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Abstract
A gapped palindrome is a string uvuR, where uR represents the reverse of string u. In this paper
we show three efficient algorithms for counting the occurrences of gapped palindromes in a given
string S of length N . First, we present a solution in O(N) time for counting all gapped palindromes
without additional constraints. Then, in the case where the length of v is constrained to be in an
interval [g, G], we show an algorithm with running time O(N log N). Finally, we show an algorithm
in O(N log2 N) time for a more general case where we count gapped palindromes uvuR, where uR

starts at position i with g(i) ≤ v ≤ G(i), for all positions i.
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1 Introduction

A gapped palindrome is a string uvuR, where uR is the reverse of the string u. Gapped
palindromes are a generalization of palindromes, which are strings of the form uuR. In this
paper we study the counting of occurrences of gapped palindromes in given string S.

Palindromes have many applications in bioinformatics, more precisely in the study of
DNA and RNA sequences, where problems involving pairs of equal substrings and the
repetition of certain substrings appear naturally and were intensively studied (see, for
example, [20, 15, 11, 10, 14, 18, 12]). Manacher [13] presents an algorithm that finds for
every position i of the string the longest palindrome centered in i in O(N) time. Using
Manacher’s algorithm we can count all occurrences of palindromes in linear time. We refer
the reader to the book of Gusfield [7] and the references therein for more details regarding
palindromes.

Gapped palindromes were first studied by Kolpakov and Kucherov in [9], where they
design algorithms to find all maximal gapped palindromes in a string that obey two types of
constraints termed long-armed and length-constrained palindromes. Dumitran, Gawrychowski
and Manea present in [4] an algorithm which finds for each position i the longest string u such
that uvuR is a substring which has uR starting at position i and g ≤ |v| < G, where g and G

are two given natural numbers. Another algorithm shown in the same paper solves a similar
problem where |v| is only constrained by a lower bound function g(i). Both algorithms have
running time O(N).

Brodal et al. [2] show an algorithm which finds all tuples (a, b, c, d) such that S[a..b] =
S[c..d], c− b is in a given interval [g, G] and the pair of ranges [a..b] and [c..d] is maximal (it
cannot be extended to the left or to the right such that the previous two properties still hold).
The running time of Brodal et al.’s algorithm is O(N log N + z), where z is the number of
the pairs found.
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23:2 Counting Gapped Palindromes

Counting palindromes was previously studied in [6] where it is shown that counting all
distinct palindromes in a string can be done in linear time. Rubinchik and Shur describe
in [16] an algorithm which counts distinct palindromes in a substring of a given string S of
length N in time O(log N), with O(N log N) preprocessing time.

In this paper we study counting occurrences of gapped palindromes without traversing
each of them, the running time of our algorithms not depending on this number. We consider
that the counting problem is a natural variation of the already studied related problems and
we offer solutions for counting occurrences of gapped palindromes under various constraints.
The first problem we solve is counting all strings of the form uvuR in a given string S

without any other constraints, for which we give a linear time complexity algorithm. For the
second problem, which has the additional constraint that for g and G given natural numbers,
g ≤ |v| ≤ G, we describe a solution in O(N log N) time. Finally, we present the solution for
the problem where for each position i of the given string S we find all substrings uvuR where
uR begins at position i and g(i) ≤ |v| ≤ G(i), for the given functions g and G, the algorithm
having running time O(N log2 N).

2 Preliminaries

A substring of a string S which starts at position i and ends at position j (inclusive) is
denoted by S[i..j]. The length of the string S is |S|. We denote |S| by N . The i-th character
of the string is denoted by Si, the first character is S1 and the last is S|S|. A string S which
has the property that S = SR is called a palindrome. We denote by gapped palindrome a
string P = uvuR, where u and v are arbitrary strings and |u| > 0. For |v| ≤ 1, P is also a
palindrome. Note that a gapped palindrome P might be split into uvuR in multiple ways.
In this paper we consider occurrences of uvuR and u′v′u′R different if either u ̸= u′, v ̸= v′

or the positions at which the two substrings start are different.
A data structure used in all our algorithms is the suffix tree introduced by Weiner in [19],

also described in Gusfield [7]. A suffix tree of a string S is a tree T where each edge (u, v)
(u is the parent of v) is labeled by a nonempty substring S[i..j] of S. In this tree, the
concatenation of the labels of all edges on a path from the root to a certain node n forms
a string which we denote by H(n). A fundamental property of the suffix tree structure is
that any two edges (u, v1), (u, v2) are labeled by strings which start with different characters.
Thus, two different nodes n1 and n2 have the property that H(n1) ̸= H(n2). Moreover,
it holds that lcp(H(n1), H(n2)) = H(lca(n1, n2)), where lca(n1, n2) represents the lowest
common ancestor of the nodes n1 and n2 and lcp(H(n1), H(n2)) is the longest common
prefix of the strings H(n1) and H(n2). For each suffix S[i..N ] of S there is a node n such
that S[i..N ] = H(n) and by the previous property, the node n is unique, thus we denote
it by T (i). We term T (i) the associated node of the suffix S[i..N ]. If S is of the form S′$
where $ is a character that does not appear in S, then the associated node of a suffix is a
leaf. We denote the root of the tree by nr, M(n) is the substring which labels the edge from
the parent of the node n to n (in particular M(nr) = ϵ where ϵ is the empty string).

By Anc(n) we denote the set of ancestors of the node n (including n) and by Tree(n) we
denote the set of all nodes in the subtree of n. By the property of the lcp function we have
that lcp(S[i..N ], S[j..N ]) = H(lca(T (i), T (j))).

Assuming the alphabet of a string is of a constant size, the suffix tree can be constructed
in O(N) time, as shown by Weiner in [19]. There is also an online algorithm to construct the
suffix tree in linear time found by Ukkonen [17]. Given a suffix tree of a string, Gusfield [7]
shows how to compute lcp(S[i..N ], S[j..N ]) in O(1) time.
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For a given string S, Manacher shows in [13] an algorithm which computes Pali represent-
ing the length of the longest palindrome centered in i, for all 1 ≤ i ≤ N , in time complexity
O(N). By summing all these values we obtain an algorithm to count all occurrences of
palindromes in S in linear time.

Harel and Tarjan [8] describe a method to partition a rooted tree T such that the nodes
of each partition form a path and any two nodes in the same partition are one the ancestor
of the other. An important property of the partitioning, is that a path from any node to the
root intersects O(log N) partitions. We refer to this kind of partitioning of a tree by heavy
path decomposition.

An AVL Tree is a data structure introduced in [1]. An AVL tree is a balanced binary
tree which holds a set of ordered elements. It can perform operations such as adding a new
element to the set, removing an element, asking for the smallest element greater than a given
value in O(log N), where N is the number of elements it holds. A property that we use in
this paper is that two AVL trees of sizes N and M can be merged in O

(
log

(
N+M

N

))
time,

as shown by Brown And Tarjan in [3].
In our algorithms we use binary indexed trees for computing and updating efficiently

partial sums on an array where we have operations of the form “add x to the element on the
position p”. The binary indexed tree is described by Fenwick in [5]. For a binary indexed tree
F associated to an array A, we denote the operation A[p] = A[p] + x by F [p] = F [p] + x and

the query
p∑

i=1
A[i] by F (p). Both operations are executed in running time O(log N) where N

is the length of the array.

We name reversed binary indexed tree a similar structure F ′ where F ′(i) =
N∑

i=p

A[i].

The reversed binary indexed tree F ′ can be built using a standard binary indexed tree F

where on an operation A[p] = A[p] + x we execute F [|A| − p + 1] = F [|A| − p + 1] + x and
F ′(i) = F (N − p + 1).

3 Counting all gapped palindromes

In this section we study the following problem:

▶ Problem 1 (Counting all occurrences of gapped palindromes). Let S be a given string of
length N . Count how many tuples (a, b, c, d) exist such that 1 ≤ a ≤ b < c ≤ d ≤ N and
S[a..b]R = S[c..d].

We denote the set of these tuples by Q.

We begin with a fundamental observation.

▶ Remark 2. For fixed values c and b, the number of tuples (a, b, c, d) such that S[a..b]R =
S[c..d] is |lcp(S[1..b]R, S[c..N ])|.

Proof. Let L = |lcp(S[1..b]R, S[c..N ])|. For any l ∈ {1..L} we have that S[b− l + 1..b]R =
S[c..c + l− 1], thus assigning a := b− l + 1 and d := c + l− 1 the property S[a..b]R = S[c..d]
holds. Also we have that S[b− l + 1..b]R ̸= S[c..c + l− 1] for any l > L, so for any assignment
a := b − l + 1 and d := c + l − 1 the property S[a..b]R = S[c..d] does not hold. For
other values of a and d, the strings S[a..b]R and S[c..d] have different length. Thus, the
number of tuples (a, b, c, d) with the desired property is |{1..L}|, which, in turn, is equal to
|lcp(S[1..b]R, S[c..N ])|. ◀

CPM 2021
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Let T be the suffix tree built on the string S′ = S#SR$ of length N ′, where the characters
# and $ do not appear in the string S. We define jr such that for j ∈ {1..N} we have
S′[j..N ] = S′[N + 2..jr]R and for j ∈ {N + 2..2 ·N + 1} we have S′[N + 2..j]R = S′[jr..N ].
Thus jr can be expressed as 2 ·N + 2− j.
▶ Remark 3. For some b and c such that 1 ≤ b, c ≤ N we have that:

lcp(S[1..b]R, S[c..N ]) = lcp(S′[br..N ′], S′[c..N ′])

Proof. By the structure of S′ we have that S′[br..N ′ − 1] = S[1..b]R and S′[c..N ] = S[c..N ].
Let L be |lcp(S[1..b]R, S[c..N ])|. If L < min(|S[1..b]R|, |S[c..N ]|) then Sb−L ̸= Sc+L, so
S′

br+L ̸= S′
c+L, thus lcp(S′[br..N ′], S′[c..N ′]) = L. If L = |S[1..b]R| or L = |S[c..N ]|, then

either S′
br+L = $ or S′

c+L = #. Because the characters $ and # are unique in S′ and
br + L ̸= c + L, we have that S′

br+L ̸= S′
c+L, thus lcp(S′[br..N ′], S′[c..N ′]) = L. ◀

The following remark indicates how to find pairs of a reversed prefix and a suffix which
have a certain longest common prefix:
▶ Remark 4. For a prefix S[1..j] and a suffix S[i..N ], we have that lca(T (i), T (jr)) = n

is equivalent to the existence of two nodes n1 and n2 children of the node n such that
T (i) ∈ Tree(n1) and T (jr) ∈ Tree(n2).

Using Remarks 3 and 4 we design Algorithm 1. Informally, Algorithm 1 performs as
follows. For each node n of the suffix tree T built on the string S′ we count the pairs of a
reversed prefix and a suffix which have the lcp equal to H(n), let this number be cnt. This
number represents the number of pairs (b, c) such that lcp(S[1..b]R, S[c..N ]) = H(n) holds.
We add to the final answer the value |H(n)| × cnt, where |H(n)| comes from the number of
pairs (a, d) such that S[a..b]R = S[c..d] for each of the (b, c) pairs. To count the number of
pairs (b, c), we iterate over the children of n and we count the number of pairs formed by
reversed prefixes and suffixes in the subtree of the current child with suffixes and reversed
prefixes in the subtrees of the previous children.

▶ Lemma 5. The Algorithm 1 gives the value ans1 =
N∑

b=1

N∑
c=1

lcp(S[1..b]R, S[c..N ]) in O(N)

time.

Proof. Remarks 3 and 4 prove that the algorithm correctly counts for each node n the
number of pairs (b, c) such that lcp(S[1..b]R, S[c..N ]) = H(n). Every pair (b, c) is pro-
cessed when n = lca(T (br), T (c)), adding the value H(n) to ans1, thus the value ans1 is
N∑

b=1

N∑
c=1

lcp(S[1..b]R, S[c..N ]). The time complexity of the algorithm is linear since its core is

a simple depth-first traversal (with some constant time additional computations). ◀

Algorithm 1 does not count the elements of the answer set Q because the condition b < c

does not hold. Nevertheless, we can assert the following:
▶ Remark 6. Let

Q′ = {(a, b, c, d) | 1 ≤ a ≤ b ≤ N, 1 ≤ c ≤ d ≤ N, S[a..b]R = S[c..d]}

Then ans1 = |Q′|.

Proof. It follows immediately from Lemma 5 and Remark 2. ◀

We observe that Q ⊂ Q′. We aim to find |Q| by computing |Q′| and |Q′ −Q|.
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Algorithm 1 Counting excluding the condition b < c.

1 Procedure iterate(n: the current node of the suffix tree)
Data: Sf [u] - the number of the suffixes of S in the subtree of the node u

Pr[u] - the number of the prefixes of S in the subtree of the node u

2 pr ← 0;
3 sf ← 0;
4 cnt← 0;
5 if n is leaf then
6 i← T −1(n) ; // n is the associated node of a suffix of S′

7 if i ≤ N then // i corresponds to a suffix of S

8 sf ← 1;
9 else if i > N + 1 and i ≤ 2 ·N + 1 then // ir corresponds to a prefix

of S

10 pr ← 1;
11 end
12 else
13 for ch← child of n do
14 iterate(ch) ;
15 cnt← cnt + Sf [ch] · pr;
16 cnt← cnt + Pr[ch] · sf ;
17 pr ← pr + Pr[ch];
18 sf ← sf + Sf [ch];
19 end
20 end
21 ans1 ← cnt× |H(n)|;
22 Sf [u]← sf ;
23 Pr[u]← pr;
24 iterate(nr) // start the iteration from the root of the suffix tree

▶ Remark 7. Let (a, b, c, d) be a tuple in Q. Then (a, b, c, d) ∈ Q′ but also (c, d, a, b) ∈ Q′ and
(a, b, c, d) ̸= (c, d, a, b). Moreover, if (a, b, c, d) ∈ Q′ and [a, b] ∩ [c, d] = ∅, then (a, b, c, d) ∈ Q

or (c, d, a, b) ∈ Q.
In other words, a tuple (a, b, c, d) ∈ Q “appears twice” in Q′ and all the elements in

Q′ which have this property are those for which the substrings S[a..b] and S[c..d] do not
intersect (either b < c or d < a). We use Remark 7 to compute the final answer using ans1
and the number of tuples (a, b, c, d) such that S[a..b] and S[c..d] do not intersect.

▶ Lemma 8. Let I = {(a, b, c, d) ∈ Q′ | [a, b] ∩ [c, d] ̸= ∅} and ans2 = |I|. Then the answer
to the Problem 1 is ans = (ans1 − ans2)/2.

Proof. From Remark 7 we have that |Q| = |Q′ \ I|/2, and as I ⊂ Q′, we have |Q′ \ I| =
|Q′| − |I|. ◀

We say that a palindrome S[a..b] is centered at (a + b)/2 and the value (a + b)/2 is the
center of the palindrome.

▶ Lemma 9. Let (a, b, c, d) ∈ I. Then S[a..b] and S[c..d] are contained in a palindrome
centered at (b + c)/2. More precisely, there are l and r such that l ≤ a, b, c, d ≤ r and S[l..r]
is a palindrome and (l + r)/2 = (b + c)/2.

CPM 2021
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Proof. Assume that b ≤ d. The case b > d is solved similarly.
As S[a..b] and S[c..d] intersect, we have that b ≥ c. Thus S has the following structure:

S = XS[a..c− 1]S[c..b]S[b + 1..d]Y

Due to the fact that S[a..b]R = S[c..d] and b ≤ d we have that S[a..c−1 c..b]R = S[c..b b+1..d],
thus S[c..b]R = S[c..b] and S[a..c−1]R = S[b+1..d]. Therefore S has the structure XUAURY ,
where A is a palindrome centered at (b + c)/2. It follows that S[a..d] = UAUR also has the
center (b + c)/2. ◀

To count (a, b, c, d) ∈ I, we compute for each ce ∈ [1, N ], 2 · ce ∈ N the value Vce

representing the number of tuples which are included in a palindrome centered at ce and
ce = (b + c)/2. Then ans2 =

∑
ce

Vce .

▶ Lemma 10. Let S[l..r] be the longest palindrome centered at ce. Then Vce
= ⌈(r − l + 1)/2⌉2.

Proof. Observe that a can take any integer value in the interval [l, ⌊(l + r)/2⌋], b can take
any integer value in [⌈(l + r)/2⌉, r]. By Lemma 9, the values c and d are the symmetric of
b and a with respect to ce. More precisely c = (l + r) − b and d = (l + r) − a. Thus the
number of tuples (a, b, c, d) is (⌊(l + r)/2⌋ − l + 1) · (r − (⌈(l + r)/2⌉) + 1) which is equal to
⌈(r − l + 1)/2⌉2. ◀

We use all the previous results in designing Algorithm 2. We can thus state the theorem:

▶ Theorem 11. Problem 1 can be solved in O(N) time.

Proof. Algorithm 2 computes the desired value ans = |Q|. The correctness of Algorithm 1
is given by Lemma 5. The step 4 is correct by Lemma 10. Lemma 8 proves the correctness
of the step 6.

The suffix tree of the string S′ in step 1 is computed in O(N) time using Ukkonen’s
algorithm [17]. Algorithm 1 runs in linear time by Lemma 5. The lengths of the longest
palindromes centered in each position are computed using Manacher’s algorithm [13] in O(N).
Step 5 is done in linear time and Step 6 takes constant time. Thus the entire algorithm runs
in O(N) time. ◀

Algorithm 2 The algorithm for solving Problem 1.

1 build suffix tree on the string S′ = S#SR$ ;
2 compute ans1 using Algorithm 1 ;
3 for each center c compute the longest palindrome in S centered at c ;
4 compute the values Vc = ⌈(r − l + 1)/2⌉2 where S[l..r] is the longest palindrome

centered at c ;

5 compute ans2 as
2·N∑
c=2

Vc/2 ;

6 compute ans = (ans1 − ans2)/2 ;
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4 Palindromes with constraints on the length of the gap

In this section we consider a version of Problem 1 with the additional constraint that Q

contains only tuples with the property that g ≤ c− b− 1 ≤ G, for given g and G positive
integers.

▶ Problem 12 (Counting palindromes with gap length constraint). Let S be a string of length
N and g, G positive integers. Let

Q = {(a, b, c, d) | 1 ≤ a ≤ b < c ≤ d ≤ N, g ≤ c− b− 1 ≤ G, S[a..b]R = S[c..d]}

. Find |Q|.

We use an adaptation of Algorithm 1. Instead of counting for each node n all the pairs
(i, j) such that lcp(S[1..j]R, S[i..N ]) = H(n), we count only those that also hold the constraint
on the gap, namely g ≤ i− j − 1 ≤ G. This approach obtains the correct answer directly
without the need of a strategy to subtract wrongly counted tuples as in the Problem 1.
However, a data structure on an ordered set is needed, thus increasing the running time of
the algorithm.

Brodal et al. [2] describe an algorithm that solves a similar problem. For a node n of the
suffix tree, Brodal et al.’s algorithm processes pairs of suffixes belonging to the subtrees of two
different children. For a suffix S[i..N ] in one subtree the algorithm finds the smallest index j

of a suffix S[j..N ] in the other subtree, such that j ≥ i + v. The value v is independent of i

and j, but depends on the node n. The algorithm also iterates on some interval of suffixes
starting from j, thus its time complexity depends on the number of suffixes individually
found. Because in our problem we need only to find the number of the elements in an interval,
we change the algorithm to have a running time depending only on N .

The modification of the strategy presented in Brodal et al. [2] needs the following lemma:

▶ Lemma 13. Let E be a list of sorted elements and T an AVL tree of sizes N and M

respectively, such that N ≤M . For each element i of E we can find the biggest element j in
T such that j ≤ i and its position in T (in other words, how many elements of T are smaller
than j) in time O

(
log

(
N+M

N

))
.

Proof. From Lemma 3 of Brodal et al. [2] we know that for each i in E we can find the
smallest j in T such that j ≥ i in time O

(
log

(
N+M

N

))
. In our algorithm we use a similar

operation.
Now we describe the method of finding the position of the element j. We denote by L(n)

the left child of the node n and by R(n) the right child of the node n. For each node u

from the AVL we keep a table Size(u) representing the size of the subtree rooted in the
node u. When inserting a new element in the AVL tree, we update the value Size(u) to be
Size(L(u)) + Size(R(u)) + 1 at the step the node u is visited. For finding the position of an
element, during the traversal of the tree, we keep a variable p which counts the number of
smaller elements than the element in the current node which are not situated in the current
subtree. When visiting the left child, we leave p unchanged, when visiting the right child we
add to p the value Size(L(u)) + 1, and when returning to the parent we undo the change
made when we visited the node u.

The running time of the algorithm does not change, thus the operation can be performed
in O

(
log

(
N+M

N

))
. ◀

CPM 2021
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▶ Theorem 14. Problem 12 can be solved in running time O(N log N).

Proof. We apply the strategy described by Brodal et al. in [2]. We change the suffix tree
to have each node with at most two children in order to use “the smaller half trick”. For
each node n we maintain an AVL tree that stores all the suffixes i in the subtree of n and
another AVL tree that stores all the prefixes j in the subtree of n. The AVL tree for a node
n is computed as the union of the AVL trees of its children, which can be done in time
O

(
log

(
s1+s2

s1

))
where s1 and s2 are the number of nodes in the two subtrees of node n. All

union operations are processed in O(N log N) time.
For a node n of the suffix tree, let n1 be the child with the smaller subtree and n2 the

child with the bigger subtree. For each suffix i of S in the subtree of n1 we find how many
prefixes j of S in the subtree of n2 exist such that g ≤ i − j − 1 ≤ G. We also find for
each prefix j in the subtree of n1 the number of suffixes i in the subtree of n2 such that
g ≤ i− j − 1 ≤ G. We add both numbers to the answer.

We describe the first case, the other one being similar. For each suffix i in the subtree of
n1 count the number of prefixes j1 in the subtree of n2 that hold the condition g ≤ i− j1 − 1
and the number of prefixes j2 which hold the condition G + 1 ≤ i− j2 − 1, the result being
the difference of the two numbers. We rewrite g ≤ i− j1 − 1 as j ≤ i− g − 1. We merge the
sorted list of the suffixes of n1 with the AVL tree which holds the prefixes of the subtree
rooted at n2. The elements i from the sorted list are treated as they would be i− g − 1 and
we return the largest j in the AVL which is smaller than or equal to i− g− 1 and its position.
If the position of j is pj , then the number of prefixes counted for the suffix i is pj .

The running time of our algorithm is O(N log N), being just a modification of the
algorithm described by Brodal et al. in [2]. ◀

5 Gapped palindromes with positional constraints on the length of the
gap

▶ Problem 15 (Counting gapped palindromes for every position). Let S be a string of size N .
We say that for an index i a pair (j, r) is valid if j < i and S[i..i + r − 1]R = S[j − r + 1..j].
Given two functions g and G, count for each index i the number Pi representing the number
of valid pairs (j, r) for which the property g(i) ≤ i− j − 1 ≤ G(i) holds.

We begin by reducing the problem of counting pairs (j, r) where j is bounded from both
sides to one where j is only upper bounded.

▶ Remark 16. Let P g
i be the number of valid pairs (j, r) of i such that i − j − 1 ≥ g(i)

and P G
i the number of valid pairs (j, r) of i such that i − j − 1 ≥ G(i) + 1 (equivalently

j ≤ i− g(i)− 1 and j ≤ i−G(i)− 2 respectively). Then Pi = P g
i − P G

i .

The following remark shows how to compute the values P g
i and P G

i based on Remark 2:

▶ Remark 17. The values P g
i and P G

i can be computed in the following way:

P g
i =

i−g(i)−1∑
j=1

|lcp(S[1..j]R, S[i..N ])|

P G
i =

i−G(i)−2∑
j=1

|lcp(S[1..j]R, S[i..N ])|
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We provide a data structure to compute the value
K∑

j=1
|lcp(S[1..j]R, S[i..N ])| where

initially K = 0 and we make updates of the form K = K + 1. We denote by Q(i) =
K∑

j=1
lcp(S[1..j]R, S[i..N ]) at a certain state given by K.

Let W be an array indexed by the set of the nodes of T .
Initially we have that W [n] = 0,∀n ∈ T . On an update K = K + 1 we execute W [u] =

W [u] + |M(u)| for each u ancestor of T ((K + 1)r) (recall that (K + 1)r = 2 ·N + 2− (K + 1)).

▶ Remark 18. Let A be the set of prefixes processed at a certain moment, more precisely
A = {T (jr) | j ≤ K}, K is the index of the last prefix added to the structure. Then
W [n] = |M(n)| · |A ∩ Tree(n)|.
We can find the value Q(i) using the following lemma.

▶ Lemma 19.

Q(i) =
∑

u∈Anc(T (i))

W [u]

Proof. By Remark 18 we have that∑
u∈Anc(T (i))

W [u] =
∑

u∈Anc(T (i))

|M(u)| · |A ∩ Tree(u)|

=
∑

u∈Anc(T (i))

∑
v∈A∩T ree(u)

|M(u)|

=
∑

(u,v)∈Anc(T (i))×A
v∈T ree(u)

|M(u)|

=
∑

(u,v)∈Anc(T (i))×A
u∈Anc(v)

|M(u)|

=
∑
v∈A

∑
u∈Anc(T (i))∩Anc(v)

|M(u)|

=
∑
v∈A

∑
u∈Anc(lca(T (i),v))

|M(u)|

but A = {T (jr) | j ≤ K}, thus

=
∑
j≤K

∑
u∈Anc(lca(T (i),T (jr))

|M(u)|

=
∑
j≤K

|H(lca(T (i), T (jr)))|

= Q(i) ◀

We describe a method to update and compute the sum over the array W . Build the
heavy path decomposition of the suffix tree T . Let Ch(n) be the partition corresponding
to the node n. By looking at the partitions of the decomposition as sequences, we define
Pos(n) being the position of n in the sequence Ch(n) and Ll(p) the node at position p in
the partition l. We denote by Par(n) the parent of the node n and Par(nr) = nil where nil

denotes the absence of a value. The partition has the following property:

CPM 2021
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▶ Property 20. Par(Ll(i)) = Ll(i− 1) for each i > 1. Moreover, if u is an ancestor of v,
then LCh(u)(i) is also an ancestor of v, for all i ≤ Pos(u).

Harel and Tarjan show in [8] a property of the heavy path decomposition which we
reformulate here:

▶ Property 21. The number of distinct partitions encountered on a path from a node n to
the root is O(log N). In other words, consider an algorithm which has a variable n initially
equal to some node of the tree. The number of steps in a loop of the form “while n ̸= nil do
l = Ch(n), n = Par(Ll(1))” is of the order O(log N).

By Properties 20 and 21 we design Algorithms 3 and 4, which update the structure when
executing K = K + 1 and query the structure respectively.

Algorithm 3 The update procedure.

1 Procedure update()
Data: Stl[j] - for each l an array with the values W [u] corresponding to the

chain l, meaning Stl[j] = W [Ll(j)]
2 n← T ((K + 1)r) ; // the leaf corresponding to the added prefix
3 K := K + 1;
4 while n ̸= nil do
5 p← Pos(n);
6 l← Ch(n);
7 for j ← 1..p do // operation executed by an efficient structure
8 Stl[j] = Stl[j] + |M(Ll(j))| ; // add |M(u)| on the chain
9 end

10 n← Par(Ll(1));
11 end

Algorithm 4 The query function.

1 Function query(i: the index of the suffix)
Data: Stl[j] - for each l the array with the values W [u] corresponding l to the

chain l, meaning Stl[j] = W [Ll(j)]
2 n← T (i) ; // the leaf corresponding to the added suffix
3 sum← 0;
4 while n ̸= nil do
5 p← Pos(n);
6 l← Ch(n);
7 for j ← 1..p do // operation executed by an efficient structure
8 sum = sum + Stl(j)
9 end

10 n← Par(Ll(1));
11 end
12 return sum

▶ Lemma 22. Algorithms 3 and 4 simulate correctly the operations on W . The time
complexity of Algorithm 3 is O(log N) operations of the form “assign B[i] = B[i] + A[i] for
all i ≤ p”, where p is a given integer. Algorithm 4 runs in O(log N) time operations of the

form “compute
p∑

i=1
B[i]” for a given p.
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Proof. We prove only the statements about Algorithm 3, those concerning Algorithm 4 can
be proven similarly.

Consider line 7 of Algorithm 3. If we reverse the direction of the loop, then, by Property 20,
the nodes Ll(j) on the next line provide the iteration of the ancestors of the node in order,
from n to the chain above. Line 10 takes the next node on the path from n to the root which
is processed at the next iteration of the exterior loop (when j on line 7 is equal to p). Thus,
every ancestor of n is eventually visited.

The time complexity of the algorithm is a direct consequence of Property 21, because
in each iteration of the exterior loop (line 4 of Algorithm 3) an operation of the form
Stl[j] = Stl[j] + |M(Ll(j))| is executed. ◀

Finally we provide a data structure to perform the operations on the arrays Stl in
Algorithms 3 and 4. More precisely, we solve the following problem:

▶ Problem 23. Let Ai be a sequence and B be an array, both of size N , initially B[i] = 0,∀i.
Execute a series of operations of the form:

update: given p, assign B[i] = B[i] + Ai for all i ≤ p

query: given p, find
p∑

i=1
B[i]

▶ Lemma 24. Problem 23 can be solved by executing each operation in running time O(log N).

Proof. Let Si =
i∑

j=1
Aj , be the partial sum sequence of A which can be computed in linear

time and Pi the sequence of values p which were used to update the values of B up to the
current step. Let L be the length of the sequence P . For a given position p we can compute
the partial sum query in the following way:

p∑
i=1

B[i] =
L∑

j=1

p∑
i=1

Aj
i

where Aj
i = Ai for i ≤ Pj and Aj

i = 0 otherwise. Then, let P ≤p be the sequence with values
of P such that Pi ≤ p and P >p the sequence with values Pi > p, with lengths L≤p and L>p

respectively. We have:
p∑

i=1
B[i] =

L≤p∑
j=1

S[P ≤p
j ] +

L>p∑
j=1

S[p]

p∑
i=1

B[i] =

L≤p∑
j=1

S[P ≤p
j ]

 + S[p] · L>p

or, for a better view:
p∑

i=1
B[i] =

L≤p∑
j=1

S[P ≤p
j ] + S[p] ·

L>p∑
j=1

1

Thus, we separate the computation of
p∑

i=1
B[i] in two, easier to compute, sums. The first

sum,
∑L≤p

j=1 S[P ≤p
j ] can be computed using a binary indexed tree F1, which for a given p

we update by executing F1[p] = F1[p] + Sp. We compute the second sum, S[p] ·
∑L>p

j=1 1
by using a reversed binary indexed tree F2, which for a given p we update by executing
F2[p] = F2[p] + 1. The answer for a query of the form

p∑
i=1

B[i] is F1(p) + Sp · F2(p + 1). ◀
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All the above lemmas and remarks are joint together in Algorithm 5.

Algorithm 5 The algorithm which solves Problem 15.

1 build the suffix tree of the string S′ = S#SR$;
2 compute the pairs (i, i− g(i)− 1) and (i, i−G(i)− 2) and sort them by the second

field;
3 for K ← 0 to N − 1 do
4 for (i, _)← remaining pairs which have the second field equal to K do
5 P g

i or P G
i := query(i);

6 end
7 update();
8 end
9 for i← 1 to N do

10 Pi = P g
i − P G

i ;
11 end

We conclude with the following theorem:

▶ Theorem 25. Problem 15 can be solved in time complexity O(N log2 N).

Proof. By Lemma 22 we have that Algorithms 3 and 4 correctly simulate the operations
on the array W and the Lemma 19 shows that the operations on the array W correctly
computes the value Q(i). Remark 17 shows that Algorithm 5 correctly computes P g(i) and
P G(i), then computes Pi using Remark 16. Thus, the correctness of the algorithm is proven.

Using Lemma 24 we obtain that Algorithms 3 and 4 have the total time complexity
O(log2 N). Algorithm 5 does N calls of Algorithm 3. The query function is called two
times for each position i (once for P g(i) and once for P G(i)), thus there are 2 ·N calls of
Algorithm 4. Therefore the total running time of the algorithm is O(N log2 N). ◀

6 Conclusions and future work

In this paper we show a linear time algorithm that counts the number of gapped palindromes
in a string. Then, we show an algorithm with time complexity O(N log N) for a variation of
the problem in which we have a lower and an upper bound on the length of the gap of the
palindromes counted. Finally, we show an algorithm with O(N log2 N) time complexity for
a more general case where we count gapped palindromes uvuR, where uR starts at position i

with g(i) ≤ v ≤ G(i), for all positions i.
As an open problem, we believe that it is possible to solve Problem 15 using an algorithm

that has O(N log N) running time. One possible research direction is to adapt the algorithm
in Section 4. However, we mention that a straightforward adaptation is not possible for
the following reason. In our suffix tree traversal, we count for every prefix/suffix from the
smallest subtree the corresponding pair from the other subtree, while the goal is to count for
every suffix the corresponding prefixes irrespective of the subtree they belong to.

Another approach to obtain a O(N log N) algorithm for Problem 15 is to use a suffix array
instead of a suffix tree. Then, we tried to use the fact that the length of the longest common
prefix of two suffixes from the suffix array is the minimum length of the longest common prefix
of all the pairs of consecutive suffixes between the two given suffixes. The difficulty consists
in building a data structure which handles the change of the minimum longest common
prefix of two consecutive suffixes in an interval and queries sums on partial minimum longest
common prefix of two consecutive suffixes both in time complexity O(log N).
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