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Abstract
We consider two notions of covers of a two-dimensional string T . A (rectangular) subarray P of T is
a 2D-cover of T if each position of T is in an occurrence of P in T . A one-dimensional string S is a
1D-cover of T if its vertical and horizontal occurrences in T cover all positions of T . We show how to
compute the smallest-area 2D-cover of an m × n array T in the optimal O(N) time, where N = mn,
all aperiodic 2D-covers of T in O(N log N) time, and all 2D-covers of T in N4/3 · logO(1) N time.
Further, we show how to compute all 1D-covers in the optimal O(N) time. Along the way, we show
that the Klee’s measure of a set of rectangles, each of width and height at least

√
n, on an n × n

grid can be maintained in
√

n · logO(1) n time per insertion or deletion of a rectangle, a result which
could be of independent interest.
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1 Introduction

We say that a string C is a cover of a string S if each position of S is inside an occurrence of
C in S. In other words, S can be obtained from several copies of C by concatenations with
possible overlaps. As an example, string abaababaabaaba has proper covers aba and abaaba.
The shortest cover and all covers of a string can be computed in linear time; see [2, 7] and
[16, 17], respectively.

We consider two notions of covers of 2D-strings, 1D-covers and 2D-covers. We say that
a 2D-string C is a 2D-cover of a 2D-string T if each position of T is inside an occurrence
of C in T . For an example, see Figure 1. Let T be an m × n 2D-string with N = m · n.
An O(N2)-time algorithm for computing all 2D-covers of T and an O(N) average-time
algorithm for computing the smallest-area 2D-cover of T were shown in [19]. They also
present applications of the 2D-covers problem. The problem was also mentioned recently in
the context of string recovery in [1].
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12:2 Computing Covers of 2D-Strings

An O(N)-time algorithm for computing the 2D-covers of T that are of a square shape
n × n, in the case that T is a square matrix itself, was shown in [11]. Let us note that there
is a big difference between square-shaped 2D-covers and rectangular 2D-covers: we have
only O(n) square-shaped covers of an n × n 2D-string, while there may be Ω(n2) distinct
rectangular 2D-covers. This makes the rectangular case much harder.

0 2 0 2 0 0 2 0
1 3 1 3 1 1 3 1
0 2 0 2 0 0 2 0
1 3 1 3 1 1 3 1
0 2 0 2 0 0 2 0

0 2 0
1 3 1
0 2 0
1 3 1
0 2 0

0 2 0 2 0 0 2 0
1 3 1 3 1 1 3 1
0 2 0 2 0 0 2 0

0 2 0
1 3 1
0 2 0

Figure 1 A 2D-string and its proper 2D-covers (the first one is vertically periodic, the two others
are aperiodic).

We further say that a (1D) string C is a 1D-cover of a 2D-string T if each position of
T is inside an occurrence of C in a row, read from left to right, or in a column of T , read
top-down. For an example, see Figure 2.

Let us define the two types of covers of 2D-strings more formally. A subarray T [i . . j, i′ . . j′]
is called a 2D-substring of T . For an m′ × n′ 2D-string S, we denote:

Occ(S, T ) = {(i, j) : T [i . . i + m′ − 1, j . . j + n′ − 1] = S}, and

Cov(S, T ) =
⋃

{[i . . i + m′ − 1] × [j . . j + n′ − 1] : (i, j) ∈ Occ(S, T )}.

▶ Definition 1 (2D-cover). A 2D-string S is a 2D-cover of an m × n 2D-string T if
Cov(S, T ) = [1 . . m] × [1 . . n].

A 1D-string (or simply a string) can be considered as a 2D-string of height 1. We denote
by trans(S) the transpose of a 2D-string S. If S is a 1D-string, then trans(S) is a single
column. We say that a position (i, j) of a 2D-string T is horizontally covered by a 1D-string
S if (i, j) ∈ Cov(S, T ), and it is vertically covered by S if (i, j) ∈ Cov(trans(S), T ).

a a b a a b a a
b b a b a a b a
a a b a a b a b
a a a a b a a a
a b a a b a a a

Figure 2 The string abaa is a 1D-cover of this 2D-string, i.e., its occurrences as a horizontal strip,
read left-to-right, and as a vertical strip, read top-down, cover the 2D-string. Note that aaba is not
a 1D-cover here.

▶ Definition 2 (1D-cover). A 1D-string S is a 1D-cover of a 2D-string T if each position of
T is covered horizontally or vertically by S.

When restricted to 2D-strings T of height 1, i.e. 1D-strings, both definitions yield the
standard definition of a cover of a string.
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Our Results. For an m × n 2D-string T of size N = mn over an integer alphabet, we show
the following:

The smallest-area 2D-cover of T can be computed in O(N) time.
All aperiodic 2D-covers of T can be computed in O(N log N) time.
All 2D-covers of T can be computed in Õ(N4/3) time, or in Õ(N

√
max(m, n)) time.1

All 1D-covers of T can be computed in O(N) time.

The results concerning 2D- and 1D-covers can be found in Sections 3 and 5 and in
Section 6, respectively. First, in Section 2 we show several connections between covers and
periodicity in 2D. In the intermediate Section 4 we show a solution to an auxiliary geometric
problem that employs a solution to dynamic Klee’s measure for fat rectangles in a grid of
size N and is the cornerstone of our algorithm for computing all 2D-covers.

2 Preliminaries

Let T be an m × n 2D-string of height m and width n, T = T [1 . . m, 1 . . n]. We write
m = height(T ) and n = width(T ) and say that N = mn is the size of T , which we denote as
size(T ) = N . We assume that the 2D-string T for which covers are to be computed is over
an integer alphabet [1 . . NO(1)].

For an m × n 2D-string T , by hstr(T ) we denote a length-n 1D-string over alphabet
[1 . . n] such that hstr(T )[i] = hstr(T )[j] if and only if the i-th and j-th columns of T are
equal. Similarly we define vstr(T ), a length-m vertical string over alphabet [1 . . m], by taking
rows instead of columns. Let us denote by T (h), T <h>, T(w) the 2D-substrings consisting of
the first h rows, the last h rows, and the first w columns of T , respectively.

▶ Lemma 3. For an m × n 2D-string T , strings hstr(T (h)), hstr(T <h>), vstr(T(w)) for all
h, w can be computed in O(N) time.

Proof. We consider computing all strings hstr(T (h)) for h = 1, . . . , m; the other cases are
symmetric. First of all, we renumber consistently the characters in each row of T separately
so that they are in [1 . . n]. This can be done in O(N) time using one global radix sort. Thus
we have already computed hstr(T (1)). Assume now we have computed hstr(T (h−1)). Then
we compose a 2D-string T ′ of height 2, the first row is hstr(T (h−1)), the second one is the
h-th row of T . It is enough now to encode consistently the columns of T ′, which can be done
in O(n) time using radix sort as each column of T ′ is a pair of integers in [1 . . n]. ◀

Let us introduce a function Is2DCover(X, Y ) which tests if a 2D-string X is a 2D-cover of
a 2D-string Y . In [19], a 2D pattern matching algorithm [3, 6] and 2D dynamic programming
were used to show the following result.

▶ Lemma 4 ([19]). Is2DCover(X, Y ) can be computed in O(size(Y )) time.

A string B is a border of a string S if and only if B is both a prefix and a suffix of S. It
is readily verified that each cover of S is a border of S. A similar relation holds for covers of
2D-strings. A 2D-border of a 2D-string T is a 2D-string U that occurs in each of the four
corners of T . A 1D-border of a 2D-string is a 1D-string which is a prefix of the first row or
the first column of T and also a suffix of the last row or the last column of T ; see Figure 3.

▶ Observation 5. A 2D-/1D-cover of a 2D-string T is also a 2D-/1D-border of T .

1 The Õ(·) notation suppresses polylogarithmic factors.
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T

A

A

A

A

T

B

B

T

C

C

Figure 3 A is a 2D-border of T and B, C are 1D-borders of T (the cases when the top-left corner
is covered horizontally; there are two other cases).

All 1D-borders of a 2D-string can be computed in linear time using the Knuth-Morris-
Pratt (KMP) algorithm [14] as borders of strings of the form X#Y , for a sentinel letter #
that is not in the alphabet, where X and Y are the first row or column and the last row or
column of T , respectively. Moreover, all 2D-borders of a 2D-string can be computed in linear
time, as shown in the following lemma (which works for any alphabet with constant-time
letter comparisons).

▶ Lemma 6 ([11, Theorem 3.2]). All 2D-borders of a 2D-string T of size N can be computed
in O(N) time.

We say that a string S of length |S| has period p if S[i] = S[i + p] for all i = 1, . . . , |S| − p.
By per(S) we denote the smallest period of S. String S is called periodic if 2 · per(S) ≤ |S|
and aperiodic otherwise. Let us state the periodicity lemma, one of the most classical results
in combinatorics on strings.

▶ Lemma 7 (Periodicity Lemma (weak version) [13]). If a string S has periods p and q such
that p + q ≤ |S|, then gcd(p, q) is also a period of S.

We say that p is a vertical (resp. horizontal) period of a 2D-string T if it is a period of
each column (resp. row) of T . We denote the smallest vertical and horizontal periods of T by
vper(T ) and hper(T ), respectively. A 2D-string T is called periodic if 2 · vper(T ) ≤ height(T )
or 2 · hper(T ) ≤ width(T ), and aperiodic otherwise.

The shortest cover of a string is aperiodic [2]. A similar observation can be made in 2D.

▶ Observation 8. The shortest 1D-cover and the smallest-area 2D-cover of a 2D-string are
aperiodic.

▶ Lemma 9. For two 2D-borders of T of widths w and w′ with w < w′ ≤ 3
2 w, the one with

the smaller height is horizontally periodic. Symmetrically, for two 2D-borders of heights h

and h′ with h < h′ ≤ 3
2 h, the one with smaller width is vertically periodic.

Proof. Both 2D-borders occur in the top-left and the top-right corners. This means that,
for h equal to the minimum of the heights of the two 2D-borders, hstr(T (h))[1 . . w] appears
both as prefix and as suffix of hstr(T (h))[1 . . w′].

Hence, p = w′−w ≤ w
2 is a horizontal period of T [1 . . h, 1 . . w′]. Then, p is also a horizontal

period of the 2D-border of height h, as this 2D-border is a 2D-substring of T [1 . . h, 1 . . w′].
For the symmetric statement, it suffices to transpose all involved 2D-strings. ◀

3 Computing aperiodic 2D-Covers

We first consider computation of the smallest 2D-cover, which is also (automatically) aperiodic
and of all aperiodic 2D-covers. Later, in Section 5, we consider the more involved computation
of all 2D-covers.



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 12:5

3.1 Computing Smallest 2D-Cover in Linear Time
A 2D-substring of height h and width w is called a candidate if it is the smallest-area 2D-cover
of height h of both T (h) and T <h>, and the smallest-area 2D-cover of width w of T(w); see
Figure 4. Note that there is at most one candidate for each height h: the smallest-area
2D-cover of T (h) of height h. Further, note that each candidate is a 2D-border of T .

0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0

0 0 0
0 1 0
0 0 0

0

Figure 4 This 2D-string has two candidates, shown on the right. The 3 × 3 candidate is the
smallest-area 2D-cover.

Correctness of the algorithm is based on the following lemma.

▶ Lemma 10. If X, Y are candidates and height(X) < height(Y ), then
(a) width(X) ≤ width(Y ); (b) height(Y ) > 3

2 height(X);
(c) if X is a 2D-cover of T , then it is also a 2D-cover of Y .

Proof. If we had width(Y ) < width(X), then T (height(X)) would have a 2D-cover of height
height(X) and width width(Y ) (composed of the first height(X) rows of Y ), so X would not
be a candidate for its height. This proves part (a).

Now, recall that X and Y are 2D-borders of T . If we had height(Y ) ≤ 3
2 height(X), then

point (a) and Lemma 9 would imply that X is vertically periodic. Hence, X would not be
the smallest-area 2D-cover of T(width(X)) of width width(X) (Observation 8).

Part (c) follows from the fact that Y is a 2D-border of T , similarly to the fact that a
cover C of a 1D-string S is a cover of every border B of S that satisfies |C| ≤ |B|; see [2]. ◀

▶ Remark 11. Lemma 10 (a) implies that there is exactly one smallest-area 2D-cover of T . In
particular, [19] also considered the problem of computing an h × w 2D-cover that is minimal
in terms of h + w or max(h, w), and our algorithm below solves these variants as well.

Algorithm 1 Smallest 2D-cover.

CAND := the set of candidates;
X := the element of CAND of smallest height;
remove X from CAND;
foreach Y in CAND, in increasing order of heights do

if not Is2DCover(X, Y ) then X := Y ;
return X;

▶ Theorem 12. The smallest-area 2D-cover of a 2D-string T of size N can be computed in
O(N) time.

Proof. We linearize in O(N) time all 2D-strings T (h), T <h>, T(w) using Lemma 3, and
compute their shortest covers in the sense of 1D-strings. Then T [1 . . h, 1 . . w] is a candidate
if and only if the shortest covers of hstr(T (h)), hstr(T <h>) are of length w and the shortest
cover of vstr(T(w)) is of length h.

CPM 2021
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We proceed as in Algorithm 1. The most expensive part of the algorithm is the operation
Is2DCover(X, Y ). It costs O(size(Y )) time. The sum of these costs is linear since the sizes
of Y are geometrically growing (in each step by a factor at least 3/2) due to points (a) and
(b) of Lemma 10. The largest among them has size O(N).

The correctness of the algorithm follows from point (c) of Lemma 10. More precisely, an
invariant holds that among all the candidates that were considered in the foreach-loop up to
a given point, only X can be the smallest-area 2D-cover of T . Indeed, if Is2DCover(X, Y ) is
true, then Y is not the smallest-area 2D-cover because it has a 2D-cover itself, and otherwise
X cannot be a 2D-cover of T by point (c) of Lemma 10. ◀

3.2 Computing All Aperiodic 2D-Covers
We start with a tight asymptotic bound on the number of aperiodic 2D-covers.

▶ Lemma 13. A 2D-string T of size N has O(log2 N) distinct aperiodic 2D-covers. Moreover,
there is an infinite family of binary 2D-strings with Ω(log2 N) distinct aperiodic 2D-covers.

Proof. Lemma 9 implies that there are O(log2 N) distinct aperiodic 2D-borders of T : at
most one of height in [( 3

2 )i . . ( 3
2 )i+1) and width in [( 3

2 )j . . ( 3
2 )j+1) for each pair of non-negative

integers i, j. The same bound applies to 2D-covers due to Observation 5.
For i = 1, 2, let Ci be the set of lengths of covers of a string Si of length ni over alphabet Σi.

Then, an n1 × n2 2D-string T over alphabet Σ1 × Σ2 defined as T [i, j] = (S1[i], S2[j]) has
2D-covers of all dimensions in C1 × C2.

A binary Fibonacci string of length n has Θ(log n) aperiodic covers [10]. Hence, with
the above construction we can obtain a 2D-string of size N = n2 over the alphabet with 4
letters with Ω(log2 N) aperiodic 2D-covers. We can encode each letter by its 2-digit binary
representation, obtaining a binary 2D-string with Ω(log2 N) aperiodic 2D-covers. ◀

A direct application of the bound from Lemma 13 and the Is2DCover routine would
yield an O(N log2 N)-time algorithm. The theorem below, whose proof can be found in
Appendix B, shaves a log N factor from this complexity. Let us note that it uses the same
order of inspecting candidates as the algorithm Simple-All-2D-covers below.

▶ Theorem 14. All aperiodic 2D-covers of a 2D-string of size N can be computed in
O(N log N) time.

4 Rectangle Cover Problem

In the Klee’s measure problem in 2D, we are given M rectangles in the plane and are to
output the area of the union of these rectangles. This problem can be solved in O(M log M)
time in the offline setting [4, 8]. In the dynamic variant of the problem, where rectangles can
be inserted and deleted, Klee’s measure can be maintained in Õ(

√
M) time per update [18].

Below, we consider a special version of the Klee’s measure problem with fat rectangles in
a grid of size bounded by N and use it to solve an auxiliary problem called Rectangle
Cover. Details omitted due to space constraints can be found in Appendix A.

For a set F of rectangles let us denote by Fh,w the subset of rectangles with height at
least h and width at least w.

Rectangle Cover
Input: A set F consisting of M rectangles in [0 . . m] × [0 . . n], where N = m · n, n ≥ m.
Output: All pairs (h, w) (called good pairs) for which |

⋃
Fh,w| = N .
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We will reduce Rectangle Cover to a restricted variant of the following problem.

Dynamic Klee’s Measure
Input: An initially empty set of rectangles R in [0 . . m] × [0 . . n]; N = mn, n ≥ m.
Updates: Insert or delete a rectangle to R and return the area of

⋃
R.

We start by a direct reduction that we then refine in Lemma 16.

▶ Lemma 15. The Rectangle Cover problem reduces in O(M + N) time to the Dynamic
Klee’s Measure problem with a grid of the same dimensions and O(M) updates.

Proof. Note that if (h, w) is a good pair, then (h − 1, w) and (h, w − 1) are good pairs as
well. Hence, we will compute for each h, the maximum w for which (h, w) is good, as shown
in Algorithm 2. We use the following equality and a symmetric one.

Fh,w = Fh,w+1 ∪ {X ∈ F : width(X) = w, height(X) ≥ h}.

Algorithm 2 Rectangle Cover via Dynamic Klee’s Measure.

w := n + 1; R := ∅;
for h := 1 to m do

while w > 0 and |
⋃

R| ≠ N do
// Invariant: R = Fh,w

w := w − 1;
R := R ∪ {X ∈ F : width(X) = w, height(X) ≥ h};

Report (h, 1), . . . , (h, w);
R := R \ {X ∈ F : height(X) = h};

Let us note that each rectangle from F is inserted at most once to R and deleted at
most once from R. The condition in the while-loop can be checked by computing R’s Klee’s
measure. Rectangles that are to be inserted to R and deleted from R in subsequent steps
can be easily determined if all rectangles in F are pre-sorted by their widths and heights,
via bucket sort, in O(M + N) time. ◀

A rectangle will be called a fat rectangle if both its width and height are at least
√

n.

▶ Lemma 16. The Rectangle Cover problem reduces in Õ(M min{m,
√

n} + N) time
to the Dynamic Klee’s Measure problem on a grid of the same dimensions and O(M)
insertions and deletions of fat rectangles.

Proof. For every h ≤ min{m,
√

n}, we compute the maximum w such that (h, w) is a good
pair using binary search. In order to test a candidate (h, w), we compute the area of the
union of rectangles from Fw,h (i.e., solve static Klee’s measure problem in 2D) using one of
the classic O(M log M)-time approaches [4, 8]. If m >

√
n, the same approach is then used

for every w ≤
√

n. Finally, for h, w >
√

n we use Algorithm 2 from the proof of Lemma 15.
More precisely, we start the for-loop with h = ⌈

√
n⌉ and break when w drops below ⌈

√
n⌉.

Thus, the set R contains only fat rectangles throughout the execution of the algorithm. ◀

A proof of the following lemma can be found in Appendix A.

▶ Lemma 17. The Dynamic Klee’s Measure problem with fat rectangles can be solved in
Õ(

√
n) time per operation, after Õ(N)-time preprocessing.

CPM 2021



12:8 Computing Covers of 2D-Strings

▶ Lemma 18. The Rectangle Cover problem can be solved in Õ(M · min{m,
√

n} + N)
time.

Proof. We use Lemma 16 to reduce the problem to Dynamic Klee’s Measure problem on
fat rectangles with O(M) updates in Õ(M · min{m,

√
n} + N) time, and Lemma 17 to solve

the latter problem with Õ(
√

n) update time. Note that the Dynamic Klee’s Measure
problem is void if m ≤

√
n (no fat rectangle exists). ◀

▶ Remark 19. To solve the Rectangle Cover problem it is not necessary to compute the
exact area of union of the fat rectangles but just to check if they cover the whole grid. This
would slightly simplify the solution, as shown in Appendix A.1, but the main idea would stay
intact. We decided to state the auxiliary problem as a variant of dynamic Klee’s measure
since it could find other applications.

5 Computing All 2D-Covers

Let us start with simple but less efficient algorithms. We say that (h, w) is a weak candidate
if T [1 . . h, 1 . . w] is a 2D-cover of T (h) and of T(w). Let us denote by Lh the sorted list of
widths of weak candidates of height h.

For a list L of integers we denote by cut(L, y) the list of elements x ∈ L such that x ≤ y.
We next present two preliminary algorithms for computing all 2D-covers of T .

Algorithm 3 Simple-All-2D-covers.

Result := ∅;
for h := 1 to m do

foreach z ∈ Lh, in decreasing order do
if Is2DCover(T [1 . . h, 1 . . z], T ) then

Result := Result ∪ {(h, w) : w ∈ cut(Lh, z)}; break;
else remove z from all lists Lt;

return Result;

Algorithm 4 Binary-Search-All-2D-covers.

Result := ∅;
for h := 1 to m do

// Binary search with O(log n) instances of Is2DCover
z := max ({w ∈ Lh : Is2DCover(T [1 . . h, 1 . . w], T )} ∪ {0}));
if z > 0 then Result := Result ∪ {(h, w) : w ∈ cut(Lh, z)};

return Result;

▶ Proposition 20. The algorithm Simple-All-2D-covers outputs all 2D-covers of T in O(N3/2)
time if T is a square matrix, and O(N max(m, n)) time in general. The algorithm Binary-
Search-All-2D-covers computes all 2D-covers in O(N3/2 log N) time.

Proof. In the algorithm Simple-All-2D-covers in each column we make at most one negative
test of Is2DCover and in each row at most one positive test. Hence, the time complexity is
O(N max(m, n)).
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We run the algorithm Binary-Search-All-2D-covers for T if m ≤ n and otherwise for
T transposed. For each h we execute O(log n) instances of Is2DCover, which require time
O(N log n) in total for a given h. Summing over all heights, this yields O(Nm log n) =
O(N3/2 log N) time. ◀

We proceed with faster computation of all 2D-covers. Henceforth let us assume w.l.o.g.
that n ≥ m. Let T be an m × n 2D-string of size N = mn. We say that a 2D-string U is an
(x, y)-array if

height(U) ∈ [
( 3

2
)x

. .
( 3

2
)x+1) and width(U) ∈ [

( 3
2
)y

. .
( 3

2
)y+1).

We call a 2D-border of T that is an (x, y)-array an (x, y)-border of T .
We say that a 2D-string U is of periodic type (p, q, a, b) if vper(U) = p, hper(U) = q,

height(U) mod p = a, and width(U) mod q = b.

▶ Lemma 21. For given x, y, all (x, y)-borders of T are of the same periodic type.

Proof. Assume there are two (x, y)-borders U and V of T . Let us show that vper(U) =
vper(V ). If height(U) = height(V ), then each column of U occurs as a column of V and
vice versa. Hence, vper(U) = vper(V ). If height(U) ̸= height(V ), then p := |height(U) −
height(V )| ∈ [1 . . 1

2 · ( 3
2 )x) is a vertical period of both U and V , so both are vertically periodic

with period p (c.f. Lemma 9). Let p′ = vper(U) and p′′ = vper(V ). Then p′ ≤ p and both p

and p′ are periods of each column of U . Hence, by the periodicity lemma (Lemma 7), p′ | p.
Similarly for p′′. Hence, p′ (p′′) is the least common multiple of smallest periods of the set
of length-p prefixes of columns of U (resp. V ). The sets of length-p prefixes of columns of
U and V are the same. We thus have vper(U) = p′ = p′′ = vper(V ). Moreover, p′ divides
|height(U) − height(V )|, which shows that height(U) mod p = height(V ) mod p. The proof
for the horizontal period is symmetric. ◀

Let us recall that all 2D-borders of T can be computed in O(N) time (Lemma 6). For
each non-empty group of (x, y)-borders, we can compute the periodic type of one of its
representatives U in O(( 3

2 )x+y) time using the KMP algorithm for each column and row.
This gives O(N) time in total. Below we show how to compute all 2D-covers of T of a given
periodic type (p, q, a, b) in Õ(N · min{m,

√
n}) time.

Let us henceforth fix a periodic type (p, q, a, b) and denote X = T [1 . . p + a, 1 . . q + b].
We call X the root of all 2D-covers of this periodic type. We denote by VX the set of top-left
corners of occurrences of X in T . It can be computed using 2D pattern matching for X.

A grid of points {(u + ip, v + jq) : 0 ≤ i < α, 0 ≤ j < β} for any u, v will be called an
(α, β)-r-grid, or simply an r-grid. If a 2D-string U of height h and width w has a periodic
type (p, q, a, b), then its occurrence in T implies a (⌊h/p⌋, ⌊w/q⌋)-grid subset of VX . See
Figure 5. Moreover, such an r-grid in VX always generates an occurrence of U in T . An
(α, β)-r-grid D in VX is called maximal if there is no (α′, β′)-r-grid D′ in VX such that D is
a proper subset of D′. The next lemma follows from [9, Section 5].

▶ Lemma 22. The set of maximal r-grids in VX can be computed in O(N) time.

Every r-grid in VX can be extended to a maximal r-grid in VX . This suggests the following
important observation.

▶ Observation 23. A 2D-string of height h and width w and of periodic type (p, q, a, b) is a
2D-cover of T if and only if T is covered by substrings of T that are generated by maximal
(α, β)-r-grids satisfying α ≥ ⌊h/p⌋, β ≥ ⌊w/q⌋.
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Figure 5 Let (p, q, a, b) = (3, 3, 0, 0). Some (not all) occurrences of X in T are shown, with the
corresponding elements of VX drawn as dots. The (2, 4)-r-grid in the black frame is maximal, whereas
the yellow (2, 3)-r-grid is not; it is a part of two maximal r-grids: blue+yellow and red+yellow.

From now on we will treat 2D-substrings generated by maximal r-grids in T as rectangles.
The following lemma follows directly from the above discussion.

▶ Lemma 24. The problem of computing all 2D-covers of T of a given periodic type reduces
in O(N) time to an instance of Rectangle Cover with M = O(N) and the same N .

▶ Theorem 25. All 2D-covers of a 2D-string of size N = m × n, n ≥ m, can be computed
in Õ(N · min{m,

√
n}) time or Õ(N4/3) time.

Proof. For each of the Õ(1) groups of (x, y)-borders, we apply Lemma 24 to reduce the
problem in scope to Rectangle Cover in O(N) time, then we apply the algorithm from
Lemma 18. In total we obtain Õ(N · min{m,

√
n}) time, and we can use the fact that

min{m,
√

n} ≤ (m · n)1/3 = N1/3. ◀

6 Computing 1D-Covers

Let us recall that a 1D-cover of an m × n 2D-string T must be a 1D-border of T (see Obser-
vation 5 and Figure 3). We will only show how to compute 1D-covers of T which are prefixes
of the first row and suffixes of the last row. The three other cases can be treated analogously.
Henceforth we denote W = T [1, 1 . . n]#T [m, 1 . . n], where # is some sentinel letter not in
the alphabet.

6.1 An O(N log N)-Time Algorithm Computing All 1D-Covers
We will partition the 1D-borders in scope in O(log n) groups based on their periods. Then,
we will show how to process each group in O(N) time, relying on the following property:
each element of a group G can be covered by each of the elements of G that are shorter
than it. Hence, it will suffice to compute the longest element of each group that covers T .

For a (1D-)string S, let us denote by B(S) all borders of S which are either aperiodic
or are the longest ones with a given smallest period. Let us denote by A(S) the set of all
aperiodic borders of S; A(S) ⊆ B(S).

▶ Fact 26 ([12]). The size of B(S) is O(log |S|).

By a big border of a string X, we mean X itself or any border Z of X such that
|Z| ≥ 2 · per(X). Given a string S of length n, due to Fact 26, we can partition its borders
into O(log n) groups, such that the following holds for each group G: G is the set of big
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borders of its longest element X ∈ B(S). We denote such a group by Group(X) and call
per(X) the period of the group. In particular, for a string X ∈ B(S) of the form UkV with
k ≥ 2, per(X) = |U | and 0 ≤ |V | < per(X), we have Group(X) = {U jV : j ∈ [2 . . k]}.

▶ Observation 27. The defined groups form a partition of the set of borders of S.

▶ Example 28. For S = (abaab)5a, we have B(S) = {a, aba, abaaba, S} and Group(S) =
{(abaab)ia : i = 2, . . . , 5}. The groups of the remaining elements of B(S) are singletons.

The following lemma will be used in Section 6.3, but we state it here as the required
definitions have been already introduced. Its proof can be found in Appendix B.

▶ Lemma 29. For X, Y ∈ B(S) with |X| < |Y |, we have per(Y ) ≥ per(X) · |Group(X)|.
Moreover, for X, Y, Z, W ∈ B(S) with |X| < |Y | < |Z| < |W |, we have per(W ) ≥ 9

8 per(X).

Every 1D-cover of T that is a prefix of the first row of T and a suffix of the last row
of T is in Group(X) for some X ∈ B(W ). The following lemma gives us the monotonicity
property that was mentioned before, which will allow us to handle each group efficiently.

▶ Lemma 30. If some Z ∈ Group(X) for X ∈ B(W ) is a 1D-cover of T , then all elements
of Group(X) that are shorter than Z are also 1D-covers of T .

Proof. If |Group(X)| > 1, then X is periodic. Thus, the elements of Group(X) are of the
form U jV , where V is a (possibly empty) prefix of U and j ≥ 2. It is then readily verified
that Z = UkV , and hence each of its occurrences in T , can be covered by U jV for all
j ∈ [2 . . k). ◀

Let us introduce two arrays that are building blocks of the algorithm. For a family F of
subintervals of [1 . . n], for each k ∈ [1 . . n], let us denote by F-Cov[k] the length of the longest
interval in F containing k. If there is no such interval for a given k, then F-Cov[k] = 0. The
table F-Cov can be computed in O(|F| + n) time by sorting the intervals using radix sort,
and then performing a standard line sweeping algorithm.

For two strings X and Y , we define the table LBBX,Y such that LBBX,Y [i] is the length
of the longest big border in Group(X) which starts at position i in Y ; LBBX,Y [i] = 0 if there
is no such big border.

Algorithm 5 1D-Covers from a group.

Input: A 2D-string T and X ∈ B(W ), where W = T [1, 1 . . n]#T [m, 1 . . n].
Output: The elements of Group(X) that cover T .
processing rows:
for i := 1 to m do

Y := i-th row of T ; F := { [ j . . j + LBBX,Y [j] − 1 ] : j ∈ [1 . . n]};
for j := 1 to n do maxCov[i, j] := F-Cov[j];

processing columns:
for j := 1 to n do

Y := j-th column of T ; F := { [ i . . i + LBBX,Y [i] − 1 ] : i ∈ [1 . . m]};
for i := 1 to m do maxCov[i, j] := max(maxCov[i, j], F-Cov[i]);

min := min{maxCov[i, j] : 1 ≤ i ≤ m, 1 ≤ j ≤ n};
return {Z ∈ Group(X) : |Z| ≤ min};
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12:12 Computing Covers of 2D-Strings

▶ Lemma 31. Given strings X and Y and integers |X| and per(X), LBBX,Y can be computed
in time O(|Y |).

Proof. If X is not periodic, Group(X) = {X} and it suffices to find all occurrences of X in
Y using the KMP algorithm. Otherwise, let p = per(X). We use the KMP algorithm to
find all occurrences of U := X[1 . . 2p + (|X| mod p)] in Y . We compute the LBBX,Y array
right-to-left. If there is an occurrence of U in Y starting at position i, then LBBX,Y [i] =
max(|U |, p + LBBX,Y [i + p]). Otherwise, LBBX,Y [i] = 0. ◀

The algorithm processing a single group is specified in the pseudocode above. Each row
and column of T is processed separately. The goal is to compute, for each position of T ,
the longest element of Group(X) that covers it, eventually stored in maxCov[i, j]. Then, by
taking the minimum over all positions of T , due to Lemma 30, we can identify the elements
of Group(X) that cover T . Each row/column Y is processed according to the following
observation, in time proportional to its length due to efficient computation of F-Cov and
LBB arrays (Lemma 31).

▶ Observation 32. Let X and Y be two strings and k be an integer, such that X ∈ B(Y )
and k ∈ [i . . i + LBBX,Y [i] − 1]. Then, all elements of {Z ∈ Group(X) : |Z| ≤ LBBX,Y [i]}
cover the position k in Y . If [i . . i + LBBX,Y [i] − 1] is the maximal (over all i’s) fragment in
Y containing position k, then LBBX,Y [i] is the length of the longest element of Group(X)
covering position k in Y .

▶ Lemma 33. Algorithm 5 computes all the 1D-borders from a single group Group(X) that
cover T in O(N) time.

We thus obtain an O(N log N)-time algorithm for the problem in scope. We first compute
all borders of W and organize them in groups Group(X) for X ∈ B(W ) in O(n) time. Then,
we process each group separately, obtaining the following preliminary result.

▶ Proposition 34. All 1D-covers of a 2D-string of size N can be computed in O(N log N)
time.

6.2 A Linear-Time Algorithm Computing Aperiodic 1D-Covers
We will now show how to compute in linear time all aperiodic 1D-covers of T . The developed
tools will also be useful in obtaining a general algorithm that computes all 1D-covers. A
shortest 1D-cover is aperiodic (Observation 8), so in this section we also obtain a linear-time
algorithm for computing all shortest 1D-covers.

We first prove a lemma that will allow us to efficiently process aperiodic borders of W .

▶ Lemma 35. We have
∑

B∈A(W ) |Occ(B, T )| = O(N).

Proof. Let B1, . . . , Bk be all aperiodic 1D-borders of W . First, two occurrences of an
aperiodic string S can overlap by up to |S|/2 − 1 letters. Hence, |Occ(Bi, T )| = O(N/|Bi|).
Further, for each i ∈ [1 . . k), Bi is a border of Bi+1 and hence, since the two occurrences of
Bi overlap by less than |Bi|/2 letters, we have |Bi+1| > 3|Bi|/2. This implies the lemma. ◀

By the next lemma, we can compute all sets Occ(B, T ), for B ∈ A(W ), in time O(N).
The lemma can be proved using the PREF array [12], as shown in Appendix B, or the more
heavyweight internal pattern matching queries [15].

▶ Lemma 36. Let S1, . . . , Sk be prefixes of W . Then we can compute all the sets Occ(Si, T )
in O(N +

∑k
i=1 |Occ(Si, T )|) time.
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We reduce our problem to the following auxiliary problem.

Coloured Strips Problem
Input: O(N) horizontal/vertical line segments on an m × n grid, where N = mn. Each
line segment has a colour in 1, . . . , ⌊log N⌋.
Output: For each colour answer YES iff segments of this colour cover the whole grid.

▶ Lemma 37. Computing all aperiodic 1D-covers of a 2D-string of size N = mn can be
reduced in O(N) time to an instance of Coloured Strips Problem with the same m, n.

Proof. We construct an instance of the Coloured Strips Problem by choosing line
segments of colour i ∈ [1 . . k] to be inclusion-maximal fragments of rows/columns of T

covered by Bi, where A(W ) = {B1, . . . , Bk}.
The set of horizontal line segments of colour i is {[x, y . . y+|Bi|−1] : (x, y) ∈ Occ(Bi, T )},

and the set of vertical line segments is {[x . . x + |Bi| − 1, y] : (x, y) ∈ Occ(trans(Bi), T )}.

Lemmas 35 and 36 show that the total number of line segments is indeed O(N) and that
they can be computed in linear time, respectively. ◀

▶ Lemma 38. The Coloured Strips Problem can be solved in O(N) time.

Proof. We first use radix sort to merge horizontal line segments of the same colour as long as
any two intersect. We then repeat this for vertical line segments. Now no two line segments
of the same direction and colour intersect.

We will assign in O(N) time to each grid cell (i, j) a bitmask hcol(i, j), such that its
kth bit is set iff cell (i, j) is covered by a horizontal line segment of colour k. We explicitly
store hcol(i, j) in O(1) words of space. We process each row using a line sweeping algorithm,
updating the maintained bitmask whenever we encounter the endpoint of a horizontal line
segment. We similarly compute an analogously defined bitmask vcol(i, j) for vertical line
segments, for each cell (i, j).

In the end, we return all colours in the bitmask
∧
i,j

(hcol(i, j) ∨ vcol(i, j)). ◀

The last two lemmas imply immediately the following preliminary result.

▶ Proposition 39. All aperiodic 1D-covers of a 2D-string of size N can be computed in
O(N) time.

Next, we will present a more involved algorithm that computes all 1D-covers in linear
time. It will rely on several additional technical concepts.

6.3 A Linear-Time Algorithm Computing All 1D-Covers
We will first show how to efficiently process all groups with large periods, using the fact that
a pattern P in a text Y has O(|Y |/per(P )) occurrences. For each group with period p greater
than log N , we will compute all occurrences of its shortest element in each row/column in
O(N/p) total time, after a global O(N)-time preprocessing, using Lemma 36. Then, using
this representation, we will be able to compute the elements of the group that cover T in
O(N log N/p) time. The periods grow geometrically by Lemma 29 and are at least log N , so
this yields O(N) time in total.

Then, we could employ Lemma 33 for each group with period at most log N . There are
only O(log log N) such groups, as the period of each group is at least a constant factor larger
than the period of the previous group. Thus, we could process these groups in O(N log log N)
time in total.
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12:14 Computing Covers of 2D-Strings

We will conclude this section by showing how to process in linear time all groups with
periods not larger than log N using a variant of the Coloured Strips Problem, thus
obtaining a linear-time algorithm for the problem in scope.

6.3.1 Handling Groups with Large Periods
We will rely on the fact that the total number of essential intervals in the families F
in Algorithm 5 is of linear size.

For each group Group(X) with period greater than log N , we first invoke Lemma 36 for
the shortest element S ∈ Group(X). Then we perform the following strip-merging routine:
In each row/column, we merge any two occurrences of S that are exactly per(S) positions
apart as long as we can. If occurrences are treated as segments, this produces O(N/per(S))
horizontal/vertical line segments; each segment stores a weight equal to its length. We have
thus reduced the problem in scope to the following problem.

Restricted 2D Manhattan Skyline Problem
Input: M horizontal/vertical line segments with positive weights in an m × n grid.
Output: A point of the grid with minimum weight; the weight of a point is equal to
the maximum weight of a line segment that covers it or 0 if the point is not covered by
any segment.

▶ Lemma 40. The Restricted 2D Manhattan Skyline Problem can be solved in time
O(M log M).

Proof. We first sort the endpoints of line segments in O(M log M) time; first by their x

coordinate and then by their y coordinate. We now present a top-to-bottom line sweeping
algorithm. The broom stores, for each point in [1 . . n], the maximum weight of a vertical
segment that contains it provided that the weight is positive. We implement the broom as a
balanced BST. When processing a row with k horizontal segments, [1 . . n] can be split into
O(k) pairwise-disjoint intervals with equal maximum weight of a horizontal segment covering
them. Then, by asking a query to the broom for each of the O(k) pairwise-disjoint intervals,
we are able to compute the maximum weight of a vertical segment that intersects each of the
intervals; consequently, a point of this row with minimum weight. Each query to the balanced
BST is answered in O(log M) time, so a row with k horizontal line segments is processed
in O(k log M) time. The total number of updates to the broom is upper bounded by the
number of endpoints of vertical line segments, and each of them is processed in O(log M)
time. The stated complexity follows. ◀

▶ Lemma 41. All 1D-covers with period greater than log N of a 2D-string T of size N can
be computed in time O(N).

Proof. We have O(log n) groups to process, each with period greater than log N . We
showed that we can reduce, in O(N) time, the problem in scope to O(log n) instances of the
Restricted 2D Manhattan Skyline Problem; for each group with period p an instance
with M = O(N/p). The periods grow geometrically (Lemma 29) and are at least log N , so
the time needed to solve all these instances is O(N/ log N · log N) = O(N) by Lemma 40. ◀

6.3.2 Handling Groups with Small Periods
Let us consider all groups with periods at most log N . If any of the considered groups contains
at least log n strings, we treat it in O(N) time, invoking Algorithm 5 (see Lemma 33). Note
that, due to Lemma 29, we can have at most one such group.
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▶ Lemma 42. The remaining groups with periods at most log N have O(log N) elements in
total.

Proof. The number of groups is O(log log N) since their periods are geometrically increasing
by Lemma 29. Moreover, if n1, . . . , nk are sizes of the non-singleton groups, then by Lemma 29
we have

∏k
i=1 ni = O(log N), which implies that

∑k
i=1 ni = O(log N). ◀

We now have only O(log N) strings to test. Unfortunately, we cannot use the Coloured
Strips Problem directly, because the reduction of Lemma 37 could yield ω(N) line segments,
as now we take several strings from each group. However, we can treat the elements of each
group as a batch. Let us consider the following variant of the Coloured Strips Problem.

Coloured Strips Problem with Shades
Input: O(N) horizontal/vertical line segments on an m × n grid, where N = mn. Each
line segment has a colour i and a shade in [1 . . si], such that

∑
i si = O(log N). The

shades of a colour i are sorted from the lightest (1) to the darkest (si). No three line
segments of the same colour intersect and none is contained in another line segment of
the same colour.
Output: For each colour i, its darkest shade x such that line segments of colour i and
shades non-darker than x cover the grid, if any.

Note that the above problem with one colour is a variant of the Restricted 2D
Manhattan Skyline Problem.

For each group that we are to process, we invoke Lemma 36 for its shortest element, and
then perform the strip-merging routine, outlined in Section 6.2 – the group number is the
colour of the line segment and the length of a line segment is now its shade. Over all groups
this takes O(N) time. We summarize the above discussion in the following statement.

▶ Lemma 43. Computing all 1D-covers of a 2D-string of size N = m × n with period
not larger than log N can be reduced in O(N) time to an instance of Coloured Strips
Problem with Shades with the same m, n.

The Coloured Strips Problem with Shades could be solved in O(N) time even
without the assumptions on the intersections of segments of the same colour, but their
presence makes the solution simpler.

▶ Lemma 44. The Coloured Strips Problem with Shades can be solved in time O(N).

Proof. The proof mimics that of Lemma 38, with a few differences. We compute for each
grid cell (i, j) a bitmask hcol(i, j) of size

∑
i si that specifies, for each colour k and shade

a, if the cell is covered by a horizontal line segment of colour k and a shade of darkness
at least a. Now a horizontal line segment of shade a sets all bits of shades 1, . . . , a in the
bitmask, which can be done in O(1) time with standard word-RAM operations.

With the presence of shades, we can no longer merge intersecting horizontal line segments
of the same colour. However, when processing each row using a line sweeping algorithm, the
simplifying assumptions in the problem guarantee that we may have at most two active line
segments of the same colour. We maintain their shades explicitly, which lets us update the
maintained bitmask.

We then compute vcol-bitmasks and return the darkest shade of each colour whose
corresponding bit is set in the bitmask

∧
i,j

(hcol(i, j) ∨ vcol(i, j)). ◀

By combining Lemmas 41, 43 and 44 we arrive at the main result of this section.

▶ Theorem 45. All 1D-covers of a 2D-string of size N can be computed in time O(N).
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A Special Case of Klee’s Measure Problem

In this section we show a solution to a special case of a dynamic version Klee’s measure
problem. Let us start with an auxiliary lemma.

We say that a rectangle is a corner rectangle in a grid if one of its corners coincides with
a corner of the grid. We say that a rectangle is a side rectangle of a grid if its width or height
is equal to k and one of its sides coincides with one of the sides of the grid. Our solution is
based on the following key lemma.

▶ Lemma 46. Dynamic Klee’s Measure problem on a k × k grid with only corner and
side rectangles inserted to R can be solved in Õ(k) time per insertion/deletion of a corner
rectangle and Õ(1) time per insertion/deletion of a side rectangle.

Proof. Let us first consider operations on corner rectangles. Each corner rectangle covers a
top or bottom interval of positions in each grid column. Hence, the total area that is not
covered by corner rectangles consists of at most one interval of positions in each column; see
Figure 6. This representation of the non-covered area can be computed in O(k) time if, for
each type of a corner rectangle (top-left, top-right etc.) we store the maximum-height corner
rectangle of each possible width. These values can be updated in Õ(k) time per insertion or
deletion of a corner rectangle if all corner rectangles are stored in a balanced binary search
tree (BST).

Figure 6 The intersection of the region that is not covered by corner rectangles with each column
consists of at most one interval (left). The region that is not covered by side rectangles is a rectangle
(right). The non-covered regions are shown in white.

The area not covered by side rectangles is a rectangle that only depends on the two
highest side rectangles that contain the horizontal sides of grid and the two widest side
rectangles that contain the vertical sides; see Figure 6 again. The rectangle can be updated
in Õ(1) time after an insertion or a deletion of a side rectangle if all side rectangles are stored
in a balanced BST. We construct a data structure that is recomputed from scratch after
each insertion or deletion of a corner rectangle and allows us to compute the area of the
intersection of the region that is not covered by corner rectangles with a query rectangle.

The area of each column covered by corners can be represented by (at most) two disjoint
vertical strips (i.e., width-1 rectangles), each adjacent to the boundary of the grid. Let us
focus on handling vertical strips with opposite corners (x, 0) and (x + 1, y), as vertical strips
with corners (x, y) and (x + 1, k) can be handled symmetrically. No two vertical strips in our
collection intersect, and hence we can indeed handle each case separately.

We will maintain a set of (weighted) points P in 2D, such that a vertical strip with
corners (x, 0) and (x + 1, y) will be represented by point (x, y) with weight y. We will store a
2D range query data structure over P , capable of returning the number and the total weight
of points inside any queried axes-parallel rectangle. Consider such a rectangle R with corners
(i, a) and (j, b), i ≤ j, a ≤ b.
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12:18 Computing Covers of 2D-Strings

We have the following cases for the intersection of a vertical strip β (as above) and R.
Case I: b ≤ y. In this case, the intersection of β and R has area b − a. The total area
of R covered by such vertical strips is equal to the product of b − a and the number of
points of P in [i . . j − 1] × [b . . ∞).
Case II: a < y < b. In this case, the intersection of β and R has area y − a. The total
area of R covered by such vertical strips is equal to the total weight of points of P in
[i . . j − 1] × [a . . b) minus the product of their number and a.

We can implement the 2D range query data structures with Õ(1) query time and Õ(k)
space and construction time using range trees [5]. ◀

Let us recall that a rectangle is called a fat rectangle if its width and height are at least
√

n.

▶ Lemma 17. The Dynamic Klee’s Measure problem with fat rectangles can be solved in
Õ(

√
n) time per operation, after Õ(N)-time preprocessing.

Proof. Let us partition the grid into unit squares of height and width ⌈
√

n⌉. Each fat
rectangle in the grid is thus partitioned into: corner rectangles in at most 4 unit squares,
side rectangles in O((n + m)/

√
n) = O(

√
n) unit squares, and several consecutive full unit

squares in each column; see Figure 7.

⌈
√

n⌉

Figure 7 To the left: a fat rectangle decomposed into 4 corner rectangles, 8 side rectangles and 4
full unit squares. To the right: the structure of range trees that forms a kd-tree.

Each unit square stores the data structure of Lemma 46 that returns the covered area
in this unit square. We also build range trees over each column of unit squares, and one
range tree over the set of columns (see Figure 7 again), in order to support intervals of full
unit squares in rectangle decompositions. We can use the range tree by Bentley [4] that
allows insertions and deletions of intervals and counting the length of the union of intervals
in O(log N) time. This construction of range trees is similar to the kd-tree used in [18]. Let
us mention that the range trees need to be slightly adjusted in order to account for the values
returned by the data structure of Lemma 46 for unit squares that are not covered in full by
any rectangle. ◀

A.1 Checking if the Whole Grid is Covered
If we are only interested in checking if the union of all rectangles in the dynamic problem
covers the whole grid, which is the case in our application, the approach can be simplified as
follows.

In Lemma 17, the data structure for each unit square returns a single bit of information,
so simply no modification is needed in the range tree by Bentley [4].

The 2D range query data structure from the proof of Lemma 46 can be substituted
with range minimum queries on a 1D array as follows. The complement of the union of
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corner rectangles consists of horizontal and vertical strips, at most one vertical strip in a
column and at most one horizontal strip in a row. Consequently, the complement of union
of corner rectangles can be described in O(k) space using distN , distE , distS , distW arrays
that measure the distance (respectively in the direction North, South, East, West) from
each half-integral point in the corresponding side of the whole grid to the first non-covered
position in a given direction (see Figure 8).

7
7
7
7

10
2
2
5
5
5

distE

10 10 5 5 5 5 10 0 3 10
distN

Figure 8 Representation of the regions not covered by corner rectangles from Figure 6. The
sequences of numbers in the left/bottom sides are the arrays distE , distN . The (similar) arrays
distS , distW are not shown here.

Using four range minimum queries over dist arrays we can check in O(1) time if there
exists some non-covered grid cell in a query rectangle. More precisely, a rectangle with
corners (i, a) and (j, b), i ≤ j, a ≤ b, does not contain any non-covered cell if and only if at
least one of the following conditions is satisfied:

min distE [i . . j − 1] ≥ b,
min distW [i . . j − 1] ≥ k − a,
min distN [a . . b − 1] ≥ j,
min distS [a . . b − 1] ≥ k − i.

B Remaining Proofs

▶ Theorem 14. All aperiodic 2D-covers of a 2D-string of size N can be computed in
O(N log N) time.

Proof. By Lemma 9, aperiodic 2D-borders have only O(log m) and O(log n) possible heights
and widths, respectively. All periodic 2D-borders can be filtered out in O(N) time using
the border arrays of hstr(T (h)) and vstr(T(w)) for all h, w. Let us leave only those aperiodic
2D-borders as candidates which cover both T (h) and T(w) for their respective height h and
width w. They can be identified using an algorithm for finding all covers in a 1D-string [16, 17]
applied to hstr(T (h)) and vstr(T(w)).

If a candidate T [1 . . h, 1 . . w] is a 2D-cover of T , then candidates T [1 . . h′, 1 . . w] and
T [1 . . h, 1 . . w′] for h′ ≤ h, w′ ≤ w are also 2D-covers of T . We check the candidates
sorted by non-increasing height (and by non-decreasing width in case of draws), using the
Is2DCover(C, T ) routine for each candidate C. If the candidate in question turns out to be a
2D-cover, then we approve all the remaining ones with the same width as well, and if it is not,
then we can remove all the remaining ones of the same height. Hence, we can charge each
test to a unique width or height, which means that we perform O(log n + log m) = O(log N)
tests in total. Each test can be performed in O(N) time due to Lemma 4. ◀
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▶ Lemma 29. For X, Y ∈ B(S) with |X| < |Y |, we have per(Y ) ≥ per(X) · |Group(X)|.
Moreover, for X, Y, Z, W ∈ B(S) with |X| < |Y | < |Z| < |W |, we have per(W ) ≥ 9

8 per(X).

Proof. We first state a definition and a few facts. A string U is called primitive if it cannot
be expressed as V k for a string V and an integer k > 1. The synchronization property states
that a non-empty string U is primitive if and only if it occurs only twice in UU : as a prefix
and as a suffix. Moreover, any |per(U)|-length fragment of a string U is primitive [12].

Let us now prove the first statement of the lemma. If X is aperiodic, then the conclusion
is clear. Henceforth let us assume that X is periodic. In this case we have per(Y ) > per(X).
Towards a contradiction, suppose that

per(Y ) < per(X) · |Group(X)| ≤ |X| − per(X).

First, it cannot be that per(X) divides per(Y ), since this would contradict the primitivity of
S[1 . . per(Y )].

In the complementary case that per(X) does not divide per(Y ), we have that

per(Y ) + per(X) < |X| < |Y | implies [1 . . per(X)] = S[per(Y ) + 1 . . per(Y ) + per(X)].

We thus have an occurrence of U = S[1 . . per(X)] in X that starts in a position that is
not a multiple of per(X). This contradicts the primitivity of U , due to the synchronization
property.

We now move to the proof of the second statement of the lemma. First, let us note that
for U, V ∈ B(S) with |U | < |V | we have |V | ≥ 3

2 |U |. Let us distinguish between two cases.

Case I: per(W ) = per(Z).
In this case, Z must be aperiodic by the definition of B(S), i.e. per(Z) > |Z|/2. Then, Z’s
longest border cannot be longer than |Z| − per(Z) < per(Z). As Y must be a border of Z,
we have |Y | < per(Z). Then, the fact that 3

2 per(X) ≤ 3
2 |X| ≤ |Y | proves the statement.

Case II: per(W ) > per(Z).
In this case, by the periodicity lemma (Lemma 7) we have |Z| ≤ 2per(W ). We thus have
9
8 per(X) ≤ 9

8 |X| ≤ 3
4 |Y | ≤ |Z|/2 ≤ per(W ). ◀

▶ Lemma 36. Let S1, . . . , Sk be prefixes of W . Then we can compute all the sets Occ(Si, T )
in O(N +

∑k
i=1 |Occ(Si, T )|) time.

Proof. Let us recall the PREF array of a string S that stores, for each i ∈ [2 . . |S|], the
length of the longest common prefix of S[i . . |S|] and S. This array can be computed in
linear time [12]. We use the PREF array to compute the sets Occ(Si, T ) in time linear in
their total size plus O(N) as follows. Let us assume that Si are sorted by increasing lengths.
We store a doubly-linked list L of pairs, initially containing all pairs from [1 . . m] × [1 . . n].
Moreover, each pair stores a pointer to its corresponding element in the list L, if such
an element exists. For each row r, we compute the table PREFr as the PREF array of
T [1, 1 . . n]#T [r, 1 . . n]. We construct n buckets and store in the j-th bucket all pairs (r, c)
such that PREFr[n + 1 + c] = j. Then, for each j = 1, . . . , n, we report L as Occ(Si, T ) if
j = |Si| and then remove from L all pairs from the j-th bucket. ◀


