness of the algorithm relies on the correctness of Lines 15–17, which compute
the positions on B

(F )
k that correspond to the positions on B

(L)
k . If this mapping can identify

the target suffixes in terms of an interval on Fk, then computing upk(·) will give the desired
suffix range that is correctly updated with respect to the given E(P ) and k.
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Figure 5 An iteration of Algorithm 3 to update a suffix range. Given a suffix range [8, 15] for the
currently searched pattern E(P ) = ∞∞, it computes the suffix range for k ⊕ E(P ).

It is obvious for the case k < E(P ).rank∞(|P |). Because 0-bits (and their corresponding
L[i]-values) in both bitvectors B

(L)
k (and Lk) and B

(F )
k (and Fk) are associated in order, it is

sufficient to find the positions on B
(F )
k that correspond to the first and last occurrence of 0-bit

within the interval on B
(L)
k . We can determine the (relative) positions of the first and last

0-bits within the interval on B
(L)
k using B

(L)
k .rank(·) queries, and perform the mapping into

their corresponding positions using B
(F )
k .select(·) queries. This can be done by performing

mapk(·) at the leftmost and rightmost 0’s in the interval.
It is not trivial if we are in the case k = E(P ).rank∞(|P |). We observe that upk(i) < upk(j)

for 0 ≤ i < j < |B(F )
k | because upk(·) is order-preserving. Suppose we can compute the

number of suffixes E(T [SA[i]..])’s such that L[i] ≥ k and LF[i] < p′
s where (p′

s, p′
e) is the

suffix range of k ⊕ E(P ), say a to denote this number. Let b be the number of the target
suffixes. Then the suffixes that belong to the updated suffix range (p′

s, p′
e) must correspond

to the interval [a, a + b− 1] on B
(F )
k . We claim the following:

▶ Lemma 9. Let (ps, pe) be the suffix range of an encoded pattern E(P ), and let i and
j be integers such that L[i], L[j] ≥ E(P ).rank∞(|P |). If i < ps ≤ j or i ≤ pe < j, then
LF[i] < LF[j].
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Proof. Let l = lcp(E(T [SA[i]..]), E(T [SA[j]..])) and t = E(T [SA[i]..]).rank∞(l). Clearly,
t ≤ E(P ).rank∞(|P |) because one of E(T [SA[i]..]) and E(T [SA[j]..]) has E(P ) as its prefix
while the other does not. We also have E(T [SA[i]..]) < E(T [SA[j]..]) since i < j. By Lemma
3, L[i]⊕ E(T [SA[i]..]) < L[j]⊕ E(T [SA[j]..]) ◀

Note that it does not matter if tLFk(·) is not order-preserving within ps ≤ i, j ≤ pe.
Among the suffixes E(T [SA[i]..]) such that L[i] ≥ k, the suffixes that are smaller than
k ⊕ E(P ) will be mapped into those that are smaller than k ⊕ E(P ) after applying the
LF-mapping function, and the larger suffixes remain larger. Let I be the interval at level
k that correspond to a suffix range (ps, pe). Then computing the set {mapk(i) | i ∈ I} is
identical to I itself, which proves the correctness of the mapped interval on B

(F )
k in this case.

6.3 Time Complexity
The search time of Algorithm 3 depends on how many times downk(·) and upk(·) are called
over the iterations. Note that each of downk(·) and upk(·) takes O(k) time. We have∑

i ki < |P | because ki is the number of ∞’s to be substituted at iteration i. Once an ∞ is
substituted with an integer, it remains the same until the end of the search process. The
total number of substitution is bounded by the pattern length |P |, thus the search time is
also bounded by O(|P |) time. This completes the proof of the main theorem.

7 Conclusion and Open Problems

In this paper, we have proposed a 3n+o(n)-bit index for the Cartesian tree matching problem.
We achieved this space bound by representing the correspondence between adjacent encoded
suffixes using unary code. To bound the search time within linear time, we introduced the
concept of a trimmed LF-mapping function. The trimmed LF-mapping function has special
properties which enable us to compute the updated suffix ranges efficiently.

We also have open problems that should be addressed in the future work as follows:
Can we achieve 2n + o(n) bits? We need to achieve 2n + o(n) bits to make it succinct
regarding the entropy bound of Cartesian trees. We do not think that B

(L)
k can be further

reduced, but we think B
(F )
k can be represented in a space-efficient way. Nevertheless, it

seems quite challenging to represent B
(F )
k within o(n) bits to achieve succinctness.

Can we efficiently locate the occurrences? The standard method that uses a
sampled suffix array may take a long time especially when a pattern is long and it is also
very frequent, because the time complexity has an O(|P | · occ) term, which would result
in O(n2) time for locating occurrences. Although it might be a rare case in practice, the
algorithm should be improved in order to bound the worst case complexity.
Can we apply the trimmed LF-mapping to other indexing problems? We may
apply the trimmed LF-mapping when L-values or pattern lengths are bounded by O(1).
We can also extend it into some other matching problems where the prepending operation
to a suffix cannot be represented in a single value.
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A Further Discussion

In this section, we discuss several considerations that can be addressed in the context of
developing the compact index of Cartesian tree matching and its extension, including the
problems mentioned in Section 7.

A.1 Reducing the Required Number of Bits Further
Although we achieved 3n + o(n) bits by representing B

(L)
−1 , B

(F )
−1 and B

(F )
0 in O(lg n) bits,

we did not use any techniques to reduce the space occupancy for the other bitvectors. A
straightforward method to reduce the space occupancy further is to use compressed bit
vectors. We may also apply compression boosting techniques such as level-wise [11] and
block-wise compression [26, 20] to bitvectors.

We can also notice that there must be some redundancies in bitvectors, because B
(F )
k

is not an arbitrary permutation of B
(L)
F . Although we used the fact that B

(F )
0 has a

certain form, perhaps the other bitvectors B
(F )
k ’s can be represented more efficiently rather

than independently of B
(L)
k ’s. We can make several observations regarding bitvectors and

operations related to them, some of which are as follows.
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▶ Proposition 10. For k ≥ −1 and 0 ≤ i, j < |B(L)
k |, the following facts hold:

1. If B
(L)
k [i] = 0, then mapk(i) ≥ i.

2. If B
(L)
k [i] = 1, then mapk(i) ≤ i.

3. If i < j and B
(L)
k [i] = 1 and B

(L)
k [j] = 0, then mapk(i) < mapk(j).

Proof. (1) For 0 ≤ j < |B(L)
k |, let f(j) = Fk.selectx(Lk.rankx(j) + 1) where x = Lk[j].

Suppose there exists 0 ≤ i < |B(L)
k | such that B

(L)
k [i] = 0 and i′ = mapk(i) < i. Because the

number of occurrences of k in Lk[0..i] and Fk[0..i′] is the same, there must exist 0 ≤ j < i

such that L[j] ̸= k and f(j) > i. When we trace up to F−1, which is order-preserving, this
implies LF[i] < LF[j]. However, since we have j < i and L[j] > k = L[i], E(T [SA[LF[j]]..]) =
L[j] ⊕ E(T [SA[j]..]) < L[i] ⊕ E(T [SA[i]..]) = E(T [SA[LF[i]]..]). This implies LF[j] < LF[i].
Contradiction.

(2) Note that B
(F )
k .rank0(i+1)+B

(F )
k .rank1(i+1) = B

(L)
k .rank0(i+1)+B

(L)
k .rank1(i+1) = i.

Suppose there exists mapk(i) > i for i such that B
(L)
k [i] = 1. Then B

(F )
k .rank1(i + 1) <

B
(L)
k .rank1(i + 1). Since mapk(j) ≥ j for 0 ≤ j < |B(L)

k | such that B
(L)
k [j] = 0, we also have

B
(F )
k .rank0(i + 1) ≤ B

(L)
k .rank0(i + 1). Therefore B

(F )
k .rank0(i + 1) + B

(F )
k .rank1(i + 1) <

B
(L)
k .rank0(i + 1) + B

(L)
k .rank1(i + 1). Contradiction.

(3) Immediate from mapk(i) ≤ i < j ≤ mapk(j). ◀

We believe that we can reduce the number of bits required to implement B
(F )
k ’s if we can

find more properties on the relation between B
(L)
k and B

(F )
k . However, it is not trivial if we

can break it down into o(n) bits. One possibility to achieve o(n) bits is the use of sparse
bitvector if we can make B

(F )
k ’s significantly imbalanced in terms of the number of 0- and

1-bits.

A.2 Locating Occurrences
To locate the occurrences, we can sample entries of the suffix array SA[i] as we conventionally
do for other problems. More specifically, we build an array ŜA storing SA[i] if it is divisible
by δ.

ŜA = ⟨SA[i]⟩i|SA[i]=0 mod δ (13)

Using a bitvector M of length n + 1, we mark the sampled entry; i.e., M [i] = 1 iff SA[i] = 0
mod δ. Algorithm 4 traces from a suffix backward until it meets the sampled entry of the
suffix array.

Algorithm 4 Locating Occurrences.

1 function Locate(i, t = E(P ).rank∞(|P |)):
2 R← {}
3 for j = 0 To δ − 1 do
4 if i = 0 then break
5 if M [i] = 1 then R← R ∪ {ŜA[M.rank1(i)] + j}
6 k ← min{t, L[i]}
7 i← tLFk(i)
8 t← t− k + 1
9 end

10 return R
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Unlike the conventional technique of the sampled suffix array, tracing from a single suffix
does not necessarily report one entry in the sampled suffix array because tLFk(i) does not
guarantee to be the same as LF[i]; during the iterations of the algorithm, they may be
jumbled and it possibly jumps into another suffix other than its previous one. Nevertheless,
reported positions are correct if we collect the reported positions over all suffixes in the suffix
range. Note that at the end of each iteration j of the outer loop, E(T [SA[i]..]) has the form
of k1 ⊕ (· · · (kj ⊕ E(P )) · · · ), thus even if it jumps into another suffix, it is still correct one.

The time for locating all the occurrence is O((|P |+δ) ·occ). The time taken for computing
k in Line 6 can be done in O(min{t, L[i]}) time, because we can repeatedly move into the
next level using B

(L)
k .rank1(·) until either we arrive at level t or we reach a 0-bit at level

L[i]. A single computation of tLFk(i) may take O(L[i]) time, but it is bounded by O(|P |+ δ)
because the sum of all k’s over all iterations is the number of ∞’s that are substituted. There
are at most |P | ∞’s remaining in the searched part, and there are possibly δ − 1 more ∞’s
to be substituted during the iterations.

A.3 Extensions
We may apply the trimmed LF-mapping when L-values or pattern lengths are bounded by
O(1). For example, the indexing methods for the parameterized string matching [14, 24]
have a log σ factor in their space complexity, which comes from the fact that L[i] is bounded
by σ. If they are bounded by some constant c, we may adopt this technique with unary
coded L-values to achieve O(n) bits and O(m) search time.

We can extend the concept of the trimmed LF-mapping introduced in this paper for
other matching problems where the prepending operation to a suffix cannot be represented
in a single value. The resulting structure would look like the combination of wavelet trees
[17, 27] and DAC [4] with a larger size of blocks. For example, in [23], the number of pointers
starting at a particular position is constrained to be at most 1. The main reason of this
constraint was that it may cause an unbounded time complexity if there are multiple pointers
having the same starting position. We can use the mechanism of the trimmed LF-mapping
to relax this constraint.

A.4 Construction Time
In [28], it is shown that the suffix tree for the Cartesian tree matching problem can be built
in randomized O(n) time or deterministic O(n lg n) time based on the suffix tree construction
algorithm based on the character oracles [6]. Once the suffix tree is constructed, we can
compute the suffix array in O(n) time using the tree traversal. The array SA−1, LF, L, and F

can also be computed in order, each of which takes O(n) time; note that we can precompute
K(·) required to compute L in O(n) time using Lines 2–7 of Algorithm 3. The remaining
task is to build the corresponding bitvectors, which does not exceed this time bound.
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Abstract
Let W be a string of length n over an alphabet Σ, k be a positive integer, and S be a set of length-k
substrings of W . The ETFS problem (Edit distance, Total order, Frequency, Sanitization) asks us
to construct a string XED such that: (i) no string of S occurs in XED; (ii) the order of all other
length-k substrings over Σ (and thus the frequency) is the same in W and in XED; and (iii) XED

has minimal edit distance to W . When W represents an individual’s data and S represents a set of
confidential patterns, the ETFS problem asks for transforming W to preserve its privacy and its
utility [Bernardini et al., ECML PKDD 2019].

ETFS can be solved in O(n2k) time [Bernardini et al., CPM 2020]. The same paper shows
that ETFS cannot be solved in O(n2−δ) time, for any δ > 0, unless the Strong Exponential Time
Hypothesis (SETH) is false. Our main results can be summarized as follows:

An O(n2 log2 k)-time algorithm to solve ETFS.
An O(n2 log2 n)-time algorithm to solve AETFS (Arbitrary lengths, Edit distance, Total order,
Frequency, Sanitization), a generalization of ETFS in which the elements of S can have arbitrary
lengths.

Our algorithms are thus optimal up to subpolynomial factors, unless SETH fails.
In order to arrive at these results, we develop new techniques for computing a variant of the

standard dynamic programming (DP) table for edit distance. In particular, we simulate the DP
table computation using a directed acyclic graph in which every node is assigned to a smaller DP
table. We then focus on redundancy in these DP tables and exploit a tabulation technique according
to dyadic intervals to obtain an optimal alignment in Õ(n2) total time1. Beyond string sanitization,
our techniques may inspire solutions to other problems related to regular expressions or context-free
grammars.
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1 Introduction

Let us start with an example to ensure that the reader is familiar with the basic motivation
behind the computational problem investigated here. Consider a sequence W of items rep-
resenting a user’s on-line purchasing history. Further consider a fragment (or a subsequence)
of W denoting that the user has first purchased unscented lotions and zinc/magnesium
supplements and then unscented soaps and cotton balls in extra-large bags. By having
access to W and to the respective domain knowledge, one can infer that the user is probably
pregnant and close to the delivery date.

Data sanitization, also known as knowledge hiding, is a privacy-preserving data mining
process aiming to prevent the mining of confidential knowledge from published datasets; it
has been an active area of research for the past 25 years [15, 29, 31, 19, 32, 20, 1, 2, 18, 21,
27, 11, 7, 8, 10]. Informally, it is the process of disguising (hiding) confidential information in
a given dataset. This process typically incurs some data utility loss that should be minimized.
Thus, naturally, privacy constraints and utility objective functions lead to the formulation of
combinatorial optimization problems. From a fundamental perspective, it is thus relevant to
be able to establish some formal guarantees.

A string W is a sequence of letters over some alphabet Σ. Individuals’ data, in domains
ranging from web analytics to transportation and bioinformatics, are typically represented
by strings. For example, when Σ is a set of items, W can represent a user’s purchasing
history [5]; when Σ is a set of locations, W can represent a user’s location profile [33]; and
when Σ is the DNA alphabet, W can represent a patient’s genome sequence [25]. Such
strings commonly fuel up a gamut of applications; in particular, frequent pattern mining
applications [4]. For example, frequent pattern mining from location history data facilitates
route planning [14]; frequent pattern mining from market-basket data facilitates business
decision making [5]; frequent pattern mining from genome sequences facilitates clinical
diagnostics [25]. To support these applications in a privacy-preserving manner, individual
sequences are often being disseminated after they have been sanitized.

Towards this end, Bernardini et al. have recently formalized the following string sanitiza-
tion problem under edit distance [8]. Let W be a string of length n over an alphabet Σ, k be a
positive integer, and S be a set of length-k substrings of W . Set S is conceptually seen as an
antidictionary: a set of sensitive patterns modelling private or confidential information. The
ETFS problem (Edit distance, Total order, Frequency, Sanitization) asks us to construct a
string XED such that: (i) no string of S occurs in XED; (ii) the order of all other length-k
substrings over Σ is the same in W and in XED; and (iii) XED has minimal edit distance to
W . In order to obtain a feasible solution string, we may need to extend Σ to Σ# = Σ ∪ {#},
which includes a special letter # /∈ Σ.

▶ Example 1. Let W = ecabaaaaabbbadf over alphabet Σ = {a, b, c, d, e, f} be the input
string. Further let k = 3 and the set of sensitive patterns be S = {aba, baa, aaa, aab, bba}.
Consider the following three feasible (sanitized) strings: XTR = eca#cab#abb#bbb#bad#adf,
XMIN = ecabbb#badf and XED = ecab#aa#abbb#badf. All three strings contain no sensitive
pattern and preserve the total order and thus the frequency of all non-sensitive length-3
patterns of W : XTR is the trivial solution of interleaving the non-sensitive length-3 patterns
of W with #; XMIN is the shortest possible such string; and XED is a string closest to W in
terms of edit distance.
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A simple O(n2k|Σ|)-time solution [8] to ETFS can be obtained via employing approximate
regular expression matching. Consider the regular expression R that encodes all feasible
solution strings. The size of R is O(nk|Σ|). By aligning W and R using the standard
quadratic-time algorithm [28], we obtain an optimal solution XED in O(n2k|Σ|) time for
ETFS. Bernardini et al. showed that this can be improved to O(n2k) time [9]. Let us
informally describe their algorithm. (A formal description of their algorithm follows in
Section 2.) We use a dynamic programming (DP) table similar to the standard edit distance
algorithm. We write the letters of the input string W on the top of the first row. Since we
do not know the exact form of the output string XED, we write the non-sensitive length-k
patterns to the left of the first column interleaved by special # letters. We then proceed
to fill this table using recursive formulae. The formulae are more involved than the edit
distance ones to account for the possibility to merge consecutive non-sensitive patterns (e.g.,
eca and cab are merged to ecab in Example 1) and to expand the #’s into longer gadgets
that may contain up to k − 1 letters from Σ (e.g., #aa# in Example 1). Once the DP table is
filled, we construct an XED by tracing back an optimal alignment.

Bernardini et al. also showed, via a reduction from the weighted edit distance problem [12],
that ETFS cannot be solved in O(n2−δ) time, for any δ > 0, unless the strong exponential
time hypothesis (SETH) [22, 23] is false. We were thus also motivated to match this lower
bound.

Our Results and Techniques

Our first main result is the following.

▶ Theorem 2. The ETFS problem can be solved in O(n2 log2 k) time.

Let us also stress that the algorithm underlying Theorem 2 works under edit distance
with arbitrary weights at no extra cost.

We also consider a generalized version of ETFS, which we denote by AETFS (Arbitrary
lengths, Edit distance, Total order, Frequency, Sanitization). The only difference in AETFS
with respect to ETFS is that S can contain elements (sensitive patterns) of arbitrary lengths.
This generalization is evidently more useful as it drops the restriction of fixed-length sensitive
patterns; it also turns out to be algorithmically much more challenging. In both ETFS
and AETFS, we make the standard assumption that substrings of W are represented as
intervals over [0, n − 1], and thus each element in S has an O(1)-sized representation. We
further assume that S satisfies the properties of closure and minimality (formally defined in
Section 2), which in turn ensure that S has an O(n)-sized representation.

▶ Example 3. Consider the same input string W = ecabaaaaabbbadf as in Example 1.
Further let k = 3 and the set of sensitive patterns be S = {aba, aa, abbba}. Then, string
YED = ecab#abb#bbbadf is a feasible string and is a closest to W in terms of edit distance.
Notice that, we cannot merge all of the three consecutive non-sensitive patterns abb, bbb,
and bba into one since it will result in an occurrence of the sensitive pattern abbba; we thus
rather create abb#bbba.

Our second main result is the following.

▶ Theorem 4. The AETFS problem can be solved in O(n2 log2 n) time.

Our algorithms are thus optimal up to subpolynomial factors, unless SETH fails. Let us
describe the main ideas behind the new techniques we develop. As in Example 3, a sensitive
pattern of length greater than k might be generated by merging multiple non-sensitive
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patterns. In AETFS, we have to consider avoiding such invalid merge operations. If we
enumerate all valid combinations of merging non-sensitive patterns, and run the DP for
ETFS for all the cases, then we can obtain an optimal solution to AETFS. Our main idea
for reducing the time complexity is to carefully maintain a directed acyclic graph (DAG) for
representing all such valid combinations. We first construct the DAG, and then plug a small
DP table into each node of the DAG. This technique gives us an O(n3)-time solution to
AETFS. To achieve Õ(n2) time, we focus on redundancy in the DP tables. When the size
of the DP tables is large, there must be multiple sub-tables corresponding to the same pair
of strings. Before propagating, we precompute lookup table structures of size O(n2 log2 n)
according to dyadic intervals on [0, n−1]. To this end, we modify the data structure proposed
in [13]. Then, we decompose the DP tables into sub-tables according to these dyadic
intervals. We compute only boundaries of such sub-tables using the precomputed lookup
table structures, and thus, we obtain an optimal alignment for AETFS in O(n2 log2 n) total
time. By applying the same technique to ETFS, we obtain an O(n2 log2 k)-time solution,
which improves the state of the art by a factor of k/ log2 k [9].

In a nutshell, our main technical contribution is that we manage to align a string of
length n and a specific regular expression of size Ω(nk|Σ|) in Õ(n2) time. We can also view
the solution spaces of ETFS and AETFS as context-free languages. The main idea of our
AETFS algorithm is to first preprocess a set N of non-terminals, such that we can later
use them in O(n) time each. We then write the context-free language as a new language,
which is accepted by a Deterministic Acyclic Finite State Automaton (DASFA), taking the
set N as its terminals. In this paper, we develop several techniques to reduce the size of
the DAFSA (cf. DAG) to Õ(n) and efficiently precompute the set N (cf. lookup tables) in
Õ(n2) time. Thus, beyond string sanitization, our techniques may inspire solutions to other
problems related to regular expressions or context-free grammars.

Paper Organization

Section 2 introduces the basic definitions and notation used throughout, and also provides a
summary of the currently fastest algorithm for solving ETFS [9]. In Section 3, we describe
our lookup table structures. In Section 4, we present the O(n3)-time algorithm for solving
AETFS. This algorithm is refined to an Õ(n2)-time algorithm, which is described in Section 5.
Along the way, in Section 5, we also describe an Õ(n2)-time algorithm for solving ETFS.

2 Preliminaries

Strings

An alphabet Σ is a finite set of elements called letters. Let S = S[0]S[1] · · · S[n − 1] be a
string of length |S| = n over an alphabet Σ of size σ = |Σ|. Let Γ = {⊖, ⊕, ⊗} be a set of
special letters with Γ ∩ Σ = ∅. By Σ∗ we denote the set of all strings over Σ, and by Σk the
set of all length-k strings over Σ. For two indices 0 ≤ i ≤ j ≤ n − 1, S[i . . j] = S[i] · · · S[j] is
the substring of S that starts at position i and ends at position j of S. By ε we denote the
empty string of length 0. A prefix of S is a substring of the form S[0 . . j], and a suffix of
S is a substring of the form S[i . . n − 1]. Given two strings U and V we say that U has a
suffix-prefix overlap of length ℓ > 0 with V if and only if the length-ℓ suffix of U is equal to
the length-ℓ prefix of V , i.e., U [|U | − ℓ . . |U | − 1] = V [0 . . ℓ − 1].

We fix a string W of length n over an alphabet Σ. We assume that Σ = {1, . . . , nO(1)}.
If this is not the case, we use perfect hashing [17] to hash W [i], for all i ∈ [1, n], and obtain
another string over Σ = {1, . . . , n} in O(n) time with high probability or in O(n log n) time



T. Mieno, S. P. Pissis, L. Stougie, and M. Sweering 19:5

deterministically via sorting. We consider the obtained string to be W . We also fix an
integer 0 < k < n. Unless specified otherwise, we refer to a length-k string or a pattern
interchangeably. An occurrence of a pattern is uniquely defined by its starting position. Let Sk

be the set representing the sensitive patterns as starting positions over {0, . . . , n−k} with the
following closure property: for every i ∈ Sk, any j for which W [j . . j +k−1] = W [i . . i+k−1],
must also belong to Sk. That is, if an occurrence of a pattern is in Sk, then all its occurrences
are in Sk. A substring W [i . . i + k − 1] of W is called sensitive if and only if i ∈ Sk; Sk is thus
the complete set of occurrences of sensitive patterns. The difference set I = {0, . . . , n−k}\Sk

is the set of occurrences of length-k non-sensitive patterns.
For any substring U , we denote by IU the set of occurrences in U of non-sensitive length-k

strings over Σ. (We have that IW = I.) We call an occurrence i the t-predecessor of another
occurrence j in IU if and only if i is the largest element in IU that is less than j. This
relation induces a strict total order on the occurrences in IU . We call a subset J of IU a
t-chain if for all elements in J except the minimum one, their t-predecessor is also in J . For
two strings U and V , chains JU and JV are equivalent, denoted by JU ≡ JV , if and only if
|JU | = |JV | and U [u . . u + k − 1] = V [v . . v + k − 1], where u is the j-th smallest element of
JU and v is the j-th smallest of JV , for all j ≤ |JU |.

Given two strings U and V the edit distance dE(U, V ) is defined as the minimum number
of elementary edit operations (letter insertion, deletion, or substitution) that transform
one string into the other. Each edit operation can also be associated with a cost: a fixed
positive value. Given two strings U and V the weighted edit distance dWE(U, V ) is defined
as the minimal total cost of a sequence of edit operations to transform one string into the
other. We assume throughout that the three edit operations all have unit weight. However,
as mentioned in Section 1, our algorithm for the ETFS problem (formally defined below)
also works for arbitrary weights at no extra cost. The standard algorithm to compute the
edit distance between two strings U and V [26] works by creating a (|U | + 1) × (|V | + 1)
DP table D with D[i][j] = dE(U [0 . . i − 1], V [0 . . j − 1]). The sought edit distance is thus
dE(U, V ) = D[|U |][|V |]. Since we compute each table entry from the entries to the left, top
and top-left in O(1) time, the algorithm runs in O(|U | · |V |) time. Moreover, we can find an
optimal (minimum cost) alignment by tracing back through the table.

The ETFS Problem

We formally define ETFS, one of the problems considered in this paper.

▶ Problem 5 (ETFS). Given a string W of length n, an integer k > 1, and a set Sk (and
thus set I), construct a string XED which is at minimal (weighted) edit distance from W and
satisfies:
C1 XED does not contain any sensitive pattern.
P1 IW ≡ IXED , i.e., the t-chains IW and IXED are equivalent.

The AETFS Problem

The length of sensitive patterns in the ETFS setting is fixed. In what follows, we define a
generalization of the ETFS problem which allows for arbitrary length sensitive patterns. Let
S be a set of intervals with the two following properties (closure property and minimality
property): (i) For every [i, j] ∈ S, any [i′, j′] for which W [i′ . . j′] = W [i . . j], must also belong
to S; and (ii) any proper sub-interval of [i, j] ∈ S is not in S. It is easy to see that |S| ≤ n
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from its minimality. Now, we redefine notions of sensitive and non-sensitive patterns as
follows: A sensitive pattern is an arbitrary length substring W [i . . j] of W for each [i, j] ∈ S.
For a fixed k, a non-sensitive pattern is a length-k substring of W containing no sensitive
pattern as a substring.

▶ Problem 6 (AETFS). Given a string W of length n, an integer k > 1, and a set S (and
thus set I), construct a string YED which is at minimal edit distance from W and satisfies:
C1 YED does not contain any sensitive pattern.
P1 IW ≡ IYED , i.e., the t-chains IW and IYED are equivalent.

The ETFS-DP Algorithm

For independent reading we describe here ETFS-DP, the algorithm from [9] that solves
the ETFS problem in O(n2k) time. The output string XED is a string that contains all
non-sensitive patterns in the same order as in W . For each pair of consecutive non-sensitive
patterns, their occurrences in XED are either (i) overlapping by k − 1 letters (e.g., eca and
cab in Example 1) or (ii) delimited by a string over Σ# which contains no length-k string
over Σ (e.g., #aa# in Example 1). We call such strings gadgets. For case (ii), we use the
following regular expressions:

Σ<k = (a1|a2| . . . |a|Σ||ε)k−1,

where Σ = {a1, a2, . . . , a|Σ|}. Also, the special letters ⊖, ⊕, ⊗ ∈ Γ correspond to regular
expressions (Σ<k#)∗, #(Σ<k#)∗, and (#Σ<k)∗, respectively. Let N0, N1, . . . , N|I|−1 be
the sequence of non-sensitive patterns sorted in the order in which they occur in W . In
what follows, we fix string T = ⊖N0 ⊕ N1 ⊕ · · · ⊕ N|I|−1⊗ of length (k + 1)|I| + 1. String
T corresponds to the regular expression R that represents the set of all feasible solutions
(feasible strings) in which all non-sensitive patterns in the string are delimited by stings over
Σ#. Moreover, we need to consider feasible strings in which a non-sensitive pattern overlaps
the next one. Let M be a binary array of length |I| such that for each 0 ≤ i ≤ |I| − 1,
M [i] = 1 if i > 0 and Ni−1 has a suffix-prefix overlap of length k − 1 with Ni, and M [i] = 0
otherwise. Namely, M [i] = 1 implies that Ni−1 and Ni can be merged for 0 < i ≤ |I| − 1.

Let E be a table of size ((k + 1)|I| + 1) × (n + 1). The rows of E correspond to string
T defined above and the columns to string W . Note that the leftmost column corresponds
to the empty string ε as in the standard edit distance DP table. Each cell E[i][j] contains
the edit distance between the regular expression corresponding to T [0 . . i] and W [0 . . j − 1].
We classify the rows of E into three categories: gadget rows; possibly mergeable rows; and
ordinary rows. We call every row corresponding to a special letter in Γ a gadget row. Namely,
rows with index i ≡ 0 mod (k + 1) are gadget rows. Also, we call every row corresponding to
the last letter of a non-sensitive pattern a possibly mergeable row. Namely, rows with index
i ≡ −1 mod (k + 1) are possibly mergeable rows. All the other rows are called ordinary rows.
The recursive formula of ordinary rows is the same as in the standard edit distance solution:

E[i][j] = min


E[i − 1][j] + 1, (insert)
E[i][j − 1] + 1, (delete)
E[i − 1][j − 1] + I[T [i] ̸= W [j − 1]], (match or substitute),

where I is an indicator function: I[T [i] ̸= W [j − 1]] = 1 if T [i] ̸= W [j − 1], and 0 otherwise.
Next, consider a possibly mergeable row E[i][·] which is the last row of the non-sensitive
pattern Nh. If M [h] = 0, then the recursive formula is the same as that of ordinary rows.
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Otherwise (M [h] = 1), Nh−1 and Nh can be merged. Merging them means that the values
in the previous mergeable row E[i − k − 1][·] will be propagated to E[i][·] directly without
considering the k rows below. Thus, the recursive formula is:

E[i][j] = min



E[i − 1][j] + 1, (insert)
E[i][j − 1] + 1, (delete)
E[i − 1][j − 1] + I[T [i] ̸= W [j − 1]], (match or substitute)
E[i − k − 1][j] + 1, if M [h] = 1 (insert and merge)
E[i − k − 1][j − 1] + I[T [i] ̸= W [j − 1]], if M [h] = 1 (match or sub. and merge).

Next, consider a gadget row E[i][·] which corresponds to a special letter in Γ. Because of
the form of regular expressions corresponding to special letters, a # can either be inserted or
substituted directly after a non-sensitive pattern, or be preceded by another # no more than
k positions earlier. This results in the following recursive formula:

E[i][j] = min


E[i − 1][j] + 1, (insert)
E[i − 1][j − 1] + 1, (substitute)
E[i][j − 1] + 1, . . . , E[i][max{0, j − k}] + 1, (delete or extend gadget).

For completeness, we write down the recursive formula for initializing the leftmost column:

E[i][0] =
{

E[i − k − 1][0] + 1, if i ≡ −1 mod (k + 1) ∧ M [h] = 1 (merge)
E[i − 1][0] + 1, otherwise (no merge).

Unlike in the standard setting [26], the edit distance between W and any string matching
the regular expression R is not necessarily found in its bottom-right entry E[|I|(k + 1)][|W |].
Instead, it is found among the rightmost k entries of the last row (in case XED ends with a
string in ⊗), and the rightmost entry of the second-last row (when XED ends with the last
letter of the last non-sensitive pattern). After computing the edit distance value, we construct
an XED. To do so, when computing each entry E[i][j], we memorize a backward-pointer to
an entry from which the minimum value for E[i][j] was obtained. We then construct XED
from right to left with respect to the sequence of edit operations corresponding to an optimal
alignment obtained by the backward-pointers.

3 Compact Lookup Table Structure for Squared Blocks

In this section we consider the standard edit distance table, and propose a data structure
which can answer some queries on a b × b sub-table of the DP table, which we call a block,
corresponding to two strings of the same length. Our data structure is similar to the one
proposed in [13], tailored, however, to our needs. We next provide some further definitions
about blocks. Let B be a b × b block to be processed. The top (resp. bottom) row of B is
called the input (resp. output) row of B. Similarly, the leftmost (resp. rightmost) column of
B is called the input (resp. output) column of B. A cell in the input (resp. output) row or
column is called an input (resp. output) cell.

In the following, we propose a lookup table for b × b blocks that computes all output cell
values of a block in O(b) time for any given block and input cell values of the block. We
modify the following known result to enhance it with a trace-back functionality.

▶ Theorem 7 (Theorem 1 in [13]). Given two strings both of length b corresponding to a b × b

block, we can construct a data structure of size O(b2) in O(b2 log b) time such that given any
values for the input row and column of the block, the data structure can compute the output
row and column of the block in O(b) time.
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In [13], the authors did not refer to tracing back, i.e., it is not clear how to obtain an optimal
alignment using Theorem 7. We prove that we can trace back a shortest path to an output
cell in a b × b block in O(b) time using O(b2 log b) additional space. This yields an optimal
alignment. We next briefly describe the data structure of Theorem 7 and explain how we
modify it.

3.1 Constructing a Data Structure for a Pair of Strings
For constructing the data structure of Theorem 7, Brubach and Ghurye [13] utilize the result
of [30]. Instead, we use the following result by Klein [24], which is more general.

▶ Theorem 8 ([24]). Given an N -node planar graph with non-negative edge labels, we can
construct a data structure of size O(N log N) in O(N log N) time such that given a node s

in the graph and another node t on the boundary of the infinite face, the data structure can
compute the maximum (or minimum) distance from s to t in O(log N) time. Also, if the
graph has constant degree, then we can compute the shortest s-t path in time linear in the
length of the path.

The lookup table structure for a block is constructed as follows (see [13] for details). Let
B be a b × b block to be preprocessed. First, we regard B as a grid-graph of size b × b.
Namely, each node corresponds to a cell in the block, and each edge corresponds to an
edit operation. Also, each edge is labeled by the weight of its corresponding edit operation.
Then, we construct the data structure of Theorem 8 for the grid-graph. We denote this data
structure by DB . Next, for each input cell u and each output cell v, we compute the weight
of the shortest path from u to v, and store them to table MB of size (2b − 1) × (2b − 1). Each
row (resp. column) of MB corresponds to each output (resp. input) cell of B. A table is
called monotone if each row’s minimum value occurs in a column which is equal to or greater
than the column of the previous row’s minimum. It is totally monotone if the same property
is true for every sub-table defined by an arbitrary subset of the rows and columns of the
given table. It is known that we can construct MB so that it is totally monotone [16]. We
thus construct DB and MB in O(b2 log b) time and space.

By Theorem 7, the size of the final data structure (that depends on the size of MB) is
O(b2). However, O(b2 log b) working space is used for constructing DB. In our algorithm,
we also use table MB and keep the temporary data structure DB to support tracing back
operations efficiently.

3.2 Answering Queries and Tracing Back
Given a query input row and column, we can compute the output row and column in O(b)
time using the SMAWK algorithm [3] for finding the minimum value in each row of an
implicitly-defined totally monotone table, since MB is totally monotone [13]. Note that,
for each output cell v of B, we can also obtain an input cell sv which is the starting cell
of a shortest path ending at v from the result of SMAWK algorithm. Thus, by using data
structure DB , we can obtain a shortest sv-v path in time linear in the length of the path. To
summarize, we obtain the following lemma.

▶ Lemma 9. Given two strings both of length b corresponding to a b × b block, we can
construct a data structure of size O(b2 log b) in O(b2 log b) time such that given any values
for the input row and column of the block, the data structure can compute the output row
and column of the block in O(b) time. Furthermore, given an output cell v and any other cell
u in the block, we can compute a shortest u-v path in time linear in the length of the path.

This data structure works under edit distance with arbitrary weights at no extra cost.



T. Mieno, S. P. Pissis, L. Stougie, and M. Sweering 19:9

4 Sensitive Patterns of Arbitrary Lengths

In this section we propose a data structure with which we can solve the AETFS problem in
time O(n3). First, let us consider whether ETFS-DP can be applied directly to the AETFS
problem. The AETFS problem is a generalization of the ETFS problem, and there are
some differences between them: if there exists a long sensitive pattern of length longer than
k, then we cannot apply the same logic for the possibly mergeable rows to the AETFS
problem. This is because merging multiple non-sensitive patterns of length k may create
a long sensitive pattern, while this sensitive pattern must be hidden. In contrast, if there
exists a short sensitive pattern of length less than k, then we cannot apply the same logic for
the gadget rows to the AETFS problem, since this may introduce a short sensitive pattern
in a gadget. Thus AETFS is much more challenging.

Let L = O(n2) denote the total length of long sensitive patterns. As a first step towards
our main result, we prove the following lemma.

▶ Lemma 10. The AETFS problem can be solved in O(k|I|n + Ln) time.

Note that Lemma 10 yields O(n2k) time for ETFS because in this case L = 0. Lemma 10
thus generalizes Theorem 2 in [9]. In what follows, we propose a new data structure for
solving the AETFS problem and prove Lemma 10. The main idea is to use multiple DP
tables and link them under specific rules. Interestingly, our data structure is shaped as a
DAG consisting of DP tables.

4.1 Long Sensitive Patterns
If there is a long sensitive pattern, we need to consider the case where multiple non-sensitive
patterns are contained in a single sensitive pattern. (Recall that all non-sensitive patterns
have fixed length k.) In this case, we cannot apply the ETFS-DP algorithm from [9] directly.

Let us consider the situation in which we have just finished computing a possibly mergeable
row. We may be able to choose the next move from two candidates: either go down to the
next (gadget) row or jump to the next possibly mergeable row if possible. We consider a
decision tree T that represents all combinations of such choices at all possibly mergeable
rows (inspect Figure 1). We regard T as a tree of tables, i.e., each node of T represents a
small DP table. Let E[0 . . (k + 1)|I|][0 . . n] be the DP table of the ETFS-DP algorithm
described in Section 2. There are three types of nodes in T : root, #-node, and m-node. The
root represents sub-table E[0 . . k][0 . . n]. For each depth b with 1 ≤ b ≤ |I| − 1, the #-node
at depth b represents sub-table E[b(k + 1) . . (b + 1)(k + 1) − 1][0 . . n], and each m-node
at depth b represents a copy of possibly mergeable row E[(b + 1)(k + 1) − 1][0 . . n]. Each
edge (u, v) of T means that the bottom row values of u will be propagated to the top row
of v. If there are multiple incoming edges (u1, v), (u2, v), . . . , (up, v) of a single node v, then
we virtually consider a row r[0 . . n] as the previous possibly mergeable row of v such that
r[j] is the minimum value between all j-th values in the last rows of u1, u2, . . . , up for each
0 ≤ j ≤ n. We call a path that consists of only m-nodes an m-path.

We can solve the AETFS problem if we can simulate all valid combinations of merge
operations represented by T . However, we do not have to check all combinations explicitly.
This is due to the fact that we can prune branches and merge nodes in the decision tree T
as follows2.

2 Once the merge operation is applied to the decision tree, it is no longer a tree. However, we continue
calling it the decision “tree” for convenience.
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Figure 1 An example for pruning and merging a decision tree. The red arrow represents a
long sensitive pattern, and blue arrows represent non-sensitive patterns. The tree on the top-left
represents the decision tree after pruning or merging operations for depths b = 0, 1, 2. For b = 3,
we merge two #-nodes by Rule 3. For b = 4, we prune an m-node by Rule 2 since merging four
non-sensitive patterns following the node results creating a sensitive pattern. Furthermore, we merge
three #-nodes by Rule 3, and merge two m-nodes by Rule 4. Finally, we add the sink node at the
bottom.

For incremental b = 1, 2, . . . , |I| − 1, we edit T according to the following four rules:
Rule 1. If M [b] = 0, then prune all edges to m-nodes at depth b.
Rule 2. If there is a path (v1, v2, . . . , vp) such that the depth of vp is b, then (v2, . . . , vp) is

an m-path, and v1 and vp respectively correspond to the length-k prefix and the length-k
suffix of the same sensitive pattern. Hence prune the edge (vp−1, vp). In other words, we
prune the edge (vp−1, vp) if merging the path strings results in creating a long sensitive
pattern.

Rule 3. If there are multiple #-nodes at depth b, then merge all of them into a single #-node.
Rule 4. If there are multiple m-nodes {v1, v2, . . .} at depth b such that each ui does not

correspond to the length-k prefix of any sensitive pattern, where ui is the parent of the
starting node of the longest m-path ending at vi, then merge such m-nodes into a single
m-node.

Finally, we add the sink node under the decision tree such that the sink node corresponds to
the bottom row E[|I|(k + 1)][0 . . n], and each node at depth |I| − 1 has only one outgoing
edge to the sink node. We also rename the root to the source node.

After executing all pruning and merging operations, the decision tree becomes a DAG
whose all source-to-sink paths represent all valid choices (inspect Figure 3 in Appendix A).

We call such DAG the decision DAG, and we denote it by G. Although the size of T can
be exponentially large, we can directly construct G in a top-down fashion from an instance
of AETFS in O(|G|) time.

Correctness

We show that no valid path is eliminated and all invalid paths are eliminated while constructing
G from T . Clearly, crossing #-nodes creates no invalid path. In what follows, we mainly
focus on m-nodes that can create invalid paths.
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It is easy to see that a path (v1, v2, . . . , vp) is invalid if and only if (i) there is a sub-path
(vs, . . . , vt) where vs and vt respectively correspond to the length-k prefix and suffix of the
same sensitive pattern, and vs+1, · · · , vt are all m-nodes or (ii) there is an edge (vi−1, vi)
such that M [di] = 0 where di is the depth of vi. By Rule 1, we delete all invalid paths which
satisfy condition (ii), and do not delete any valid path. By Rule 2, we delete an invalid path
which satisfies condition (i), and do not delete any valid path. By Rule 3, we merge #-nodes,
however, it does not matter since this operation does not cause deleting or creating any path.
By Rule 4, we may merge m-nodes, however, the m-nodes to be merged are carefully chosen
to not interfere with Rule 2. Thus, this also does not cause deleting or creating any path.
Therefore, G is constructed correctly.

The Size of the DAG

We next analyze the size of G. Clearly, the total number of #-nodes is equal to |I| − 1. Also,
the source node and the sink node are unique. The number of m-nodes, each of which is a
child of some #-node, is equal to the number of #-nodes, i.e., |I| − 1. The number of the
rest of m-nodes is at most L. Also, each node has at most two outgoing edges.

Each #-node and the source node represent a sub-table of size (k + 1) × (n + 1). Each
m-node represents a possibly mergeable row, and the sink node represents the last gadget
row. Therefore, the total size of G is O(|I|kn + |I|n + Ln) = O(k|I|n + Ln).

Time Complexity

The decision DAG G is computed in O(k|I| + L) time without creating the original decision
tree T by applying the above four rules for incremental b = 1, 2, . . . , |I| − 1. Also, we can
compute each cell in G in amortized constant time [9]. Thus, the total time is O(k|I|n + Ln).

4.2 Short Sensitive Patterns
Running the ETFS-DP algorithm may introduce short sensitive patterns in its gadgets. We
explain how to modify the recursive formulae of the gadget row to account for short sensitive
patterns. We first prove that w.l.o.g. all gadgets are either a single # or can be optimally
aligned such that:
1. All #’s in gadgets are substituted by letters in W ;
2. All letters in gadgets are matched with letters in W ; and
3. No further letters are inserted between letters of the same gadget.

If some extra inserted letters of W are aligned with a gadget, we can add some extra
#’s to change them into substitutions without increasing the cost, changing the number
of non-sensitive patterns or increasing the number of sensitive patterns. Similarly, if some
letters of the gadget are not matched with the same letters in W , these gadget letters can be
replaced by #. Finally, if some #’s in the gadget are not aligned with any letter in W , we
can either remove them or move them to the place of an adjacent gadget letter while deleting
that letter. Inspect the following example.

▶ Example 11. Let the following optimal alignment from Example 1 with cost 4. Gadgets
are in red.
e c a b - a a a a a b b - b a d f
e c a b # a a # a b b b # b a d f

We transform it to another optimal alignment of the same cost that respects the above
conditions:
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e c a b a a a a a b b - b a d f
e c a b # a # a b b b # b a d f

Let us first consider the leftmost gadget: (1) #’s are substituted by letters in W ; (2) all
letters are matched with letters in W ; and (3) no further letters are inserted between the
gadget’s letters. Note that the rightmost gadget is a single # and so the modified alignment
satisfies all conditions above.

A single # cannot introduce any sensitive pattern, so just as in the ETFS-DP algorithm
we can get a cost of E[i − 1][j] + 1 corresponding to the case that a single # is inserted
after W [j − 1] or a cost of E[i − 1][j − 1] + 1 corresponding to the case that a single # is
aligned with W [j − 1]. For longer gadgets the possibilities are a bit more restricted than in
the ETFS-DP algorithm. Assuming the gadget to have the structure described above, it
follows that the previous # cannot be aligned before W [F [j − 1]], where F [j] is defined to
be the largest integer such that W [F [j] . . j − 1] contains a sensitive or non-sensitive pattern
(if it exists). More formally:

F [j] = max({i < j | W [i . . j − 1] contains a sensitive pattern} ∪ {j − k} ∪ {0}).

F can be computed in O(kn) time. We denote the point-wise minimum of the copies of the
preceding merge row with r; in the case of ETFS this is just the previous merge row. This
gives us the following formula for the gadget rows. For all 0 ≤ i ≤ (k + 1)|I| with i ≡ 0
mod k + 1,

E[i][j] = min


r[j] + 1
r[j − 1] + 1
E[i][j − 1] + 1, E[i][j − 2] + 1, . . . , E[i][F [j − 1] + 1] + 1.

(Notice that a string position and its corresponding table index differ by one.)
To conclude, we also need to consider the range in which the edit distance value lies.

Since the last row corresponds to ⊗, the value stored in E[|I|(k + 1)][j], for all 0 ≤ j ≤ n,
is the cost of an optimal alignment between W [0 . . j + ej − 1] and a string in the regular
expression whose length-(ej + 1) suffix is #W [j . . j + ej − 1], where ej = min(max{e |
W [j . . j + e − 1] does not contain any sensitive or non-sensitive pattern} ∪ {n − j}). The
edit distance between W and any string matching the regular expression is found among
the rightmost n − F [n] entries of the last row or the rightmost entry of the second-last row.
Thus, we obtain:

dE(YED, W ) = min

{
E[|I|(k + 1) − 1][n],
E[|I|(k + 1)][n], E[|I|(k + 1)][n − 1], . . . , E[|I|(k + 1)][F [n] + 1].

For each E[i][j] and r[j] we store a pointer to an entry which led to this minimum value.
We can then trace back as in ETFS-DP, taking the minimizing entry of the above equation
as a starting point, and obtain YED in an additional O(kn) time. Therefore the total time
complexity of AETFS is O(k|I|n + Ln) and we arrive at Lemma 10.

5 Õ(n2)-Time Algorithms using Dyadic Intervals

In this section we improve ETFS-DP and the algorithm of Lemma 10. We first show an
algorithm to compute gadget rows in amortized constant time per cell in the rows. Secondly,
we focus on the redundancy in the computation of ordinary rows, and propose an algorithm to
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compute them by using the lookup table structure of Section 3 according to dyadic intervals.
These two improvements yield an Õ(n2)-time algorithm for ETFS. Finally, we employ a
similar lookup table technique to contract m-paths in the decision DAG, which yields an
Õ(n2)-time algorithm for AETFS as well.

5.1 Speeding Up Gadget Rows Computation
First, we show how to speedup the gadget rows computation. For each #-node u in the decision
DAG G, we denote by du the in-degree of u. Let Gu[0 . . n] be the gadget row in u. For each
0 ≤ i ≤ du−1, let M i

u[0 . . n] be a possibly mergeable row of a node which has an edge pointing
to u. The recursive formula for Gu[i] is as follows: Gu[0] = min{M0

u [0] + 1, . . . , Md−1
u [0] + 1},

and

Gu[j] = min


M0

u [j − 1] + 1, . . . , Md−1
u [j − 1] + 1,

M0
u [j] + 1, . . . , Md−1

u [j] + 1,

Gu[j − 1] + 1, . . . , Gu[F [j − 1] + 1] + 1,

for 1 ≤ j ≤ n. We assume that M0
u , . . . , Md−1

u and F are given. It costs O(n(k + du)) time
to compute Gu naïvely. The next lemma states that we can actually compute Gu in O(ndu)
time.

▶ Lemma 12. Given M0
u , . . . , Md−1

u and F , we can compute every Gu[i] in O(du) time for
incremental i = 0, . . . , n.

Proof. Let us fix an arbitrary #-node u and omit subscripts related to u. Let rj be the index
such that G[rj ] is the rightmost minimum value in the range G[F [j −1]+1 . . j], and let mj =
G[rj ] be that minimum value. Then, it can be seen that G[p] = mj + 1, for any rj < p ≤ j,
since G[p] > G[rj ] and G[p] ≤ G[rj ] + 1 by the recursive formula. Clearly, r0 = 0. We assume
that rj−1 is known before computing G[j]. If rj−1 < F [j − 1] + 1, then G[j − 1] = mj−1 + 1
is the minimum in G[F [j − 1] + 1 . . j − 1], and rj = arg min{G[j − 1], G[j]}. Otherwise,
F [rj−1] = mj is the minimum in G[F [j − 1] + 1 . . j − 1], and rj = arg min{G[rj−1], G[j]}.
Note that F is a non-decreasing array, i.e., F [j] ≥ F [j − 1]. Thus, we can compute G[j] and
rj in O(d) time. ◀

By Lemma 12, we can compute all gadget rows in a total of O(n
∑

u∈G du) = O(n|I| + nL)
time.

5.2 ETFS in O(n2 log2 k) Time
In this section we describe an algorithm which solves ETFS in O(n2 log2 k) time. The key
to losing the factor k is the fact that the string T on the left is highly repetitive and only
consists of substrings of the length-n string W (interleaved by some letters in Γ). Therefore
we can compute the DP table efficiently using only few precomputed sub-tables as in the
Four Russians method [6].

First, we partition W into substrings of length 2i (or shorter if 2i ∤ |W |) for each
i ∈ {0, 1, 2, . . . , ⌊log k⌋}. This gives a set A of at most 2n different strings. Moreover, note
that each length-k pattern in W can be written as the concatenation of at most 2⌊log k⌋ + 2
such strings.

For every pair of strings in (w1, w2) ∈ A2 with |w1| = |w2|, we precompute the lookup
table for the strings w1 and w2 according to Lemma 9. Now we can compute the non-merge
case of each possibly mergeable row using at most 2 · ⌈n/2i⌉ precomputed lookup tables of
size 2i × 2i (or smaller) for each i ∈ {0, 1, 2, . . . , ⌊log k⌋}.
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Time Complexity

Precomputing a lookup table for two strings of length up to 2i takes O(22ii) time. In total
this gives a precomputation time of

O

⌊log k⌋∑
i=0

n

2i
· n

2i
· 22ii

 = O(n2 log2 k).

Each possibly mergeable row can now be computed in O(n log k) time from the previous
merge and gadget row, since each non-sensitive length-k pattern can be partitioned into at
most 2⌊log k⌋ + 2 precomputed strings. Gadget rows can be computed in O(n) time each
from the preceding possibly mergeable rows using the technique described by Lemma 12.

For the traceback, note that |XED| = O(kn), i.e., the length of an optimal alignment path
over E is O(kn). We do not know how the path behaves inside each block. However we can
compute the sub-path inside a block in time linear in the path’s length by using Lemma 9.
The gadget rows can be traced back in a further O(n) time. Thus, we can trace back in a
total time of O(kn). Therefore the total time complexity is O(n2 log2 k). We arrive at the
following result.
▶ Theorem 2. The ETFS problem can be solved in O(n2 log2 k) time.

5.3 AETFS in O(n2 log2 n) Time
In this section we describe how to further reduce the decision DAG G from Section 4 by
precomputing parallel m-paths. First, we give some observations for m-paths. An m-path
is said to be maximal if the m-path cannot be extended either forward or backward. Any
two maximal m-paths do not share any nodes, since every m-node in G has at most one
outgoing edge to m-nodes and at most one incoming edge from m-nodes. Also, the number
of maximal m-paths is at most |I| since the parent of the first m-node of each maximal
m-path is a different #-node or the source node. In what follows, suppose G contains a total
of p maximal m-paths of length ℓ1, . . . , ℓp with

∑p
i=1 ℓi ≤ n + ℓn, where ℓ is the length of

the longest sensitive pattern. Recall that an m-node represents a possibly mergeable row of
size 1 × (n + 1), and thus, we will identify an m-path of length x with a DP table of size
x × (n + 1).

Let us now describe our DAG reduction. An example of the DAG reduction is demon-
strated in Figure 2. In the prepocessing phase, we first construct a lookup table structure
for all possible m-paths corresponding to dyadic intervals of lengths at most ℓ over the range
[1, |I| − 1] of the depths of m-paths, in a similar way as in Section 5.2. Next, for each
maximal m-path in G, we decompose it into shorter m-paths according to dyadic intervals.
We then contract each such m-path into a single node named j-node consisting of a single row,
which jumps from the beginning of the m-path to the end and represent consecutive merges.
Also, we have to take into account edges leaving the m-path. Note that paths that leave the
m-path early always leave to a #-node, so we do not have to worry about introducing any
sensitive patterns. We therefore create a new copy of the m-path preceded by an additional
node named c-node consisting of a single row, which takes the point-wise minimum of the
parent nodes of the m-paths.

After finishing the DAG reduction, we fill the DP tables from top to bottom: all j-nodes
are computed by using the lookup table; all new m-paths are computed in the original fashion,
including all outgoing edges; and all the other nodes are computed as in Section 5.2. Also,
we can trace back and find the solution to AETFS by storing appropriate backward-pointers
and the data structures of Lemma 9 just as in Section 5.2.
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Figure 2 An example of contracting a part of the decision DAG. Before contracting, there are
three parallel m-paths each of length 22 = 4. We contract each m-path to a j-node corresponding to
the case in which four consecutive non-sensitive patterns are merged. Also, we create an m-path of
length 3 preceded by a c-node corresponding to the case in which at least one gadget is inserted.

Time Complexity

Constructing the lookup tables takes O(n2 log2 ℓ) time since there are at most ⌊log ℓ⌋ different
path lengths, and for each i ∈ {0, 1, . . . , ⌊log ℓ⌋}, we preprocess at most (n/2i)2 blocks of
size 2i × 2i each in O(22ii) time. We can also easily contract G in O(n2) time by traversing
the DAG. Note that the number of nodes in the original DAG is O(n2) (Section 4.1). We
partition each path of length ℓi into at most 2(log ℓ + ℓi/ℓ) precomputed paths: at most
ℓi/2⌊log ℓ⌋ paths of length 2⌊log ℓ⌋ and at most 2 of each shorter length. Therefore the j-nodes
can be computed in O(n ·

∑p
i=1 2(log ℓ + ℓi/ℓ)) = O(n2 log ℓ) time. The c-nodes and the

following m-nodes can be computed in O(n2 log ℓ) time, because there is at most one c- or
m-node per depth and per precomputed path length. The #-nodes can each be computed in
O(n log2 k) time using the method described in Section 5.2. Finally, tracing back takes only
O(kn) time by using the backward-pointers and the data structures of Lemma 9.

Summarizing this section, we have shown that the AETFS problem can be solved in
time O(n2 log2 k + min{n2 log2 ℓ, Ln}). We arrive at the following result.

▶ Theorem 4. The AETFS problem can be solved in O(n2 log2 n) time.

We defer investigating the generalization of this result for arbitrary weights to the full
version of this paper.
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Let G = (V, E) be a digraph where each vertex is unlabeled, each edge is labeled by a character in
some alphabet Ω, and any two edges with both the same head and the same tail have different labels.
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1 Introduction

Consider the decision problem of whether there is a walk in a finite edge-labeled digraph
matching a query string of labels. Intuitively, the offline version of this problem is straight-
forwardly solved in time linear in the size of the string and independent of the size and
order of the graph using an index that sorts the walks matching every possible query
string so they can essentially be performed as if they were one walk. Many approaches
[37, 30, 35, 36, 18, 32, 2, 15] further rely on the last-to-first (LF) mapping property exhibited
by a class of invertible transforms [9, 28] that includes the Burrows-Wheeler transform
(BWT) [3]. Wheeler graphs [15] provide a unifying formalism for these LF mapping-based
strategies. A Wheeler graph admits a particular total order of its (unlabeled) vertices2 such
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that the terminal vertices of all walks matching any query string comprise a single interval.
LF mapping enables performing all walks in the Wheeler graph matching a given query
string as if they were one walk from interval to interval of the totally ordered vertices.

But not every labeled digraph is a Wheeler graph. Indexing a non-Wheeler graph using
the framework outlined above involves constructing an equivalent Wheeler graph of which
subsets of vertices each represent a distinct vertex of the non-Wheeler graph. A query string
is matched by a walk to a vertex of this original graph if and only if it is also matched by a
walk to an associated vertex of the equivalent Wheeler graph. After confirming the presence
of at least one match in the equivalent Wheeler graph, it is often important to perform
a locate query, which retrieves the vertices of the original graph at which matching walks
terminate. This requires additionally storing the vertex associations between the original
graph and its equivalent Wheeler graph [37, 35, 18].

There are compressed indexes of Wheeler graphs supporting efficient locate queries
[15, 14, 31], but an equivalent Wheeler graph can be large and unwieldy regardless, especially
when the non-Wheeler graph it represents has cycles. In practice, such cycles are typically
indexed so only query strings up to some maximum size are supported [35, 18], limiting the
size and order of the equivalent Wheeler graph, but it is worth seeking alternative strategies
that more readily and more elegantly accommodate matching query strings of arbitrary size
and locating matches. The central issue is that LF mapping is a navigational instrument
restricted to a line of vertices, mapping intervals into intervals. In this sense, a non-Wheeler
graph is linearized by an equivalent Wheeler graph. Linearization may be cumbersome
when the topology of the non-Wheeler graph deviates substantially from the topology of a
Wheeler graph. Moreover, the terminal vertices of walks in a non-Wheeler graph matching a
given query string are in general redundantly represented by the corresponding matching
interval of totally ordered vertices of an equivalent Wheeler graph – that is, vertices on this
interval may represent subsets of vertices of the non-Wheeler graph that are not disjoint.
A locate query then returns a multiset of vertices of the non-Wheeler graph that must be
deduplicated [37, 35, 18]. The performance of such a query depends on the size of the multiset,
which can significantly exceed the number of unique vertices it comprises. A full-featured
navigational instrument would go beyond LF mapping and be able to map arbitrary subsets
of vertices into arbitrary subsets of vertices, eliminating this performance bottleneck while
also accommodating any finite labeled digraph.

The powerset construction [33, 20] is just such an instrument, providing a transform of
one labeled digraph into another labeled digraph of which each vertex represents a subset of
vertices of the original graph. Moreover, this transformed graph can be used to solve the string
matching decision problem with the same performance as an LF mapping-based framework.
We show (1) under a particular condition, the original graph is uniquely determined by just
the transformed graph, and (2) this invertibility condition can be exploited in a framework for
efficiently locating query matches in any finite labeled digraph, in analogy to how invertibility
of the BWT for strings enables the FM-index [10, 11], a widely used [24, 27, 23, 26] compressed
suffix array.

Here is a brief summary of our framework: start with any finite digraph whose edges
are labeled on some alphabet, and add edges to form a cycle that includes all vertices and
matches a generalized de Bruijn sequence [12] on a different alphabet. As explained in
Section 4, this operation is analogous to adding a sentinel (“the dollar sign”) to a string
before obtaining its BWT. Think of the digraph as a nondeterministic finite automaton
(NFA) whose every vertex is both an initial state and a final state and whose labeled edges
encode the transition function. Use the powerset construction to obtain a deterministic finite
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automaton (DFA) from this NFA. Now think of the DFA as a digraph whose labeled edges
encode the transition function and whose states are unlabeled vertices except for the empty
state, which is excluded from the graph along with all states unreachable from the initial
state. Refer to that initial state as the root. We call this transformed graph a nength of
the original graph. There is at most one edge with a given label directed from any vertex
of the nength. A walk in the original graph matches a query string if and only if a walk
starting at the root of its nength also matches that string. When such a walk is present in
the nength, traversals of the nength’s edges labeled on the alphabet of the generalized de
Bruijn sequence and starting at the terminal vertex of this walk rapidly and nonredundantly
retrieve the terminal vertices of all walks in the original graph matching the query string.

Our main message is this: existing software [37, 35, 18] for offline string matching in a
labeled digraph linearizes that graph and subsequently indexes the result using BWT-based
approaches familiar from text indexing. These approaches exploit invertibility of the BWT
or a related transform via LF mapping to downsample vertex indices stored to support locate
queries. However, when linearization is awkward and gives a massive equivalent Wheeler
graph, downsampling is severely constrained and of diminished utility. In this event, it is
possible to use a nength instead, which obviates the need for graph linearization and still
exploits invertibility – achieved via a mechanism different from LF mapping – to reduce the
index size while keeping locate queries efficient. Nength has the additional advantage that
it naturally accommodates matching query strings of arbitrary size in any labeled digraph,
whether or not it has cycles.

Table 1 A glossary of terms used in this paper.

term definition

head of a digraph’s edge vertex at which the edge is directed
tail of a digraph’s edge vertex from which the edge is directed

order of a graph number of vertices of the graph; the word “order” is also
used in this paper to refer to ordering objects, and the
appropriate denotation should be clear from context

size of a graph number of edges of the graph
walk in a digraph sequence alternating between vertices and edges of the digraph

such that each edge in the sequence is directed from the vertex
immediately before it and at the vertex immediately after it

closed walk in a digraph walk in the digraph that starts and ends at the same vertex
path in a digraph walk in the digraph that repeats neither vertices nor edges

necklace circular string of characters; if, e.g., 101 is said to be a
necklace, then the set of its two-character substrings is
{10, 01, 11}, and 011 and 110 refer to the same necklace

transform function, irrespective of its domain and codomain

Our presentation is organized as follows. Section 2 introduces the powerset construction
using graph theoretic language and proves a general invertibility condition. Section 3 gives
an algorithm for locating query matches with a nength, which relies on this invertibility
condition via the generalized de Bruijn sequence construction sketched above, and describes
a basic data structure for storing a nength. Section 4 elaborates on the analogy between
nength and the BWT and proposes two defining properties of a class of transforms that
includes both. A glossary of terms required to understand this paper is provided in Table 1.
Other terms introduced here or invoked in more specific contexts than may be typical in the
literature are italicized and defined on first use.

CPM 2021
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2 Transform

Let G = (V, E) be a finite digraph where each vertex is unlabeled, each edge bears exactly
one label on some alphabet Ω, and any two edges with both the same head and the same
tail have different labels. Let G′ = (V ′, E′) be another digraph specified by G according to
the following conditions:
1. each vertex v′

i ∈ V ′ is unlabeled but associated with a distinct bit vector b′
i of size |V |

called the state of v′
i whose ℓth bit is b′

iℓ and whose bits are never all zero,
2. exactly one edge labeled ωk ∈ Ω extends from v′

i to v′
j for v′

i, v′
j ∈ V ′ if and only if

{vm ∈ V : b′
jm = 1} is the set of heads of ωk-labeled edges of G whose tails are among

{vm ∈ V : b′
im = 1}, and

3. |V ′| is as large as possible such that all vertices in V ′ are reachable from a vertex
designated as the root whose state has only nonzero bits.

Condition 1 above implies G′ is finite because G is finite, and there are 2|V | − 1 possible
nonzero states. Condition 2 implies a vertex of G′ is the tail of no more than one edge labeled
by a given character in Ω. Condition 3 implies G′ is weakly connected.

A vertex v′
i of G′ represents a set of vertices of G, and the state b′

i records these vertices.
Note G′ can be thought of as the DFA obtained via the powerset construction [33, 20] from,
in general, an NFA. In the NFA, Ω is the set of input symbols, each state is both an initial
state and a final state, each state corresponds to a distinct vertex of G, and the transition
function is prescribed by the edges of G. In the DFA, the initial state corresponds to the
root of G′. Further, every vertex of G′ corresponds to a distinct state of the DFA. States of
the DFA unreachable from the initial state and transitions to the DFA’s empty state are
not represented in G′. See [4, 34] for recent innovations in parallelization of the powerset
construction.

G′ facilitates following all walks in G matching some query string q on Ω as if they were
one walk: stand at the root of G′, start walking the sequence of edges whose labels match q,
and either (1) it is not possible to reach step number p ≤ |q| because no walk in G matches
the size-p prefix of q, or (2) the nonzero bits of the state of the vertex reached at step number
p correspond to the terminal vertices of all walks in G matching the size-p prefix of q. Since
it essentially sorts all walks in G and is obtained from the powerset construction, call G′

the powerset sort of G. G′ permits solving the decision problem of whether there exist one
or more walks in G matching a query string q in time linear in |q|, independent of G’s size
|E| and order |V |. If the states of vertices of the powerset sort G′ are stored beforehand, a
positive determination is accompanied by the terminal vertices of matches in G. However,
storing these states together with G′ is costly.

Call a vertex v′
i ∈ V ′ for which b′

iℓ is the only nonzero bit of b′
i the singleton v′∗

ℓ of G′;
that is, as an alternative notation, use an asterisk to denote singletons, and index them
according to how corresponding vertices in G are indexed. Now suppose for every vℓ ∈ V ,
there is some distinct string sℓ on Ω such that vℓ is origin of some closed walk matching sℓ,
and no other walk in G matches sℓ unless it starts and ends at vℓ. Call sℓ an identifying
string of vℓ; call a closed walk matching sℓ an identifying walk of vℓ. It is clear that if the
state of each vertex of G′ is specified, G is uniquely determined by G′: (1) for every vertex
vℓ of G, there is a walk matching an identifying string of vℓ from G′’s root to the singleton
v′∗

ℓ ; (2) for every ωk ∈ Ω, if there are any ωk-labeled edges of G whose tail is vℓ, their heads
are specified by the state of the head of the ωk-labeled edge extending from v′∗

ℓ ; and (3)
this implies the head and tail of every edge of G are known from G′ and the {b′

w}. But a
stronger statement can be made: G′ itself encodes the {b′

w} (up to permutation equivalence)
via identifying walks, and it is an invertible transform of G without requiring that the {b′

w}
are recorded. We prove the following.
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▶ Theorem 1. G is uniquely determined by its powerset sort G′ when every vertex of G has
an identifying walk.

Proof. G′ is given, but the state of each of its vertices is not. Write {v →} to refer to the
set of strings matching walks starting at some vertex v of some graph. Note by construction,
{v′∗

ℓ →} = {vℓ →} for v′∗
ℓ ∈ V ′ and vℓ ∈ V ; that is, the strings matching walks starting

at a singleton of G′ capture precisely the set of possible matches to walks starting at its
corresponding vertex in G. More generally,

{v′
i →} =

⋃
w∈Y

{v′∗
w →} for Y = {m : b′

im = 1} ; (1)

that is, the strings matching walks starting at a given vertex v′
i of G′ capture precisely the

set of possible matches to walks starting at any vertex vℓ of G for which b′
iℓ = 1. But by

definition, for any singletons v′∗
ℓ , v′∗

p ∈ V ′ with ℓ ̸= p, {v′∗
ℓ →} contains an identifying string

that is not in {v′∗
p →}. Together with (1), this says for any vertices vℓ ∈ V and v′

i, v′
j ∈ V ′,

{v′
i →} ⊆ {v′

j →} if and only if b′
iℓ = 1 =⇒ b′

jℓ = 1. It follows that a given vertex v′
i ∈ V ′

is a singleton if and only if for any vertex v′
j ∈ V ′ with j ≠ i, {v′

j →} ̸⊆ {v′
i →}. Further,

b′
jℓ = 1 if and only if {v′∗

ℓ →} ⊆ {v′
j →} for v′∗

ℓ , v′
j ∈ V ′. This implies the states of all vertices

of G′ can be determined up to permutation equivalence, and thus G is uniquely determined
by its powerset sort G′. ◀

Let Ak be the adjacency matrix of G specific to ωk ∈ Ω; that is, its (ℓ, p)th entry is 1
when an ωk-labeled edge extends from vℓ to vp for vℓ, vp ∈ V and is 0 otherwise. Observe that
G′ represents a system of matrix equations where multiplication is Boolean and a given edge
labeled ωk ∈ Ω extending from v′

i ∈ V ′ to v′
j ∈ V ′ corresponds to the equation Akb′

i = b′
j .

Perhaps surprisingly, Theorem 1 says this system has a unique solution up to permutation
equivalence when it is constructed from a graph G for which every vertex has an identifying
walk, despite how none of the adjacency matrices or states is known in advance.

Figure 1 A) is an example digraph on the alphabet {a, b, c} where each vertex has an identifying
walk, and B) is its powerset sort. Edges with different labels have different colors. States are written
next to associated vertices of B), and state bits are ordered correspondingly to vertex indices of A).
A complete set of identifying strings for A) is {bb, cba, abc}. It is easily seen all walks in B) matching
a given identifying string end at the same vertex, which is always a singleton.

CPM 2021
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For a given identifying string sℓ of vℓ ∈ V , any walk matching sℓ in G′ terminates at
v′∗

ℓ , and the origin of that walk has a state whose ℓth bit is nonzero because an identifying
walk is closed. Call any set of identifying strings in which there is at least one identifying
string per vertex of G a complete set of identifying strings. An example digraph is Figure 1A,
and its powerset sort is Figure 1B. A complete set of identifying strings for Figure 1A is
{bb, cba, abc}, and in Figure 1B, every walk matching any one of these identifying strings
ends at the same singleton. The next section relies on Theorem 1 to develop a framework for
efficient location of matches to a query string in any finite labeled digraph.

3 Location

A de Bruijn sequence B(r, n) of order n on a size-r alphabet is a necklace of size rn such
that every possible size-n string on the alphabet occurs exactly once as a substring. B(r, n)
is optimally short in the sense that a necklace of size rn has exactly as many substrings
of size n as there are possible strings of size n on a size-r alphabet. References [13, 12]
introduce generalized de Bruijn sequences, a natural generalization of de Bruijn sequences
to necklaces of arbitrary size. Let x be some necklace, and let γz(x) be the size of the set
of size-z substrings of x. A generalized de Bruijn sequence BG(r) on a size-r alphabet for
r ≤ |BG(r)| is a necklace for which

γz(BG(r)) = min(rz, |BG(r)|) .

When γz(BG(r)) = |BG(r)| = rz, BG(r) is a de Bruijn sequence of order z. Note
⌈logr |BG(r)|⌉ is the smallest value of z such that γz(BG(r)) = |BG(r)|, and thus every
size-⌈logr |BG(r)|⌉ substring of BG(r) occurs exactly once as a substring of BG(r). Refer-
ences [13, 12] give a proof that there exists at least one generalized de Bruijn sequence BG(r)
for any combination of r ≥ 2 and |BG(r)| ≥ 1 and provide several examples of generalized de
Bruijn sequences. Also refer to [25], an antecedent with most of the elements of this proof.

Let Ω̃ be an alphabet of size at least 2 such that Ω̃ ∩ Ω = ∅. Call Ω̃ the sentinel alphabet.
Perform the following steps to alter any G with at least two vertices3 to form a new graph
G̃ = (V, Ẽ):
1. Obtain some generalized de Bruijn sequence c of size |V | on Ω̃.
2. Add edges to G to form a cycle GC = (V, EC) that includes every vertex and matches c.
G̃ is a labeled digraph on the alphabet ΩU := Ω̃ ∪ Ω. Call the cycle subgraph GC of G̃ the
identifying cycle of G̃. Because c is a generalized de Bruijn sequence, every vertex vℓ ∈ V is
the origin of a walk in GC matching some size-⌈log|Ω̃| |V |⌉ string such that no other walk in
G̃ matches that string. This walk is part of a closed walk in the identifying cycle, and thus
from Theorem 1, G̃’s powerset sort G̃′ = (Ṽ ′, Ẽ′) is invertible. Refer to the powerset sort of
any digraph augmented with an identifying cycle as a nength of that digraph. G̃′ is a nength
of G. Note that G′, the powerset sort of the original graph G, is a subgraph of the nength
G̃′: walks in G̃ matching some query string q on Ω end at vertices mirroring those in G at
which walks matching q end.

Call a walk starting at any vertex ṽ′
i ∈ Ṽ ′ that is not a singleton a locating walk of ṽ′

i if it
traverses only edges labeled on the sentinel alphabet Ω̃, ends at a singleton, and otherwise
visits no singletons. Because it does not traverse any edges labeled on Ω, a locating walk

3 For G with one vertex, G′ is invariably the same graph as G, making for a trivial case that need not be
considered.
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represents only walks in G̃ confined to the identifying cycle; because it ends at a singleton, a
locating walk represents exactly one walk in G̃; because GC matches a generalized de Bruijn
sequence, the size of a locating walk does not exceed ⌈log|Ω̃| |V |⌉; because if any locating
walk repeated a vertex, it would be possible to construct an arbitrarily long locating walk, a
locating walk is always a path. The identifying cycle imposes a cyclic order on vertices of
G̃. Assign indices to vertices of G̃ such that state bits respect this order. Then a locating
walk of ṽ′

i can be used to determine a nonzero bit of the state b̃′
i of ṽ′

i, where a modular
subtraction of the size of the locating walk from the index of its terminal singleton gives the
index of the nonzero bit. This modular subtraction corresponds to a backwards walk in GC

to recover the vertex starting the walk represented by the locating walk in G̃′. The full state
is recovered by following all locating walks of ṽ′

i. We prove the following.

▶ Proposition 2. Every ṽ′
i ∈ Ṽ ′ that is not a singleton has exactly as many locating walks

in G̃′ as there are nonzero bits of the state b̃′
i of ṽ′

i, with each nonzero bit determined by a
different locating walk.

Proof. Suppose there were more locating walks than nonzero bits of b̃′
i. Then by the

pigeonhole principle, there would be at least two distinct locating walks to singletons for
which appropriate modular subtractions of steps from indices determined the same bit, some
b̃′

iℓ. But since both these walks represent walks in the identifying cycle GC starting at vℓ ∈ V ,
(1) if they had the same number of the steps, they would necessarily correspond to the same
walk in GC , a contradiction, and (2) if they had different numbers of steps, the longer walk
would reach a singleton before its end, a contradiction. ◀

So G̃′ offers a straightforward way to obtain the vertices of G matching any size-p prefix
of a query string q on Ω: stand at the root of G̃′, start walking the sequence of edges whose
labels match q, and if step p is reached at some vertex, follow locating walks and perform
appropriate modular subtractions to obtain the state of that vertex, whose nonzero bits
correspond to the terminal vertices of walks in G matching the size-p prefix of q.

It is not necessary to store all of G̃′ to enable these locate queries. Call a vertex of G̃′ a
spanner if it is not a singleton and either is reachable from the root by following only edges
labeled on Ω or is the root itself. Call a vertex of G̃′ a locator if it is not a singleton and is
not reachable from the root by following only edges labeled on Ω, but is reachable on some
locating walk of a spanner. Store only singletons, spanners, locators, edges labeled on Ω
whose tails are singletons, edges labeled on ΩU whose tails are spanners, and edges labeled on
Ω̃ whose tails are locators. Any other components of G̃′ are not visited or traversed during
string matching or on locating walks. Further, note it is enough to know only that an edge
is labeled on the sentinel alphabet Ω̃ rather than Ω to follow locating walks; the particular
label of an edge on Ω̃ need not be recorded.

Let M be a matrix with |ΩU | columns where (1) each row corresponds to a different
vertex of G̃′, (2) each column corresponds to a different character in ΩU , (3) an entry is the
null pointer if and only if there is no edge of G̃′ whose tail corresponds to the entry’s row
and whose label corresponds to the entry’s column, and (4) an entry is a pointer to some row
if and only if that row corresponds to the head of an edge of G̃′ whose tail corresponds to the
entry’s row and whose label corresponds to the entry’s column. M can be used to perform a
walk in G̃′ by following pointers from row to row. Arrange the row order of M so its first
|V | rows correspond to singletons, and ensure these vertices are in an order prescribed by
GC . This implicitly stores their indices – that is, when a walk in G̃′ using M ends at some
(0-indexed) row ℓ < |V |, that row corresponds to a singleton whose index according to GC is
ℓ. Arrange that the root of G̃′ corresponds to the row of M right after the first |V | rows so
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pattern matching always starts there. Also arrange that all rows corresponding to spanners
precede all rows corresponding to locators, and all columns corresponding to characters in Ω̃
precede all columns corresponding to characters in Ω. Further, since the particular labels of
edges labeled on Ω̃ are inconsequential, reorder the first Ω̃ entries of each row of M so all
nonnull pointers precede all null pointers.

Algorithm 1 A depth-first approach to determining the state of a vertex of some nength G̃′. A
given entry of M that is a nonnull pointer is taken to be the index of the row of M pointed. The
first row of M corresponds to the index 0. Bit indices of bit vectors respect congruence modulo |V |.

Input: M, index i of row of M corresponding to vertex ṽ′
i of G̃′ whose state is desired, |V |,

|Ω̃|
Output: size-|V | state b̃′

i of ṽ′
i

Initialization : state b̃′
i ← 0, stack S ← {}

1: if i < |V | then
2: b̃′

ii ← 1
3: return b̃′

i

4: end if
5: for k := 0 to |Ω̃| − 1 do
6: if Mik is null then
7: break
8: end if
9: push the tuple (Mik, 1) onto S

10: end for
11: while S is not empty do
12: pop some (m, p) off S

13: if m < |V | then
14: b̃′

i(m−p) ← 1
15: else
16: for k := 0 to |Ω̃| − 1 do
17: if Mmk is null then
18: break
19: end if
20: push the tuple (Mmk, p + 1) onto S

21: end for
22: end if
23: end while
24: return b̃′

i

The entries of M necessary for pattern matching can now be stored as an array m in
row-major order, where there is: (1) a single block of rows corresponding to a singletons,
with each row taking |Ω| elements; (2) a single block of rows corresponding to spanners, with
each row taking |ΩU | elements; and (3) a single block of rows corresponding to locators, with
each row taking |Ω̃| elements. Straightforward pointer arithmetic then gives the location
in memory of any entry of M required for string matching or state determination. Our
procedure for state determination is formalized in Algorithm 1. The logic for retrieving
specific entries of M using m is excluded there.
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Figure 2 A) is a digraph with an identifying cycle on the sentinel alphabet {$, #} matching the
generalized de Bruijn sequence $$#. B) is the corresponding nength, excluding edges labeled on Ω̃
whose tails are singletons and edges labeled on Ω whose tails are the sole locator (i.e., the vertex
with state 101). States are written next to associated vertices of B), and state bits are ordered
correspondingly to vertex indices of A). Note the identifying cycle imposes an order on the vertices
respected by their indices. Edges comprising the identifying cycle in A) and the components they
contribute to B) are in gray. Otherwise, edges are assigned colors according to their labels.

Because of how a subgraph of G̃′ is G′, G̃′ has |V ′| − |V | spanners. The number of
singletons of G̃′ is the number |V | of vertices of G̃. Suppose G̃′ has |Ṽ ′

L| locators. Then m
takes up(

|ΩU | (|V ′| − |V |) + |Ω||V |+ |Ω̃||Ṽ ′
L|

)
⌈log2(|V ′|+ |Ṽ ′

L|+ 1)⌉

bits.
Figure 2A is a graph with an identifying cycle on the sentinel alphabet {$, #}. Without

the identifying cycle, vertex 0 has no identifying walk. Figure 2B is the corresponding nength,
excluding edges labeled on Ω̃ whose tails are singletons and edges labeled on Ω whose tails
are the sole locator (i.e., the vertex with state 101).

Assume |Ω̃| < |V | and that entries of M can be accessed in constant time. In the worst
case, our algorithm for state determination runs in O(t log|Ω̃| |V |) time, where t is the number
of nonzero bits of the state, since a locating walk can take up to ⌈log|Ω̃| |V |⌉ steps. Identifying
the t terminal vertices of walks in G matching a query string q by following pointers in M
thus takes O(|q|+ t log|Ω̃| |V |) time. The size of the sentinel alphabet Ω̃ can be as small as 2,
with larger alphabet sizes improving the performance of state determination while increasing
the number of columns of M.

By contrast, naively storing all states of the powerset sort G′ of G in a |V ′| × |V | binary
matrix for their immediate retrieval gives O(|q|) performance. But storing |V ′||V | state bits
may be forbidding for large G, and the storage overhead of locating walks in the array m may
be comparatively small for small |Ω̃|; for example, a single locator may be the head of many
edges labeled on Ω̃, achieving compression by simultaneously representing configurations of
state bits that are the same across the edges’ tails.

It is not absolutely necessary to ensure GC matches a generalized de Bruijn sequence
to obtain the O(t log|Ω̃| |V |) performance guarantee for state determination. References
[13, 12] provide an alternative characterization of a generalized de Bruijn sequence BG(r) as
a necklace on a size-r alphabet that satisfies
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1. γd(BG(r)) = rd

2. γd+1(BG(r)) = |BG(r)|
with d := ⌊logr |BG(r)|⌋. A necklace satisfying condition 2 above but not necessarily condition
1 also gives the performance guarantee. For some intuition about the difference, consider
the following example borrowed from [13, 12]: on the binary alphabet {0, 1}, 00001011101 is
a generalized de Bruijn sequence, but 10011110000 satisfies only condition 2. While every
size-4 substring is distinct in each sequence, the former has all eight possible size-3 substrings,
while the latter has only seven and is missing 101. A necklace satisfying condition 2 but not
necessarily condition 1 is called an m-ary closed sequence in [25], and construction algorithms
were developed decades ago [19, 8]. However, it is desirable that GC matches a necklace
that also satisfies condition 1. Maximizing complexity in this way can in general reduce the
average number of steps of a locating walk: fewer instances of particular short kmers in the
necklace make for fewer steps along the identifying cycle to distinguish vertices. So it is
worth exploring how to construct generalized de Bruijn sequences efficiently.

Our basic data structure for storing M can be refined to reduce its size. A degree
of freedom we do not explore thoroughly here is that rows corresponding to locators and
spanners can be reordered so M has more structured sparsity. For example, ordering rows
of M to cluster them according to which of their columns contains null pointers permits
eliminating null pointers from the array m if the indices of nonnull columns on intervals of
rows are recorded in an auxiliary data structure. Rows can also be ordered lexicographically
by treating them like they are strings on an ordered alphabet of pointers; intervals of rows
with the same prefix can then be compressed. It may also be possible to reduce the total
number of rows of M by arranging that the identifying cycle largely follows existing paths
in G; when G is suitably sparse, this could give rise to G̃′ with a preponderance of pairs of
edges sharing the same head and tail, thereby economizing the number of its vertices. The
designs of identifying cycles and of compressed representations of M are thus potentially
fruitful areas for further research.

4 Discussion

Consider the case where G is a cycle graph whose every vertex has an identifying walk, and
sort the |E| identifying strings in lexicographic order, writing the result as an |E|×|E| matrix
B. The ith instance of a given character ωk ∈ Ω in the first (F) column of B corresponds
to the same edge as the ith instance of ωk in the last (L) column of B. This LF mapping
property means that G is implicitly encoded in B’s last column, which is the BWT of G. To
recover G from its BWT, note first the F column is exactly the characters of the L column
in sorted order – that is, F is composed of successive blocks of characters from Ω, with one
block per character. Write the F and L columns next to each other. Now:
1. start at some arbitrary row,
2. apply LF mapping to the character in the F column to move to the row whose character

in the L column corresponds to the same edge, and
3. repeat step 2 until the starting row of step 1 is reached.
The sequence of characters in the F column encountered on following these instructions
completely recapitulates the cycle comprising G. If a given query string q on Ω matches
several walks in G, all these walks correspond to a single interval of rows of B. LF mapping
can be applied to obtain this interval in time linear in |q|, independent of |E| and |V |, with
an appropriately designed rank data structure over the BWT [10].
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LF mapping is generally encountered as a byproduct of an ordering procedure. A recent
generalization [5] of the BWT that applies to an arbitrary labeled digraph G obtains a
partial co-lexicographic order of its vertices. In this framework, walks in G matching a query
string always terminate at some convex subset of the ordered vertices. In the worst case,
search performance using a proposed extension to the FM-index based on this transform is
O(|q||E| log |V |). The result is consistent with a recently obtained conditional lower bound
for string matching in labeled digraphs: unless the strong exponential time hypothesis is
false, no index constructed in time polynomial in |E| can deliver a search performance of
O(|q|δ|E|β) with either δ < 1 or β < 1 [6, 7].

A nength can have up to 2|V |−1 vertices, so the asymptotic scalings of both its construction
time and index size include an exponential factor whose argument is |V |. However, we expect
the situation is not so grim for many classes of graphs. Indeed, [5] establishes an upper bound
of 2p(|V | − p + 1)− 1 on the number of states of the DFA obtained by applying the powerset
construction to an NFA with |V | states, where p is the width of a partial co-lexicographic
order of the NFA’s states. Reference [5] further notes the parameter p serves as a complexity
measure for graphs, where Wheeler graphs have p = 1.

Various analogs to the BWT respecting some of its features while discarding others
are possible. In the analog described in [5], invertibility is achieved in the general case by
explicitly recording a strategic abbreviation of submatrices of the graph’s adjacency matrix
that exploits the partial co-lexicographic order of vertices. As the complexity measure p

increases, this representation collapses to exactly the adjacency matrix. So the representation
is guaranteed to be invertible because at worst, it is a literal encoding of the original graph.
In the analog to the FM-index built on this representation, compression is achieved at the
expense of search performance, both of which degrade as p increases.

Our perspective is that the powerset construction itself provides a BWT-like transform.
A nength sorts possible matches without ordering them. While it no longer has a semblance
of what makes the BWT navigable – LF mapping – what makes the BWT invertible is
preserved: every vertex has an identifying walk. (Note, for example, if multiple closed walks
in a cycle graph matched the same string, the BWT matrix B would be a sequence of blocks
of identical rows. LF mapping would then obtain multiple cycles rather than a single cycle,
and invertibility would be lost.) Just as the BWT is an invertible transform of a cycle graph
into a string with a beginning and an end, a result of ordering, a nength is an invertible
transform of a labeled graph into a different graph for which each vertex is the tail of at
most one edge labeled by a given character, a result of sorting.

For both the BWT and nength, properties linked to invertibility can be exploited to
rapidly locate matched patterns. An arbitrary finite string on Ω can be extended by an extra
sentinel character that is not in Ω. The ends of this string can then be joined to form an
aperiodic necklace. The BWT of this necklace is invertible because each character has a
distinct distance from the sentinel. The identifying cycle labeled on the sentinel alphabet
performs the same function for a nength as a sentinel does for a BWT; there is not necessarily
a natural distance between two given vertices of an arbitrary graph, but adding an identifying
cycle vests the graph with a distance function on its vertices. Ensuring this cycle matches a
generalized de Bruijn sequence gives a performance guarantee for state determination via
nength navigation.

The paper introducing Wheeler graphs [15] articulates two main features of the original
BWT: (1) it is invertible, and (2) it “helps” compression. The paper also notes some
variants of the BWT in the literature do not have these features. Since there are indeed
so many such variants, it is worth considering how to define properties of a potentially
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broad class of transforms that includes both the BWT and nength. We believe references
to compression should be avoided. A labeled digraph can be thought of as a potentially
compressed representation of many strings, apart from any transform. Moreover, the BWT
does not itself do any compressing, and that it tends to help in approaches to lossless
compression of text is, of course, an artifact of the distribution of data encountered in
practical settings; there exists some distribution of data for which it would typically “hurt”
compression. Rather, we believe at its core, the BWT is a tool for maximally efficient string
matching. We also believe invertibility alone is not one of its defining properties. How the
BWT achieves invertibility matters.

Given these considerations, we propose defining a search transform as follows. Let X

be a configuration of unlabeled objects together with directed relationships, where each
relationship connects a subset of objects and has a set of labels, potentially on multiple
alphabets. A search transform is any transform of X into a different configuration X ′ of
objects and relationships such that
1. X ′ enables an index that answers whether a structured query pattern of relationships is

present in X in time independent of the numbers of objects and relationships X contains,
and

2. X is uniquely determined by X ′ precisely because for every object in X, there is some
nonempty query pattern matched only at that object.

Above, we draw a distinction between a search transform and an index enabled by a search
transform. A total order of the vertices of a Wheeler graph together with auxiliary data
supporting LF mapping-based navigation is a search transform because an FM-index built
on it solves the string matching decision problem in time independent of the size and order
of the graph [15]. This is despite how using the more compact r-index [16, 17, 29, 21, 22, 1]
in place of the FM-index solves the string matching decision problem in time polylogarithmic
in the graph’s size [14]. Both nength and the BWT are also search transforms. However,
the compound transform that linearizes a non-Wheeler graph and subsequently orders the
vertices of an equivalent Wheeler graph is excluded from our definition because it is invertible
in part via the map between the non-Wheeler graph and the equivalent Wheeler graph. Note
our definition leaves room for possible transforms that facilitate matching of patterns more
involved than strings. We leave exploration of these possibilities for future work.
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Abstract
Enumerating characteristic substrings (e.g., maximal repeats, minimal unique substrings, and
minimal absent words) in a given string has been an important research topic because there are a
wide variety of applications in various areas such as string processing and computational biology.
Although several enumeration algorithms for characteristic substrings have been proposed, they are
not space-efficient in that their space-usage is proportional to the length of an input string. Recently,
the run-length encoded Burrows-Wheeler transform (RLBWT) has attracted increased attention
in string processing, and various algorithms for the RLBWT have been developed. Developing
enumeration algorithms for characteristic substrings with the RLBWT, however, remains a challenge.
In this paper, we present r-enum (RLBWT-based enumeration), the first enumeration algorithm
for characteristic substrings based on RLBWT. R-enum runs in O(n log log(n/r)) time and with
O(r log n) bits of working space for string length n and number r of runs in RLBWT. Here, r is
expected to be significantly smaller than n for highly repetitive strings (i.e., strings with many
repetitions). Experiments using a benchmark dataset of highly repetitive strings show that the
results of r-enum are more space-efficient than the previous results. In addition, we demonstrate the
applicability of r-enum to a huge string by performing experiments on a 300-gigabyte string of 100
human genomes.
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1 Introduction

Enumerating characteristic substrings (e.g., maximal repeats, minimal unique substrings
and minimal absent words) in a given string has been an important research topic because
there are a wide variety of applications in various areas such as string processing and
computational biology. The usefulness of the enumeration of maximal repeats has been
demonstrated in lossless data compression [20], bioinformatics [6, 23] and string classification
with machine learning models [30, 28]. The enumeration of minimal unique substrings and
minimal absent words has shown practical benefits in bioinformatics [24, 1, 14, 16] and data
compression [18, 19]. There is therefore a strong need to develop scalable algorithms for
enumerating characteristic substrings in a huge string.

The Burrows-Wheeler transform (BWT) [13] is for permutation-based lossless data
compression of a string, and many enumeration algorithms for characteristic substrings
leveraging BWT have been proposed. Okanohara and Tsujii [30] proposed an enumeration
algorithm for maximal repeats that uses BWT and an enhanced suffix array [2]. Since their
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algorithm takes linear time to the length n of a string and O(n log n) working space, applying
it to a huge string is computationally demanding. Beller et al. [12] proposed an enumeration
algorithm for maximal repeats that uses a range distinct query on the BWT of a string in
O(n log σ) time and n log σ + o(n log σ) + O(n) bits of working space for alphabet size σ of
a string. Since the working space of their algorithm is linearly proportional to the length
n of a string, a large amount of space is expected to be consumed for huge strings. Along
the same line of research, Belazzougui et al. [9, 7] proposed an algorithm for enumerating
characteristic substrings in O(n log σ) time and n log σ + o(n log σ) + O(σ2 log2 n) bits of
working space, which resulted in the space usage being linearly proportional to the string
length. Thus, developing a more space-efficient enumeration algorithm for the characteristic
substrings of a string remains a challenging issue.

Run-length BWT (RLBWT) is a recent, popular lossless data compression, and it is
defined as a run-length compressed BWT for strings. Thus, the compression performance
of RLBWT has been shown to be high, especially for highly repetitive strings (i.e., strings
with many repetitions) such as genomes, version-controlled documents, and source code
repositories. Kempa and Kociumaka [26] showed an upper bound on the size of the RLBWT
by using a measure of repetitiveness. Although several compressed data structures and string
processing algorithms that use RLBWT have also been proposed (e.g., [8, 21, 29, 4, 25]), no
previous algorithms for enumerating characteristic substrings based on RLBWT have been
proposed. Such enumeration algorithms are expected to be much more space-efficient than
existing algorithms for highly repetitive strings.

Contribution. We present the first enumeration algorithm for characteristic substrings
based on RLBWT, which we call r-enum (RLBWT-based enumeration). Following the idea
of the previous works [12, 7], r-enum performs an enumeration by simulating traversals of a
Weiner-link tree (e.g., [9]), which is a trie, each node of which represents a right-maximal
repeat in a string T of length n. Each characteristic substring in T corresponds to a
node in the Weiner-link tree of T . This is made possible in O(n log logw(n/r) + occ) time
and O(r log n) bits of working space for number r of runs in RLBWT, machine word size
w = Θ(log n), and number occ of characteristic substrings. For a highly repetitive string
such that r = o(n log σ/ log n) holds, r-enum is more space-efficient than the best previous
algorithms taking O(nd) time and |RD| + O(n) bits of space, where |RD| is the size of a
data structure supporting range distinct queries and computing the LF function in O(d)
time; a pair (|RD|, d) can be chosen as (|RD|, d) = (n log σ + o(n log σ), O(log σ)) [15] or
(|RD|, d) = (O(n log σ), O(1)) [9, Lemmas 3.5 and 3.17]. Table 1 summarizes the running
time and working space of state-of-the-art algorithms including those by Okanohara and
Tsujii (OT method) [30], Beller et al. (BBO method) [12], and Belazzougui and Cunial (BC
method) [7] in comparison with our r-enum.

Experiments using a benchmark dataset of highly repetitive strings show that r-enum
is more space-efficient than the previous algorithms. In addition, we demonstrate the
applicability of r-enum to a huge string by performing experiments on a 300-gigabyte string
of 100 human genomes, which has not been shown in the previous work so far.

The outline of this paper is as follows. Section 2 introduces several basic notions, including
the Weiner-link tree. In Section 3, we present a traversal algorithm for the Weiner-link tree
of T in O(r log n) bits. Section 4 presents r-enum for finding the corresponding nodes to
maximal repeats, minimal unique substrings, and minimal absent words. In Section 5, we
slightly modify r-enum such that it outputs each characteristic substring and its occurrences
in T instead of the corresponding node to the characteristic substring. Section 6 shows the
performance of our method on benchmark datasets of highly repetitive strings.
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Table 1 Summary of running time and working space of enumeration algorithms for (i) maximal
repeats, (ii) minimal unique substrings (MUSs), and (iii) minimal absent words (MAWs) for each
method. Last column represents main data structure used in each algorithm. Input of each algorithm
is string T of length n or BWT of T , and each outputted characteristic substring is represented by
pointer with O(log n) bits. We exclude inputs and outputs from working space. In addition, σ is
alphabet size of T , w = Θ(log n) is machine word size, r is the number of runs in RLBWT of T ,
and occ = O(nσ) [17] is the number of minimal absent words for T . RD means data structure (i)
supporting range distinct queries in O(d) time per output element and (ii) computing LF function
in O(d) time; |RD| is its size. We can choose (|RD|, d) = (n log σ + o(n log σ), O(log σ)) [15] or
(|RD|, d) = (O(n log σ), O(1)) [9, Lemmas 3.5 and 3.17].

(i) Maximal repeats Running time Working space (bits) Data structures
OT method [30] O(n) O(n log n) Enhanced suffix array
[9, Theorem 7.8] O(n) O(n log σ) BWT and RD

BBO method [12] O(nd) |RD| + O(n) BWT and RD
BC method [7] O(nd) |RD| + O(σ2 log2 n) BWT and RD

r-enum (this study) O(n log logw(n/r)) O(r log n) RLBWT and RD
(ii) MUSs Running time Working space (bits) Data structures

[9] O(n) O(n log σ) BWT and RD
BC method [7] O(nd) |RD| + O(σ2 log2 n) BWT and RD

r-enum (this study) O(n log logw(n/r)) O(r log n) RLBWT and RD

(iii) MAWs Running time Working space (bits) Data structures
[5] O(n + occ) O(n log n) Suffix array

[9, Theorem 7.12] O(n + occ) O(n log σ) BWT and RD
BC method [7] O(nd + occ) |RD| + O(σ2 log2 n) BWT and RD

r-enum (this study) O(n log logw(n/r) + occ) O(r log n) RLBWT and RD

2 Preliminaries

Let Σ = {1, 2, . . . , σ} be an ordered alphabet, T be a string of length n over Σ, and |T | be the
length of T . Let T [i] be the i-th character of T (i.e., T = T [1], T [2], . . . , T [n]), and T [i..j] be
the substring of T that begins at position i and ends at position j. For two strings T and P ,
T ≺ P means that T is lexicographically smaller than P . Occ(T, P ) denotes all the occurrence
positions of P in T , i.e., Occ(T, P ) = {i | i ∈ [1, n − |P | + 1] s.t. P = T [i..(i + |P | − 1)]}. We
assume that (i) the last character of T is a special character $ not occurring in substring
T [1..n − 1], (ii) |T | ≥ 2, and (iii) every character in Σ occurs at least once in T . For two
integers b and e (b ≤ e), interval [b, e] represents the set {b, b + 1, . . . , e}. Let substr(T )
denote the set of all the distinct substrings of T (i.e., substr(T ) = {T [i..j] | 1 ≤ i ≤ j ≤ n}).

In this paper, characteristic substrings of a string consist of maximal repeats, min-
imal unique substrings, and minimal absent words. A maximal repeat in T is defined as
a substring P satisfying two conditions: (i) it occurs at least twice in the string (i.e.,
|Occ(T, P )| ≥ 2), and (ii) either of the left or right extended substrings of it occurs fewer
times than it (i.e., |Occ(T, cP )|, |Occ(T, Pc)| < |Occ(T, P )| for any c ∈ Σ). A minimal unique
substring is defined as substring P satisfying two conditions: (i) it occurs just once (i.e.,
|Occ(T, P )| = 1), and (ii) all the proper substrings of it occur at least twice in the string (i.e.,
|Occ(T, P [2..|P |])|, |Occ(T, P [1..|P | − 1])| ≥ 2). A minimal absent word is defined as string P

satisfying two conditions: (i) it does not occur in a string (i.e., |Occ(T, P )| = 0), and (ii) all the

CPM 2021



21:4 R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

i SA LCP LF
1 11 0 2
2 10 0 8
3 3 1 9
4 8 1 10
5 1 3 1
6 6 3 11
7 4 5 3
8 9 0 4
9 2 2 5
10 7 2 6
11 5 4 7

Sorted circular strings

F L
$ a b a a b a b a b a
a $ a b a a b a b a b
a a b a b a b a $ a b
a b a $ a b a a b a b
a b a a b a b a b a $
a b a b a $ a b a a b
a b a b a b a $ a b a
b a $ a b a a b a b a
b a a b a b a b a $ a
b a b a $ a b a a b a
b a b a b a $ a b a a

Figure 1 Suffix array, LCP array, LF function, BWT, and circular strings for T = abaabababa$.

proper substrings of it occur in the string (i.e., |Occ(T, P [2..|P |])|, |Occ(T, P [1..|P |−1])| ≥ 1).
For convenience, a minimal absent word is sometimes called a substring, although the string
is not a substring of T .

Our computation model is a unit-cost word RAM with a machine word size of w =
Θ(log2 n) bits. We evaluate the space complexity in terms of the number of machine words.
A bitwise evaluation of the space complexity can be obtained with a multiplicative factor
of log2 n. We assume the base-2 logarithm throughout this paper when the base is not
indicated.

2.1 Rank and range distinct queries
Let S ⊆ {1, 2, . . . , n} be a set of d integers. A rank query rank(S, i) on S returns the number
of elements no more than i in S, i.e., rank(S, i) = |{j | j ∈ S s.t. j ≤ i}|. Rrank(S) is a rank
data structure solving a rank query on S in O(log logw(n/d)) time and with O(dw) bits of
space [10].

A range distinct query, RD(T, b, e) on a string T returns a set of 3-tuples (c, pc, qc)
that consists of (i) a distinct character c in T [b..e], (ii) the first occurrence pc of the
character c for a given interval [b..e] in T , and (iii) the last occurrence qc of the character
c for [b..e] in T . Formally, let Σ(T [b..e]) be the set of distinct characters in T [b..e], i.e.,
Σ(T [b..e]) = {T [i] | i ∈ [b, e]}. Then, RD(T, b, e) = {(c, pc, qc) | c ∈ Σ(T [b..e])}, where
pc = min(Occ(T, c) ∩ [b, e]), and qc = max(Occ(T, c) ∩ [b, e]). RRD(T ) is a range distinct data
structure solving a range distinct query on T in O(|RD(T, b, e)| + 1) time and with O(n log σ)
bits of space [11].

2.2 Suffix and longest common prefix arrays
The suffix array [27] SA of string T is an integer array of size n such that SA[i] stores
the starting position of the i-th suffix of T in lexicographical order. Formally, SA is a
permutation of {1, 2, . . . , n} such that T [SA[1]..n] ≺ · · · ≺ T [SA[n]..n]. The longest common
prefix array (LCP array) LCP of T is an integer array of size n such that LCP[1] = 0 and
LCP[i] stores the length of the LCP of the two suffixes T [SA[i]..n] and T [SA[i − 1]..n] for
i ∈ {2, 3, . . . , n}. We call the values in the suffix and LCP arrays sa-values and lcp-values,
respectively. Moreover, let LF be a function such that (i) SA[LF(i)] = SA[i]−1 for any integer
i ∈ ({1, 2, . . . , n} \ {x}) and (ii) SA[LF(x)] = n, where x is an integer such that SA[x] = 1.
Figure 1 depicts the suffix array, LCP array, and LF function for a string.
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2.3 BWT and RLBWT
The BWT [13] of string T is an array L built by permuting T as follows; (i) all the n rotations
of T are sorted in lexicographical order, and (ii) L[i] for any i ∈ {1, 2, . . . , n} is the last
character at the i-th rotation in sorted order. Similarly, F [i] for any i ∈ {1, 2, . . . , n} is the
first character at the i-th rotation in sorted order. Formally, let L[i] = T [SA[LF(i)]] and
F [i] = T [SA[i]].

Since L[i] and L[j] represent two characters T [SA[i] − 1] and T [SA[j] − 1] for two distinct
integers i, j ∈ {1, 2, . . . , n}, the following relation holds between LF(i) and LF(j); LF(i) <

LF(j) if and only if either of two conditions holds: (i) L[i] ≺ L[j] or (ii) L[i] = L[j] and
i < j. Let C be an array of size σ such that C[c] is the number of occurrences of characters
lexicographically smaller than c ∈ Σ in string T , i.e., C[c] = |{i | i ∈ [1, n] s.t. T [i] ≺ c}|.
The following equation holds by the above relation for the LF function on BWT L: LF(i) =
C[c] + Occ(L[1..i], L[i]). We call the equation LF formula.

The RLBWT of T is the BWT encoded by run-length encoding, i.e., RLBWT is a
partition of L into r substrings L[ℓ(1)..ℓ(2) − 1], L[ℓ(2)..ℓ(3) − 1], . . . , L[ℓ(r)..ℓ(r + 1) − 1]
such that each substring L[ℓ(i)..ℓ(i + 1) − 1] is a maximal repetition of the same character
in L called a run. Formally, let r = 1 + |{i | i ∈ {2, 3, . . . , n} s.t. L[i] ̸= L[i − 1]}|, ℓ(1) = 1,
ℓ(r + 1) = n + 1, and ℓ(j) = min{i | i ∈ {ℓ(j − 1) + 1, ℓ(j − 1) + 2, . . . , n} s.t. L[i] ̸= L[i − 1]}
for j ∈ {2, 3, . . . , r}. Let Sstart denote the set of the starting position of each run in L, i.e.,
Sstart = {ℓ(1), ℓ(2), . . . , ℓ(r)}. RLBWT is represented as r pairs (L[ℓ(1)], ℓ(1)), (L[ℓ(2)], ℓ(2)),
. . ., (L[ℓ(r)], ℓ(r)) using 2rw bits. σ ≤ r ≤ n holds since we assume that every character in
Σ occurs in T .

LF(i) = LF(i − 1) + 1 holds for an integer i ∈ {2, 3, . . . , n} by LF formula if i is not the
starting position of a run in L (i.e., i ̸∈ Sstart). Similarly, LCP[LF(i)] = 1 + LCP[i] holds if
i ̸∈ Sstart.

Figure 1 depicts two arrays L and F for string T = abaabababa$. Since the BWT of
T = abaabababa$ is abbb$baaaaa, the RLBWT of the string T is (a, 1), (b, 2), ($, 5), (b, 6),
and (a, 7). The red and blue characters a are adjacent in a run on the BWT L. Hence,
LF(8) = LF(7) + 1 holds by LF formula. Similarly, LCP[LF(8)] = LCP[8] + 1 = 1 holds.

2.4 Suffix tree
The suffix tree [3] of T is a trie storing all the suffixes of T . Each node v represents the
concatenated string on the path from the root of the tree to the node v. Let uP denote the
node representing a substring P of T . The depth of node uP is defined as the length of its
string P , i.e., the depth of uP is |P |. Let children(P ) denote the set of strings represented
by the children of uP . Formally, children(P ) = {Pc | c ∈ Σ s.t. Pc ∈ substr(T )}. We call
uP an explicit node if it has at least two children; otherwise, we call uP an implicit node.
The root uε of the suffix tree is explicit because T contains at least two distinct characters.
Let Ld be the set of substrings represented by all the explicit nodes with depth d. Formally,
Ld = {P | P ∈ substr(T ) s.t. |P | = d and |children(P )| ≥ 2}.

The suffix-tree interval (a.k.a. suffix-array interval) for a substring P of T is an interval
[b, e] on the suffix array of T such that SA[b..e] represents all the occurrence positions of P

in string T ; that is, for any integer p ∈ {1, 2, . . . , n}, T [p..p + |P | − 1] = P holds if and only
if p ∈ {SA[b], SA[b + 1], . . . , SA[e]}. The suffix-tree interval of the empty string ε is defined
as [1, n]. Let interval(P ) = [b, e] denote the suffix-tree interval for P .

The rich representation [9] repr(P ) for P is a 3-tuple (interval(P ), {(c1, b1, e1), (c2, b2, e2),
. . ., (ck, bk, ek)}, |P |). Here, Pc1, P c2, . . . , P ck are strings represented by the children of
node uP , and [bi, ei] = interval(Pci) for i ∈ [1, k].
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Figure 2 Left figure illustrates suffix tree of T = abaabababa$ on sorted suffixes of T . We
represent each node by its suffix-tree interval (rectangles) and omit characters on edges. Yellow and
white rectangles are explicit and implicit nodes, respectively. Right figure illustrates Weiner-link tree
of T and Weiner links on sorted suffixes of T . Tree consists of yellow rectangles and solid arrows. We
omit characters on Weiner links. Solid and dotted arrows represent Weiner links pointing to explicit
and implicit nodes, respectively. Red rectangles are children of node of aba in suffix tree of T .

Figure 2 illustrates the suffix tree of string T = abaabababa$ (left figure). The three
sets L0, L1, L2 are {ε}, {a}, {ba}, respectively. The suffix-tree interval for substring
P = aba is [4, 7], and children(P ) = {aba$, abaa, abab}. The rich representation for P

is ([4, 7], {($, 4, 4), (a, 5, 5), (b, 6, 7)}, 3).

2.5 Weiner links and Weiner-link tree
Weiner links are directed links on the suffix tree of T . Let cP be a substring of T , where c

is a character, and P is a string. Then, node ucP is the destination of a Weiner link with
character c starting at node uP . Hence, every node uP must be the destination of exactly
one Weiner link unless node uP is the root of the suffix tree (i.e., P = ε). Node uP is always
explicit if ucP is explicit. This is because the explicit node ucP indicates that T has two
substrings cPc1 and cPc2, where c1 and c2 are distinct characters. Let WLink(P ) denote the
set of strings such that the node for each string is the destination of a Weiner link starting
at node uP (i.e., WLink(P ) = {cP | c ∈ Σ s.t. cP ∈ substr(T )}).

The Weiner-link tree (a.k.a. suffix-link tree) for T is a graph such that (i) the nodes are
all the explicit nodes in the suffix tree of T and (ii) the edges are all the Weiner links among
the explicit nodes. Since any explicit node is the destination of a Weiner link starting at
another explicit node, the graph results in a tree. Each child of a node uP represents a string
in WLink(P ) in the Weiner-link tree.

Let pc and qc be the first and last occurrences of a character c on the suffix-tree interval
for a substring P in the BWT L of T , respectively. Then, [LF(pc), LF(qc)] is equal to the
suffix-tree interval of cP . Hence, we can compute the suffix-tree intervals for the destinations
of all the Weiner links starting at node uP using a range distinct query and LF function.
Formally, let [b, e] = interval(P ) for a substring P of T . Then, the following equation holds:

{interval(cP ) | cP ∈ WLink(P )} = {[LF(pc), LF(qc)] | (c, pc, qc) ∈ RD(L, b, e) s.t. c ̸= $} (1)

Let QP denote an array of size σ for a substring P of T such that QP [c] stores set
{(c′, b, e) | cPc′ ∈ children(cP ) and let [b, e] = interval(cPc′)} for a character c ∈ Σ if cP

is a substring of T ; otherwise, QP [c] = ∅. The array QP has three properties for any
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character c ∈ Σ: (i) cP ∈ WLink(P ) holds if and only if |QP [c]| ≥ 1 holds, (ii) node ucP is
explicit if and only if |QP [c]| ≥ 2 holds, and (iii) QP [c] =

⋃
P c′∈children(P ){(c′, b, e) | ĉP c′ ∈

WLink(Pc′) s.t. ĉ = c and let [b, e] = interval(cPc′)} holds. In other words, each child of
node ucP is the destination of a Weiner link starting at a child of node uP in the suffix tree.

We can compute the children of a node uP in the Weiner-link tree using QP without
explicitly constructing the Weiner-link tree. Formally, the following lemma holds.

▶ Lemma 1 (Lemma 4.1 in [9]). Let RD be a data structure supporting a range distinct query
on BWT L in O((1 + k)tRD) time and computing LF function in O(tLF) time. Here, k is the
number of elements output by the range distinct query. We can compute set Y = {repr(cP ) |
cP ∈ WLink(P )} using (i) repr(P ), (ii) data structure RD, and (iii) an empty array X of
size σ. After that, we can divide the set Y into two sets for explicit and implicit nodes. The
computation time and working space are O(h(tRD + tLF)) and O((σ + h′)w) bits, respectively,
where h =

∑
P c′∈children(P ) |WLink(Pc′)|, and h′ =

∑
cP ∈WLink(P )∩L|P |+1

|children(cP )|.

Proof. We compute the outputs with the following three steps. At the first step, we
compute set {interval(cP ) | cP ∈ WLink(P )} and convert the empty array X into QP

using Equation 1 and the third property of QP . At the second step, we output the rich
representation repr(cP ) = (interval(cP ), QP [c], |P | + 1) for each cP ∈ WLink(P ) and divide
the rich representations into two sets for explicit and implicit nodes using the second property
of QP . At the last step, we remove all the elements from QP [c] for each cP ∈ WLink(P ) to
recover X from QP . We perform the three steps using range distinct queries to the suffix-tree
intervals for node uP and its children, and the intervals stored in repr(P ). Hence, the running
time is O(h(tRD + tLF)) in total.

Next, we analyze the working space. The rich representation for a node uP ′ takes
O(w) bits if uP ′ is implicit because it has at most one child. Otherwise, repr(P ′) takes
O(|children(P ′)|w) bits. Hence, the working space is O((σ + h′)w) bits in total. ◀

Figure 2 illustrates the Weiner-link tree of string T = abaabababa$ (right figure). Since
T contains two substrings aaba and baba, the node of aba has two Weiner links pointing to
the nodes of aaba and baba, i.e., WLink(aba) = {aaba, baba}. The Weiner-link tree contains
the node of baba but not that of aaba because the former and latter nodes are explicit and
implicit, respectively.

The three suffix-tree intervals for aba, aaba, and baba are [4, 7], [3, 3], and [10, 11],
respectively. A range distinct query on interval(aba) in the BWT of T returns the set
{($, 5, 5), (a, 7, 7), (b, 4, 6)}. Hence, interval(aaba) = [LF(7), LF(7)] and interval(baba) =
[LF(4), LF(6)] hold by Equation 1 (See also red and blue characters on two arrays F and L

in Figure 2). Figure 2 also illustrates the children of the node of aba in the suffix tree and
Weiner links starting from the children. In this example, QP [$] = ∅, QP [a] = {(b, 3, 3)}, and
QP [b] = {($, 10, 10), (b, 11, 11)}, where P = aba. Hence, the node of aaba has one child, and
the node of baba has two children in the suffix tree.

3 Traversing Weiner-link tree in O(rw) bits of space

In this section, we present a breadth-first traversal algorithm for the Weiner-link tree of T

in O(rw) bits of working space. The traversal algorithm outputs n sets {repr(P ) | P ∈ L0},
{repr(P ) | P ∈ L1}, . . ., {repr(P ) | P ∈ Ln−1} in left-to-right order. Here, each set
{repr(P ) | P ∈ Lt} represents the set of the rich representations for all the nodes with depth t

in the Weiner-link tree. Hence each node uP is represented as its rich representation repr(P ).

CPM 2021
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3.1 Data structures
Let DLF be an array of size r such that DLF[i] = LF(ℓ(i)) for i ∈ {1, 2, . . . , r} and L′ =
L[ℓ(1)], L[ℓ(2)], . . . , L[ℓ(r)]. Our traversal algorithm uses six data structures: (i) the RLBWT
of T (i.e., r pairs (L[ℓ(1)], ℓ(1)), (L[ℓ(2)], ℓ(2)), . . ., (L[ℓ(r)], ℓ(r)), which are introduced
in Section 2.3), (ii) the rich representation for the root of the Weiner-link tree of T (i.e.,
repr(ε)), (iii) DLF, (iv) Rrank(Sstart), (v) RRD(L′), and (vi) an empty array X of size σ, where
Rrank(Sstart) is the rank data structure introduced in Section 2.1, and it is built on the
set Sstart = {ℓ(1), ℓ(2), . . . , ℓ(r)} introduced in Section 2.3. Similarly, RRD(L′) is the range
distinct data structure introduced in Section 2.1, and it is built on the string L′. The six
data structures require O((r + σ)w) bits in total. We construct the six data structures
in O(n log logw(n/r)) time and O(rw) bits of working space by processing the RLBWT of
T (see Appendix A).

We use the two data structures DLF and Rrank(Sstart) to compute LF function. Let x be
the index of a run containing the i-th character of BWT L (i.e., x = rank(Sstart, i)) for an
integer i ∈ {1, 2, . . . , n}. LF(i) = LF(ℓ(x)) + |Occ(L[ℓ(x)..i], L[i])| − 1 holds by LF formula,
and |Occ(T [ℓ(x)..i], L[i])| = i − ℓ(x) + 1 holds because L[ℓ(x)..i] consists of a repetition of
the i-th character L[i]. Hence, LF(i) = DLF[x] + (i − ℓ(x)) holds, and we can compute LF
function in O(log logw(n/r)) time using DLF and Rrank(Sstart).

We use the fifth data structure RRD(L′) to compute a range distinct query on the BWT
L of T . Let b′ and e′ be the indexes of the two runs on L containing two characters
L[b] and L[e], respectively (i.e., b′ = rank(Sstart, b) and e′ = rank(Sstart, e)), for an interval
[b, e] ⊆ {1, 2, . . . , n}. Then the following relation holds between two sets RD(L, b, e) and
RD(L′, b′, e′).

▶ Lemma 2. RD(L, b, e) = {(c, max{ℓ(p), b}, min{ℓ(q + 1) − 1, e}) | (c, p, q) ∈ RD(L′, b′, e′)}
holds.

Proof. L[b..e] consists of e′ − b′ + 1 repetitions L[b..ℓ(b′ + 1) − 1], L[ℓ(b′ + 1)..ℓ(b′ + 2) − 1],
. . ., L[ℓ(e′ − 1)..ℓ(e′) − 1], L[ℓ(e′)..e]. Hence, the following three statements hold: (i) The
query RD(L′, b′, e′) returns all the distinct characters in L[b..e] (i.e., {L[i] | i ∈ [b, e]} =
{L′[i] | i ∈ [b′, e′]}). (ii) Let p be the first occurrence of a character c on [b′, e′] in L′. Then,
the first occurrence of a character c on [b, e] in L is equal to ℓ(p) if ℓ(p) ≥ b; otherwise, the
first occurrence is equal to b. (iii) Similarly, let q be the last occurrence of the character
c on [b′, e′] in L′. Then, the last occurrence of c on [b, e] in L is equal to ℓ(q + 1) − 1 if
ℓ(q + 1) − 1 ≤ e; otherwise, the last occurrence is equal to e. We obtain Lemma 2 with the
three statements. ◀

Lemma 2 indicates that we can solve a range distinct query on L using two rank queries on Sstart
and a range distinct query on L′. The range distinct query on L takes O(log logw(n/r) + k)
time, where k is the number of output elements.

We use the empty array X to compute rich representations using Lemma 1. The algorithm
of Lemma 1 takes O((k + 1) log logw(n/r)) time using the six data structures since we can
compute LF function and solve the range distinct query on L in O(log logw(n/r)) and
O((k + 1) log logw(n/r)) time, respectively.

3.2 Algorithm
The basic idea behind our breadth-first traversal is to traverse the Weiner-link tree without
explicitly building the tree in order to reduce the working space. The algorithm computes
nodes sequentially using Lemma 1. Recall that the algorithm of Lemma 1 returns the rich
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Figure 3 Left figure illustrates part of suffix tree of T = abaabababa$ on sorted suffixes of T . Two
colored integers in array i are positions in K′

2 = {4, 5}. Similarly, two colored integers in LCP array
correspond to positions in P2 = {5, 6}. Right figure illustrates array i, SA, LCP array, and BWT
L for T = abaabababa$. Red integers in array i are integers in set Sstart = {1, 2, 5, 6, 7}. Similarly,
underlined integers are integers in set P1 = {3, 4}.

representations for all the children of a given explicit node uP in the Weiner-link tree (i.e., it
returns set {repr(cP ) | cP ∈ WLink(P ) s.t. cP ∈ L|P |+1}). This fact indicates that the set
of the rich representations for all the nodes with a depth t ≥ 1 is equal to the union of the
sets of rich representations obtained by applying Lemma 1 to all the nodes with depth t − 1
in the Weiner-link tree, i.e., {repr(P ) | P ∈ Lt} =

⋃
P ∈Lt−1

{repr(cP ) | cP ∈ WLink(P )}.
Our algorithm consists of (n−1) steps. At each t-th step, the algorithm (i) applies Lemma 1

to each representation in set {repr(P ) | P ∈ Lt−1}, (ii) outputs set {repr(P ) | P ∈ Lt}, and
(iii) removes the previous set {repr(P ) | P ∈ Lt−1} from working memory. The algorithm
can traverse the whole Weiner-link tree in breadth-first order because we initially store the
first set {repr(P ) | P ∈ L0} for the first step.

3.3 Analysis
The traversal algorithm requires O(Ht−1 log logw(n/r)) computation time at the t-th step.
Here, Ht is the number of Weiner links starting from the children of the explicit nodes with
depth t (i.e., Ht =

∑
P ∈Lt

∑
P c∈children(P ) |WLink(Pc)|). The running time is O((

∑n
t=0 Ht)

log logw(n/r)) in total. The term
∑n

t=0 Ht represents the number of Weiner links starting
from the children of all the explicit nodes in the suffix tree. Belazzougui et al. showed
that

∑n
t=0 Ht = O(n) holds [9, Observation 1]. Hence our traversal algorithm runs in

O(n log logw(n/r)) time.
Next, we analyze the working space of the traversal algorithm. Let Kt be the set

of the children of all the explicit nodes with depth t in the suffix tree of T (i.e., Kt =⋃
P ∈Lt

children(P )). Then, the algorithm requires O((r + σ + |Kt−1| + |Kt|)w) bits of working
space while executing the t-th step. Hence our traversal algorithm requires O((r + σ +
max{|K0|, |K1|, . . . , |Kn|})w)) bits of working space while the algorithm runs.

We introduce a set K′
t to analyze the term |Kt| for an integer t. The set K′

t consists of
the children of all the explicit nodes with depth t except for the last child of each explicit
node, i.e., K′

t =
⋃

P ∈Lt
{Pc | Pc ∈ children(P ) s.t. e′ ̸= e}, where [b, e] = interval(P ), and

[b′, e′] = interval(Pc). |Kt| = |K′
t| + |Lt| holds because every explicit node has exactly one

last child. |Lt| ≤ |K′
t| also holds because every explicit node has at least two children in the

suffix tree of T . Hence, we obtain the inequality |Kt| ≤ 2|K′
t|.
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We also introduce a set Pt for an integer t. The set Pt consists of positions with lcp-
value t on the LCP array of T except for the first lcp-value LCP [1], i.e., Pt = {i | i ∈
{2, 3, . . . , n} s.t. LCP[i] = t}. Let P be the longest common prefix of T [SA[i − 1]..n] and
T [SA[i]..n] for position i ∈ Pt, i.e., P = T [SA[i]..SA[i] + LCP[i] − 1]. Then node uP is explicit,
and two nodes uP c and uP c′ are adjacent children of uP , where c = T [SA[i − 1] + LCP[i]] and
c′ = T [SA[i] + LCP[i]]. The two adjacent children uP c and uP c′ (Pc ≺ Pc′) of an explicit
node uP indicate that LCP[i] = |P | holds, where i is the left boundary of interval(Pc′). Hence,
there exists a one-to-one correspondence between Pt and K′

t, and |Pt| = |K′
t| holds. We

obtain the inequality |Kt| ≤ 2|Pt| by |Pt| = |K′
t| and |Kt| ≤ 2|K′

t|.
In Figure 3, the left figure represents a part of a suffix tree. In this example, P3 = {5, 6},

and K′
3 = {4, 5}. Obviously, the two positions 5 and 6 in P3 correspond to the two positions

4 and 5 in K′
3 with the adjacent children of explicit node uaba, respectively.

Next, we introduce two functions LFx and dist(i) to analyze |Pt|. The first function LFx(i)
returns the position obtained by recursively applying LF function to i x times, i.e., LF0(i) = i

and LFx(i) = LFx−1(LF(i)) for x ≥ 1. The second function dist(i) ≥ 0 returns the smallest
integer such that LFdist(i)(i) is the starting position of a run on L (i.e., LFdist(i)(i) ∈ Sstart).
Formally, dist(i) = min{x | x ≥ 0 s.t. LFx(i) ∈ Sstart}. The following lemma holds.

▶ Lemma 3. LFdist(i)(i) ̸= LFdist(j)(j) holds for two distinct integers i, j ∈ Pt, where t ≥ 0 is
an integer.

Proof. We show that LCP[i] = LCP[LFdist(i)(i)] − dist(i) holds for an integer i ∈ {1, 2, . . . , n}.
Let t be an integer in [0, dist(i)−1]. Since LFt(i) ̸∈ Sstart, LCP[LFt(i)] = LCP[LFt+1(i)]−1 holds
by LF formula. The LF formula produces dist(i) equations LCP[LF0(i)] = LCP[LF1(i)] − 1,
LCP[LF1(i)] = LCP[LF2(i)]−1, . . ., LCP[LFdist(i)−1(i)] = LCP[LFdist(i)(i)]−1. Hence, LCP[i] =
LCP[LFdist(i)(i)] − dist(i) holds by the dist(i) equations.

Next, we prove Lemma 3. The two integers i and j must be the same if LFdist(i)(i) =
LFdist(j)(j) because dist(i) = dist(j) holds by three equations LCP[i] = LCP[j], LCP[i] =
LCP[LFdist(i)(i)] − dist(i), and LCP[j] = LCP[LFdist(j)(j)] − dist(j). The equation i = j

contradicts the fact that i ̸= j. Hence, LFdist(i)(i) ̸= LFdist(j)(j) holds. ◀

The function LFdist(i)(i) maps the integers in Pt into distinct integers in set Sstart by Lemma 3.
The mapping indicates that |Pt| ≤ |Sstart| = r holds for any integer t. In Figure 3, the
right figure represents the mapping between P1 = {3, 4} and Sstart = {1, 2, 5, 6, 7} on a
BWT. In this example, LF1(3) = 9 ̸∈ Sstart, LF2(3) = 5 ∈ Sstart, LF1(4) = 10 ̸∈ Sstart, and
LF2(4) = 6 ∈ Sstart. Hence, LFdist(i)(i) maps the two positions 3 and 4 in P1 into the two
positions 5 and 6 in Sstart, respectively, which indicates that |P1| ≤ |Sstart| holds.

Finally, we obtain max{|K0|, |K1|, . . . , |Kn|} ≤ 2r by |Kt| ≤ 2|Pt| and |Pt| ≤ r. Hence,
the working space of our traversal algorithm is O((r + σ)w) bits. We obtain the following
theorem using σ ≤ r.

▶ Theorem 4. We can output n sets {repr(P ) | P ∈ L0}, {repr(P ) | P ∈ L1}, . . ., {repr(P ) |
P ∈ Ln−1} in left-to-right order in O(n log logw(n/r)) time and O(rw) bits of working space
by processing the RLBWT of T .

4 Enumeration of characteristic substrings in O(rw) bits of space

In this section, we present r-enum, which enumerates maximal repeats, minimal unique
substrings, and minimal absent words using RLBWT. While the enumeration algorithm
proposed by Belazzougui and Cunial [7] finds nodes corresponding to characteristic substrings
by traversing the Weiner-link tree of T in a depth-first manner, r-enum adopts the breadth-first
search presented in Section 3. The next theorem holds by assuming σ ≤ r.
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▶ Theorem 5. R-enum can enumerate (i) maximal repeats, (ii) minimal unique sub-
strings, and (iii) minimal absent words for T in O(n log logw(n/r)), O(n log logw(n/r)),
and O(n log logw(n/r) + occ) time, respectively, by processing the RLBWT of T with O(rw)
bits of working space, where occ is the number of minimal absent words for T , and occ = O(σn)
holds [17]. Here, r-enum outputs rich representation repr(P ), pair (interval(P ′), |P ′|), and
3-tuple (interval(P ′′), |P ′′|, c) for a maximal repeat P , minimal unique substring P ′, and
minimal absent word P ′′c, respectively, where P, P ′, P ′′ are substrings of T , and c is a
character.

We prove Theorem 5(i) for maximal repeats. R-enum leverages the following relation
between the maximal repeats and nodes in the Weiner-link tree.

▶ Lemma 6. A substring P of T is a maximal repeat if and only if P satisfies two condi-
tions: (i) node uP is explicit (i.e., P ∈ L|P |), and (ii) rank(Sstart, b) ̸= rank(Sstart, e), where
interval(P ) = [b, e].

Proof. |Occ(T, P )| ≥ 2 and |Occ(T, P )| > |Occ(T, Pc)| hold for any character c ∈ Σ if and
only if node uP is explicit. From the definition of BWT, |Occ(T, P )| > |Occ(T, cP )| holds
for any character c ∈ Σ if and only if L[b..e] contains at least two distinct characters, i.e.,
rank(Sstart, b) ̸= rank(Sstart, e) holds. Hence, Lemma 6 holds. ◀

R-enum traverses the Weiner-link tree of T , and it verifies whether each explicit node
uP represents a maximal repeat using Lemma 6, i.e., it verifies rank(Sstart, b) ̸= rank(Sstart, e)
or rank(Sstart, b) = rank(Sstart, e) using the two rank queries on Sstart. We output its rich
representation repr(P ) if P is a maximal repeat. The rich representation repr(P ) for uP

stores [b, e], and our breadth-first traversal algorithm stores the data structure Rrank(Sstart)
for rank queries on Sstart. Hence, we obtain Theorem 5(i).

Similarly, r-enum can also find the nodes corresponding to minimal unique substrings
and minimal absent words using their properties while traversing the Weiner-link tree. See
Appendixes B and C for the proofs of Theorem 5(ii) and (iii), respectively.

5 Modified enumeration algorithm for original characteristic substrings
and their occurrences

Let output(P ) be the element representing a characteristic substring P outputted by r-enum.
In this section, we slightly modify r-enum and provide three additional data structures,
Rstr, Rocc, and ReRD, to recover the original string P and its occurrences in T from the
element output(P ). The three data structures Rstr, Rocc and ReRD require O(rw) bits of
space and support extract, extract-sa, and extended range distinct queries, respectively.
An extract query returns string P for a given pair (interval(P ), |P |). An extract-sa query
returns all the occurrences of P in T (i.e., SA[b..e]) for a given pair (interval(P ), SA[b]),
where interval(P ) = [b, e]. An extended range distinct query eRD(L, b, e, SA[b]) returns
4-tuple (c, pc, qc, SA[pc]) for each output (c, pc, qc) ∈ RD(L, b, e) (i.e., eRD(L, b, e, SA[b]) =
{(c, pc, qc, SA[pc]) | (c, pc, qc) ∈ RD(L, b, e)}). We omit the detailed description of the three
data structures because each data structure supports the queries using the well-known
properties of RLBWT. Formally, the following lemma holds.

▶ Lemma 7. Let k = |eRD(L, b, e, SA[b])|. The three data structures Rstr, Rocc, and ReRD
of O(rw) bits of space can support extract, extract-sa, and extended range distinct queries
in O(|P | log logw(n/r)), O((e − b + 1) log logw(n/r)), and O((k + 1) log logw(n/r)) time,
respectively. We can construct the three data structures in O(n log logw(n/r)) time and
O(rw) bits of working space by processing the RLBWT of T .
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Table 2 Details of dataset. Table details size in megabytes (MB), string length (n), alphabet
size (σ), number of runs in BWT (r), and number of maximal repeats (m) for each data.

Data name Size [MB] n σ r m

einstein.de.txt 93 92,758,441 118 101,370 79,469
einstein.en.txt 468 467,626,544 140 290,239 352,590
world leaders 47 46,968,181 90 573,487 521,255
influenza 155 154,808,555 16 3,022,822 7,734,058
kernel 258 257,961,616 161 2,791,368 1,786,102
cere 461 461,286,644 6 11,574,641 10,006,383
coreutils 205 205,281,778 237 4,684,460 2,963,022
Escherichia Coli 113 112,689,515 16 15,044,487 12,011,071
para 429 429,265,758 6 15,636,740 13,067,128
100genome 307,705 307,705,110,945 6 36,274,924,494 52,172,752,566

Proof. See Appendix D. ◀

We modify r-enum as follows. The modified r-enum outputs pair (repr(P ), SA[b]), 3-tuple
(interval(P ′), |P ′|, SA[b′]), and 4-tuple (interval(P ′′), |P ′′|, c, SA[b′′]) instead of rich representa-
tion repr(P ), pair (interval(P ′), |P ′|), and 3-tuple (interval(P ′′), |P ′′|, c), respectively. Here, (i)
P, P ′, P ′′c are a maximal repeat, minimal unique substring, and minimal absent word, respect-
ively, and (ii) b, b′, b′′ are the left boundaries of interval(P ), interval(P ′), and interval(P ′′c),
respectively. We replace each range distinct query RD(L, b, e) used by r-enum with the
corresponding extended range distinct query eRD(L, b, e, SA[b]) to compute the sa-values
SA[b], SA[b′], and SA[b′′]. See Appendix E for a detailed description of the modified r-enum.
Formally, the following theorem holds.

▶ Theorem 8. R-enum can also output the sa-values SA[b], SA[b′], and SA[b′′] for each
maximal repeat P , minimal unique substring P ′, and minimal absent word P ′′c, respectively,
using an additional data structure of O(rw) bits of space. Here, b, b′, b′′ are the left boundaries
of interval(P ), interval(P ′), and interval(P ′′c), respectively, and the modification does not
increase the running time.

Proof. See Appendix E. ◀

We compute each characteristic substring and all the occurrences of the substring in T

by applying extract and extract-sa queries to the corresponding element outputted by the
modified r-enum. For example, the outputted pair (repr(P ), SA[b]) for a maximal repeat P

contains interval(P ), |P |, and SA[b]. Hence, we can obtain P by applying an extract query to
pair (interval(P ), |P |). Similarly, we can obtain all the occurrences of P in T by applying
an extract-sa query to pair (interval(P ), SA[b]). Note that we do not need to compute the
occurrences of minimal absent words in T since the words do not occur in T .

6 Experiments

We demonstrate the effectiveness of our r-enum for enumerating maximal repeats on a
benchmark dataset of highly repetitive strings in a comparison with the state-of-the-art
enumeration algorithms of the OT [30], BBO [12] and BC [7] methods, which are reviewed
in Section 1. In this experiment, all the methods output suffix-tree intervals for maximal
repeats.
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Table 3 Peak memory consumption of each method in mega bytes (MB).

Memory (MB)
Data name Size [MB] r-enum BBO BC OT

einstein.de.txt 93 2 100 100 1,642
einstein.en.txt 468 4 488 488 8,278
world leaders 47 5 37 37 832
influenza 155 18 77 73 2,741
kernel 258 21 297 292 4,567
cere 461 86 265 224 8,166
coreutils 205 32 268 237 3,634
Escherichia Coli 113 109 116 55 1,995
para 429 116 262 204 7,599

The OT method enumerates maximal repeats using the BWT and enhanced suffix array
of a given string, where the enhanced suffix array consists of suffix and LCP arrays. The OT
method runs in O(n) time and with O(n log n) bits of working space for T .

The BBO method traverses the Weiner-link tree of a given string T using Lemma 1
and a breadth-first search, and it outputs maximal repeats by processing all the nodes
in the tree. We used the SDSL library [22] for an implementation of the Huffman-based
wavelet tree to support range distinct queries, and we did not implement the technique
of Beller et al. for storing a queue for suffix-tree intervals in n + o(n) bits. Hence, our
implementation of the BBO method takes the BWT of T and runs in O(n log σ) time and
with |WThuff | + O(max{|K0|, |K1|, . . . , |Kn|})w) bits of working space, where (i) |WThuff | =
O(n log σ) is the size of the Huffman-based wavelet tree, and (ii) K0, K1, . . . , Kn are introduced
in Section 3.3. The latter term can be bounded by O(rw) bits by applying the analysis
described in Section 3.3 to their enumeration algorithm.

The BC method also traverses the Weiner-link tree by Lemma 1 and a depth-first search.
The method stores a data structure for range distinct queries and a stack data structure of
size O(σ2 log2 n) bits for the depth-first search. We also used the SDSL library [22] for the
Huffman-based wavelet tree to support range distinct queries. Hence, our implementation of
the BC method runs in O(n log σ) time and with |WThuff | + O(σ2 log2 n) bits of working
space.

We used a benchmark dataset of nine highly repetitive strings in the Pizza & Chili corpus
downloadable from http://pizzachili.dcc.uchile.cl. In addition, we demonstrated the
scalability of r-enum by enumerating maximal repeats on the concatenation of 100 human
genomes (307 gigabytes) built from 1,000 human genomes [33]. Table 2 details our dataset.

We used memory consumption and execution time as evaluation measures for each method.
Since each method takes the BWT of a string as an input and outputs suffix-tree intervals
for maximal repeats, the execution time consists of two parts: (i) the preprocessing time for
constructing data structures built from an input BWT, and (ii) the enumeration time after
the data structures are constructed. We performed all the experiments on 48-core Intel Xeon
Gold 6126 (2.60 GHz) CPU with 2 TB of memory. The source codes used in the experiments
are available at https://github.com/TNishimoto/renum.
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Table 4 Execution time of each method in seconds (s).

Execution time (s)
Data name r-enum BBO BC OT

einstein.de.txt 172 84 70 13
einstein.en.txt 856 487 387 80
world leaders 97 24 16 10
influenza 267 69 49 30
kernel 559 281 178 57
cere 985 277 186 110
coreutils 445 285 179 42
Escherichia Coli 253 68 40 29
para 961 262 173 102

Table 5 Execution time in hours and peak memory consumption in mega-bytes (MB) of r-enum
on 100genome.

Size [MB] n/r Execution time (hours) Memory (MB)
307,705 8.5 25 319,949

6.1 Experimental results on benchmark dataset
In the experiments on the nine highly repetitive benchmark strings, we ran each method
and with a single thread. Table 3 shows the peak memory consumption of each method.
The BBO and BC methods consumed approximately 1.0-2.0 and 0.9-1.5 bytes per byte of
input, respectively. The memory usage of the BC method was no more than that of the
BBO method on each of the nine strings. The OT method consumed approximately 18 bytes
per character, which was larger than the memory usage of the BBO method. Our r-enum
consumed approximately 7-23 bytes per run in BWT. The memory usage of r-enum was the
smallest on most of the nine strings except for the file Escherichia Coli. In the best case, the
memory usage of r-enum was approximately 122 times less than that of the BC method on
einstein.en.txt because the ratio n/r ≈ 1611 and alphabet size σ = 140 were large.

Table 4 shows the execution time for each method. The OT method was the fastest among
all the methods, and it took approximately 13-110 seconds. The execution times of the BBO
and BC methods were competitive, and each execution of them finished within 487 seconds
on the nine strings. R-enum was finished in 985 seconds even for the string data (cere) with
the longest enumeration time. These results show that r-enum can space-efficiently enumerate
maximal substrings in a practical amount of time, although r-enum was approximately 10
times slower than the fastest method (i.e., OT method).

6.2 Experimental results on 100 human genomes
We tested r-enum on 100genome, which is a 307-gigabyte string of 100 human genomes. For
this experiment, we implemented computations of Weiner-links from nodes with the same
depth in parallel. It is easy to achieve the parallelization, because r-rnum uses Lemma 1 to
compute Weiner-links and we can apply the Lemma to each node independently. We ran the
parallelized r-enum with 48 threads.

Table 5 shows the total execution time and peak memory consumption of r-enum on
100genome. R-enum consumed approximately 25 hours and 319 gigabytes of memory
for enumeration. The result demonstrates the scalability and practicality of r-enum for
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enumerating maximal repeats on a huge string existing in the real-world. The execution
time was 0.6 seconds per 106 characters. The memory consumption was almost the same as
the size of the input file. It was relatively large compared with the memory consumption of
r-enum on the nine benchmark strings because the ratio of n/r ≈ 8.4 for 100genome was
small.

7 Conclusion

We presented r-enum, which can enumerate maximal repeats, minimal unique substrings,
and minimal absent words working in O(rw) bits of working space. Experiments using a
benchmark dataset of highly repetitive strings showed that r-enum is more space-efficient
than the previous methods if n/r > 27.5. In addition, we demonstrated the applicability of
r-enum to a huge string by performing experiments on a 300-gigabyte string of 100 human
genomes. Our method was not so effective for the 300-gigabyte string because the string is
weakly compressible. On the other hand, it is oblivious that r-enum is more space-efficient
than the previous methods for huge strings such that n/r is sufficiently large. Our future
work is to reduce the running time and working space of r-enum.

We showed that breadth-first traversal of a Weiner-link tree can be performed in O(rw) bits
of working space. The previous breadth-first traversal algorithm by the BBO method requires
|RD| + O(n) bits of working space, where |RD| is the size of a data structure supporting
range distinct queries on the BWT of T . In addition to enumerations of characteristic
substrings, traversal algorithms of a Weiner-link tree can be used for constructing three
data structures: (i) LCP array, (ii) suffix tree topology, and (iii) the merged BWT of two
strings [32]. Constructing these data structures in O(rw) bits of working space by modifying
r-enum would be an interesting future work.

We also showed that the data structure RD′ for our traversal algorithm supported two
operations: (i) a range distinct query in O(log logw(n/r)) time per output element and
(ii) computations of LF function in O(log logw(n/r)) time. The result can replace the
pair (|RD|, d) presented in Table 1 with pair (O(rw), O(log logw(n/r))), which improves
the BBO and BC methods so that they work in O(rw + n) and O(rw + σ2 log2 n) bits of
working space, respectively. We think that the working space of the BC method with RD′ is
practically smaller than that of r-enum, because σ2 log2 n is practically smaller than rw in
many cases. This insight indicates that we can enumerate characteristic substrings with a
lower memory consumption of O(rw) bits by combining r-enum with the BC method even
for a large alphabet size. Thus, the following method could improve the space efficiency for
enumerations: executing the BC method with RD′ for a small alphabet (i.e., σ <

√
r/ log n)

and executing r-enum for a large alphabet.
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A Algorithm for constructing data structures in Section 3.1

Recall that our traversal algorithm uses six data structures: (i) the RLBWT of T , (ii)
repr(ε), (iii) DLF, (iv) Rrank(Sstart), (v) RRD(L′), and (vi) an empty array X of size σ. Let
δ be the permutation of [1, r] satisfying either of two conditions for two distinct integers
i, j ∈ {1, 2, . . . , r}: (i) L[ℓ(δ[i])] ≺ L[ℓ(δ[j])] or (ii) L[ℓ(δ[i])] = L[ℓ(δ[j])] and i < j. Then
DLF[1] = 1 and DLF[i] = DLF[i − 1] + |L[ℓ(δ[i − 1])..ℓ(δ[i − 1] + 1) − 1]| hold by LF formula.
We construct the permutation δ in O(n) time and O(rw) bits of working space using LSD
radix sort. After that we construct the array DLF in O(r) time using δ.

Next, we construct Sstart and L′ in O(r) time by processing the RLBWT of T . After that,
we construct Rrank(Sstart) in O(|Sstart| log logw(n/r)) time and O(|Sstart|w) bits of working
space by processing Sstart [21, Appendix A.1]. Similarly, we construct RRD(L′) in O(r) time
and O(r log σ) bits of working space [9, Lemma 3.17].

Finally, repr(ε) consists of 3-tuple ([1, n], RD(L, 1, n), 0). We compute RD(L, 1, n) by
Lemma 2. Hence the construction time is O(n log logw(n/r)) in total, and the working space
is O(rw) bits.

B Proof of Theorem 5 (ii)

For simplicity, we focus on minimal unique substrings with a length of at least 2. Every
minimal unique substring with a length of at least 2 is a substring cPc′ of T , where c, c′ are
characters, and P is a string with a length of at least 0. R-enum uses an array RightP of
size σ for detecting a minimal unique substring cPc′. RightP [c] stores |Occ(T, Pc)| for each
c ∈ Σ. A substring cPc′ of T is a minimal unique substring if and only if cPc′ satisfies three
conditions: (i) |Occ(T, cPc′)| = 1, (ii) |Occ(T, cP )| ≥ 2, and (iii) RightP [c] ≥ 2 hold. We
can verify the three conditions using repr(P ) and Lemma 1, and hence, the following lemma
holds.

▶ Lemma 9. Let M(P ) be the set of minimal unique substrings such that the form of each
minimal unique substring is cPc′, where c, c′ are characters, and P is a given string. We
can compute the output by r-enum for the set M(P ) (i.e., {(interval(cPc′), |cPc′|) | cPc′ ∈
M(P )}) using (i) repr(R), (ii) the data structures presented in Section 3.1, and (iii) an
empty array X ′ of size σ. The running time and working space are O(h log logw(n/r))
and O((σ + h′)w) bits, respectively. Here, h =

∑
P c′∈children(P ) |WLink(Pc′)|, and h′ =∑

cP ∈WLink(P )∩L|P |+1
|children(cP )|.

Proof. RightP [c] is stored in repr(P ) for c ∈ Σ, and the pair (interval(cPc′), |cPc′|) is stored in
repr(cP ). We compute the output by four steps. (i) We convert X ′ into RightP by processing
repr(P ). (ii) We compute the rich representations for all the strings in WLink(P ) by Lemma 1.
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(iii) We process the rich representation for each string cP ∈ WLink(P ) and output pair
(interval(cPc′), |cPc′|) for each child cPc′ if |interval(cPc′)| = 1 and RightP [c′] ≥ 2. (iv) We
recover X ′ from RightP . Hence, Lemma 9 holds. ◀

Node uP is always explicit (i.e., uP is a node of the Weiner-link tree) if a substring
cPc′ is a minimal unique substring of T because |Occ(T, P )| > |Occ(T, Pc′)| holds from the
definition of the minimal unique substring. Hence, we can compute (interval(cPc′), |cPc′|)
for each minimal unique substring cPc′ in T by applying Lemma 9 to all the nodes in the
Weiner-link tree.

R-enum prepares an empty array X ′ of size σ and computes the output for set M(P ) by
applying Lemma 9 to each node uP . The running time and working space are O((

∑n
t=0 Ht)

log logw(n/r)) = O(n log logw(n/r)) and O((r + σ + max{|K0|, |K1|, . . . , |Kn|})w)) = O(rw)
bits, respectively. Here, Ht and Kt are the terms introduced in Section 3.3.

C Proof of Theorem 5 (iii)

For simplicity, we focus on minimal absent words with a length of at least 2. Minimal absent
words have similar properties to the properties of the minimal unique substrings explained
in the proof of Theorem 5(ii), i.e., the characteristic substrings have two properties: (i) a
string cPc′ is a minimal absent word for T if and only if cPc′ satisfies three conditions: (1)
|Occ(T, cPc′)| = 0, (2) |Occ(T, cP )| ≥ 1, and (3) RightP [c′] ≥ 1 hold, and (ii) node uP is
always explicit if a substring cPc′ is a minimal absent word for T because |Occ(T, P )| >

|Occ(T, Pc′)| holds from the definition of the minimal absent word. We obtain the following
lemma by modifying the proof of Lemma 9.

▶ Lemma 10. Let W(P ) be the set of minimal absent words such that the form of each
minimal unique substring is cPc′, where c, c′ are characters, and P is a given string. We can
compute the output by r-enum for the set W(P ) (i.e., {(interval(cP ), |cP |, c′) | cPc′ ∈ W(P )})
using (i) repr(R), (ii) the data structures presented in Section 3.1, and (iii) an empty array
X ′ of size σ. The running time and working space are O(h log logw(n/r) + |W(P )|) and
O((σ + h′)w) bits, respectively.

We can compute (interval(cP ), |cP |, c′) for each minimal absent word cPc′ for T by applying
Lemma 10 to all the nodes in the Weiner-link tree. R-enum prepares an empty array X ′ of
size σ and computes the output for set W(P ) by applying Lemma 10 to each node uP . The
running time and working space are O(n log logw(n/r) + occ) and O(rw) bits, respectively.

D Proof of Lemma 7

Proof for data structure Rstr. Data structure Rstr consists of (i) the RLBWT of T , (ii) π,
(iii) DLF, (iv) Rrank(S ′

start), and (v) Rrank(Sstart). Here, (i) π is the permutation on {1, 2, . . . , r}
satisfying LF(ℓ(π[1])) < LF(ℓ(π[2])) < · · · < LF(ℓ(π[r])), (ii) DLF is the array introduced
in Section 3, and (iii) S ′

start = {LF(ℓ(π[1])) , LF(ℓ(π[2])), . . ., LF(ℓ(π[r]))}. π[i] = δ[i] holds
for any integer i ∈ {1, 2, . . . , r}. S ′

start and DLF can be constructed in O(r) time after the
permutation π is constructed. We already showed that δ could be constructed in O(n)
time by processing the RLBWT of T , which was explained in Appendix A. Hence, we can
construct Rstr in O(n log logw(n/r)) time and O(rw) bits of working space.

We introduce the inverse function LF−1 of LF function (i.e., LF−1(LF(i)) = i holds for
i ∈ {1, 2, . . . , n}) to solve the extract query. Recall that LF(i) = DLF[x]+(i−ℓ(x)) holds, which
is shown in Section 3.1, where x = rank(Sstart, i). Similarly, LF−1(i) = ℓ(π[y])+(i−DLF[π[y]])
holds by the LF formula for any integer i ∈ {1, 2, . . . , n}, where y = rank(S ′

start, i). Hence, we
can compute LF−1(i) in O(log logw(n/r)) time using the data structure Rstr.
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Let LF−1
x be the function that returns the position obtained by recursively applying the

inverse LF function to i x times (i.e., LF−1
0 (i) = i, and LF−1

x (i) = LF−1(LF−1
x−1(i))). Then,

T [SA[i]..SA[i] + d − 1] = L[LF−1
1 (i)], L[LF−1

2 (i)], . . . , L[LF−1
d (i)] holds for any integer d ≥ 1

because SA[LF−1(i)] = SA[i] + 1 holds unless SA[i] = n. Rstr can support random access
to the BWT L in O(log logw(n/r)) time using a rank query on set Sstart. Hence, we can
compute T [SA[i]..SA[i] + d − 1] in O(d log logw(n/r)) time using Rstr for two given integers i

and d.
We explain an algorithm solving an extract query for a given rich representation repr(P ).

Let interval(P ) = [b, e]. Then, SA[b] stores the index of a suffix of T having P as a prefix, i.e.,
T [SA[b]..SA[b] + |P | − 1] = P holds. We recover the prefix P from SA[b] using Rstr. Hence
Rstr supports the extract query in O(|P | log logw(n/r)) time. ◀

Proof for data structure Rocc. Next, we leverage a function ϕ to solve the extract-sa query.
The function ϕ(SA[i]) returns SA[i + 1] for i ∈ {1, 2, . . . , n − 1}. Rϕ is a data structure of
O(rw) bits proposed by Gagie et al. [21], and we can compute ϕ function in O(log logw(n/r))
time by Rϕ. The data structure can be constructed in O(n log logw(n/r)) time and O(rw)
bits of working space by processing the RLBWT of T [21]. The second data structure Rocc
consists of Rϕ, and we solve the extract-sa query by recursively applying the function ϕ to
SA[b] (e−b) times. Hence Rocc can support the extract-sa query in O((e−b+1) log logw(n/r))
time. ◀

Proof for data structure ReRD. Let DSA be an array of size r such that DSA[i] stores the
sa-value at the starting position of the i-th run in BWT L for i ∈ {1, 2, . . . , r}, i.e., DSA[i] =
SA[ℓ(i)]. Let (c, pc, qc, SA[pc]) be a 4-tuple outputted by query eRD(L, b, e, SA[b]) and x be the
index of the run containing character L[pc] (i.e., x = rank(Sstart, pc)). Then SA[pc] = DSA[x]
if pc = ℓ(x); otherwise SA[pc] = SA[b] holds because pc is equal to ℓ(x) or b under Lemma 2.
The relationship among SA[pc], DSA[x], and SA[b] is called the toehold lemma (e.g., [31, 21]).
The toehold lemma indicates that we can compute SA[pc] in O(log logw(n/r)) time for each
output (c, pc, qc) ∈ RD(L, b, e) using (i) the array DSA, (ii) data structure Rrank(Sstart), and
(iii) the RLBWT of T if we know the first sa-value SA[b] in [b, e].

Next, we explain ReRD. ReRD consists of RRD(L′), DSA, Rrank(Sstart), and the RLBWT of
T . We already showed that we could construct RRD(L′) and Rrank(Sstart) in O(n log logw(n/r))
time by processing the RLBWT of T . We construct the array DSA by computing all the
sa-values in SA[1..n] in left-to-right order using data structure Rϕ. Rϕ can be constructed in
O(n log logw(n/r)) time by processing the RLBWT of T . Hence, the construction time for
ReRD is O(n log logw(n/r)) time in total, and the working space is O(rw) bits.

We solve extended range distinct query eRD(L, b, e, SA[b]) using the toehold lemma after
solving the corresponding range distinct query RD(L, b, e) using RRD(L′), Rrank(Sstart), and the
RLBWT of T . The running time is O((k + 1) log logw(n/r)), where k = |eRD(L, b, e, SA[b])|.

◀

E Proof of Theorem 8

We extend Lemma 1. Let eRepr(P ) for P be a 4-tuple (interval(P ), {(c1, b1, e1, SA[b1]),
(c2, b2, e2, SA[b2]), . . ., (ck, bk, ek, SA[bk])}, |P |, SA[b]). Here, (i) b is the left boundary of
interval(P ), (ii) Pc1, P c2, . . . , P ck are strings represented by the children of node uP , and
(iii) [bi, ei] = interval(Pci) for i ∈ [1, k]. We call eRepr(P ) an extended rich representation.

Let eRepr(cP ) = (interval(cP ), {(c′
1, b′

1, e′
1, SA[b′

1]), (c′
2, b′

2, e′
2, SA[b′

2]), . . ., (c′
k′ , b′

k′ , e′
k′ ,

SA[b′
k′ ])}, |cP |, SA[b′]) for a character c. Let xi be an integer such that LF(xi) = b′

i for a
4-tuple (c′

i, b′
i, e′

i, SA[b′
i]) in eRepr(P ), and let y(i) be an integer such that xi ∈ [by(i), ey(i)]
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holds. Then, there exists a tuple (ĉ, pĉ, qĉ, SA[pĉ]) ∈ eRD(L, by(i), ey(i), SA[by(i)]) such that
pĉ = xi holds. SA[b′

i] = SA[pĉ] − 1 holds by LF function. Next, let j be an integer such that
b′

j is the smallest in set {b′
1, b′

2, . . . , b′
k′}. Then SA[b′] = SA[b′

j ] holds because b′
j is equal to

the left boundary of interval(cP ). Hence, Lemma 1 can output extended rich representations
instead of rich representations by replacing the range distinct queries used by the algorithm
of Lemma 1 with the corresponding extended range distinct queries. Formally, the following
lemma holds.

▶ Lemma 11. We can compute set {eRepr(cP ) | cP ∈ WLink(P )} for a given rich represent-
ation eRepr(P ) in O(h log logw(n/r)) time using ReRD and the six data structures introduced
in Section 3.1, where h =

∑
P c′∈children(P ) |WLink(Pc′)|.

Next, we modify our traversal algorithm for the Weiner-link tree of T . The modified
traversal algorithm uses Lemma 11 instead of Lemma 1. Hence, we obtain the following
lemma.

▶ Lemma 12. We can output n sets {eRepr(P ) | P ∈ L0}, {eRepr(P ) | P ∈ L1}, . . .,
{eRepr(P ) | P ∈ Ln−1} in left-to-right order in O(n log logw(n/r)) time and O(rw) bits of
working space by processing the RLBWT of T .

Finally, we prove Theorem 8 using the modified traversal algorithm, i.e., Lemma 12.

Proof for maximal repeats. The node uP representing a maximal repeat P is explicit, and
hence, eRepr(P ) is outputted by the modified traversal algorithm. R-enum uses the modified
traversal algorithm instead of our original traversal algorithm. Hence, r-enum can output
the extended rich representations for all the maximal repeats in T without increasing the
running time. ◀

Proof for minimal unique substrings. Let cPc′ be a minimal unique substring of T such
that its occurrence position is SA[b′]. Recall that r-enum computes repr(cP ) by applying
Lemma 1 to repr(P ) and outputs (interval(cPc′), |cPc′|) by processing repr(cP ). The extended
rich representation eRepr(cP ), which corresponds to repr(cP ), contains interval(cPc′), |cPc′|,
and SA[b′]. The modified r-enum (i) traverses the Weiner-link tree by the modified traversal
algorithm, (ii) computes eRepr(cP ) by applying Lemma 11 to eRepr(P ), and (iii) outputs
(interval(cPc′), |cPc′|, SA[b′]) by processing eRepr(cP ). The running time is O(n log logw(n/r))
time in total. ◀

Proof for minimal absent words. Let cPc′ be a minimal absent word for T , and let b′′ be
the left boundary of interval(cP ). eRepr(cP ) contains the sa-value SA[b′′], and hence, we can
compute (interval(cP ), |cP |, c′, SA[b′]) for the minimal absent word cPc′ by modifying the
algorithm used by the modified r-enum for minimal unique substrings.

The modified r-enum (i) traverses the Weiner-link tree by the modified traversal al-
gorithm, (ii) computes eRepr(cP ) by applying Lemma 11 to eRepr(P ), and (iii) outputs
(interval(cP ), |cP |, c′, SA[b′]) by processing eRepr(cP ). The running time is O(n log logw(n/r)+
occ) time in total. ◀
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F Omitted table

Table 6 Execution time of each method. Execution time is separately presented as enumeration
and preprocessing times in seconds (s).

Preprocessing time [s] Enumeration time [s]
Data name r-enum BBO BC OT r-enum BBO BC OT

einstein.de.txt 1 1 1 7 171 83 69 6
einstein.en.txt 3 3 3 50 853 484 384 30
world leaders 1 1 1 7 96 23 15 3
influenza 2 1 1 17 265 68 48 13
kernel 2 2 2 41 557 279 176 16
cere 5 3 3 78 980 274 183 32
coreutils 2 2 2 29 443 283 177 13
Escherichia Coli 5 1 1 18 248 67 39 11
para 6 3 3 71 955 259 170 31
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Figure 1 Data structures built with P = {aacaa, aagt, gtc}. (a) Aho–Corasick trie. (b) Extended
Hierarchical Overlap Graph. (c) Hierarchical Overlap Graph.

Given a set of strings P = {s1, s2, ..., sn}, computing the overlap graph of P is equivalent
to solving the all-pair suffix-prefix problem, which is to find the longest overlap for every pair
of strings in P . The best theoretical bound for this problem is O(||P ||+ n2) [8], where ||P ||
is the sum of lengths of the strings in P . Since the input size of the problem is O(||P ||) and
the output size is O(n2), this bound is optimal. There has also been extensive research on
the all-pair suffix-prefix problem in the practical point of view [7, 10, 17] because it is the
first step in DNA assembly.

Recently, Cazaux and Rivals [4, 5] proposed a new graph which stores the overlap
information, called the hierarchical overlap graph (HOG). HOG is a graph with two types of
edges (which will be defined in Section 2) in which a node represents either a string or the
longest overlap between a pair of strings. The extended hierarchical overlap graph (EHOG) is
also a graph with two types of edges in which a node represents either a string or an overlap
between a pair of strings (which may be not the longest one). For example, Figure 1 shows
EHOG and HOG built with P = {aacaa, aagt, gtc}. Even though HOG and EHOG may be
the same for some input instances, there is a series of instances where the ratio of EHOG
size over the HOG size tends to infinity with respect to the number of nodes. Therefore,
HOG has an advantage over EHOG in both practical and theoretical points of view.

HOG also has a couple of advantages compared to the overlap graph [5]. First, HOG uses
only O(||P ||) space, while the overlap graph needs O(||P ||+ n2) space in total. For input
instances with many short strings, HOG uses a considerably smaller amount of space than
the overlap graph. Second, HOG contains the relationship between the overlaps themselves,
since the overlaps appear as nodes in HOG. In contrast, the overlap graph stores only the
lengths of the longest overlaps, and thus we cannot find the relationship between two overlaps
easily. Therefore, HOG stores more information than the overlap graph, while using less
space.
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There have been many works to compute HOG and EHOG efficiently. Computing the
EHOG from P costs O(||P ||) time, which is optimal [3]. For computing the HOG, Cazaux and
Rivals proposed an O(||P ||+n2) time algorithm using O(||P ||+n×min(n, max{|s| : s ∈ P}))
space [5]. Recently, Park et al. [14] gave an O(||P || log n) time algorithm using O(||P ||) space
by using the segment tree data structure.

In this paper we present a new algorithm to compute HOG, which uses O(||P ||) time and
space, which are both optimal. The algorithm is based on the Aho–Corasick trie [1] and the
border array [9]. Therefore, the construction time and space of HOG are better than those
of the overlap graph, which are O(||P ||+ n2), and this fact may lead to many applications of
HOG. For example, consider the problem of finding optimal cycle cover in the overlap graph
built with a set P = {s1, s2, ..., sn} of strings. Typically this problem needs to be solved
in finding good approximations of shortest superstrings. A greedy algorithm to solve the
optimal cycle cover problem on the overlap graph was given in [2], which takes O(||P ||+ n2)
time. Recently, Cazaux and Rivals proposed an O(||P ||) time algorithm to solve the optimal
cycle cover problem given the HOG or EHOG of P [4]. By using our result in this paper, the
optimal cycle cover problem can be solved in O(||P ||) time and space by using HOG instead
of the overlap graph.

The rest of the paper is organized as follows. In Section 2 we give preliminary information
for HOG and formalize the problem. In Section 3 we present an O(||P ||) time and space
algorithm for computing HOG. In Section 4 we conclude and discuss a future work.

2 Preliminaries

2.1 Basic notation

We consider strings over a constant-size alphabet Σ. The length of a string s is denoted by
|s|. Given two integers 1 ≤ l ≤ r ≤ |s|, the substring of s which starts from l and ends at
r is denoted by s[l..r]. Note that s[l..r] is a prefix of s when l = 1, and a suffix of s when
r = |s|. If a prefix (suffix) of s is different from s, we call it a proper prefix (suffix) of s.
Given two strings s and t, an overlap from s to t is a string which is both a proper suffix
of s and a proper prefix of t. Given a set P = {s1, s2, ..., sn} of strings, the sum of |si|’s is
denoted by ||P ||.

2.2 Hierarchical Overlap Graph

We define hierarchical overlap graph and extended hierarchical overlap graph as in [5].

▶ Definition 1 (Hierarchical Overlap Graph). Given a set P = {s1, s2, . . . , sn}, we define
Ov(P ) as the set of the longest overlap from si to sj for 1 ≤ i, j ≤ n. The hierarchical overlap
graph of P , denoted by HOG(P ), is a directed graph with a vertex set V = P ∪Ov(P ) ∪ {ϵ}
and an edge set E = E1 ∪E2, where E1 = {(x, y) ∈ V × V | x is the longest proper prefix of
y} and E2 = {(x, y) ∈ V × V | y is the longest proper suffix of x}.

▶ Definition 2 (Extended Hierarchical Overlap Graph). Given a set P = {s1, s2, . . . , sn},
we define Ov+(P ) as the set of all overlaps from si to sj for 1 ≤ i, j ≤ n. The extended
hierarchical overlap graph of P , denoted by EHOG(P ), is a directed graph with a vertex set
V + = P ∪Ov+(P )∪{ϵ} and an edge set E+ = E+

1 ∪E+
2 , where E+

1 = {(x, y) ∈ V +×V + | x
is the longest proper prefix of y} and E+

2 = {(x, y) ∈ V +×V + | y is the longest proper suffix
of x}.
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Figure 1 shows the Aho–Corasick trie [1], EHOG, and HOG built with P = {aacaa, aagt,

gtc}. It is shown in [5] that EHOG is a contracted form of the Aho–Corasick trie and HOG
is a contracted form of EHOG.

As in the Aho–Corasick trie, each node u in HOG or EHOG corresponds to a string
(denoted by S(u)), which is a concatenation of all labels on the path from the root (node
representing ϵ) to u.

There are two types of edges in EHOG and HOG as in the Aho–Corasick trie: a tree edge
and a failure link. An edge (u, v) is a tree edge (an edge in E+

1 or E1, solid line in Figure 1)
in an EHOG (HOG), if S(u) is the longest proper prefix of S(v) in the EHOG (HOG). It is
a failure link (an edge in E+

2 or E2, dotted line in Figure 1) in an EHOG (HOG), if S(v) is
the longest proper suffix of S(u) in the EHOG (HOG).

Given a set P = {s1, s2, . . . , sn} of strings, we can build an EHOG of P in O(||P ||)
time and space [5]. Furthermore, given EHOG(P ) and Ov(P ), we can compute HOG(P ) in
O(||P ||) time and space [5]. Therefore, the bottleneck of computing HOG(P ) is computing
Ov(P ) efficiently.

3 Computing HOG in linear time

In this section we introduce an algorithm to build the HOG of P = {s1, s2, . . . , sn} in O(||P ||)
time. We assume that there are no two different strings si, sj ∈ P such that si is a substring
of sj for simplicity of presentation. Our algorithm directly computes HOG(P ) (and Ov(P ))
from the Aho–Corasick trie of P in O(||P ||) time.

Let us assume we have the Aho–Corasick trie of P including the failure links. We define
R(u) for each node u of the trie, as follows:

R(u) = {i ∈ {1, . . . , n} | S(u) is a proper prefix of si}. (1)

That is, R(u) is a set of string indices in the subtree rooted at u if u is an internal node, or
an empty set if u is a leaf node.

For each input string si, we will do the following operation separately, which is to find the
longest overlap from si to any string in P . Consider a path (v0, v1, . . . , vl) which starts from
the leaf representing si and follows the failure links until it reaches the root, i.e., S(v0) = si

and vl is the root of the tree. By definition of the failure link, the strings corresponding to
nodes appearing in the path are suffixes of si. If there are an index j and a node vk on the
path such that j ∈ R(vk), S(vk) is both a suffix of si and a proper prefix of sj , so S(vk) is
an overlap from si to sj .

S(vk) for 0 < k ≤ l is the longest overlap from si to sj if and only if j ∈ R(vk) and there
is no m such that 0 ≤ m < k and j ∈ R(vm). If there exists such m, then S(vm) is a longer
overlap from si to sj than S(vk), so S(vk) is not the longest overlap. Therefore, we get the
following lemma.

▶ Lemma 3. S(vk) is the longest overlap from si to sj if and only if j ∈ R(vk)−R(vk−1)−
. . .−R(v0).

Therefore, if |R(vk) − R(vk−1) − . . . − R(v0)| > 0, S(vk) is the longest overlap from si

to sj for j ∈ R(vk) − R(vk−1) − . . . − R(v0), and thus vk ∈ Ov(P ). Therefore, we aim to
compute |R(vk)−R(vk−1)− . . .−R(v0)| for every 0 < k ≤ l.

Given an index k, we define k + 1 auxiliary sets of indices Ik(k), Ik(k − 1), . . . , Ik(0) in a
recursive manner as follows.

Ik(k) = R(vk)
Ik(m) = Ik(m + 1)−R(vm) for m = k − 1, k − 2, . . . , 0
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Figure 2 Aho–Corasick trie with P = {caccgc, ccgcg, ccgca, cgct, gcc}.

By definition, Ik(0) is R(vk) − R(vk−1) − . . . − R(v0) in Lemma 3 and we want to
compute |Ik(0)|. For every 0 ≤ m < k, Ik(m) = Ik(m + 1)− R(vm) ⊆ Ik(m + 1) and thus
|Ik(m)| = |Ik(m + 1)| − |Ik(m + 1)− Ik(m)| holds. By summing up all these equations for
0 ≤ m < k, we get |Ik(0)| = |Ik(k)| −

∑k−1
m=0 |Ik(m + 1)− Ik(m)|. Since Ik(k) = R(vk) and

Ik(m + 1)− Ik(m) = Ik(m + 1)− (Ik(m + 1)−R(vm)) = Ik(m + 1) ∩R(vm), we have

|Ik(0)| = |R(vk)| −
k−1∑
m=0
|Ik(m + 1) ∩R(vm)|. (2)

We also define a new function up(u) for a node u as follows.

▶ Definition 4. Given a node u in the Aho–Corasick trie, up(u) is defined as the first
ancestor of u (except u itself) in the path that starts at u and follows the failure links until
it reaches the root node. We define an ancestor on the tree which consists of tree edges in
the Aho–Corasick trie.

Note that up(u) is well defined when u is not the root node, since the root node is always an
ancestor of u. When u is the root node, up(u) is empty.

Now we analyze the value of |Ik(m + 1) ∩ R(vm)| in Equation (2) for each 0 ≤ m < k

as follows. We use a path (v0, v1, ..., v5) in Figure 2 as a running example, i.e., l = 5 and
0 < k ≤ 5.

▶ Lemma 5. |Ik(m + 1) ∩R(vm)| is |R(vm)| if up(vm) = vk; it is 0 otherwise.

Proof. We divide the relationship between vm and vk into cases.

1. vm is outside the subtree rooted at vk

Let us assume that Ik(m+1)∩R(vm) is not empty and there exists j ∈ Ik(m+1)∩R(vm).
Then j ∈ R(vk) ∩R(vm) should hold since Ik(m + 1) ⊆ Ik(k) = R(vk). Therefore, both
vm and vk should be ancestors of the leaf corresponding to sj . Because |S(vm)| > |S(vk)|,
vk should be an ancestor of vm. Since vm is outside the subtree rooted at vk, vk cannot
be an ancestor of vm, which is a contradiction. Therefore such j does not exist, which
shows that Ik(m + 1) ∩R(vm) = ∅ and |Ik(m + 1) ∩R(vm)| = 0.
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For example, consider the case with k = 4 and m = 3 in Figure 2. Since I4(4) = R(v4) =
{1, 2, 3, 4} and R(v3) = {5}, we can see that I4(4) ∩R(v3) = ∅.

2. vm is inside the subtree rooted at vk

In this case, vk is an ancestor of vm and we further divide it into cases.
a. There exists q such that m < q < k and vq is an ancestor of vm.

We get R(vm) ⊆ R(vq) because vq is an ancestor of vm. Since Ik(m + 1) = R(vk)−
R(vk−1)− ...−R(vm+1) and m < q < k, we have Ik(m+1) ⊆ R(vk)−R(vq). Therefore,
Ik(m + 1) ∩ R(vm) ⊆ (R(vk) − R(vq)) ∩ R(vq) = ∅. That is, Ik(m + 1) ∩ R(vm) = ∅
and |Ik(m + 1) ∩R(vm)| = 0.

b. For any q such that m < q < k, vq is not an ancestor of vm.
Here we show that R(vm) ⊆ Ik(m+1). Let us consider an index x ∈ R(vm). Since vk is
an ancestor of vm, we have x ∈ R(vk). Moreover, for any q such that m < q < k, neither
vq is an ancestor of vm nor vm is an ancestor of vq. That is, R(vq) ∩R(vm) = ∅ and
thus x /∈ R(vq). Therefore, we have x ∈ Ik(m + 1) = R(vk)−R(vk−1)− . . .−R(vm+1).
In conclusion, R(vm) ⊆ Ik(m + 1) and thus |Ik(m + 1) ∩R(vm)| = |R(vm)|.
For example, consider the case with k = 4 and m = 1 in Figure 2. Since I4(2) =
R(v4)−R(v3)−R(v2) = {1, 2, 3} and R(v1) = {2, 3}, we can see that R(v1) ⊆ I4(2)
and I4(2) ∩R(v1) = R(v1).

In summary, |Ik(m + 1) ∩R(vm)| = |R(vm)| in case 2(b), and 0 otherwise. In case 2(b),
vk is an ancestor of vm and there is no q such that m < q < k and vq is an ancestor of vm.
In other words, vk is the first ancestor of vm in the path starting from vm and following the
failure links repeatedly, which means that up(vm) = vk. ◀

▶ Theorem 6. For every 0 < k ≤ l, |Ik(0)| = |R(vk)| −
∑

vm
|R(vm)|, where 0 ≤ m < k and

up(vm) = vk.

Proof. From Equation (2), we have |Ik(0)| = |R(vk)| −
∑k−1

m=0 |Ik(m + 1) ∩R(vm)|. By
Lemma 5, we have

∑k−1
m=0 |Ik(m + 1) ∩R(vm)| =

∑
vm:up(vm)=vk

|R(vm)|. By merging the
two equations, we have the theorem. ◀

Now let us consider the relationship between u and up(u). S(up(u)) is a proper suffix
of S(u) because up(u) can be reached from u through failure links. Furthermore, S(up(u))
is a proper prefix of S(u) because up(u) is an ancestor of u. That is, S(up(u)) is a border
[9] of S(u). Moreover, we visit every suffix of S(u) in the trie in the decreasing order of
lengths and S(up(u)) is the first border we visit, so S(up(u)) is the longest border of S(x).
Since each node in the Aho–Corasick trie corresponds to a prefix of some si, we can compute
up(u) for all nodes u by computing the border array of every si as follows. Let pnodei(l) be
the node which corresponds to si[1..l], and borderi(l) be the length of the longest border of
si[1..l]. Then we have the following equation for every si and 1 ≤ l ≤ |si|:

up(pnodei(l)) = pnodei(borderi(l)). (3)

If we store pnodei and borderi using arrays, we can compute pnodei, borderi, and up(u)
in O(||P ||) time and space, because borderi can be computed in O(||P ||) time using an
algorithm in [9].

▶ Example 7. Let us consider Figure 2, which is an Aho–Corasick trie built with a set
P = {s1 = caccgc, s2 = ccgcg, s3 = ccgca, s4 = cgct, s5 = gcc} of strings. For each string,
we compute its corresponding border array, and get border1 = (0, 0, 1, 1, 0, 1), border2 =
(0, 1, 0, 1, 0), border3 = (0, 1, 0, 1, 0), border4 = (0, 0, 1, 0), and border5 = (0, 0, 0). We also
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Algorithm 1 Build HOG in linear time.

1: procedure Build-HOG(P )
2: Build the Aho–Corasick trie with P

3: Compute border arrays borderi for 1 ≤ i ≤ n

4: Compute up(u) for each node u

5: Compute |R(u)| for each node u

6: Mark root as included in HOG(P )
7: For each node u, initialize Child(u) with an empty set
8: for i← 1 to n do
9: u← leaf corresponding to si in Aho–Corasick trie

10: Mark u as included in HOG(P )
11: while u ̸= root do
12: I(u)← |R(u)|
13: for all u′ ∈ Child(u) do
14: I(u)← I(u)− |R(u′)|
15: if I(u) > 0 then
16: Mark u as included in HOG(P)
17: Child(u)← an empty set
18: Add u to Child(up(u))
19: u← failure link of u

20: Build HOG(P) with marked nodes

store pnodei’s by traversing the Aho–Corasick trie. Now we can compute up by using pnodei

and borderi. For example, let us consider v1 = pnode2(4), which represents ccgc. Since the
longest border of ccgc is c, which has length 1, we have border2(4) = 1. As a result, we have
up(v1) = up(pnode2(4)) = pnode2(border2(4)) = pnode2(1) = v4 by Equation (3). Note that
v4 represents c, which is the longest border of ccgc.

We are ready to describe an algorithm to compute HOG of P in O(||P ||) time and
space. First, we build the Aho–Corasick trie with P and a border array for each si. By
using the border arrays, we compute up(u) for every node u except the root. Next, we
compute |R(u)| for each node u by the post-order traversal of the Aho–Corasick trie. For
each string si, we start from the leaf node corresponding to si and follow the failure links
until we reach the root. For each node vk that we visit, we compute its corresponding
|Ik(0)| = |R(vk)|−

∑
vm:up(vm)=vk

|R(vm)|. If |Ik(0)| > 0, we mark vk to be included in HOG.
Algorithm 1 shows an algorithm to compute HOG. Lines 2–5 compute the preliminaries for
the algorithm, while lines 6–19 compute the nodes to be included in HOG. Note that the
loop of lines 8–19 works separately for each input string si. We consider vk in the order
of increasing k, and thus if up(vm) = vk, then m < k. Hence, Child(vk) in line 13 stores
every vm such that up(vm) = vk by line 18 of previous iterations. For each node u = vk

in lines 11–19, I(u) correctly computes |Ik(0)| since we get |R(vk)| in line 12 and subtract
every |R(vm)| where vk = up(vm) in lines 13–14. According to Theorem 6, lines 12–14
correctly computes |Ik(0)|. We build HOG(P ) in line 20 by removing the unmarked nodes
and contracting the edges while traversing the Aho–Corasick trie once, as in [5].

▶ Example 8. Consider again the Aho–Corasick trie built with P = {s1 = caccgc, s2 =
ccgcg, s3 = ccgca, s4 = cgct, s5 = gcc} in Figure 2. Let us consider a path starting from
a node representing s1 and following the failure links until the root node. The path
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(v0, v1, v2, v3, v4, v5) is marked with dotted lines in Figure 2. By definition of up, we get
up(v0) = up(v1) = up(v2) = v4 and up(v3) = up(v4) = v5. Therefore, we can compute
|Ik(0)|’s as follows.

|I0(0)| = |R(v0)| = 0
|I1(0)| = |R(v1)| = 2
|I2(0)| = |R(v2)| = 1
|I3(0)| = |R(v3)| = 1
|I4(0)| = |R(v4)| − |R(v0)| − |R(v1)| − |R(v2)| = 4− 0− 2− 1 = 1

Note that |R(v0)| = 0 by definition of R(u). Since v1, v2, v3, and v4 have positive |Ik(0)|’s,
we mark them to be included in HOG. We do this process for every si.

Now we show that Algorithm 1 runs in O(||P ||) time and space. Computing an Aho–
Corasick trie, a border array for each string, and up(u) and |R(u)| for each node u costs
O(||P ||) time and space. Furthermore, for a given index i, lines 13–14 are executed at most
|si| times since line 18 is executed at most |si| times, and thus the sum of |Child(u)| is at most
|si|. Therefore, lines 9–19 run in O(|si|) time for given i, and thus lines 8–19 run in O(||P ||)
time in total. Also they use O(|si|) additional space to store the Child list. Lastly, we can
build HOG(P ) with marked nodes in O(||P ||) space and time [5]. Therefore, Algorithm 1
runs in O(||P ||) time and space. We remark that Algorithm 1 can be modified so that it
builds the HOG from an EHOG instead of an Aho–Corasick trie, while it still costs O(||P ||)
time and space.

▶ Theorem 9. Given a set P of strings, HOG(P ) can be built in O(||P ||) time and space.

4 Conclusion

We have presented an O(||P ||) time and space algorithm to build the HOG, which improves
upon an earlier O(||P || log n) time solution. Since the input size of the problem is O(||P ||),
the algorithm is optimal.

There are some interesting topics about HOG and EHOG which deserve the future work.
As mentioned in the introduction, the shortest superstring problem gained a lot of interest
[2, 18, 11, 13]. Since many algorithms dealing with the shortest superstring problem are
based on the overlap graph, HOG may give better approximation algorithms for the shortest
superstring problem by using the additional information that HOG has when compared to
the overlap graph.
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Abstract
A gapped palindrome is a string uvuR, where uR represents the reverse of string u. In this paper
we show three efficient algorithms for counting the occurrences of gapped palindromes in a given
string S of length N . First, we present a solution in O(N) time for counting all gapped palindromes
without additional constraints. Then, in the case where the length of v is constrained to be in an
interval [g, G], we show an algorithm with running time O(N log N). Finally, we show an algorithm
in O(N log2 N) time for a more general case where we count gapped palindromes uvuR, where uR

starts at position i with g(i) ≤ v ≤ G(i), for all positions i.
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1 Introduction

A gapped palindrome is a string uvuR, where uR is the reverse of the string u. Gapped
palindromes are a generalization of palindromes, which are strings of the form uuR. In this
paper we study the counting of occurrences of gapped palindromes in given string S.

Palindromes have many applications in bioinformatics, more precisely in the study of
DNA and RNA sequences, where problems involving pairs of equal substrings and the
repetition of certain substrings appear naturally and were intensively studied (see, for
example, [20, 15, 11, 10, 14, 18, 12]). Manacher [13] presents an algorithm that finds for
every position i of the string the longest palindrome centered in i in O(N) time. Using
Manacher’s algorithm we can count all occurrences of palindromes in linear time. We refer
the reader to the book of Gusfield [7] and the references therein for more details regarding
palindromes.

Gapped palindromes were first studied by Kolpakov and Kucherov in [9], where they
design algorithms to find all maximal gapped palindromes in a string that obey two types of
constraints termed long-armed and length-constrained palindromes. Dumitran, Gawrychowski
and Manea present in [4] an algorithm which finds for each position i the longest string u such
that uvuR is a substring which has uR starting at position i and g ≤ |v| < G, where g and G

are two given natural numbers. Another algorithm shown in the same paper solves a similar
problem where |v| is only constrained by a lower bound function g(i). Both algorithms have
running time O(N).

Brodal et al. [2] show an algorithm which finds all tuples (a, b, c, d) such that S[a..b] =
S[c..d], c− b is in a given interval [g, G] and the pair of ranges [a..b] and [c..d] is maximal (it
cannot be extended to the left or to the right such that the previous two properties still hold).
The running time of Brodal et al.’s algorithm is O(N log N + z), where z is the number of
the pairs found.
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23:2 Counting Gapped Palindromes

Counting palindromes was previously studied in [6] where it is shown that counting all
distinct palindromes in a string can be done in linear time. Rubinchik and Shur describe
in [16] an algorithm which counts distinct palindromes in a substring of a given string S of
length N in time O(log N), with O(N log N) preprocessing time.

In this paper we study counting occurrences of gapped palindromes without traversing
each of them, the running time of our algorithms not depending on this number. We consider
that the counting problem is a natural variation of the already studied related problems and
we offer solutions for counting occurrences of gapped palindromes under various constraints.
The first problem we solve is counting all strings of the form uvuR in a given string S

without any other constraints, for which we give a linear time complexity algorithm. For the
second problem, which has the additional constraint that for g and G given natural numbers,
g ≤ |v| ≤ G, we describe a solution in O(N log N) time. Finally, we present the solution for
the problem where for each position i of the given string S we find all substrings uvuR where
uR begins at position i and g(i) ≤ |v| ≤ G(i), for the given functions g and G, the algorithm
having running time O(N log2 N).

2 Preliminaries

A substring of a string S which starts at position i and ends at position j (inclusive) is
denoted by S[i..j]. The length of the string S is |S|. We denote |S| by N . The i-th character
of the string is denoted by Si, the first character is S1 and the last is S|S|. A string S which
has the property that S = SR is called a palindrome. We denote by gapped palindrome a
string P = uvuR, where u and v are arbitrary strings and |u| > 0. For |v| ≤ 1, P is also a
palindrome. Note that a gapped palindrome P might be split into uvuR in multiple ways.
In this paper we consider occurrences of uvuR and u′v′u′R different if either u ̸= u′, v ̸= v′

or the positions at which the two substrings start are different.
A data structure used in all our algorithms is the suffix tree introduced by Weiner in [19],

also described in Gusfield [7]. A suffix tree of a string S is a tree T where each edge (u, v)
(u is the parent of v) is labeled by a nonempty substring S[i..j] of S. In this tree, the
concatenation of the labels of all edges on a path from the root to a certain node n forms
a string which we denote by H(n). A fundamental property of the suffix tree structure is
that any two edges (u, v1), (u, v2) are labeled by strings which start with different characters.
Thus, two different nodes n1 and n2 have the property that H(n1) ̸= H(n2). Moreover,
it holds that lcp(H(n1), H(n2)) = H(lca(n1, n2)), where lca(n1, n2) represents the lowest
common ancestor of the nodes n1 and n2 and lcp(H(n1), H(n2)) is the longest common
prefix of the strings H(n1) and H(n2). For each suffix S[i..N ] of S there is a node n such
that S[i..N ] = H(n) and by the previous property, the node n is unique, thus we denote
it by T (i). We term T (i) the associated node of the suffix S[i..N ]. If S is of the form S′$
where $ is a character that does not appear in S, then the associated node of a suffix is a
leaf. We denote the root of the tree by nr, M(n) is the substring which labels the edge from
the parent of the node n to n (in particular M(nr) = ϵ where ϵ is the empty string).

By Anc(n) we denote the set of ancestors of the node n (including n) and by Tree(n) we
denote the set of all nodes in the subtree of n. By the property of the lcp function we have
that lcp(S[i..N ], S[j..N ]) = H(lca(T (i), T (j))).

Assuming the alphabet of a string is of a constant size, the suffix tree can be constructed
in O(N) time, as shown by Weiner in [19]. There is also an online algorithm to construct the
suffix tree in linear time found by Ukkonen [17]. Given a suffix tree of a string, Gusfield [7]
shows how to compute lcp(S[i..N ], S[j..N ]) in O(1) time.
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For a given string S, Manacher shows in [13] an algorithm which computes Pali represent-
ing the length of the longest palindrome centered in i, for all 1 ≤ i ≤ N , in time complexity
O(N). By summing all these values we obtain an algorithm to count all occurrences of
palindromes in S in linear time.

Harel and Tarjan [8] describe a method to partition a rooted tree T such that the nodes
of each partition form a path and any two nodes in the same partition are one the ancestor
of the other. An important property of the partitioning, is that a path from any node to the
root intersects O(log N) partitions. We refer to this kind of partitioning of a tree by heavy
path decomposition.

An AVL Tree is a data structure introduced in [1]. An AVL tree is a balanced binary
tree which holds a set of ordered elements. It can perform operations such as adding a new
element to the set, removing an element, asking for the smallest element greater than a given
value in O(log N), where N is the number of elements it holds. A property that we use in
this paper is that two AVL trees of sizes N and M can be merged in O

(
log

(
N+M

N

))
time,

as shown by Brown And Tarjan in [3].
In our algorithms we use binary indexed trees for computing and updating efficiently

partial sums on an array where we have operations of the form “add x to the element on the
position p”. The binary indexed tree is described by Fenwick in [5]. For a binary indexed tree
F associated to an array A, we denote the operation A[p] = A[p] + x by F [p] = F [p] + x and

the query
p∑

i=1
A[i] by F (p). Both operations are executed in running time O(log N) where N

is the length of the array.

We name reversed binary indexed tree a similar structure F ′ where F ′(i) =
N∑

i=p

A[i].

The reversed binary indexed tree F ′ can be built using a standard binary indexed tree F

where on an operation A[p] = A[p] + x we execute F [|A| − p + 1] = F [|A| − p + 1] + x and
F ′(i) = F (N − p + 1).

3 Counting all gapped palindromes

In this section we study the following problem:

▶ Problem 1 (Counting all occurrences of gapped palindromes). Let S be a given string of
length N . Count how many tuples (a, b, c, d) exist such that 1 ≤ a ≤ b < c ≤ d ≤ N and
S[a..b]R = S[c..d].

We denote the set of these tuples by Q.

We begin with a fundamental observation.

▶ Remark 2. For fixed values c and b, the number of tuples (a, b, c, d) such that S[a..b]R =
S[c..d] is |lcp(S[1..b]R, S[c..N ])|.

Proof. Let L = |lcp(S[1..b]R, S[c..N ])|. For any l ∈ {1..L} we have that S[b− l + 1..b]R =
S[c..c + l− 1], thus assigning a := b− l + 1 and d := c + l− 1 the property S[a..b]R = S[c..d]
holds. Also we have that S[b− l + 1..b]R ̸= S[c..c + l− 1] for any l > L, so for any assignment
a := b − l + 1 and d := c + l − 1 the property S[a..b]R = S[c..d] does not hold. For
other values of a and d, the strings S[a..b]R and S[c..d] have different length. Thus, the
number of tuples (a, b, c, d) with the desired property is |{1..L}|, which, in turn, is equal to
|lcp(S[1..b]R, S[c..N ])|. ◀

CPM 2021
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Let T be the suffix tree built on the string S′ = S#SR$ of length N ′, where the characters
# and $ do not appear in the string S. We define jr such that for j ∈ {1..N} we have
S′[j..N ] = S′[N + 2..jr]R and for j ∈ {N + 2..2 ·N + 1} we have S′[N + 2..j]R = S′[jr..N ].
Thus jr can be expressed as 2 ·N + 2− j.
▶ Remark 3. For some b and c such that 1 ≤ b, c ≤ N we have that:

lcp(S[1..b]R, S[c..N ]) = lcp(S′[br..N ′], S′[c..N ′])

Proof. By the structure of S′ we have that S′[br..N ′ − 1] = S[1..b]R and S′[c..N ] = S[c..N ].
Let L be |lcp(S[1..b]R, S[c..N ])|. If L < min(|S[1..b]R|, |S[c..N ]|) then Sb−L ̸= Sc+L, so
S′

br+L ̸= S′
c+L, thus lcp(S′[br..N ′], S′[c..N ′]) = L. If L = |S[1..b]R| or L = |S[c..N ]|, then

either S′
br+L = $ or S′

c+L = #. Because the characters $ and # are unique in S′ and
br + L ̸= c + L, we have that S′

br+L ̸= S′
c+L, thus lcp(S′[br..N ′], S′[c..N ′]) = L. ◀

The following remark indicates how to find pairs of a reversed prefix and a suffix which
have a certain longest common prefix:
▶ Remark 4. For a prefix S[1..j] and a suffix S[i..N ], we have that lca(T (i), T (jr)) = n

is equivalent to the existence of two nodes n1 and n2 children of the node n such that
T (i) ∈ Tree(n1) and T (jr) ∈ Tree(n2).

Using Remarks 3 and 4 we design Algorithm 1. Informally, Algorithm 1 performs as
follows. For each node n of the suffix tree T built on the string S′ we count the pairs of a
reversed prefix and a suffix which have the lcp equal to H(n), let this number be cnt. This
number represents the number of pairs (b, c) such that lcp(S[1..b]R, S[c..N ]) = H(n) holds.
We add to the final answer the value |H(n)| × cnt, where |H(n)| comes from the number of
pairs (a, d) such that S[a..b]R = S[c..d] for each of the (b, c) pairs. To count the number of
pairs (b, c), we iterate over the children of n and we count the number of pairs formed by
reversed prefixes and suffixes in the subtree of the current child with suffixes and reversed
prefixes in the subtrees of the previous children.

▶ Lemma 5. The Algorithm 1 gives the value ans1 =
N∑

b=1

N∑
c=1

lcp(S[1..b]R, S[c..N ]) in O(N)

time.

Proof. Remarks 3 and 4 prove that the algorithm correctly counts for each node n the
number of pairs (b, c) such that lcp(S[1..b]R, S[c..N ]) = H(n). Every pair (b, c) is pro-
cessed when n = lca(T (br), T (c)), adding the value H(n) to ans1, thus the value ans1 is
N∑

b=1

N∑
c=1

lcp(S[1..b]R, S[c..N ]). The time complexity of the algorithm is linear since its core is

a simple depth-first traversal (with some constant time additional computations). ◀

Algorithm 1 does not count the elements of the answer set Q because the condition b < c

does not hold. Nevertheless, we can assert the following:
▶ Remark 6. Let

Q′ = {(a, b, c, d) | 1 ≤ a ≤ b ≤ N, 1 ≤ c ≤ d ≤ N, S[a..b]R = S[c..d]}

Then ans1 = |Q′|.

Proof. It follows immediately from Lemma 5 and Remark 2. ◀

We observe that Q ⊂ Q′. We aim to find |Q| by computing |Q′| and |Q′ −Q|.
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Algorithm 1 Counting excluding the condition b < c.

1 Procedure iterate(n: the current node of the suffix tree)
Data: Sf [u] - the number of the suffixes of S in the subtree of the node u

Pr[u] - the number of the prefixes of S in the subtree of the node u

2 pr ← 0;
3 sf ← 0;
4 cnt← 0;
5 if n is leaf then
6 i← T −1(n) ; // n is the associated node of a suffix of S′

7 if i ≤ N then // i corresponds to a suffix of S

8 sf ← 1;
9 else if i > N + 1 and i ≤ 2 ·N + 1 then // ir corresponds to a prefix

of S

10 pr ← 1;
11 end
12 else
13 for ch← child of n do
14 iterate(ch) ;
15 cnt← cnt + Sf [ch] · pr;
16 cnt← cnt + Pr[ch] · sf ;
17 pr ← pr + Pr[ch];
18 sf ← sf + Sf [ch];
19 end
20 end
21 ans1 ← cnt× |H(n)|;
22 Sf [u]← sf ;
23 Pr[u]← pr;
24 iterate(nr) // start the iteration from the root of the suffix tree

▶ Remark 7. Let (a, b, c, d) be a tuple in Q. Then (a, b, c, d) ∈ Q′ but also (c, d, a, b) ∈ Q′ and
(a, b, c, d) ̸= (c, d, a, b). Moreover, if (a, b, c, d) ∈ Q′ and [a, b] ∩ [c, d] = ∅, then (a, b, c, d) ∈ Q

or (c, d, a, b) ∈ Q.
In other words, a tuple (a, b, c, d) ∈ Q “appears twice” in Q′ and all the elements in

Q′ which have this property are those for which the substrings S[a..b] and S[c..d] do not
intersect (either b < c or d < a). We use Remark 7 to compute the final answer using ans1
and the number of tuples (a, b, c, d) such that S[a..b] and S[c..d] do not intersect.

▶ Lemma 8. Let I = {(a, b, c, d) ∈ Q′ | [a, b] ∩ [c, d] ̸= ∅} and ans2 = |I|. Then the answer
to the Problem 1 is ans = (ans1 − ans2)/2.

Proof. From Remark 7 we have that |Q| = |Q′ \ I|/2, and as I ⊂ Q′, we have |Q′ \ I| =
|Q′| − |I|. ◀

We say that a palindrome S[a..b] is centered at (a + b)/2 and the value (a + b)/2 is the
center of the palindrome.

▶ Lemma 9. Let (a, b, c, d) ∈ I. Then S[a..b] and S[c..d] are contained in a palindrome
centered at (b + c)/2. More precisely, there are l and r such that l ≤ a, b, c, d ≤ r and S[l..r]
is a palindrome and (l + r)/2 = (b + c)/2.

CPM 2021
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Proof. Assume that b ≤ d. The case b > d is solved similarly.
As S[a..b] and S[c..d] intersect, we have that b ≥ c. Thus S has the following structure:

S = XS[a..c− 1]S[c..b]S[b + 1..d]Y

Due to the fact that S[a..b]R = S[c..d] and b ≤ d we have that S[a..c−1 c..b]R = S[c..b b+1..d],
thus S[c..b]R = S[c..b] and S[a..c−1]R = S[b+1..d]. Therefore S has the structure XUAURY ,
where A is a palindrome centered at (b + c)/2. It follows that S[a..d] = UAUR also has the
center (b + c)/2. ◀

To count (a, b, c, d) ∈ I, we compute for each ce ∈ [1, N ], 2 · ce ∈ N the value Vce

representing the number of tuples which are included in a palindrome centered at ce and
ce = (b + c)/2. Then ans2 =

∑
ce

Vce .

▶ Lemma 10. Let S[l..r] be the longest palindrome centered at ce. Then Vce
= ⌈(r − l + 1)/2⌉2.

Proof. Observe that a can take any integer value in the interval [l, ⌊(l + r)/2⌋], b can take
any integer value in [⌈(l + r)/2⌉, r]. By Lemma 9, the values c and d are the symmetric of
b and a with respect to ce. More precisely c = (l + r) − b and d = (l + r) − a. Thus the
number of tuples (a, b, c, d) is (⌊(l + r)/2⌋ − l + 1) · (r − (⌈(l + r)/2⌉) + 1) which is equal to
⌈(r − l + 1)/2⌉2. ◀

We use all the previous results in designing Algorithm 2. We can thus state the theorem:

▶ Theorem 11. Problem 1 can be solved in O(N) time.

Proof. Algorithm 2 computes the desired value ans = |Q|. The correctness of Algorithm 1
is given by Lemma 5. The step 4 is correct by Lemma 10. Lemma 8 proves the correctness
of the step 6.

The suffix tree of the string S′ in step 1 is computed in O(N) time using Ukkonen’s
algorithm [17]. Algorithm 1 runs in linear time by Lemma 5. The lengths of the longest
palindromes centered in each position are computed using Manacher’s algorithm [13] in O(N).
Step 5 is done in linear time and Step 6 takes constant time. Thus the entire algorithm runs
in O(N) time. ◀

Algorithm 2 The algorithm for solving Problem 1.

1 build suffix tree on the string S′ = S#SR$ ;
2 compute ans1 using Algorithm 1 ;
3 for each center c compute the longest palindrome in S centered at c ;
4 compute the values Vc = ⌈(r − l + 1)/2⌉2 where S[l..r] is the longest palindrome

centered at c ;

5 compute ans2 as
2·N∑
c=2

Vc/2 ;

6 compute ans = (ans1 − ans2)/2 ;
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4 Palindromes with constraints on the length of the gap

In this section we consider a version of Problem 1 with the additional constraint that Q

contains only tuples with the property that g ≤ c− b− 1 ≤ G, for given g and G positive
integers.

▶ Problem 12 (Counting palindromes with gap length constraint). Let S be a string of length
N and g, G positive integers. Let

Q = {(a, b, c, d) | 1 ≤ a ≤ b < c ≤ d ≤ N, g ≤ c− b− 1 ≤ G, S[a..b]R = S[c..d]}

. Find |Q|.

We use an adaptation of Algorithm 1. Instead of counting for each node n all the pairs
(i, j) such that lcp(S[1..j]R, S[i..N ]) = H(n), we count only those that also hold the constraint
on the gap, namely g ≤ i− j − 1 ≤ G. This approach obtains the correct answer directly
without the need of a strategy to subtract wrongly counted tuples as in the Problem 1.
However, a data structure on an ordered set is needed, thus increasing the running time of
the algorithm.

Brodal et al. [2] describe an algorithm that solves a similar problem. For a node n of the
suffix tree, Brodal et al.’s algorithm processes pairs of suffixes belonging to the subtrees of two
different children. For a suffix S[i..N ] in one subtree the algorithm finds the smallest index j

of a suffix S[j..N ] in the other subtree, such that j ≥ i + v. The value v is independent of i

and j, but depends on the node n. The algorithm also iterates on some interval of suffixes
starting from j, thus its time complexity depends on the number of suffixes individually
found. Because in our problem we need only to find the number of the elements in an interval,
we change the algorithm to have a running time depending only on N .

The modification of the strategy presented in Brodal et al. [2] needs the following lemma:

▶ Lemma 13. Let E be a list of sorted elements and T an AVL tree of sizes N and M

respectively, such that N ≤M . For each element i of E we can find the biggest element j in
T such that j ≤ i and its position in T (in other words, how many elements of T are smaller
than j) in time O

(
log

(
N+M

N

))
.

Proof. From Lemma 3 of Brodal et al. [2] we know that for each i in E we can find the
smallest j in T such that j ≥ i in time O

(
log

(
N+M

N

))
. In our algorithm we use a similar

operation.
Now we describe the method of finding the position of the element j. We denote by L(n)

the left child of the node n and by R(n) the right child of the node n. For each node u

from the AVL we keep a table Size(u) representing the size of the subtree rooted in the
node u. When inserting a new element in the AVL tree, we update the value Size(u) to be
Size(L(u)) + Size(R(u)) + 1 at the step the node u is visited. For finding the position of an
element, during the traversal of the tree, we keep a variable p which counts the number of
smaller elements than the element in the current node which are not situated in the current
subtree. When visiting the left child, we leave p unchanged, when visiting the right child we
add to p the value Size(L(u)) + 1, and when returning to the parent we undo the change
made when we visited the node u.

The running time of the algorithm does not change, thus the operation can be performed
in O

(
log

(
N+M

N

))
. ◀
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▶ Theorem 14. Problem 12 can be solved in running time O(N log N).

Proof. We apply the strategy described by Brodal et al. in [2]. We change the suffix tree
to have each node with at most two children in order to use “the smaller half trick”. For
each node n we maintain an AVL tree that stores all the suffixes i in the subtree of n and
another AVL tree that stores all the prefixes j in the subtree of n. The AVL tree for a node
n is computed as the union of the AVL trees of its children, which can be done in time
O

(
log

(
s1+s2

s1

))
where s1 and s2 are the number of nodes in the two subtrees of node n. All

union operations are processed in O(N log N) time.
For a node n of the suffix tree, let n1 be the child with the smaller subtree and n2 the

child with the bigger subtree. For each suffix i of S in the subtree of n1 we find how many
prefixes j of S in the subtree of n2 exist such that g ≤ i − j − 1 ≤ G. We also find for
each prefix j in the subtree of n1 the number of suffixes i in the subtree of n2 such that
g ≤ i− j − 1 ≤ G. We add both numbers to the answer.

We describe the first case, the other one being similar. For each suffix i in the subtree of
n1 count the number of prefixes j1 in the subtree of n2 that hold the condition g ≤ i− j1 − 1
and the number of prefixes j2 which hold the condition G + 1 ≤ i− j2 − 1, the result being
the difference of the two numbers. We rewrite g ≤ i− j1 − 1 as j ≤ i− g − 1. We merge the
sorted list of the suffixes of n1 with the AVL tree which holds the prefixes of the subtree
rooted at n2. The elements i from the sorted list are treated as they would be i− g − 1 and
we return the largest j in the AVL which is smaller than or equal to i− g− 1 and its position.
If the position of j is pj , then the number of prefixes counted for the suffix i is pj .

The running time of our algorithm is O(N log N), being just a modification of the
algorithm described by Brodal et al. in [2]. ◀

5 Gapped palindromes with positional constraints on the length of the
gap

▶ Problem 15 (Counting gapped palindromes for every position). Let S be a string of size N .
We say that for an index i a pair (j, r) is valid if j < i and S[i..i + r − 1]R = S[j − r + 1..j].
Given two functions g and G, count for each index i the number Pi representing the number
of valid pairs (j, r) for which the property g(i) ≤ i− j − 1 ≤ G(i) holds.

We begin by reducing the problem of counting pairs (j, r) where j is bounded from both
sides to one where j is only upper bounded.

▶ Remark 16. Let P g
i be the number of valid pairs (j, r) of i such that i − j − 1 ≥ g(i)

and P G
i the number of valid pairs (j, r) of i such that i − j − 1 ≥ G(i) + 1 (equivalently

j ≤ i− g(i)− 1 and j ≤ i−G(i)− 2 respectively). Then Pi = P g
i − P G

i .

The following remark shows how to compute the values P g
i and P G

i based on Remark 2:

▶ Remark 17. The values P g
i and P G

i can be computed in the following way:

P g
i =

i−g(i)−1∑
j=1

|lcp(S[1..j]R, S[i..N ])|

P G
i =

i−G(i)−2∑
j=1

|lcp(S[1..j]R, S[i..N ])|
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We provide a data structure to compute the value
K∑

j=1
|lcp(S[1..j]R, S[i..N ])| where

initially K = 0 and we make updates of the form K = K + 1. We denote by Q(i) =
K∑

j=1
lcp(S[1..j]R, S[i..N ]) at a certain state given by K.

Let W be an array indexed by the set of the nodes of T .
Initially we have that W [n] = 0, ∀n ∈ T . On an update K = K + 1 we execute W [u] =

W [u] + |M(u)| for each u ancestor of T ((K + 1)r) (recall that (K + 1)r = 2 ·N + 2− (K + 1)).

▶ Remark 18. Let A be the set of prefixes processed at a certain moment, more precisely
A = {T (jr) | j ≤ K}, K is the index of the last prefix added to the structure. Then
W [n] = |M(n)| · |A ∩ Tree(n)|.
We can find the value Q(i) using the following lemma.

▶ Lemma 19.

Q(i) =
∑

u∈Anc(T (i))

W [u]

Proof. By Remark 18 we have that∑
u∈Anc(T (i))

W [u] =
∑

u∈Anc(T (i))

|M(u)| · |A ∩ Tree(u)|

=
∑

u∈Anc(T (i))

∑
v∈A∩T ree(u)

|M(u)|

=
∑

(u,v)∈Anc(T (i))×A
v∈T ree(u)

|M(u)|

=
∑

(u,v)∈Anc(T (i))×A
u∈Anc(v)

|M(u)|

=
∑
v∈A

∑
u∈Anc(T (i))∩Anc(v)

|M(u)|

=
∑
v∈A

∑
u∈Anc(lca(T (i),v))

|M(u)|

but A = {T (jr) | j ≤ K}, thus

=
∑
j≤K

∑
u∈Anc(lca(T (i),T (jr))

|M(u)|

=
∑
j≤K

|H(lca(T (i), T (jr)))|

= Q(i) ◀

We describe a method to update and compute the sum over the array W . Build the
heavy path decomposition of the suffix tree T . Let Ch(n) be the partition corresponding
to the node n. By looking at the partitions of the decomposition as sequences, we define
Pos(n) being the position of n in the sequence Ch(n) and Ll(p) the node at position p in
the partition l. We denote by Par(n) the parent of the node n and Par(nr) = nil where nil

denotes the absence of a value. The partition has the following property:

CPM 2021
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▶ Property 20. Par(Ll(i)) = Ll(i− 1) for each i > 1. Moreover, if u is an ancestor of v,
then LCh(u)(i) is also an ancestor of v, for all i ≤ Pos(u).

Harel and Tarjan show in [8] a property of the heavy path decomposition which we
reformulate here:

▶ Property 21. The number of distinct partitions encountered on a path from a node n to
the root is O(log N). In other words, consider an algorithm which has a variable n initially
equal to some node of the tree. The number of steps in a loop of the form “while n ̸= nil do
l = Ch(n), n = Par(Ll(1))” is of the order O(log N).

By Properties 20 and 21 we design Algorithms 3 and 4, which update the structure when
executing K = K + 1 and query the structure respectively.

Algorithm 3 The update procedure.

1 Procedure update()
Data: Stl[j] - for each l an array with the values W [u] corresponding to the

chain l, meaning Stl[j] = W [Ll(j)]
2 n← T ((K + 1)r) ; // the leaf corresponding to the added prefix
3 K := K + 1;
4 while n ̸= nil do
5 p← Pos(n);
6 l← Ch(n);
7 for j ← 1..p do // operation executed by an efficient structure
8 Stl[j] = Stl[j] + |M(Ll(j))| ; // add |M(u)| on the chain
9 end

10 n← Par(Ll(1));
11 end

Algorithm 4 The query function.

1 Function query(i: the index of the suffix)
Data: Stl[j] - for each l the array with the values W [u] corresponding l to the

chain l, meaning Stl[j] = W [Ll(j)]
2 n← T (i) ; // the leaf corresponding to the added suffix
3 sum← 0;
4 while n ̸= nil do
5 p← Pos(n);
6 l← Ch(n);
7 for j ← 1..p do // operation executed by an efficient structure
8 sum = sum + Stl(j)
9 end

10 n← Par(Ll(1));
11 end
12 return sum

▶ Lemma 22. Algorithms 3 and 4 simulate correctly the operations on W . The time
complexity of Algorithm 3 is O(log N) operations of the form “assign B[i] = B[i] + A[i] for
all i ≤ p”, where p is a given integer. Algorithm 4 runs in O(log N) time operations of the

form “compute
p∑

i=1
B[i]” for a given p.
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Proof. We prove only the statements about Algorithm 3, those concerning Algorithm 4 can
be proven similarly.

Consider line 7 of Algorithm 3. If we reverse the direction of the loop, then, by Property 20,
the nodes Ll(j) on the next line provide the iteration of the ancestors of the node in order,
from n to the chain above. Line 10 takes the next node on the path from n to the root which
is processed at the next iteration of the exterior loop (when j on line 7 is equal to p). Thus,
every ancestor of n is eventually visited.

The time complexity of the algorithm is a direct consequence of Property 21, because
in each iteration of the exterior loop (line 4 of Algorithm 3) an operation of the form
Stl[j] = Stl[j] + |M(Ll(j))| is executed. ◀

Finally we provide a data structure to perform the operations on the arrays Stl in
Algorithms 3 and 4. More precisely, we solve the following problem:

▶ Problem 23. Let Ai be a sequence and B be an array, both of size N , initially B[i] = 0, ∀i.
Execute a series of operations of the form:

update: given p, assign B[i] = B[i] + Ai for all i ≤ p

query: given p, find
p∑

i=1
B[i]

▶ Lemma 24. Problem 23 can be solved by executing each operation in running time O(log N).

Proof. Let Si =
i∑

j=1
Aj , be the partial sum sequence of A which can be computed in linear

time and Pi the sequence of values p which were used to update the values of B up to the
current step. Let L be the length of the sequence P . For a given position p we can compute
the partial sum query in the following way:

p∑
i=1

B[i] =
L∑

j=1

p∑
i=1

Aj
i

where Aj
i = Ai for i ≤ Pj and Aj

i = 0 otherwise. Then, let P ≤p be the sequence with values
of P such that Pi ≤ p and P >p the sequence with values Pi > p, with lengths L≤p and L>p

respectively. We have:
p∑

i=1
B[i] =

L≤p∑
j=1

S[P ≤p
j ] +

L>p∑
j=1

S[p]

p∑
i=1

B[i] =

L≤p∑
j=1

S[P ≤p
j ]

 + S[p] · L>p

or, for a better view:
p∑

i=1
B[i] =

L≤p∑
j=1

S[P ≤p
j ] + S[p] ·

L>p∑
j=1

1

Thus, we separate the computation of
p∑

i=1
B[i] in two, easier to compute, sums. The first

sum,
∑L≤p

j=1 S[P ≤p
j ] can be computed using a binary indexed tree F1, which for a given p

we update by executing F1[p] = F1[p] + Sp. We compute the second sum, S[p] ·
∑L>p

j=1 1
by using a reversed binary indexed tree F2, which for a given p we update by executing
F2[p] = F2[p] + 1. The answer for a query of the form

p∑
i=1

B[i] is F1(p) + Sp · F2(p + 1). ◀
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All the above lemmas and remarks are joint together in Algorithm 5.

Algorithm 5 The algorithm which solves Problem 15.

1 build the suffix tree of the string S′ = S#SR$;
2 compute the pairs (i, i− g(i)− 1) and (i, i−G(i)− 2) and sort them by the second

field;
3 for K ← 0 to N − 1 do
4 for (i, _)← remaining pairs which have the second field equal to K do
5 P g

i or P G
i := query(i);

6 end
7 update();
8 end
9 for i← 1 to N do

10 Pi = P g
i − P G

i ;
11 end

We conclude with the following theorem:

▶ Theorem 25. Problem 15 can be solved in time complexity O(N log2 N).

Proof. By Lemma 22 we have that Algorithms 3 and 4 correctly simulate the operations
on the array W and the Lemma 19 shows that the operations on the array W correctly
computes the value Q(i). Remark 17 shows that Algorithm 5 correctly computes P g(i) and
P G(i), then computes Pi using Remark 16. Thus, the correctness of the algorithm is proven.

Using Lemma 24 we obtain that Algorithms 3 and 4 have the total time complexity
O(log2 N). Algorithm 5 does N calls of Algorithm 3. The query function is called two
times for each position i (once for P g(i) and once for P G(i)), thus there are 2 ·N calls of
Algorithm 4. Therefore the total running time of the algorithm is O(N log2 N). ◀

6 Conclusions and future work

In this paper we show a linear time algorithm that counts the number of gapped palindromes
in a string. Then, we show an algorithm with time complexity O(N log N) for a variation of
the problem in which we have a lower and an upper bound on the length of the gap of the
palindromes counted. Finally, we show an algorithm with O(N log2 N) time complexity for
a more general case where we count gapped palindromes uvuR, where uR starts at position i

with g(i) ≤ v ≤ G(i), for all positions i.
As an open problem, we believe that it is possible to solve Problem 15 using an algorithm

that has O(N log N) running time. One possible research direction is to adapt the algorithm
in Section 4. However, we mention that a straightforward adaptation is not possible for
the following reason. In our suffix tree traversal, we count for every prefix/suffix from the
smallest subtree the corresponding pair from the other subtree, while the goal is to count for
every suffix the corresponding prefixes irrespective of the subtree they belong to.

Another approach to obtain a O(N log N) algorithm for Problem 15 is to use a suffix array
instead of a suffix tree. Then, we tried to use the fact that the length of the longest common
prefix of two suffixes from the suffix array is the minimum length of the longest common prefix
of all the pairs of consecutive suffixes between the two given suffixes. The difficulty consists
in building a data structure which handles the change of the minimum longest common
prefix of two consecutive suffixes in an interval and queries sums on partial minimum longest
common prefix of two consecutive suffixes both in time complexity O(log N).
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Abstract
Analyzing patterns in a sequence of events has applications in text analysis, computer programming,
and genomics research. In this paper, we consider the all-window-length analysis model which analyzes
a sequence of events with respect to windows of all lengths. We study the exact co-occurrence
counting problem for the all-window-length analysis model. Our first algorithm is an offline algorithm
that counts all-window-length co-occurrences by performing multiple passes over a sequence and
computing single-window-length co-occurrences. This algorithm has the time complexity O(n) for
each window length and thus a total complexity of O(n2) and the space complexity O(|I|) for a
sequence of size n and an itemset of size |I|. We propose AWLCO, an online algorithm that computes
all-window-length co-occurrences in a single pass with the time complexity of O(n) and space
complexity of O(

√
n|I|), assuming perfect hashing. Following this, we generalize our use case to

patterns in which we propose an algorithm that computes all-window-length co-occurrence with
time complexity O(n|I|), assuming perfect hashing, with an additional pre-processing step and space
complexity O(

√
n|I|+ |I|), plus the overhead of the Aho-Corasick algorithm [3].
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1 Introduction

Analyzing regularities in streams and event sequences has applications in data analytics as
well as programming languages, natural language processing, and genomics. Examples of an
event sequence include a sequence of system logs, memory requests by a program, tweets
by a user, a series of symptoms, a sequence of words in a document, or an RNA sequence.
One metric of regularity is co-occurrence [13, 21] – the number of times that an entire set
of items or more broadly of patterns is contained within a sliding window of an arbitrary
size. For example, consider the sequence “abccba” and window size three. This sequence
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of events contains four such windows: “abc”, “bcc”, “ccb”, and “cba”. We see that both “a”
and “b” appear together in two windows. Thus, itemset {a, b} co-occurs twice for window
size of three. In the sequence “cat dog cat” with window size seven, we see that the words,
referred to as patterns, “cat” and “dog” both appear as substrings in two windows, and thus
the pattern set {cat, dog} has co-occurrence of two with window size seven.

Most applications assume that the window is given by a user or defined in an ad hoc
manner. Existing counting algorithms for streams often assume the sliding-window model
of computation, that is, answering queries or mining is done over the last w most recent
data elements [6, 7]. Successful pattern-searching tools, such as ShapeSearch, enable the
search for desired patterns within a fixed window size in trendlines [20]. However, in certain
applications of co-occurrence analysis, the query is about identifying the time windows that
satisfy certain conditions on the co-occurrence. For instance, in text analysis, what is the time
window in which a set of events are very likely to appear? Or, at which time window does
the co-occurrence of a set of words in a document become random? Or, how often do two or
multiple gene expression patterns co-occur in an RNA sequence? These applications require
the analysis of all possible window lengths, possibly as large as the size of the sequence.

The All-Window-Length Analysis Model. In this paper, we consider a new analysis model
of computation for streams and sequences, the all-window-length analysis model, where the
analysis of a sequence of data elements is done in one pass for all window lengths, starting
from the size of a pattern up to the size of a sequence. Unlike single-window-length analysis,
in this model, window length becomes a variable. We consider the co-occurrence counting of
items and patterns in this analysis model. A pattern is a string with characters drawn from
alphabet A. Given a sequence T of size n, and an itemset I consisting of patterns, find the
number of windows in which every pattern in I occurs for all window lengths x ∈ {1, . . . , n}
in T . This model enables us to perform analysis without apriori knowledge of window-size,
i.e., a window size can be chosen and analyzed on demand at query time. For a sequence T of
size n and an itemset I consisting of |I| unique tokens, the co-occurrence analysis considers∑n

x=1(n− x + 1) windows. We propose efficient exact algorithms and theoretical analysis for
the co-occurrence counting of sets of items and patterns under this analysis model. Note
that this analysis model is different from the setting of counting frequent itemset in a stream,
in which data elements arrive in baskets of arbitrary lengths, and the goal is to find the
itemset that appears in s fraction of the baskets, where s is a support threshold [1, 2, 14,17].

Applications. We expect the all-window-length analysis model to open research opportun-
ities that lead to solving problems in natural language processing, the optimization of the
memory layout of programs, and accelerating the search for RNA sequences in genomes.
In natural language processing, the co-occurrence of words within a sliding window is the
basis for training word embeddings, which are vector representations of a word’s meaning
and usage [15, 16]. Different window sizes are useful for different purposes; embeddings
derived from smaller windows tend to represent syntactic information while larger windows
represent semantic information [18]. Identifying an effective window length for training word
embeddings requires the efficient exploration of the relationship between window size and
co-occurrence frequency of words [12].

The application of all-window-length co-occurrence analysis in programming languages is
in the optimization of the memory layout of programs. Modern processor performance is
dependent on cache performance and cache block utilization. A set of data elements belong
to the same affinity group if they are always accessed close to each other. This closeness
is defined by k-linkedness. A reference affinity forms a unique partition of data for every
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k, and the relation between different ks is hierarchical, meaning the affinity groups at link
length k are a finer partition of the groups at k + 1. Reference affinity has been used to
optimize the memory layout in data structure splitting [24], whole-program code layout [10],
and both [22]. Finding affinity groups requires the analysis of the access co-occurrence of
data elements in memory access traces for all ks.

Research has shown that analyzing nucleotide co-occurrence over the entire human genome
provides a powerful insight into the evolution of viruses [8, 19]. Co-occurrence is a method
for tracking cooperative genomic interactions as a major force underlying virus evolution.
Existing co-occurrence network construction tools such as cooccurNet [25] consider pairs
of nucleotides or amino acids for analysis and apply filters on the significance of the co-
occurrence of genes. The distance in a co-occurrence network counts for the relatedness of
genes. An all-window-length analysis of the co-occurrence gene sequences provides further
insight into pattern analysis in genomics.

Results. In this paper, we propose an efficient algorithm that computes all-window-length
exact co-occurrence of patterns in a single pass. For co-occurrence of itemsets of size one
or two, our past work proposed a linear time algorithm (in sequence length) to compute
co-occurrence for all window lengths [13]. To analyze co-occurrence, first, we introduce an
algorithm to calculate co-occurrence that runs in O(n) time, is easily understood, and uses
O(|I|) space for single-window-length co-occurrence, where n is the length of the sequence,
and I is the set of co-occurring items. However, to find the co-occurrence across all window
lengths, the algorithm would require to compute the co-occurrence for each window length
separately and use O(n2) time, which is impractical for large datasets.

We propose AWLCO, a time- and space-efficient algorithm that computes the exact co-
occurrence of itemsets for all window lengths, in a single pass. The algorithm computes
co-occurrence by finding gaps in the sequence, or substrings of the sequence that do not
contain subsets of the queried pattern. This is a novel approach to compute co-occurrence
and provides an improved algorithm, since the stored gaps are not bound to any window
lengths. Thus, the collection of gaps allows the co-occurrence to be determined for all window
lengths in a single pass through the gaps. Furthermore, we propose a simple approach for
computing all of the gaps for an itemset in a single pass through the sequence. The relevant
gaps can be found by iterating through the sequence and keeping track of the items and the
orders they last appeared. We theoretically prove that gaps are only relevant and counted
if the current item encountered in the sequence is the item that was seen furthest in the
past, thus, drastically reducing the amount of space and updates needed. AWLCO enables
all-window-length queries in O(n) time by using O(

√
n|I|) additional space, assuming a

perfect hashing function.
Finally, we generalize our problem to finding the co-occurrence of a set of patterns. We

argue that finding an algorithm that handles multiple elements at the same index of a
sequence would solve all window length pattern co-occurrence. We present an algorithm
for pattern co-occurrence counting with time complexity O(n|I|), assuming perfect hashing,
and space complexity O(

√
n|I|+ |I|), with additional space overhead from the Aho-Corasick

algorithm [3].

2 Problem Definition

We begin by fixing a vocabulary A that we will be working in. Let T be a sequence with
elements in A. Sequence T can be considered as a stream. Let n be the length of the sequence
T and for any natural number l, let [l] = {1, . . . , l}. A sequence will have its indices zero
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24:4 AWLCO: All-Window Length Co-Occurrence

indexed, i.e., T [0] is the first element that appeared in the sequence and T [i] is the element
that appeared at position i. We use T [i . . . j] to denote a sub-string of T . For example,
T [0 . . . j] indicates the first j + 1 elements of sequence T . An itemset I is a finite non-empty
subset of A. For a sequence T , a window is a sub-string of T , or a contiguous selection of
elements of T . For sequence T we define the window at index i of length x where x ≤ i + 1,
ω(T, i, x), to be the window containing the i-th element of T and the x− 1 previous elements
of T . When it is clear what sequence is being referenced, we will refer simply to ω(i, x).
For example, for the sequence T =“abcdef”, ω(3, 3) is “bcd”. We define the co-occurrence
count as the number of windows of length x in sequence T that contain all elements of the
itemset I.

▶ Definition 1. Single-window length co-occurrence problem: Given a sequence T and an
itemset I, find the co-occurrence count of itemset I in windows of length x in sequence T .

co-occurrence (T, I, x) = |{ω(i, x) : i ∈ {x− 1, . . . , n− 1}, ∀e ∈ I, e ∈ ω(i, x)}| (1)

▶ Example 2. Consider the sequence T =“abcabe”. The co-occurrence count of itemset {a, b}
in all windows with size four, co-occurrence (abcabe, {a, b}, 4), is three.

In this paper, we consider the new problem of finding co-occurrence counts of I in T for
all window lengths.

▶ Definition 3. All-window length co-occurrence problem: Given a sequence T of size
n, and an itemset I, find the co-occurrence counts of itemset I in all windows of lengths
x ∈ {|I|, . . . , n} in sequence T .

In Section 3, we define a baseline algorithm for finding all window length co-occurrence
counts based on finding the single window length co-occurrence count. In Section 4, we
describe our algorithm for simultaneously finding co-occurrence counts of all window lengths in
linear time in the length of the sequence assuming perfect hashing and with space complexity
of O(

√
n|I|).

A pattern is a string with characters drawn from alphabet A. A pattern e’s ith component
is denoted e[j] and the length of the pattern is |e|. A pattern occurs in a sequence T if there
exists j ∈ {0, ..., n} such that for all i ∈ {0, . . . , |e| − 1}, T [j + i] = e[i].

▶ Definition 4. All-window length pattern co-occurrence problem: Given a sequence T of
length n, and an itemset I consisting of patterns, find the number of windows in which every
pattern in I occurs for all window lengths x ∈ {1, . . . , n} in sequence T .

3 Single-Window-Length Co-occurrence

Consider an item e ∈ A and a sequence T . The time elapsed since last access of e at index i,
tesla(T, e, i), is the difference between i and the greatest index where e occurs in T up to
and possibly including i, and, in the case that there is no occurrence of e in the interval up
to i, we define it to be ∞. When the choice of T is clear we use the shorthand tesla(e, i)
instead. There is a direct connection between the tesla values for items in the itemset and
the number of times the items of the itemset co-occur.

▶ Lemma 5. Itemset I co-occurs in a window ω(i, x) if and only if max{tesla(e, i)|e ∈ I} < x.

Proof. The statement implies that for each e ∈ I, tesla(e, i) < x, which implies that
e ∈ ω(i, x). Conversely, if each e ∈ ω(i, x), then we have tesla(e, i) < x; therefore, we have
max{tesla(e, i)|e ∈ I} < x. ◀
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Figure 1 The book-stack, when T [i+1] = rj
i (I). This change is shown in the first two book-stacks.

The third reflects the book-stack at index i + 1 after it has been updated.

▶ Example 6. Consider the sequence T =“abcabe” and itemset {a, b}. Suppose we have
processed T [0 . . . 3] and we know tesla(a, 3) = 0 and tesla(b, 3) = 2. Since the max tesla
value is two, the itemset does not co-occur in the size two window ω(3, 2).

By the lemma, the co-occurrence defined in Equation 1 can be computed by iterating
through each index of the sequence and counting the number of times max{tesla(e, i)|e ∈
I} < x.

co-occurrence (T, I, x) = |{i ∈ {x− 1, . . . , n− 1} : max{tesla(e, i)|e ∈ I} < x}| (2)

Book Stack. We now wish to have a systematic way of ordering items according to their
corresponding time elapsed since last access. Let Q denote the set of non-empty subsets of A.
Let A be some element of Q and suppose that A = {e1, e2, . . . , e|A|}, and they are labeled in
such a way that at index i in our sequence,

tesla(e1, i− 1) ≤ tesla(e2, i− 1) ≤ · · · ≤ tesla(e|A|, i− 1).

Now let rj
i : Q→ A be given by rj

i (A) = ej , for j ∈ {1, ..., |A|}. That is to say that, r arranges
the members of A in a finite sequence according to tesla(·, i− 1). This notation is robust as it
allows for weak ordering and will be used to consider a generalized case later on. We call the
realization of rj

i a book-stack, i.e., Si = [(r1
i (I), tesla(r1

i (I), i)), . . . , (r|I|
i (I), tesla(r|I|

i (I), i))]
based on the above ordering, given a set A. We define Si.retrieve(j) = tesla(rj

i , i). We
define Si.find : A → {1, . . . , |A|}, such that find(a) = j, where rj

i (A) = a. We define
Si.update : {1, . . . , |A|} → ×|A|

l=1A, in which Si.update(j) = (r1
i+1(A), . . . , r

|A|
i+1(A)), where

we have

rl
i+1(A) =


rj

i (A), l = 1
rl+1

i (A), 1 ≤ l < j

rj
i (A), j < l ≤ |A|.

We therefore define Si+1 = Si.update(Si.find(T [i])). It is straightforward to see that the
update guarantees the correct ordering for rj

i+1 based on tesla(·, i). Figure 1 illustrates
update to a book-stack data structure step by step. By an abuse of notation, in our algorithms
we refer to Si with S.
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Algorithm 1, SINGLECOUNTING demonstrates co-occurrence count for a specific window
length. The co-occurrences of an itemset can be calculated for multiple window lengths by
repeating Algorithm 1 and varying the argument x.

Algorithm 1 SINGLECOUNTING.

Input: Sequence T of length n, Itemset I, Window Length x

Result: co-occurrence(T, I, x)
1 count←0
2 S ←empty book-stack
3 for each item e ∈ I do
4 S += (e, −∞)
5 end
6 for i = 0 to n− 1 do
7 if T [i] ∈ I then
8 j ← S.find(T [i])
9 S.update(j)

10 end
11 if i ≥ x− 1 and i - S.retrieve(|I|)< x then
12 count←count+1
13 end
14 end
15 return count

▶ Example 7. Consider the sequence T = abcabe and the itemset I = {a, b}. The algorithm
initializes the S by adding (e,−∞) for each item e in I, representing that element e has
never been seen. Table 1 shows the state of S and the resultant max tesla value every time
an element of T is processed. At any step the max tesla value can be found by taking the
current index in the sequence and subtracting the last access time of the item in the bottom
of the book-stack.

3.1 Complexity Analysis
The book-stack can be implemented as a doubly linked list of items. Finding elements on the
bottom of the book-stack can then be done in constant time. We can maintain a hash table
from each element to the corresponding node in the book-stack. Each node can be accessed
in constant time. The book-stack will only take |I| space and no additional space is needed,
thus the total space is O(|I|). In addition, each element of the sequence is accessed once,
and only constant time operations are performed, giving a time complexity of O(n). For
co-occurrence of a single window length, this algorithm performs optimally with respect to
time complexity. This is because there is an intrinsic linear cost in computing co-occurrence,
as each element in the sequence must be examined in the worst case. In the next section, we
present a solution that in linear time can calculate the co-occurrence for all window lengths.

4 All Window-Length Co-occurrence

4.1 Counting Co-occurring Windows
To find the co-occurrence of an itemset I = {e1, e2, . . . , e|I|} in sequence T with window
length x we must count how many x-length windows in T contain I. We will make use of
the fact that counting the windows containing I is equivalent to counting the windows that
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Table 1 Book Stack changes for single-window co-occurrence counting.

initial a (i=0) b (i=1) c (i=2) a (i=3) b (i=4) e (i=5)
max tesla 0− (−∞) =∞ 1− 0 = 1 2− 0 = 2 3− 1 = 2 4− 3 = 1 5− 3 = 2
a(−∞)

b(−∞)

a(0)

b(−∞)

b(1)

a(0)

b(1)

a(0)

a(3)

b(1)

b(4)

a(3)

b(4)

a(3)

Figure 2 Gaps for certain elements in a sequence. The uppermost pattern illustrates the three
gaps “a”-gaps, the middle pattern shows the “b”-gaps, and the bottom pattern shows the three gaps
that contain neither “a” nor “b”.

do not contain I, since we know the total number of x-length windows is n− x + 1. For a
sequence T of length n and an itemset {e1} we denote the x-length windows that do not
contain e1 as {e1}x. For larger itemsets we extend the notation analogously where {e1, e2}x

are the x-length windows that do not contain e1 and do not contain e2. A window is a non
co-occurrent window as long as there is at least one element in I that is not contained in the
window. Therefore, the co-occurrence of I is the total number of x-length windows minus
the number of x-length windows that do not contain at least one item of I.

co-occurrence (T, I, x) = (n− x + 1)− |{e1}x ∪ . . . ∪ {e|I|}x
| (3)

Using the inclusion-exclusion principle we can rewrite the co-occurrence as follows.

co-occurrence (T, I, x) = (n− x + 1)−
∑

A⊆I:
A̸=∅

(−1)|A|+1 |Ax| (4)

▶ Example 8. Consider again figure 2 with I = {a, b} and x = 2. We have that {a}2∪{b}2 =
{w(i, 2) : 1 ≤ i ≤ 3, i = 5, 7 ≤ i ≤ 10}, hence

∣∣∣{a}2 ∪ {b}2

∣∣∣ = 8. The nonempty subsets of I

are {a, b}, {a}, and {b}. We have that {a, b}2 = {w(8, 2)}, {a}2 = {w(3, 2), w(7, 2), w(8, 2)},
and {b}2 = {w(i, 2) : 1 ≤ i ≤ 2, i = 5, 8 ≤ i ≤ 10}. This means that

∣∣∣{a}2 + {b}2 − {a, b}2

∣∣∣ =

8, agreeing with
∣∣∣{a}2 ∪ {b}2

∣∣∣. The idea here is that when using {a}2 and {b}2 to count
{a}2 ∪ {b}2 we double count w(8, 2), so we need to subtract by 1 to get the correct result.

We know that an A-gap of size k contains k − x + 1 windows of length x in which none of
A occurs. Thus, |Ax| =

∑n
k=x(k − x + 1)NA(k), where NA(k) is the number of A-gaps of

length k. Working with the right term of equation (4),

∑
A⊆I:
A̸=∅

(−1)|A|+1 |Ax| =
∑

A⊆I:
A̸=∅

(−1)|A|+1
n∑

k=x

(k − x + 1)NA(k) (5)

=
n∑

k=x

(k − x + 1)
∑

A⊆I:
A̸=∅

(−1)|A|+1NA(k). (6)
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Now, let us define:

H[k] =
∑

A⊆I:
A̸=∅

(−1)|A|+1NA(k) (7)

We call the collection of H[k]’s for all values of k a gap histogram, H. The co-occurrence of
I in x-length windows of sequence T is then calculated as follows.

co-occurrence (T, I, x) = (n− x + 1)−
n∑

k=x

(k − x + 1)H[k] (8)

An elegant property of this equation is that by storing the cumulative counts in a gap
histogram we can simultaneously calculate the co-occurrence for all window lengths.

▶ Example 9. Return to the sequence shown in Figure 2 for I = {a, b} and x = 2. Because
there are two length one {a, b}-gaps and one length one {b}-gap, we obtain H [1] = −2+1 = −1.
Additionally we have one length two {a, b}-gap, one length two {a}-gap, and one length two
{b}-gap which nets H[2] = 1 + 1− 1 = 1. There is one length three {a}-gap and one length
three {b}-gap, so H [3] = 1 + 1 = 2. Finally, there is a single length four {b}-gap so H [4] = 1.
To summarize, H[i] = 1 for i = 2, 4, H[3] = 2, H[1] = −1, and H[i] = 0 otherwise.

Using gap histograms to store cumulative counts has a space complexity of
√

n|I|. In
Theorem 12, we will formally discuss the space complexity in more detail. Calculating the
co-occurrence from the gap histogram instead of directly counting co-occurrent windows
is beneficial since calculating gaps does not require a window length as input and yet the
gap information is still sufficient to easily calculate the co-occurrence for all window lengths.
Thus, all that is needed to calculate all window length co-occurrence is an algorithm to
generate the gap histogram.

The simplest way to generate the gap histogram is to iterate through the sequence,
keeping track of where gaps begin and end. Whenever an item in the given itemset is found
at some index i it marks the end of a gap for any subset of I containing that item and
also marks the beginning of a new gap spanning from T [i + 1...k − 1], where k is either the
index of the next occurrence of an element in the subset of I in the sequence or n if another
element does not occur before the end of the sequence. Note that if an element in I occurs in
two adjacent indices in the sequence (i and i + 1), we obtain the gap [i + 1, i] which we treat
as a length 0 gap and discard. The length l of each newly ended gap can be updated in the
histogram by either incrementing or decrementing H [l] depending on whether the subset size
was odd or even respectively. This approach has run time O(n2|I|) and performs poorly for
large itemsets. It is inefficient since whenever an item from I is encountered in the sequence,
we need to consider 2|I|−1 subsets of I and update the histogram (subtract or add counts)
accordingly. A better approach is presented next.

4.2 Efficient Gap Counting
Since updates to the histogram have negating effects on each other (Equation 7), many of
the histogram entries do not change when an item of the itemset is observed in the sequence.
It turns out when an item of the itemset is observed in a sequence, we only need to update
the histogram for the gaps related to the first and second least recently seen items of I. To
keep track of the tesla’s, as we iterate through the sequence we can maintain a book-stack
data structure that contains each item in I along with the time that it last appeared in the
sequence, so that the most recently seen item appears at the top of book-stack.
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Observe that, when an item e from I is seen in the sequence at index i, a maximal gap
representing each subset of I containing e is added to the histogram. Furthermore, for any
one of those sets G, the length of the added gap is the minimum tesla value attained by
an item in G at index i− 1. Note that in this context we take tesla(e, i) = i if the element
has not yet been encountered in the sequence. These gaps account for all of the gaps in
the sequence except for gaps that include the final element of the sequence, these gaps are
handled specially.

For the following theorem, we first provide some notation. Let

Hi = (Hi[1], Hi[2], . . . , Hi[n])

be the histogram up to index i in the sequence. This is only for notational convenience. It is
important to note that in the actual program, there is only one histogram, rather than n.

▶ Theorem 10. For any 0 < i < n, suppose T [i] = r
|I|
i (I) then

Hi[k] =


Hi−1[k] + 1 if k = tesla(r|I|

i (I), i− 1)
Hi−1[k]− 1 if k = tesla(r|I|−1

i (I), i− 1)
Hi−1[k] otherwise.

If T [i] ̸= r
|I|
i (I) then Hi[k] = Hi−1[k] for all k. In other words, the histogram is only updated

when the next element in the sequence is the item that was just at the bottom of the book-stack.

Proof Sketch. We have a maximal gap for every subset A of I containing T [i]. The length of
this A-gap is mine∈A tesla(e, i− 1), hence the addition to the histogram from A is (−1)|A|+1

to the kth spot where k = mine∈A tesla(e, i − 1). Suppose T [i] ̸= arg maxe∈I tesla(e, i − 1)
i.e., T [i] is not the item seen furthest in the past most recently. There are the same number
of even and odd subsets of I in which T [i] = arg mine∈A tesla(e, i− 1) hence these subsets
contribute no net updates to H. For the remaining subsets, the same argument follows,
hence there are no net updates.

Now suppose that T [i] = arg maxe∈I tesla(e, i− 1). Similar to the above, for each item in
I not equal to r

|I|−1
i (I) and T [i], there are the same number of even and odd subsets of I

in which T [i] = arg mine∈A tesla(e, i− 1). But for r
|I|−1
i (I) there is but one subset in which

this is satisfied, namely, {r|I|−1
i (I), T [i]}, and there is also one subset in which T [i] satisfies

this, {T [i]}. Therefore we have

Hi[tesla(T [i], i− 1)] = Hi−1[tesla(T [i], i− 1)] + 1,

Hi[tesla(r|I|−1
i (I), i− 1)] = Hi−1[tesla(r|I|

i (I), i− 1)]− 1. ◀

The theorem does not handle the case for Hn, which we now address. The argument is similar
to the proof above for Hi with i < n, except that T [i] is undefined. All gaps necessarily close
at the end of the sequence. This means that |Ck| =

∑|I|
ℓ=0

(|I|−j
ℓ

)
, for all but j = |I|. For

j = |I| there is but one set for which r
|I|
i (I) = arg mine∈A tesla(e, n), namely, {r|I|

i (I)}. Thus
Hn[k] = Hn−1[k] for all k except when k = tesla(n, i− 1) in which Hn[k] = Hn−1[k]− 1.

The incremental updates that we have derived above result in algorithm AWLCO, shown in
Algorithm 2.

4.3 Complexity Analysis
The next two theorems assume that the histogram can be implemented as a hashtable with
perfect hashing. Without perfect hashing the histogram must contain space for all entries
from 1 − n and thus will be linear in space to maintain a constant run time or constant
histogram updates must be sacrificed to obtain a worst case n2 runtime.
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▶ Theorem 11 (Time Complexity). The time complexity of all-window length co-occurrence
algorithm is linear in the length of the sequence.

Proof. The algorithm iterates over the sequence once and possibly updates the book-stack
and the histogram for each element in the sequence. Since updating the book-stack and
updating the histogram are both done in constant time, the generation of the histogram
is done in linear time in the length of the sequence. Once a histogram is computed, the
co-occurrence for every window length is computed in a linear time by summing the histogram
as shown in Equation 8. Thus, the algorithm provides an O(n) method to calculate all
window length co-occurrence. ◀

▶ Theorem 12 (Space Complexity). The space complexity of the algorithm is O(
√

n|I|) where
n is the length of the sequence and |I| is the size of the itemset.

Proof. Space is used to maintain the book-stack and the histogram. The book-stack will
use O(|I|) space. Note that for any item e in the itemset the total length of gaps for {e}
is at most the length of the sequence. Thus, we have that the sum of all of the lengths of
single-item gaps is bounded above by n|I|. Furthermore, whenever an item of the itemset is
on the bottom of the book-stack a maximum of two new gaps are added to the histogram.
The length of the gap associated to the bottom item in the book-stack is equal to the length
of a single-item gap. The length of the other gap is bounded above by the length of the
first gap. Therefore, the sum of the length of all gaps added to the histogram is bounded
above by 2n|I|. Note the size of the histogram is the number of distinct gap lengths added
to it. In the worst case, gaps are greedily added to the histogram such that there is a length
1, 2, . . . , k size gap added. In this case, if the total number of gaps added is k, the total length
of the gaps is k(k+1)

2 . We know that the sum of the gaps length in a histogram is bounded
by 2n|I|. Thus, we have that k(k+1)

2 ≤ 2n|I|. Solving for k, we have that k2 + k ≤ 4n|I| and
k ≤ 2

√
n|I|. Thus, the total space used is bounded above by |I|+2

√
n|I| which gives a space

complexity of O(
√

n|I|). Note that this last line is true because we make the assumption
|I| ≤ n. If not the co-occurrence is simply 0 for every window length. ◀

5 Pattern Co-occurrence

We now wish to generalize our algorithm in two ways. The first is to patterns and the second
is to a stream in which multiple events can occur at the same index, for which the latter turns
out to be a subproblem of the first. Pattern co-occurrence is explained first. We define a
pattern as a string with characters drawn from our alphabet A. A pattern e’s ith component
is denoted e[i] and the length of the pattern is |e|. A pattern occurs in a sequence T if there
exists j ∈ [|T |] such that T [j . . . j + |e| − 1] = e, also let all such j be denoted in the set b(e).
Thus, pattern co-occurrence for an itemset I is defined as the number of windows in which
every pattern in I occurs. We wish to find an algorithm that can compute the co-occurrence
for all window lengths in one pass for patterns. It is clear that tesla is no longer well-defined.
Let e be a pattern. So define btesla(e, i) = i−max(|b(e) ∩ {0, . . . , i}|), which is the distance
between i and the most recent start of the pattern. If b(e) ∩ {0, . . . , i} is empty, then let
it be i.

We can use our previous definition of an A-gap for A ⊆ I, but the size of an A gap is now
found differently. Previously, the size of an A-gap closed at time i would be mine∈A tesla(e, i−
1), but now it is mine∈A btesla(e, i− 1), since an A-gap still occurs if all but the tail ends of
members of A are within said gap. Supposing that no two patterns in consideration end at
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Algorithm 2 AWLCO.
Input: Sequence T , ItemSet I

Result: Co-occurrence of all window lengths
1 H ← empty histogram
2 cooc← []
3 S ← empty book-stack
4 for e ∈ I do
5 S += (e, −∞)
6 end

// Read through entire sequence
7 for i = 0 to n− 1 do
8 current← T [i]

// When element is seen, update bottom two gaps
9 if current ∈ I then

10 if S.find(current) = |I| then
11 f ← i− S.retrieve(|I|)
12 s← i− S.retrieve(|I| − 1)
13 H[f ]← H[f ] + 1
14 H[s]← H[s]− 1
15 end
16 j ← S.find(current)
17 S.update(j)
18 end
19 end

// Final gap from bottom of book-stack
20 f ← i− S.retrieve(|I|)
21 H[f ]← H[f ] + 1
22 for x = |I| to |T | − |I|+ 1 do
23 Sx ← 0
24 for k = x to |T | do
25 Sx ← Sx + (k − x + 1)H[k]
26 end
27 cooc[x]← (|T | − x + 1)− Sx

28 end
29 return cooc

the same time, it is easy to see that Theorem 10 still holds in this case, using btesla in place
of tesla. Thus finding an algorithm that handles multiple events at the same index would
solve all window length pattern co-occurrence as well. We now proceed to solve the problem
in the case that multiple events can occur at the same index.

5.1 Multiple Item Co-occurrence

It is now natural to define co-occurrence for sets of items. We let T [i] ⊆ A, rather than just
one element of A, for all i. A co-occurring window for some itemset I ⊆ A is a window in
which for all e ∈ I, there exists a set A ∈ w(i, x) such that e ∈ A. Thus the co-occurrence is
the sum of these co-occurring windows. This is the natural extension. We will now present
the following theorem relating to the updates of H. Let Xi denote the set of items that
occur at T [i].

CPM 2021
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T [i− k1] T [i− k2] T [i]
x1 x2 x3 y3 x4 x1

y1 x2
y2 x3

x4
x5

Figure 3 Illustration of Theorem 13. The set of patterns I consists of x1, x2, . . ., which were seen
at T [i], and all other patterns y1, y2, . . .. Here A is the set {x1, x2} of patterns seen at T [i] that
were last seen further in the past than any of the other patterns y1, y2, . . .. We add one to H[k1],
where k1 is the time elapsed since x1 was last seen. We subtract one from H[k2], where k2 is the
time elapsed since y1 was last seen.

▶ Theorem 13. Suppose that for all a ∈ I ∩ Xi, tesla(a, i − 1) < tesla(e, i − 1) for any
e ∈ I \Xi. Then for any 1 < i < n,

Hi [k] =


Hi−1 [k] + 1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
Hi−1 [k]− 1 for k = tesla(r|I|

i (I), i− 1)
Hi−1 [k] otherwise.

Otherwise, Hi [k] = Hi−1 [k] for all k.

▶ Remark 14. This is a generalization of Theorem 10. Observe that in the case when |A| = 1,
this reduces to that result. Moreover, when i = n the same update given in Theorem 10
follows.

Proof Sketch. The incremental updates to H correspond to all the subsets of I that contain
at least one member of Xi. Weakly order Xi according to tesla. Now let Aj where j ∈ [Xi],
be the set of subsets of I that contains xj . Let ⟨A⟩i be the updates corresponding to some
set A. Therefore

Hi −Hi−1 =
∑

J⊆[|K|]

(−1)|J|+1

〈 ⋂
j∈J

Aj

〉
.

Consider each KJ =
⋂

i∈J Ai. For each one, the update is the same if one removes all
members of Xi besides the one corresponding to the smallest number in J , call this set K′

J .
Using Theorem 10, the update is +1 for k = tesla(a, i− 1), a being the item described before,
and also is −1 for k = tesla(a, i − 1) for a being the furthest item seen in the past not in
KJ ∩ I. But this implies that J that are not of the form Jm = {|Xi| −m, . . . , |Xi|} do not
contribute to the update. For any 0 ≤ m < |Xi|, the positive update corresponding to KJm

cancels with the negative update corresponding to KJm+1 . This process telescopes leaving
only the positive update corresponding to KJ0 and the negative update corresponding to
KJ|Xi| . This gives the desired result. ◀

A full proof is given in the appendix. Figure 3 provides an illustration of Theorem 13.
With this result we can now construct a similar algorithm to those before, with a few
modifications. Maintain a book-stack as before, but notice that it is no longer a strict
ordering. For example, if Xi = {e1, e2} ⊆ I, then one of e1 and e2 will occupy the
top of the book-stack and the other will occupy the second to top spot. To check whether
maxe∈Xi∩I tesla(e, i) < mine∈I\Xi

tesla(e, i), we partition the book-stack using p ∈ {0, ..., |I|},
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where p is defined as follows: for all j ≤ p, tesla(rj
i (I), i− 1) = tesla(r|I|

i (I), i− 1), and for
all j > p, tesla(rj

i (I), i− 1) > tesla(r|I|
i (I), i− 1). Thus checking if the non-trivial conditions

given in Theorem 13 hold is easy as we just check that rj
i (I) ≤ p for every j corresponding

to a member in Xi. It is also easy to update the histogram if these conditions hold, as we
just update according to rp

j (I) and rp+1
j (I). The pseudocode is given in Algorithm 3 in the

appendix.

5.2 Complexity Analysis
We again consider pattern co-occurrence rather than the simplified multiple item co-
occurrence, to find the complexity of the algorithm in general. We complete a pass over the
stream as we do in algorithm 2, but with a few additions. At each index we must maintain
the partition which in the worst case takes linear scan of I at each index. Maintaining
the book-stack then also requires O(|I|) operations. We can use the state machine in the
Aho-Corasick algorithm [3] to recognize when a pattern is completed in this same pass. For
this addition, the algorithm requires an initial time linear to the sum of the lengths of all of
the patterns to construct the necessary finite state machine for Aho-Corasick. Thus, the time
complexity is O(n|I|) with an additional pre-processing complexity of O(

∑
e∈I |e|) due to

Aho-Corasick. Space complexity for the histogram and book-stack remains O(
√

n|I|+ |I|)1,
however additional space is now needed for user’s desired implementation of the Aho-Corasick
algorithm.

6 Related Work

Counting in Streams. In the count-distinct problem, the goal is to know the number of
unique elements in a stream [9,14]. In the bit-counting problem, the goal is to maintain the
frequency count of 1’s in the last k bits of a bit stream of size N . Datar et al. propose an
approximate algorithm with for the bit-counting problem with O(log2 k) space complexity [6].
Existing counting algorithms for streams assume the sliding-window model of computation,
that is answering queries or mining is done over the last w elements seen so far [7]. However,
AWLCO introduces a new analysis model – all-window-length analysis model – which is
compelled to analyze and query all windows of all lengths starting from the beginning of a
stream or anytime in the past. To that end, AWLCO presents an efficient and exact itemset
counting algorithm for the all-window-length analysis model.

The frequent itemset mining in stream is a well-studied problem that adheres to the
counting problem [5]. The seminal work by Manku and Motwani presents an algorithm for
estimating the frequency count of itemsets in a stream and identifying those itemsets that
occur in at least a fraction θ of the stream seen so far with some error parameter ϵ [14].
For example, when the input is a stream of transactions where each transaction is a set of
items, the goal is to find the most frequent itemsets within transactions. The challenge is to
consider variable-length itemsets and avoid the combinatorial enumeration of all possible
itemsets. Many existing frequent itemset mining algorithms (with exception of [4,11]) obtain
approximate results with error bounds. A variation of frequent itemset mining is the problem
of mining frequent co-occurrence patterns across multiple data streams [21]. The definition
of co-occurrence patterns is slightly different than co-occurrence itemsets considered by

1 When considering patterns rather than single elements, |I| ≤ n is not necessarily true, so we include an
additional factor of |I| for completeness.
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AWLCO. A co-occurrence pattern is a group of items that appear consecutively showing tight
correlations between these items. A frequent co-occurrence pattern is the pattern that
appears in at least θ streams within a time period of length τ and the appearance of the
pattern in each stream happens within a time window of δ or smaller. In this paper, AWLCO
presents an all-window length frequency counting for a query itemset. A natural extension
of the itemset frequency counting of presented by AWLCO is mining frequent itemsets in all
window-lengths.

Affinity Analysis. Zhong et al. defined reference affinity for data elements on an access trace.
A set of data elements belong to the same affinity group if they are always accessed close
to each other [24]. The closeness is defined by k−linked-ness. They proved that reference
affinity forms a unique partition of data for every k, and the relation between different ks
is hierarchical, i.e. the affinity groups at link length k are a finer partition of the groups
at k + 1. This definition requires strict co-occurrence in that every occurrence of a group
element must be accompanied by all other elements of the group. Weak reference affinity [23]
introduces a second parameter, affinity threshold. It adheres to the unique and hierarchical
partition properties with respect to both parameters. Zhang et al. showed that neither strict
reference affinity nor weak reference affinity can efficiently be computed [22]. Thus they gave
a heuristic solution and adapted it to use sampling. The average time complexity of their
algorithm is O(Nδω2 + Nδπ), where N is the length of the trace, δ is the sampling rate, ω is
the size of the affinity group, and π is the average time length of windows containing accesses
to all members of the group ω. Lavaee et al. gave an O(Lδω2) algorithm to compute the
affinity for all sub-groups of sizes up to ω [10]. Reference affinity has been used to optimize
the memory layout in data structure splitting [24], whole-program code layout [10], and
both [22].

7 Discussion and Future Work

Applications. The all-window-length co-occurrence has applications in text analysis, the
optimization of the memory layout of programs, and accelerating the search for RNA
sequences in genomes. In terms of practical applications, our plan is to develop interactive
tools that enable the exploration of sequences of events and genomics data. Projects such as
cooccurNet [25] provide a basis that can be extended with all-window-length co-occurrence
analysis functionalities.

Mining Problems. In this paper, we expounded co-occurrence counting of itemsets and
patterns in the all-window-length analysis model. Going forward, we study mining algorithms
in this analysis model, including mining frequent closed itemsets, i.e., given a sequence T

find the top-k itemsets that have highest co-occurrences in an arbitrary window size and for
a frequent itemset X, there exists no super-pattern X ⊂ Y , with the same co-occurrence as
X. The algorithm requires to mine frequent itemsets for all window lengths in one pass.

Extending to Timestamped Sequences. The proposed algorithms operate on a sequence
of data points taken at equally spaced points in time. Thus, our sequences are discrete-
time data. We plan to study co-occurrence counting and frequent itemset mining in a
series of data points indexed in continuous time order. In the continuous setting, we define
T = {(e, ω) : e ∈ I, ω ∈ [0, τ ]}, where τ ≥ 0, to be a set of timestamps in consideration. We
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can now consider the co-occurrence of items and patterns over an interval of time, which can
now be considered as events not items. We wish to compute the probability of a groups of
events happening in time scale r:

Pr(I ∈ [a, b] , T, r) = Pr
y∼U([a,b])

(∀e ∈ I, ∃(e, ω) ∈ T : |y − ω| < r).

This naturally leads to an analytic definition and suggests a continuous analog of co-
occurrence.
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A Appendix

Proof of Theorem 10
Proof. We have a maximal gap for every subset of I containing T [i]. This collection of
subsets can be written as

C = {A ⊆ I|A = {T [i]} ∪B, B ⊆ I \ {T [i]}}.

For each A ∈ C, the update to H is (−1)|A|+1 to H
[
tesla(r1

i (A), i− 1)
]

as we have found an
A-gap of size tesla(r1

i (A), i− 1) at index i. Let Ck = {A ∈ C|tesla(r1
i (A), i− 1) = k}. The

incremental updates can be expressed by

Hi[k] = Hi−1 [k] +
∑

A∈Ck

(−1)|A|+1
, (9)

for each k. Suppose T [i] = rj0
i (I) where j0 < |I|, i.e., T [i] is not the item seen furthest in the

past most recently. Then there are
(|I|−j

ℓ

)
sets A ∈ C of length ℓ + 1 in which T [i] = r1

i (A).
Thus for k = tesla(T [i], i− 1), we have
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Hi[k]−Hi−1 [k] =
∑

A∈Ck

(−1)|A|+1 =
|I|−j∑
ℓ=0

(
|I| − j

ℓ

)
(−1)ℓ = (1− 1)|I|−j = 0. (10)

Now for every j < j0 (which means that j never equals |I| − 1 in this case), we have that
there are

(|I|−j−1
ℓ

)
members A ∈ C of length ℓ + 2 in which, rj

i (I) = r1
i (A). Therefore for

k = tesla(rj
i (I), i− 1),

Hi[k]−Hi−1 [k] =
∑

A∈Ck

(−1)|A|+1 =
|I|−j−1∑

ℓ=0

(
|I| − j − 1

ℓ

)
(−1)(ℓ+1) = −(1−1)|I|−j−1 = 0.

But for |I| ≥ j > j0, there are no such sets A ∈ C in which rj
i (I) = r1

i (A), as T [i] = rj0
i (I) is

contained in all A ∈ C.
But if j0 = |I|, i.e., T [i] = r

|I|
i (I), then for each j < |I| − 1, there are again

(|I|−j−1
ℓ

)
members A ∈ C of length ℓ + 2 in which, rj

i (I) = r1
i (A), so again equation (10) holds for

k = tesla(rj
i (I), i − 1), giving no net updates for such k. But there is exactly one A ∈ C

in which r
|I|−1
i (I) = r1

i (A), namely, {r|I|−1
i (I), T [i]}, and there is also one A ∈ C in which

T [i] = r
|I|
i (I) = r1

i (A), which is {T [i]}. Therefore we have

Hi[tesla(r|I|
i (I), i− 1)] = Hi−1[tesla(r|I|

i (I), i− 1)] + 1,

Hi[tesla(r|I|−1
i (I), i− 1)] = Hi−1[tesla(r|I|

i (I), i− 1)]− 1. ◀

Proof of Theorem 13
Proof. Suppose without loss of generality that Xi ⊆ I. We wish to find Hi −Hi−1. Denote

Xi = {r1
i (Xi), r2

i (Xi), . . . , r
|Xi|
i (Xi)} = {x1, x2, . . . , x|Xi|},

as r defined before. Now let

Ui = {A ⊆ I : A = B ∪ {xj}, B ⊆ I \ {xj}, j ∈ [|Xi|]},

which in words, is all subsets of I that contain at least one member of Xi. Observe that

Ui =
|Xi|⋃
j=1
{A ⊆ I : A = B ∪ {xj}, B ⊆ I \ {xj}}.

Now let Kj = {A ⊆ I : A = B ∪ {xj}, B ⊆ I \ {xj}} for all j. Therefore Ui =
⋃|Xi|

j=1 Kj .
The update rule is known for each Kj based on our previous result. The remains the of

the proof is as follows. We can leverage the update rule currently known to compute the
total update. But the intersection of Kj ’s is non-empty, meaning if we update according to
each Kj , we would be overcounting some members of U . Once this is determined, we will
find the update rule according for each arbitrary intersection of these Kj ’s, which completes
the proof.

Define ⟨·⟩i to be a mapping from subsets of I to an integer valued n dimensional vector.
⟨A⟩ki is the sum of the number of maximal gaps of length k ending at index i given by even
subsets of A, minus the sum of the number of maximal gaps of length k ending at index i

given by the odd subsets of A. Using this new definition, ⟨Ui⟩ki = Hi[k]−Hi−1 [k]. We can
now appeal to the inclusion exclusion principle to write that

Hi −Hi−1 = ⟨Ui⟩ =
〈|Xi|⋃

j=1
Kj

〉
=

∑
J⊆[|Xi|]

(−1)|J|+1

〈 ⋂
j∈J

Kj

〉
. (11)
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The right hand side of the above equality will now be used.
Denote for any J ⊆ [|Xi|],

KJ =
⋂
j∈J

Kj .

Let XJ be the set of members of Xi that lie in every member of KJ . Observe that

XJ =
⋂

G∈KJ

G.

It also follows that XJ =
⋃

j∈J{xj}. Moreover, we can write

KJ = {A ⊆ I : A = XJ ∪B, B ⊆ I \ XJ}.

For each set A ∈ KJ , there is a corresponding set A′ in K′
J = {A ⊆ I : A = {r1

i (XJ )}∪B, B ⊆
I \ XJ}, in which ⟨A⟩ = (−1)|J|+1 ⟨A′⟩. This correspondence is easy to find. Let A ∈ KJ .
Thus A = XJ ∪B, for some B ∈ I \XJ . Then the corresponding set A′ ∈ K′

J is {r1
i (XJ )}∪B.

This is clear, because items that lie in every A ∈ KJ that never satisfy arg mine∈A tesla(e, i−1)
for all A never contribute towards any updates and hence can be ignored, except they may
change the parity of the set and hence change the sign of the update. From here, we can
apply the first theorem taking I in that theorem to be I \ XJ , which gives

⟨KJ⟩ki = (−1)|J|+1 ⟨K′
J⟩

k
i = (−1)|J|+1


1 for k = tesla(r|I\XJ |

i ((I \ XJ) ∪ {x∗}), i− 1)
−1 for k = tesla(r1

i (XJ), i− 1)
0 otherwise,

(12)

when r1
i (XJ) = r

|I\XJ |+1
i ((I \ XJ) ∪ {r1

i (XJ)}). Every update is 0 otherwise.
Now assume for all x ∈ Xi and e ∈ I \Xi, tesla(x, i− 1) ≥ tesla(e, i− 1). For if this does

not hold for some x′ ∈ Xi, then by the above, no updates occur due to x′, so analysis is the
same.

We now wish to compute the right hand side of equation (11). We can employ equation
(12) for each KJ . If r1

i (XJ ) ̸= r
|I\XJ |+1
i ((I \ XJ )∪ {r1

i (XJ )}), that is, the first ranked item of
XJ is not ranked below all of I \ XJ , then ⟨KJ⟩ = 0. We claim that the J in which ⟨KJ⟩ ̸= 0
are of the following form:

Jm = {|Xi| − b : b ∈ [m]}, (13)

for 0 ≤ m < |Xi|. We first show that if J ̸= Jm for some m, then ⟨KJ⟩ = 0. If J ̸= Jm

for some m, then there exists b0 such that r
|Xi|−b0
i (Xi) /∈ XJ , and there is some b1 such

that b1 > b0 and r
|Xi|−b1
i (Xi) ∈ XJ . Since b1 ≤ |Xi| − 1, b0 < |Xi| − 1 which gives that

|Xi| − b0 > 1. Let c0 and c1 be such that rc0
i ((I \ XJ) ∪ {r1

i (XJ)}) = r
|Xi|−b0
i (Xi) and

rc1
i ((I \ XJ) ∪ {r1

i (XJ)}) = r1
i (XJ). We have that c0 > c1. Now since c0 ≤ |I \ XJ | + 1,

c1 ̸= |I \XJ |+ 1. Therefore r1
i (XJ) ̸= r

|I\XJ |+1
i ((I \ XJ) ∪ {r1

i (XJ)}), hence ⟨KJ⟩ = 0.
Now suppose that J = Jm for some m. Let c1 be such that rc1

i (I) = r1
i (XJ). We

then have that for any c < c1, c ∈ J , moreover, rc
i (I) /∈ (I \ XJ) ∪ {r1

i (XJ)}. Thus
r1

i (XJ) = r
|I\XJ |+1
i ((I \ XJ) ∪ {r1

i (XJ)}), for if not, then there would be c0 > c1 in which
rc0

i (I) ∈ (I \ XJ) ∪ {r1
i (XJ)}, a contradiction.
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From this, the right hand side of equation (11) becomes

∑
J⊆[|Xi|]

(−1)|J|+1 ⟨KJ⟩ =
|Xi|−1∑
m=0

(−1)m ⟨KJm
⟩ . (14)

We now have for J = Jm, r1
i (XJ) = r

|Xi|−m
i (Xi). Also when m < |Xi| − 1, we have that

r
|I\XJ |
i (I \ XJ ∪ {r1

i (XJ)}) = r
|I\XJ |
i (I \ XJ) = r

|Xi|−(m+1)
i (Xi). (15)

But when m = |Xi| − 1, J = [|Xi|], therefore

r
|I\XJ |
i (I \ XJ ∪ {r1

i (XJ)}) = r
|I\XJ |
i (I \ XJ) = r

|I\Xi|
i (I \Xi). (16)

Now for m < |Xi| − 1, we can rewrite equation (11) to get

⟨KJm
⟩ki = (−1)m


1 for k = tesla(r|Xi|−(m+1)

i (Xi), i− 1)
−1 for k = tesla(r|Xi|−m

i (Xi), i− 1)
0 otherwise.

(17)

Now define

u(m)k
i =


1 for k = tesla(r|Xi|−(m+1)

i (Xi), i− 1)
−1 for k = tesla(r|Xi|−m

i (Xi), i− 1)
0 otherwise,

(18)

for m < |Xi| − 1 and

u(|Xi| − 1)k
i =


1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
−1 for k = tesla(r1

i (Xi), i− 1)
0 otherwise,

(19)

Taking u(m)i = (u1
i (m), u2

i (m), . . . , un
i (m)), we can write

|Xi|−1∑
m=0

(−1)m ⟨KJm
⟩ =

|Xi|−1∑
m=0

(−1)m(−1)m
u(m)k

i =
|Xi|−1∑
m=0

u(m)k
i . (20)

Observe that

u(0)k
i + u(1)k

i =


1 for k = tesla(r|Xi|−2

i (Xi), i− 1)
−1 for k = tesla(r|Xi|

i (Xi), i− 1)
0 otherwise.

(21)

Applying this for all m < |Xi| − 1 gives

|Xi|−2∑
m=0

u(m)k
i =


1 for k = tesla(r1

i (Xi), i− 1)
−1 for k = tesla(r|Xi|

i (Xi), i− 1)
0 otherwise.

(22)

So combining this with u(|Xi| − 1)k
i , we get

|Xi|−1∑
m=0

u(m)k
i =


1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
−1 for k = tesla(r|I|

i (I), i− 1)
0 otherwise,

(23)
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since r
|Xi|
i (Xi) = r

|I|
i (I). Combining equation (23) with equations (20), (14), and (11) (and

considering the components of each of those equations), we finally get,

Hi [k]−Hi−1 [k] =


1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
−1 for k = tesla(r|I|

i (I), i− 1)
0 otherwise,

(24)

proving the result (Xi = A in the statement of the theorem). ◀

Algorithms
On the following page, we give the pseudocode for the algorithm PAWLCO.
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Algorithm 3 PAWLCO.
Input: Trace T , ItemSet I

Result: Co-occurrence of all window lengths
1 H ← empty histogram, cooc← [], S ← empty book-stack
2 ; for e ∈ I do
3 S += (e, −∞)
4 end
5 p← |I|, m← 1
6 while S.retrieve(|I|) = S.retrieve(|I| −m) do
7 m← m + 1
8 end
9 p← |I| −m

10 for i = 0 to n− 1 do
11 C ← {e ∈ I | e[0] = T [i− |e|+ 1|...e[|e| − 1] = T [i]}
12 min← i for c ∈ C do
13 if S.find(c) < min then
14 min← S.find(c)
15 end
16 end
17 if min > S.retrieve(p + 1) then
18 f ← i− S.retrieve(|I|), s← i− S.retrieve(p + 1)
19 H[f ]← H[f ] + 1, H[s]← H[s]− 1
20 end
21 for current ∈ C do
22 j ← S.find(current)
23 S.update(j)

// Maintain partition
24 if j = p = |I| then
25 m← 2
26 while S.retrieve(|I|-1) = S.retrieve(|I|-m) do
27 m← m + 1
28 end
29 p← |I| −m

30 end
31 if p ≤ j < |I| then
32 p← p + 1
33 end
34 end
35 end

// Final gap from bottom of book-stack
36 f ← i− S.retrieve(|I|)
37 H[f ]← H[f ] + 1
38 for x = 0 to |T | − |I|+ 1 do
39 Sx ← 0
40 for k = x to |T | do
41 Sx ← Sx + (k − x + 1)H[k]
42 end
43 cooc[x]← (|T | − x + 1)− Sx

44 end
45 return cooc
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Abstract
The comparison of phylogenetic trees is a fundamental task in phylogenetics and evolutionary biology.
In many cases, these comparisons involve trees inferred on the same set of leaves, and many distance
measures exist to facilitate such comparisons. However, several applications in phylogenetics require
the comparison of trees that have non-identical leaf sets. The traditional approach for handling
such comparisons is to first restrict the two trees being compared to just their common leaf set. An
alternative, conceptually superior approach that has shown promise is to first complete the trees by
adding missing leaves so that the completed trees have identical leaf sets. This alternative approach
requires the computation of optimal completions of the two trees that minimize the distance between
them. However, no polynomial-time algorithms currently exist for this optimal completion problem
under any standard phylogenetic distance measure.

In this work, we provide the first polynomial-time algorithms for the above problem under the
widely used Robinson-Foulds (RF) distance measure. This hitherto unsolved problem is referred to
as the RF(+) problem. We (i) show that a recently proposed linear-time algorithm for a restricted
version of the RF(+) problem is a 2-approximation for the RF(+) problem, and (ii) provide an exact
O(nk2)-time algorithm for the RF(+) problem, where n is the total number of distinct leaf labels in
the two trees being compared and k, bounded above by n, depends on the topologies and leaf set
overlap of the two trees. Our results hold for both rooted and unrooted binary trees.

We implemented our exact algorithm and applied it to several biological datasets. Our results
show that completion-based RF distance can lead to very different inferences regarding phylogenetic
similarity compared to traditional RF distance. An open-source implementation of our algorithms is
freely available from https://compbio.engr.uconn.edu/software/RF_plus.
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1 Introduction

Phylogenetic trees, or simply phylogenies, are leaf-labeled trees that depict the evolutionary
relationships between different species, genes, or other biological entities such as cells in an
organism or individuals from a population. In phylogenetic trees, leaf nodes represent extant
entities while internal nodes represent hypothetical ancestors. Many different methodologies,
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algorithms, and data types exist for estimating phylogenies, and there is often considerable
uncertainty and error in their inference, with different methods or data types suggesting
different evolutionary relationships between the same extant entities. Many distance (or
similarity) measures have therefore been developed for systematically comparing different
phylogenetic trees, including the widely used Robinson-Foulds distance [29], triplet and
quartet distances [14, 17], nearest neighbor interchange (NNI) and subtree prune and regraft
(SPR) distances [31, 18, 34], maximum agreement subtrees [19, 2, 15], nodal distance [9],
geodesic distance [23] and others. However, these distance measures implicitly assume that
the two trees being compared have identical leaf sets, an assumption that is often violated
in practice. Indeed, several applications, such as supertree construction [24, 6, 10, 32, 1],
phylogenetic database search [28, 30, 11, 25], and clustering of phylogenies [20, 35], require
the computation of distances between trees with partially overlapping leaf sets.

The traditional approach to comparing two trees with only partially overlapping leaf sets
is to first restrict (i.e., prune down) both trees to their shared leaf set. This restriction based
approach, though simple to conceptualize and compute, can result in the loss of valuable
topological information through scrapping of leaves that are not common to both trees.
An alternative approach to comparing trees with non-identical leaf sets is to complete or
fill in each of the input trees to the union of their leaf sets in a way which minimizes the
distance between them, and then compute their distance. This approach, though conceptually
more complex, successfully incorporates all topological information in both the trees being
compared. In addition to its more complete use of topological information, the completion
based approach also has the benefit of a larger range of attainable values due to comparisons
over larger extended trees rather than smaller induced trees. Despite these advantages,
no polynomial-time algorithms currently exist for completion based comparison under any
standard phylogenetic distance measure. In this work, we provide the first polynomial-time
algorithms for optimal completion and comparison of incomplete phylogenetic trees under
the widely used Robinson-Foulds (RF) distance measure. Following existing literature [4],
we refer to completion based RF distance as RF(+), the traditional restriction based RF
distance as RF(-), and the problem of computing the RF(+) distance between two trees as
the RF(+) problem. Figure 1 illustrates the difference between RF(-) and RF(+) distances.

Previous work. The idea of completion based Robinson-Foulds distance arose at least
a decade ago when Cotton and Wilkinson introduced majority-rule supertrees [13] and
defined two variants, majority-rule(-) and majority-rule(+) supertrees, based on RF(-) and
RF(+), respectively. Completion based majority-rule(+) supertrees and some variants were
subsequently shown to have many desirable properties [16]. Later, Kupczok [22] characterized
the RF(+) distance for the restricted special case where the leaf set of one tree is a subset
of the leaf set of the other in terms of incompatible splits between the two trees. For this
restricted special case, referred to as the One Tree RF(+) (OT-RF(+)) problem [4], an
O(n2)-time algorithm was proposed by Christensen et. al. in 2017 [12], where n is the
total number of distinct leaf labels in the two trees being compared. More recently, Bansal
proposed an optimal O(n)-time algorithm for this OT-RF(+) problem [3, 4]. Bansal also
proposed a restricted formulation of the RF(+) problem, called the Extraneous-Clade-Free
RF(+) (EF-RF(+)) problem, which is based on computing optimal completions that avoid
the creation of any subtrees formed by joining together two subtrees unique to each one of the
two input trees. Essentially, the EF-RF(+) problem disallows certain types of completions;
specifically, it ignores how subtrees exclusive to one input tree impact the overall optimal
position where subtrees from the other input tree should be added. Bansal showed that the
EF-RF(+) problem can be solved in O(n) time [4]. These linear-time algorithms for the
OT-RF(+) and EF-RF(+) problems are applicable to both rooted and unrooted trees.
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Figure 1 RF(-) and RF(+) distances. The figure shows a “base” tree S and two other trees
U and V , with Le(U) = Le(V ), being compared to S. S∗, U∗ and V∗ represent the trees S, U and V ,
respectively, when restricted to the common leaf set. U∗ and V ∗ are the optimal RF(+) completions
of U and V with respect to S. S∗

U and S∗
V are the optimal RF(+) completions of S with respect to U

and V , respectively. Filled in nodes represent matched nodes (Definition 2.2). Here, RF(S∗, U∗) = 2
and RF(S∗, V∗) = 4 while RF(S∗

U , U∗) = 8 and RF(S∗
V , V ∗) = 4. Thus, in this example, U is closer

to S than V under RF(-) but V is closer to S than U under RF(+).

Our Contributions. In this work, we provide the first polynomial-time algorithms for the
RF(+) problem for both rooted and unrooted trees. Specifically, we make the following contri-
butions: First, we show that the EF-RF(+) distance between two trees is a 2-approximation
for the RF(+) distance between those trees. Since the EF-RF(+) problem can be solved
in O(n) time, this yields a linear time 2-approximation algorithm for the RF(+) problem.
Second, we provide an O(nk2)-time exact algorithm for the RF(+) problem, where k, bounded
above by n, is the number of maximal subtrees exclusive to one input tree. And third, we
perform an extensive experimental study which demonstrates that the use of RF(+) distance
can lead to very different inferences regarding phylogenetic similarity compared to RF(-)
distance. We also find that, in practice, EF-RF(+) distances are often very close to RF(+)
distances, suggesting that the linear-time algorithm for computing EF-RF(+) distances could
be an excellent heuristic for estimating RF(+) distances between large trees.

The rest of this manuscript is organized as follows: Preliminaries and problem definitions
appear in the next section. We describe the linear time 2-approximation algorithm in
Section 3, and the exact algorithm in Section 4. Section 5 shows how our algorithms can be
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extended to unrooted trees, and Section 6 describes the results of our experimental study.
Concluding remarks appear in Section 7. Proofs of all lemmas and theorems from Sections 3
and 4 appear in the Appendix.

2 Definitions and Preliminaries

We follow basic definitions and problem formulations from [4]. All trees will be unordered.
Given a tree T , we denote its node set, edge set, and leaf set by V (T ), E(T ), and Le(T ),
respectively. The set of all non-leaf (i.e., internal) nodes of T is denoted by I(T ). If T is
rooted, the root node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by paT (v),
its set of children by ChT (v), and the (maximal) subtree of T rooted at v by T (v). If two
nodes in T have the same parent, they are called siblings of each other. If paT (v) has exactly
two children, then we will denote the sibling of v as sibT (v). The least common ancestor,
denoted lcaT (L), of a set L ⊆ Le(T ) in T is defined to be the node v ∈ V (T ) such that
L ⊆ Le(T (v)) and L ̸⊆ Le(T (u)) for any child u of v. For convenience, given a collection of
vertices a1, . . . , am in T , we will define lcaT (a1, . . . , am) = lcaT (Le(T (a1)) ∪ · · · ∪ Le(T (am))).
Given a rooted tree T and a, b ∈ V (T ), we say that a ≤ b if a ∈ V (T (b)), and a < b if
a ∈ V (T (b)) and a ≠ b. A rooted tree is binary if all of its internal nodes have exactly
two children, while an unrooted tree is binary if all its nodes have degree either 1 or 3.
Throughout this work, the term tree refers to binary trees with uniquely labeled leaves.

Let T be a rooted or unrooted tree. Given a set L ⊆ Le(T ), let TL be the minimal subtree
of T with leaf set L. We define the leaf induced subtree T [L] of T on leaf set L to be the tree
obtained from TL by successively removing each non-root node of degree two and adjoining
its two neighbors.

▶ Definition 2.1 (Completion of a tree). Given a tree T and a set L′ such that Le(T ) ⊆ L′,
a completion of T on L′ is a tree T ′ such that Le(T ′) = L′ and T ′[Le(T )] = T .

If T is a rooted tree, for each node v ∈ V (T ), the clade CT (v) is defined to be the set
of all leaf nodes in T (v); i.e. CT (v) = Le(T (v)). We denote the set of all clades of a rooted
tree T by Clade(T ). This concept can be extended to unrooted trees as follows. If T is an
unrooted tree, each edge (u, v) ∈ E(T ) defines a partition of the leaf set of T into two disjoint
subsets Le(Tu) and Le(Tv), where Tu is the subtree containing node u and Tv is the subtree
containing node v, obtained when edge (u, v) is removed from T . The partition induced by
any edge (u, v) ∈ E(T ) is called a split and is represented by the set {Le(Tu), Le(Tv)}. The
set of all splits in an unrooted tree T is denoted by Split(T ).

▶ Definition 2.2 (Matched and mismatched nodes). Given rooted trees S and T , and a node
v ∈ V (S), we call v a matched node with respect to T if CS(v) ∈ Clade(T ), and a mismatched
node otherwise. Analogously, CS(v) is called a matched clade if CS(v) ∈ Clade(T ), and a
mismatched clade otherwise.

The symmetric difference of two sets A and B, denoted by A∆B, is the set (A\B)∪(B\A).
We now define the Robinson-Foulds distance and the two problems that we solve in this
paper.

▶ Definition 2.3 (Robinson-Foulds distance). The Robinson-Foulds (RF) distance, RF(S, T ),
between two trees S and T is defined to be | Clade(S)∆ Clade(T )| if S and T are rooted trees,
and | Split(S)∆ Split(T )| if S and T are unrooted trees.
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▶ Problem 1 (Rooted RF(+) (R-RF(+))). Given two rooted binary trees S and T , compute a
binary completion S∗ of S on Le(S)∪Le(T ) and a binary completion T ∗ of T on Le(S)∪Le(T )
such that RF(S∗, T ∗) is minimized.

▶ Problem 2 (Unrooted RF(+) (U-RF(+))). Given two unrooted binary trees S and T ,
compute a binary completion S∗ of S on Le(S) ∪ Le(T ) and a binary completion T ∗ of T on
Le(S) ∪ Le(T ) such that RF(S∗, T ∗) is minimized.

These problems can equivalently be viewed as maximizing the number of matched clades
or minimizing the number of mismatched clades between completions of the input trees.
Our algorithms for the problems above rely on first computing exact solutions for restricted
variants of those problems. These restricted variants of R-RF(+) and U-RF(+) were first
proposed and defined in [4] and are referred to as the Extraneous-Clade-Free R-RF(+) (EF-
R-RF(+)) and Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) problems. These restricted
variants are based on computing optimal completions that do not contain any subtrees
formed by joining together two subtrees unique to each one of the two input trees. Next,
we first define extraneous clades and extraneous splits, and then state the EF-R-RF(+) and
EF-U-RF(+) problems.

▶ Definition 2.4 (Extraneous clade [4]). Suppose S and T are rooted trees. Given completions
S′ and T ′ of S and T , respectively, on Le(S) ∪ Le(T ), we define a clade of S′ or T ′ to be an
extraneous clade if it contains leaves from both S and T but no leaves that are common to S

and T .

An extraneous split is simply the analogous notion for unrooted trees and we refer the
reader to [4] for a formal definition. The corresponding problem variants can now be defined
as follows:

▶ Problem 3 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+)) [4]). Given two rooted trees
S and T , compute a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of T on
Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous clades and RF(S′, T ′) is
minimized.

▶ Problem 4 (Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) [4]). Given two unrooted trees S

and T such that | Le(S) ∩ Le(T )| ≥ 2, compute a completion S′ of S on Le(S) ∪ Le(T ) and
a completion T ′ of T on Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous
splits and RF(S′, T ′) is minimized.

Figure 2 provides examples of completions with and without extraneous clades. Both the
EF-R-RF(+) and EF-U-RF(+) problems can be solved optimally in linear time [4].

Note. In the remainder of this section, as well as in Sections 3 and 4 we focus on only the
rooted version of RF(+), i.e., on the R-RF(+) problem, and implicitly assume that the two
trees being compared, S and T , are rooted.

Node coloring scheme for rooted trees. For ease of presentation, we assign a color to
some of the nodes of the two rooted input trees as follows. These node colorings can also be
used to define red and green subtrees.

▶ Definition 2.5 (Red and Green Nodes). Let S and T be two arbitrary rooted trees. A node
v ∈ V (S) is called a red node (with respect to T ) if Le(S(v)) ⊆ Le(S) \ Le(T ). Analogously,
a node v ∈ V (T ) is called a green node (with respect to S) if Le(T (v)) ⊆ Le(T ) \ Le(S).
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Figure 2 EF-RF(+) and RF(+) completions. S′, T ′ are optimal EF-R-RF(+) completions
(without extraneous clades) of S and T , respectively, and completions S∗, T ∗ are optimal RF(+)
completions. Nodes labeled with downward and upward pointing triangles are red and green nodes,
respectively, as defined in Definition 2.5. Filled in nodes correspond to matched clades.

▶ Definition 2.6 (Red and Green Subtrees). A subtree S(u), where u ∈ V (S), is called a red
subtree of S if u is a red node. A subtree T (u), where u ∈ V (T ), is called a green subtree of
T if u is a green node. A subtree S(u), where u ∈ V (S), is called a maximal red subtree
of S if S(u) is a red subtree and either u = rt(S) or paS(u) is not red. A subtree T (u),
where u ∈ V (T ), is called a maximal green subtree of T if T (u) is a green subtree and either
u = rt(T ) or paT (u) is not green. Note that all nodes in a red (green) subtree must be red
(green).

Under this node coloring, completing a tree S with respect to tree T entails adding all
the green leaves of T into S and completing a tree T with respect to tree S entails adding, or
grafting, all the red leaves of S into T . Importantly, as we show later in Theorem 3.1, under
R-RF(+) problem, there exist optimal completions of S and T in which all grafted subtrees
are maximal red or green subtrees. In other words, to optimally complete S we must only
add the maximal green subtrees of T to S, and vice versa.

Notational conventions. S and T will denote the two given (input) trees to be completed/-
compared. Going forward, we will generally use S′ and T ′ to represent completions (optimal
or non-optimal) with no extraneous clades, and S∗ and T ∗ to represent completions that
may include extraneous clades.

3 EF-R-RF(+) is a 2-Approximation for R-RF(+)

Observe that any optimal pair of R-RF(+) completions can be modified into a pair of (not
necessarily optimal) EF-R-RF(+) completions by breaking apart any existing extraneous
clades and reinserting the red/green leaves in a manner that avoids forming extraneous
clades. In this section, we will show how to perform such a modification of optimal R-RF(+)
completions so that the resulting increase in RF distance is appropriately bounded. This
will establish that EF-R-RF(+) distance is a 2-approximation for R-RF(+) distance and
will yield a linear-time 2-approximation algorithm for the R-RF(+) problem. We will first
establish the presence of canonical optimal R-RF(+) completions that satisfy some desirable
structural properties.
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Notation and terminology. Given completions S∗ and T ∗ of S and T , if there exists an
extraneous clade CT ∗(v) for some vertex v ∈ T ∗, then we will call the subtree T ∗(v) an
extraneous subtree. If the children s and t of v satisfy CT ∗(s) ∈ Clade(S) and CT ∗(t) ∈
Clade(T ), then we will denote the extraneous subtree by {s, t}. To simplify notation, we will
write paT ∗{s, t} to express the parent paT ∗(lcaT ∗(s, t)) of the root node of the extraneous
subtree {s, t} in completion T ∗. Likewise, we will write sibT ∗{s, t} to express sibT ∗(lcaT ∗(s, t)),
i.e., the sibling of the root node of extraneous subtree {s, t} in T ∗.

Next, we show that there always exists an optimal pair of R-RF(+) completions in which
all extraneous clades are of the form {s, t}, and any such extraneous clade appears in both
completions. We refer to such optimal R-RF completions S∗ and T ∗ of S and T as canonical
optimal R-RF(+) completions.

▶ Theorem 3.1. Let S and T be rooted binary trees. Then, there exist optimal completions
S∗ and T ∗ under the R-RF(+) problem with the following properties:
1. Every subtree inserted into S∗ is a maximal green subtree of T , and every subtree inserted

into T ∗ is a maximal red subtree of S,
2. Every extraneous subtree in S∗ and T ∗ is of the form {s, t}, where s is the root of a

maximal red subtree in S and t is the root of a maximal green subtree in T ,
3. Every extraneous subtree {s, t} which is a subtree of S∗ is also a subtree of T ∗ and vice

versa.

Decomposition of canonical optimal R-RF(+) completions. Given an extraneous subtree
{s, t} in canonical optimal R-RF(+) completions S∗, T ∗ of S and T , where s ∈ V (S) and
t ∈ V (T ), we define a decomposition of the extraneous subtree {s, t} as a modification of the
completions S∗ and T ∗, yielding new completions S′ and T ′ with strictly fewer extraneous
subtrees, as follows:

1. If either none or both of the nodes paS∗{s, t} and paT ∗{s, t} are matches (in S∗ and T ∗),
then the decomposition occurs as described below.

In tree T ∗, prune out the grafted subtree S(s) and regraft it at the parent edge of
node sibT ∗{s, t}.
In tree S∗, prune out the grafted subtree T (t) and regraft it at the parent edge of
node paS∗{s, t}. If paS∗{s, t} = rt(S∗), then create a new root node with children t

and paS∗{s, t}.
2. Otherwise, if exactly one of the nodes paS∗{s, t} and paT ∗{s, t} is a matched node (in S∗

and T ∗), then the decomposition occurs as described below. Without loss of generality,
assume that paS∗{s, t} is a match and paT ∗{s, t} a mismatch.

In tree S∗, prune out the grafted subtree T (t) and regraft it at the parent edge of node
sibS∗{s, t}.
In tree T ∗, prune out the grafted subtree S(s) and regraft it at the parent edge of
that unique node u ∈ V (T ∗) for which CT ∗(u) = CS∗(paS∗{s, t}). If u = rt(S∗), then
create a new root node with children s and paS∗{s, t}. Note that u must exist since
paS∗{s, t} is a matched node.

This decomposition is illustrated in Figure 3. The following lemma characterises how the
RF distance between S∗ and T ∗ is impacted as their extraneous subtrees are decomposed.
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Figure 3 Decomposition of extraneous clades. Shown here is a decomposition of completions
S∗ and T ∗ into completions S′ and T ′. Nodes labeled with downward and upward pointing triangles
are red and green nodes, respectively. Extraneous subtree {b, g} is of type 1 where both parents
match, extraneous subtree {d, h} is of type 1 where neither parent is a match, and extraneous subtree
{e, i} is of type 2. Matches between corresponding completions are denoted by filled in nodes.

▶ Lemma 3.2. Let S′ and T ′ denote the trees obtained by decomposing extraneous subtree
{s, t} in completions S∗ and T ∗, respectively.
1. If paS∗{s, t} and paT ∗{s, t} are both matched nodes then RF(S′, T ′) = RF(S∗, T ∗).
2. If exactly one of paS∗{s, t} and paT ∗{s, t} is a matched node then RF(S′, T ′)=RF(S∗, T ∗).
3. If neither paS∗{s, t} nor paT ∗{s, t} is a matched node then RF(S′, T ′) = RF(S∗, T ∗) + 2.

The 2-approximation now follows by appropriately bounding the number of extraneous
subtrees {s, t} that fall in category 3 of the above lemma.

▶ Theorem 3.3. Let S∗ and T ∗ represent optimal completions of S and T , respectively, under
the R-RF(+) problem. Let S′ and T ′ represent optimal completions of S and T respectively
under the EF-R-RF(+) problem. Then, RF(S′, T ′) ≤ 2 · RF(S∗, T ∗).

4 An Efficient Exact Algorithm for R-RF(+) Distance

As shown above, optimal EF-R-RF(+) completions 2-approximate RF(+) distance. We now
show how to construct optimal R-RF(+) completions by modifying optimal EF-R-RF(+)
completions.

Notation and terminology. We refer to EF-R-RF(+) completions resulting from the
TwoTreeCompletion Algorithm of [4] as canonical EF-R-RF(+) completions. This is due to
the way that maximal red and green subtrees are topologically well placed in such completions.
We will refer to the placement of a maximal colored subtree under the TwoTreeCompletion
Algorithm as a canonical EF-R-RF(+) position. The placement of each maximal red subtree
R of S, rooted at r, in canonical EF-R-RF(+) completion T ′ of T has the useful property
that all leaves a ∈ Le(S) ∩ Le(T ) where lcaS(a, r) = paS(r) also satisfy lcaT ′(a, r) = paT ′(r),
and all leaves b ∈ Le(S) ∩ Le(T ) where lcaT ′(b, r) > paT ′(r) also satisfy lcaS(b, r) > paS(r).
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By Theorem 3.1, we know that there exists an optimal pair of R-RF(+) completions
where the only extraneous subtrees are of the form {s, t}. We will first show that a canonical
pair of R-RF(+) completions can be constructed by taking a canonical pair of EF-R-RF(+)
completions and pairing up extraneous subtrees of the form {s, t} in an optimal manner. We
will then design a recurrence relation which computes the best possible change to the RF
distance caused by pairing up extraneous subtrees of the form {s, t}, and show that this
change to the RF distance can be computed in near linear time depending on the leaf-set
overlap between the input trees.

▶ Lemma 4.1. There exist canonical R-RF(+) completions S∗ and T ∗ of rooted binary trees
S and T such that every subtree grafted into S∗ and T ∗ is either in an extraneous subtree or
in its canonical EF-R-RF(+) position.

In the remainder of this section, let S′, T ′ and S∗, T ∗ represent canonical EF-R-RF(+)
and R-RF(+) completions of S and T , respectively. We will soon define the subproblems
that are the basis of our dynamic programming algorithm. Before doing so, we motivate the
dynamic programming recurrence relation with the following lemma, which describes a new
useful tree T ′′ that is easier to construct from T ′ and preserves the important topological
structure of T ∗. Our dynamic programming algorithm actually constructs T ′′, and we can
then easily use T ′′ to generate S∗ and T ∗.

▶ Lemma 4.2. Let T ′′ be the tree obtained by taking T ∗ and regrafting every extraneous
subtree {s, t} along the parent edge of lcaT ∗(lcaT ∗(Le(sibS(s))), t). Then RF(S′, T ′′) =
RF(S∗, T ∗) + 2m, where m is the number of extraneous subtrees {s, t} contained in T ∗.

Note that T ′′ itself may not be a completion of T . In particular, in the construction of
T ′′, pruning and regrafting the maximal green subtree T (t) is necessary if the extraneous
subtree {s, t} is formed and lcaT ′(s, t) ̸= paT ′(t). Moving any subtree of T in T ′ changes T ′

to no longer be a completion of T . Figure 4 shows a concrete example.

▶ Definition 4.3. Let the colors red and green be associated with the binary values 0 and
1, respectively. For v ∈ V (T ′) and c ∈ {0, 1}, let cMax(c, v) be the total number of maximal
subtrees of color c in T ′(v). Moreover, let m be an integer such that 0 ≤ m ≤ cMax(c, v). We
define Cost(v, m, c) to be min

T̂
(RF(S′, T̂ ) − 2p − RF(S′, T ′)), where T̂ is obtained from T ′ by

regrafting maximal red and green subtrees in T ′(v) under the constraint that each extraneous
subtree {s, t} is grafted along the parent edge of lcaT ′(v)(s, t) and exactly m maximal c-colored
subtrees in T ′(v) have been regrafted along the parent edge of v, excluding extraneous subtrees
(see Figure 5 for an example), and p denotes the number of extraneous subtrees of the form
{s, t} in T̂ .

In the trivial case when v is the root of a maximal c-colored subtree, we will say that it is
possible to push one red subtree up to the parent edge of v or down from the parent edge of v.

Note that the Cost() subproblem builds the optimal RF(+) distance. However, the cost is
defined based on Lemma 4.2 by constructing T ′′ and subtracting out the extraneous subtrees
as they are produced. Moreover, we subtract the constant term RF(S′, T ′) to express the
cost as the change in RF distance.

We point out that the choice of T̂ implying Cost(rt(T ′), 0, 0) is exactly T ′′ by Lemmas 4.1
and 4.2. Furthermore, for any internal node v in T ′, and for the choice of m, c which imply
the optimal cost value of Cost(rt(T ′), 0, 0) via the upcoming recurrence relation, the tree
T̂ (v) which admits Cost(v, m, c) is exactly equal to T ′′(v). In this sense, each T̂ captures an
entire subtree of T ′′. Note that on a local scale, in any specific T̂ there may be a red or green
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Figure 4 The tree T ′′. This figure shows the relationship between T ′, T ′′, and T ∗. In this
example, observe that there is exactly one extraneous subtree {s, t} in the optimal completions
S∗ and T ∗, and that RF(S′, T ′′) = RF(S∗, T ∗) + 2. Moreover, T ′′ in this example cannot be
a completion of T since the green leaf i has been regrafted. But constructing T ′′ is simply an
intermediary step for constructing completions S∗ and T ∗. Matches are denoted by filled in nodes.

subtree regrafted outside of an extraneous subtree and outside of its canonical EF-R-RF(+)
position. However, it can be concluded that either eventually these red and green subtrees
will be paired in extraneous subtrees for some later T̂ , or the particular cost value does not
imply the optimal Cost(rt(T ′), 0, 0).

The next lemma provides a recurrence relation that can compute each Cost(v, m, c)
efficiently. In this recurrence relation, a subscript of L or R denotes the left or right child,
respectively. For example, if a vertex v is an internal node in T then vL is the left child of v,
and if c is a color associated with vertex v then cL is a color associated with vertex vL. Note
that the trees are unordered, so we use “left” and “right” here only to distinguish between
the two children of an internal node.

▶ Lemma 4.4. Let f(mi, vi, ci) equal 2 when mi > 0 and vi is a match with color other
than ci, and 0 otherwise. Let gc(mL, mR, cL, cR) equal 2 · min{mL, mR} when cL ̸= cR, and
0 when cL = cR = c. Then,

Cost(v, m, c) = min
mL,mR,cL,cR

{
Cost(vL, mL, cL) + Cost(vR, mR, cR)
+f(mL, vL, cL) + f(mR, vR, cR) − gc(mL, mR, cL, cR)

}
if v is an internal node of T ′, and Cost(v, m, c) = 0 if v is a leaf of T ′, where:
(a) c, cL, cR ∈ {0, 1}, and either cL ̸= cR or cL = cR = c,
(b) 0 ≤ m ≤ cMax(c, v),
(c) If cL ̸= cR, then mi − mj = m for i, j ∈ {L, R}, i ̸= j satisfying ci = c,
(d) If cL = cR = c, then mL + mR = m

The functions f and gc from Lemma 4.4 both track local changes in matched and
mismatched nodes. In particular, f tracks a local change between RF(S′, T ′) and RF(S′, T ′′)
while gc tracks a local change between RF(S′, T ′′) and RF(S∗, T ∗). We now provide our
dynamic programming algorithm for computing the R-RF(+) distance between S and T .
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Figure 5 Illustration of tree T̂ . The figure shows an example of what the tree T̂ might look
like after computing Cost(u, 2, 1), where c and d have both been regrafted iteratively along the
parent edge of u and not regrafted into an extraneous subtree. Note that the extraneous subtree
{e, f} has also been regrafted along the parent edge of u, though it does not contribute to the value
of m = 2. In particular, u = lcaT ′ (e, f), so the extraneous subtree {e, f} will appear at the same
position in T̂ and T ′′. Moreover, f is not included as one of the two maximal green subtrees grafted
onto the parent edge of u since it is a part of an extraneous subtree. For each choice of vertex v,
integer m and color c implying to the minimum Cost(rt(T ′), 0, 0) value, the corresponding optimal
T̂ provides the topolgical structure of T ′′ when restricted to the subtree rooted at v.

Algorithm 1 Compute-R-RF+(S,T).

1: Compute the EF-R-RF(+) completions S′ and T ′ of S and T .
2: for v in T ′ in postorder do
3: if v is a leaf then
4: Set Cost(v, 0, 0) = Cost(v, 0, 1) = 0.
5: if v is the root of a maximal red (0) or green (1) subtree then
6: Set Cost(v, 1, cv) = 0, where cv is the color of v.
7: else
8: for each color c and value 0 ≤ m ≤ cMax(c, v) do
9: Compute Cost(v, m, c) using the recurrence relation from Lemma 4.4

10: return RF(S′, T ′) + Cost(rt(T ′), 0, 0)

The algorithm above can be easily augmented to compute optimal completions by
backtracking and determining the optimal values of m and c at each vertex of T ′ implying
Cost(rt(T ′), 0, 0). Using these optimal m and c values, we can determine when opposite
colored subtrees converge and construct T ′′. From T ′′, we simply move each extraneous
subtree {s, t} into the canonical EF-R-RF(+) position for T (t) to build T ∗ and form the
same extraneous subtrees in S′ to build S∗.

▶ Theorem 4.5. The RF(+) distance between two rooted binary trees S and T can be
computed in O(nk2) time, where n = | Le(S) ∪ Le(T )| and k is the number of maximal red
and green subtrees in S and T .

5 Extension to Unrooted Trees

Our algorithm for the R-RF(+) problem can be easily adapted for the U-RF(+) problem.
Specifically, the following algorithm computes the unrooted RF(+) distance between two
unrooted input trees S and T with at least one leaf in common.
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Algorithm 2 Compute-U-RF+(S, T).

1: Let l be any leaf from Le(S) ∩ Le(T ). Produce two rooted trees Ŝ and T̂ by rooting S

and T , respectively, on the edge which connects l to the rest of each tree.
2: Compute the RF(+) distance d between Ŝ and T̂ using Algorithm Compute-R-RF+(S,T).
3: Return d

The correctness of this algorithm is easy to establish based on the well-understood
association between rooted and unrooted RF distances [10, 4], and further technical details
and proofs are therefore omitted. This yields the following two theorems.

▶ Theorem 5.1. The U-RF(+) problem can be solved in O(nk2) time, where n = | Le(S) ∪
Le(T )| and k is the number of maximal red and green subtrees in the corresponding EF-U-
RF(+) completion of S or T .

▶ Theorem 5.2. Let S∗ and T ∗ represent optimal completions of unrooted trees S and T ,
respectively, under the U-RF(+) problem. Let S′ and T ′ represent optimal completions of S

and T , respectively, under the EF-U-RF(+) problem. Then, RF(S′, T ′) ≤ 2 · RF(S∗, T ∗).

6 Experimental Evaluation

We implemented our exact algorithm and performed experiments to assess the impact of using
RF(+) distance instead of RF(-) distance on inferences related to tree similarity. We also
conducted experiments to assess how well the linear-time algorithm for computing EF-RF(+)
distances approximates RF(+) distances in practice. All our experiments were performed
using real biological phylogenetic tree datasets on marsupials [8] (158 trees), legumes [33]
(22 trees), and placental mammals [7] (726 trees).

Experiment 1: Conflicts between RF(+) and RF(-). Given two trees S and T , let
RF+(S, T ) and RF−(S, T ), respectively, denote the RF(+) and RF(-) distances between
them. We used the above datasets to measure the number of times that for any “base” tree
S, there is a tree T1 which is closer to S than T2 under one of RF(+) or RF(-) but not closer
under the other distance measure. This motivates the following definitions to describe each
possible case of a change in order.

Type-1 Triples: Triple (S, T1, T2) is Type-1 if RF−(S, T1) < RF−(S, T2) but RF+(S, T1) >

RF+(S, T2), or RF−(S, T2) < RF−(S, T1) but RF+(S, T2) > RF+(S, T1). A Type-1
triple indicates when the ordering of T1 and T2 by distance from S strictly changes as
the distance function changes between RF(-) and RF(+).

Type-2 Triples: Triple (S, T1, T2) is Type-2 if RF−(S, T1) = RF−(S, T2) but RF+(S, T1) ̸=
RF+(S, T2). A Type-2 triple indicates when T1 and T2 have equal distance to S under
RF(-) but not under RF(+).

Type-3 Triples: Triple (S, T1, T2) is Type-3 if RF−(S, T1) ̸= RF−(S, T2) but RF+(S, T1) =
RF+(S, T2). A Type-3 triple indicates when T1 and T2 have equal distance to S under
RF(+) but not under RF(-).

Observe that the magnitude of difference between RF(+) and RF(-) distances depends on the
level of overlap between the trees being compared. To account for this effect, we define the
leaf-overlap ratio of a pair of trees (S, T ) to be the following ratio: | Le(S) ∩ Le(T )| divided
by min{| Le(S)|, | Le(T )|}, and the leaf-overlap ratio of a triple of trees S, T1, and T2 to be
the minimum pairwise leaf-overlap ratio between (S, T1) and (S, T2).
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Figure 6 Fraction of conflicting triples for different leaf-overlap ratios. The figure
contains three plots, one for each dataset, which each show the fraction of triples of type-1, type-2,
and type-3 for different ranges of leaf-overlap ratio, among all triples of trees within the same
leaf-overlap ratio range in that dataset. The dotted line represents the total number of conflicting
triples (i.e., all triples of type 1, 2 or 3). x-axis labels denote the center of each interval of size 0.1.
Each leaf-overlap ratio range is a closed interval and includes the boundary, e.g., x-axis label 0.15
represents the range [0.1 − 0.2].

We performed this experiment for each subset of three trees from each dataset, and
Figure 6 shows its results. As the figure shows, the proportion of conflicting triples (type-1,
2, or 3) tends to increase as the triple leaf-overlap ratio increases. In particular, at least
10% of all triples show a conflict (either of type-1, 2, or 3) when the leaf-overlap ratio is
0.7 or greater. Even for leaf-overlap ratio as small as 0.4, we find that 5% of all triples
show a conflict. This demonstrates that RF(+) and RF(-) frequently differ starkly in their
assessments of relative similarities between trees. Observe that the results on the Legumes
dataset are vastly different from the results on the other two datasets. This is mainly because
the Legumes dataset consists of only 22 trees, which is significantly smaller than the 158 tree
and 726 tree datasets. For instance, the number of triples within each leaf overlap ratio range
(interval size 0.1) is between 8,214,518 and 50,815,687 for the placental mammals dataset,
between 3,287 and 1,652,701 for the Marsupials dataset, but only 6, 16, 5, and 0, respectively,
for the Legumes dataset for leaf overlap ratio ranges [0.5 − 0.6], [0.6 − 0.7], [0.7 − 0.8], and
[0.8 − 0.9].

Experiment 2: Impact on phylogenetic database search and clustering. Next, we assessed
the potential impact of using RF(+) distance on applications related to phylogenetic database
search and clustering. Specifically, we assessed how, for each “query” tree in each dataset,
the sets of the “closest" trees to it differed under RF(+) and RF(-). Specifically, we measured
how the sets of (i) the most similar trees and (ii) the most similar 10% of trees (i.e., top 10%
closest matches) differed when using RF(+) and RF(-) distances. To avoid any ambiguity in
defining these sets, we include all trees with equal distance, even if that results in sets of
different sizes under RF(+) and RF(-).

For our comparison of the most similar trees, we found that the sets of closest trees
under RF(+) and RF(-) all had a distance of 0 to the query tree and were identical, for
all choices of the query tree in all datasets. To perform a more meaningful comparison, we
therefore required a minimum leaf-overlap ratio of 0.7, i.e., only those trees with a minimum
leaf-overlap ratio of 0.7 with the query tree could be compared with the query tree. Likewise,
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Figure 7 Difference between sets of closest trees under RF(+) and RF(-). Plots in
the left column show the number of query trees where the set of closest trees with a minimum
leaf-overlap ratio of 0.7 differ under RF(+) and RF(-) distances for each of the three biological data
sets. Plots in the right column show the number of query trees where the set of closest 10% of
trees with a minimum leaf-overlap ratio of 0.5 differ under RF(+) and RF(-) distances. Results are
presented for varying levels of difference between the sets (labels on the x-axes). The sizes of the
datasets, in order from top to bottom, are 158 trees, 22 trees and 726 trees. Each tree in each of
these datasets was used as a query tree for this analysis.

for our comparison of the most similar 10% of trees, we found that the sets of closest 10%
of trees were generally identical under RF(+) and RF(-) if no minimum leaf-overlap ratio
was imposed. We therefore imposed a minimum leaf-overlap ratio of 0.5 for the analysis,
which was the smallest ratio for which a non-negligible fraction of query trees returned
differing sets under RF(+) and RF(-). Figure 7 shows the results of both these analyses. We
find that there are several query trees in each dataset for which there is a large difference
(normalised symmetric difference greater than, say, 0.4) between their sets of closest trees
under RF(+) and RF(-). For the sets of closest 10% of trees, we find that over 25% of trees
in the marsupials dataset, 18% of trees in the legumes dataset, and almost 15% of trees in
the placental mammals dataset return different sets of closest 10% of trees under RF(+)
and RF(-) distances. These results demonstrate how using RF(+) distance can substantially
impact phylogenetic database search and phylogenetic tree clustering, especially when the
trees under consideration have a sufficiently large overlap in their leaf sets.

Experiment 3: Comparison of EF-RF(+) and RF(+). Finally, we used simulated and
real datasets to compare the distances inferred under EF-RF(+) and RF(+), and to study
the runtime and scalability of our implementation. For our analysis with simulated data,
we generated two datasets of random trees using the birth-death model implemented in
SaGePhy [21] (specific parameter values: height of tree = 1.0, birth rate = 5.0 and death
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rate = 0.05). The first simulated dataset consisted of 100 randomly generated trees, each
with between 200 and 300 leaves. The second simulated dataset also consisted of 100
randomly generated trees, but each with between 900 and 1000 leaves. The average leaf-set
sizes for these two datasets were 244.95 and 941.14, respectively, and the average pairwise
leaf-overlap ratio for both datasets was approximately 0.5. For each pair of trees in each
dataset, we measured how close the EF-RF(+) distance is to the RF(+) distance for that
pair. Figure 8 plots the distribution of the ratio of RF(+) distance to EF-RF(+) distance for
the two datasets. As that figure shows, the ratio of RF(+) distance to EF-RF(+) distance is
approximately 0.92, on average, and roughly follows a Gaussian distribution.

Figure 8 Comparison of EF-RF(+) and RF(+) distances on simulated trees. The
two plots show the distribution of the ratio of RF(+) distance to EF-RF(+) distance for the two
simulated datasets consisting of randomly generated birth-death trees. Each dataset contains 100
trees and results are shown for all

(100
2

)
pairs of trees in each dataset.

For the three biological datasets, we found that the ratio of RF(+) distance to EF-RF(+)
distance was equal to one for an overwhelmingly large proportion of pairs of trees within all
three datasets. Specifically, for the marsupials, legumes, and placental mammals datasets,
the average ratios of RF(+) distance to EF-RF(+) distance were 0.998, 0.993, and 0.995,
respectively. In fact, 99.07%, 93.81%, and 96.82% of the pairs in these datasets, respectively,
had identical EF-RF(+) and RF(+) distances. Even when the trees being compared were
restricted to have at least 0.4 leaf-overlap ratio, 95.97%, 78.79%, and 95.59% of the pairs in
marsupials, legumes, and placental mammals datasets, respectively, had identical EF-RF(+)
and RF(+) distances. This discrepancy between results for simulated data and real data is
not surprising since we expect any pair of randomly generated trees to have smaller maximal
red and green subtrees and greater RF(-) distance, presenting more opportunities to improve
the distance by creating extraneous clades. Together, these results on simulated and real
datasets show that EF-RF(+) distance, which is linear-time computable, is generally very
close to RF(+) distance in practice.

Runtime comparison. We also measured the runtimes of the two algorithms and found
that, on average, computing EF-RF(+) distances took 0.06 seconds for the first simulated
dataset and 0.25 seconds for the second simulated dataset. Corresponding average runtimes
for computing RF(+) distances were 0.17 seconds and 1.04 seconds, respectively. All timed
experiments were run on a single core of a 2.1 GHz Intel Xeon processor.

7 Conclusion

Completion based comparison of incomplete phylogenetic trees is an emerging, promising
approach for tree comparison. In this work, we developed the first polynomial-time exact
algorithm for the RF(+) problem. We also established a linear-time 2-approximation
algorithm for the problem. These algorithms allow for more principled comparison of
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incomplete phylogenetic trees than was hitherto possible, and our experimental analysis
shows that RF(+) distance can lead to very different inferences regarding phylogenetic
similarity compared to traditional RF distance. Moreover, our results suggest that the linear-
time 2-approximation algorithm for the RF(+) problem almost always computes optimal or
near-optimal RF(+) distances in practice.

In addition to their utility for improved tree comparison and clustering, our solutions for
the RF(+) problem also have implications for phylogenomics. Many modern phylogenomics
methods for reconstructing evolutionary histories and understanding genome-scale patterns
of evolution are designed to work with complete phylogenies from genomic loci across
the genomes of the considered species [5, 26, 27, 20, 12], and loci that yield incomplete
phylogenies are often discarded, resulting in only a fraction of the available genomic sequence
information being used for the phylogenomic analysis. Thus, problems related to optimal
completion of incomplete phylogenies (i.e., imputation of complete phylogenies) arise naturally
in phylogenomics. Our algorithms for the RF(+) problem may provide a principled way to
impute such complete phylogenies.

The current work is restricted to comparison of binary trees under the Robinson-Foulds
metric, and it can be extended in many useful ways. A possible next step could include
consideration of non-binary trees in computing distances between incomplete trees. Fu-
ture work could also entail development of similar completion based methods under other
distance/similarity measures such as triplet/quartet distances [14, 17], nearest neighbor
interchange (NNI) and subtree prune and regraft (SPR) distances [31, 18, 34], and nodal
distance [9]. Furthermore, the idea of computing optimal completions could be extended
to multi-labeled trees, which arise frequently in practice due to evolutionary events such as
gene duplication.
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A Appendix

Proof of Theorem 3.1. Let S∗ and T ∗ be arbitrarily chosen optimal completions of S and T

under R-RF(+). We will modify S∗ and T ∗ to be of the desired form. To do so, we first show
that any maximal red subtree in S and any maximal green subtree of T can be made subtrees
of S∗ and T ∗ without increasing the RF distance between them (condition 1). Suppose there
exist two maximal matched red subtrees R1 and R2 of S∗ and T ∗ which neighbor each other
in the original tree S. Let r1 and r2 be the roots of R1 and R2.
1. Suppose both CT ∗(paT ∗(r1)) \ CT ∗(r1) and CT ∗(paT ∗(r2)) \ CT ∗(r2) contain some non-

green leaves. Observe that every matched clade in T ∗ containing CT ∗(r1) ∪ CT ∗(r2)
must also contain CT ∗(lcaT ∗(r1, r2)) because R1 and R2 neighbor each other in S by
assumption. Therefore, we can regraft R2 to neighbor R1 in T ∗ without increasing the
RF distance between S∗ and T ∗. Moreover, if there are any green subtrees inserted
along the path from R1 to R2 in S∗, then they can be regrafted along the parent edge of
lcaS∗(r1, r2) without increasing the Robinson-Foulds distance.

2. Suppose, without loss of generality, that CT ∗(paT ∗(r2)) \ CT ∗(r2) contains only green
leaves. That is, suppose R2 is contained in an extraneous subtree, whose root could
be a match without ancestoring R1. First, regraft R2 in T ∗ to neighbor R1. Then,
regraft all green subtrees from the path in S∗ connecting R2 and R1 to the parent edge
of lcaS∗(r1, r2), preserving the topological structure of the green leaves. This does not
increase the RF distance between S∗ and T ∗. Notice that any originally matched clades
containing Le(R2) are mismatched. However, preserving the topological structure of the
green leaves from any matched clades containing Le(R2) also retains the same number of
matches except for one representing the smallest match containing R2. This is because
the only subtree removed (in both S∗ and T ∗) from these matched extraneous subtrees
is R2. Furthermore, the matched clade Le(R1) ∪ Le(R2) is formed in both S∗ and T ∗,
which counteracts this lost match.
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If this is done iteratively for all such R1 and R2, then we conclude that there exist optimal
completions S∗ and T ∗ where every maximal red subtree in S is also a subtree of S∗ and T ∗.
The same argument applies for maximal green subtrees.

Now we will show that S∗ and T ∗ can be modified to only contain extraneous subtrees of
the form {s, t} without increasing the RF distance (condition 2). We will simultaneously
show that an extraneous subtree {s, t} is a subtree of S∗ if and only if it is a subtree of T ∗

by construction (condition 3). Observe that if Le(U) ∩ Le(V ) ∩ Le(S) ̸= ∅ for two maximal
extraneous subtrees U and V of S∗ and T ∗ respectively, then Le(U) ∩ Le(V ) ∩ Le(S) ⊆ Le(R)
for a single maximal red subtree R of S. Likewise if Le(U) ∩ Le(V ) ∩ Le(T ) ̸= ∅, then
Le(U) ∩ Le(V ) ∩ Le(T ) ⊆ Le(Y ) for a single maximal green subtree Y of T . Therefore, every
maximal extraneous subtree in S∗ or T ∗ satisfies one of the following two cases.
1. Without loss of generality, let U be a maximal extraneous subtree of S∗ rooted at u

such that for every maximal extraneous subtree V of T ∗, Le(U) ∩ Le(V ) ∩ Le(S) = ∅ or
Le(U) ∩ Le(V ) ∩ Le(T ) = ∅. Then, every extraneous clade contained in Le(U) must be a
mismatch. Hence, every maximal green subtree of U can be regrafted along the parent
edge of paS∗(u) without increasing the Robinson-Foulds distance from T ∗. This results
in destroying all extraneous subtrees contained in U because paS∗(u) is an ancestor of a
maximal extraneous subtree and therefore possesses uncolored descendants.

2. Let U and V be maximal extraneous subtree of S∗ and T ∗, rooted at u and v respectively,
satisfying Le(U) ∩ Le(V ) ∩ Le(S) ̸= ∅ and Le(U) ∩ Le(V ) ∩ Le(T ) ̸= ∅. Then every
matched extraneous clade contained in Le(U) and Le(V ) must contain elements of
Le(U) ∩ Le(V ) ∩ Le(S) and Le(U) ∩ Le(V ) ∩ Le(T ). Every maximal green subtree of U

with no leaves in Le(U) ∩ Le(V ) ∩ Le(T ) can be regrafted along the parent edge of u

without increasing the RF distance. Likewise, every maximal red subtree of V with no
leaves in Le(U) ∩ Le(V ) ∩ Le(S) can be regrafted along the parent edge of v without
increasing the RF distance. Moreover, as described before, Le(U)∩Le(V )∩Le(S) ⊆ Le(R)
and Le(U) ∩ Le(V ) ∩ Le(T ) ⊆ Le(Y ) for a single maximal red subtree R of S and a single
maximal green subtree Y of T . Hence, we are only left with the extraneous subtree
{rtS∗(R), rtS∗(Y )} in S∗ and {rtT ∗(R), rtT ∗(Y )} in T ∗.

Once every maximal extraneous subtree in S∗ and T ∗ is handled according to the appropriate
case above, we are left with two optimal completions S∗ and T ∗ of the desired form. ◀

Proof of Lemma 3.2. Case 1 : In this case, both paS∗{s, t} and paT ∗{s, t} are matched
nodes. Here, we must have Le(S∗(paS∗{s, t})) = Le(T ∗(paT ∗{s, t})). This holds because
CS∗(paS∗{s, t}) and CT ∗(paT ∗{s, t}) are both matches, and the smallest proper super-
sets of CT ∗(s) ∪ CT ∗(t) in S∗ and T ∗ respectively. By definition, the decomposition re-
places the matched clades CS∗(s) ∪ CS∗(t) and CT ∗(s) ∪ CT ∗(t) with CS∗(paS∗{s, t}) \
CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t) in S∗ and T ∗, respectively. Since Le(S∗(paS∗{s, t})) =
Le(T ∗(paT ∗{s, t})), we conclude that CS∗(paS∗{s, t}) \ CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t)
are then matches in the resulting trees S′ and T ′.
Case 2: We now consider the case when exactly one of the nodes paS∗{s, t} and paT ∗{s, t} is
a matched node. Without loss of generality, suppose paS∗{s, t} is a match and paT ∗{s, t}
is not a match. For convenience, let x denote paS∗{s, t}, y denote paT ∗{s, t}, and let u be
the element of V (T ∗) such that CS∗(x) = CT ∗(u). Then, observe that CS∗(x) ⊃ CT ∗(y), i.e.,
y < u in T ∗. Moreover, every node v along the path from y to u in T ∗ must be a mismatch
since CT ∗(t) ⊂ CT ∗(v) and CS∗(t) ∩ CS∗(sibS∗{s, t}) = ∅ but CT ∗(v) ∩ CS∗(sibS∗{s, t}) ̸= ∅
for arbitrary choice of v. Now, applying the decomposition of extraneous subtree {s, t} to
S∗ and T ∗ yields the modified trees S′ and T ′. Observe that this modification changes
exactly the {s, t} clade, and all clades along the path from y to u in T ∗. In S′, the new clade
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formed at the subtree rooted at paS′(t) must be a matched node since CS′(paS′(t)) = CT ′(u).
Moreover, in T ′, all clades CT ′(v) along the path from y to u remain mismatches except
for CT ′(u) because it still holds that CT ′(t) ⊂ CT ′(v) and CS′(t) ∩ CS′(sibS′{s, t}) = ∅
but CT ′(v) ∩ CS′(sibS′{s, t}) ̸= ∅ for arbitrary choice of v along the path. Thus, after the
decomposition, the number of matched clades in S′ (w.r.t. T ′) remains the same as the
number of matched clades in S∗ (w.r.t. T ∗).
Case 3: If neither paS∗{s, t} nor paT ∗{s, t} is a matched node, then, following the same
argument as in Case 1, S′ will have one less matched node (w.r.t. T ′) than S∗ (w.r.t. T ∗).
Namely, the clades CS∗(paS∗{s, t}) \ CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t) are mismatched
clades in S′ and T ′ respectively. Consequently, T ′ will have one less matched node as well.
Thus, RF(S′, T ′) = RF(S∗, T ∗) + 2. ◀

Proof of Theorem 3.3. Let d = 1
2 RF(S∗, T ∗) and let e be the number of extraneous clades

in S∗. Then, we have that d is also the number of mismatches in S∗, or equivalently in
T ∗. Observe that at most d of the e extraneous clades have mismatched parent nodes in
both trees. Thus, by Lemma 3.2, decomposing all e extraneous clades will increase the RF
distance by at most 2d = RF(S∗, T ∗). Therefore, the decomposed extraneous clade free
completion will have an RF distance of at most 2 · RF(S∗, T ∗). ◀

Proof of Lemma 4.1. Consider arbitrary canonical R-RF(+) completions S∗ and T ∗. We
will show that any grafted subtree in S∗ and T ∗ that is not in its canonical EF-R-RF(+)
position or in an extraneous subtree can be regrafted into its canonical EF-R-RF(+) position
without increasing the RF distance. Without loss of generality, suppose there exists a
maximal red subtree R, with r denoting rt(R), in T ∗ such that R is neither in its canonical
EF-R-RF(+) position nor in an extraneous subtree. Let u represent the canonical EF-R-
RF(+) position of subtree R in completion T ∗. Thus, u ̸= paT ∗(r). Then, we have two
possible cases: either paT ∗(r) is an ancestor of u or not (paT ∗(r) > u or paT ∗(r) ̸> u).
1. Suppose paT ∗(r) > u. We will prove that paT ∗(r) can be regrafted in position u without

increasing the RF distance. Since paT ∗(r) > u, for any arbitrary node c on the path
from paT ∗(r) to u, there exists a subtree C of T ∗(c) rooted at one of the children of
c (the subtree not containing u) satisfying paT ∗(r) > c = lcaT ∗(u, Le(C)) > u and
paS∗(r) < lcaS∗(r, Le(C)). Since paT ∗(r) > lcaT ∗(u, Le(C)) > u, we have that paT ∗(r) >

lcaT ∗(Le(C), a) > a for all leaves a ∈ Le(S) ∩ Le(T ) such that a < paS∗(r). Since for
each such a, we have that a < paS∗(r) < lcaS∗(a, Le(C)) and a < lcaT ∗(a, Le(C)) = c <

paT ∗(r), every match containing Le(C) must also contain Le(R). In particular, c is not a
match. This is true for every node c along the path from paT ∗(r) to u. We can therefore
regraft R at position u without increasing the RF distance because every node along the
path from paT ∗(r) to u is already mismatched.

2. Now suppose paT ∗(r) ̸> u. We will prove that R can be regrafted along the parent
edge of lcaT ∗(paT ∗(r), u) (equivalent position to u if u is an ancestor of paT ∗(r)) without
increasing the RF distance. This will then reduce the case where paT ∗(r) is not an
ancestor of u to the previous case where paT ∗(r) is an ancestor of u. If paT ∗(r) is not an
ancestor of u, then there exist some a1, . . . , ak ∈ Le(S) ∩ Le(T ) such that paS∗(r) > ai

and lcaT ∗(paT ∗(r), ai) > paT ∗(r) for all values of i. Therefore, paT ∗(r) is not a match,
as well as every node on the same path up to the node lcaT ∗(paT ∗(r), a1, . . . , ak) which
contains every ai in its clade CT ∗(lcaT ∗(paT ∗(r), a1, . . . , ak)). Then, regrafting R at the
parent edge of lcaT ∗(a1, . . . , ak, paT ∗(r)) = lcaT ∗(paT ∗(r), u) will not increase the RF
distance since there are no matches to become mismatched. ◀
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Proof of Lemma 4.2. For binary trees U and V , let MV
U denote the LCA map from U

to V . That is, on input u ∈ V (U), MV
U (u) returns lcaV (CU (u)). We will show that

RF(S′, T ′′) − RF(S′, T ′) = RF(S∗, T ∗) − RF(S′, T ′) + 2m. Observe that the only changes
from S′ and T ′ to S∗, T ∗ and T ′′ are the formations of the extraneous subtrees {s, t}. Then,
it suffices to confirm that for every extraneous subtree {s, t}, the number of mismatched
clades in T ′′(paT ′′{s, t}) equals the number of mismatched clades in T ∗(MT ∗

S∗ (paS∗{s, t}))
plus the number of extraneous subtrees. For an arbitrary extraneous subtree {s, t} in T ∗, we
first count the mismatched clades in T ′′(paT ′′{s, t}). Then, we count the mismatched clades
in T ∗(MT ∗

S∗ (paS∗{s, t})) and compare.

1. Suppose v lies along the path from paT ′′{s, t} to the parent of the canonical EF-R-RF(+)
position for T (t) in T ′′. Moreover, suppose u lies along the path from paT ′′{s, t} to the
parent of the canonical EF-R-RF(+) position for S(s) in T ′′. Then CS′(MS′

T ′′(v)) ⊇
CT ′′(v) ∪ CS′(t) since v is an ancestor of the canonical EF-R-RF(+) position of T (t)
in T ′′ and hence MS′

T ′′(v) is an ancestor of the canonical EF-R-RF(+) position of T (t)
in S′. Moreover, CT ′′(v) ∩ CS′(t) = ∅ if v ≠ paT ′′{s, t} by construction of T ′′. Hence
if v ̸= paT ′′{s, t}, then v is mismatched with respect to S′. Likewise, CS′(MS′

T ′′(u)) ⊇
CT ′′(u) ∪ CS′(s) and CT ′′(u) ∩ CS′(s) = ∅ if u ≠ paT ′′{s, t}. Hence if u ̸= paT ′′{s, t},
then u is mismatched with respect to S′. Note that by construction, CT ′′(paT ′′{s, t}) =
CT ′(lcaT ′(s, t)). Hence paT ′′{s, t} is matched with respect to S′ if and only if lcaT ′(s, t)
is, and every other node along either path is mismatched.
Note that the only remaining node impacted in the formation of {s, t} is the root of the
extraneous subtree in T ′′. This node must be mismatched with respect to S′ since S′ is
an extraneous free completion.

2. Now suppose v lies along the path from paT ∗{s, t} (the canonical EF-R-RF(+) position for
T (t) in T ∗) to MT ∗

S∗ (paS∗{s, t}) (the least common ancestor of the EF-R-RF(+) positions
in T ∗). Moreover, suppose u lies along the path from MT ∗

S∗ (paS∗{s, t}) to the parent of
the canonical EF-R-RF(+) position for S(s) in T ∗. Observe that MS∗

T ∗(v) is an ancestor of
the extraneous subtree {s, t} in S∗, and therefore MS∗

T ∗(v) is an ancestor of the canonical
EF-R-RF(+) position for S(s) in S∗. Then CS∗(MS∗

T ∗(v)) ⊇ CT ∗(v) ∪ CS∗(sibS∗{s, t}),
where CT ∗(v) ∩ CS∗(sibS∗{s, t}) = ∅ if v ̸= MT ∗

S∗ (paS∗{s, t}). Additionally, notice
that MS∗

T ∗(u) is an ancestor of the canonical EF-R-RF(+) position for S(s) in S∗, and
therefore MS∗

T ∗(u) is an ancestor of the extraneous subtree {s, t}. Then CS∗(MS∗

T ∗(u)) ⊇
CT ∗(u) ∪ CS∗(s), where CT ∗(u) ∩ CS∗(s) = ∅ if u ≠ MT ∗

S∗ (paS∗{s, t}). It follows that if
u ̸= MT ∗

S∗ (paS∗{s, t}), then u is a mismatched node. Likewise, if v ̸= MT ∗

S∗ (paS∗{s, t}),
then v is a mismatched node. Furthermore, CT ∗(MT ∗

S∗ (paS∗{s, t})) is a matched clade
with respect to S∗ if and only if CT ′(lcaT ′(s, t)) is a matched clade with respect to S′.
Note, again, that the only remaining node impacted in the formation of {s, t} is the root
of the extraneous subtree {s, t}. Since S∗ and T ∗ are canonical R-RF(+) completions,
we know that this node must be matched in S∗ and T ∗.

Now, observe that the union of paths connecting the canonical EF-R-RF(+) positions for
S(s) and T (t) to paT ∗{s, t} in T ∗ is the same size as the union of paths connecting the
canonical EF-R-RF(+) positions for S(s) and T (t) to paT ′′{s, t} in T ′′. Moreover, every
node in each union of paths (except the common ancestor) is mismatched. Finally, the root
of {s, t} is mismatched in T ′′ but matched in T ∗. Since the choice of {s, t} was arbitrary, we
conclude with RF(S′, T ′′) − RF(S′, T ′) = RF(S∗, T ∗) − RF(S′, T ′) + 2m, where m is the
number of extraneous subtrees in T ∗. Equivalently, RF(S′, T ′′) = RF(S∗, T ∗) + 2m. ◀
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Proof of Lemma 4.4. Let S, T be two input binary rooted trees, and let S′, T ′ be their
canonical EF-R-RF(+) completions. By the proof of Lemma 4.1, we observe two important
points: First, it can only be beneficial to move a maximal red or green subtree if the maximal
subtree is eventually paired in an extraneous subtree. And second, a maximal red or green
subtree will increase the RF distance by a lower amount if it is paired in an extraneous
subtree closer to the canonical EF-R-RF(+) position. The recurrence relation follows by
induction.

Base Case: No extraneous clades can be formed at a leaf node and there are no matches to
become mismatched. Hence, the cost at each leaf is indeed zero.

Inductive Step: Assume we have computed all Cost(x, ·, ·) for all descendants x of an
internal node v. Let c ∈ {0, 1} and 0 ≤ m ≤ cMax(c, v) be arbitrarily given. We first show
that twice the maximal number of new extraneous subtrees {s, t} that can be formed at v

given cL, cR, mL and mR is equal to gc(mL, mR, cL, cR). There are two cases to consider: 1.
cL = cR = c and 2. cL ̸= cR (at least one of cL and cR must equal c).
1. Suppose cL = cR = c and let mL, mR be arbitrary nonnegative values such that mL+mR =

m. Then by the first observation above, the condition mL + mR = m is optimal to regraft
m subtrees of color cL = cR = c along the parent edge of v. By the second observation
above, if there are any extraneous subtrees that can be paired at v then it is optimal to
do so at v. We cannot pair any maximal red and green subtrees at v because cL = cR = c,
which means that all m subtrees regrafted along the parent edge of v are the same color.
Hence, twice the number of new extraneous subtrees that can be formed at v is equal to
gc(mL, mR, cL, cR) = 0 when cL = cR = c.

2. Now suppose without loss of generality that cL ̸= cR and let mL, mR be arbitrary
nonnegative values such that |mL − mR| = m. Then by the two observations above, the
condition |mL − mR| = m is optimal to regraft the mL + mR subtrees on the parent edge
of v. By the second observation above, if there are any extraneous subtrees that can be
paired at v then it is optimal to do so at v. Note that since cL ̸= cR, we can pair exactly
min{mL, mR} extraneous subtrees at v. Hence, twice the number of new extraneous
subtrees that can be formed at v is equal to gc(mL, mR, cL, cR) = 2 min{mL, mR}.

We now show that, regardless of the choice of colors cL and cR, the new increase in RF
distance between S′ and T ′ only by regrafting mL and mR subtrees from T ′(vL) and T ′(vR) at
the parent edge of v, respectively, is equal to f(mL, vL, cL) + f(mR, vR, cR). Once a subtree is
regrafted at the parent edge of vL, the only clade that can become mismatched by regrafting
the subtree on the parent edge of v is CT ′(vL). This clade only becomes mismatched if
it is a matched clade and it is not contained in a maximal cL-colored subtree. Once the
clade is mismatched, regrafting all remaining mL maximal subtrees on the parent edge of v

cannot make v mismatched again. Therefore, the act of pruning and regrafting mL maximal
cL-colored subtrees from the parent edge of vL to the parent edge of v increases the RF
distance between S′ and T ′ by f(mL, vL, cL), one for each of S′ and T ′ if a match becomes
mismatched. By symmetry, the new increase in RF distance between S′ and T ′ from pruning
and regrafting mR maximal cR-colored subtrees from vR to v is equal to f(mR, vR, cR).

We have determined that the maximal number of new extraneous subtrees which can be
formed is equal to gc(mL, mR, cL, cR), and the new increase in RF distance is f(mL, vL, cL) +
f(mR, vR, cR). Then the change in cost from vL and vR to v is equal to f(mL, vL, cL) +
f(mR, vR, cR) − gc(mL, mR, cL, cR). Note if a maximal cL-colored subtree of T ′(vL) is
regrafted along the parent edge of v, it must first already be regrafted along parent edge



K. Yao and M. S. Bansal 25:23

of vL by construction. Then, the cost of regrafting mL subtrees at the parent edge of vL

must be Cost(vL, mL, cL). By symmetry, the right subtree adds a cost of Cost(vR, mR, cR).
Moreover, the cost values also subtract the number of extraneous subtrees formed in T ′(vL)
and T ′(vR).

Hence, the value of RF(S′, T̂ ) − 2p − RF(S′, T ′) given fixed cL, cR, mL and mR is
Cost(vL, mL, cL) + Cost(vR, mR, cR) + f(mL, vL, cL) + f(mR, vR, cR) − gc(mL, mR, cL, cR).
By definition, the cost Cost(v, m, c) is equal to the minimum over all methods of moving
maximal colored subtrees in T ′(v) while leaving m maximal c-colored subtrees regrafted
along the parent edge of v and unpaired in an extraneous subtree. Then, taking the minimum
over all possible cL, cR, mL and mR values provides the optimal cost value. ◀

Proof of Theorem 4.5. We note that a pair of canonical extraneous free completions can be
computed in O(n) time. To compute the optimal cost values at each vertex of an EF-R-RF(+)
completion, Algorithm Compute-R-RF+(S,T) has a total of three nested for loops, over (1)
the postorder traversal, (2) the values of c and m, and (3) the values of cL, cR, mL and mR

when the recurrence relation is invoked. The total time complexity is then the product of
the sizes of each nested loop. Note there are a constant number of colors.
1. The postorder traversal has O(n) nodes to parse.
2. Notice m must be bounded above by max{cMax(0, v), cMax(1, v)} ≤ cMax(0, rt(T ′)) +

cMax(1, rt(T ′)) = k for any vertex v. Hence, we have another multiplicative O(k) factor.
3. For each Cost(v, m, c) value, we observe that the number of possible values of mL and

mR considered is again bounded above by k, adding another multiplicative O(k) factor.
Thus, the total runtime to compute all cost values is O(nk2). Once all cost values are
computed, the RF(+) distance can be computed in O(1) time. ◀
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