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Abstract
Analyzing patterns in a sequence of events has applications in text analysis, computer programming,
and genomics research. In this paper, we consider the all-window-length analysis model which analyzes
a sequence of events with respect to windows of all lengths. We study the exact co-occurrence
counting problem for the all-window-length analysis model. Our first algorithm is an offline algorithm
that counts all-window-length co-occurrences by performing multiple passes over a sequence and
computing single-window-length co-occurrences. This algorithm has the time complexity O(n) for
each window length and thus a total complexity of O(n2) and the space complexity O(|I|) for a
sequence of size n and an itemset of size |I|. We propose AWLCO, an online algorithm that computes
all-window-length co-occurrences in a single pass with the time complexity of O(n) and space
complexity of O(

√
n|I|), assuming perfect hashing. Following this, we generalize our use case to

patterns in which we propose an algorithm that computes all-window-length co-occurrence with
time complexity O(n|I|), assuming perfect hashing, with an additional pre-processing step and space
complexity O(

√
n|I|+ |I|), plus the overhead of the Aho-Corasick algorithm [3].
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1 Introduction

Analyzing regularities in streams and event sequences has applications in data analytics as
well as programming languages, natural language processing, and genomics. Examples of an
event sequence include a sequence of system logs, memory requests by a program, tweets
by a user, a series of symptoms, a sequence of words in a document, or an RNA sequence.
One metric of regularity is co-occurrence [13, 21] – the number of times that an entire set
of items or more broadly of patterns is contained within a sliding window of an arbitrary
size. For example, consider the sequence “abccba” and window size three. This sequence
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of events contains four such windows: “abc”, “bcc”, “ccb”, and “cba”. We see that both “a”
and “b” appear together in two windows. Thus, itemset {a, b} co-occurs twice for window
size of three. In the sequence “cat dog cat” with window size seven, we see that the words,
referred to as patterns, “cat” and “dog” both appear as substrings in two windows, and thus
the pattern set {cat, dog} has co-occurrence of two with window size seven.

Most applications assume that the window is given by a user or defined in an ad hoc
manner. Existing counting algorithms for streams often assume the sliding-window model
of computation, that is, answering queries or mining is done over the last w most recent
data elements [6, 7]. Successful pattern-searching tools, such as ShapeSearch, enable the
search for desired patterns within a fixed window size in trendlines [20]. However, in certain
applications of co-occurrence analysis, the query is about identifying the time windows that
satisfy certain conditions on the co-occurrence. For instance, in text analysis, what is the time
window in which a set of events are very likely to appear? Or, at which time window does
the co-occurrence of a set of words in a document become random? Or, how often do two or
multiple gene expression patterns co-occur in an RNA sequence? These applications require
the analysis of all possible window lengths, possibly as large as the size of the sequence.

The All-Window-Length Analysis Model. In this paper, we consider a new analysis model
of computation for streams and sequences, the all-window-length analysis model, where the
analysis of a sequence of data elements is done in one pass for all window lengths, starting
from the size of a pattern up to the size of a sequence. Unlike single-window-length analysis,
in this model, window length becomes a variable. We consider the co-occurrence counting of
items and patterns in this analysis model. A pattern is a string with characters drawn from
alphabet A. Given a sequence T of size n, and an itemset I consisting of patterns, find the
number of windows in which every pattern in I occurs for all window lengths x ∈ {1, . . . , n}
in T . This model enables us to perform analysis without apriori knowledge of window-size,
i.e., a window size can be chosen and analyzed on demand at query time. For a sequence T of
size n and an itemset I consisting of |I| unique tokens, the co-occurrence analysis considers∑n

x=1(n− x + 1) windows. We propose efficient exact algorithms and theoretical analysis for
the co-occurrence counting of sets of items and patterns under this analysis model. Note
that this analysis model is different from the setting of counting frequent itemset in a stream,
in which data elements arrive in baskets of arbitrary lengths, and the goal is to find the
itemset that appears in s fraction of the baskets, where s is a support threshold [1, 2, 14,17].

Applications. We expect the all-window-length analysis model to open research opportun-
ities that lead to solving problems in natural language processing, the optimization of the
memory layout of programs, and accelerating the search for RNA sequences in genomes.
In natural language processing, the co-occurrence of words within a sliding window is the
basis for training word embeddings, which are vector representations of a word’s meaning
and usage [15, 16]. Different window sizes are useful for different purposes; embeddings
derived from smaller windows tend to represent syntactic information while larger windows
represent semantic information [18]. Identifying an effective window length for training word
embeddings requires the efficient exploration of the relationship between window size and
co-occurrence frequency of words [12].

The application of all-window-length co-occurrence analysis in programming languages is
in the optimization of the memory layout of programs. Modern processor performance is
dependent on cache performance and cache block utilization. A set of data elements belong
to the same affinity group if they are always accessed close to each other. This closeness
is defined by k-linkedness. A reference affinity forms a unique partition of data for every
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k, and the relation between different ks is hierarchical, meaning the affinity groups at link
length k are a finer partition of the groups at k + 1. Reference affinity has been used to
optimize the memory layout in data structure splitting [24], whole-program code layout [10],
and both [22]. Finding affinity groups requires the analysis of the access co-occurrence of
data elements in memory access traces for all ks.

Research has shown that analyzing nucleotide co-occurrence over the entire human genome
provides a powerful insight into the evolution of viruses [8, 19]. Co-occurrence is a method
for tracking cooperative genomic interactions as a major force underlying virus evolution.
Existing co-occurrence network construction tools such as cooccurNet [25] consider pairs
of nucleotides or amino acids for analysis and apply filters on the significance of the co-
occurrence of genes. The distance in a co-occurrence network counts for the relatedness of
genes. An all-window-length analysis of the co-occurrence gene sequences provides further
insight into pattern analysis in genomics.

Results. In this paper, we propose an efficient algorithm that computes all-window-length
exact co-occurrence of patterns in a single pass. For co-occurrence of itemsets of size one
or two, our past work proposed a linear time algorithm (in sequence length) to compute
co-occurrence for all window lengths [13]. To analyze co-occurrence, first, we introduce an
algorithm to calculate co-occurrence that runs in O(n) time, is easily understood, and uses
O(|I|) space for single-window-length co-occurrence, where n is the length of the sequence,
and I is the set of co-occurring items. However, to find the co-occurrence across all window
lengths, the algorithm would require to compute the co-occurrence for each window length
separately and use O(n2) time, which is impractical for large datasets.

We propose AWLCO, a time- and space-efficient algorithm that computes the exact co-
occurrence of itemsets for all window lengths, in a single pass. The algorithm computes
co-occurrence by finding gaps in the sequence, or substrings of the sequence that do not
contain subsets of the queried pattern. This is a novel approach to compute co-occurrence
and provides an improved algorithm, since the stored gaps are not bound to any window
lengths. Thus, the collection of gaps allows the co-occurrence to be determined for all window
lengths in a single pass through the gaps. Furthermore, we propose a simple approach for
computing all of the gaps for an itemset in a single pass through the sequence. The relevant
gaps can be found by iterating through the sequence and keeping track of the items and the
orders they last appeared. We theoretically prove that gaps are only relevant and counted
if the current item encountered in the sequence is the item that was seen furthest in the
past, thus, drastically reducing the amount of space and updates needed. AWLCO enables
all-window-length queries in O(n) time by using O(

√
n|I|) additional space, assuming a

perfect hashing function.
Finally, we generalize our problem to finding the co-occurrence of a set of patterns. We

argue that finding an algorithm that handles multiple elements at the same index of a
sequence would solve all window length pattern co-occurrence. We present an algorithm
for pattern co-occurrence counting with time complexity O(n|I|), assuming perfect hashing,
and space complexity O(

√
n|I|+ |I|), with additional space overhead from the Aho-Corasick

algorithm [3].

2 Problem Definition

We begin by fixing a vocabulary A that we will be working in. Let T be a sequence with
elements in A. Sequence T can be considered as a stream. Let n be the length of the sequence
T and for any natural number l, let [l] = {1, . . . , l}. A sequence will have its indices zero

CPM 2021
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indexed, i.e., T [0] is the first element that appeared in the sequence and T [i] is the element
that appeared at position i. We use T [i . . . j] to denote a sub-string of T . For example,
T [0 . . . j] indicates the first j + 1 elements of sequence T . An itemset I is a finite non-empty
subset of A. For a sequence T , a window is a sub-string of T , or a contiguous selection of
elements of T . For sequence T we define the window at index i of length x where x ≤ i + 1,
ω(T, i, x), to be the window containing the i-th element of T and the x− 1 previous elements
of T . When it is clear what sequence is being referenced, we will refer simply to ω(i, x).
For example, for the sequence T =“abcdef”, ω(3, 3) is “bcd”. We define the co-occurrence
count as the number of windows of length x in sequence T that contain all elements of the
itemset I.

▶ Definition 1. Single-window length co-occurrence problem: Given a sequence T and an
itemset I, find the co-occurrence count of itemset I in windows of length x in sequence T .

co-occurrence (T, I, x) = |{ω(i, x) : i ∈ {x− 1, . . . , n− 1},∀e ∈ I, e ∈ ω(i, x)}| (1)

▶ Example 2. Consider the sequence T =“abcabe”. The co-occurrence count of itemset {a, b}
in all windows with size four, co-occurrence (abcabe, {a, b}, 4), is three.

In this paper, we consider the new problem of finding co-occurrence counts of I in T for
all window lengths.

▶ Definition 3. All-window length co-occurrence problem: Given a sequence T of size
n, and an itemset I, find the co-occurrence counts of itemset I in all windows of lengths
x ∈ {|I|, . . . , n} in sequence T .

In Section 3, we define a baseline algorithm for finding all window length co-occurrence
counts based on finding the single window length co-occurrence count. In Section 4, we
describe our algorithm for simultaneously finding co-occurrence counts of all window lengths in
linear time in the length of the sequence assuming perfect hashing and with space complexity
of O(

√
n|I|).

A pattern is a string with characters drawn from alphabet A. A pattern e’s ith component
is denoted e[j] and the length of the pattern is |e|. A pattern occurs in a sequence T if there
exists j ∈ {0, ..., n} such that for all i ∈ {0, . . . , |e| − 1}, T [j + i] = e[i].

▶ Definition 4. All-window length pattern co-occurrence problem: Given a sequence T of
length n, and an itemset I consisting of patterns, find the number of windows in which every
pattern in I occurs for all window lengths x ∈ {1, . . . , n} in sequence T .

3 Single-Window-Length Co-occurrence

Consider an item e ∈ A and a sequence T . The time elapsed since last access of e at index i,
tesla(T, e, i), is the difference between i and the greatest index where e occurs in T up to
and possibly including i, and, in the case that there is no occurrence of e in the interval up
to i, we define it to be ∞. When the choice of T is clear we use the shorthand tesla(e, i)
instead. There is a direct connection between the tesla values for items in the itemset and
the number of times the items of the itemset co-occur.

▶ Lemma 5. Itemset I co-occurs in a window ω(i, x) if and only if max{tesla(e, i)|e ∈ I} < x.

Proof. The statement implies that for each e ∈ I, tesla(e, i) < x, which implies that
e ∈ ω(i, x). Conversely, if each e ∈ ω(i, x), then we have tesla(e, i) < x; therefore, we have
max{tesla(e, i)|e ∈ I} < x. ◀
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Figure 1 The book-stack, when T [i+1] = rj
i (I). This change is shown in the first two book-stacks.

The third reflects the book-stack at index i + 1 after it has been updated.

▶ Example 6. Consider the sequence T =“abcabe” and itemset {a, b}. Suppose we have
processed T [0 . . . 3] and we know tesla(a, 3) = 0 and tesla(b, 3) = 2. Since the max tesla
value is two, the itemset does not co-occur in the size two window ω(3, 2).

By the lemma, the co-occurrence defined in Equation 1 can be computed by iterating
through each index of the sequence and counting the number of times max{tesla(e, i)|e ∈
I} < x.

co-occurrence (T, I, x) = |{i ∈ {x− 1, . . . , n− 1} : max{tesla(e, i)|e ∈ I} < x}| (2)

Book Stack. We now wish to have a systematic way of ordering items according to their
corresponding time elapsed since last access. Let Q denote the set of non-empty subsets of A.
Let A be some element of Q and suppose that A = {e1, e2, . . . , e|A|}, and they are labeled in
such a way that at index i in our sequence,

tesla(e1, i− 1) ≤ tesla(e2, i− 1) ≤ · · · ≤ tesla(e|A|, i− 1).

Now let rj
i : Q→ A be given by rj

i (A) = ej , for j ∈ {1, ..., |A|}. That is to say that, r arranges
the members of A in a finite sequence according to tesla(·, i−1). This notation is robust as it
allows for weak ordering and will be used to consider a generalized case later on. We call the
realization of rj

i a book-stack, i.e., Si = [(r1
i (I), tesla(r1

i (I), i)), . . . , (r|I|
i (I), tesla(r|I|

i (I), i))]
based on the above ordering, given a set A. We define Si.retrieve(j) = tesla(rj

i , i). We
define Si.find : A → {1, . . . , |A|}, such that find(a) = j, where rj

i (A) = a. We define
Si.update : {1, . . . , |A|} → ×|A|

l=1A, in which Si.update(j) = (r1
i+1(A), . . . , r

|A|
i+1(A)), where

we have

rl
i+1(A) =


rj

i (A), l = 1
rl+1

i (A), 1 ≤ l < j

rj
i (A), j < l ≤ |A|.

We therefore define Si+1 = Si.update(Si.find(T [i])). It is straightforward to see that the
update guarantees the correct ordering for rj

i+1 based on tesla(·, i). Figure 1 illustrates
update to a book-stack data structure step by step. By an abuse of notation, in our algorithms
we refer to Si with S.

CPM 2021



24:6 AWLCO: All-Window Length Co-Occurrence

Algorithm 1, SINGLECOUNTING demonstrates co-occurrence count for a specific window
length. The co-occurrences of an itemset can be calculated for multiple window lengths by
repeating Algorithm 1 and varying the argument x.

Algorithm 1 SINGLECOUNTING.

Input: Sequence T of length n, Itemset I, Window Length x

Result: co-occurrence(T, I, x)
1 count←0
2 S ←empty book-stack
3 for each item e ∈ I do
4 S += (e, −∞)
5 end
6 for i = 0 to n− 1 do
7 if T [i] ∈ I then
8 j ← S.find(T [i])
9 S.update(j)

10 end
11 if i ≥ x− 1 and i - S.retrieve(|I|)< x then
12 count←count+1
13 end
14 end
15 return count

▶ Example 7. Consider the sequence T = abcabe and the itemset I = {a, b}. The algorithm
initializes the S by adding (e,−∞) for each item e in I, representing that element e has
never been seen. Table 1 shows the state of S and the resultant max tesla value every time
an element of T is processed. At any step the max tesla value can be found by taking the
current index in the sequence and subtracting the last access time of the item in the bottom
of the book-stack.

3.1 Complexity Analysis
The book-stack can be implemented as a doubly linked list of items. Finding elements on the
bottom of the book-stack can then be done in constant time. We can maintain a hash table
from each element to the corresponding node in the book-stack. Each node can be accessed
in constant time. The book-stack will only take |I| space and no additional space is needed,
thus the total space is O(|I|). In addition, each element of the sequence is accessed once,
and only constant time operations are performed, giving a time complexity of O(n). For
co-occurrence of a single window length, this algorithm performs optimally with respect to
time complexity. This is because there is an intrinsic linear cost in computing co-occurrence,
as each element in the sequence must be examined in the worst case. In the next section, we
present a solution that in linear time can calculate the co-occurrence for all window lengths.

4 All Window-Length Co-occurrence

4.1 Counting Co-occurring Windows
To find the co-occurrence of an itemset I = {e1, e2, . . . , e|I|} in sequence T with window
length x we must count how many x-length windows in T contain I. We will make use of
the fact that counting the windows containing I is equivalent to counting the windows that
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Table 1 Book Stack changes for single-window co-occurrence counting.

initial a (i=0) b (i=1) c (i=2) a (i=3) b (i=4) e (i=5)
max tesla 0− (−∞) =∞ 1− 0 = 1 2− 0 = 2 3− 1 = 2 4− 3 = 1 5− 3 = 2
a(−∞)

b(−∞)

a(0)

b(−∞)

b(1)

a(0)

b(1)

a(0)

a(3)

b(1)

b(4)

a(3)

b(4)

a(3)

Figure 2 Gaps for certain elements in a sequence. The uppermost pattern illustrates the three
gaps “a”-gaps, the middle pattern shows the “b”-gaps, and the bottom pattern shows the three gaps
that contain neither “a” nor “b”.

do not contain I, since we know the total number of x-length windows is n− x + 1. For a
sequence T of length n and an itemset {e1} we denote the x-length windows that do not
contain e1 as {e1}x. For larger itemsets we extend the notation analogously where {e1, e2}x

are the x-length windows that do not contain e1 and do not contain e2. A window is a non
co-occurrent window as long as there is at least one element in I that is not contained in the
window. Therefore, the co-occurrence of I is the total number of x-length windows minus
the number of x-length windows that do not contain at least one item of I.

co-occurrence (T, I, x) = (n− x + 1)− |{e1}x ∪ . . . ∪ {e|I|}x
| (3)

Using the inclusion-exclusion principle we can rewrite the co-occurrence as follows.

co-occurrence (T, I, x) = (n− x + 1)−
∑

A⊆I:
A ̸=∅

(−1)|A|+1 |Ax| (4)

▶ Example 8. Consider again figure 2 with I = {a, b} and x = 2. We have that {a}2∪{b}2 =
{w(i, 2) : 1 ≤ i ≤ 3, i = 5, 7 ≤ i ≤ 10}, hence

∣∣∣{a}2 ∪ {b}2

∣∣∣ = 8. The nonempty subsets of I

are {a, b}, {a}, and {b}. We have that {a, b}2 = {w(8, 2)}, {a}2 = {w(3, 2), w(7, 2), w(8, 2)},
and {b}2 = {w(i, 2) : 1 ≤ i ≤ 2, i = 5, 8 ≤ i ≤ 10}. This means that

∣∣∣{a}2 + {b}2 − {a, b}2

∣∣∣ =

8, agreeing with
∣∣∣{a}2 ∪ {b}2

∣∣∣. The idea here is that when using {a}2 and {b}2 to count
{a}2 ∪ {b}2 we double count w(8, 2), so we need to subtract by 1 to get the correct result.

We know that an A-gap of size k contains k − x + 1 windows of length x in which none of
A occurs. Thus, |Ax| =

∑n
k=x(k − x + 1)NA(k), where NA(k) is the number of A-gaps of

length k. Working with the right term of equation (4),

∑
A⊆I:
A ̸=∅

(−1)|A|+1 |Ax| =
∑

A⊆I:
A̸=∅

(−1)|A|+1
n∑

k=x

(k − x + 1)NA(k) (5)

=
n∑

k=x

(k − x + 1)
∑

A⊆I:
A̸=∅

(−1)|A|+1NA(k). (6)

CPM 2021
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Now, let us define:

H[k] =
∑

A⊆I:
A ̸=∅

(−1)|A|+1NA(k) (7)

We call the collection of H[k]’s for all values of k a gap histogram, H. The co-occurrence of
I in x-length windows of sequence T is then calculated as follows.

co-occurrence (T, I, x) = (n− x + 1)−
n∑

k=x

(k − x + 1)H[k] (8)

An elegant property of this equation is that by storing the cumulative counts in a gap
histogram we can simultaneously calculate the co-occurrence for all window lengths.

▶ Example 9. Return to the sequence shown in Figure 2 for I = {a, b} and x = 2. Because
there are two length one {a, b}-gaps and one length one {b}-gap, we obtain H[1] = −2+1 = −1.
Additionally we have one length two {a, b}-gap, one length two {a}-gap, and one length two
{b}-gap which nets H[2] = 1 + 1− 1 = 1. There is one length three {a}-gap and one length
three {b}-gap, so H[3] = 1 + 1 = 2. Finally, there is a single length four {b}-gap so H[4] = 1.
To summarize, H[i] = 1 for i = 2, 4, H[3] = 2, H[1] = −1, and H[i] = 0 otherwise.

Using gap histograms to store cumulative counts has a space complexity of
√

n|I|. In
Theorem 12, we will formally discuss the space complexity in more detail. Calculating the
co-occurrence from the gap histogram instead of directly counting co-occurrent windows
is beneficial since calculating gaps does not require a window length as input and yet the
gap information is still sufficient to easily calculate the co-occurrence for all window lengths.
Thus, all that is needed to calculate all window length co-occurrence is an algorithm to
generate the gap histogram.

The simplest way to generate the gap histogram is to iterate through the sequence,
keeping track of where gaps begin and end. Whenever an item in the given itemset is found
at some index i it marks the end of a gap for any subset of I containing that item and
also marks the beginning of a new gap spanning from T [i + 1...k − 1], where k is either the
index of the next occurrence of an element in the subset of I in the sequence or n if another
element does not occur before the end of the sequence. Note that if an element in I occurs in
two adjacent indices in the sequence (i and i + 1), we obtain the gap [i + 1, i] which we treat
as a length 0 gap and discard. The length l of each newly ended gap can be updated in the
histogram by either incrementing or decrementing H[l] depending on whether the subset size
was odd or even respectively. This approach has run time O(n2|I|) and performs poorly for
large itemsets. It is inefficient since whenever an item from I is encountered in the sequence,
we need to consider 2|I|−1 subsets of I and update the histogram (subtract or add counts)
accordingly. A better approach is presented next.

4.2 Efficient Gap Counting
Since updates to the histogram have negating effects on each other (Equation 7), many of
the histogram entries do not change when an item of the itemset is observed in the sequence.
It turns out when an item of the itemset is observed in a sequence, we only need to update
the histogram for the gaps related to the first and second least recently seen items of I. To
keep track of the tesla’s, as we iterate through the sequence we can maintain a book-stack
data structure that contains each item in I along with the time that it last appeared in the
sequence, so that the most recently seen item appears at the top of book-stack.
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Observe that, when an item e from I is seen in the sequence at index i, a maximal gap
representing each subset of I containing e is added to the histogram. Furthermore, for any
one of those sets G, the length of the added gap is the minimum tesla value attained by
an item in G at index i− 1. Note that in this context we take tesla(e, i) = i if the element
has not yet been encountered in the sequence. These gaps account for all of the gaps in
the sequence except for gaps that include the final element of the sequence, these gaps are
handled specially.

For the following theorem, we first provide some notation. Let

Hi = (Hi[1], Hi[2], . . . , Hi[n])

be the histogram up to index i in the sequence. This is only for notational convenience. It is
important to note that in the actual program, there is only one histogram, rather than n.

▶ Theorem 10. For any 0 < i < n, suppose T [i] = r
|I|
i (I) then

Hi[k] =


Hi−1[k] + 1 if k = tesla(r|I|

i (I), i− 1)
Hi−1[k]− 1 if k = tesla(r|I|−1

i (I), i− 1)
Hi−1[k] otherwise.

If T [i] ̸= r
|I|
i (I) then Hi[k] = Hi−1[k] for all k. In other words, the histogram is only updated

when the next element in the sequence is the item that was just at the bottom of the book-stack.

Proof Sketch. We have a maximal gap for every subset A of I containing T [i]. The length of
this A-gap is mine∈A tesla(e, i− 1), hence the addition to the histogram from A is (−1)|A|+1

to the kth spot where k = mine∈A tesla(e, i − 1). Suppose T [i] ̸= arg maxe∈I tesla(e, i − 1)
i.e., T [i] is not the item seen furthest in the past most recently. There are the same number
of even and odd subsets of I in which T [i] = arg mine∈A tesla(e, i− 1) hence these subsets
contribute no net updates to H. For the remaining subsets, the same argument follows,
hence there are no net updates.

Now suppose that T [i] = arg maxe∈I tesla(e, i− 1). Similar to the above, for each item in
I not equal to r

|I|−1
i (I) and T [i], there are the same number of even and odd subsets of I

in which T [i] = arg mine∈A tesla(e, i− 1). But for r
|I|−1
i (I) there is but one subset in which

this is satisfied, namely, {r|I|−1
i (I), T [i]}, and there is also one subset in which T [i] satisfies

this, {T [i]}. Therefore we have

Hi[tesla(T [i], i− 1)] = Hi−1[tesla(T [i], i− 1)] + 1,

Hi[tesla(r|I|−1
i (I), i− 1)] = Hi−1[tesla(r|I|

i (I), i− 1)]− 1. ◀

The theorem does not handle the case for Hn, which we now address. The argument is similar
to the proof above for Hi with i < n, except that T [i] is undefined. All gaps necessarily close
at the end of the sequence. This means that |Ck| =

∑|I|
ℓ=0

(|I|−j
ℓ

)
, for all but j = |I|. For

j = |I| there is but one set for which r
|I|
i (I) = arg mine∈A tesla(e, n), namely, {r|I|

i (I)}. Thus
Hn[k] = Hn−1[k] for all k except when k = tesla(n, i− 1) in which Hn[k] = Hn−1[k]− 1.

The incremental updates that we have derived above result in algorithm AWLCO, shown in
Algorithm 2.

4.3 Complexity Analysis
The next two theorems assume that the histogram can be implemented as a hashtable with
perfect hashing. Without perfect hashing the histogram must contain space for all entries
from 1 − n and thus will be linear in space to maintain a constant run time or constant
histogram updates must be sacrificed to obtain a worst case n2 runtime.
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▶ Theorem 11 (Time Complexity). The time complexity of all-window length co-occurrence
algorithm is linear in the length of the sequence.

Proof. The algorithm iterates over the sequence once and possibly updates the book-stack
and the histogram for each element in the sequence. Since updating the book-stack and
updating the histogram are both done in constant time, the generation of the histogram
is done in linear time in the length of the sequence. Once a histogram is computed, the
co-occurrence for every window length is computed in a linear time by summing the histogram
as shown in Equation 8. Thus, the algorithm provides an O(n) method to calculate all
window length co-occurrence. ◀

▶ Theorem 12 (Space Complexity). The space complexity of the algorithm is O(
√

n|I|) where
n is the length of the sequence and |I| is the size of the itemset.

Proof. Space is used to maintain the book-stack and the histogram. The book-stack will
use O(|I|) space. Note that for any item e in the itemset the total length of gaps for {e}
is at most the length of the sequence. Thus, we have that the sum of all of the lengths of
single-item gaps is bounded above by n|I|. Furthermore, whenever an item of the itemset is
on the bottom of the book-stack a maximum of two new gaps are added to the histogram.
The length of the gap associated to the bottom item in the book-stack is equal to the length
of a single-item gap. The length of the other gap is bounded above by the length of the
first gap. Therefore, the sum of the length of all gaps added to the histogram is bounded
above by 2n|I|. Note the size of the histogram is the number of distinct gap lengths added
to it. In the worst case, gaps are greedily added to the histogram such that there is a length
1, 2, . . . , k size gap added. In this case, if the total number of gaps added is k, the total length
of the gaps is k(k+1)

2 . We know that the sum of the gaps length in a histogram is bounded
by 2n|I|. Thus, we have that k(k+1)

2 ≤ 2n|I|. Solving for k, we have that k2 + k ≤ 4n|I| and
k ≤ 2

√
n|I|. Thus, the total space used is bounded above by |I|+2

√
n|I| which gives a space

complexity of O(
√

n|I|). Note that this last line is true because we make the assumption
|I| ≤ n. If not the co-occurrence is simply 0 for every window length. ◀

5 Pattern Co-occurrence

We now wish to generalize our algorithm in two ways. The first is to patterns and the second
is to a stream in which multiple events can occur at the same index, for which the latter turns
out to be a subproblem of the first. Pattern co-occurrence is explained first. We define a
pattern as a string with characters drawn from our alphabet A. A pattern e’s ith component
is denoted e[i] and the length of the pattern is |e|. A pattern occurs in a sequence T if there
exists j ∈ [|T |] such that T [j . . . j + |e| − 1] = e, also let all such j be denoted in the set b(e).
Thus, pattern co-occurrence for an itemset I is defined as the number of windows in which
every pattern in I occurs. We wish to find an algorithm that can compute the co-occurrence
for all window lengths in one pass for patterns. It is clear that tesla is no longer well-defined.
Let e be a pattern. So define btesla(e, i) = i−max(|b(e) ∩ {0, . . . , i}|), which is the distance
between i and the most recent start of the pattern. If b(e) ∩ {0, . . . , i} is empty, then let
it be i.

We can use our previous definition of an A-gap for A ⊆ I, but the size of an A gap is now
found differently. Previously, the size of an A-gap closed at time i would be mine∈A tesla(e, i−
1), but now it is mine∈A btesla(e, i− 1), since an A-gap still occurs if all but the tail ends of
members of A are within said gap. Supposing that no two patterns in consideration end at
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Algorithm 2 AWLCO.
Input: Sequence T , ItemSet I

Result: Co-occurrence of all window lengths
1 H ← empty histogram
2 cooc← []
3 S ← empty book-stack
4 for e ∈ I do
5 S += (e, −∞)
6 end

// Read through entire sequence
7 for i = 0 to n− 1 do
8 current← T [i]

// When element is seen, update bottom two gaps
9 if current ∈ I then

10 if S.find(current) = |I| then
11 f ← i− S.retrieve(|I|)
12 s← i− S.retrieve(|I| − 1)
13 H[f ]← H[f ] + 1
14 H[s]← H[s]− 1
15 end
16 j ← S.find(current)
17 S.update(j)
18 end
19 end

// Final gap from bottom of book-stack
20 f ← i− S.retrieve(|I|)
21 H[f ]← H[f ] + 1
22 for x = |I| to |T | − |I|+ 1 do
23 Sx ← 0
24 for k = x to |T | do
25 Sx ← Sx + (k − x + 1)H[k]
26 end
27 cooc[x]← (|T | − x + 1)− Sx

28 end
29 return cooc

the same time, it is easy to see that Theorem 10 still holds in this case, using btesla in place
of tesla. Thus finding an algorithm that handles multiple events at the same index would
solve all window length pattern co-occurrence as well. We now proceed to solve the problem
in the case that multiple events can occur at the same index.

5.1 Multiple Item Co-occurrence

It is now natural to define co-occurrence for sets of items. We let T [i] ⊆ A, rather than just
one element of A, for all i. A co-occurring window for some itemset I ⊆ A is a window in
which for all e ∈ I, there exists a set A ∈ w(i, x) such that e ∈ A. Thus the co-occurrence is
the sum of these co-occurring windows. This is the natural extension. We will now present
the following theorem relating to the updates of H. Let Xi denote the set of items that
occur at T [i].
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T [i− k1] T [i− k2] T [i]
x1 x2 x3 y3 x4 x1

y1 x2
y2 x3

x4
x5

Figure 3 Illustration of Theorem 13. The set of patterns I consists of x1, x2, . . ., which were seen
at T [i], and all other patterns y1, y2, . . .. Here A is the set {x1, x2} of patterns seen at T [i] that
were last seen further in the past than any of the other patterns y1, y2, . . .. We add one to H[k1],
where k1 is the time elapsed since x1 was last seen. We subtract one from H[k2], where k2 is the
time elapsed since y1 was last seen.

▶ Theorem 13. Suppose that for all a ∈ I ∩ Xi, tesla(a, i − 1) < tesla(e, i − 1) for any
e ∈ I \Xi. Then for any 1 < i < n,

Hi [k] =


Hi−1 [k] + 1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
Hi−1 [k]− 1 for k = tesla(r|I|

i (I), i− 1)
Hi−1 [k] otherwise.

Otherwise, Hi [k] = Hi−1 [k] for all k.

▶ Remark 14. This is a generalization of Theorem 10. Observe that in the case when |A| = 1,
this reduces to that result. Moreover, when i = n the same update given in Theorem 10
follows.

Proof Sketch. The incremental updates to H correspond to all the subsets of I that contain
at least one member of Xi. Weakly order Xi according to tesla. Now let Aj where j ∈ [Xi],
be the set of subsets of I that contains xj . Let ⟨A⟩i be the updates corresponding to some
set A. Therefore

Hi −Hi−1 =
∑

J⊆[|K|]

(−1)|J|+1

〈 ⋂
j∈J

Aj

〉
.

Consider each KJ =
⋂

i∈J Ai. For each one, the update is the same if one removes all
members of Xi besides the one corresponding to the smallest number in J , call this set K′

J .
Using Theorem 10, the update is +1 for k = tesla(a, i− 1), a being the item described before,
and also is −1 for k = tesla(a, i − 1) for a being the furthest item seen in the past not in
KJ ∩ I. But this implies that J that are not of the form Jm = {|Xi| −m, . . . , |Xi|} do not
contribute to the update. For any 0 ≤ m < |Xi|, the positive update corresponding to KJm

cancels with the negative update corresponding to KJm+1 . This process telescopes leaving
only the positive update corresponding to KJ0 and the negative update corresponding to
KJ|Xi| . This gives the desired result. ◀

A full proof is given in the appendix. Figure 3 provides an illustration of Theorem 13.
With this result we can now construct a similar algorithm to those before, with a few
modifications. Maintain a book-stack as before, but notice that it is no longer a strict
ordering. For example, if Xi = {e1, e2} ⊆ I, then one of e1 and e2 will occupy the
top of the book-stack and the other will occupy the second to top spot. To check whether
maxe∈Xi∩I tesla(e, i) < mine∈I\Xi

tesla(e, i), we partition the book-stack using p ∈ {0, ..., |I|},
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where p is defined as follows: for all j ≤ p, tesla(rj
i (I), i− 1) = tesla(r|I|

i (I), i− 1), and for
all j > p, tesla(rj

i (I), i− 1) > tesla(r|I|
i (I), i− 1). Thus checking if the non-trivial conditions

given in Theorem 13 hold is easy as we just check that rj
i (I) ≤ p for every j corresponding

to a member in Xi. It is also easy to update the histogram if these conditions hold, as we
just update according to rp

j (I) and rp+1
j (I). The pseudocode is given in Algorithm 3 in the

appendix.

5.2 Complexity Analysis
We again consider pattern co-occurrence rather than the simplified multiple item co-
occurrence, to find the complexity of the algorithm in general. We complete a pass over the
stream as we do in algorithm 2, but with a few additions. At each index we must maintain
the partition which in the worst case takes linear scan of I at each index. Maintaining
the book-stack then also requires O(|I|) operations. We can use the state machine in the
Aho-Corasick algorithm [3] to recognize when a pattern is completed in this same pass. For
this addition, the algorithm requires an initial time linear to the sum of the lengths of all of
the patterns to construct the necessary finite state machine for Aho-Corasick. Thus, the time
complexity is O(n|I|) with an additional pre-processing complexity of O(

∑
e∈I |e|) due to

Aho-Corasick. Space complexity for the histogram and book-stack remains O(
√

n|I|+ |I|)1,
however additional space is now needed for user’s desired implementation of the Aho-Corasick
algorithm.

6 Related Work

Counting in Streams. In the count-distinct problem, the goal is to know the number of
unique elements in a stream [9,14]. In the bit-counting problem, the goal is to maintain the
frequency count of 1’s in the last k bits of a bit stream of size N . Datar et al. propose an
approximate algorithm with for the bit-counting problem with O(log2 k) space complexity [6].
Existing counting algorithms for streams assume the sliding-window model of computation,
that is answering queries or mining is done over the last w elements seen so far [7]. However,
AWLCO introduces a new analysis model – all-window-length analysis model – which is
compelled to analyze and query all windows of all lengths starting from the beginning of a
stream or anytime in the past. To that end, AWLCO presents an efficient and exact itemset
counting algorithm for the all-window-length analysis model.

The frequent itemset mining in stream is a well-studied problem that adheres to the
counting problem [5]. The seminal work by Manku and Motwani presents an algorithm for
estimating the frequency count of itemsets in a stream and identifying those itemsets that
occur in at least a fraction θ of the stream seen so far with some error parameter ϵ [14].
For example, when the input is a stream of transactions where each transaction is a set of
items, the goal is to find the most frequent itemsets within transactions. The challenge is to
consider variable-length itemsets and avoid the combinatorial enumeration of all possible
itemsets. Many existing frequent itemset mining algorithms (with exception of [4,11]) obtain
approximate results with error bounds. A variation of frequent itemset mining is the problem
of mining frequent co-occurrence patterns across multiple data streams [21]. The definition
of co-occurrence patterns is slightly different than co-occurrence itemsets considered by

1 When considering patterns rather than single elements, |I| ≤ n is not necessarily true, so we include an
additional factor of |I| for completeness.
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AWLCO. A co-occurrence pattern is a group of items that appear consecutively showing tight
correlations between these items. A frequent co-occurrence pattern is the pattern that
appears in at least θ streams within a time period of length τ and the appearance of the
pattern in each stream happens within a time window of δ or smaller. In this paper, AWLCO
presents an all-window length frequency counting for a query itemset. A natural extension
of the itemset frequency counting of presented by AWLCO is mining frequent itemsets in all
window-lengths.

Affinity Analysis. Zhong et al. defined reference affinity for data elements on an access trace.
A set of data elements belong to the same affinity group if they are always accessed close
to each other [24]. The closeness is defined by k−linked-ness. They proved that reference
affinity forms a unique partition of data for every k, and the relation between different ks
is hierarchical, i.e. the affinity groups at link length k are a finer partition of the groups
at k + 1. This definition requires strict co-occurrence in that every occurrence of a group
element must be accompanied by all other elements of the group. Weak reference affinity [23]
introduces a second parameter, affinity threshold. It adheres to the unique and hierarchical
partition properties with respect to both parameters. Zhang et al. showed that neither strict
reference affinity nor weak reference affinity can efficiently be computed [22]. Thus they gave
a heuristic solution and adapted it to use sampling. The average time complexity of their
algorithm is O(Nδω2 + Nδπ), where N is the length of the trace, δ is the sampling rate, ω is
the size of the affinity group, and π is the average time length of windows containing accesses
to all members of the group ω. Lavaee et al. gave an O(Lδω2) algorithm to compute the
affinity for all sub-groups of sizes up to ω [10]. Reference affinity has been used to optimize
the memory layout in data structure splitting [24], whole-program code layout [10], and
both [22].

7 Discussion and Future Work

Applications. The all-window-length co-occurrence has applications in text analysis, the
optimization of the memory layout of programs, and accelerating the search for RNA
sequences in genomes. In terms of practical applications, our plan is to develop interactive
tools that enable the exploration of sequences of events and genomics data. Projects such as
cooccurNet [25] provide a basis that can be extended with all-window-length co-occurrence
analysis functionalities.

Mining Problems. In this paper, we expounded co-occurrence counting of itemsets and
patterns in the all-window-length analysis model. Going forward, we study mining algorithms
in this analysis model, including mining frequent closed itemsets, i.e., given a sequence T

find the top-k itemsets that have highest co-occurrences in an arbitrary window size and for
a frequent itemset X, there exists no super-pattern X ⊂ Y , with the same co-occurrence as
X. The algorithm requires to mine frequent itemsets for all window lengths in one pass.

Extending to Timestamped Sequences. The proposed algorithms operate on a sequence
of data points taken at equally spaced points in time. Thus, our sequences are discrete-
time data. We plan to study co-occurrence counting and frequent itemset mining in a
series of data points indexed in continuous time order. In the continuous setting, we define
T = {(e, ω) : e ∈ I, ω ∈ [0, τ ]}, where τ ≥ 0, to be a set of timestamps in consideration. We
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can now consider the co-occurrence of items and patterns over an interval of time, which can
now be considered as events not items. We wish to compute the probability of a groups of
events happening in time scale r:

Pr(I ∈ [a, b] , T, r) = Pr
y∼U([a,b])

(∀e ∈ I, ∃(e, ω) ∈ T : |y − ω| < r).

This naturally leads to an analytic definition and suggests a continuous analog of co-
occurrence.
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A Appendix

Proof of Theorem 10
Proof. We have a maximal gap for every subset of I containing T [i]. This collection of
subsets can be written as

C = {A ⊆ I|A = {T [i]} ∪B, B ⊆ I \ {T [i]}}.

For each A ∈ C, the update to H is (−1)|A|+1 to H
[
tesla(r1

i (A), i− 1)
]

as we have found an
A-gap of size tesla(r1

i (A), i− 1) at index i. Let Ck = {A ∈ C|tesla(r1
i (A), i− 1) = k}. The

incremental updates can be expressed by

Hi[k] = Hi−1 [k] +
∑

A∈Ck

(−1)|A|+1
, (9)

for each k. Suppose T [i] = rj0
i (I) where j0 < |I|, i.e., T [i] is not the item seen furthest in the

past most recently. Then there are
(|I|−j

ℓ

)
sets A ∈ C of length ℓ + 1 in which T [i] = r1

i (A).
Thus for k = tesla(T [i], i− 1), we have

https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2124405
https://doi.org/10.1128/mBio.01870-17
https://doi.org/10.1145/3318464.3389722
https://doi.org/10.5441/002/edbt.2015.08
https://doi.org/10.1145/1111037.1111040
https://doi.org/10.1145/996841.996872
https://doi.org/10.1093/bioinformatics/btx062


J. Sobel, N. Bertram, C. Ding, F. Nargesian, and D. Gildea 24:17

Hi[k]−Hi−1 [k] =
∑

A∈Ck

(−1)|A|+1 =
|I|−j∑
ℓ=0

(
|I| − j

ℓ

)
(−1)ℓ = (1− 1)|I|−j = 0. (10)

Now for every j < j0 (which means that j never equals |I| − 1 in this case), we have that
there are

(|I|−j−1
ℓ

)
members A ∈ C of length ℓ + 2 in which, rj

i (I) = r1
i (A). Therefore for

k = tesla(rj
i (I), i− 1),

Hi[k]−Hi−1 [k] =
∑

A∈Ck

(−1)|A|+1 =
|I|−j−1∑

ℓ=0

(
|I| − j − 1

ℓ

)
(−1)(ℓ+1) = −(1−1)|I|−j−1 = 0.

But for |I| ≥ j > j0, there are no such sets A ∈ C in which rj
i (I) = r1

i (A), as T [i] = rj0
i (I) is

contained in all A ∈ C.
But if j0 = |I|, i.e., T [i] = r

|I|
i (I), then for each j < |I| − 1, there are again

(|I|−j−1
ℓ

)
members A ∈ C of length ℓ + 2 in which, rj

i (I) = r1
i (A), so again equation (10) holds for

k = tesla(rj
i (I), i − 1), giving no net updates for such k. But there is exactly one A ∈ C

in which r
|I|−1
i (I) = r1

i (A), namely, {r|I|−1
i (I), T [i]}, and there is also one A ∈ C in which

T [i] = r
|I|
i (I) = r1

i (A), which is {T [i]}. Therefore we have

Hi[tesla(r|I|
i (I), i− 1)] = Hi−1[tesla(r|I|

i (I), i− 1)] + 1,

Hi[tesla(r|I|−1
i (I), i− 1)] = Hi−1[tesla(r|I|

i (I), i− 1)]− 1. ◀

Proof of Theorem 13
Proof. Suppose without loss of generality that Xi ⊆ I. We wish to find Hi −Hi−1. Denote

Xi = {r1
i (Xi), r2

i (Xi), . . . , r
|Xi|
i (Xi)} = {x1, x2, . . . , x|Xi|},

as r defined before. Now let

Ui = {A ⊆ I : A = B ∪ {xj}, B ⊆ I \ {xj}, j ∈ [|Xi|]},

which in words, is all subsets of I that contain at least one member of Xi. Observe that

Ui =
|Xi|⋃
j=1
{A ⊆ I : A = B ∪ {xj}, B ⊆ I \ {xj}}.

Now let Kj = {A ⊆ I : A = B ∪ {xj}, B ⊆ I \ {xj}} for all j. Therefore Ui =
⋃|Xi|

j=1 Kj .
The update rule is known for each Kj based on our previous result. The remains the of

the proof is as follows. We can leverage the update rule currently known to compute the
total update. But the intersection of Kj ’s is non-empty, meaning if we update according to
each Kj , we would be overcounting some members of U . Once this is determined, we will
find the update rule according for each arbitrary intersection of these Kj ’s, which completes
the proof.

Define ⟨·⟩i to be a mapping from subsets of I to an integer valued n dimensional vector.
⟨A⟩ki is the sum of the number of maximal gaps of length k ending at index i given by even
subsets of A, minus the sum of the number of maximal gaps of length k ending at index i

given by the odd subsets of A. Using this new definition, ⟨Ui⟩ki = Hi[k]−Hi−1 [k]. We can
now appeal to the inclusion exclusion principle to write that

Hi −Hi−1 = ⟨Ui⟩ =
〈|Xi|⋃

j=1
Kj

〉
=

∑
J⊆[|Xi|]

(−1)|J|+1

〈 ⋂
j∈J

Kj

〉
. (11)

CPM 2021



24:18 AWLCO: All-Window Length Co-Occurrence

The right hand side of the above equality will now be used.
Denote for any J ⊆ [|Xi|],

KJ =
⋂
j∈J

Kj .

Let XJ be the set of members of Xi that lie in every member of KJ . Observe that

XJ =
⋂

G∈KJ

G.

It also follows that XJ =
⋃

j∈J{xj}. Moreover, we can write

KJ = {A ⊆ I : A = XJ ∪B, B ⊆ I \ XJ}.

For each set A ∈ KJ , there is a corresponding set A′ in K′
J = {A ⊆ I : A = {r1

i (XJ )}∪B, B ⊆
I \ XJ}, in which ⟨A⟩ = (−1)|J|+1 ⟨A′⟩. This correspondence is easy to find. Let A ∈ KJ .
Thus A = XJ ∪B, for some B ∈ I \XJ . Then the corresponding set A′ ∈ K′

J is {r1
i (XJ )}∪B.

This is clear, because items that lie in every A ∈ KJ that never satisfy arg mine∈A tesla(e, i−1)
for all A never contribute towards any updates and hence can be ignored, except they may
change the parity of the set and hence change the sign of the update. From here, we can
apply the first theorem taking I in that theorem to be I \ XJ , which gives

⟨KJ⟩ki = (−1)|J|+1 ⟨K′
J⟩

k
i = (−1)|J|+1


1 for k = tesla(r|I\XJ |

i ((I \ XJ) ∪ {x∗}), i− 1)
−1 for k = tesla(r1

i (XJ), i− 1)
0 otherwise,

(12)

when r1
i (XJ) = r

|I\XJ |+1
i ((I \ XJ) ∪ {r1

i (XJ)}). Every update is 0 otherwise.
Now assume for all x ∈ Xi and e ∈ I \Xi, tesla(x, i− 1) ≥ tesla(e, i− 1). For if this does

not hold for some x′ ∈ Xi, then by the above, no updates occur due to x′, so analysis is the
same.

We now wish to compute the right hand side of equation (11). We can employ equation
(12) for each KJ . If r1

i (XJ ) ̸= r
|I\XJ |+1
i ((I \ XJ )∪ {r1

i (XJ )}), that is, the first ranked item of
XJ is not ranked below all of I \ XJ , then ⟨KJ⟩ = 0. We claim that the J in which ⟨KJ⟩ ≠ 0
are of the following form:

Jm = {|Xi| − b : b ∈ [m]}, (13)

for 0 ≤ m < |Xi|. We first show that if J ̸= Jm for some m, then ⟨KJ⟩ = 0. If J ̸= Jm

for some m, then there exists b0 such that r
|Xi|−b0
i (Xi) /∈ XJ , and there is some b1 such

that b1 > b0 and r
|Xi|−b1
i (Xi) ∈ XJ . Since b1 ≤ |Xi| − 1, b0 < |Xi| − 1 which gives that

|Xi| − b0 > 1. Let c0 and c1 be such that rc0
i ((I \ XJ) ∪ {r1

i (XJ)}) = r
|Xi|−b0
i (Xi) and

rc1
i ((I \ XJ) ∪ {r1

i (XJ)}) = r1
i (XJ). We have that c0 > c1. Now since c0 ≤ |I \ XJ | + 1,

c1 ̸= |I \XJ |+ 1. Therefore r1
i (XJ) ̸= r

|I\XJ |+1
i ((I \ XJ) ∪ {r1

i (XJ)}), hence ⟨KJ⟩ = 0.
Now suppose that J = Jm for some m. Let c1 be such that rc1

i (I) = r1
i (XJ). We

then have that for any c < c1, c ∈ J , moreover, rc
i (I) /∈ (I \ XJ) ∪ {r1

i (XJ)}. Thus
r1

i (XJ) = r
|I\XJ |+1
i ((I \ XJ) ∪ {r1

i (XJ)}), for if not, then there would be c0 > c1 in which
rc0

i (I) ∈ (I \ XJ) ∪ {r1
i (XJ)}, a contradiction.
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From this, the right hand side of equation (11) becomes

∑
J⊆[|Xi|]

(−1)|J|+1 ⟨KJ⟩ =
|Xi|−1∑
m=0

(−1)m ⟨KJm
⟩ . (14)

We now have for J = Jm, r1
i (XJ) = r

|Xi|−m
i (Xi). Also when m < |Xi| − 1, we have that

r
|I\XJ |
i (I \ XJ ∪ {r1

i (XJ)}) = r
|I\XJ |
i (I \ XJ) = r

|Xi|−(m+1)
i (Xi). (15)

But when m = |Xi| − 1, J = [|Xi|], therefore

r
|I\XJ |
i (I \ XJ ∪ {r1

i (XJ)}) = r
|I\XJ |
i (I \ XJ) = r

|I\Xi|
i (I \Xi). (16)

Now for m < |Xi| − 1, we can rewrite equation (11) to get

⟨KJm
⟩ki = (−1)m


1 for k = tesla(r|Xi|−(m+1)

i (Xi), i− 1)
−1 for k = tesla(r|Xi|−m

i (Xi), i− 1)
0 otherwise.

(17)

Now define

u(m)k
i =


1 for k = tesla(r|Xi|−(m+1)

i (Xi), i− 1)
−1 for k = tesla(r|Xi|−m

i (Xi), i− 1)
0 otherwise,

(18)

for m < |Xi| − 1 and

u(|Xi| − 1)k
i =


1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
−1 for k = tesla(r1

i (Xi), i− 1)
0 otherwise,

(19)

Taking u(m)i = (u1
i (m), u2

i (m), . . . , un
i (m)), we can write

|Xi|−1∑
m=0

(−1)m ⟨KJm
⟩ =

|Xi|−1∑
m=0

(−1)m(−1)m
u(m)k

i =
|Xi|−1∑
m=0

u(m)k
i . (20)

Observe that

u(0)k
i + u(1)k

i =


1 for k = tesla(r|Xi|−2

i (Xi), i− 1)
−1 for k = tesla(r|Xi|

i (Xi), i− 1)
0 otherwise.

(21)

Applying this for all m < |Xi| − 1 gives

|Xi|−2∑
m=0

u(m)k
i =


1 for k = tesla(r1

i (Xi), i− 1)
−1 for k = tesla(r|Xi|

i (Xi), i− 1)
0 otherwise.

(22)

So combining this with u(|Xi| − 1)k
i , we get

|Xi|−1∑
m=0

u(m)k
i =


1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
−1 for k = tesla(r|I|

i (I), i− 1)
0 otherwise,

(23)
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since r
|Xi|
i (Xi) = r

|I|
i (I). Combining equation (23) with equations (20), (14), and (11) (and

considering the components of each of those equations), we finally get,

Hi [k]−Hi−1 [k] =


1 for k = tesla(r|I\Xi|

i (I \Xi), i− 1)
−1 for k = tesla(r|I|

i (I), i− 1)
0 otherwise,

(24)

proving the result (Xi = A in the statement of the theorem). ◀

Algorithms
On the following page, we give the pseudocode for the algorithm PAWLCO.
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Algorithm 3 PAWLCO.
Input: Trace T , ItemSet I

Result: Co-occurrence of all window lengths
1 H ← empty histogram, cooc← [], S ← empty book-stack
2 ; for e ∈ I do
3 S += (e, −∞)
4 end
5 p← |I|, m← 1
6 while S.retrieve(|I|) = S.retrieve(|I| −m) do
7 m← m + 1
8 end
9 p← |I| −m

10 for i = 0 to n− 1 do
11 C ← {e ∈ I | e[0] = T [i− |e|+ 1|...e[|e| − 1] = T [i]}
12 min← i for c ∈ C do
13 if S.find(c) < min then
14 min← S.find(c)
15 end
16 end
17 if min > S.retrieve(p + 1) then
18 f ← i− S.retrieve(|I|), s← i− S.retrieve(p + 1)
19 H[f ]← H[f ] + 1, H[s]← H[s]− 1
20 end
21 for current ∈ C do
22 j ← S.find(current)
23 S.update(j)

// Maintain partition
24 if j = p = |I| then
25 m← 2
26 while S.retrieve(|I|-1) = S.retrieve(|I|-m) do
27 m← m + 1
28 end
29 p← |I| −m

30 end
31 if p ≤ j < |I| then
32 p← p + 1
33 end
34 end
35 end

// Final gap from bottom of book-stack
36 f ← i− S.retrieve(|I|)
37 H[f ]← H[f ] + 1
38 for x = 0 to |T | − |I|+ 1 do
39 Sx ← 0
40 for k = x to |T | do
41 Sx ← Sx + (k − x + 1)H[k]
42 end
43 cooc[x]← (|T | − x + 1)− Sx

44 end
45 return cooc
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