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Abstract
The comparison of phylogenetic trees is a fundamental task in phylogenetics and evolutionary biology.
In many cases, these comparisons involve trees inferred on the same set of leaves, and many distance
measures exist to facilitate such comparisons. However, several applications in phylogenetics require
the comparison of trees that have non-identical leaf sets. The traditional approach for handling
such comparisons is to first restrict the two trees being compared to just their common leaf set. An
alternative, conceptually superior approach that has shown promise is to first complete the trees by
adding missing leaves so that the completed trees have identical leaf sets. This alternative approach
requires the computation of optimal completions of the two trees that minimize the distance between
them. However, no polynomial-time algorithms currently exist for this optimal completion problem
under any standard phylogenetic distance measure.

In this work, we provide the first polynomial-time algorithms for the above problem under the
widely used Robinson-Foulds (RF) distance measure. This hitherto unsolved problem is referred to
as the RF(+) problem. We (i) show that a recently proposed linear-time algorithm for a restricted
version of the RF(+) problem is a 2-approximation for the RF(+) problem, and (ii) provide an exact
O(nk2)-time algorithm for the RF(+) problem, where n is the total number of distinct leaf labels in
the two trees being compared and k, bounded above by n, depends on the topologies and leaf set
overlap of the two trees. Our results hold for both rooted and unrooted binary trees.

We implemented our exact algorithm and applied it to several biological datasets. Our results
show that completion-based RF distance can lead to very different inferences regarding phylogenetic
similarity compared to traditional RF distance. An open-source implementation of our algorithms is
freely available from https://compbio.engr.uconn.edu/software/RF_plus.
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1 Introduction

Phylogenetic trees, or simply phylogenies, are leaf-labeled trees that depict the evolutionary
relationships between different species, genes, or other biological entities such as cells in an
organism or individuals from a population. In phylogenetic trees, leaf nodes represent extant
entities while internal nodes represent hypothetical ancestors. Many different methodologies,
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algorithms, and data types exist for estimating phylogenies, and there is often considerable
uncertainty and error in their inference, with different methods or data types suggesting
different evolutionary relationships between the same extant entities. Many distance (or
similarity) measures have therefore been developed for systematically comparing different
phylogenetic trees, including the widely used Robinson-Foulds distance [29], triplet and
quartet distances [14, 17], nearest neighbor interchange (NNI) and subtree prune and regraft
(SPR) distances [31, 18, 34], maximum agreement subtrees [19, 2, 15], nodal distance [9],
geodesic distance [23] and others. However, these distance measures implicitly assume that
the two trees being compared have identical leaf sets, an assumption that is often violated
in practice. Indeed, several applications, such as supertree construction [24, 6, 10, 32, 1],
phylogenetic database search [28, 30, 11, 25], and clustering of phylogenies [20, 35], require
the computation of distances between trees with partially overlapping leaf sets.

The traditional approach to comparing two trees with only partially overlapping leaf sets
is to first restrict (i.e., prune down) both trees to their shared leaf set. This restriction based
approach, though simple to conceptualize and compute, can result in the loss of valuable
topological information through scrapping of leaves that are not common to both trees.
An alternative approach to comparing trees with non-identical leaf sets is to complete or
fill in each of the input trees to the union of their leaf sets in a way which minimizes the
distance between them, and then compute their distance. This approach, though conceptually
more complex, successfully incorporates all topological information in both the trees being
compared. In addition to its more complete use of topological information, the completion
based approach also has the benefit of a larger range of attainable values due to comparisons
over larger extended trees rather than smaller induced trees. Despite these advantages,
no polynomial-time algorithms currently exist for completion based comparison under any
standard phylogenetic distance measure. In this work, we provide the first polynomial-time
algorithms for optimal completion and comparison of incomplete phylogenetic trees under
the widely used Robinson-Foulds (RF) distance measure. Following existing literature [4],
we refer to completion based RF distance as RF(+), the traditional restriction based RF
distance as RF(-), and the problem of computing the RF(+) distance between two trees as
the RF(+) problem. Figure 1 illustrates the difference between RF(-) and RF(+) distances.

Previous work. The idea of completion based Robinson-Foulds distance arose at least
a decade ago when Cotton and Wilkinson introduced majority-rule supertrees [13] and
defined two variants, majority-rule(-) and majority-rule(+) supertrees, based on RF(-) and
RF(+), respectively. Completion based majority-rule(+) supertrees and some variants were
subsequently shown to have many desirable properties [16]. Later, Kupczok [22] characterized
the RF(+) distance for the restricted special case where the leaf set of one tree is a subset
of the leaf set of the other in terms of incompatible splits between the two trees. For this
restricted special case, referred to as the One Tree RF(+) (OT-RF(+)) problem [4], an
O(n2)-time algorithm was proposed by Christensen et. al. in 2017 [12], where n is the
total number of distinct leaf labels in the two trees being compared. More recently, Bansal
proposed an optimal O(n)-time algorithm for this OT-RF(+) problem [3, 4]. Bansal also
proposed a restricted formulation of the RF(+) problem, called the Extraneous-Clade-Free
RF(+) (EF-RF(+)) problem, which is based on computing optimal completions that avoid
the creation of any subtrees formed by joining together two subtrees unique to each one of the
two input trees. Essentially, the EF-RF(+) problem disallows certain types of completions;
specifically, it ignores how subtrees exclusive to one input tree impact the overall optimal
position where subtrees from the other input tree should be added. Bansal showed that the
EF-RF(+) problem can be solved in O(n) time [4]. These linear-time algorithms for the
OT-RF(+) and EF-RF(+) problems are applicable to both rooted and unrooted trees.
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Figure 1 RF(-) and RF(+) distances. The figure shows a “base” tree S and two other trees
U and V , with Le(U) = Le(V ), being compared to S. S∗, U∗ and V∗ represent the trees S, U and V ,
respectively, when restricted to the common leaf set. U∗ and V ∗ are the optimal RF(+) completions
of U and V with respect to S. S∗

U and S∗
V are the optimal RF(+) completions of S with respect to U

and V , respectively. Filled in nodes represent matched nodes (Definition 2.2). Here, RF(S∗, U∗) = 2
and RF(S∗, V∗) = 4 while RF(S∗

U , U∗) = 8 and RF(S∗
V , V ∗) = 4. Thus, in this example, U is closer

to S than V under RF(-) but V is closer to S than U under RF(+).

Our Contributions. In this work, we provide the first polynomial-time algorithms for the
RF(+) problem for both rooted and unrooted trees. Specifically, we make the following contri-
butions: First, we show that the EF-RF(+) distance between two trees is a 2-approximation
for the RF(+) distance between those trees. Since the EF-RF(+) problem can be solved
in O(n) time, this yields a linear time 2-approximation algorithm for the RF(+) problem.
Second, we provide an O(nk2)-time exact algorithm for the RF(+) problem, where k, bounded
above by n, is the number of maximal subtrees exclusive to one input tree. And third, we
perform an extensive experimental study which demonstrates that the use of RF(+) distance
can lead to very different inferences regarding phylogenetic similarity compared to RF(-)
distance. We also find that, in practice, EF-RF(+) distances are often very close to RF(+)
distances, suggesting that the linear-time algorithm for computing EF-RF(+) distances could
be an excellent heuristic for estimating RF(+) distances between large trees.

The rest of this manuscript is organized as follows: Preliminaries and problem definitions
appear in the next section. We describe the linear time 2-approximation algorithm in
Section 3, and the exact algorithm in Section 4. Section 5 shows how our algorithms can be
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extended to unrooted trees, and Section 6 describes the results of our experimental study.
Concluding remarks appear in Section 7. Proofs of all lemmas and theorems from Sections 3
and 4 appear in the Appendix.

2 Definitions and Preliminaries

We follow basic definitions and problem formulations from [4]. All trees will be unordered.
Given a tree T , we denote its node set, edge set, and leaf set by V (T ), E(T ), and Le(T ),
respectively. The set of all non-leaf (i.e., internal) nodes of T is denoted by I(T ). If T is
rooted, the root node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by paT (v),
its set of children by ChT (v), and the (maximal) subtree of T rooted at v by T (v). If two
nodes in T have the same parent, they are called siblings of each other. If paT (v) has exactly
two children, then we will denote the sibling of v as sibT (v). The least common ancestor,
denoted lcaT (L), of a set L ⊆ Le(T ) in T is defined to be the node v ∈ V (T ) such that
L ⊆ Le(T (v)) and L ̸⊆ Le(T (u)) for any child u of v. For convenience, given a collection of
vertices a1, . . . , am in T , we will define lcaT (a1, . . . , am) = lcaT (Le(T (a1)) ∪ · · · ∪ Le(T (am))).
Given a rooted tree T and a, b ∈ V (T ), we say that a ≤ b if a ∈ V (T (b)), and a < b if
a ∈ V (T (b)) and a ≠ b. A rooted tree is binary if all of its internal nodes have exactly
two children, while an unrooted tree is binary if all its nodes have degree either 1 or 3.
Throughout this work, the term tree refers to binary trees with uniquely labeled leaves.

Let T be a rooted or unrooted tree. Given a set L ⊆ Le(T ), let TL be the minimal subtree
of T with leaf set L. We define the leaf induced subtree T [L] of T on leaf set L to be the tree
obtained from TL by successively removing each non-root node of degree two and adjoining
its two neighbors.

▶ Definition 2.1 (Completion of a tree). Given a tree T and a set L′ such that Le(T ) ⊆ L′,
a completion of T on L′ is a tree T ′ such that Le(T ′) = L′ and T ′[Le(T )] = T .

If T is a rooted tree, for each node v ∈ V (T ), the clade CT (v) is defined to be the set
of all leaf nodes in T (v); i.e. CT (v) = Le(T (v)). We denote the set of all clades of a rooted
tree T by Clade(T ). This concept can be extended to unrooted trees as follows. If T is an
unrooted tree, each edge (u, v) ∈ E(T ) defines a partition of the leaf set of T into two disjoint
subsets Le(Tu) and Le(Tv), where Tu is the subtree containing node u and Tv is the subtree
containing node v, obtained when edge (u, v) is removed from T . The partition induced by
any edge (u, v) ∈ E(T ) is called a split and is represented by the set {Le(Tu), Le(Tv)}. The
set of all splits in an unrooted tree T is denoted by Split(T ).

▶ Definition 2.2 (Matched and mismatched nodes). Given rooted trees S and T , and a node
v ∈ V (S), we call v a matched node with respect to T if CS(v) ∈ Clade(T ), and a mismatched
node otherwise. Analogously, CS(v) is called a matched clade if CS(v) ∈ Clade(T ), and a
mismatched clade otherwise.

The symmetric difference of two sets A and B, denoted by A∆B, is the set (A\B)∪(B\A).
We now define the Robinson-Foulds distance and the two problems that we solve in this
paper.

▶ Definition 2.3 (Robinson-Foulds distance). The Robinson-Foulds (RF) distance, RF(S, T ),
between two trees S and T is defined to be | Clade(S)∆ Clade(T )| if S and T are rooted trees,
and | Split(S)∆ Split(T )| if S and T are unrooted trees.
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▶ Problem 1 (Rooted RF(+) (R-RF(+))). Given two rooted binary trees S and T , compute a
binary completion S∗ of S on Le(S)∪Le(T ) and a binary completion T ∗ of T on Le(S)∪Le(T )
such that RF(S∗, T ∗) is minimized.

▶ Problem 2 (Unrooted RF(+) (U-RF(+))). Given two unrooted binary trees S and T ,
compute a binary completion S∗ of S on Le(S) ∪ Le(T ) and a binary completion T ∗ of T on
Le(S) ∪ Le(T ) such that RF(S∗, T ∗) is minimized.

These problems can equivalently be viewed as maximizing the number of matched clades
or minimizing the number of mismatched clades between completions of the input trees.
Our algorithms for the problems above rely on first computing exact solutions for restricted
variants of those problems. These restricted variants of R-RF(+) and U-RF(+) were first
proposed and defined in [4] and are referred to as the Extraneous-Clade-Free R-RF(+) (EF-
R-RF(+)) and Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) problems. These restricted
variants are based on computing optimal completions that do not contain any subtrees
formed by joining together two subtrees unique to each one of the two input trees. Next,
we first define extraneous clades and extraneous splits, and then state the EF-R-RF(+) and
EF-U-RF(+) problems.

▶ Definition 2.4 (Extraneous clade [4]). Suppose S and T are rooted trees. Given completions
S′ and T ′ of S and T , respectively, on Le(S) ∪ Le(T ), we define a clade of S′ or T ′ to be an
extraneous clade if it contains leaves from both S and T but no leaves that are common to S

and T .

An extraneous split is simply the analogous notion for unrooted trees and we refer the
reader to [4] for a formal definition. The corresponding problem variants can now be defined
as follows:

▶ Problem 3 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+)) [4]). Given two rooted trees
S and T , compute a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of T on
Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous clades and RF(S′, T ′) is
minimized.

▶ Problem 4 (Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) [4]). Given two unrooted trees S

and T such that | Le(S) ∩ Le(T )| ≥ 2, compute a completion S′ of S on Le(S) ∪ Le(T ) and
a completion T ′ of T on Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous
splits and RF(S′, T ′) is minimized.

Figure 2 provides examples of completions with and without extraneous clades. Both the
EF-R-RF(+) and EF-U-RF(+) problems can be solved optimally in linear time [4].

Note. In the remainder of this section, as well as in Sections 3 and 4 we focus on only the
rooted version of RF(+), i.e., on the R-RF(+) problem, and implicitly assume that the two
trees being compared, S and T , are rooted.

Node coloring scheme for rooted trees. For ease of presentation, we assign a color to
some of the nodes of the two rooted input trees as follows. These node colorings can also be
used to define red and green subtrees.

▶ Definition 2.5 (Red and Green Nodes). Let S and T be two arbitrary rooted trees. A node
v ∈ V (S) is called a red node (with respect to T ) if Le(S(v)) ⊆ Le(S) \ Le(T ). Analogously,
a node v ∈ V (T ) is called a green node (with respect to S) if Le(T (v)) ⊆ Le(T ) \ Le(S).

CPM 2021
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Figure 2 EF-RF(+) and RF(+) completions. S′, T ′ are optimal EF-R-RF(+) completions
(without extraneous clades) of S and T , respectively, and completions S∗, T ∗ are optimal RF(+)
completions. Nodes labeled with downward and upward pointing triangles are red and green nodes,
respectively, as defined in Definition 2.5. Filled in nodes correspond to matched clades.

▶ Definition 2.6 (Red and Green Subtrees). A subtree S(u), where u ∈ V (S), is called a red
subtree of S if u is a red node. A subtree T (u), where u ∈ V (T ), is called a green subtree of
T if u is a green node. A subtree S(u), where u ∈ V (S), is called a maximal red subtree
of S if S(u) is a red subtree and either u = rt(S) or paS(u) is not red. A subtree T (u),
where u ∈ V (T ), is called a maximal green subtree of T if T (u) is a green subtree and either
u = rt(T ) or paT (u) is not green. Note that all nodes in a red (green) subtree must be red
(green).

Under this node coloring, completing a tree S with respect to tree T entails adding all
the green leaves of T into S and completing a tree T with respect to tree S entails adding, or
grafting, all the red leaves of S into T . Importantly, as we show later in Theorem 3.1, under
R-RF(+) problem, there exist optimal completions of S and T in which all grafted subtrees
are maximal red or green subtrees. In other words, to optimally complete S we must only
add the maximal green subtrees of T to S, and vice versa.

Notational conventions. S and T will denote the two given (input) trees to be completed/-
compared. Going forward, we will generally use S′ and T ′ to represent completions (optimal
or non-optimal) with no extraneous clades, and S∗ and T ∗ to represent completions that
may include extraneous clades.

3 EF-R-RF(+) is a 2-Approximation for R-RF(+)

Observe that any optimal pair of R-RF(+) completions can be modified into a pair of (not
necessarily optimal) EF-R-RF(+) completions by breaking apart any existing extraneous
clades and reinserting the red/green leaves in a manner that avoids forming extraneous
clades. In this section, we will show how to perform such a modification of optimal R-RF(+)
completions so that the resulting increase in RF distance is appropriately bounded. This
will establish that EF-R-RF(+) distance is a 2-approximation for R-RF(+) distance and
will yield a linear-time 2-approximation algorithm for the R-RF(+) problem. We will first
establish the presence of canonical optimal R-RF(+) completions that satisfy some desirable
structural properties.
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Notation and terminology. Given completions S∗ and T ∗ of S and T , if there exists an
extraneous clade CT ∗(v) for some vertex v ∈ T ∗, then we will call the subtree T ∗(v) an
extraneous subtree. If the children s and t of v satisfy CT ∗(s) ∈ Clade(S) and CT ∗(t) ∈
Clade(T ), then we will denote the extraneous subtree by {s, t}. To simplify notation, we will
write paT ∗{s, t} to express the parent paT ∗(lcaT ∗(s, t)) of the root node of the extraneous
subtree {s, t} in completion T ∗. Likewise, we will write sibT ∗{s, t} to express sibT ∗(lcaT ∗(s, t)),
i.e., the sibling of the root node of extraneous subtree {s, t} in T ∗.

Next, we show that there always exists an optimal pair of R-RF(+) completions in which
all extraneous clades are of the form {s, t}, and any such extraneous clade appears in both
completions. We refer to such optimal R-RF completions S∗ and T ∗ of S and T as canonical
optimal R-RF(+) completions.

▶ Theorem 3.1. Let S and T be rooted binary trees. Then, there exist optimal completions
S∗ and T ∗ under the R-RF(+) problem with the following properties:
1. Every subtree inserted into S∗ is a maximal green subtree of T , and every subtree inserted

into T ∗ is a maximal red subtree of S,
2. Every extraneous subtree in S∗ and T ∗ is of the form {s, t}, where s is the root of a

maximal red subtree in S and t is the root of a maximal green subtree in T ,
3. Every extraneous subtree {s, t} which is a subtree of S∗ is also a subtree of T ∗ and vice

versa.

Decomposition of canonical optimal R-RF(+) completions. Given an extraneous subtree
{s, t} in canonical optimal R-RF(+) completions S∗, T ∗ of S and T , where s ∈ V (S) and
t ∈ V (T ), we define a decomposition of the extraneous subtree {s, t} as a modification of the
completions S∗ and T ∗, yielding new completions S′ and T ′ with strictly fewer extraneous
subtrees, as follows:

1. If either none or both of the nodes paS∗{s, t} and paT ∗{s, t} are matches (in S∗ and T ∗),
then the decomposition occurs as described below.

In tree T ∗, prune out the grafted subtree S(s) and regraft it at the parent edge of
node sibT ∗{s, t}.
In tree S∗, prune out the grafted subtree T (t) and regraft it at the parent edge of
node paS∗{s, t}. If paS∗{s, t} = rt(S∗), then create a new root node with children t

and paS∗{s, t}.
2. Otherwise, if exactly one of the nodes paS∗{s, t} and paT ∗{s, t} is a matched node (in S∗

and T ∗), then the decomposition occurs as described below. Without loss of generality,
assume that paS∗{s, t} is a match and paT ∗{s, t} a mismatch.

In tree S∗, prune out the grafted subtree T (t) and regraft it at the parent edge of node
sibS∗{s, t}.
In tree T ∗, prune out the grafted subtree S(s) and regraft it at the parent edge of
that unique node u ∈ V (T ∗) for which CT ∗(u) = CS∗(paS∗{s, t}). If u = rt(S∗), then
create a new root node with children s and paS∗{s, t}. Note that u must exist since
paS∗{s, t} is a matched node.

This decomposition is illustrated in Figure 3. The following lemma characterises how the
RF distance between S∗ and T ∗ is impacted as their extraneous subtrees are decomposed.

CPM 2021
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Figure 3 Decomposition of extraneous clades. Shown here is a decomposition of completions
S∗ and T ∗ into completions S′ and T ′. Nodes labeled with downward and upward pointing triangles
are red and green nodes, respectively. Extraneous subtree {b, g} is of type 1 where both parents
match, extraneous subtree {d, h} is of type 1 where neither parent is a match, and extraneous subtree
{e, i} is of type 2. Matches between corresponding completions are denoted by filled in nodes.

▶ Lemma 3.2. Let S′ and T ′ denote the trees obtained by decomposing extraneous subtree
{s, t} in completions S∗ and T ∗, respectively.
1. If paS∗{s, t} and paT ∗{s, t} are both matched nodes then RF(S′, T ′) = RF(S∗, T ∗).
2. If exactly one of paS∗{s, t} and paT ∗{s, t} is a matched node then RF(S′, T ′)=RF(S∗, T ∗).
3. If neither paS∗{s, t} nor paT ∗{s, t} is a matched node then RF(S′, T ′) = RF(S∗, T ∗) + 2.

The 2-approximation now follows by appropriately bounding the number of extraneous
subtrees {s, t} that fall in category 3 of the above lemma.

▶ Theorem 3.3. Let S∗ and T ∗ represent optimal completions of S and T , respectively, under
the R-RF(+) problem. Let S′ and T ′ represent optimal completions of S and T respectively
under the EF-R-RF(+) problem. Then, RF(S′, T ′) ≤ 2 · RF(S∗, T ∗).

4 An Efficient Exact Algorithm for R-RF(+) Distance

As shown above, optimal EF-R-RF(+) completions 2-approximate RF(+) distance. We now
show how to construct optimal R-RF(+) completions by modifying optimal EF-R-RF(+)
completions.

Notation and terminology. We refer to EF-R-RF(+) completions resulting from the
TwoTreeCompletion Algorithm of [4] as canonical EF-R-RF(+) completions. This is due to
the way that maximal red and green subtrees are topologically well placed in such completions.
We will refer to the placement of a maximal colored subtree under the TwoTreeCompletion
Algorithm as a canonical EF-R-RF(+) position. The placement of each maximal red subtree
R of S, rooted at r, in canonical EF-R-RF(+) completion T ′ of T has the useful property
that all leaves a ∈ Le(S) ∩ Le(T ) where lcaS(a, r) = paS(r) also satisfy lcaT ′(a, r) = paT ′(r),
and all leaves b ∈ Le(S) ∩ Le(T ) where lcaT ′(b, r) > paT ′(r) also satisfy lcaS(b, r) > paS(r).
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By Theorem 3.1, we know that there exists an optimal pair of R-RF(+) completions
where the only extraneous subtrees are of the form {s, t}. We will first show that a canonical
pair of R-RF(+) completions can be constructed by taking a canonical pair of EF-R-RF(+)
completions and pairing up extraneous subtrees of the form {s, t} in an optimal manner. We
will then design a recurrence relation which computes the best possible change to the RF
distance caused by pairing up extraneous subtrees of the form {s, t}, and show that this
change to the RF distance can be computed in near linear time depending on the leaf-set
overlap between the input trees.

▶ Lemma 4.1. There exist canonical R-RF(+) completions S∗ and T ∗ of rooted binary trees
S and T such that every subtree grafted into S∗ and T ∗ is either in an extraneous subtree or
in its canonical EF-R-RF(+) position.

In the remainder of this section, let S′, T ′ and S∗, T ∗ represent canonical EF-R-RF(+)
and R-RF(+) completions of S and T , respectively. We will soon define the subproblems
that are the basis of our dynamic programming algorithm. Before doing so, we motivate the
dynamic programming recurrence relation with the following lemma, which describes a new
useful tree T ′′ that is easier to construct from T ′ and preserves the important topological
structure of T ∗. Our dynamic programming algorithm actually constructs T ′′, and we can
then easily use T ′′ to generate S∗ and T ∗.

▶ Lemma 4.2. Let T ′′ be the tree obtained by taking T ∗ and regrafting every extraneous
subtree {s, t} along the parent edge of lcaT ∗(lcaT ∗(Le(sibS(s))), t). Then RF(S′, T ′′) =
RF(S∗, T ∗) + 2m, where m is the number of extraneous subtrees {s, t} contained in T ∗.

Note that T ′′ itself may not be a completion of T . In particular, in the construction of
T ′′, pruning and regrafting the maximal green subtree T (t) is necessary if the extraneous
subtree {s, t} is formed and lcaT ′(s, t) ̸= paT ′(t). Moving any subtree of T in T ′ changes T ′

to no longer be a completion of T . Figure 4 shows a concrete example.

▶ Definition 4.3. Let the colors red and green be associated with the binary values 0 and
1, respectively. For v ∈ V (T ′) and c ∈ {0, 1}, let cMax(c, v) be the total number of maximal
subtrees of color c in T ′(v). Moreover, let m be an integer such that 0 ≤ m ≤ cMax(c, v). We
define Cost(v, m, c) to be min

T̂
(RF(S′, T̂ ) − 2p − RF(S′, T ′)), where T̂ is obtained from T ′ by

regrafting maximal red and green subtrees in T ′(v) under the constraint that each extraneous
subtree {s, t} is grafted along the parent edge of lcaT ′(v)(s, t) and exactly m maximal c-colored
subtrees in T ′(v) have been regrafted along the parent edge of v, excluding extraneous subtrees
(see Figure 5 for an example), and p denotes the number of extraneous subtrees of the form
{s, t} in T̂ .

In the trivial case when v is the root of a maximal c-colored subtree, we will say that it is
possible to push one red subtree up to the parent edge of v or down from the parent edge of v.

Note that the Cost() subproblem builds the optimal RF(+) distance. However, the cost is
defined based on Lemma 4.2 by constructing T ′′ and subtracting out the extraneous subtrees
as they are produced. Moreover, we subtract the constant term RF(S′, T ′) to express the
cost as the change in RF distance.

We point out that the choice of T̂ implying Cost(rt(T ′), 0, 0) is exactly T ′′ by Lemmas 4.1
and 4.2. Furthermore, for any internal node v in T ′, and for the choice of m, c which imply
the optimal cost value of Cost(rt(T ′), 0, 0) via the upcoming recurrence relation, the tree
T̂ (v) which admits Cost(v, m, c) is exactly equal to T ′′(v). In this sense, each T̂ captures an
entire subtree of T ′′. Note that on a local scale, in any specific T̂ there may be a red or green
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Figure 4 The tree T ′′. This figure shows the relationship between T ′, T ′′, and T ∗. In this
example, observe that there is exactly one extraneous subtree {s, t} in the optimal completions
S∗ and T ∗, and that RF(S′, T ′′) = RF(S∗, T ∗) + 2. Moreover, T ′′ in this example cannot be
a completion of T since the green leaf i has been regrafted. But constructing T ′′ is simply an
intermediary step for constructing completions S∗ and T ∗. Matches are denoted by filled in nodes.

subtree regrafted outside of an extraneous subtree and outside of its canonical EF-R-RF(+)
position. However, it can be concluded that either eventually these red and green subtrees
will be paired in extraneous subtrees for some later T̂ , or the particular cost value does not
imply the optimal Cost(rt(T ′), 0, 0).

The next lemma provides a recurrence relation that can compute each Cost(v, m, c)
efficiently. In this recurrence relation, a subscript of L or R denotes the left or right child,
respectively. For example, if a vertex v is an internal node in T then vL is the left child of v,
and if c is a color associated with vertex v then cL is a color associated with vertex vL. Note
that the trees are unordered, so we use “left” and “right” here only to distinguish between
the two children of an internal node.

▶ Lemma 4.4. Let f(mi, vi, ci) equal 2 when mi > 0 and vi is a match with color other
than ci, and 0 otherwise. Let gc(mL, mR, cL, cR) equal 2 · min{mL, mR} when cL ̸= cR, and
0 when cL = cR = c. Then,

Cost(v, m, c) = min
mL,mR,cL,cR

{
Cost(vL, mL, cL) + Cost(vR, mR, cR)
+f(mL, vL, cL) + f(mR, vR, cR) − gc(mL, mR, cL, cR)

}
if v is an internal node of T ′, and Cost(v, m, c) = 0 if v is a leaf of T ′, where:
(a) c, cL, cR ∈ {0, 1}, and either cL ̸= cR or cL = cR = c,
(b) 0 ≤ m ≤ cMax(c, v),
(c) If cL ̸= cR, then mi − mj = m for i, j ∈ {L, R}, i ̸= j satisfying ci = c,
(d) If cL = cR = c, then mL + mR = m

The functions f and gc from Lemma 4.4 both track local changes in matched and
mismatched nodes. In particular, f tracks a local change between RF(S′, T ′) and RF(S′, T ′′)
while gc tracks a local change between RF(S′, T ′′) and RF(S∗, T ∗). We now provide our
dynamic programming algorithm for computing the R-RF(+) distance between S and T .
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Figure 5 Illustration of tree T̂ . The figure shows an example of what the tree T̂ might look
like after computing Cost(u, 2, 1), where c and d have both been regrafted iteratively along the
parent edge of u and not regrafted into an extraneous subtree. Note that the extraneous subtree
{e, f} has also been regrafted along the parent edge of u, though it does not contribute to the value
of m = 2. In particular, u = lcaT ′ (e, f), so the extraneous subtree {e, f} will appear at the same
position in T̂ and T ′′. Moreover, f is not included as one of the two maximal green subtrees grafted
onto the parent edge of u since it is a part of an extraneous subtree. For each choice of vertex v,
integer m and color c implying to the minimum Cost(rt(T ′), 0, 0) value, the corresponding optimal
T̂ provides the topolgical structure of T ′′ when restricted to the subtree rooted at v.

Algorithm 1 Compute-R-RF+(S,T).

1: Compute the EF-R-RF(+) completions S′ and T ′ of S and T .
2: for v in T ′ in postorder do
3: if v is a leaf then
4: Set Cost(v, 0, 0) = Cost(v, 0, 1) = 0.
5: if v is the root of a maximal red (0) or green (1) subtree then
6: Set Cost(v, 1, cv) = 0, where cv is the color of v.
7: else
8: for each color c and value 0 ≤ m ≤ cMax(c, v) do
9: Compute Cost(v, m, c) using the recurrence relation from Lemma 4.4

10: return RF(S′, T ′) + Cost(rt(T ′), 0, 0)

The algorithm above can be easily augmented to compute optimal completions by
backtracking and determining the optimal values of m and c at each vertex of T ′ implying
Cost(rt(T ′), 0, 0). Using these optimal m and c values, we can determine when opposite
colored subtrees converge and construct T ′′. From T ′′, we simply move each extraneous
subtree {s, t} into the canonical EF-R-RF(+) position for T (t) to build T ∗ and form the
same extraneous subtrees in S′ to build S∗.

▶ Theorem 4.5. The RF(+) distance between two rooted binary trees S and T can be
computed in O(nk2) time, where n = | Le(S) ∪ Le(T )| and k is the number of maximal red
and green subtrees in S and T .

5 Extension to Unrooted Trees

Our algorithm for the R-RF(+) problem can be easily adapted for the U-RF(+) problem.
Specifically, the following algorithm computes the unrooted RF(+) distance between two
unrooted input trees S and T with at least one leaf in common.
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Algorithm 2 Compute-U-RF+(S, T).

1: Let l be any leaf from Le(S) ∩ Le(T ). Produce two rooted trees Ŝ and T̂ by rooting S

and T , respectively, on the edge which connects l to the rest of each tree.
2: Compute the RF(+) distance d between Ŝ and T̂ using Algorithm Compute-R-RF+(S,T).
3: Return d

The correctness of this algorithm is easy to establish based on the well-understood
association between rooted and unrooted RF distances [10, 4], and further technical details
and proofs are therefore omitted. This yields the following two theorems.

▶ Theorem 5.1. The U-RF(+) problem can be solved in O(nk2) time, where n = | Le(S) ∪
Le(T )| and k is the number of maximal red and green subtrees in the corresponding EF-U-
RF(+) completion of S or T .

▶ Theorem 5.2. Let S∗ and T ∗ represent optimal completions of unrooted trees S and T ,
respectively, under the U-RF(+) problem. Let S′ and T ′ represent optimal completions of S

and T , respectively, under the EF-U-RF(+) problem. Then, RF(S′, T ′) ≤ 2 · RF(S∗, T ∗).

6 Experimental Evaluation

We implemented our exact algorithm and performed experiments to assess the impact of using
RF(+) distance instead of RF(-) distance on inferences related to tree similarity. We also
conducted experiments to assess how well the linear-time algorithm for computing EF-RF(+)
distances approximates RF(+) distances in practice. All our experiments were performed
using real biological phylogenetic tree datasets on marsupials [8] (158 trees), legumes [33]
(22 trees), and placental mammals [7] (726 trees).

Experiment 1: Conflicts between RF(+) and RF(-). Given two trees S and T , let
RF+(S, T ) and RF−(S, T ), respectively, denote the RF(+) and RF(-) distances between
them. We used the above datasets to measure the number of times that for any “base” tree
S, there is a tree T1 which is closer to S than T2 under one of RF(+) or RF(-) but not closer
under the other distance measure. This motivates the following definitions to describe each
possible case of a change in order.

Type-1 Triples: Triple (S, T1, T2) is Type-1 if RF−(S, T1) < RF−(S, T2) but RF+(S, T1) >

RF+(S, T2), or RF−(S, T2) < RF−(S, T1) but RF+(S, T2) > RF+(S, T1). A Type-1
triple indicates when the ordering of T1 and T2 by distance from S strictly changes as
the distance function changes between RF(-) and RF(+).

Type-2 Triples: Triple (S, T1, T2) is Type-2 if RF−(S, T1) = RF−(S, T2) but RF+(S, T1) ̸=
RF+(S, T2). A Type-2 triple indicates when T1 and T2 have equal distance to S under
RF(-) but not under RF(+).

Type-3 Triples: Triple (S, T1, T2) is Type-3 if RF−(S, T1) ̸= RF−(S, T2) but RF+(S, T1) =
RF+(S, T2). A Type-3 triple indicates when T1 and T2 have equal distance to S under
RF(+) but not under RF(-).

Observe that the magnitude of difference between RF(+) and RF(-) distances depends on the
level of overlap between the trees being compared. To account for this effect, we define the
leaf-overlap ratio of a pair of trees (S, T ) to be the following ratio: | Le(S) ∩ Le(T )| divided
by min{| Le(S)|, | Le(T )|}, and the leaf-overlap ratio of a triple of trees S, T1, and T2 to be
the minimum pairwise leaf-overlap ratio between (S, T1) and (S, T2).
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Figure 6 Fraction of conflicting triples for different leaf-overlap ratios. The figure
contains three plots, one for each dataset, which each show the fraction of triples of type-1, type-2,
and type-3 for different ranges of leaf-overlap ratio, among all triples of trees within the same
leaf-overlap ratio range in that dataset. The dotted line represents the total number of conflicting
triples (i.e., all triples of type 1, 2 or 3). x-axis labels denote the center of each interval of size 0.1.
Each leaf-overlap ratio range is a closed interval and includes the boundary, e.g., x-axis label 0.15
represents the range [0.1 − 0.2].

We performed this experiment for each subset of three trees from each dataset, and
Figure 6 shows its results. As the figure shows, the proportion of conflicting triples (type-1,
2, or 3) tends to increase as the triple leaf-overlap ratio increases. In particular, at least
10% of all triples show a conflict (either of type-1, 2, or 3) when the leaf-overlap ratio is
0.7 or greater. Even for leaf-overlap ratio as small as 0.4, we find that 5% of all triples
show a conflict. This demonstrates that RF(+) and RF(-) frequently differ starkly in their
assessments of relative similarities between trees. Observe that the results on the Legumes
dataset are vastly different from the results on the other two datasets. This is mainly because
the Legumes dataset consists of only 22 trees, which is significantly smaller than the 158 tree
and 726 tree datasets. For instance, the number of triples within each leaf overlap ratio range
(interval size 0.1) is between 8,214,518 and 50,815,687 for the placental mammals dataset,
between 3,287 and 1,652,701 for the Marsupials dataset, but only 6, 16, 5, and 0, respectively,
for the Legumes dataset for leaf overlap ratio ranges [0.5 − 0.6], [0.6 − 0.7], [0.7 − 0.8], and
[0.8 − 0.9].

Experiment 2: Impact on phylogenetic database search and clustering. Next, we assessed
the potential impact of using RF(+) distance on applications related to phylogenetic database
search and clustering. Specifically, we assessed how, for each “query” tree in each dataset,
the sets of the “closest" trees to it differed under RF(+) and RF(-). Specifically, we measured
how the sets of (i) the most similar trees and (ii) the most similar 10% of trees (i.e., top 10%
closest matches) differed when using RF(+) and RF(-) distances. To avoid any ambiguity in
defining these sets, we include all trees with equal distance, even if that results in sets of
different sizes under RF(+) and RF(-).

For our comparison of the most similar trees, we found that the sets of closest trees
under RF(+) and RF(-) all had a distance of 0 to the query tree and were identical, for
all choices of the query tree in all datasets. To perform a more meaningful comparison, we
therefore required a minimum leaf-overlap ratio of 0.7, i.e., only those trees with a minimum
leaf-overlap ratio of 0.7 with the query tree could be compared with the query tree. Likewise,
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Figure 7 Difference between sets of closest trees under RF(+) and RF(-). Plots in
the left column show the number of query trees where the set of closest trees with a minimum
leaf-overlap ratio of 0.7 differ under RF(+) and RF(-) distances for each of the three biological data
sets. Plots in the right column show the number of query trees where the set of closest 10% of
trees with a minimum leaf-overlap ratio of 0.5 differ under RF(+) and RF(-) distances. Results are
presented for varying levels of difference between the sets (labels on the x-axes). The sizes of the
datasets, in order from top to bottom, are 158 trees, 22 trees and 726 trees. Each tree in each of
these datasets was used as a query tree for this analysis.

for our comparison of the most similar 10% of trees, we found that the sets of closest 10%
of trees were generally identical under RF(+) and RF(-) if no minimum leaf-overlap ratio
was imposed. We therefore imposed a minimum leaf-overlap ratio of 0.5 for the analysis,
which was the smallest ratio for which a non-negligible fraction of query trees returned
differing sets under RF(+) and RF(-). Figure 7 shows the results of both these analyses. We
find that there are several query trees in each dataset for which there is a large difference
(normalised symmetric difference greater than, say, 0.4) between their sets of closest trees
under RF(+) and RF(-). For the sets of closest 10% of trees, we find that over 25% of trees
in the marsupials dataset, 18% of trees in the legumes dataset, and almost 15% of trees in
the placental mammals dataset return different sets of closest 10% of trees under RF(+)
and RF(-) distances. These results demonstrate how using RF(+) distance can substantially
impact phylogenetic database search and phylogenetic tree clustering, especially when the
trees under consideration have a sufficiently large overlap in their leaf sets.

Experiment 3: Comparison of EF-RF(+) and RF(+). Finally, we used simulated and
real datasets to compare the distances inferred under EF-RF(+) and RF(+), and to study
the runtime and scalability of our implementation. For our analysis with simulated data,
we generated two datasets of random trees using the birth-death model implemented in
SaGePhy [21] (specific parameter values: height of tree = 1.0, birth rate = 5.0 and death
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rate = 0.05). The first simulated dataset consisted of 100 randomly generated trees, each
with between 200 and 300 leaves. The second simulated dataset also consisted of 100
randomly generated trees, but each with between 900 and 1000 leaves. The average leaf-set
sizes for these two datasets were 244.95 and 941.14, respectively, and the average pairwise
leaf-overlap ratio for both datasets was approximately 0.5. For each pair of trees in each
dataset, we measured how close the EF-RF(+) distance is to the RF(+) distance for that
pair. Figure 8 plots the distribution of the ratio of RF(+) distance to EF-RF(+) distance for
the two datasets. As that figure shows, the ratio of RF(+) distance to EF-RF(+) distance is
approximately 0.92, on average, and roughly follows a Gaussian distribution.

Figure 8 Comparison of EF-RF(+) and RF(+) distances on simulated trees. The
two plots show the distribution of the ratio of RF(+) distance to EF-RF(+) distance for the two
simulated datasets consisting of randomly generated birth-death trees. Each dataset contains 100
trees and results are shown for all

(100
2

)
pairs of trees in each dataset.

For the three biological datasets, we found that the ratio of RF(+) distance to EF-RF(+)
distance was equal to one for an overwhelmingly large proportion of pairs of trees within all
three datasets. Specifically, for the marsupials, legumes, and placental mammals datasets,
the average ratios of RF(+) distance to EF-RF(+) distance were 0.998, 0.993, and 0.995,
respectively. In fact, 99.07%, 93.81%, and 96.82% of the pairs in these datasets, respectively,
had identical EF-RF(+) and RF(+) distances. Even when the trees being compared were
restricted to have at least 0.4 leaf-overlap ratio, 95.97%, 78.79%, and 95.59% of the pairs in
marsupials, legumes, and placental mammals datasets, respectively, had identical EF-RF(+)
and RF(+) distances. This discrepancy between results for simulated data and real data is
not surprising since we expect any pair of randomly generated trees to have smaller maximal
red and green subtrees and greater RF(-) distance, presenting more opportunities to improve
the distance by creating extraneous clades. Together, these results on simulated and real
datasets show that EF-RF(+) distance, which is linear-time computable, is generally very
close to RF(+) distance in practice.

Runtime comparison. We also measured the runtimes of the two algorithms and found
that, on average, computing EF-RF(+) distances took 0.06 seconds for the first simulated
dataset and 0.25 seconds for the second simulated dataset. Corresponding average runtimes
for computing RF(+) distances were 0.17 seconds and 1.04 seconds, respectively. All timed
experiments were run on a single core of a 2.1 GHz Intel Xeon processor.

7 Conclusion

Completion based comparison of incomplete phylogenetic trees is an emerging, promising
approach for tree comparison. In this work, we developed the first polynomial-time exact
algorithm for the RF(+) problem. We also established a linear-time 2-approximation
algorithm for the problem. These algorithms allow for more principled comparison of
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incomplete phylogenetic trees than was hitherto possible, and our experimental analysis
shows that RF(+) distance can lead to very different inferences regarding phylogenetic
similarity compared to traditional RF distance. Moreover, our results suggest that the linear-
time 2-approximation algorithm for the RF(+) problem almost always computes optimal or
near-optimal RF(+) distances in practice.

In addition to their utility for improved tree comparison and clustering, our solutions for
the RF(+) problem also have implications for phylogenomics. Many modern phylogenomics
methods for reconstructing evolutionary histories and understanding genome-scale patterns
of evolution are designed to work with complete phylogenies from genomic loci across
the genomes of the considered species [5, 26, 27, 20, 12], and loci that yield incomplete
phylogenies are often discarded, resulting in only a fraction of the available genomic sequence
information being used for the phylogenomic analysis. Thus, problems related to optimal
completion of incomplete phylogenies (i.e., imputation of complete phylogenies) arise naturally
in phylogenomics. Our algorithms for the RF(+) problem may provide a principled way to
impute such complete phylogenies.

The current work is restricted to comparison of binary trees under the Robinson-Foulds
metric, and it can be extended in many useful ways. A possible next step could include
consideration of non-binary trees in computing distances between incomplete trees. Fu-
ture work could also entail development of similar completion based methods under other
distance/similarity measures such as triplet/quartet distances [14, 17], nearest neighbor
interchange (NNI) and subtree prune and regraft (SPR) distances [31, 18, 34], and nodal
distance [9]. Furthermore, the idea of computing optimal completions could be extended
to multi-labeled trees, which arise frequently in practice due to evolutionary events such as
gene duplication.
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A Appendix

Proof of Theorem 3.1. Let S∗ and T ∗ be arbitrarily chosen optimal completions of S and T

under R-RF(+). We will modify S∗ and T ∗ to be of the desired form. To do so, we first show
that any maximal red subtree in S and any maximal green subtree of T can be made subtrees
of S∗ and T ∗ without increasing the RF distance between them (condition 1). Suppose there
exist two maximal matched red subtrees R1 and R2 of S∗ and T ∗ which neighbor each other
in the original tree S. Let r1 and r2 be the roots of R1 and R2.
1. Suppose both CT ∗(paT ∗(r1)) \ CT ∗(r1) and CT ∗(paT ∗(r2)) \ CT ∗(r2) contain some non-

green leaves. Observe that every matched clade in T ∗ containing CT ∗(r1) ∪ CT ∗(r2)
must also contain CT ∗(lcaT ∗(r1, r2)) because R1 and R2 neighbor each other in S by
assumption. Therefore, we can regraft R2 to neighbor R1 in T ∗ without increasing the
RF distance between S∗ and T ∗. Moreover, if there are any green subtrees inserted
along the path from R1 to R2 in S∗, then they can be regrafted along the parent edge of
lcaS∗(r1, r2) without increasing the Robinson-Foulds distance.

2. Suppose, without loss of generality, that CT ∗(paT ∗(r2)) \ CT ∗(r2) contains only green
leaves. That is, suppose R2 is contained in an extraneous subtree, whose root could
be a match without ancestoring R1. First, regraft R2 in T ∗ to neighbor R1. Then,
regraft all green subtrees from the path in S∗ connecting R2 and R1 to the parent edge
of lcaS∗(r1, r2), preserving the topological structure of the green leaves. This does not
increase the RF distance between S∗ and T ∗. Notice that any originally matched clades
containing Le(R2) are mismatched. However, preserving the topological structure of the
green leaves from any matched clades containing Le(R2) also retains the same number of
matches except for one representing the smallest match containing R2. This is because
the only subtree removed (in both S∗ and T ∗) from these matched extraneous subtrees
is R2. Furthermore, the matched clade Le(R1) ∪ Le(R2) is formed in both S∗ and T ∗,
which counteracts this lost match.
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If this is done iteratively for all such R1 and R2, then we conclude that there exist optimal
completions S∗ and T ∗ where every maximal red subtree in S is also a subtree of S∗ and T ∗.
The same argument applies for maximal green subtrees.

Now we will show that S∗ and T ∗ can be modified to only contain extraneous subtrees of
the form {s, t} without increasing the RF distance (condition 2). We will simultaneously
show that an extraneous subtree {s, t} is a subtree of S∗ if and only if it is a subtree of T ∗

by construction (condition 3). Observe that if Le(U) ∩ Le(V ) ∩ Le(S) ̸= ∅ for two maximal
extraneous subtrees U and V of S∗ and T ∗ respectively, then Le(U) ∩ Le(V ) ∩ Le(S) ⊆ Le(R)
for a single maximal red subtree R of S. Likewise if Le(U) ∩ Le(V ) ∩ Le(T ) ̸= ∅, then
Le(U) ∩ Le(V ) ∩ Le(T ) ⊆ Le(Y ) for a single maximal green subtree Y of T . Therefore, every
maximal extraneous subtree in S∗ or T ∗ satisfies one of the following two cases.
1. Without loss of generality, let U be a maximal extraneous subtree of S∗ rooted at u

such that for every maximal extraneous subtree V of T ∗, Le(U) ∩ Le(V ) ∩ Le(S) = ∅ or
Le(U) ∩ Le(V ) ∩ Le(T ) = ∅. Then, every extraneous clade contained in Le(U) must be a
mismatch. Hence, every maximal green subtree of U can be regrafted along the parent
edge of paS∗(u) without increasing the Robinson-Foulds distance from T ∗. This results
in destroying all extraneous subtrees contained in U because paS∗(u) is an ancestor of a
maximal extraneous subtree and therefore possesses uncolored descendants.

2. Let U and V be maximal extraneous subtree of S∗ and T ∗, rooted at u and v respectively,
satisfying Le(U) ∩ Le(V ) ∩ Le(S) ̸= ∅ and Le(U) ∩ Le(V ) ∩ Le(T ) ̸= ∅. Then every
matched extraneous clade contained in Le(U) and Le(V ) must contain elements of
Le(U) ∩ Le(V ) ∩ Le(S) and Le(U) ∩ Le(V ) ∩ Le(T ). Every maximal green subtree of U

with no leaves in Le(U) ∩ Le(V ) ∩ Le(T ) can be regrafted along the parent edge of u

without increasing the RF distance. Likewise, every maximal red subtree of V with no
leaves in Le(U) ∩ Le(V ) ∩ Le(S) can be regrafted along the parent edge of v without
increasing the RF distance. Moreover, as described before, Le(U)∩Le(V )∩Le(S) ⊆ Le(R)
and Le(U) ∩ Le(V ) ∩ Le(T ) ⊆ Le(Y ) for a single maximal red subtree R of S and a single
maximal green subtree Y of T . Hence, we are only left with the extraneous subtree
{rtS∗(R), rtS∗(Y )} in S∗ and {rtT ∗(R), rtT ∗(Y )} in T ∗.

Once every maximal extraneous subtree in S∗ and T ∗ is handled according to the appropriate
case above, we are left with two optimal completions S∗ and T ∗ of the desired form. ◀

Proof of Lemma 3.2. Case 1 : In this case, both paS∗{s, t} and paT ∗{s, t} are matched
nodes. Here, we must have Le(S∗(paS∗{s, t})) = Le(T ∗(paT ∗{s, t})). This holds because
CS∗(paS∗{s, t}) and CT ∗(paT ∗{s, t}) are both matches, and the smallest proper super-
sets of CT ∗(s) ∪ CT ∗(t) in S∗ and T ∗ respectively. By definition, the decomposition re-
places the matched clades CS∗(s) ∪ CS∗(t) and CT ∗(s) ∪ CT ∗(t) with CS∗(paS∗{s, t}) \
CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t) in S∗ and T ∗, respectively. Since Le(S∗(paS∗{s, t})) =
Le(T ∗(paT ∗{s, t})), we conclude that CS∗(paS∗{s, t}) \ CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t)
are then matches in the resulting trees S′ and T ′.
Case 2: We now consider the case when exactly one of the nodes paS∗{s, t} and paT ∗{s, t} is
a matched node. Without loss of generality, suppose paS∗{s, t} is a match and paT ∗{s, t}
is not a match. For convenience, let x denote paS∗{s, t}, y denote paT ∗{s, t}, and let u be
the element of V (T ∗) such that CS∗(x) = CT ∗(u). Then, observe that CS∗(x) ⊃ CT ∗(y), i.e.,
y < u in T ∗. Moreover, every node v along the path from y to u in T ∗ must be a mismatch
since CT ∗(t) ⊂ CT ∗(v) and CS∗(t) ∩ CS∗(sibS∗{s, t}) = ∅ but CT ∗(v) ∩ CS∗(sibS∗{s, t}) ̸= ∅
for arbitrary choice of v. Now, applying the decomposition of extraneous subtree {s, t} to
S∗ and T ∗ yields the modified trees S′ and T ′. Observe that this modification changes
exactly the {s, t} clade, and all clades along the path from y to u in T ∗. In S′, the new clade
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formed at the subtree rooted at paS′(t) must be a matched node since CS′(paS′(t)) = CT ′(u).
Moreover, in T ′, all clades CT ′(v) along the path from y to u remain mismatches except
for CT ′(u) because it still holds that CT ′(t) ⊂ CT ′(v) and CS′(t) ∩ CS′(sibS′{s, t}) = ∅
but CT ′(v) ∩ CS′(sibS′{s, t}) ̸= ∅ for arbitrary choice of v along the path. Thus, after the
decomposition, the number of matched clades in S′ (w.r.t. T ′) remains the same as the
number of matched clades in S∗ (w.r.t. T ∗).
Case 3: If neither paS∗{s, t} nor paT ∗{s, t} is a matched node, then, following the same
argument as in Case 1, S′ will have one less matched node (w.r.t. T ′) than S∗ (w.r.t. T ∗).
Namely, the clades CS∗(paS∗{s, t}) \ CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t) are mismatched
clades in S′ and T ′ respectively. Consequently, T ′ will have one less matched node as well.
Thus, RF(S′, T ′) = RF(S∗, T ∗) + 2. ◀

Proof of Theorem 3.3. Let d = 1
2 RF(S∗, T ∗) and let e be the number of extraneous clades

in S∗. Then, we have that d is also the number of mismatches in S∗, or equivalently in
T ∗. Observe that at most d of the e extraneous clades have mismatched parent nodes in
both trees. Thus, by Lemma 3.2, decomposing all e extraneous clades will increase the RF
distance by at most 2d = RF(S∗, T ∗). Therefore, the decomposed extraneous clade free
completion will have an RF distance of at most 2 · RF(S∗, T ∗). ◀

Proof of Lemma 4.1. Consider arbitrary canonical R-RF(+) completions S∗ and T ∗. We
will show that any grafted subtree in S∗ and T ∗ that is not in its canonical EF-R-RF(+)
position or in an extraneous subtree can be regrafted into its canonical EF-R-RF(+) position
without increasing the RF distance. Without loss of generality, suppose there exists a
maximal red subtree R, with r denoting rt(R), in T ∗ such that R is neither in its canonical
EF-R-RF(+) position nor in an extraneous subtree. Let u represent the canonical EF-R-
RF(+) position of subtree R in completion T ∗. Thus, u ̸= paT ∗(r). Then, we have two
possible cases: either paT ∗(r) is an ancestor of u or not (paT ∗(r) > u or paT ∗(r) ̸> u).
1. Suppose paT ∗(r) > u. We will prove that paT ∗(r) can be regrafted in position u without

increasing the RF distance. Since paT ∗(r) > u, for any arbitrary node c on the path
from paT ∗(r) to u, there exists a subtree C of T ∗(c) rooted at one of the children of
c (the subtree not containing u) satisfying paT ∗(r) > c = lcaT ∗(u, Le(C)) > u and
paS∗(r) < lcaS∗(r, Le(C)). Since paT ∗(r) > lcaT ∗(u, Le(C)) > u, we have that paT ∗(r) >

lcaT ∗(Le(C), a) > a for all leaves a ∈ Le(S) ∩ Le(T ) such that a < paS∗(r). Since for
each such a, we have that a < paS∗(r) < lcaS∗(a, Le(C)) and a < lcaT ∗(a, Le(C)) = c <

paT ∗(r), every match containing Le(C) must also contain Le(R). In particular, c is not a
match. This is true for every node c along the path from paT ∗(r) to u. We can therefore
regraft R at position u without increasing the RF distance because every node along the
path from paT ∗(r) to u is already mismatched.

2. Now suppose paT ∗(r) ̸> u. We will prove that R can be regrafted along the parent
edge of lcaT ∗(paT ∗(r), u) (equivalent position to u if u is an ancestor of paT ∗(r)) without
increasing the RF distance. This will then reduce the case where paT ∗(r) is not an
ancestor of u to the previous case where paT ∗(r) is an ancestor of u. If paT ∗(r) is not an
ancestor of u, then there exist some a1, . . . , ak ∈ Le(S) ∩ Le(T ) such that paS∗(r) > ai

and lcaT ∗(paT ∗(r), ai) > paT ∗(r) for all values of i. Therefore, paT ∗(r) is not a match,
as well as every node on the same path up to the node lcaT ∗(paT ∗(r), a1, . . . , ak) which
contains every ai in its clade CT ∗(lcaT ∗(paT ∗(r), a1, . . . , ak)). Then, regrafting R at the
parent edge of lcaT ∗(a1, . . . , ak, paT ∗(r)) = lcaT ∗(paT ∗(r), u) will not increase the RF
distance since there are no matches to become mismatched. ◀
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Proof of Lemma 4.2. For binary trees U and V , let MV
U denote the LCA map from U

to V . That is, on input u ∈ V (U), MV
U (u) returns lcaV (CU (u)). We will show that

RF(S′, T ′′) − RF(S′, T ′) = RF(S∗, T ∗) − RF(S′, T ′) + 2m. Observe that the only changes
from S′ and T ′ to S∗, T ∗ and T ′′ are the formations of the extraneous subtrees {s, t}. Then,
it suffices to confirm that for every extraneous subtree {s, t}, the number of mismatched
clades in T ′′(paT ′′{s, t}) equals the number of mismatched clades in T ∗(MT ∗

S∗ (paS∗{s, t}))
plus the number of extraneous subtrees. For an arbitrary extraneous subtree {s, t} in T ∗, we
first count the mismatched clades in T ′′(paT ′′{s, t}). Then, we count the mismatched clades
in T ∗(MT ∗

S∗ (paS∗{s, t})) and compare.

1. Suppose v lies along the path from paT ′′{s, t} to the parent of the canonical EF-R-RF(+)
position for T (t) in T ′′. Moreover, suppose u lies along the path from paT ′′{s, t} to the
parent of the canonical EF-R-RF(+) position for S(s) in T ′′. Then CS′(MS′

T ′′(v)) ⊇
CT ′′(v) ∪ CS′(t) since v is an ancestor of the canonical EF-R-RF(+) position of T (t)
in T ′′ and hence MS′

T ′′(v) is an ancestor of the canonical EF-R-RF(+) position of T (t)
in S′. Moreover, CT ′′(v) ∩ CS′(t) = ∅ if v ≠ paT ′′{s, t} by construction of T ′′. Hence
if v ̸= paT ′′{s, t}, then v is mismatched with respect to S′. Likewise, CS′(MS′

T ′′(u)) ⊇
CT ′′(u) ∪ CS′(s) and CT ′′(u) ∩ CS′(s) = ∅ if u ≠ paT ′′{s, t}. Hence if u ̸= paT ′′{s, t},
then u is mismatched with respect to S′. Note that by construction, CT ′′(paT ′′{s, t}) =
CT ′(lcaT ′(s, t)). Hence paT ′′{s, t} is matched with respect to S′ if and only if lcaT ′(s, t)
is, and every other node along either path is mismatched.
Note that the only remaining node impacted in the formation of {s, t} is the root of the
extraneous subtree in T ′′. This node must be mismatched with respect to S′ since S′ is
an extraneous free completion.

2. Now suppose v lies along the path from paT ∗{s, t} (the canonical EF-R-RF(+) position for
T (t) in T ∗) to MT ∗

S∗ (paS∗{s, t}) (the least common ancestor of the EF-R-RF(+) positions
in T ∗). Moreover, suppose u lies along the path from MT ∗

S∗ (paS∗{s, t}) to the parent of
the canonical EF-R-RF(+) position for S(s) in T ∗. Observe that MS∗

T ∗(v) is an ancestor of
the extraneous subtree {s, t} in S∗, and therefore MS∗

T ∗(v) is an ancestor of the canonical
EF-R-RF(+) position for S(s) in S∗. Then CS∗(MS∗

T ∗(v)) ⊇ CT ∗(v) ∪ CS∗(sibS∗{s, t}),
where CT ∗(v) ∩ CS∗(sibS∗{s, t}) = ∅ if v ̸= MT ∗

S∗ (paS∗{s, t}). Additionally, notice
that MS∗

T ∗(u) is an ancestor of the canonical EF-R-RF(+) position for S(s) in S∗, and
therefore MS∗

T ∗(u) is an ancestor of the extraneous subtree {s, t}. Then CS∗(MS∗

T ∗(u)) ⊇
CT ∗(u) ∪ CS∗(s), where CT ∗(u) ∩ CS∗(s) = ∅ if u ≠ MT ∗

S∗ (paS∗{s, t}). It follows that if
u ̸= MT ∗

S∗ (paS∗{s, t}), then u is a mismatched node. Likewise, if v ̸= MT ∗

S∗ (paS∗{s, t}),
then v is a mismatched node. Furthermore, CT ∗(MT ∗

S∗ (paS∗{s, t})) is a matched clade
with respect to S∗ if and only if CT ′(lcaT ′(s, t)) is a matched clade with respect to S′.
Note, again, that the only remaining node impacted in the formation of {s, t} is the root
of the extraneous subtree {s, t}. Since S∗ and T ∗ are canonical R-RF(+) completions,
we know that this node must be matched in S∗ and T ∗.

Now, observe that the union of paths connecting the canonical EF-R-RF(+) positions for
S(s) and T (t) to paT ∗{s, t} in T ∗ is the same size as the union of paths connecting the
canonical EF-R-RF(+) positions for S(s) and T (t) to paT ′′{s, t} in T ′′. Moreover, every
node in each union of paths (except the common ancestor) is mismatched. Finally, the root
of {s, t} is mismatched in T ′′ but matched in T ∗. Since the choice of {s, t} was arbitrary, we
conclude with RF(S′, T ′′) − RF(S′, T ′) = RF(S∗, T ∗) − RF(S′, T ′) + 2m, where m is the
number of extraneous subtrees in T ∗. Equivalently, RF(S′, T ′′) = RF(S∗, T ∗) + 2m. ◀
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Proof of Lemma 4.4. Let S, T be two input binary rooted trees, and let S′, T ′ be their
canonical EF-R-RF(+) completions. By the proof of Lemma 4.1, we observe two important
points: First, it can only be beneficial to move a maximal red or green subtree if the maximal
subtree is eventually paired in an extraneous subtree. And second, a maximal red or green
subtree will increase the RF distance by a lower amount if it is paired in an extraneous
subtree closer to the canonical EF-R-RF(+) position. The recurrence relation follows by
induction.

Base Case: No extraneous clades can be formed at a leaf node and there are no matches to
become mismatched. Hence, the cost at each leaf is indeed zero.

Inductive Step: Assume we have computed all Cost(x, ·, ·) for all descendants x of an
internal node v. Let c ∈ {0, 1} and 0 ≤ m ≤ cMax(c, v) be arbitrarily given. We first show
that twice the maximal number of new extraneous subtrees {s, t} that can be formed at v

given cL, cR, mL and mR is equal to gc(mL, mR, cL, cR). There are two cases to consider: 1.
cL = cR = c and 2. cL ̸= cR (at least one of cL and cR must equal c).
1. Suppose cL = cR = c and let mL, mR be arbitrary nonnegative values such that mL+mR =

m. Then by the first observation above, the condition mL + mR = m is optimal to regraft
m subtrees of color cL = cR = c along the parent edge of v. By the second observation
above, if there are any extraneous subtrees that can be paired at v then it is optimal to
do so at v. We cannot pair any maximal red and green subtrees at v because cL = cR = c,
which means that all m subtrees regrafted along the parent edge of v are the same color.
Hence, twice the number of new extraneous subtrees that can be formed at v is equal to
gc(mL, mR, cL, cR) = 0 when cL = cR = c.

2. Now suppose without loss of generality that cL ̸= cR and let mL, mR be arbitrary
nonnegative values such that |mL − mR| = m. Then by the two observations above, the
condition |mL − mR| = m is optimal to regraft the mL + mR subtrees on the parent edge
of v. By the second observation above, if there are any extraneous subtrees that can be
paired at v then it is optimal to do so at v. Note that since cL ̸= cR, we can pair exactly
min{mL, mR} extraneous subtrees at v. Hence, twice the number of new extraneous
subtrees that can be formed at v is equal to gc(mL, mR, cL, cR) = 2 min{mL, mR}.

We now show that, regardless of the choice of colors cL and cR, the new increase in RF
distance between S′ and T ′ only by regrafting mL and mR subtrees from T ′(vL) and T ′(vR) at
the parent edge of v, respectively, is equal to f(mL, vL, cL) + f(mR, vR, cR). Once a subtree is
regrafted at the parent edge of vL, the only clade that can become mismatched by regrafting
the subtree on the parent edge of v is CT ′(vL). This clade only becomes mismatched if
it is a matched clade and it is not contained in a maximal cL-colored subtree. Once the
clade is mismatched, regrafting all remaining mL maximal subtrees on the parent edge of v

cannot make v mismatched again. Therefore, the act of pruning and regrafting mL maximal
cL-colored subtrees from the parent edge of vL to the parent edge of v increases the RF
distance between S′ and T ′ by f(mL, vL, cL), one for each of S′ and T ′ if a match becomes
mismatched. By symmetry, the new increase in RF distance between S′ and T ′ from pruning
and regrafting mR maximal cR-colored subtrees from vR to v is equal to f(mR, vR, cR).

We have determined that the maximal number of new extraneous subtrees which can be
formed is equal to gc(mL, mR, cL, cR), and the new increase in RF distance is f(mL, vL, cL) +
f(mR, vR, cR). Then the change in cost from vL and vR to v is equal to f(mL, vL, cL) +
f(mR, vR, cR) − gc(mL, mR, cL, cR). Note if a maximal cL-colored subtree of T ′(vL) is
regrafted along the parent edge of v, it must first already be regrafted along parent edge
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of vL by construction. Then, the cost of regrafting mL subtrees at the parent edge of vL

must be Cost(vL, mL, cL). By symmetry, the right subtree adds a cost of Cost(vR, mR, cR).
Moreover, the cost values also subtract the number of extraneous subtrees formed in T ′(vL)
and T ′(vR).

Hence, the value of RF(S′, T̂ ) − 2p − RF(S′, T ′) given fixed cL, cR, mL and mR is
Cost(vL, mL, cL) + Cost(vR, mR, cR) + f(mL, vL, cL) + f(mR, vR, cR) − gc(mL, mR, cL, cR).
By definition, the cost Cost(v, m, c) is equal to the minimum over all methods of moving
maximal colored subtrees in T ′(v) while leaving m maximal c-colored subtrees regrafted
along the parent edge of v and unpaired in an extraneous subtree. Then, taking the minimum
over all possible cL, cR, mL and mR values provides the optimal cost value. ◀

Proof of Theorem 4.5. We note that a pair of canonical extraneous free completions can be
computed in O(n) time. To compute the optimal cost values at each vertex of an EF-R-RF(+)
completion, Algorithm Compute-R-RF+(S,T) has a total of three nested for loops, over (1)
the postorder traversal, (2) the values of c and m, and (3) the values of cL, cR, mL and mR

when the recurrence relation is invoked. The total time complexity is then the product of
the sizes of each nested loop. Note there are a constant number of colors.
1. The postorder traversal has O(n) nodes to parse.
2. Notice m must be bounded above by max{cMax(0, v), cMax(1, v)} ≤ cMax(0, rt(T ′)) +

cMax(1, rt(T ′)) = k for any vertex v. Hence, we have another multiplicative O(k) factor.
3. For each Cost(v, m, c) value, we observe that the number of possible values of mL and

mR considered is again bounded above by k, adding another multiplicative O(k) factor.
Thus, the total runtime to compute all cost values is O(nk2). Once all cost values are
computed, the RF(+) distance can be computed in O(1) time. ◀
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