Ranking Bracelets in Polynomial Time

Duncan Adamson
Leverhulme Research Centre for Functional Materials Design, Department of Computer Science,
University of Liverpool, UK

Vladimir V. Gusev
Leverhulme Research Centre for Functional Materials Design, Department of Computer Science,
University of Liverpool, UK

Igor Potapov

Department of Computer Science, University of Liverpool, UK

Argyrios Deligkas
Department of Computer Science, Royal Holloway University of London, UK

—— Abstract
The main result of the paper is the first polynomial-time algorithm for ranking bracelets. The
time-complexity of the algorithm is O(k? - n*), where k is the size of the alphabet and n is the
length of the considered bracelets. The key part of the algorithm is to compute the rank of any
word with respect to the set of bracelets by finding three other ranks: the rank over all necklaces,
the rank over palindromic necklaces, and the rank over enclosing apalindromic necklaces. The last
two concepts are introduced in this paper. These ranks are key components to our algorithm in
order to decompose the problem into parts. Additionally, this ranking procedure is used to build a
polynomial-time unranking algorithm.

2012 ACM Subject Classification Mathematics of computing — Combinatorics on words
Keywords and phrases Bracelets, Ranking, Necklaces

Digital Object Identifier 10.4230/LIPIcs.CPM.2021.4

Related Version Full Version: https://arxiv.org/abs/2104.04324

Funding Igor Potapov: Partially funded by EP/R018472/1 and Royal Society Leverhulme Trust
Senior Research Fellowship.

Acknowledgements The authors thank the Leverhulme Trust for funding this research via the
Leverhulme Research Centre for Functional Materials Design and the reviewers for their helpful

comments that improved the quality of the paper.

1 Introduction

Counting, ordering, and generating basic discrete structures such as strings, permutations,
set-partitions, etc. are fundamental tasks in computer science. A variety of such algorithms
are assembled in the fourth volume of the prominent series “The art of computer programming’
by D. Knuth [10]. Nevertheless, this research direction remains very active [8].

Y

If the structures under consideration are linearly ordered, e.g. a set of words under the
dictionary (lexicographic) order, then a unique integer can be assigned to every structure.
The rank (or index) of a structure is the number of structures that are smaller than it. The
ranking problem asks to compute the rank of a given structure, while the unranking problem
corresponds to its reverse: compute the structure of a given rank. Ranking has been studied
for various objects including partitions [19], permutations [13, 14], combinations [18], etc.
Unranking has similarly been studied for objects such as permutations [14] and trees [7, 15].

© Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas;
37 licensed under Creative Commons License CC-BY 4.0

32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021).

Editors: Pawel Gawrychowski and Tatiana Starikovskaya; Article No. 4; pp. 4:1-4:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CPM.2021.4
https://arxiv.org/abs/2104.04324
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Ranking Bracelets in Polynomial Time

aaaaaaaa 7. aaaababb 13. aaabbabb 19. aababbbb 25. ababbabb
aaaaaaab 8. aaaabbbb 14. aaabbbbb 20. aabbaabb 26. ababbbbb
aaaaaabb 9. aaabaaab 15. aabaabab 21. aabbabbb 27, abbabbbb
aaaaabab 10. aaabaabb 16. aabaabbb 22. aabbbbbb 28. abbbabbb
aaaaabbb 11. aaababab 17. aabababb 23. abababab 29. abbbbbbb
aaaabaab 12. aaabbabb 18. aababbab 24. abababbb 30. bbbbbbbb

AN

Figure 1 List of all bracelets of length 8 over the alphabet {a, b}.

Both ranking and unranking are straightforward for the set of all words over a finite
alphabet (assuming the standard lexicographic order), but they immediately cease to be so,
as soon as additional symmetry is introduced. One of such examples is a class of necklaces [6].
A necklace, also known as a cyclic word, is an equivalence class of all words under the cyclic
shift operation. Necklaces are classical combinatorial objects and they remain an object of
study in other contexts such as total search problems [5] or circular splicing systems [4].

The rank of a word w for a given set S and its ordering is the number of words in §
that are smaller than w. Often the set is a class of words, for instance all words of a given
length over some alphabet. The first class of cyclic words to be ranked were Lyndon words -
fixed length aperiodic cyclic words - by Kociumaka et. al. [11] who provided an O(n?) time
algorithm. An algorithm for ranking necklaces - fixed length cyclic words - was given by
Kopparty et. al. [12], without tight bounds on the complexity. A quadratic algorithm for
ranking necklaces was provided by Sawada et al. [16].

This paper answers the open problem of ranking bracelets, posed by Sawada and Willi-
ams [16]. Bracelets are necklaces that are minimal under both cyclic shifts and reflections.
Figure 1 provides an example of the ranks of length 8 bracelets over a binary alphabet.
Bracelets have been studied extensively, with results for counting and generation in both the
normal and fixed content cases [9, 17].

This paper presents the first algorithm for ranking bracelets of length n over an alphabet
of size k in polynomial time, with a time complexity of O(k? - n*). This algorithm is further
used to unrank bracelets in O(n® - k% - log(k)). time. These polynomial time algorithms
improve upon the exponential time brute-force algorithm.

2 Preliminaries

2.1 Definitions and Notation

Let X be a finite alphabet. We denote by 3* the set of all words over X and by X" the set of
all words of length n. For the remainder of this paper, let kK = |X|. The notation w is used
to clearly denote that the variable w is a word. The length of a word u € ¥* is denoted |u].
We use u;, for any i € {1...|u|} to denote the i*" symbol of . The reversal operation on a
word W = W1Ws . . . Wy, denoted by w’, returns the word w, ... W w;.

In the present paper we assume that ¥ is linearly ordered. Let [n] return the ordered set
of integers from 1 to n inclusive. Given two words u,v € ¥* where |u| < |v], w = v if and
only if |u| = |v| and u; = v; for every i € [|u]]. A word @ is lexicographically smaller than v
if there exists an 4 € [|u|] such that @;us...U;—1 = U102 ...0;—1 and 4; < v;. For example,
given the alphabet ¥ = {a, b} where a < b, the word aaaba is smaller than aabaa as the first
two symbols are the same and a is smaller than b. For a given set of words S, the rank of v
with respect to S is the number of words in S that are smaller than v.

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

The rotation of a word w = wiwy...w, by r € [n — 1] returns the word
Wyt - .- WypW1 . .. Wy, and is denoted by ()., i.e. (W1Wa ... Wy)p = W1 ... WpWT ... Wp. Un-
der the rotation operation, u is equivalent to ¥ if ¥ = (w),. for some r. The #** power of a word
W = W1 ... W, denoted w', is equal to w repeated ¢ times. For example (aab)® = aabaabaab.
A word w is periodic if there is some word % and integer ¢t > 2 such that 4! = w. Equivalently,
word w is periodic if there exists some rotation 0 < r < |w| where w = (w),. A word is
aperiodic if it is not periodic. The period of a word w is the length of the smallest word u for
which there exists some value ¢ for which @ = u?.

A cyclic word, also called a mecklace, is the equivalence class of words under the rotation
operation. For notation, a word w is written as w when treated as a necklace. Given
a necklace w, the necklace representative is the lexicographically smallest element of the
set of words in the equivalence class W. The necklace representative of W is denoted (W),
and the r'" shift of the necklace representative is denoted (W),. The reversal operation

R containing the reversal of every word 4 € W, i.e.

on a necklace W returns the necklace w
wh = {af' : 4 € W}. Given a word w, (w) will denote the necklace representative of the
necklace containing w, i.e. the representative of 1 where w € a.

A subword of the cyclic word w, denoted wy; ; is the word u of length |w[+j—i—1 mod [w]|)
such that %q = W;_144 mod |w|- For notation u C w denotes that u is a subword of w. Further,
u C; w denotes that u is a subword of w of length ¢. If w = wv, then u is a prefix and
v is a suffix. A prefix or suffix of a word u is proper if its length is smaller than |u|. For
notation, the tuple S(v,¢) is defined as the set of all subwords of v of length ¢. Formally
let S(v,0) = {s C v :|s| = £}. Further, S(v,¢) is assumed to be in lexicographic order, i.e.
S(v,£)1 > S(v,£)2 > ...8(0,£) .

A bracelet is the equivalence class of words under the combination of the rotation and the
reversal operations. In this way a bracelet can be thought of as the union of two necklace
classes w and W%, hence w = W U w’. Given a bracelet W, the bracelet representative of W,
denoted by [W], is the lexicographically smallest word u € W.

A necklace W is palindromic if W = W®. This means that the reflection of every word
in W is in W', i.e. given u € W, u* € WF. Note that for any word w € a, where a is a
palindromic necklace, either w = w?, or there exists some rotation i for which (w); = w’.

Let @ and v be a pair of necklaces belonging to the same bracelet class. For simplicity
assume that (@) < (V). The bracelet @ encloses a word w if () < w < (V). An example of
this is the bracelet 1 = aabc which encloses the word w = aaca as aabc < aaca < aach. The
set of all bracelets which enclose w are referred to as the set of bracelets enclosing w.

2.2 Bounding Subwords

For both the palindromic and enclosing cases the number of necklaces smaller than v € X" is
computed by iteratively counting the number of words of length n for which no subword is
smaller than v. The set of such words, denoted by S,,, will be analysed iteratively as well,
since it can have an exponential size. In order to relate S; to S;+1, we will split S; into parts

using the positions of length ¢ subwords of v with respect to the lexicographic order on S;.

Informally, every w € S; can be associated with the unique lower bound from S(v,), which
will be used to identify the parts leading us to the following definition.

» Definition 1. Let w,v € ¥* where |w| < |v|. The word w is bounded (resp. strictly
bounded) by 5 Cp) v, if 5 < w (resp. 5 < w) and there is no 4 Cp| ¥ such that 5 < u < w.

The aforementioned parts S;(5) contain all words w € S; such that 5 T3 9. The key
observation is that words of the form zw for all w € S; and some fixed symbol z € ¥ belong

to the same set S;11(8"), where 8 C 0. The same holds true for words of the form wz.

4:3

CPM 2021

4:4

Ranking Bracelets in Polynomial Time

Thus, we can compute the corresponding 5’ for all pairs of 5 and z in order to derive sizes
of S;1+1(8"). Moreover, this relation between s, x and §' is independent of i allowing us to
store this information in two n? x k arrays XW and WX. Both arrays will be indexed by
the words § C ¥ and characters x € ¥. Given a word w strictly bounded by s, XW|s, z] will
contain the word 5" C|5/1 © strictly bounding xw. Similarly, W X[5,] will contain the word
5" C|s41 © strictly bounding wx. By precomputing these arrays, the cost of determining
these words can be avoided during the ranking process.

» Proposition 2. Let v € ™. The array XW|[s C v,z € X] such that XW|[s,x] strictly
bounds xw for every w strictly bounded by 5 can be computed in time O(k - n® - log(n)).

» Proposition 3. Let v € ¥". The array WX|[s C 0,z € X, such that WX]|s, x| strictly
bounds wx for every w strictly bounded by 5, can be computed in O(k - n> -log(n)) time.

3 Ranking Bracelets

The main result of the paper is the first algorithm for ranking bracelets. In this paper,
we tacitly assume that we are ranking a word v of length n. The time-complexity of the
ranking algorithm is O(k? - n*), where k is the size of the alphabet and n is the length of the
considered bracelets. The key part of the algorithm is to compute the rank of the word v
with respect to the set of bracelets by finding three other ranks: the rank over all necklaces,
the rank over palindromic necklaces, and the rank over enclosing apalindromic necklaces.
A bracelet can correspond to two apalindromic necklaces, or to exactly one palindromic
necklace. If a bracelet b corresponds to two necklaces 1, and Ty, then it is important to take
into account the lexicographical positions of these two necklaces 1, and , with respect to a
given word v. There are three possibilities: ib and 1, could be less than v; ib and T, encloses
v, e.g. Ib < v < Ty, or both of necklaces ib and T, are greater than v. This is visualised in
Figure 2. Therefore the number of bracelets smaller than a given word w can be calculated
by adding the number of palindromic necklaces less than v, enclosing bracelets smaller than v
and half of all other apalindromic and non-enclosing necklaces smaller than v. Let us define
the following notation is used for the rank of v € 3" for sets of bracelets and necklaces.
RN (v) denotes the rank of v with respect to the set of necklaces of length n over X.

RP(v) denotes the rank of v with respect to the set of palindromic necklaces over X.
RB(v) denotes the rank of v with respect to the set of bracelets of length n over X.
RE(v) denotes the rank of v with respect to the set of bracelets enclosing v.
Bracelets aaa | aab | aac aad | abb | abc | abd acc acd add
N
\\\
1|
Necklaces aaa | aab | aac aad | abb | abc | abd | acb | ace acd | adb | adc | add

Figure 2 In this example the top line represents the set of bracelets and the bottom line the set
of necklaces, with arrows indicated which necklace corresponds to which bracelet. Assuming we wish
to rank the word acc (highlighted), abc and acb are apalindromic necklaces smaller than acc, while
abd encloses acc. All other necklaces are palindromic.

In Lemma 4 below, we show that RB(v) can be expressed via RN (v), RP(v) and RE(v).
The problem of computing RN (v) has been solved in quadratic time [16], so the goal of the
paper is to design efficient procedures for computing RP(v) and RE(v).

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

» Lemma 4. The rank of a word v € X™ with respect to the set of bracelets of length n over
the alphabet ¥ is given by RB(v) = § (RN () + RP(v) + RE(v)).

Proof. Simply dividing the number of necklaces by 2 will undercount the number of bracelets,
while doing nothing will overcount. Therefore to get the correct number of bracelets, those
bracelets corresponding to only 1 necklace must be accounted for. A bracelet & will correspond
to 2 necklaces smaller than v if and only if & does not enclose v and & is apalindromic. There-
fore the number of bracelets corresponding to 2 necklaces is 3 (RN (v) — RP(v) — RE(v)).
The number of bracelets enclosing v is equal to RE(v). The number of bracelets correspond-
ing to palindromic necklaces is equal to RP(v). Therefore the total number of bracelets is
1 (RN(v) — RP(v) — RE(v)) + RP(v) + RE(v) = (RN (v) + RP(v) + RE(v)). <

Lemma 4 provides the basis for ranking bracelets. Theorem 5 uses Lemma 4 to get the
complexity of the ranking process. The remainder of this paper will prove Theorem 5, starting
with the complexity of ranking among palindromic necklaces in Section 4 followed by the
complexity of ranking enclosing bracelets in Section 5.

» Theorem 5. Given a word v € X", the rank of v with respect to the set of bracelets of
length n over the alphabet 3, RB(v), can be computed in O(k - n*) time.

The remainder of this paper will prove Theorem 5. For simplicity, the word v is assumed to
be a necklace representation. It is well established how to find the lexicographically largest
necklace smaller than or equal to some given word. Such a word can be found in quadratic
time using an algorithm form [16]. Note that the number of necklaces less than or equal to v
corresponds to the number of necklaces less than or equal to the lexicographically largest
necklace smaller than v. From Lemma 4 it follows that to rank v with respect to the set of
bracelets, it is sufficient to rank v with respect to the set of necklaces, palindromic necklaces,
and enclosing bracelets. The rank with respect to the set of palindromic necklaces, RP(v)
can be computed in O(k - n3) using the techniques given in Theorem 25 in Section 4. The
rank with respect to the set of enclosing bracelets, RE(v) can be computed in O(k - n?) as
shown in Theorem 30 in Section 5. As each of these steps can be done independently of each
other, the total complexity is O(k - n*).

This complexity bound is a significant improvement over the naive method of enumerating
all bracelets, requiring exponential time in the worst case. New intuition is provided to
rank the palindromic and enclosing cases. The main source of complexity for the problem of
ranking comes from having to consider the lexicographic order of the word under reflection.
New combinatorial results and algorithms are needed to count the bracelets in these cases.

Before showing in detail the algorithmic results that allow bracelets to be efficiently ranked,
it is useful to discus the high level ideas. Lemma 4 shows our approach to ranking bracelets
by dividing the problem into the problems of ranking necklaces, palindromic necklaces and
enclosing bracelets. For both palindromic necklaces and enclosing bracelets, we derive a
canonical form using the combinatorial properties of these objects.

Using these canonical forms, the number of necklaces smaller than v is counted in an
iterative manner. In the palindromic case, this is done by counting the number of necklaces
greater than v, and subtracting this from the total number of palindromic necklaces. In the
enclosing case, this is done by directly counting the number of necklaces smaller than v. For
both cases, the counting is done by way of a tree comprised of the set of all prefixes of words
of the canonical form. By partitioning the internal vertices of the trees based on the number
of children of the vertices, the number of words of the canonical form may be derived in an
efficient manner, forgoing the need to explicitly generate the tree. This allows the size of
these partitions to be computed through a dynamic programming approach. It follows from
these partitions how to count the number of leaf nodes, corresponding to the canonical form.

4:5

CPM 2021

4:6

Ranking Bracelets in Polynomial Time

» Theorem 6. The 2! bracelet of length n over ¥ can be computed in O(n® - k? - log(k)).

Theorem 6 is proven by using the ranking technique as a black box alongside a simple
binary search in the same manner as [16].

4 Computing the rank RP(v)

To rank palindromic necklaces, it is crucial to analyse their combinatorial properties. This
section focuses on providing results on determining unique words representing palindromic
necklaces. We study two cases depending on whether the length n of a palindromic necklace is
even or odd. The reason for this division can be seen by considering examples of palindromic
necklaces. If equivalence under the rotation operation is not taken into account, then a word
is palindromic if w = w®. If the length n of w is odd, then if w = w®, W can be written
as ¢z, where ¢ € 2("~1/2 and z € . For example, the word aaabaaa is equal to ¢zp™,
where ¢ = aaa and = = b. If the length n of w is even, then if w = w", w can be written as
Y, where ¢ € ¥"/2. For example the word aabbaa is equal to 1), where 1) = aab.

Once rotations are taken into account, the characterisation of palindromic necklaces
becomes more difficult. It is clear that any necklace a that contains a word of the form ¢zp™
or ¢p¢f is palindromic. However this check does not capture every palindromic necklace.
Let us take, for example, the necklace a = ababab, which contains two words ababab and
bababa. While ababab can neither be written as ¢z¢™ nor ¢¢f, it is still palindromic as
(ababab’) = (bababa) = ababab. Therefore a more extensive test is required. As the structure
of palindromic words without rotation is different depending on the length being either odd
or even, it is reasonable to split the problem of determining the structure of palindromic
necklaces into the cases of odd and even length.

The number of palindromic necklaces are counted by computing the number of these
characterisations. This is done by constructing trees containing every prefix of these charac-
terisations. As each vertex corresponds to the prefix of a word, the leaf nodes of these trees
correspond to the words in the characterisations. By partitioning the tree in an intelligent
manner, the number of leaf nodes and therefore number of these characterisations can be
computed. In the odd case this corresponds directly to the number of palindromic necklaces,
while in the even case a small transformation of these sets is needed.

4.1 Odd Length Palindromic Necklaces

Starting with the odd-length case, Proposition 7 shows that every palindromic necklace of
odd length contains exactly one word that can be written as ¢z where ¢ € £(*~1)/2 and
x € X. This fact is used to rank the number of bracelets by constructing a tree representing
every prefix of a word of the form ¢z¢® that belongs to a bracelet greater than v.

» Proposition 7. A necklace W of odd length n is palindromic if and only if there exists
ezactly one word i = ¢ such that v € W, where ¢ € X(*~D/2 gnd x € X.

Proof Sketch. If a necklace w contains a word of the form ¢z¢™, then clearly W is palin-
dromic. The other direction follows a counting argument. In order for W to be palindromic,
the reflection of every word in W must also be in W. As W contains an odd number of words,
there must exist a word that is its own reflection, i.e. % = @'. As the length of the word is
odd, the only time this can occur is when @ = ¢x¢™. We show uniqueness by observing that
no two words in W can be mapped to the same palindromic word. |

» Corollary 8. The number of palindromic necklaces of odd length n over ¥ equals k"+1/2,

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

PO()

Layer %

Figure 3 (Left) The relationship between PO(7, 1, j, 5) with the tree TO(?) and PO(?). (right)
Example of the order for which characters are assigned. Note that at each step the choices for the
symbol W; is constrained in the no subword of vv[l,i]vifﬁ‘,i] is greater than or equal to v.

The problem now becomes to rank a word v with respect to the odd length palindromic
necklaces utilising their combinatorial properties. Let v € X" be a word of odd length n. We
define the set PO(v), where PO stands for palindromic odd length. The set PO(v) contains
one word representing each palindromic bracelet of odd length n that is greater than v.

PO(v) := {i) € X" :w = pzo”, where (w) > v, ¢ € n-D/2 4 e E}.

As each word will correspond to a unique palindromic necklace of length n greater than
v, and every palindromic necklace greater than v will correspond to a word in PO(v), the
number of palindromic necklaces greater than v is equal to |PO(v)|. Using this set the
number of necklaces less than v can be counted by subtracting the size of PO(v) from the
total number of odd length palindromic necklaces, equal to k(*+1/2 (Corollary 8).

High level idea for the Odd Case. Here we provide a high level idea for the approach we
follow for computing PO(v). Let v have a length n. Since PO(v) only contains words of the
form ¢z, where ¢ € £(*~1/2 and x € 3, we have that w; = w,,_; for every w € PO(?).
As the lexicographically smallest rotation of every w € PO(v) must be greater than v, it
follows that any word rotation of w must be greater than v and therefore every subword of
w must also be greater than or equal to the prefix of v of the same length. This property is
used to compute the size of PO(v) by iteratively considering the set of prefixes of each word
in PO(v) in increasing length representing them with the tree TO(v). As generating 7 O(v)
directly would require an exponential number of operations, a more sophisticated approach
is needed for the calculation of |[PO(v)| based on partial information.

As the tree TO(v) is a tree of prefixes, vertices in TO(v) are referred to by the prefix
they represent. So u € TO(v) refers to the unique vertex in 7O(v) representing 4. The root
vertex of TO(v) corresponds to the empty word. Every other vertex « € TO(v) corresponds
to a word of length 4, where ¢ is the distance between u and the root vertex. Given two
vertices p, ¢ € TO(v), p is the parent vertex of a child vertex ¢ if and only if ¢ = px for some
symbol x € ¥. The i layer of TO(v) refers to all representing words of length i in 7O(v).

4:7

CPM 2021

4:8

Ranking Bracelets in Polynomial Time

S Swﬁ,i]w[l,i]ﬁ Sy - — [_ v
173 —PStl Stg Stg

Figure 4 Visual representation of the properties of u‘;ﬁ,i]u_)[l,i] € PO(9,4,7,5).

The size of PO(v) is equivalent to the number of unique prefixes of length ”TH of words of
the palindromic form ¢z¢® in PO(v). This set of prefixes corresponds to the vertices in the
layer 254 of TO(v). Therefore the maximum depth of TO(v) is 241,

To speed up computation, each layer of TO(v) is partitioned into sets that allow the
size of PO(v) to be efficiently computed. This partition is chosen such that the size of the
sets in layer i + 1 can be easily derived from the size of the sets in layer i. As these sets are
tied to the tree structure, the obvious property to use is the number of children each vertex
has. As each vertex u € TO(v) represents a prefix of some word w € PO(v), the number of
children of @ is the number of symbols z € ¥ such that ux is a prefix of some word in PO(v).
Recall that every word in w € PO(v) has the form ¢z¢™, and that there is no subword of w
that is less than ©. Therefore if 4 € TO(v), there must be no subword of 4®u that is less
than v. Hence the number of children of u is the number of symbols x € ¥ such that no
subword of z@™uz is less than the prefix of ¥ of the same length. As % has no subword
less than v, zu*uz will only have a subword that is less than o if either (1) zuf*uz < v or
(2) there exists some suffix of length j such that (@")9;_; ;) = U ;) and & < D;41. For the
first condition, let s Co; v. By the definition of strictly bounding subwords (Definition 1),
ruftuz < v if and only if 252 < . Note that this ignores any word 4 where @*u C ©. The
restriction to strictly bounded words is to avoid the added complexity caused by Proposition
2, where the word that bounds x5z might not be the word that bounds zu’
second property, let j be the length of the longest suffix of @@ that is a prefix of ¥. From
Lemma 1 due to Sawada and Williams [16], there is some suffix of a®ux that is smaller than
v if and only if z < vj41. The i'" layer of TO(v) is partitioned into n? sets PO(v,1, j, 5),
for every i € [%1],j € [2i] and 5 Cy; 0.

ux. For the

» Definition 9. Let i € [%51],j € [2i] and 5 To; v. The set PO(0,1,5,5) contains every
prefiz u € TO(V) of length i where (1) the longest suffiz of aﬁ’i]ﬂ[lyi] which is a prefiz of v
has a length of j and (2) The word ﬂf:l"' jUq Gs strictly bounded by 5.

An overview of the properties used by PO(9,1,j,s) is given in Figures 3 and 4. It
follows from the earlier observations that each vertex in PO(v, 1, j, 5) has the same number
of children. Lemma 10 strengthens this observation, showing that given a,b € PO(v,4,7,),
ax € PO(v,i+1,5,5) if and only if bz € PO(v,i + 1,5,5).

The remainder of this section establishes how to count the size of PO(v,1, 7, 5) and the
number of children vertices for each vertex in PO(v,4,j,5). The first step is to formally
prove that all vertices in PO(@,1, j, 5) have the same number of children vertices. This is
shown in Lemma 10 by proving that given two vertices a,b € PO(v,1,j,5), if the vertex
@’ = ax for x € ¥ belongs to the set PO(v,i + 1,5,5), so to does b’ = bz.

» Lemma 10. Let a,b € PO(v,i,4,5) and let x € . If the vertex @ = ax belongs to
PO(v,i+1,5',5), the vertex b/ = bx also belongs to PO(v,i + 1,5',5"). Furthermore the
value of j' and s’ can be computed in constant time from the values of 7,5 and x.

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

Proof Sketch. The arrays XW and WX are used to determine the value of 5'. The longest
suffix of both zaz and xzbx that is a prefix of v is determined by the value of j and z, either
j+1,if & =041, or 0 otherwise. Hence if az € PO(v,i + 1, j',5), br € PO(v,i+1,5,5).
Further the values of j/ and 5’ can be determined in constant time. |

Computing the size of PO(v, ¢, j’,8’). Lemma 10, provides enough information to compute
the size of PO(9,1,5’,5’) once the size of PO(v,7 — 1, 4, 5) has been computed for each value
of j€[2(i—1)] and 5§ € S(v,2(i —1)). At a high level, the idea is to create an array, Size PO,
storing the size of the PO(#,14,',5) for every value of i € [%51],j € [2i] and 5 Cy; v. For
simplicity, let the value of SizePOli, j, 5] be the size of |[PO(9,1,7, 5)|.

Lemma 11 formally provides the method of computing SizePO[i, j, 8] for every j € [2i]

and § Co; v once SizePOl[i —1, 5, §'] has been computed for every j' € [2i —2] and 5 Co;_5 0.
Observe that each vertex a € PO(7,4,j’,8") represents a prefix a’x where a’ is either in
PO(v,i—1,4,5), for some value of j and 3, or @’ C v. Using this, the high level idea is to
derive the values of j' and §' for each j € [2(— 1)],5 € S(9,2(i — 1)) and = € ¥. Once
the values j and s’ have been derived, the value of SizePOJi, j’,§'] is increased by the
size of PO(v,7 — 1, j,). Repeating this for every value of j, s and x will leave the value of
SizePOli, 7', §'] as the number of vertices in PO(9, 4, j', §') representing words of the form ax
where a [Z v. As each set PO(0,1, 7, 5) may have children in at most k sets PO(v,i+1,5’,5),
the number of vertices in PO(v,i + 1,7’,5) with a parent vertex in PO(v,4, j,5) can be
computed in O(k - n?) by looking at every argument of j € [2i] and 5§ Co; ©.

To account for the vertices in PO(w,14,5’,5) of the form bz where b"b C 4, a similar
process is applied to each pair s € S(v,2(: — 1)) and x € 3. For each pair, the values ' and
j' are derived in the same manner as Lemma 10 utilising the tables XW and WX. Once
derived, the value of SizePOli, j’, §'] is increased by one, to account for the vertex sx. As
the values of j and s’ can be computed in O(n) time from the value of x and s, the number
of vertices in PO(v,i + 1,5, 5") where the parent vertex is a subword of v can be computed
in O(k - n?) time.

» Lemma 11. Given the size of PO(v,1,j,8) fori € [”ng’] and every j € [2i],s Coy; v, the
size of PO(v,i+1,5',8) for every j' € [2i +2],5 Casyo v can be computed in O(k -n?) time.

Proof Sketch. SizePOJi+1, ', 5] is computed by looking at every argument of j € [2], 5 Co;
v and x € . For each set of arguments, j' and 5 are derived by Lemma 10, and the size of
SizePO[i + 1,4',5] is increased by SizePOli, j,5|. Similarly, for each € ¥ and 5 Cy; 9, j'
and &’ are derived and the size of SizePO[i + 1,j',§'] is increased by 1. <

Once the size of PO(7, 1, j, §) has been computed for every i € [”T’l],j € [24], 5 € S(v, 27),
the final step is to compute |[PO(v)|. The high level idea is to determine the number of vertices
in PO(v) are children of a vertex in PO(v, ”T’l,j, 5).The set X (9, j,8) C X is introduced
to help with this goal. Let X(,7,5) contain every symbol x € ¥ such that aza’ € PO(v)
where a € PO(v, %51, 4,5). By the definition of X(4, 4, 5), |X(v,4,5)| - |[PO(v, %52, 4,5)|
equals the number of words w € PO(v) where (w; ... wW(,—1)/2) € PO(7,1, j,5). Lemma 12
shows how to compute the size of X (v, 7, 5) in O(k - n) time.

» Lemma 12. Let X(v,7,5) contain every symbol in ¥ such that axa®™ € PO(v) where
a € PO(v, %52, 5,5). The size of X(v,],5) can be computed in O(k - n) time.

Proof Sketch. The size of X(v, 4, §) is computed by checking if € X (v, 4, 5) for each x € X,
where j and 5 are used to bound z from below. As z must be such that vpy jzs > v, > v;4.
Further, if 8§ < ¥ 2, then z > v;41. <

4:9

CPM 2021

4:10

Ranking Bracelets in Polynomial Time

Converting SizePO to |PO(v)|. The final step in computing PO(?) is to convert the
cardinality of PO(v,1, j, 5) to the size of PO(v). Lemma 13 provides a formula for counting
the size of PO(v). Combining this formula with the techniques given in Lemma 11 an
algorithm for computing the size of PO(v) directly follows.

It follows from Lemma 10 that the number of words in PO(v) with a prefix in
PO (v, %51, j,5) is equal to the cardinality of PO (v, 251, ,5) multiplied by the size of
X(v,4,5). Similarly the number of words in PO(v) with a prefix u of length 2% where
uf*u C v can be determined using X (v, §, w®u). The main difference in this case is that if
ula = Ulj4+2,n+j], Where j is the length of the longest suffix of @R that is a prefix of ¥, then
the number of words in PO(v) where @ is a prefix is 1 fewer than for the number of words
strictly bounded by @%u, i.e. |X(v,.J(5,9),5)] — 1. Lemma 13 provides the procedure to
compute |[PO(v)|.

» Lemma 13. Let J(5,0) return the length of the longest suffix of 5 that is a prefix of v.
The size of PO(v) is equal to

1 0 5 # po™
S(Z : (Zl X(9,],5)| - [PO (v, %5+, 4, 5) |> +9 1X(2,J(5,0),5)] § 7 Ujt2,nt]
seS(v,n—1 J= _ N — _ _
|X(U7 ‘](57 U)v S)‘ -1 s= U[j42,n+7]

Further this can be computed in O(k - n3 -log(n)) time.

Proof Sketch. By the definition of X(7, j, §), the number of words in PO(v) with a parent
vertex in PO(9, %,j, 5) equals |X (9,7, §)|. Similarly, given § C,,_1 9, the number words in
PO(v) of the form 8((;,41)/2,n—1)T5[1,(n—1)/2] are equal to either [X(v, j, 5)|, if 5 # V}j12,544],
or ‘X(T],j, 5)‘ —1lifs= 17[j+2,n+j]- <

4.2 Even Length Palindromic Necklaces

Section 4.1 shows how to rank ¥ within the set of odd length palindromic necklaces. This
leaves the problem of counting even length palindromic necklaces. As in the odd case, the
first step is to determine how to characterise these words. Proposition 14 shows that every
palindromic necklace will have at least one word of either the form ¢¢t, where ¢ € £"/2, or
roydp™, where z,y € ¥ and ¢ € (/2 ~1_ Proposition 14 is strengthened by Propositions
15 and 16, showing that each palindromic necklace of even length will have no more than
two words of either form. Lemmas 21, 22, 23 and 24 use these results a similar manner to
Section 4.1 to count the number of palindromic necklaces of even length.

» Proposition 14. A necklace W of even length n is palindromic if and only if there exists
some word U € W where either (1) i = xpyd™ where x,y € ¥ and ¢ € L/D=1 or (2)
= ¢p™ where ¢ € /2,

Proof Sketch. Recall that if the necklace W is palindromic, then for any word @ € W, u* € w.
As such, u = <aR>T for some rotation r. It follows from this that 41 = w,—p, ua = un — 7 —
1)...%j = tp—r_jy1. The word w is split into the subwords @ = [y ;,—,) and bpy,—r41,,. As
a = a' and b = b%, the smaller subword can be lengthened by appending the first and last
symbol of the longer word while maintaining this property, i.e. b’ = c"zll_)c_zw = b'F. Repeating
this until either both words have length 5, or one has length 5 — 1, allows @ to be rewritten,
using these words to derive the values of ¢ € /2, or z,y € ¥ and ¢ € R("/2)—1, <

» Proposition 15. The word @ € ¥* equals both xdy¢™ = ™ if and only if u = ™.

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

» Proposition 16. For an even length palindromic necklace a there are at most two words
w, U € & where either (1) w and u are of the form xdyp™ where x,y € X and ¢ € nn/2)-1
or (2) w and u are of the form ¢po® where ¢ € X™/2.

Proof Sketch. For both @ = z¢y¢®, and w = ¢¢F, a similar approach is used. For
w = xoy¢™ assume that (w), = u for the smallest rotation 7 such that (w), # w and
(), = xpy¢™. By showing that the period of w must be 2r, it follows that if there is some
other rotation s such that w # (w)s # (w), and (), is of the form z¢yd®?, s must be less
than r contradicting the initial assumption. For @ = ¢¢*, a similar process is done, showing
that not only must there be no more than two words of the form ¢¢%, but that if w = ¢’

then @ = o if and only if ¢ = ¥, <

Propositions 14, 15 and 16 show that every palindromic necklace of even length has 1 or 2
words of either the form zdy¢®? or ¢p¢f. To count the number of words of each form, the
problem is split into two sub problems, counting words of the form z¢y¢® and counting the
number of words of the form ¢¢®. This is done using the same basic ideas as in Section
4.1. Two new sets PE(v) and PS(v) are introduced, serving the same function as PO(v) for
words of the from z¢yd™ and ¢é™ respectively.

Pg(@) = {w ey w= xququ7 where <1I)> N ’lj,é c Z(n/2)_1,$,y, c Z}
PS(@) = {qI) c 3o = QEQER, where <w> > "D,(ZE c E(n/2)71}

Unlike the set PO(v) in Section 4.1 the sets PE(v) and PS(v) do not correspond directly to
bracelets greater than v. For notation let GE(v) and GS(v) denote the number of bracelets
greater than © of the form zdy¢™ and ¢¢F respectively. The number of even length necklaces
greater than v equals GE(v) + GS(v) — (k — v1), where k — 01 denotes the number of symbols
in X greater than v;. Before showing how to compute the size of these sets, it is useful to
first understand how they are used to compute the rank amongst even length palindromic
necklaces. Lemmas 19 and 18 shows how to covert the cardinalities of these sets into the
number of even length palindromic necklaces smaller than v. The main idea is to use the
observations given by Propositions 14 and 16 to determine how many even length palindromic
necklaces have either one or two words of the form zgyd™ or ¢of.

» Proposition 17. Let] = ”T“ if 5 is odd or I = if 5 is even. The number of even length
palindromic necklaces is given by % (k”/z(k +2) + k) — k.

Proof Sketch. This equation is derived by first determining the number of necklaces that
has only one word of the form zdy¢®, from which the first k"/2 term comes from. The
number of necklaces with two representatives can be computed by subtracting the number
of necklaces with one representative from the number of words of the form z¢y¢®, giving
%(kz”/ 241 _ g/ %) By adding these two values together, the total number of necklaces of
this form can be counted as §(k"/?*! — kn/2) 4 kn/2 = 1 (kn/2+1 4 kn/2). The number of
necklaces with two words of the form ¢¢¥ is counted by determining the number of necklaces
with only one word of the form ¢¢*, giving the k! term. Subtracting this from the number of
words of the form ¢¢F, giving a total of %(k‘"/2 — Y4+ k= %(k"/Q + k') necklaces. Finally,
to avoid over counting words of the form x™, the k necklaces of this form are subtracted,
giving a total of 1 (k"/2+1 4+ k™2 + k™2 + k) — k. <

» Lemma 18. The number of necklaces greater than v containing at least one word of the

o Oy is odd.
form xdyd™ is given by GE(v) = 1 | |PE(v)| + PO@.n/2)] o .
GE(Uj1,n/9) s even.

[SIEANIR

4:11

CPM 2021

4:12

Ranking Bracelets in Polynomial Time

Proof Sketch. This claim is shown by dividing necklaces greater than v in to two sets, those
with one word of the form zdy¢®, and those with two. By subtracting the set of necklaces
with only a single such word from the total set, the number of necklaces with two such
representatives are counted. The equation comes from adding the size of these sets. |

» Lemma 19. The number of necklaces greater than v containing at least one word of the
__ PO(v s odd.
form ¢ is given by GS(v) = 3 <|735(17)| + {' @) Z,S °)
is even.

GS(Vp1,n/2))
Proof Sketch. This claim is shown by dividing necklaces greater than v in to two sets, those

[SISEENT]

with one word of the form ¢¢”, and those with two. By subtracting the set of necklaces
with only a single such word from the total set, the number of necklaces with two such
representatives can be counted. The final equation comes from adding the size of these sets
together. <

High Level Idea for the Even Case. Lemmas 18 and 19 show how to use the sets PS(v)
and PE () to get the number of necklaces of the form zgyd™ and ¢p™ respectively. This
leaves the problem of computing the size of both sets. This is achieved in a manner similar
to the one outlined in Section 4.1. At a high level the idea is to use two trees analogous to
T O(v) as defined in Section 4.1. The tree TE(v) is introduced to compute the cardinality of
PE(v) and the tree TS(v) is introduced to compute the cardinality of PS(v). As in Section
4.1, the trees TE(v) and TS(v) contain every prefix of a word in PS(v) or PE(v) respectively.
The leaf vertices of these trees correspond to the words in these sets.

To compute the size of PE(v) using TE(v), the same approach as in Section 4.1 is used.
A word u of length less than % is a prefix of some word in P£(v) if and only if no subword of
(g, jag-1)*
odd case, where © € PE(v) if and only if there is no subword of #f'% smaller than the prefix

« is less than the prefix of v of the same length. This is slightly different from the

of v of the same length. To account for this difference the sets PE(9, 1, j, §) are introduced
as analogies to the sets PO(v,4, 7, §).

» Definition 20. Let i € 2], j € [2i] and 5 Co; v. The set PE(v,4,j,5) contains every
word u € TE(V) of length i where (1) the longest suffix of (ﬁ[1,i—1])Rﬂ[1,i] which is a prefix of
v has a length of j and (2) the word (ﬂ[l,i_l])Rﬁ[u] is strictly bounded by 5 Co;_1 V.

As in Section 4.1, the size of PE(9, 1, j, §) is computed via dynamic programming. The array
SizePFE is introduced, storing the size of PE(v,1, j,) for every value of i € [%] ,j €12t —1]
and 5§ Co;_1 0. Let SizePE be and n X n X n array such that SizePE][i, j, 5] = |PE(v,1, j, 5)|.
Lemma 21 shows that the techniques used in Lemma 11 can be used to compute SizePE in
O(k - n?log(n)) time. This is done by proving that the properties established by Lemma 10
regarding the relationship between the sets PO(7, 1, j, 5) also hold for the sets PE(7, i, j, 5).
As words in PS(v) are of the form ¢¢t, a word 4 is in TS(v) if and only if no subword
of ufu is less than the prefix of v of the same length. Note that this corresponds to the
same requirement as the odd case. As such the internal vertices in the tree 7S(0) may be
partitioned in the same way as those of TO(v). Lemma 23 shows how to convert the array
SizePO as defined is Section 4.1 to the size of PS(?).

» Lemma 21. Given u,w € PE(0,4,5,8) and x € X. If ux € PE(v,i + 1,5',5) then
vr € PE(v,i+1,5',8"). Further the values of j' and §' can be computed in constant time
from the values of j,§ and x. Therefore the array SizePE]i, j,5] can be computed for every
value i € [%],j € [2i — 1] and 5 Cg;—1 v in O(k - n® -log(n)) time.

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

Proof Sketch. By proving that all properties of PO(9,1,7,5) from Lemma 10 hold for
PE(v,1,7,5), the approach in Lemma 11 is used to compute SizePE]i, j, 5] for every i €
[2],7 € [2i—1],5 Coi—1 0 in O(k - n® - log(n)) time. <

» Lemma 22. Let v € X". The size of PE(v) can be computed in O(k - n3 -log(n)) time.

Proof Sketch. The size of PE(v) is computed in a similar manner to PO(v) using SizePE
in the same manner as SizePO. As before there are two cases to consider for each w €
PE(v). The first case is where wp (/2 € PE(v, §,7,5) for some set of arguments j €
[n —1],8 E,_1 9. The second is where w[l’(n/g),l})R’lI)[L(n/Q)] C,.—1 v. In both cases the
same approach as used in Lemma 13 can be used, determining the number of symbols x € 3
where (W1, (n/2)-1])F W, (n/2)2) € PS(0), using the values of j and § rather than directly
computing this value for each word. |

The size of PS(v) is calculated in a similar manner. As the words in PS(v) are of the
form ¢¢T, the prefixes of length i correspond to subwords of length 2 with the form @’
Note that these are the same as the prefixes used in Section 4.1 for odd length palindromic
necklaces. As such, the sets PO(9, 1, j, §) are used to partition internal vertices of the tree
TS(v). Lemma 23 shows how to use these sets to compute the size of PS(v).

» Lemma 23. Let v € X". The size of PS(v) can be computed in O(k - n® - log(n)) time.

Proof Sketch. The size of PS(v) is computed using two cases. As before, for every word
w € PS(v) either (W[,(n/2)—1)) W1, (n/2)-1) E 0. or there exists some set PO(7, % — 1,4, 5)
such that w1 (n/2)-1) € PS(v, § — 1,4, 5). Following the same approach as in Lemmas 13 and
22, set of arguments j € [n — 2], 8 C,,_o v are used to compute the number of symbols z € ¥
such that for u € PS(v, § — 1,4, 5), (uzzuf) > v. Similarly, for every subword uu® C,,_» v,
the number of symbols = € ¥ where (uzxzu®) > v. <

Combining Lemmas 22 and 23 with Lemmas 18 and 19 provides the tools to compute the
rank of v among even length palindromic necklaces. Lemma 24 shows how to combine these
values to get the rank of v among even length palindromic necklaces.

» Lemma 24. The rank of v € ™ among even length palindromic necklaces can be computed
in O(k - n3 - log(n)?) time.

Proof. From Proposition 17, the number of even length palindromic necklaces is equal to
2 (kn/2H1 4 2kn/2 4 k1) — k, where | = ™2 if 2 is odd, or [= 2 if 2 is even. Lemma 18
provides an equation to count the number of necklaces greater than v containing at least
one word of the form zpys. The equation given by Lemma 18 requires the size of PE ()
to be computed, needing at most O(k - n® - log(n)) operations, and either |PE(V1,n/2))| or
GE(Uf1,n/9)- As both [PE(v)] and [PO(v)] require O(k - n® - log(n)) operations, the total
complexity comes from the number of such sets that must be considered. As the prefixes of v
that need to be computed is no more than log,(n), the total complexity of computing GE(v)
is O(k - n3 -log?(n)). Similarly as the complexity of computing PS(v) is O(k - n® - log(n)),
the complexity of computing G:S(v) is O(k - n® - log?(n)). <

» Theorem 25. Give a word v € X", the rank of v with respect to the set of palindromic
necklaces, RP(0), can be computed in O(k - n® - log(n)) time.

Proof. The number of odd length palindromic necklaces is given by Proposition 8 as k("~1/2,

Lemma 13 shows that the size of set PO(v), corresponding to the number of odd length
palindromic bracelets, can be computed in O(k - n3 - log(n)) time. By subtracting the size of

U.

4:13

CPM 2021

4:14

Ranking Bracelets in Polynomial Time

PO(v) from k(™~1/2 the rank of ¥ can be computed in O(k - n* - log(n)) time. Lemma 24
shows that of RP(7) can be computed in O(k - n® - log?(n)) time if the length of o is even.
Hence the total complexity is O(k - n® - log?(n)). <

5 Enclosing Bracelets

Following Lemma 4 and Theorem 25, the remaining problem is counting the number of
enclosing words. This section will provide a technique to count the number of necklaces
enclosing some word v. As in the palindromic case, the structure of these words will first be
analysed so that a more efficient algorithm can be derived.

» Proposition 26. The bracelet representation of every bracelet W enclosing the word v € X"
can be written as vy gx¢ where; x € X is a symbol that is strictly smaller than vy, and
¢ € X* is a word such that every rotation of (E[lﬁi]xd))R is greater than v.

Proof Sketch. The claim is shown by proving that any word not of this form has a rotation
of the reflection smaller than v, contradicting the assumption that the bracelet encloses

. <

» Proposition 27. Given a bracelet W enclosing the word v € X" of the form 17[17j]33q’7) as
given in Proposition 26. The value of x must be greater than or equal to Vj(j41) mod 1) where |
is the length of the longest Lyndon word that is a prefiz of vy ;.

High Level Idea for the Enclosing Case. Similar to Sections 4.1 and 4.2, the main idea is
to use the structure given in Proposition 26 as a basis for counting the number of enclosing
bracelets. For each value of ¢ and z, the number of possible values of ¢ are counted. This is
done in a recursive manner, working backwards from the last symbol. For each combination
of i and z, the key properties to observe are that (1) every suffix of ¢ must be greater than
or equal to vp; ;2 and (2) every rotation of J)Rm’;{ii] is greater than v.

These observations are used to create a tree, TEN (0,14,), where each vertex represents
a suffix of some possible value of ¢. Equivalently, the vertices of TEN (0,4, x) can be thought
of as representing the prefixes of ¢%. The leaf vertices of TEN (7,14, x) represent the possible
values of ¢. As in Section 4, each layer of TEN (9,4, z) is grouped into sets based on the
lexicographical value of the reflection of the suffixes, and the prefixes of the suffixes. Let
t € [lw—i,j€[t+i+1] and 5 Cyyyq 0. For the t* layer of TEN (v,i,x), the set
E(v,1,x,j,5) is introduced containing a subset of the vertices at layer t. The idea is to
use the values of j and s to divide the prefixes at layer t by lexicographic value and suffix
respectively. Let u € £(v,14,,j,5) be a suffix of some word w such that vy, ;2w is a bracelet
enclosing v. To ensure that the necklace represented by the reflection is strictly greater than
v, j is used to track the longest prefix of 4 that is a prefix of v. To ensure that there is
no rotation of .’L‘@ﬁ’i]’LTJR, the subword 5 C; ¥ is used to bound the value of @'. Formally,
E(v,1,x,7,5) contains every suffix u € TEN (0,14,) of length 7 where (1) the longest prefix
of u® that is also a prefix of v and (2) the subword 5 C; ¥ bounds u*.

As in Section 4 the number of leaf vertices are calculated by determining the size of the
sets £(v,1,x,J,5) at layer |v] — i — 2, and the number of children of each set. To determine
the size of the sets, two key observations must be made. The first is that given the word
u € E(v,i,7,7,5) and the symbol y € X, if yu € TEN (7,1,) then there exists some pair
J" € [n],5 Cjgj41 v such that yu € £(v,4,x,5',5"). Secondly, if yu € £(v,i,x,;',5), then
yw € E(v,i,x,j',§) for every w € £(v,1,x,7,5). These observations are proven in Lemma
28, as well as showing how to determine the values of j' and §'.

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

» Lemma 28. Given u € £(v,i,,5,5) and symbol y € X, the pair j’ € [n],5 Cg41 U such
that yu € E(v,4,2,5',8") can be computed in constant time. Further, if yu € E(v,i,x,5',5),
then yw € E(v,i,x,5',5) for every w € £(v,i,x,7,5).

Proof Sketch. The proof follows the same arguments as Lemma 10: the value of j' is either
Jj+1if y =0;41, or 0 otherwise. Then, the value of § is derived using the array XW. <

From Lemma 28, the size of £(v,1,x, j, 5) are computed using the sizes of £(v,1i,x, 5, 3)
for j/ € [0,n] and § € S(,|s] + 1). To compute the value of £(v,14,x,j,5), an array SE of
size k x n x n x n? is introduced such that the value of SE[z,1, j, 3] = |£(v,i,z,,5)|.

» Lemma 29. Let v € X", Let SE be a n x n? array such that SE[x,i,j,5] = |E(v,i,z,], 3)|
for j €[0,n] and 5 C v. Every value of SE[z,1i,j,3] is computed in O(k? - n*) time.

Proof Sketch. SE is computed using Lemma 28. The value of SE[z,1,j, 5] is computed
starting with |s| = n — 1 for every value of z,i, and j. Then, by iteratively decreasing
the length of 3, the value of SE[z,1, j, 5] for each of the n? - k arguments of z, i, j, 5 can be
computed in O(n - k) time; hence we need O(k? - n*) time in total. <

Once SE has been computed, the number of enclosing words can be computed using
SFE and each valid combination of i and z. This is done in a direct manner. Note that
the number of possible values of ¢ such that 17[1’i]x<5 represents a bracelet enclosing v is
equal to SE[z,i, j, 5] where j is the longest suffix of v} ;@ that is a prefix of v and 5 is the
subword that bounds xﬁﬁ‘)i]. As both values can be computed naively in O(n?) operations,
the complexity of this problem comes predominately from computing SFE.

» Theorem 30. The number of bracelets enclosing v € X" can be computed in O(n* - k?).

Proof. From Lemma 29 the array SE may be computed in O(n?* - k?) operations. Using
SE, let i € [1,n] and x € X. Further let [be the length of the longest Lyndon word that
is a prefix of vp ;. If the value of x is less than ¥;y1moq: or greater than or equal to
U;+1 then there is no bracelet represented by v[; jx¢. Similarly if x@[}ii] < U[1,441], then
any bracelet of the form z’;lﬂ»xqg does not enclose v. Otherwise, the number of enclosing
bracelets represented by 6[1’i]xq3 is equal to SFE]x,1,7,5] where j is the longest suffix of
Ujg,q7 that is a prefix of ¥ and 5 is the subword that bounds xz‘)[}ii]. By summing the value
of SE[x,i,j,5'] for each value of i € [1,n] and = € ¥ such that v ;2 is the prefix of the
representation of some bracelet enclosing v gives the number of enclosing bracelets. Therefore
0 xoff 4 <
RE@W)= > > 40 & < Vi1 modl OF & > Uity <

i€[l,n—1] z€X o .
l Jz€ SE[x,i,j,8] Otherwise.

Proof of Theorem 5. The tools are now available to prove Theorem 5 and show that it is
possible to rank a word v € X" with respect to the set of bracelets of length n over the
alphabet ¥ in O(k? - n*) steps. To rank bracelets, it is sufficient to use the results of ranking
v with respect to necklaces, palindromic necklaces and bracelets enclosing v, combining
them as shown in Lemma 4. Sawada et. al. provided an algorithm to rank v with respect
to necklaces in O(n?) time. It follows from Theorem 25 that the rank with respect to
palindromic necklaces can be computed in O(k - n3) time. Theorem 30 shows that the rank
with respect to bracelets enclosing v can be computed in O(k? - n*) time. As combining these
results can be done in O(1) steps, therefore the overall complexity is O(k? - n*). <

4:15

CPM 2021

4:16

Ranking Bracelets in Polynomial Time

Conclusions and Future Work. In this work we have presented an algorithm for the
ranking of bracelets in O(k - n*) time. Additionally, we have presented a complimentary
O(n* - k% -1og(k)) time algorithm for unranking. This expands upon the previous work on
ranking necklaces and Lyndon words in O(n?) time, and unranking in O(n?®) time. This
leaves the question of if there is a faster algorithm for ranking bracelets, which may be found
by deriving a faster algorithm to count the number of enclosing bracelets.

In addition to the importance of the results from the perspective of combinatorics on
words, a practical application of combinatorial necklaces and bracelets can be found in the
field of chemistry, since they provide discrete representation of periodic motives in crystals.
The problems on finding diverse and representative samples of languages of necklaces and
bracelets has served as a heuristic in the exploration of the space of crystal structures [2, 3],
since the problem is considered to be NP-hard [1]. The essential component for building
representative samples require efficient procedures for ranking bracelets.

—— References

1 Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, and Igor Potapov. On the Hardness
of Energy Minimisation for Crystal Structure Prediction. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 12011 LNCS, pages 587-596. Springer, January 2020. doi:10.1007/
978-3-030-38919-2_48.

2 Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, and Igor Potapov. The K-Centre
Problem for Necklaces. CoRR, May 2020. arXiv:2005.10095.

3 C. Collins, M. S. Dyer, M. J. Pitcher, G. F. S. Whitehead, M. Zanella, P. Mandal, J. B.
Claridge, G. R. Darling, and M. J. Rosseinsky. Accelerated discovery of two crystal structure
types in a complex inorganic phase field. Nature, 546(7657):280-284, 2017.

4 Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza. Unavoidable sets and circular
splicing languages. Theoretical Computer Science, 658:148-158, 2017. Formal Languages and
Automata: Models, Methods and Application In honour of the 70th birthday of Antonio
Restivo. doi:10.1016/j.tcs.2016.09.008.

5 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoeniz, AZ, USA, June
23-26, 2019, pages 638-649. ACM, 2019. doi:10.1145/3313276.3316334.

6 R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics : a foundation for
computer science. Addison-Wesley, 1994.

7 U. L. Gupta, D. T. Lee, and C. K. Wong. Ranking and unranking of B-trees. Journal of
Algorithms, 4(1):51-60, March 1983. doi:10.1016/0196-6774(83)90034-2.

8 Elizabeth Hartung, Hung Phuc Hoang, Torsten Miitze, and Aaron Williams. Combinatorial
generation via permutation languages. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1214-1225. STAM, 2020. doi:10.1137/1.9781611975994.74.

9 S. Karim, J. Sawada, Z. Alamgir, and S. M. Husnine. Generating bracelets with fixed content.
Theoretical Computer Science, 475:103-112, March 2013. doi:10.1016/j.tcs.2012.11.024.

10 Donald E. Knuth. The Art of Computer Programming: Combinatorial Algorithms, Part 1.
Addison-Wesley Professional, 1st edition, 2011.

11 T. Kociumaka, J. Radoszewski, and W. Rytter. Computing k-th Lyndon word and decoding
lexicographically minimal de Bruijn sequence. In Symposium on Combinatorial Pattern
Matching, pages 202-211. Springer, 2014.

12 S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polyno-
mials over finite fields. Theory of Computing, 12(1):1-27, 2016.

https://doi.org/10.1007/978-3-030-38919-2_48
https://doi.org/10.1007/978-3-030-38919-2_48
http://arxiv.org/abs/2005.10095
https://doi.org/10.1016/j.tcs.2016.09.008
https://doi.org/10.1145/3313276.3316334
https://doi.org/10.1016/0196-6774(83)90034-2
https://doi.org/10.1137/1.9781611975994.74
https://doi.org/10.1016/j.tcs.2012.11.024

D. Adamson, V.V. Gusev, l. Potapov, and A. Deligkas

13

14

15

16

17

18

19

Martin Mares and Milan Straka. Linear-time ranking of permutations. In Lars Arge, Michael
Hoffmann, and Emo Welzl, editors, Algorithms — ESA 2007, pages 187-193, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in linear time.
Information Processing Letters, 79(6):281-284, 2001. doi:10.1016/S0020-0190(01)00141-7.
J. M. Pallo. Enumerating, Ranking and Unranking Binary Trees. The Computer Journal,
29(2):171-175, February 1986. doi:10.1093/comjnl/29.2.171.

J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de
Bruijn sequences. Journal of Discrete Algorithms, 43:95-110, 2017.

Joe Sawada. Generating bracelets in constant amortized time. SIAM Journal on Computing,
31(1):259-268, January 2001. doi:10.1137/S0097539700377037.

Toshihiro Shimizu, Takuro Fukunaga, and Hiroshi Nagamochi. Unranking of small combinations

from large sets. Journal of Discrete Algorithms, 29:8-20, 2014. doi:10.1016/j.jda.2014.07.

004.
S. G. Williamson. Ranking algorithms for lists of partitions. STAM Journal on Computing,
5(4):602-617, 1976. doi:10.1137/0205039.

4:17

CPM 2021

https://doi.org/10.1016/S0020-0190(01)00141-7
https://doi.org/10.1093/comjnl/29.2.171
https://doi.org/10.1137/S0097539700377037
https://doi.org/10.1016/j.jda.2014.07.004
https://doi.org/10.1016/j.jda.2014.07.004
https://doi.org/10.1137/0205039

	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notation
	2.2 Bounding Subwords

	3 Ranking Bracelets
	4 Computing the rank RP({v}})
	4.1 Odd Length Palindromic Necklaces
	4.2 Even Length Palindromic Necklaces

	5 Enclosing Bracelets

