
An Invertible Transform for Efficient String
Matching in Labeled Digraphs
Abhinav Nellore1 !

Oregon Health & Science University, Portland, Oregon 97239, USA

Austin Nguyen
Oregon Health & Science University, Portland, Oregon 97239, USA

Reid F. Thompson
Oregon Health & Science University, Portland, Oregon 97239, USA
VA Portland Healthcare System, Portland, Oregon 97239, USA

Abstract
Let G = (V, E) be a digraph where each vertex is unlabeled, each edge is labeled by a character in
some alphabet Ω, and any two edges with both the same head and the same tail have different labels.
The powerset construction gives a transform of G into a weakly connected digraph G′ = (V ′, E′)
that enables solving the decision problem of whether there is a walk in G matching an arbitrarily
long query string q in time linear in |q| and independent of |E| and |V |. We show G is uniquely
determined by G′ when for every vℓ ∈ V , there is some distinct string sℓ on Ω such that vℓ is the
origin of a closed walk in G matching sℓ, and no other walk in G matches sℓ unless it starts and ends
at vℓ. We then exploit this invertibility condition to strategically alter any G so its transform G′

enables retrieval of all t terminal vertices of walks in the unaltered G matching q in O(|q| + t log |V |)
time. We conclude by proposing two defining properties of a class of transforms that includes the
Burrows-Wheeler transform and the transform presented here.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Combinatorics on words

Keywords and phrases pattern matching, string matching, Burrows-Wheeler transform, labeled
graphs

Digital Object Identifier 10.4230/LIPIcs.CPM.2021.20

Related Version arXiv preprint: https://arxiv.org/abs/1905.03424

Acknowledgements We thank Rachel Ward, Ben Langmead, Chris Wilks, and the anonymous
reviewers for the 32nd Annual Symposium on Combinatorial Pattern Matching, all of whose feedback
improved this paper considerably.

1 Introduction

Consider the decision problem of whether there is a walk in a finite edge-labeled digraph
matching a query string of labels. Intuitively, the offline version of this problem is straight-
forwardly solved in time linear in the size of the string and independent of the size and
order of the graph using an index that sorts the walks matching every possible query
string so they can essentially be performed as if they were one walk. Many approaches
[37, 30, 35, 36, 18, 32, 2, 15] further rely on the last-to-first (LF) mapping property exhibited
by a class of invertible transforms [9, 28] that includes the Burrows-Wheeler transform
(BWT) [3]. Wheeler graphs [15] provide a unifying formalism for these LF mapping-based
strategies. A Wheeler graph admits a particular total order of its (unlabeled) vertices2 such

1 corresponding author
2 in contradistinction to the order of a graph, which is the number of its vertices

© Abhinav Nellore, Austin Nguyen, and Reid F. Thompson;
licensed under Creative Commons License CC-BY 4.0

32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021).
Editors: Paweł Gawrychowski and Tatiana Starikovskaya; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anellore@gmail.com
https://orcid.org/0000-0001-8145-1484
https://orcid.org/0000-0001-7940-4830
https://orcid.org/0000-0003-3661-5296
https://doi.org/10.4230/LIPIcs.CPM.2021.20
https://arxiv.org/abs/1905.03424
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 An Invertible Transform for Efficient String Matching in Labeled Digraphs

that the terminal vertices of all walks matching any query string comprise a single interval.
LF mapping enables performing all walks in the Wheeler graph matching a given query
string as if they were one walk from interval to interval of the totally ordered vertices.

But not every labeled digraph is a Wheeler graph. Indexing a non-Wheeler graph using
the framework outlined above involves constructing an equivalent Wheeler graph of which
subsets of vertices each represent a distinct vertex of the non-Wheeler graph. A query string
is matched by a walk to a vertex of this original graph if and only if it is also matched by a
walk to an associated vertex of the equivalent Wheeler graph. After confirming the presence
of at least one match in the equivalent Wheeler graph, it is often important to perform
a locate query, which retrieves the vertices of the original graph at which matching walks
terminate. This requires additionally storing the vertex associations between the original
graph and its equivalent Wheeler graph [37, 35, 18].

There are compressed indexes of Wheeler graphs supporting efficient locate queries
[15, 14, 31], but an equivalent Wheeler graph can be large and unwieldy regardless, especially
when the non-Wheeler graph it represents has cycles. In practice, such cycles are typically
indexed so only query strings up to some maximum size are supported [35, 18], limiting the
size and order of the equivalent Wheeler graph, but it is worth seeking alternative strategies
that more readily and more elegantly accommodate matching query strings of arbitrary size
and locating matches. The central issue is that LF mapping is a navigational instrument
restricted to a line of vertices, mapping intervals into intervals. In this sense, a non-Wheeler
graph is linearized by an equivalent Wheeler graph. Linearization may be cumbersome
when the topology of the non-Wheeler graph deviates substantially from the topology of a
Wheeler graph. Moreover, the terminal vertices of walks in a non-Wheeler graph matching a
given query string are in general redundantly represented by the corresponding matching
interval of totally ordered vertices of an equivalent Wheeler graph – that is, vertices on this
interval may represent subsets of vertices of the non-Wheeler graph that are not disjoint.
A locate query then returns a multiset of vertices of the non-Wheeler graph that must be
deduplicated [37, 35, 18]. The performance of such a query depends on the size of the multiset,
which can significantly exceed the number of unique vertices it comprises. A full-featured
navigational instrument would go beyond LF mapping and be able to map arbitrary subsets
of vertices into arbitrary subsets of vertices, eliminating this performance bottleneck while
also accommodating any finite labeled digraph.

The powerset construction [33, 20] is just such an instrument, providing a transform of
one labeled digraph into another labeled digraph of which each vertex represents a subset of
vertices of the original graph. Moreover, this transformed graph can be used to solve the string
matching decision problem with the same performance as an LF mapping-based framework.
We show (1) under a particular condition, the original graph is uniquely determined by just
the transformed graph, and (2) this invertibility condition can be exploited in a framework for
efficiently locating query matches in any finite labeled digraph, in analogy to how invertibility
of the BWT for strings enables the FM-index [10, 11], a widely used [24, 27, 23, 26] compressed
suffix array.

Here is a brief summary of our framework: start with any finite digraph whose edges
are labeled on some alphabet, and add edges to form a cycle that includes all vertices and
matches a generalized de Bruijn sequence [12] on a different alphabet. As explained in
Section 4, this operation is analogous to adding a sentinel (“the dollar sign”) to a string
before obtaining its BWT. Think of the digraph as a nondeterministic finite automaton
(NFA) whose every vertex is both an initial state and a final state and whose labeled edges
encode the transition function. Use the powerset construction to obtain a deterministic finite

A. Nellore, A. Nguyen, and R. F. Thompson 20:3

automaton (DFA) from this NFA. Now think of the DFA as a digraph whose labeled edges
encode the transition function and whose states are unlabeled vertices except for the empty
state, which is excluded from the graph along with all states unreachable from the initial
state. Refer to that initial state as the root. We call this transformed graph a nength of
the original graph. There is at most one edge with a given label directed from any vertex
of the nength. A walk in the original graph matches a query string if and only if a walk
starting at the root of its nength also matches that string. When such a walk is present in
the nength, traversals of the nength’s edges labeled on the alphabet of the generalized de
Bruijn sequence and starting at the terminal vertex of this walk rapidly and nonredundantly
retrieve the terminal vertices of all walks in the original graph matching the query string.

Our main message is this: existing software [37, 35, 18] for offline string matching in a
labeled digraph linearizes that graph and subsequently indexes the result using BWT-based
approaches familiar from text indexing. These approaches exploit invertibility of the BWT
or a related transform via LF mapping to downsample vertex indices stored to support locate
queries. However, when linearization is awkward and gives a massive equivalent Wheeler
graph, downsampling is severely constrained and of diminished utility. In this event, it is
possible to use a nength instead, which obviates the need for graph linearization and still
exploits invertibility – achieved via a mechanism different from LF mapping – to reduce the
index size while keeping locate queries efficient. Nength has the additional advantage that
it naturally accommodates matching query strings of arbitrary size in any labeled digraph,
whether or not it has cycles.

Table 1 A glossary of terms used in this paper.

term definition

head of a digraph’s edge vertex at which the edge is directed
tail of a digraph’s edge vertex from which the edge is directed

order of a graph number of vertices of the graph; the word “order” is also
used in this paper to refer to ordering objects, and the
appropriate denotation should be clear from context

size of a graph number of edges of the graph
walk in a digraph sequence alternating between vertices and edges of the digraph

such that each edge in the sequence is directed from the vertex
immediately before it and at the vertex immediately after it

closed walk in a digraph walk in the digraph that starts and ends at the same vertex
path in a digraph walk in the digraph that repeats neither vertices nor edges

necklace circular string of characters; if, e.g., 101 is said to be a
necklace, then the set of its two-character substrings is
{10, 01, 11}, and 011 and 110 refer to the same necklace

transform function, irrespective of its domain and codomain

Our presentation is organized as follows. Section 2 introduces the powerset construction
using graph theoretic language and proves a general invertibility condition. Section 3 gives
an algorithm for locating query matches with a nength, which relies on this invertibility
condition via the generalized de Bruijn sequence construction sketched above, and describes
a basic data structure for storing a nength. Section 4 elaborates on the analogy between
nength and the BWT and proposes two defining properties of a class of transforms that
includes both. A glossary of terms required to understand this paper is provided in Table 1.
Other terms introduced here or invoked in more specific contexts than may be typical in the
literature are italicized and defined on first use.

CPM 2021

20:4 An Invertible Transform for Efficient String Matching in Labeled Digraphs

2 Transform

Let G = (V, E) be a finite digraph where each vertex is unlabeled, each edge bears exactly
one label on some alphabet Ω, and any two edges with both the same head and the same
tail have different labels. Let G′ = (V ′, E′) be another digraph specified by G according to
the following conditions:
1. each vertex v′

i ∈ V ′ is unlabeled but associated with a distinct bit vector b′
i of size |V |

called the state of v′
i whose ℓth bit is b′

iℓ and whose bits are never all zero,
2. exactly one edge labeled ωk ∈ Ω extends from v′

i to v′
j for v′

i, v′
j ∈ V ′ if and only if

{vm ∈ V : b′
jm = 1} is the set of heads of ωk-labeled edges of G whose tails are among

{vm ∈ V : b′
im = 1}, and

3. |V ′| is as large as possible such that all vertices in V ′ are reachable from a vertex
designated as the root whose state has only nonzero bits.

Condition 1 above implies G′ is finite because G is finite, and there are 2|V | − 1 possible
nonzero states. Condition 2 implies a vertex of G′ is the tail of no more than one edge labeled
by a given character in Ω. Condition 3 implies G′ is weakly connected.

A vertex v′
i of G′ represents a set of vertices of G, and the state b′

i records these vertices.
Note G′ can be thought of as the DFA obtained via the powerset construction [33, 20] from,
in general, an NFA. In the NFA, Ω is the set of input symbols, each state is both an initial
state and a final state, each state corresponds to a distinct vertex of G, and the transition
function is prescribed by the edges of G. In the DFA, the initial state corresponds to the
root of G′. Further, every vertex of G′ corresponds to a distinct state of the DFA. States of
the DFA unreachable from the initial state and transitions to the DFA’s empty state are
not represented in G′. See [4, 34] for recent innovations in parallelization of the powerset
construction.

G′ facilitates following all walks in G matching some query string q on Ω as if they were
one walk: stand at the root of G′, start walking the sequence of edges whose labels match q,
and either (1) it is not possible to reach step number p ≤ |q| because no walk in G matches
the size-p prefix of q, or (2) the nonzero bits of the state of the vertex reached at step number
p correspond to the terminal vertices of all walks in G matching the size-p prefix of q. Since
it essentially sorts all walks in G and is obtained from the powerset construction, call G′

the powerset sort of G. G′ permits solving the decision problem of whether there exist one
or more walks in G matching a query string q in time linear in |q|, independent of G’s size
|E| and order |V |. If the states of vertices of the powerset sort G′ are stored beforehand, a
positive determination is accompanied by the terminal vertices of matches in G. However,
storing these states together with G′ is costly.

Call a vertex v′
i ∈ V ′ for which b′

iℓ is the only nonzero bit of b′
i the singleton v′∗

ℓ of G′;
that is, as an alternative notation, use an asterisk to denote singletons, and index them
according to how corresponding vertices in G are indexed. Now suppose for every vℓ ∈ V ,
there is some distinct string sℓ on Ω such that vℓ is origin of some closed walk matching sℓ,
and no other walk in G matches sℓ unless it starts and ends at vℓ. Call sℓ an identifying
string of vℓ; call a closed walk matching sℓ an identifying walk of vℓ. It is clear that if the
state of each vertex of G′ is specified, G is uniquely determined by G′: (1) for every vertex
vℓ of G, there is a walk matching an identifying string of vℓ from G′’s root to the singleton
v′∗

ℓ ; (2) for every ωk ∈ Ω, if there are any ωk-labeled edges of G whose tail is vℓ, their heads
are specified by the state of the head of the ωk-labeled edge extending from v′∗

ℓ ; and (3)
this implies the head and tail of every edge of G are known from G′ and the {b′

w}. But a
stronger statement can be made: G′ itself encodes the {b′

w} (up to permutation equivalence)
via identifying walks, and it is an invertible transform of G without requiring that the {b′

w}
are recorded. We prove the following.

A. Nellore, A. Nguyen, and R. F. Thompson 20:5

▶ Theorem 1. G is uniquely determined by its powerset sort G′ when every vertex of G has
an identifying walk.

Proof. G′ is given, but the state of each of its vertices is not. Write {v →} to refer to the
set of strings matching walks starting at some vertex v of some graph. Note by construction,
{v′∗

ℓ →} = {vℓ →} for v′∗
ℓ ∈ V ′ and vℓ ∈ V ; that is, the strings matching walks starting

at a singleton of G′ capture precisely the set of possible matches to walks starting at its
corresponding vertex in G. More generally,

{v′
i →} =

⋃
w∈Y

{v′∗
w →} for Y = {m : b′

im = 1} ; (1)

that is, the strings matching walks starting at a given vertex v′
i of G′ capture precisely the

set of possible matches to walks starting at any vertex vℓ of G for which b′
iℓ = 1. But by

definition, for any singletons v′∗
ℓ , v′∗

p ∈ V ′ with ℓ ̸= p, {v′∗
ℓ →} contains an identifying string

that is not in {v′∗
p →}. Together with (1), this says for any vertices vℓ ∈ V and v′

i, v′
j ∈ V ′,

{v′
i →} ⊆ {v′

j →} if and only if b′
iℓ = 1 =⇒ b′

jℓ = 1. It follows that a given vertex v′
i ∈ V ′

is a singleton if and only if for any vertex v′
j ∈ V ′ with j ≠ i, {v′

j →} ̸⊆ {v′
i →}. Further,

b′
jℓ = 1 if and only if {v′∗

ℓ →} ⊆ {v′
j →} for v′∗

ℓ , v′
j ∈ V ′. This implies the states of all vertices

of G′ can be determined up to permutation equivalence, and thus G is uniquely determined
by its powerset sort G′. ◀

Let Ak be the adjacency matrix of G specific to ωk ∈ Ω; that is, its (ℓ, p)th entry is 1
when an ωk-labeled edge extends from vℓ to vp for vℓ, vp ∈ V and is 0 otherwise. Observe that
G′ represents a system of matrix equations where multiplication is Boolean and a given edge
labeled ωk ∈ Ω extending from v′

i ∈ V ′ to v′
j ∈ V ′ corresponds to the equation Akb′

i = b′
j .

Perhaps surprisingly, Theorem 1 says this system has a unique solution up to permutation
equivalence when it is constructed from a graph G for which every vertex has an identifying
walk, despite how none of the adjacency matrices or states is known in advance.

Figure 1 A) is an example digraph on the alphabet {a, b, c} where each vertex has an identifying
walk, and B) is its powerset sort. Edges with different labels have different colors. States are written
next to associated vertices of B), and state bits are ordered correspondingly to vertex indices of A).
A complete set of identifying strings for A) is {bb, cba, abc}. It is easily seen all walks in B) matching
a given identifying string end at the same vertex, which is always a singleton.

CPM 2021

20:6 An Invertible Transform for Efficient String Matching in Labeled Digraphs

For a given identifying string sℓ of vℓ ∈ V , any walk matching sℓ in G′ terminates at
v′∗

ℓ , and the origin of that walk has a state whose ℓth bit is nonzero because an identifying
walk is closed. Call any set of identifying strings in which there is at least one identifying
string per vertex of G a complete set of identifying strings. An example digraph is Figure 1A,
and its powerset sort is Figure 1B. A complete set of identifying strings for Figure 1A is
{bb, cba, abc}, and in Figure 1B, every walk matching any one of these identifying strings
ends at the same singleton. The next section relies on Theorem 1 to develop a framework for
efficient location of matches to a query string in any finite labeled digraph.

3 Location

A de Bruijn sequence B(r, n) of order n on a size-r alphabet is a necklace of size rn such
that every possible size-n string on the alphabet occurs exactly once as a substring. B(r, n)
is optimally short in the sense that a necklace of size rn has exactly as many substrings
of size n as there are possible strings of size n on a size-r alphabet. References [13, 12]
introduce generalized de Bruijn sequences, a natural generalization of de Bruijn sequences
to necklaces of arbitrary size. Let x be some necklace, and let γz(x) be the size of the set
of size-z substrings of x. A generalized de Bruijn sequence BG(r) on a size-r alphabet for
r ≤ |BG(r)| is a necklace for which

γz(BG(r)) = min(rz, |BG(r)|) .

When γz(BG(r)) = |BG(r)| = rz, BG(r) is a de Bruijn sequence of order z. Note
⌈logr |BG(r)|⌉ is the smallest value of z such that γz(BG(r)) = |BG(r)|, and thus every
size-⌈logr |BG(r)|⌉ substring of BG(r) occurs exactly once as a substring of BG(r). Refer-
ences [13, 12] give a proof that there exists at least one generalized de Bruijn sequence BG(r)
for any combination of r ≥ 2 and |BG(r)| ≥ 1 and provide several examples of generalized de
Bruijn sequences. Also refer to [25], an antecedent with most of the elements of this proof.

Let Ω̃ be an alphabet of size at least 2 such that Ω̃ ∩ Ω = ∅. Call Ω̃ the sentinel alphabet.
Perform the following steps to alter any G with at least two vertices3 to form a new graph
G̃ = (V, Ẽ):
1. Obtain some generalized de Bruijn sequence c of size |V | on Ω̃.
2. Add edges to G to form a cycle GC = (V, EC) that includes every vertex and matches c.
G̃ is a labeled digraph on the alphabet ΩU := Ω̃ ∪ Ω. Call the cycle subgraph GC of G̃ the
identifying cycle of G̃. Because c is a generalized de Bruijn sequence, every vertex vℓ ∈ V is
the origin of a walk in GC matching some size-⌈log|Ω̃| |V |⌉ string such that no other walk in
G̃ matches that string. This walk is part of a closed walk in the identifying cycle, and thus
from Theorem 1, G̃’s powerset sort G̃′ = (Ṽ ′, Ẽ′) is invertible. Refer to the powerset sort of
any digraph augmented with an identifying cycle as a nength of that digraph. G̃′ is a nength
of G. Note that G′, the powerset sort of the original graph G, is a subgraph of the nength
G̃′: walks in G̃ matching some query string q on Ω end at vertices mirroring those in G at
which walks matching q end.

Call a walk starting at any vertex ṽ′
i ∈ Ṽ ′ that is not a singleton a locating walk of ṽ′

i if it
traverses only edges labeled on the sentinel alphabet Ω̃, ends at a singleton, and otherwise
visits no singletons. Because it does not traverse any edges labeled on Ω, a locating walk

3 For G with one vertex, G′ is invariably the same graph as G, making for a trivial case that need not be
considered.

A. Nellore, A. Nguyen, and R. F. Thompson 20:7

represents only walks in G̃ confined to the identifying cycle; because it ends at a singleton, a
locating walk represents exactly one walk in G̃; because GC matches a generalized de Bruijn
sequence, the size of a locating walk does not exceed ⌈log|Ω̃| |V |⌉; because if any locating
walk repeated a vertex, it would be possible to construct an arbitrarily long locating walk, a
locating walk is always a path. The identifying cycle imposes a cyclic order on vertices of
G̃. Assign indices to vertices of G̃ such that state bits respect this order. Then a locating
walk of ṽ′

i can be used to determine a nonzero bit of the state b̃′
i of ṽ′

i, where a modular
subtraction of the size of the locating walk from the index of its terminal singleton gives the
index of the nonzero bit. This modular subtraction corresponds to a backwards walk in GC

to recover the vertex starting the walk represented by the locating walk in G̃′. The full state
is recovered by following all locating walks of ṽ′

i. We prove the following.

▶ Proposition 2. Every ṽ′
i ∈ Ṽ ′ that is not a singleton has exactly as many locating walks

in G̃′ as there are nonzero bits of the state b̃′
i of ṽ′

i, with each nonzero bit determined by a
different locating walk.

Proof. Suppose there were more locating walks than nonzero bits of b̃′
i. Then by the

pigeonhole principle, there would be at least two distinct locating walks to singletons for
which appropriate modular subtractions of steps from indices determined the same bit, some
b̃′

iℓ. But since both these walks represent walks in the identifying cycle GC starting at vℓ ∈ V ,
(1) if they had the same number of the steps, they would necessarily correspond to the same
walk in GC , a contradiction, and (2) if they had different numbers of steps, the longer walk
would reach a singleton before its end, a contradiction. ◀

So G̃′ offers a straightforward way to obtain the vertices of G matching any size-p prefix
of a query string q on Ω: stand at the root of G̃′, start walking the sequence of edges whose
labels match q, and if step p is reached at some vertex, follow locating walks and perform
appropriate modular subtractions to obtain the state of that vertex, whose nonzero bits
correspond to the terminal vertices of walks in G matching the size-p prefix of q.

It is not necessary to store all of G̃′ to enable these locate queries. Call a vertex of G̃′ a
spanner if it is not a singleton and either is reachable from the root by following only edges
labeled on Ω or is the root itself. Call a vertex of G̃′ a locator if it is not a singleton and is
not reachable from the root by following only edges labeled on Ω, but is reachable on some
locating walk of a spanner. Store only singletons, spanners, locators, edges labeled on Ω
whose tails are singletons, edges labeled on ΩU whose tails are spanners, and edges labeled on
Ω̃ whose tails are locators. Any other components of G̃′ are not visited or traversed during
string matching or on locating walks. Further, note it is enough to know only that an edge
is labeled on the sentinel alphabet Ω̃ rather than Ω to follow locating walks; the particular
label of an edge on Ω̃ need not be recorded.

Let M be a matrix with |ΩU | columns where (1) each row corresponds to a different
vertex of G̃′, (2) each column corresponds to a different character in ΩU , (3) an entry is the
null pointer if and only if there is no edge of G̃′ whose tail corresponds to the entry’s row
and whose label corresponds to the entry’s column, and (4) an entry is a pointer to some row
if and only if that row corresponds to the head of an edge of G̃′ whose tail corresponds to the
entry’s row and whose label corresponds to the entry’s column. M can be used to perform a
walk in G̃′ by following pointers from row to row. Arrange the row order of M so its first
|V | rows correspond to singletons, and ensure these vertices are in an order prescribed by
GC . This implicitly stores their indices – that is, when a walk in G̃′ using M ends at some
(0-indexed) row ℓ < |V |, that row corresponds to a singleton whose index according to GC is
ℓ. Arrange that the root of G̃′ corresponds to the row of M right after the first |V | rows so

CPM 2021

20:8 An Invertible Transform for Efficient String Matching in Labeled Digraphs

pattern matching always starts there. Also arrange that all rows corresponding to spanners
precede all rows corresponding to locators, and all columns corresponding to characters in Ω̃
precede all columns corresponding to characters in Ω. Further, since the particular labels of
edges labeled on Ω̃ are inconsequential, reorder the first Ω̃ entries of each row of M so all
nonnull pointers precede all null pointers.

Algorithm 1 A depth-first approach to determining the state of a vertex of some nength G̃′. A
given entry of M that is a nonnull pointer is taken to be the index of the row of M pointed. The
first row of M corresponds to the index 0. Bit indices of bit vectors respect congruence modulo |V |.

Input: M, index i of row of M corresponding to vertex ṽ′
i of G̃′ whose state is desired, |V |,

|Ω̃|
Output: size-|V | state b̃′

i of ṽ′
i

Initialization : state b̃′
i ← 0, stack S ← {}

1: if i < |V | then
2: b̃′

ii ← 1
3: return b̃′

i

4: end if
5: for k := 0 to |Ω̃| − 1 do
6: if Mik is null then
7: break
8: end if
9: push the tuple (Mik, 1) onto S

10: end for
11: while S is not empty do
12: pop some (m, p) off S

13: if m < |V | then
14: b̃′

i(m−p) ← 1
15: else
16: for k := 0 to |Ω̃| − 1 do
17: if Mmk is null then
18: break
19: end if
20: push the tuple (Mmk, p + 1) onto S

21: end for
22: end if
23: end while
24: return b̃′

i

The entries of M necessary for pattern matching can now be stored as an array m in
row-major order, where there is: (1) a single block of rows corresponding to a singletons,
with each row taking |Ω| elements; (2) a single block of rows corresponding to spanners, with
each row taking |ΩU | elements; and (3) a single block of rows corresponding to locators, with
each row taking |Ω̃| elements. Straightforward pointer arithmetic then gives the location
in memory of any entry of M required for string matching or state determination. Our
procedure for state determination is formalized in Algorithm 1. The logic for retrieving
specific entries of M using m is excluded there.

A. Nellore, A. Nguyen, and R. F. Thompson 20:9

Figure 2 A) is a digraph with an identifying cycle on the sentinel alphabet {$, #} matching the
generalized de Bruijn sequence $$#. B) is the corresponding nength, excluding edges labeled on Ω̃
whose tails are singletons and edges labeled on Ω whose tails are the sole locator (i.e., the vertex
with state 101). States are written next to associated vertices of B), and state bits are ordered
correspondingly to vertex indices of A). Note the identifying cycle imposes an order on the vertices
respected by their indices. Edges comprising the identifying cycle in A) and the components they
contribute to B) are in gray. Otherwise, edges are assigned colors according to their labels.

Because of how a subgraph of G̃′ is G′, G̃′ has |V ′| − |V | spanners. The number of
singletons of G̃′ is the number |V | of vertices of G̃. Suppose G̃′ has |Ṽ ′

L| locators. Then m
takes up(

|ΩU | (|V ′| − |V |) + |Ω||V |+ |Ω̃||Ṽ ′
L|

)
⌈log2(|V ′|+ |Ṽ ′

L|+ 1)⌉

bits.
Figure 2A is a graph with an identifying cycle on the sentinel alphabet {$, #}. Without

the identifying cycle, vertex 0 has no identifying walk. Figure 2B is the corresponding nength,
excluding edges labeled on Ω̃ whose tails are singletons and edges labeled on Ω whose tails
are the sole locator (i.e., the vertex with state 101).

Assume |Ω̃| < |V | and that entries of M can be accessed in constant time. In the worst
case, our algorithm for state determination runs in O(t log|Ω̃| |V |) time, where t is the number
of nonzero bits of the state, since a locating walk can take up to ⌈log|Ω̃| |V |⌉ steps. Identifying
the t terminal vertices of walks in G matching a query string q by following pointers in M
thus takes O(|q|+ t log|Ω̃| |V |) time. The size of the sentinel alphabet Ω̃ can be as small as 2,
with larger alphabet sizes improving the performance of state determination while increasing
the number of columns of M.

By contrast, naively storing all states of the powerset sort G′ of G in a |V ′| × |V | binary
matrix for their immediate retrieval gives O(|q|) performance. But storing |V ′||V | state bits
may be forbidding for large G, and the storage overhead of locating walks in the array m may
be comparatively small for small |Ω̃|; for example, a single locator may be the head of many
edges labeled on Ω̃, achieving compression by simultaneously representing configurations of
state bits that are the same across the edges’ tails.

It is not absolutely necessary to ensure GC matches a generalized de Bruijn sequence
to obtain the O(t log|Ω̃| |V |) performance guarantee for state determination. References
[13, 12] provide an alternative characterization of a generalized de Bruijn sequence BG(r) as
a necklace on a size-r alphabet that satisfies

CPM 2021

20:10 An Invertible Transform for Efficient String Matching in Labeled Digraphs

1. γd(BG(r)) = rd

2. γd+1(BG(r)) = |BG(r)|
with d := ⌊logr |BG(r)|⌋. A necklace satisfying condition 2 above but not necessarily condition
1 also gives the performance guarantee. For some intuition about the difference, consider
the following example borrowed from [13, 12]: on the binary alphabet {0, 1}, 00001011101 is
a generalized de Bruijn sequence, but 10011110000 satisfies only condition 2. While every
size-4 substring is distinct in each sequence, the former has all eight possible size-3 substrings,
while the latter has only seven and is missing 101. A necklace satisfying condition 2 but not
necessarily condition 1 is called an m-ary closed sequence in [25], and construction algorithms
were developed decades ago [19, 8]. However, it is desirable that GC matches a necklace
that also satisfies condition 1. Maximizing complexity in this way can in general reduce the
average number of steps of a locating walk: fewer instances of particular short kmers in the
necklace make for fewer steps along the identifying cycle to distinguish vertices. So it is
worth exploring how to construct generalized de Bruijn sequences efficiently.

Our basic data structure for storing M can be refined to reduce its size. A degree
of freedom we do not explore thoroughly here is that rows corresponding to locators and
spanners can be reordered so M has more structured sparsity. For example, ordering rows
of M to cluster them according to which of their columns contains null pointers permits
eliminating null pointers from the array m if the indices of nonnull columns on intervals of
rows are recorded in an auxiliary data structure. Rows can also be ordered lexicographically
by treating them like they are strings on an ordered alphabet of pointers; intervals of rows
with the same prefix can then be compressed. It may also be possible to reduce the total
number of rows of M by arranging that the identifying cycle largely follows existing paths
in G; when G is suitably sparse, this could give rise to G̃′ with a preponderance of pairs of
edges sharing the same head and tail, thereby economizing the number of its vertices. The
designs of identifying cycles and of compressed representations of M are thus potentially
fruitful areas for further research.

4 Discussion

Consider the case where G is a cycle graph whose every vertex has an identifying walk, and
sort the |E| identifying strings in lexicographic order, writing the result as an |E|×|E| matrix
B. The ith instance of a given character ωk ∈ Ω in the first (F) column of B corresponds
to the same edge as the ith instance of ωk in the last (L) column of B. This LF mapping
property means that G is implicitly encoded in B’s last column, which is the BWT of G. To
recover G from its BWT, note first the F column is exactly the characters of the L column
in sorted order – that is, F is composed of successive blocks of characters from Ω, with one
block per character. Write the F and L columns next to each other. Now:
1. start at some arbitrary row,
2. apply LF mapping to the character in the F column to move to the row whose character

in the L column corresponds to the same edge, and
3. repeat step 2 until the starting row of step 1 is reached.
The sequence of characters in the F column encountered on following these instructions
completely recapitulates the cycle comprising G. If a given query string q on Ω matches
several walks in G, all these walks correspond to a single interval of rows of B. LF mapping
can be applied to obtain this interval in time linear in |q|, independent of |E| and |V |, with
an appropriately designed rank data structure over the BWT [10].

A. Nellore, A. Nguyen, and R. F. Thompson 20:11

LF mapping is generally encountered as a byproduct of an ordering procedure. A recent
generalization [5] of the BWT that applies to an arbitrary labeled digraph G obtains a
partial co-lexicographic order of its vertices. In this framework, walks in G matching a query
string always terminate at some convex subset of the ordered vertices. In the worst case,
search performance using a proposed extension to the FM-index based on this transform is
O(|q||E| log |V |). The result is consistent with a recently obtained conditional lower bound
for string matching in labeled digraphs: unless the strong exponential time hypothesis is
false, no index constructed in time polynomial in |E| can deliver a search performance of
O(|q|δ|E|β) with either δ < 1 or β < 1 [6, 7].

A nength can have up to 2|V |−1 vertices, so the asymptotic scalings of both its construction
time and index size include an exponential factor whose argument is |V |. However, we expect
the situation is not so grim for many classes of graphs. Indeed, [5] establishes an upper bound
of 2p(|V | − p + 1)− 1 on the number of states of the DFA obtained by applying the powerset
construction to an NFA with |V | states, where p is the width of a partial co-lexicographic
order of the NFA’s states. Reference [5] further notes the parameter p serves as a complexity
measure for graphs, where Wheeler graphs have p = 1.

Various analogs to the BWT respecting some of its features while discarding others
are possible. In the analog described in [5], invertibility is achieved in the general case by
explicitly recording a strategic abbreviation of submatrices of the graph’s adjacency matrix
that exploits the partial co-lexicographic order of vertices. As the complexity measure p

increases, this representation collapses to exactly the adjacency matrix. So the representation
is guaranteed to be invertible because at worst, it is a literal encoding of the original graph.
In the analog to the FM-index built on this representation, compression is achieved at the
expense of search performance, both of which degrade as p increases.

Our perspective is that the powerset construction itself provides a BWT-like transform.
A nength sorts possible matches without ordering them. While it no longer has a semblance
of what makes the BWT navigable – LF mapping – what makes the BWT invertible is
preserved: every vertex has an identifying walk. (Note, for example, if multiple closed walks
in a cycle graph matched the same string, the BWT matrix B would be a sequence of blocks
of identical rows. LF mapping would then obtain multiple cycles rather than a single cycle,
and invertibility would be lost.) Just as the BWT is an invertible transform of a cycle graph
into a string with a beginning and an end, a result of ordering, a nength is an invertible
transform of a labeled graph into a different graph for which each vertex is the tail of at
most one edge labeled by a given character, a result of sorting.

For both the BWT and nength, properties linked to invertibility can be exploited to
rapidly locate matched patterns. An arbitrary finite string on Ω can be extended by an extra
sentinel character that is not in Ω. The ends of this string can then be joined to form an
aperiodic necklace. The BWT of this necklace is invertible because each character has a
distinct distance from the sentinel. The identifying cycle labeled on the sentinel alphabet
performs the same function for a nength as a sentinel does for a BWT; there is not necessarily
a natural distance between two given vertices of an arbitrary graph, but adding an identifying
cycle vests the graph with a distance function on its vertices. Ensuring this cycle matches a
generalized de Bruijn sequence gives a performance guarantee for state determination via
nength navigation.

The paper introducing Wheeler graphs [15] articulates two main features of the original
BWT: (1) it is invertible, and (2) it “helps” compression. The paper also notes some
variants of the BWT in the literature do not have these features. Since there are indeed
so many such variants, it is worth considering how to define properties of a potentially

CPM 2021

20:12 An Invertible Transform for Efficient String Matching in Labeled Digraphs

broad class of transforms that includes both the BWT and nength. We believe references
to compression should be avoided. A labeled digraph can be thought of as a potentially
compressed representation of many strings, apart from any transform. Moreover, the BWT
does not itself do any compressing, and that it tends to help in approaches to lossless
compression of text is, of course, an artifact of the distribution of data encountered in
practical settings; there exists some distribution of data for which it would typically “hurt”
compression. Rather, we believe at its core, the BWT is a tool for maximally efficient string
matching. We also believe invertibility alone is not one of its defining properties. How the
BWT achieves invertibility matters.

Given these considerations, we propose defining a search transform as follows. Let X

be a configuration of unlabeled objects together with directed relationships, where each
relationship connects a subset of objects and has a set of labels, potentially on multiple
alphabets. A search transform is any transform of X into a different configuration X ′ of
objects and relationships such that
1. X ′ enables an index that answers whether a structured query pattern of relationships is

present in X in time independent of the numbers of objects and relationships X contains,
and

2. X is uniquely determined by X ′ precisely because for every object in X, there is some
nonempty query pattern matched only at that object.

Above, we draw a distinction between a search transform and an index enabled by a search
transform. A total order of the vertices of a Wheeler graph together with auxiliary data
supporting LF mapping-based navigation is a search transform because an FM-index built
on it solves the string matching decision problem in time independent of the size and order
of the graph [15]. This is despite how using the more compact r-index [16, 17, 29, 21, 22, 1]
in place of the FM-index solves the string matching decision problem in time polylogarithmic
in the graph’s size [14]. Both nength and the BWT are also search transforms. However,
the compound transform that linearizes a non-Wheeler graph and subsequently orders the
vertices of an equivalent Wheeler graph is excluded from our definition because it is invertible
in part via the map between the non-Wheeler graph and the equivalent Wheeler graph. Note
our definition leaves room for possible transforms that facilitate matching of patterns more
involved than strings. We leave exploration of these possibilities for future work.

References
1 Hideo Bannai, Travis Gagie, and I Tomohiro. Refining the r-index. Theoretical Computer

Science, 812:96–108, 2020.
2 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de bruijn

graphs. In International workshop on algorithms in bioinformatics, pages 225–235. Springer,
2012.

3 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Systems Research Center, 1994.

4 Hyewon Choi and Bernd Burgstaller. Non-blocking parallel subset construction on shared-
memory multicore architectures. In Proceedings of the Eleventh Australasian Symposium on
Parallel and Distributed Computing-Volume 140, pages 13–20, 2013.

5 Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite automata. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2585–2599. SIAM, 2021.

6 Massimo Equi, Veli Mäkinen, and Alexandru I Tomescu. Conditional indexing lower bounds
through self-reducibility. arXiv preprint, 2020. arXiv:2002.00629.

http://arxiv.org/abs/2002.00629

A. Nellore, A. Nguyen, and R. F. Thompson 20:13

7 Massimo Equi, Veli Mäkinen, and Alexandru I Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless seth fails. In International
Conference on Current Trends in Theory and Practice of Informatics, pages 608–622. Springer,
2021.

8 Tuvi Etzion. An algorithm for generating shift-register cycles. Theoretical computer science,
44:209–224, 1986.

9 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S Muthukrishnan. Compressing and
indexing labeled trees, with applications. Journal of the ACM (JACM), 57(1):4, 2009.

10 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 390–398.
IEEE, 2000.

11 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):552–581, 2005.

12 Daniel Gabric, Štěpán Holub, and Jeffrey Shallit. Generalized de bruijn words and the state
complexity of conjugate sets. In International Conference on Descriptional Complexity of
Formal Systems, pages 137–146. Springer, 2019.

13 Daniel Gabric, Štěpán Holub, and Jeffrey Shallit. Maximal state complexity and generalized
de bruijn words. Information and Computation, page 104689, 2021.

14 Travis Gagie. r-indexing wheeler graphs. arXiv preprint, 2021. arXiv:2101.12341.
15 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for bwt-based

data structures. Theoretical computer science, 698:67–78, 2017.
16 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-runs

bounded space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1459–1477. SIAM, 2018.

17 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in bwt-runs bounded space. Journal of the ACM (JACM), 67(1):1–54, 2020.

18 Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T Dawson,
William Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al. Variation graph toolkit
improves read mapping by representing genetic variation in the reference. Nature biotechnology,
2018.

19 Farhad Hemmati and Daniel J Costello. An algebraic construction for q-ary shift register
sequences. IEEE Transactions on Computers, 100(12):1192–1195, 1978.

20 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

21 Dominik Kempa. Optimal construction of compressed indexes for highly repetitive texts. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1344–1357. SIAM, 2019.

22 Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni
Manzini. Efficient construction of a complete index for pan-genomics read alignment. Journal
of Computational Biology, 27(4):500–513, 2020.

23 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature
methods, 9(4):357, 2012.

24 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome biology, 10(3):R25,
2009.

25 Abraham Lempel. m-ary closed sequences. Journal of Combinatorial Theory, Series A,
10(3):253–258, 1971.

26 Heng Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv
preprint, 2013. arXiv:1303.3997.

27 Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

CPM 2021

http://arxiv.org/abs/2101.12341
http://arxiv.org/abs/1303.3997

20:14 An Invertible Transform for Efficient String Matching in Labeled Digraphs

28 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
of the burrows–wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.

29 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theoretical Computer
Science, 762:41–50, 2019.

30 Adam M Novak, Erik Garrison, and Benedict Paten. A graph extension of the positional
burrows-wheeler transform and its applications. In International Workshop on Algorithms in
Bioinformatics, pages 246–256. Springer, 2016.

31 Nicola Prezza. On locating paths in compressed tries. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 744–760. SIAM, 2021.

32 Nicola Prezza. Subpath queries on compressed graphs: A survey. Algorithms, 14(1):14, 2021.
33 Michael O Rabin and Dana Scott. Finite automata and their decision problems. IBM journal

of research and development, 3(2):114–125, 1959.
34 Yan Shao, Yanbing Liu, and Jianlong Tan. Accelerating dfa construction by parallelizing

subset construction. In International Conference on Trustworthy Computing and Services,
pages 16–24. Springer, 2014.

35 Jouni Sirén. Indexing variation graphs. In 2017 Proceedings of the ninteenth workshop on
algorithm engineering and experiments (ALENEX), pages 13–27. SIAM, 2017.

36 Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, and Richard Durbin. Haplotype-
aware graph indexes. Bioinformatics, 36(2):400–407, 2020.

37 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, 2014.

	1 Introduction
	2 Transform
	3 Location
	4 Discussion

