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Preface

The goal of 4th International Symposium on Foundations and Applications of Blockchain 2021
(FAB’21) is to bring researchers and practitioners of blockchain – the technology behind
Bitcoin – together to share and exchange results. The program of FAB’21 features two
keynote speakers and seven presentations of scientific papers, followed by a student session.
The program committee selected five papers for publication in the proceedings out of twelve
submissions. Prof. Rachid Guerraoui’s keynote’s speech is about the road to a universal
internet machine; Prof. Elaine Shi’s keynote talk is about game-theoretically secure protocols
inspired by blockchains.

The scientific papers published in these proceedings cover topics ranging from new
distributed problem formalizations to solutions to decentralized finance problems. As,tefănoaei
et al. formalize the notion of Dynamic Repeated Consensus for blockchain applications
by offering Tenderbake that improves over the one-shot consensus protocol Tendermint.
Cholvi et al. combine recent results on the cryptocurrency object and conflict-free replicated
data structures to introduce the Distributed-Grow-only Set object that supports an atomic
append operation. They propose an eventually consistent and Byzantine fault tolerant
implementation of it that does not need consensus. Bhat et al. propose the DAISIM open-
source simulator for the DAI stable coin offered by the MakerDAO project. They model
investors with a portfolio of four assets to investigate when investors choose to mint or
burn DAI, and determine the DAI price. Krishnamachari et al. propose a new approach
to construct the Automated Market Makers that maintain a liquidity pool of assets related
mathematically; this approach eliminates arbitrage opportunities. Mitra et al. introduce a
consistent time metric for blockchain distributed systems by generating blocks regularly and
inserting timestamps in each block. They illustrate their approach with an implementation
in Hyperledger Fabric.

The program also features two additional presentations about blockchain applications.
Sguerra et al. present a short paper on the performance of auctions running on Ethereum
and Tezos whereas Kahya and Krishnamachari present EcoTrojan to incentivize environment-
friendly on-campus behaviors.

To promote and support undergraduate research, we have introduced a unique student
session in collaboration with Blockchain Acceleration Foundation (FAB), a nonprofit student-
run organization that fosters blockchain research and education tailored to undergraduates.
The session covers exciting and promising projects such as (1) BAF Wallet supported by NEAR
Foundation, (2) Alchedemia for Next Generation Digital Learning Environment (NGDLE)
supported by the Algorand Foundation, (3) Ethereum Teacher Training Program supported
by the Ethereum Foundation, (4) Token Delegation and DeFi Governance supported by
Blockchain Clubs at UCLA, (5) Solace DeFi supported by Blockchain at UCSB, and (6) ZUZ
Exchangeable Credit by Blockchain at CMU.
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Abstract
First-generation blockchains provide probabilistic finality: a block can be revoked, albeit the
probability decreases as the block “sinks” deeper into the chain. Recent proposals revisited committee-
based BFT consensus to provide deterministic finality: as soon as a block is validated, it is never
revoked. A distinguishing characteristic of these second-generation blockchains over classical BFT
protocols is that committees change over time as the participation and the blockchain state evolve. In
this paper, we push forward in this direction by proposing a formalization of the Dynamic Repeated
Consensus problem and by providing generic procedures to solve it in the context of blockchains.

Our approach is modular in that one can plug in different synchronizers and single-shot consensus.
To offer a complete solution, we provide a concrete instantiation, called Tenderbake, and present a
blockchain synchronizer and a single-shot consensus algorithm, working in a Byzantine and partially
synchronous system model with eventually synchronous clocks. In contrast to recent proposals, our
methodology is driven by the need to bound the message buffers. This is essential in preventing
spamming and run-time memory errors. Moreover, Tenderbake processes can synchronize with each
other without exchanging messages, leveraging instead the information stored in the blockchain.
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1 Introduction

Besides raising public interest, blockchains have also recently gained traction in the scientific
community. The underlying technology combines advances in several domains, most notably
from distributed computing, cryptography, and economics, in order to provide novel solutions
for achieving trust in decentralized and dynamic environments.

Our work has been initially motivated by Tezos [18, 1], a blockchain platform that
distinguishes itself through its self-amendment mechanism: protocol changes are proposed
and voted upon. This feature makes Tezos especially appealing as a testbed for experimenting
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with different consensus algorithms to understand their strengths and suitability in the
blockchain context. Tezos relies upon a consensus mechanism build on top of a liquid proof-
of-stake system, meaning that block production and voting rights are given to participants
in proportion to their stake and that participants can delegate their rights to other stake-
holders. As Nakamoto consensus [21, 17], Tezos’ current consensus algorithm [24] achieves
only probabilistic finality assuming an attacker with at most half of the total stake, and
relying on a synchrony assumption.

The initial goal of this work was to strengthen the resilience of Tezos through a BFT
consensus protocol to achieve deterministic finality while relaxing the synchrony assumption.
We had two general requirements that we found were missing in the existing BFT consensus
protocols. First, for security reasons, message buffers need to be bounded: assuming
unbounded buffers may lead to memory errors, which can be caused either accidentally or
maliciously, through spamming for instance. Second, as previously observed [2], plugging a
classical BFT consensus protocol in a blockchain setting with a proof-of-stake boils down to
solve a form of repeated consensus [13], where each consensus instance (i) produces a block,
i.e., the decided value, and (ii) runs among a committee of processes which are selected based
on their stake. To be applicable to open blockchains, committees need to be dynamic and
change frequently. Frequent committee changes is fundamental in blockchains for mainly two
reasons: (i) it is not desirable to let a committee be responsible for producing blocks for too
long, for neither fairness nor security; (ii) participants’ stake may change frequently.

Dynamic Repeated Consensus. Typically, repeated consensus is solved with state machine
replication (SMR) implementations. We, instead, propose to use a novel formalism, dynamic
repeated consensus (DRC) to take into account that, in the context of open blockchains,
participants in consensus change. To this end, we propose that the selection of participants
is based upon information readily available in the blockchains.

To solve DRC, we follow the methodology initially presented in [14] and revived more
recently in [29, 22, 23]: we decouple the logic for synchronizing the processes in consensus
instances from the consensus logic itself. Thus, our solution uses two main generic ingredients:
a synchronizer and a single-shot consensus skeleton. Our approach is modular in that one
can plug in different synchronizers and single-shot consensus algorithms. Our solution works
in a partially synchronous model where the bound on the message delay is unknown, and
the communication is lossy before the global stabilization time (GST). We note that losing
messages is a consequence of processes having bounded memory: if a message is received
when the buffers are full, then it is dropped.

Blockchain-based Synchronizer. The need for and the benefits of decoupling the synchron-
izer from the consensus logic have already been pointed out in [29, 22, 23, 6]. Indeed, such
separation of concerns allows reusability and simpler proofs. We continue this line of work
and propose a synchronizer for DRC which does not exchange messages. Instead, it relies
upon local clocks while leveraging information already stored in the blockchain. Our solution
allows buffers to be bounded and guarantees that correct processes in the synchronous period
are always in the same round, except for negligeable periods of time due to clock drifts. Thus,
processes can discard all the messages not associated with their current or next round. This
is similar to the communication-closed round model [10, 16] and in contrast to most existing
solutions, which, in principle, need to store messages for an unbounded number of rounds.
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Consensus algorithm. To complete our DRC solution, Tenderbake, we also present a single-
shot consensus algorithm. Single-shot Tenderbake is inspired by Tendermint [7, 3], in turn
inspired by PBFT [8] and DLS [14]. We improve Tendermint in two aspects: i) we remove
the reliable broadcast requirement during the asynchronous period, and ii) we provide faster
termination. Tendermint terminates once processes synchronize in the same round after GST,
in the worst case, in n rounds, where n is the size of the committee. Single-shot Tenderbake
terminates in f +2 rounds, where f is the upper bound on the number of Byzantine processes.
Tenderbake departs from its closest relatives Tendermint and HotStuff [29] in that it is driven
by a bounded-buffers design leveraging a synchronizer that paces protocol phases on timeouts
only. However, the price for this is that Tenderbake is not optimistic responsive as HotStuff,
which makes progress at the speed of the network and terminates in f + 1 rounds, at the
cost of an additional phase. As a last difference, we note that, contrary to recent pipelined
algorithms [29, 9], Tenderbake lends itself better to open blockchains. Pipelined algorithms
focus more on performance, however pipelining imposes restrictions on how much and how
frequently committees can change [9].

We are not aware of any existing approach providing a complete, generic DRC formal-
ization. However, several references exist for particular aspects which we touch upon. For
instance, repeated consensus with bounded buffers has been studied in [13, 27] but in system
models which assume crash failures only. Working solutions for implementing dynamic
committees are (mostly partially) documented in [11, 20, 19, 26, 28, 25, 5]. The differences
with respect to the closest relatives of single-shot Tenderbake have been discussed above.

Outline. The paper is organized as follows: Section 2 defines the system model; Section 3
formalizes the DRC problem and proposes a generic solution; Section 4 proposes a synchronizer
leveraging blockchain’s immutability; Sections 5 - 6 present the single-shot consensus skeleton
and respectively single-shot Tenderbake, as an example of an instantiation; Section 7 discusses
message complexity and gives some intuition on the upper bound on the recovery time after
GST; Section 8 concludes. Appendix B contains the detailed correctness proofs of Tenderbake.

2 System Model

We consider a message-passing distributed system composed of a possibly infinite set Π of
processes. Processes have access to digital signing and hashing algorithms. We assume that
cryptography is perfect: digital signatures cannot be forged, and there are no hash collisions.
Each process has an associated public/private key pair for signing and processes can be
identified by their public keys.

Execution model. Processes repeatedly run consensus instances to decide output values.
New output values are appended to a chain that processes maintain locally. Consensus
instances run in phases. The execution of a phase consists in broadcasting some messages
(possibly none), retrieving messages, and updating the process state. At the end of a phase a
correct process exits the current phase and starts the next phase. We consider that message
sending and state updating are instantaneous, because their execution times are negligible
in comparison to message transmission delays. This means that the duration of a phase is
given by the amount of time dedicated to message retrieval.

Partial synchrony. We assume a partially synchronous system, where after some unknown
time τ (the global stabilization time, GST) the system becomes synchronous and channels
reliable, that is, there is a finite unknown bound δ on the message transfer delay. Before τ

the system is asynchronous and channels are lossy.

FAB 2021
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We assume that processes have access to local clocks and that after τ these clocks are
loosely synchronized: at any time after τ , the difference between the real time and the local
clock of a process is bounded by some constant ρ, which, as δ, is a priori unknown.

Fault model. Processes can be correct or faulty. Correct processes follow the protocol,
while faulty ones exhibit Byzantine behavior by arbitrarily deviating from the protocol.

Communication primitives. We assume the presence of two communication primitives built
on top of point-to-point channels, where exchanged messages are authenticated. The first
primitive is a best-effort broadcast primitive used by processes participating in a consensus
instance and the second is a pull primitive which can be used by any process.

Broadcasting messages is done by invoking the primitive broadcast. This primitive
provides the following guarantees: (i) integrity, meaning that each message is delivered at
most once and only if some process previously broadcast it; (ii) validity, meaning that after τ

if a correct process broadcasts a message m at time t, then every correct process receives m

by time t + δ. For simplicity, we assume that processes also send messages to themselves.
Processes are notified of the reception of a message with a NewMessage event.

The pullChain primitive is used by a process to retrieve output values from other processes.
This primitive guarantees that, if invoked by a process p at some time t > τ , then p will
eventually receive all the output values that correct processes had before t. We note that the
pull primitive can be implemented in such a way that the caller does not need to pull all
output values, but only the ones that it misses. Furthermore, output values can be grouped
and thus received as a chain of values. Processes are notified of the reception of a chain with
a NewChain event.

3 Dynamic Repeated Consensus

3.1 Problem definition
Originally, repeated consensus was defined as an infinite sequence of consensus instances
executed by the same set of processes, with processes having to agree on an infinitely growing
sequence of decision values [13]. Dynamic repeated consensus, instead, considers that each
consensus instance is executed by a potentially different set of n processes where n is a
parameter of the problem. More precisely, given the i-th consensus instance, only n processes
Πi ⊆ Π participate in the consensus instance proposing values and deciding a unique value vi.
Processes in Π − Πi can only adopt vi. Therefore output values can be either directly decided
or adopted. We assume that every correct process agrees a priori on a value v0.

To know the committee, each process has access to a deterministic selection function
committee that returns a sequence of processes based on previous output values. More
precisely, the committee Πi is given by committee([v0]) for i ≤ k and by committee(v̄p[..(i−k)])
for i > k, where k > 0 is a problem parameter, v̄p denotes the sequence of output values
of process p, and s̄[..j] denotes the prefix of length j + 1 of the sequence s̄. Each process
calls committee with its own decided values; however since decided values are agreed upon,
committee returns the same sequence when called by different correct processes. We note that
the sets Πi are potentially unrelated to each other, and any pair of subsequent committees
may differ. However, we assume that in each committee, less than a third of the members
are faulty. For convenience, we consider the worst case: n = 3f + 1, and each committee
contains exactly f faulty processes.
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Dynamic repeated consensus, as repeated consensus, needs to satisfy three properties:
agreement, validity, and progress. Agreement and progress have the same formulation for
both problems. However, validity needs to reflect the dynamic aspect of committees. To this
end, we define validity employing two predicates. The first one is isLegitimateValue. When
given as input a value vi, isLegitimateValue(vi) returns true if the value has been proposed by
a legitimate process, e.g., a process in Πi. The second predicate is isConsistentValue. When
given as input two consecutive output values vi, vi−1, isConsistentValue(vi, vi−1) returns true
if vi is consistent with vi−1. This predicate takes into account the fact that an output value
depends on the previous one, as commonly assumed in blockchains. For instance, when
output values are blocks containing transactions, a valid block must include the identifier or
hash of the previous block, and transactions must not conflict with those already decided.
For conciseness, we define isValidValue(vi, vi−1) as a predicate that returns true if both
isLegitimateValue(vi) and isConsistentValue(vi, vi−1) return true for i > 0. Note that the use
of an application-defined predicate for stating validity already appears in [2, 12].

An algorithm that solves the Dynamic Repeated Consensus problem must satisfy the
following three properties:

(agreement) At any time, if v̄p and v̄q are the sequences of output values of two correct
processes p and q, then v̄p is a prefix of v̄q or v̄q is a prefix of v̄p.
(validity) At any time, if v̄p is the sequence of output values of a correct process p, then
the predicate isValidValue(v̄p[i],v̄p[i − 1]) is satisfied for any i > 0.
(progress) For any time t, there is a later t′ > t such that the sequence of output values
of a correct process at time t is a strict prefix of the sequence of output values at time t′.

We use s̄[i] to denote the (i + 1)-th element of the sequence s̄.

3.2 A DRC solution for blockchains

3.2.1 Preliminaries

A blockchain is a sequence of linked blocks. The head of a blockchain is the last block in
the sequence. The block level is its position in the sequence, with the first block having
level 0. We call this block genesis. A block has a header and a content. The content typically
consists of a sequence of transactions; it is application-specific and therefore we do not model
it further. The block header includes the level of the block and the hash of the previous
block, among other fields detailed later.

In a nutshell, the proposed DRC algorithm works as follows. At each level, for a block b

which is proposed to be appended to the blockchain, processes run a single-shot consensus
algorithm to agree on the tuple (u, h), where u is the content of b and h is the hash of the
predecessor of b. Therefore, we consider that the output values in v̄ from the DRC definition
in Section 3.1 are the agreed upon tuples (u, h).

Intuitively, the block content is what needs to be agreed upon at a given level. Thanks
to block hashes, the agreement obtained during a single-shot consensus instance implies
agreement on the whole blockchain, except for its head, for which there might not yet be
agreement on the other fields of the header besides the predecessor hash. The possible
“disagreement” comes from processes taking a decision at possibly different times and thus on
different proposed blocks which, however, share the same content. Agreement on the head is
obtained implicitly at the next level. For clarity, we refer to a block as being committed if it
is not the head of the blockchain of a correct process.

FAB 2021
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1 proc runDRC()
2 schedule onTimeoutPull() to be executed after I
3 updateState([genesis], ∅)
4 while true
5 initConsensusInstance()
6 (chain, certificate) := runConsensusInstance()
7 updateState(chain, certificate)

8 proc updateState(chain, certificate)
9 # NB: tail of blockchainp is a prefix of chain

10 blockchainp := chain
11 headCertificatep := certificate
12 ℓp := length(chain)
13 hp := hash(blockchainp[ℓp − 1])

14 proc onTimeoutPull()
15 pullChain
16 schedule onTimeoutPull() to be executed after I

17 proc handleEvents()
18 while not stopEventHandler() do
19 upon NewMessage(msg)
20 handleConsensusMessage(msg)
21 upon NewChain(chain, proposalOrCertificate)
22 certificate := getCertificate(proposalOrCertificate)
23 if validChain(chain, certificate) then
24 if length(chain) > ℓp then
25 return (chain, certificate)
26 else if length(chain) = ℓp ∧ betterHead(chain, proposalOrCertificate) then
27 updateState(chain, certificate)

Figure 1 DRC entry point and auxiliary procedures.

In order for processes to validate a chain independently of the current consensus instance,
a certificate is included in the block header to justify the decision on the previous block. A
certificate is a quorum of signatures which serves as a justification that the content of the
predecessor block was agreed upon by the “right” committee. To effectively check certificates,
the public keys of committee members are stored in the blockchain.

3.2.2 A DRC algorithm
Fig. 1 presents the pseudocode of a generic procedure to solve DRC in the context of
blockchains. It is generic in that it can run with any single-shot consensus algorithm.
We first enumerate the state variables at any correct process p. Namely, the state of p:

blockchainp, its local copy of the blockchain;
ℓp, the level at which p runs a consensus instance, which equals the blockchain’s length;
hp, the hash of the head of blockchainp, that is, of the block at level ℓp − 1;
headCertificatep, the certificate which justifies the head of blockchainp.

In the pseudocode, all these state variables are considered global, while variables local to a
procedure are those that do not have a subscript.

Next, we refine the answer to pullChain requests, in that we consider that the pullChain
primitive retrieves more than just output values. Concretely, when a correct process p at
level ℓp answers a pullChain request, it returns a tuple (blockchainp, proposalOrCertificate)
where blockchainp is its local chain and proposalOrCertificate is either: (1) the block that p

considers as the current proposal at level ℓp or; (2) in absence of a proposal, headCertificatep.
Here, by proposal we mean a proposed block.

We now proceed to describing the entry point of the DRC algorithm, that is, the
procedure runDRC in Fig. 1. Processes need not start DRC at the same time. When
executing runDRC, a process starts by scheduling calls to pullChain. Then, using updateState,
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it initializes its local variables, namely the state variables already presented and the variables
specific to the single-shot algorithm. We use the function hash to compute the hash of some
input. The function length returns the length of an input sequence.

After updating its state, the process iteratively runs consensus instances and once an
instance has finished, it updates its state accordingly. Normally, a consensus instance simply
decides on a value, and the corresponding block is appended to the blockchain. However, a
process might also be behind other processes which have already taken decisions for more
than one level. In this case, as soon as the process invokes the pullChain primitive, it retrieves
missed decisions and thus possibly more blocks are appended to the blockchain.

In the presence of dynamic committees, it is not enough that processes call pullChain
punctually when they are behind. Indeed, assume that a process p decides at level ℓ but the
others are not aware of this and have not decided, because the relevant messages were lost;
also assume that p is no longer a member of the committee at level ℓ + 1, consequently, it no
longer broadcasts messages and thus the other processes cannot progress. To solve this, each
process invokes pullChain regularly, every I time units, where I > 0 is some constant.

During the execution of a consensus instance, processes continuously handle events to
update their state. The event processing loop is implemented by the handleEvents procedure in
Fig. 1. The termination of the event handler is controlled by the stopEventHandler procedure,
which is specific to the single-shot consensus algorithm. There are two kinds of events:
message receipts, represented by the NewMessage event, and chain receipts, represented by
the NewChain event. Upon receiving a new message msg, a process p dispatches it to the
consensus instance. Upon the receipt of a new chain, p updates its state accordingly:

If the new chain is longer, and is valid, p starts a new consensus instance for a higher level;
this is because the return on line 25 passes the control back to the runDRC procedure in
line 6.

If the new chain has the same length but a head which is “better”, in some sense that
specific to the single-shot consensus algorithm, then this signals to p that it is “behind”,
and in this case p only updates its state while remaining at the same level. In particular,
only the DRC-related state is updated, while the single-shot instance remains unchanged.
A specific betterHead procedure in given in Section 6. For the moment, we note that by
means of betterHead, all processes have the same reference point for synchronization.

The NewChain event has, in addition to the chain parameter, the proposalOrCertificate
parameter, which serves as a justification that the head’s value has indeed been agreed upon.
The role of validChain(chain) is two-fold:

1. to check whether chain’s head and the certificate from proposalOrCertificate match;
for this to be possible, we assume access to a procedure getCertificate provided at the
single-shot consensus level (see Section 6.5);

2. to check whether for any level ℓ the predicate isValidValue(chain[ℓ], chain[ℓ−1]) is satisfied;
this means that the hash field in the header of the block chain[ℓ] equals hash(chain[ℓ − 1])
(so that the predicate isConsistentValue is satisfied), and that the value in each block is
proposed by the right committee (so that the predicate isLegitimateValue is satisfied); for
the latter to be possible, certificates are stored in blocks as single-shot consensus specific
elements (see Section 6.2).

The DRC solution we presented is generic, one can instantiate it by providing imple-
mentations to initConsensusInstance, startConsensusInstance, getCertificate, betterHead, and
stopEventHandler. We show how to concretely implement them in Sections 5 and 6.
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4 A synchronizer for blockchains

We describe a synchronizer for round-based consensus algorithms. Round-based consensus
algorithms progress in rounds, where, at each round, processes attempt to reach a decision,
and if they fail, they advance to the next round to make another attempt.

In the context of round-based consensus algorithms, a standard way to achieve termination
of a single consensus instance is to ensure that processes remain at the same round for a
sufficiently long period of time [14, 8, 16, 10]. The synchronizer we propose realizes this by
leveraging the immutability of the blockchain. One feature of our synchronizer is that it
does not exchange any message, thus, it does not increase the communication complexity.
Instead, it relies on rounds having the same duration for all processes. We require that
rounds duration are increasing and unbounded. Concretely, the duration of a round r > 0 is
given by ∆(r), where ∆ is a function with domain N \ {0} such that, for any duration d ∈ N,
there is a round r with ∆(r) ≥ d. Furthermore, we assume that rounds duration are larger
than the clock skew, so that rounds are not skipped in the synchrony period. Note that by
using round durations, Tenderbake cannot be optimistic responsive like, for instance, [29].

▶ Remark 1. In practice, given estimates δreal of the real message delay and δmax of the
maximum message delay δ, we would choose ∆ such that: (i) ∆(1) is slightly bigger than δreal ,
(ii) ∆ increases rapidly (e.g. exponentially) till it reaches δmax , and (iii) then it increases
slowly (e.g. linearly) afterwards.

To determine at which round the process should be, the synchronizer relies on local clocks.
Therefore, when clocks are synchronized, all processes will be at the same round. However, a
prerequisite is that processes agree on the starting time of the current instance. As different
processes may decide at different rounds, and therefore at different times, there is a priori no
consensus about the start time of an instance. We adopt a solution based on the following
observation: if the round at which a decision is taken is eventually known by all processes,
then they can agree on a common global round at which a consensus instance is considered
to have terminated. Indeed, a process considers that the consensus instance has ended at
the smallest round at which some process has decided.

The above solution can be implemented by (1) considering that a block header stores
the round at which the block is produced, and (2) using the betterHead procedure, which is
called by a process p at line 27 upon receiving a new chain in response to a pullChain request.
This procedure checks if some other process has already taken a decision sooner, in terms
of rounds. If this is the case, betterHead signals to its caller that it is “behind” and thus
that it needs to resynchronize. We postpone the concrete implementation of betterHead to
Section 6.4 because it is specific to the single-shot consensus algorithm. For the moment,
to illustrate the role of betterHead, Fig. 2 shows an update of the head of a process p’s
blockchain. Initially, the head of p’s local chain is b′. Then, p sees the block b′′ at level ℓ

with a smaller round than b′ and therefore updates the head of its local chain to b′′.
Finally, we present the synchronization procedure in Fig. 3. We assume that the genesis

block contains the time t0 of its creation. To synchronize, p uses its local clock, whose value
is obtained by calling now(), and the rounds of the blocks in its blockchain to find out what
its current round and the time position within this round should be. Process p determines
first the starting time of the current level and stores it in t. To do this, p adds the durations
of all rounds for all previous levels. Once p has determined t, it finds the current round by
checking incrementally, starting from round r = 1 whether the round r is the current round:
r is the current round if there is no time left to execute a higher round. The variable t is
updated to represent the time at which round r started. The difference t′ − t represents the
offset between the beginning of the round r and the current time.
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.....

ℓp − 2

b (u, h)
r = 2

b′′

(u, h)
r = 3

ℓp − 1

b′

committed blocks

q’s local chain

p’s local chain

Figure 2 An update of the head of p’s chain. Solid boxes represent blocks in p’s chain before the
update, while the dashed box represents the block that triggers the update. Block levels and labels
are given above and respectively below the corresponding boxes. The hash h is that of block b.

28 proc synchronize()
29 t′ := now()
30 t := t0 +

∑ℓp−1
ℓ=0

∑round(ℓ)
j=1

∆(j) +
∑r′

j=1
∆(j)

31 r := 1
32 while t + ∆(r) ≤ t′ do
33 t := t + ∆(r)
34 r := r + 1
35 return (r, t′ − t)

· · · t1
ℓp−1 t2

ℓp−1 · · · tr′

ℓp−1 t1
ℓp

· · · tr
ℓp

now()

offset∆(1) ∆(r′)∑r′

j=1 ∆(j)

Figure 3 A round-based synchronizer and a timeline. Small/large vertical lines represent
round/level boundaries, respectively.

Fig. 3 also illustrates the timeline of a process that increments its rounds using the
procedure synchronize, where tr

ℓp
represents the starting time of the round r of level ℓp and

r′ stands for the last round of level ℓp − 1. The figure also illustrates the offset t′ − t.

5 A Single-Shot Consensus Skeleton

In this section we give a generic implementation for the procedure runConsensusInstance from
Section 3.2.2. Here we make another standard assumption on the structure of the single-shot
consensus algorithm, namely that each round evolves in sequential phases. For instance,
PBFT in normal mode has 3 phases (named pre-prepare, prepare, and commit), Tendermint
as well, DLS and Hotstuff have 4 phases, etc.

We let m denote the number of phases. As for rounds, we assume that each phase has a
predetermined duration. The duration is given by the round r it belongs to, and it is denoted
∆′(r). For simplicity, we assume that ∆(r) = m · ∆′(r). We also refine the assumption on
round durations, and also require that phase durations are larger than the clock skew, so
that phases are not skipped in the synchrony period, i.e. ∆′(1) > 2ρ.

To synchronize correctly, a process also needs to update its phase (not only its round)
and to know its time position within a phase. These can be readily determined from the
round and the round offset returned by synchronize. The procedure getNextPhase, presented
in Fig. 4, performs this task. For the pseudocode, we consider that each phase has a label
identifying it and we use phases to denote the sequence of phase labels.

The entry point of a single-shot consensus instance is runConsensusInstance, given in
Fig. 4. As part of its state, a process p also maintains its current round rp. A process p starts
by calling synchronize in an attempt to (re)synchronize with other processes. We recall that
this is just an attempt and not a guarantee because clocks are not necessarily synchronized
before τ . If synchronize returns that p should be at a round in the past with respect to p’s
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36 proc runConsensusInstance()
37 (round, roundOffset) = synchronize()
38 if rp > round then # p is ‘‘ahead’’
39 runConsensusInstance()
40 else # p is ‘‘behind’’
41 (phase, phaseOffset) :=
42 getNextPhase(round, roundOffset)
43 rp := round
44 set runEventHandler timer to
45 ∆′(rp) − phaseOffset
46 if p ∈ committeeAtLevel(ℓp) then
47 goto phase
48 else
49 goto phase-observer

50 proc getNextPhase(round, roundOffset)
51 i := roundOffset / ∆′(round)
52 phase := phases[i]
53 phaseOffset := roundOffset − i · ∆′(round)
54 return (phase, phaseOffset)

55 proc advance(decisionOption)
56 match decisionOption with
57 | Some (block, blockCertificate) →
58 c := blockchainp ++ block
59 return (c, blockCertificate)
60 | None → # no decision
61 rp := rp + 1
62 filterMessages()
63 runConsensusInstance()

Figure 4 Entry point and progress procedures for generic single-shot consensus.

current round, then p invokes (indirectly) the synchronizer again. This active waiting loop
ensures that p is ready to continue its execution as soon as it is not “ahead” anymore. We
note that a jump backward to a previous round or phase may jeopardize safety. When p is
“behind”, it first uses the procedure getNextPhase to obtain the phase at which it should be.
Next, it updates its round and the timer used to time the execution of the event handler. Con-
cretely, through this timer, the generic procedure stopEventHandler is implemented as follows:

64 proc stopEventHandler()
65 return true iff timer runEventHandler expired

We recall this procedure is used by handleEvents at line 18 in Fig. 1.
After setting runEventHandler , p checks whether it is part of the committee for level ℓp.

To this end, we assume having access to a committeeAtLevel function, which returns the
committee at some given level ℓ. This function corresponds to committee(v̄p[..(ℓ − k)])
(Section 3.1), where v̄p is the sequence of output values of the caller process p. Finally, p

executes the single-shot consensus algorithm according to its role and to the phase returned
by getNextPhase. The determined phase is executed by means of an unconditional jump to
corresponding phase label. The two goto statements in Fig. 4 are intentionally symmetric for
committee and non-committee members to keep all processes in sync. This has the advantage
of not introducing delays when they eventually become part of the committee.

Fig. 4 also shows the advance procedure, which is used by processes to handle the progress
of the current consensus instance by either returning the control to runDRC when a decision
can been taken; or otherwise increasing the round. In this former case, advance first prepares
the updated blockchain, appending the block corresponding to the decision to its current
blockchain; runDRC will then update the state accordingly, for instance increasing the level.
The procedure advance has one parameter, which is optional, represented in the pseudocode
as a value of an optional type (with values of the form Some x if the parameter is present or
None if it is not). The parameter is present when the current consensus instance has taken a
decision. In this case, the parameter is a tuple consisting of a block containing the decided
value and of a certificate justifying the decision. Otherwise, when no decision is taken, the
process increases its round and filters its message buffer by removing messages no longer
necessary. The filtering procedure filterMessages is specific to the consensus instance.

We conclude by presenting in Fig. 5 the pseudocode capturing the behavior of the processes
which are not part of a committee for a given level. We call such processes observers. Contrary
to committee members, observers are passive in the sense that they only receive (but not
send) messages and update their state accordingly.
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66 phases[1]-observer phase:
67 handleEvents()
68 ...
69 phases[m − 1]-observer phase:
70 handleEvents()

71 phases[m]-observer phase:
72 handleEvents()
73 advance(getDecision())

Figure 5 Generic single-shot algorithm for an observer.

This observer behavior serves two purposes:
i) to keep the blockchain at each observer up to date;
ii) to check at the end of the round whether a decision was taken, and if so, whether the

observer becomes a committee member at the next level.
To achieve i), the observer checks if it can adopt a proposed value. It does so by invoking the
handleEvents and advance procedures, where the parameter to advance is obtained using the
procedure getDecision, which is specific to the single-shot consensus algorithm. Concerning
ii), when the corresponding check (line 46) is successful, the observer switches roles and acts
as a committee member. We note that line 46 is reached when the observer end its round
and calls advance, which in turn calls runConsensusInstance at the end.

As for the DRC solution in Section 3.2.2, the methods presented in this section are generic.
One can instantiate them by providing implementations to the filterMessages and getDecision
procedures. We show such concrete implementations in the next section.

6 Single-shot Tenderbake

To show the specific phase behavior of a committee member, we first introduce some
terminology inspired by Tezos. Tenderbake committee members are called bakers. At each
round, a value is proposed by the proposer whose turn comes in a round-robin fashion.
Tenderbake has three types of phases: PROPOSE, PREENDORSE, and ENDORSE, each with
a corresponding type of message: Propose for proposals, Preendorse for preendorsements,
and Endorse for endorsements. A fourth type of message, Preendorsements, is for the re-
transmission of preendorsements. A baker proposes, preendorses, and endorses a value v (at
some level and with some round) when the baker broadcasts a message of the corresponding
type. Only one value per round can be proposed or (pre)endorsed. A set of at least
2f + 1 (pre)endorsements with the same level and round and for the same value is called a
(pre)endorsement quorum certificate (QC).

We consider that Propose messages are blocks. This is a design choice that has the
advantage that values do not have to be sent again once decided.

Within a consensus instance, if a baker p receives a preendorsement QC for a value v

and round r, then p keeps track of v as an endorsable value and of r as an endorsable round.
Similarly, if a baker p receives a preendorsement QC for a value v and round r during the
ENDORSE phase of the round r, then p locks on the value v, and it keeps track of v as a
locked value and of r as a locked round. Note that the locked round stores the most recent
round at which p endorsed a value, while the endorsable round stores the most recent round
that p is aware of at which bakers may have endorsed a value.

The execution of a round works as follows. During the PROPOSE phase, the designated
proposer proposes a value v, which can be newly generated or an endorsable value from a
previous round r. During the PREENDORSE phase, a baker preendorses v if it is not locked
or if it is locked on a value at a previous round than r; in particular, it does not preendorse
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v if it is locked and v is newly generated. If a baker does not preendorse v, then it sends a
Preendorsements message with the preendorsement QC that justifies its more recent locked
round. During the ENDORSE phase, if bakers receive a preendorsement QC for v, they lock
on it and endorse it. If bakers receive an endorsement QC for v, they decide v.

Tenderbake inherits from classical BFT solutions the two voting phases per round and the
locking mechanism. Tracking endorsable values is inherited from [7]. Tenderbake distinguishes
itself in a few aspects which we detail next.

Preendorsement QCs. For safety, bakers accept endorsable values only from higher rounds
than their locked round. Assume a correct baker p locks and all other correct bakers locked
at smaller rounds. Assume also that the messages from p are lost. To prevent p from not
making progress, it is enough to include the preendorsement QC that made p lock in Endorse
and Propose messages. In this way, bakers can update their endorsable values and rounds
accordingly and propose values that can be accepted by any correct locked baker. Tendermint
does not need such QCs as it assumes reliable communication in the asynchronous period.

The Preendorsements message. For faster termination of a consensus instance, when a
baker refuses a proposal because it is locked on a higher round than the endorsable round
of the proposed value, it broadcasts a Preendorsements message. This message contains a
preendorsement QC justifying its higher locked round. During the next round, bakers use this
QC to set their endorsable value to the one with the highest round. The consensus instance
terminates with the first correct proposer. Thus, in the worst-case scenario, when the first f

bakers are Byzantine, Tenderbake terminates in f +2 rounds after τ , assuming that processes
have achieved round synchronization and that the round durations are sufficiently large.

Endorsement QCs. For processes to be able to check that blocks received by calling pullChain
are already agreed upon, each block comes with an endorsement QC for the block at the
previous level. Furthermore, for the same reason, in response to a pull request, a process
also attaches the endorsement QC that justifies the value in the head of the blockchain.

6.1 Process state and initialization
In addition to the variables mentioned in Section 3.2.2, a process p running Tenderbake
maintains its current round rp as well as:

lockedValuep and lockedRoundp to keep track respectively of the value on which p is
locked and the round during which p locked on it,
endorsableValuep to keep track of the proposed value with a preendorsement QC (with
the highest round), which can therefore be considered endorsable,
endorsableRoundp and preendorsementQC p to store the round and the preendorsement
QC corresponding to an endorsable value;
headCertificatep to store the endorsement QC for p’s last decided value.

The variable headCertificatep (introduced in Section 3) is empty at level 1 (Fig. 1, line 3).
The state of a process is initialized by the procedure initConsensusInstance:

74 proc initConsensusInstance()
75 rp := 1
76 lockedValuep := ⊥; lockedRoundp := 0
77 endorsableValuep := ⊥; endorsableRoundp := 0
78 preendorsementQCp := ∅
79 messagesp := ∅

where, by abuse of notation, we use x := ⊥ to denote that x has become undefined.
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6.2 Messages and blocks
We write messages using the following syntax: typep(ℓ, r, h, payload), where type is Propose,
Preendorse, Endorse, or Preendorsements, p is the process that sent the message, ℓ and r

are the level and the round during which the message is generated, h is the block hash at
level ℓ − 1, and payload is the type specific content of the message.

The payload (eQC , u, eR, pQC ) of a Propose message contains the endorsement
quorum eQC that justifies the block at the previous level and the proposed value u to
be agreed on. The payload also contains, in case u is a previously proposed value, the
corresponding endorsable round and the preendorsement QC that justifies u. If the proposed
value is new, then eR is 0 and pQC is the empty set.

Given a Propose(ℓ, r, h, (eQC , u, eR, pQC )) message, the corresponding block has con-
tents u, while the remaining fields, notably the hash h, are part of the block header.

The payload of a Preendorse message consists of the value to be agreed upon while the pay-
load of an Endorse message consists of an endorsed value. The payload of a Preendorsements
message consists of a preendorsement QC justifying some endorsable value and round.

6.3 Message management
The message management is designed such that message buffers are bounded. We prove this in
Lemma 3 and we give some more intuition in Appendix A. In this section, we only focus on the
elements needed to understand single-shot Tenderbake, namely the handleConsensusMessage
and some helper procedures. The procedure handleConsensusMessage is depicted in Fig. 6.
A process p adds (line 84) to its message buffer valid messages msg but only from the
current and next round. Messages from the next round are needed in order to cater for
the possible clock drift. Moreover, if a preendorsement QC is observed for a higher round
than the current endorsableRoundp, then p updates endorsableValuep, endorsableRoundp,
and preendorsementQC p using the procedure updateEndorsable (line 85). Finally, as an
optimization, if the received message is from either a higher level or from the same level but
with a different hash, then p attempts to resynchronize by calling pullChain (line 87).

The procedure filterMessages() removes messages not for the current round (see Ap-
pendix A). The helper procedures used in Fig. 6 are described as follows:

proposedValue() returns the current proposed value of the block at level ℓ;
valueQC(qc) and roundQC(qc) return the value and respectively the round from a qc;
pQC(msg) returns the preendorsement QC from a Propose or Preendorsements mes-
sage msg; if the Propose message does not contain a preendorsement QC (because what
is proposed is a new value), then pQC returns the empty set;
proposal(), preendorsements(), and endorsements() return the proposal, preendorsements,
and respectively the endorsements contained in messages.

6.4 Tenderbake main loop
Fig. 7 gives the execution of one round of Tenderbake by baker p, when the round’s three
phases are executed in sequence. We recall that the pseudocode has the same structure as
that for observers, as described in Section 5. Each phase consists of a conditional broadcast
followed by a call to handleEvents (described in Section 3.2.2). In addition, the ENDORSE
phase calls advance (described in Section 3.2.2). In the PROPOSE phase, p checks if it is the
proposer for the current level ℓp and round rp (line 102). If so, p proposes:
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80 proc handleConsensusMessage(msg)
81 let typeq(ℓ, r, h, payload) = msg
82 if ℓ = ℓp ∧ h = hp ∧ (r = rp ∨ r = rp + 1) then
83 if isValidMessage(msg)
84 messagesp := messagesp ∪ {msg}
85 updateEndorsable(msg)
86 if (ℓ = ℓp ∧ h ̸= hp) ∨ ℓ > ℓp then
87 pullChain

88 proc updateEndorsable(msg)
89 if |preendorsements()| ≥ 2f + 1 then
90 endorsableValuep := proposedValue()
91 endorsableRoundp := rp

92 preendorsementQCp := preendorsements()
93 else if type(msg) ∈ {Propose, Preendorsements} then
94 pQC := pQC(msg)
95 if pQC ̸= ∅ ∧ roundQC(pQC) > endorsableRoundp then
96 endorsableValuep := valueQC(pQC)
97 endorsableRoundp := roundQC(pQC)
98 preendorsementQCp := pQC

99 proc filterMessages()
100 messagesp := messagesp\ {type(ℓ, r, h, payload) ∈ messagesp | r ̸= rp}

Figure 6 Message management in Tenderbrake.

either a new value u, returned by the procedure newValue; here it is assumed that u is
consistent with respect to the value u′ contained in the last block of the blockchain of the
process that calls this procedure; that is, isConsistentValue(v, v′) holds (see Section 3.1),
where v, v′ are the output values corresponding to u, u′;
or its endorsableValuep if defined; in this case, p includes in the payload of its proposal
the corresponding endorsable round and the preendorsement QC that justifies it.

The payload also includes the endorsement QC to justify the decision for the previous level.
In the PREENDORSE phase, p checks if the value u from the Propose message received

from the current proposer is preendorsable (lines 110-111). Namely, it checks whether one of
the following conditions are satisfied:

p is unlocked (lockedRoundp = 0, thus the second disjunction at line 111 is true); or
p is locked (i.e. lockedRoundp > 0), u was already proposed during some previous round
(i.e. 0 < eR < rp), and:

p is already locked on u itself (thus the first disjunction at line 111 is true); or
p is locked on u′ ≠ u and its locked round is smaller than the endorsable round
associated to u.

In the second case, there is a preendorsement QC for u and round eR, thanks to the validity
check on the Propose message. If the condition holds, then p preendorses u. If p cannot
preendorse u as it is locked on some value u′ ̸= u with a higher locked round than eR, then
p broadcasts the preendorsement QC that justifies v′. If received on time, this information
allows the next proposer to choose a value that passes the checks at all correct bakers.

In the ENDORSE phase, p checks if it received a preendorsement QC for the proposed
value u. If yes, p updates its lockedValue and endorsableValue and broadcasts its Endorse
message, along with all the Preendorse messages for u (lines 117-120). Note also that in this
case p has already updated its endorsable value to u and its endorsable round to rp while
executing handleEvents.

Finally, at the end of this last phase, which is also the end of the round, bakers call
advance with a parameter that signals whether a decision can be taken or not. This parameter
is obtained using getDecision, implemented is as follows:
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101 PROPOSE phase:
102 if proposer(ℓp, rp) = p then
103 u := if endorsableValuep ̸= ⊥ then endorsableValuep

104 else newValue()
105 payload := (headCertificatep, u, endorsableRoundp, preendorsementQCp)
106 broadcast Proposep(ℓp, rp, hp, payload)
107 handleEvents()

108 PREENDORSE phase:
109 if ∃q, eQC , u, eR, pQC :
110 Proposeq(ℓp, rp, hp, (eQC , u, eR, pQC)) ∈ messagesp ∧
111 (lockedValuep = u ∨ lockedRoundp < eR < rp) then
112 broadcast Preendorsep(ℓp, rp, hp, hash(u))
113 else if lockedValuep ̸= ⊥ then
114 broadcast Preendorsements(ℓp, rp, hp, preendorsementQCp)
115 handleEvents()

116 ENDORSE phase:
117 if |preendorsements()| ≥ 2f + 1 then
118 u := proposedValue()
119 lockedValuep := u; lockedRoundp := rp

120 broadcast Endorsep(ℓp, rp, hp, hash(u))
121 broadcast preendorsementQCp

122 handleEvents()
123 advance(getDecision())

Figure 7 Single-shot Tenderbake for baker p.

124 proc getDecision()
125 if |endorsements()| ≥ 2f + 1 then
126 return Some (proposal(), endorsements())
127 else
128 return None

6.5 The betterHead procedure

The role of betterHead is to make processes agree on the same blockchain head; recall that
they already agree on the head contents, but not necessarily on the head’s header. Agreeing
on the same blockchain head has in turn two roles:

allowing agreement on the round at which a decision was taken at the previous level, which
is one of the ingredients for processes to synchronize at the current level, as explained in
Section 4.

allowing agreement to take place at the current level; recall that at the current level
agreement needs to be reached also on the hash of the block at the predecessor level, that
is, on the hash of the head of a process’ blockchain.

To reach these two goals, as suggested in Section 4, processes adopt the head with the smallest
round. However, there is a caveat: if this would be the only check done by betterHead,
processes might end up with a head on top of which no proposal will be accepted in case
they have seen an endorsable value: indeed, the hash component of such a value may not
match the new head. To avoid this situation, a process first performs an additional check
in case they have seen an endorsable value. When proposalOrCertificate is a proposal, the
check is similar to the check for preendorsing (line 111): the endorsable round of process p

is smaller than the one in the received proposal (line 133). When proposalOrCertificate is
a certificate we simply required that the process has not seen an endorsable value. The
betterHead procedure implementing these checks is given next.
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129 proc betterHead(chain, proposalOrCertificate)
130 let ⟨_, r, . . . ; ·⟩ = head(chain)
131 match proposalOrCertificate with
132 | Propose(_, _, _, (_, _, eR, _)) →
133 return endorsableRoundp < eR ∨

(
endorsableRoundp = eR ∧ r < round(ℓp − 1)

)
134 | _ → # proposalOrCertificate is a certificate
135 return endorsableRoundp = 0 ∧ r < round(ℓp − 1)

In the pseudocode, ⟨. . . ; . . . ⟩ denotes a block, with the part before the semicolon representing
the block’s header and the part after it its contents. The procedure head(chain) returns the
head of chain. Also, recall that round(ℓ) returns the round contained in the header of the
block at level ℓ in the caller’s blockchain.
As for the implementation of getCertificate, it is a simple match on proposalOrCertificate:

136 proc getCertificate(proposalOrCertificate)
137 match proposalOrCertificate with
138 | Proposeq(_, _, _, (eQC , _, _, _)) → return eQC
139 | eQC → return eQC

7 Correctness and Complexity

The following theorem states that Tenderbake provides a solution to DRC. Its proof can be
found in Appendix B.

▶ Theorem 2. Tenderbake satisfies validity, agreement, and progress.

Bounded memory. We assume that all values referred to by global or local variables of a
process p are stored in volatile memory, except for the variable blockchainp whose value is
stored on disk. We recall that the message buffer is represented by the messagesp variable.
The following lemma shows that a process can use fixed-sized buffers, namely of size 4n.

▶ Lemma 3. For any correct process p, at any time, |messagesp| ≤ 4n + 2.

Proof. Let p be some correct process. Given that in messagesp only messages from the
current and next round are added (line 84), and that with each new round messages from
the previous round are filtered out (line 100), messagesp contains at most 2 proposals, at
most 2n preendorsements, and at most 2n endorsements. ◀

The following result states that a process only uses bounded memory. We assume here
that the underlying implementation of the pullChain primitive does not count towards the
memory usage of a process.

▶ Theorem 4. At any time, the size of the volatile memory of any correct process is in O(n).

Proof. A correct process maintains a constant number of variables, and except messages,
each variable stores a primitive value or a QC. A QC contains at most n messages and
each message has a constant size. The O(n) bound follows from these observations, and the
observation concerning the messages variable from the proof of Lemma 3. ◀
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Message and round complexity. Each round has a message complexity of O(nm) due to
the n-to-m broadcast, where m is the current number of processes in the system.

Concerning round complexity, it is known that consensus, in the worst case scenario,
cannot be reached in less than f + 1 rounds [15]. In Tenderbake, after bakers synchronize
and the round durations are sufficiently long (namely, at least δ + 2ρ), a decision is taken in
at most f + 2 rounds, as already mentioned in Section 6. See Lemma 15 in Appendix B for
a proof. Intuitively, f rounds are needed in case the proposers of these rounds are Byzantine.
Another round is needed if there is a correct process locked on a higher round than the
endorsable round of the proposed value. However, in this case, the next proposer is correct
and will have updated its endorsable round, and therefore its proposed value will be accepted
and decided by all correct processes.

Recovery time. Finally, we discuss the time required for bakers to synchronize after τ . A
worst-case scenario analysis is in our technical report [4]. Roughly, the recovery time is the
maximum time between the error that the clock can experience and the time necessary for a
process to fetch the missing blocks, which is at least one round-trip time: the time to ask for
the current blockchain and to get the reply. We believe that in practice the time to pull a
new chain (and even to pull just the last block) is considerably bigger than the maximum
error clock that a process can experience during the asynchronous period. Finally, if all
processes are at the same level but not at the same round, then, as the synchronizer is called
at the end of every round, all processes synchronize in at most one round.

8 Conclusion

In this paper, we proposed a formalization of dynamic repeated consensus, a general approach
to solve it, and a BFT solution working with bounded buffers by leveraging a blockchain-based
synchronizer. We have implemented the proposed solution in a prototype1. A full-fledged
(based on proof-of-stake and with smart contracts) implementation is being developed2.
Experiments with running a Tenderbake testnet are underway. A Tenderbake simulator has
already been implemented3.

Besides practical aspects such as experimenting with the testnet and the simulator,
as future work, we see the following exciting directions: explore the relationship between
achieving asynchronous responsiveness and providing bounded buffers; improve message size
and complexity by means of aggregated or threshold signatures; mechanize the proofs; and
analyze Tenderbake from an economic perspective when considering rational agents.

References

1 Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the Tezos Blockchain.
In Proc. High Performance Computing and Simulation, 2019.

2 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Correctness of Tendermint-core blockchains. In Proc. Principles of Distributed
Systems, 2018.

3 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci
Piergiovanni. Dissecting Tendermint. In Proc. Networked Systems, 2019.

1 https://gitlab.com/nomadic-labs/tezos/-/tree/tenderbake_proto
2 https://gitlab.com/nomadic-labs/tezos/-/blob/tenderbake-florence
3 https://gitlab.com/nomadic-labs/tenderbake-simulator

FAB 2021

https://gitlab.com/nomadic-labs/tezos/-/tree/tenderbake_proto
https://gitlab.com/nomadic-labs/tezos/-/blob/tenderbake-florence
https://gitlab.com/nomadic-labs/tenderbake-simulator


1:18 Tenderbake – A Solution to Dynamic Repeated Consensus for Blockchains

4 Lăcrămioara Aştefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci, and Eugen Zălinescu. Tenderbake – a solution to dynamic repeated consensus for
blockchains, 2021. arXiv:2001.11965.

5 Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and Fernando Pedone. From
byzantine replication to blockchain: Consensus is only the beginning. In Proc. International
Conference on Dependable Systems and Networks, 2020.

6 Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. Making byzantine consensus live.
In Proc. International Symposium on Distributed Computing, 2020.

7 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
2018. arXiv:1807.04938.

8 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 2002.

9 T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous
blockchain. IACR Cryptol. ePrint Arch., 2018.

10 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in distributed
systems with benign faults. Distributed Comput., 2009.

11 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

12 T. Crain, V. Gramoli, M. Larrea, and M. Raynal. (Leader/Randomization/Signature)-free
Byzantine consensus for consortium blockchains. CoRR, 2017.

13 Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Franck Petit, and Sam
Toueg. With finite memory consensus is easier than reliable broadcast. In Proc. Principles of
Distributed Systems, 2008.

14 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 1988.

15 Michael J Fischer and Nancy A Lynch. A lower bound for the time to assure interactive
consistency. Information processing letters, 1982.

16 Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony (extended
abstract). In Proc. ACM Symposium on Principles of Distributed Computing, 1998.

17 J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Proc. EUROCRYPT International Conference, 2015.

18 L.M. Goodman. Tezos – a self-amending crypto-ledger, 2014.
19 Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview

series, consensus system. CoRR, 2018.
20 Jae Kwon and Ethan Buchman. Cosmos: A Network of Distributed Ledgers.
21 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
22 Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine

view synchronization. CoRR, 2019. arXiv:1909.05204.
23 Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for

linear byzantine SMR. In Proc. International Symposium on Distributed Computing, 2020.
24 Nomadic Labs. Analysis of Emmy+. https://blog.nomadic-labs.com/analysis-of-emmy.

html, 2019.
25 Rafael Pass and Elaine Shi. Rethinking large-scale consensus. IACR Cryptol. ePrint Arch.,

2018.
26 Roberto Saltini. Correctness analysis of IBFT. CoRR, 2019.
27 Omid Shahmirzadi, Sergio Mena, and André Schiper. Relaxed atomic broadcast: State-

machine replication using bounded memory. In Proc. IEEE International Symposium on
Reliable Distributed Systems, 2009.

28 The LibraBFT Team. State machine replication in the Libra blockchain, 2019.
29 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff:

BFT consensus with linearity and responsiveness. In Proc. ACM Symposium on Principles of
Distributed Computing, 2019.

http://arxiv.org/abs/2001.11965
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1909.05204
https://blog.nomadic-labs.com/analysis-of-emmy.html
https://blog.nomadic-labs.com/analysis-of-emmy.html


L. Aştefănoaei et al. 1:19

A Valid messages and bounded buffers

Recall handleConsensusMessage in Section 6.3. As a necessary check for message buffers to
be bounded, upon the retrieval of a new message msg, a process p first checks if the level,
round, and hash in msg’s header match respectively p’s current level, either the current
round or the next round, and the hash of the block at the previous level. If yes, p then checks
that the message is valid, with the procedure isValidMessage (line 83). Proposeq(ℓ,r,h,(eQC ,
u,eR,pQC )) is valid if q is the proposer for level ℓ and round r and if eQC is an endorsement
QC for level ℓ − 1 with the round, hash, and value matching those in p’s blockchain. In
addition, either pQC is empty and eR is 0 (i.e. u is newly proposed), or the round, value, and
hash from pQC match eR, u, and hp, respectively. Messages in eQC and pQC must be valid
themselves, in particular they must be generated by bakers at levels ℓ − 1 and ℓ, respectively.
These validity checks ensure that the value (u, h) satisfies the isLegitimateValue predicate
from Section 3.1. The validity conditions for the other types of messages are similar, and
thus omitted. We note, however, that for preendorsements and endorsements it is required
that the corresponding proposal has been already received, so that it can be checked that
the hash included in the payload matches the proposed value.

There are three additional aspects of handleConsensusMessage in Section 6.3 that together
with the validity check, ensure that buffers are bounded: (1) only valid messages are added
(line 83); (2) messages for the next round are kept (line 84) to cater for the possible clock
drift; (3) messages from higher levels trigger p to ask for the sender’s blockchain (line 87),
because such messages “from the future” suggest that p is behind; however, the sender might
be lying about being ahead. Recall that the procedure advance only calls filterMessages after
a round increment (line 62). Recall also that filterMessages removes messages not matching
the current round (line 100). Together with the above elements, the filtering ensures that
message buffers are bounded (Lemma 3).

B Correctness proof

B.1 Validity and Agreement
▶ Theorem 5. Tenderbake satisfies validity.

Proof. The local chain of a correct process p is formed by proposals and/or chains ob-
tained by p calling pullChain. In either case, the content of each block satisfies the predic-
ate isValidValue by the definition of either isValidMessage or validChain. ◀

▶ Lemma 6. Correct bakers preendorse and endorse at most once per round at a given level.

Proof. Preendorse and Endorse messages are sent only during the corresponding phase
(line 112 and line 120, respectively). To show that there is at most one Preendorse (resp.
Endorse) per round it suffices to show that a phase is executed only once per round. Firstly,
phases are executed sequentially. Secondly, non-sequential jumps happen only at line 47
(resp. at line 49) in runConsensusInstance; in turn, runConsensusInstance is called by either
advance (line 63), after increasing the round; or runDRC (line 6), after increasing the level
(line 7) once a decision is taken (line 59) or a longer chain is received (line 25). ◀

▶ Lemma 7. At most one value can have a (pre)endorsement QC per round.

Proof. By contraction, using Lemma 6. ◀

FAB 2021



1:20 Tenderbake – A Solution to Dynamic Repeated Consensus for Blockchains

We say a baker p is locked on a tuple (u, h) if lockedValuep = u and hp = h. We define
Lu,h

ℓ,r as the set of correct bakers locked on the tuple (u, h) at level ℓ and at the end of
round r. We also define preendos(ℓ, r, u, h) as the set of preendorsements generated by correct
processes for some level ℓ, some round r, some value u, and some hash h.

▶ Lemma 8. Let ℓ be a level, r a round, u a value, and h a block hash. For any round r′ ≥ r

and any tuple (u′, h′) ̸= (u, h), if |Lu,h
ℓ,r | ≥ f + 1, then |preendosp(ℓ, r′, u′, h′)| ≤ f .

Proof. We reason by contradiction. Suppose that |Lu,h
ℓ,r | ≥ f +1, and let r′ ≥ r be the smallest

round for which there exists a tuple (u′, h′) ̸= (u, h) such that |preendos(ℓ, r′, u′, h′)| ≥ f + 1.
As |Lu,h

ℓ,r | ≥ f + 1 and |preendos(ℓ, r′, u′, h′)| ≥ f + 1, there is at least one correct process p

such that p ∈ Lu,h
ℓ,r and p preendorsed (u′, h′) at round r′. As p ∈ Lu,h

ℓ,r , we have that p is
locked on (u, h) at round r. Since p preendorsed (line 112) at round r′, it means that one of
the two disjunctions at line 111 holds. Note that the value of rp at line 111 is r′ in this case.

Suppose the first disjunction holds, i.e., lockedValuep = u′. As a process can re-lock
only in the phase ENDORSE, under the condition at line 117, this means that there is
a round r′′ with r ≤ r′′ < r′ and at which |preendorsements()| ≥ 2f + 1. Therefore
|preendos(ℓ, r′′, u′, h′)| ≥ f + 1. This contradicts the minimality of r′.

Suppose now that the second disjunction holds, that is, lockedRoundp < r′′ < r′ where
the round r′′ is the endorsable round of the proposer of u′. We note that a process cannot
unlock (i.e. unset lockedRound), but only re-lock (i.e. set lockedRound to a different value).
Therefore lockedRoundp ≥ r at round r′ and from this, we obtain that r′′ > r > 0. From the
validity requirements of a propose message, we obtain that it contains a preendorsement
QC for (u′, h′). Thus we have that |preendos(ℓ, r′′, u′, h′)| ≥ f + 1. This contradicts the
minimality of r′, since r′′ < r′. ◀

▶ Lemma 9. No two correct processes have two different committed blocks at the same level
in their blockchain.

Proof. We reason by contradiction. Let ℓ be some level. Assume that two different correct
processes p, p′ have respectively two different committed blocks b, b′ at level ℓ in their
blockchain, with b ̸= b′.

By the definition of committed blocks (Section 3), as b is a committed block at ℓ, the
level of the head of p’s blockchain is at least ℓ + 1. Then, as p has a block at level ℓ + 1 in
his blockchain, p has observed an endorsement QC for (ℓ + 1, r, h, u) for some value u and
some round r, where h is the hash of block b. Similarly, p′ has observed an endorsement QC
for (ℓ + 1, r′, h′, u′) for some value u′ and some round r′, where h′ is the hash of block b′.
As b ̸= b′, we have that h ̸= h′, therefore (u, h) ̸= (u′, h′). We assume without loss of
generality that r ≤ r′. Since there are at most f Byzantine processes, and by Lemma 6
correct bakers can only endorse once per round, it follows that at least f + 1 correct bakers
endorsed (u, h) during round r at level ℓ. Before broadcasting an endorsement for (u, h)
at round r (line 120) any correct process sets its lockedValue to u and its lockedRound
to r (line 119), thus |Lu,h

ℓ,r | ≥ f + 1. By Lemma 8, since |Lu,h
ℓ,r | ≥ f + 1, we also have

|preendos(ℓ, r′′, u′′, h′′)| ≤ f , for any round r′′ ≥ r, and any value u′′ with (u′′, h′′) ̸= (u, h).
This means that a correct process cannot endorse some (u′′, h′′) ̸= (u, h) at a round r′′ ≥ r.
This in turn means that there cannot be 2f + 1 endorsements for (u′′, h′′) ̸= (u, h) with
round r′′ ≥ r. This contradicts the fact that there is a QC for (ℓ + 1, r′, u′, h′). ◀

▶ Theorem 10. Tenderbake satisfies agreement.

Proof. By contradiction, using Lemma 9. ◀
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B.2 Progress

Let Phases be the set of labels PROPOSE, PREENDORSE, and ENDORSE. Let Sp : N∗ ×
N∗ × Phases → R be the function such that Sp(ℓ, r, phase) gives the starting time of the
phase phase of round r of process p at level ℓ. We consider that the function Sp returns
the real time, not the local time of process p. Note that for different processes p and q, the
function Sp and Sq may return different times for the same input, because p and q determine
the starting time of their phases based on their local clocks, which may be different before τ .

We say that two correct processes p and p′ are synchronized if ℓp = ℓp′ , |rp − rp′ | ≤ 1, and
|Sp(ℓq, rq, phaseq)−Sp′(ℓq, rq, phaseq)| ≤ 2ρ, where q ∈ {p, p′} is the process which is “ahead”.
We say that q is ahead of q′ (or that q′ is behind q) if Sq(ℓq, rq, phaseq) ≤ Sq′(ℓq, rq, phaseq).
We say that p and q are synchronized at level ℓ and round r if p and q are synchronized and
ℓ = ℓp = ℓq and r = max(rp, rq). At the beginning of r one of the processes might be at
round r − 1. However, for at least ∆′(r) − 2ρ time, the two processes are at the same round.

Let t be the last time p called getNextPhase. We denote by levelOffsetp = now−levelStart,
where now is the value returned by now when called by p at t, and levelStart is the sum
at line 30. The next lemma states that we can use level offsets to characterize process
synchronization. We omit its proof, which follows from an analysis of the synchronize and
getNextPhase functions.

▶ Lemma 11. After τ , two correct processes p and q are synchronized iff |levelOffsetp −
levelOffsetq| ≤ 2ρ.

▶ Lemma 12. Let p and q be two correct processes. If, after τ , they remain at the same level
and the head of their blockchain has the same round, then they are eventually synchronized.

Proof. Suppose that p and q are both at the same level ℓ and that their heads have the same
round. p and q have already decided at ℓ − 1. From the agreement property, p and q agree
on the output value at level ℓ − 1, thus they agree on all blocks up to level ℓ − 2, and on their
rounds as well. Thus, the block rounds in p’s and q’s blockchain are respectively the same.

Next, both p and q eventually call synchronize and getNextPhase. The round returned
by synchronize is eventually larger than the current round of the process, so the process
eventually exits the recursion at line 39 and calls getNextPhase.

Let p be the first to call getNextPhase and let t be the time of the call. Let t′ ≥ t be the time
when q first calls getNextPhase. We first note that levelStart in the definition of levelOffset
is the same for both p and q, at both times t and t′. Let levelOffset∗

t = t − levelStart and
levelOffset∗

t′ = t′ − levelStart. We consider the values of the variable levelOffsetp at t and t′

and denote these by (simply) levelOffsetp and levelOffset ′
p, respectively. 4 Given the bound

on clock skews, |levelOffsetp − levelOffset∗
t | ≤ ρ and |levelOffsetq − levelOffset∗

t′ | ≤ ρ. By
using the inequality |a−b| ≤ |a|+|b|, we obtain that |levelOffsetq −levelOffsetp −(t′ −t)| ≤ 2ρ,
that is, |levelOffsetq − levelOffset ′

p| ≤ 2ρ. By Lemma 11, p and q are synchronized at t′. ◀

▶ Lemma 13. If P is a set of correct processes that are synchronized after τ at a level ℓ

and a round r with ∆′(r) > δ + 2ρ, and a process p ∈ P sends a message at the beginning of
its current phase ph, then this message is received by all processes in P by the end of their
phase ph.

4 We note that levelOffset′
p − levelOffsetp = t′ − t, because we assume that a process measures intervals

of time precisely.
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Proof. Assume that p sends its message m at time tp = Sp(ℓ, r, ph). Consider a process q ∈ P ,
and let tq = Sq(ℓ, r, ph). Process q receives m at most at time tp + δ. By the synchronization
hypothesis, we have that tp − tq ≤ 2ρ. Then we obtain that tp + δ ≤ tq + 2ρ + δ < tq + ∆′(r),
as tq + ∆′(r) is the time of the end of the phase ph for q. If tp < tq, then q might receive
m while it is still at round r − 1. The message m is still available to q at round r because
processes keep messages from a round one unit higher than their current round. ◀

▶ Lemma 14. Let ℓ be a level and r a round with ∆′(r) > δ + 2ρ. Consider that all correct
bakers are synchronized at level ℓ and round r at a time after τ . Let p be the proposer at
round r. If p is correct and endorsableRoundp ≥ lockedRoundq for any correct baker q, then
all correct bakers decide at level ℓ at the end of round r.

Proof. From Lemma 13, we obtain that the Propose message of process p is received by
all correct bakers by the beginning of their phase PREENDORSE. Let eR be the value
of the endorsable round field of the Propose message. Note that eR = endorsableRoundp.
We prove next that each correct baker sends the message Preendorse(ℓ, r, h, u), where u, h

are the value and the predecessor hash proposed by p. Let q be a correct baker. If q

is either unlocked or locked on u, then the condition in line 111 holds, and therefore
q sends its preendorsement for (u, h). If q is locked on a value different from u then
by hypothesis lockedRoundq ≤ endorsableRoundp, therefore lockedRoundq ≤ eR. Also,
endorsableRoundp < r, since endorsableRoundp is set during the execution of handleEvents
before sending the Propose message in round r. Hence, lockedRoundq ≤ eR < r. If
lockedRoundq = eR then, by quorum intersection, lockedValueq = u thus the first disjunction
in line 111 holds for q. If lockedRoundq < eR < r then the second disjunction in line 111
holds for q (note that r = rp = rq). Thus q sends the corresponding Preendorse message. So,
we have proved that all correct bakers broadcast the Preendorse(ℓ, r, h, u) messages (line 112).
By Lemma 13 all these Preendorse(ℓ, r, h, u) messages are received by all correct bakers by
the beginning of the phase ENDORSE. Thus, for all of them, the condition in line 117 is true,
thus all correct bakers broadcast the Endorse message for (u, h) (line 120). In the next phase,
for all them, the quorum condition (line 126) holds for (u, h) so they decide (u, h). ◀

▶ Lemma 15. If at some time after τ all correct bakers are synchronized at some level ℓ

and round r with ∆′(r) > δ + 2ρ, then all correct bakers decide at level ℓ by the end of
round r + f + 1.

Proof. We first remark that, after τ , thanks to synchrony, a correct baker never skips a
round, and in particular never skips its turn when it is time to propose. Let p0, p1, . . . be the
sequence of bakers in the order in which they propose starting with round r. That is, pi is the
proposer at round r+i, for i ≥ 0. Let j, k be the indexes of the first and second correct bakers
in this sequence. As there are at most f Byzantine processes among {p0, . . . , pk} \ {pj}, we
have j < k ≤ f + 1. We show next that all correct bakers decide by the end of round r + k.

Suppose first that pj is such that endorsableRoundpj ≥ lockedRoundq, for any correct
baker q. By Lemma 14, all correct bakers decide at the end of round r + j.

Suppose that there is a correct baker with a locked round higher than endorsableRoundpj .
Let q be the baker with the highest locked round among all correct bakers. In the round at
which pj proposes, that is, in round r + j, q sends a preendorsement QC that justifies its
locked round in the PREENDORSE phase (line 114). By Lemma 13, this preendorsement QC
is received by all correct bakers, who update in the ENDORSE phase of round r + j + 1 their
endorsable round to q’s locked round at line 97. If between rounds r + j + 1 and r + k − 1 no
correct baker updates its locked round then the proposer pk will have at round r + k that
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endorsableRoundpk
≥ lockedRoundq, for any correct baker q. By Lemma 14, at the end of

round r+k all correct bakers decide. If instead there is a correct baker that updated its locked
round before round r + k, then let q be the baker which updates it last, at some round r + j′

with j′ < k. When q changes its locked round, q has seen a prendorsement QC for round r+j′.
This QC is sent together with the Endorse message in the phase ENDORSE, and therefore it
will be received by all correct bakers at the beginning of the next phase PROPOSE. Thus
every correct baker, including pk, sets its endorsableRound to r + j′. Because j′ is maximal,
no correct baker changes its locked round between rounds r + j′ + 1 and r + k − 1. Therefore,
at round r + k, for any baker q, we have that lockedRoundq ≤ r + j′ = endorsableRoundpk

.
Again, by Lemma 14 we conclude that at the end of round r + k all correct bakers decide. ◀

▶ Theorem 16. Tenderbake satisfies progress.

Proof. We reason by contradiction. Suppose first there is a level ℓ ≥ 1 such that no correct
process decides at ℓ. Clearly, ℓ is minimal with this property. We first show that eventually
all correct processes are synchronized. As ℓ is minimal, we have that there is at least one
correct process that has decided at ℓ − 1.

As processes invoke pullChain at regular intervals, all correct process will eventually be at
level ℓ (that is, they will have decided at ℓ − 1). We show next that all correct processes have
the same blockchain head. Let p be a correct process that has its headCertificatep for the block
with the lowest round at level ℓ − 1. Process p eventually receives a pullChain request at some
point after τ and it answers. If each correct process q has endorsableRoundq = 0 at the time
of the receipt of p’s answer, then every correct process accepts p’s branch, by the definition of
betterHead. Suppose however that there is a process q that has endorsableRoundq > 0 when
it receives p’s answer. In this case consider a time when round durations are so big that I

and ∆ are very small in comparison. More precisely, there is a time period when all pullChain
requests and their answers happen during a period when correct processes update their states
only in response to a NewChain event, but not in response to NewMessage events. Such a
period exists because regular messages are sent only at phase boundaries. This means that
the chain ending with the proposal with the highest endorsable round r will be seen by all
correct processes, and these processes will have their endorsable round smaller or equal to r.
They will update their blockchains to this chain (if they were on a different one). Note that
if two processes have the same endorsable round then they also have the same blockchain.
We have this obtained that eventually all correct processes have the same blockchain (head).
We can therefore apply Lemma 12 to obtain that there is a time after τ at which all correct
processes are synchronized.

Now, recall that the function ∆′ has the property that there is a round r such that
∆′(r) > δ + 2ρ. As ∆′ is increasing, this property holds for all subsequent rounds as well.
And, given that all processes are synchronized from some time on, as proved in the previous
paragraph, we obtain that the hypothesis of Lemma 15 is satisfied. Therefore all correct
processes decide at ℓ, which contradicts the assumption that no correct process decides at ℓ.
In other words, we have proved that, for any level ℓ, there is at least one correct process that
decides at ℓ.

Finally, we show that for any level ℓ, any correct process eventually decides at ℓ. Suppose
that there is a correct process p that does not decide at some level ℓ ≥ 1. From the first
part of the proof we obtain that there is at least one other correct process q that eventually
decides at ℓ. Process q will eventually receive p’s pull request, will reply, and p will therefore
receive an endorsement QC for level ℓ which enables it to decide at ℓ. This contradicts the
assumption, and allows us to conclude. ◀
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Abstract
In order to formalize Distributed Ledger Technologies and their interconnections, a recent line of
research work has formulated the notion of Distributed Ledger Object (DLO), which is a concurrent
object that maintains a totally ordered sequence of records, abstracting blockchains and distributed
ledgers. Through DLO, the Atomic Appends problem, intended as the need of a primitive able to
append multiple records to distinct ledgers in an atomic way, is studied as a basic interconnection
problem among ledgers.

In this work, we propose the Distributed Grow-only Set object (DSO), which instead of maintaining
a sequence of records, as in a DLO, maintains a set of records in an immutable way: only Add and
Get operations are provided. This object is inspired by the Grow-only Set (G-Set) data type which
is part of the Conflict-free Replicated Data Types. We formally specify the object and we provide a
consensus-free Byzantine-tolerant implementation that guarantees eventual consistency. We then use
our Byzantine-tolerant DSO (BDSO) implementation to provide consensus-free algorithmic solutions
to the Atomic Appends and Atomic Adds (the analogous problem of atomic appends applied on
G-Sets) problems, as well as to construct consensus-free Single-Writer BDLOs. We believe that the
BDSO has applications beyond the above-mentioned problems.
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semantic properties of DLTs. A number of research groups attempted to provide rigorous
definitions to characterise the fundamental properties of DLTs as those used in Bitcoin and
beyond [1, 10, 11]. Among those, Fernández Anta et al. [10], was the first to identify and
provide a formal definition of a reliable concurrent object, termed Distributed Ledger Object
(DLO), which conveys the essential building block for many DLTs. In particular, a DLO
maintains a sequence of records, and supports two basic operations: append and get. The
append operation is used to add a new record at the end of the sequence, while the get
operation returns the whole sequence. Implementations of DLOs under client and server
crashes were proposed in [10], and under Byzantine failures in [6].

The introduction to many different DLT systems have led multiple studies [6, 9, 14, 16] to
investigate the possibility of DLT interoperability, i.e., the ability for an action to be applied
over a set of DLTs, rather than in a single DLT at a time. Using the DLO formalism, [9]
introduced the Atomic Appends problem, in which several clients have a “composite” record (a
set of semantically-linked “basic” records) to append. Each basic record has to be appended
to a different DLO, and it must be guaranteed that either all basic records are appended to
their DLOs or none of them is appended.

Consider, for example, two clients A and B, where A buys a car from B. Record rA

includes the transfer of the car’s digital deed from B to A, and rB includes the transfer
from A to B of the agreed amount in some digital currency. DLOA is a ledger maintaining
digital deeds and DLOB maintains transactions in some pre-agreed digital currency. So,
while the two records are mutually dependent, they concern different DLOs. Hence, the
Atomic Appends problem requires that either record rA is appended in DLOA and record
rB is appended in DLOB , or no record is appended in the corresponding DLOs.

In the work presented in [9], the authors assumed that clients may fail by crashing and
showed that for some cases the existence of an intermediary is necessary. They materialized
such an intermediary by implementing a specialized DLT, termed Smart DLO (SDLO).
Using the SDLO, the authors solved the Atomic Appends problem in a client competitive
asynchronous environment, in which any number of clients, and up to f servers implementing
the DLOs, may crash. A subsequent work solved the problem assuming Byzantine failures [6],
by introducing the notion of Byzantine Distributed Ledger Objects (BDLO). Solutions for
implementing BDLOs were presented, with each solution relying on an underlying Byzantine
Total-order Broadcast Service (BToB) [7, 8, 17]. Using BToB and an intermediary SBDLO
the authors demonstrated how Atomic Appends may be achieved in systems that suffer
Byzantine failures. However, BToB is a strong primitive, and requires consensus to be solved.
So one may ask: Is it possible to implement Atomic Appends without solving consensus?

It was shown in [13] that cryptocurrencies do not need consensus to be implemented. From
a theoretical point of view, it was shown in [12] that, assuming one process per account, the
consensus number of cryptocurrencies is 1. A non-sequential specification of money transfer
was introduced in [2]. It follows that Byzantine transactional systems do not necessarily need
consensus, but rather can be implemented on top of less powerful data structures. In a similar
manner, in this work, we observe that intermediary S(B)DLOs and strong primitives like
BToB [17], may not be necessary to allow interoperability between multiple DLOs. Note that
the goal of the intermediate S(B)DLO is to collect the records to be appended atomically, so
that when all the records involved are in the S(B)DLO, then the actual records are appended
in their respective DLOs. It is apparent that, for Atomic Appends, the order of the records
in the intermediary data structure is not important, but rather the membership property
required redirects to a set data structure.

A relevant distributed set data structure was presented by Shapiro et al. in [21] with the
introduction of Conflict-Free Replicated Data Types (CRDTs). A CRDT is a data structure
that can be replicated in multiple network locations. CRDTs have the property that each
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replica can be updated independently and concurrently, but it is always mathematically
possible to resolve any inconsistencies between any pair of replicas, leading eventually all
the replicas to a consistent converged value when the communication between the replica
hosts is stabilized. A Grow-Only Set (G-Set) is such a CRDT, that supports operations add
and lookup only. The add operation modifies the local state of the object by a union of the
value of the set with the element we want to insert. Since add is based on union, and union
is commutative, the G-Set implementation converges. In [21] (and other subsequent works),
implementations of G-Sets where given in a crash-prone environment. In order to utilise
a G-Set in more practical setups (like the ones in cryptocurrencies) we need to examine
whether such data structure is possible when Byzantine failures are present in the system.

Chai and Zhao [5] have considered the implementation of CRDTs against Byzantine
failures. In particular, they describe possible threats that clients and servers can either face
or cause to CRDTs, and they show a possible solution to fulfil CRDT requirements in that
failure model. Their solution relies on an external synchronization service for two main
purposes: to guarantee linearizable reads and writes, and to prevent server partitions caused
by Byzantine behaviour. As a consequence, multiple Byzantine failures or slow processes
may lead their approach to essentially always run their “state synchronization” mechanism
letting the whole data structure rely on the synchronisation service. For the implementation
of the synchronisation service they either utilize a central entity, or solve consensus over a
distributed set of nodes.

Contributions. In this work we examine whether G-Sets can be implemented when Byz-
antine processes are assumed in the system, without using consensus. We show that an
implementation of an eventually consistent [22] G-Set is possible, and we demonstrate how
such data structure can be used to solve Atomic Appends and other related problems. In
particular, our itemized contributions are the following:

Provide a formal definition of a Byzantine Grow-only Set Object (BDSO). [Section 2]
Provide an implementation for an eventually consistent BDSO in an asynchronous message
passing system1. We consider such a consistency model since, although it provides weaker
guarantees than other consistency models, it is easier and more efficient to implement,
while being powerful enough to be used in the type of applications we consider (described
next). [Section 3]
Use BDSOs to implement:

Consensus-free Byzantine Atomic Appends. [Section 4.1]
Consensus-free Byzantine Atomic Adds. This is the analogous problem of atomic
appends where records must be added in an atomic way to different BDSOs. This
problem could be applicable in blockchain-like systems in which the ordering of the
records is not important; what is important is that the records are added in the
corresponding unordered blockchains (G-Sets). An example could be a system of
G-Sets that implement personal calendars, so the records in the sets are meetings.
Then, fixing a two-person meeting would imply an Atomic Add of the meeting data in
the calendar of both persons. [Section 4.2]
Consensus-free single-writer BDLOs. This data structure can be suitable to implement
whatever system that requires total order among data produced by a single writer. A
punch in/out system for a company is an example of such an application in which a
single writer, the employee, appends records only to his/her own ledger of presences.

1 Note that in such a system deterministic consensus can’t be solved.
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A cryptocurrency can be another suitable application, with one BDLO per account,
because of the need to order transactions in relation to money transfers issued by the
only transaction signer. [Section 4.3]

2 The G-Set Object

In this section we provide the fundamental definition of a concurrent G-Set object.

2.1 Concurrent Objects and the G-Set Object
An object type T specifies (i) the set of values (or states) that any object O of type T can
take, and (ii) the set of operations that a process can use to modify or access the value of O.
An object O of type T is a concurrent object if it is a shared object accessed by multiple
processes [15, 19]. Each operation on an object O consists of an invocation event and its
unique matching response event, that must occur in this order. A history of operations
on O, denoted by HO , is the sequence of invocation and response events, starting with an
invocation event. (The sequence order of a history reflects the real time ordering of the
events.) We say that a history H ′

O extends a history HO , if HO is a prefix of H ′
O .

An operation π is complete in a history HO , if HO contains both the invocation and
the matching response. A history HO is complete if it contains only complete operations;
otherwise it is partial [15, 19]. An operation π precedes an operation π′ (or π′ succeeds π),
denoted by π → π′, in HO , if the response event of π appears before the invocation event of
π′ in HO . Two operations are concurrent if none precedes the other. A complete history
HO is sequential if it contains no concurrent operations, i.e., it is an alternative sequence
of matching invocation and response events, starting with an invocation and ending with a
response event. A partial history is sequential, if removing its last event (that must be an
invocation) makes it a complete sequential history.

A sequential specification of an object O, describes the behavior of O when accessed
sequentially. In particular, the sequential specification of O is the set of all possible sequential
histories involving solely object O [19].

A G-Set GS is a concurrent object that maintains a set GS.S of records and supports two
operations (available to any process p): (i) GS.getp(), and (ii) GS.addp(r). A record is any
value drawn from an alphabet A. A process p invokes a GS.getp() operation to obtain the
set GS.S of records stored in the G-Set object GS 2, and p invokes a GS.addp(r) operation
to insert a new record r in GS.S. Initially, the set GS.S is empty. Deleting or changing a
record from GS.S is not possible, as our objective is for the set to be immutable with respect
to record modifications of any kind.

▶ Definition 1. The sequential specification of a G-Set GS over the sequential history HGS
is defined as follows. Let the initial value of GS.S = ∅. If at the invocation event of an
operation π in HGS the value of the set GS.S = V , then:
1. if π is a GS.getp() operation, then the response event of π returns V , and
2. if π is a GS.addp(r) operation, then at the response event of π, the value of the set in

G-Set GS is GS.S = V ∪ {r}.

By comparing the sequential specification of a G-Set, as defined above, with the sequential
specification of a Ledger Object as defined in [10, Definition 1] (also see Appendix A), it
follows that a Ledger is an ordered G-Set.

2 We define only one operation to access the value of the G-Set for simplicity. In practice, other operations
will also be available, like lookup(r) to check if a record r is in GS.S.
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2.2 Distributed G-Set Objects
We now define distributed G-Set objects, DSO for short, and the class of eventually consistent
DSOs. These definitions are general and do not rely on the properties of the underlying
distributed system, nor on the type of failures that may occur.

A distributed G-Set object (DSO) is a concurrent G-Set object that is implemented in a
distributed manner. In particular, a DSO is implemented by a set of (possibly distinct and
geographically dispersed) computing devices, that we refer as servers. Each server usually
maintains a local copy (replica) of the DSO. We refer to the processes that invoke the get
and add operations of the distributed G-Set as clients.

Distribution and replication intend to ensure availability and survivability of the G-Set,
in case a subset of the servers fails (by crashing or acting maliciously). At the same time,
they raise the challenge of maintaining consistency among the different views that different
clients get of the DSO3. Consistency semantics need to be in place to precisely describe the
allowed values that a get operation may return when it is executed concurrently with other
get or add operations.

We now specify the properties of DSO with respect to eventual consistency [22]. These
properties require that if an add(r) operation completes, then eventually all get() operations
return sets that contain record r. In a similar way, other consistency guarantees such as
sequential, session, causal and atomic consistencies could be formally defined.

▶ Definition 2. A DSO GS is eventually consistent if, given any history HGS ,
(a) EC-Safety: let S be the set of records returned by any complete operation π = get() ∈ HGS .

For each r ∈ S, there is an operation add(r) whose invocation event appears before the
response event of π in HGS , and

(b) EC-Liveness: for every complete operation GS.add(r) ∈ HGS , there exists a history H ′
GS

that extends HGS such that, for every history H ′′
GS that extends H ′

GS , every complete
operation GS.get() in H ′′

GS \ H ′
GS returns a set that contains r.

At this point, we would like to remark that, although eventual consistency provides
weaker consistency guarantees when compared, for example, with linearizability [15], it is
easier and more efficient to implement, while it is powerful enough to be used in the type of
applications that we later consider (see Section 4).

2.3 Distributed Setting and Byzantine-tolerant DSO
We consider a distributed setting consisting of processes (clients and servers) and an underlying
communication graph in which each process can communicate with every other process.

Asynchrony. Both processing and communication are asynchronous. Therefore, each process
proceeds at its own speed, which can vary arbitrarily and remains always unknown to the
other processes. Message transfer delays are arbitrary but finite and remain always unknown
to the processes.

Failure Model. Processes (clients and servers) can fail arbitrarily, i.e., they can be Byzantine.
Specifically, we assume a Byzantine system in which the number of servers that can arbitrarily
fail is bounded by f , and in which the total number of servers, n, is at least 3f + 1. For
clients we assume that any of them can be Byzantine. We assume reliable channels between
non-Byzantine (correct) processes. Specifically, no message is lost, duplicated or modified.

3 This tradeoff is actually captured by the well-known CAP Theorem [4].
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Public and private keys. We assume that each process p (client or server) has a pair of
public and private keys, and that the public keys have been distributed reliably to all the
processes that may interact with each other. Hence, we discard the possibility of spurious
or fake processes (there cannot be Sybil attacks). We also assume that messages sent by
any process (server or client) are authenticated, so that messages corrupted or fabricated by
Byzantine processes are detected and discarded by correct processes [8]. Communication
channels between correct processes are reliable but asynchronous.

Byzantine-tolerant DSOs. Our first aim is to propose an algorithm that implement an
eventual-consistent DSO GS in a Byzantine asynchronous system. Here we present the
properties that a DSO should satisfy with respect to correct processes, given that Byzantine
processes may return any arbitrary set or add any arbitrary record:

Byzantine Completeness (BC): All the get() and add() operations invoked by correct
clients eventually complete.
Byzantine Eventual Consistency (BEC): This is the property of Definition 2 with respect
to all operations invoked by correct clients and the add(r) operations that insert the
records r returned by get() operations invoked by correct clients.

In the remainder, we say that a DSO is Byzantine Tolerant, denoted BDSO, and eventually
consistent if it satisfies properties BC and BEC.

Byzantine Reliable Broadcast. The algorithms presented in the next section to implement
BDSOs are based on an underlying Byzantine Reliable Broadcast (BRB) service [3, 20], which
ensures that a message sent by a correct process is received by all correct processes, and that
all correct processes eventually receive the same set of messages. The service provides two
operations, BRB-broadcast and BRB-delivery; the first broadcasts a message to all processes,
and the second delivers a message that was previously broadcast. The service is used by the
servers, and from their point of view, the BRB service guarantees the following properties
(as given in [20]):

Validity: if a correct process pi BRB-delivers a message m from a correct process pj , then
pj BRB-broadcast m.
Integrity: a message is BRB-delivered at most once by a correct server.
Termination 1 (local): if a correct process BRB-broadcasts a message, it BRB-delivers it.
Termination 2 (global): if a correct process BRB-delivers a message, all correct processes
BRB-deliver it.

Validity relates outputs to inputs. Validity and integrity concern safety. Termination is on
the fact that messages must be BRB-delivered; it concerns liveness. It follows (cf. [20]) that
all correct processes BRB-deliver the same set of messages, which includes all the messages
they BRB-broadcast.

3 Eventually Consistent BDSO Implementation

In this section we provide the implementation of eventually consistent distributed G-Sets in
an asynchronous distributed system with Byzantine failures. The implementation builds on
a generic deterministic Byzantine-tolerant reliable broadcast service [3, 20], which provides
the properties given in the previous section. Our implementation is optimally resilient, in
the sense that it can tolerate up to f Byzantine servers, out of n ≥ 3f + 1 servers.

Algorithm 1 presents the code of a client process, while Algorithm 2 presents the code
of a server. We now present a high level description of how the two algorithms together
implement an eventually consistent BDSO.
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Algorithm 1 Client API and algorithm for Eventually Consistent Byzantine-tolerant Distributed
G-Set Object GS. Code for Client p.

1: Init: c← 0
2: function GS.get( ) ▷ Invocation event
3: c← c + 1
4: send request get(c, p) to 3f + 1 different servers
5: wait responses getResp(c, i, Si) from 2f + 1 different servers
6: S ← {r : record r is in at least f + 1 sets Si}
7: return S ▷ Response event
8: function GS.add(r) ▷ Invocation event
9: c← c + 1

10: send request add(c, p, r) to 2f + 1 different servers
11: wait responses addResp(c, i, ack) from f + 1 different servers
12: return ack ▷ Response event

Algorithm 2 Server algorithm for Eventually Consistent Byzantine-tolerant Distributed G-Set
Object. Code for Server i.

1: Init: Si ← ∅
2: receive (get(c, p)) from process p ▷ Signature of p is validated
3: send response getResp(c, i, Si) to p

4: receive (add(c, p, r)) from process p ▷ Signature of p is validated
5: if (r /∈ Si) then
6: BRB-broadcast(propagate(i, add(c, p, r)))
7: wait until r ∈ Si

8: send response addResp(c, i, ack) to p

9: upon (BRB-deliver(propagate(j, add(c, p, r)))) do ▷ Signatures of j and p are validated
10: if (r /∈ Si) and (add(c, p, r) was received from f + 1 different servers j) then
11: Si ← Si ∪ {r}

When processing a GS.add(r) operation a client sends add messages to a set of 2f + 1
servers, which guarantees that at least f + 1 correct servers process it. These correct
servers broadcast the record r to all servers using the BRB service, which leads to all
correct servers i adding r to their replicas Si of the set. When f + 1 acknowledgement
messages are received from the servers, the operation completes.
When processing a GS.get() operation, a client need to ensure that the elements he
returns have been received from at least 1 correct server. For this reason the client returns
an element only if it was present in responses from f +1 different server. In order to avoid
the malicious behavior of f colluding servers that never return a correctly added element,
at least 2f + 1 responses are needed out of which take the f + 1 consistent getResp
containing the element. So, since 2f + 1 are required, at least 3f + 1 get messages must
be sent in order to always eventually get the number of needed responses.
Every server i maintains a replica Si of the set GS.S. When server i receives a get(c, p)
message from a process p it returns its current set Si to p. When i receives a message
add(c, p, r) from p, it makes sure r has been included in its replica Si before sending an
acknowledgment. Server i adds a record r to its replica Si only if a corresponding add
request has been processed by at least one correct server. This is guaranteed by the BRB
service and the requirement of receiving propagate(j, add(c, p, r)) from f + 1 different
servers. This also prevents Byzantine servers from adding spurious records in the set of
correct servers. The properties of the BRB service also guarantee that once a record r is
delivered, then all correct servers will eventually add record r to their replicas.
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We now provide the complete proof that the combination of Algorithms 1 and 2 implement
an eventually consistent BDSO. In the proofs we consider that an operation π is invoked in
Lines 2 or 8 of Algorithm 1, and responds in Lines 7 or 12 (resp.) of the same algorithm. Let
us first show that Byzantine Completeness holds, i.e., that all operations invoked by correct
processes eventually complete.

▶ Lemma 3. Algorithms 1 and 2 guarantee Byzantine Completeness (BC) in a system in
which at most f out of n ≥ 3f + 1 servers are Byzantine.

Proof. Consider an operation GS.getp() invoked by a correct client p. We claim that the
operation eventually completes. From Algorithm 1, Line 4, p sends a request get(c, p) to
3f + 1 servers and waits for responses getResp(c, i, Si) from 2f + 1 different servers. From
the 3f + 1 servers to which the request is sent, at most f can be Byzantine, so at least 2f + 1
are correct servers that will eventually receive the get(c, p) message. These servers will
immediately send the corresponding response getResp(c, i, Si) to p (Line 3 of Algorithm 2).
When these responses are received eventually, the waiting in Line 5 of Algorithm 1 will end.
Since there is no other waiting condition, the operation will execute the return instruction
and complete.

Consider now an operation π = GS.addp(r) invoked by a correct client p. Then, the
request add(c, p, r) is sent to 2f + 1 servers (Algorithm 1, Line 10), and p waits until
responses addResp(c, i, ack) are received from f + 1 different servers. Since at most f

servers can be Byzantine, at least f + 1 correct servers will receive and process the request.
We prove that all these correct servers will send the corresponding response, the waiting in
Line 11 will end, and operation π will complete.

Let us consider the set C of correct servers that receive request add(c, p, r). Assume first
that there is some server i ∈ C that has r ∈ Si when the request is received and processed.
Then, server i sends immediately response addResp(c, i, ack) to p. Moreover, r was inserted
in Si in Line 11 of Algorithm 2, which implies that i received via BRB-deliver at least f + 1
messages propagate() from different servers containing add(c, p, r) requests. From the
Termination 2 property of the BRB service, all correct processes will receive the same f + 1
messages propagate(). Consider any other correct server j ∈ C that receives request add(c,
p, r). If r ∈ Sj when the request is received and processed, server j sends the response
addResp(c, j, ack) to p immediately. Otherwise, r /∈ Sj when the request is received and
processed, and j waits in Line 7. From the above argument, eventually r will be inserted in
Sj , the waiting will end, and j will send response addResp(c, j, ack) to p.

Assume now that no correct server i ∈ C has r ∈ Si when it receives request add(c, p,
r). Then, all the (at least f + 1) correct servers in C that receive and process the request
invoke BRB-broadcast(propagate(i, add(c, p, r))) and start waiting in Line 7. From the
Termination 1 property of the BRB-service, if a correct server BRB-broadcasts a message,
it also eventually BRB-delivers it. Moreover, from Termination 2, if it BRB-delivers the
message, all correct servers also BRB-deliver it. So each correct server i ∈ C will process
in Lines 9-11 messages propagate(j, add(c, p, r)) from at least f + 1 different servers j.
Hence, server i will insert r in Si in Line 11, the waiting will end, and i will send response
addResp(c, i, ack) to p. ◀

▶ Theorem 4. Algorithms 1 and 2 implement an Eventually Consistent BDSO, in a system
in which at most f out of n ≥ 3f + 1 servers are Byzantine.

Proof. We need to prove that Algorithms 1 and 2 guarantee Byzantine Completeness (BC)
and Byzantine Eventual Consistency (BEC). BC is shown to be satisfied in Lemma 3.
Regarding Byzantine Eventual Consistency, we need to demonstrate properties (a) and (b)
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of Definition 2 with respect to all the operations invoked by correct clients and the add(r)
operations that insert the records r returned in the get() operations invoked by correct clients.
Let HGS be any history including only invocation and response events of these operations.

Property (a): Consider a complete operation π = getp() ∈ HGS invoked by a correct
client p, let S be the set returned by π, and consider any r ∈ S. From Line 6 of Algorithm 1,
r belongs to at least f + 1 sets Si received in responses getResp(c, i, Si) from a set C of
different servers. All these responses must have been sent before the response event of π

(Line 7 of Algorithm 1).
Observe that C contains at least one correct server i. This mean that some correct server

i had r ∈ Si when it sent the response getResp(c, i, Si). A server i only adds a record to
its local set Si if that record was BRB-delivered in propagate(j, add(c′, p′, r))) from f + 1
different servers j (Line 10 of Algorithm 2). From the Validity property of the BRB service,
this means that at least f + 1 servers called BRB-broadcast(propagate(j, add(c′, p′, r)) in
Line 6. Again, since at least one of them is correct, at least one invocation of BRB-broadcast
was done by a process because it previously received a request add(c′, p′, r) from client p′.
Hence the invocation of add(r) must have preceded the reception of this request, and by
transitivity must have preceded the response event of π.

Property (b): This property holds if, for every complete operation GS.add(r) ∈ HGS ,
there exists a time t after which every GS.get() operation invoked after t returns sets S that
contains r. Let us first consider a complete operation π = GS.addp(r) ∈ HGS invoked by a
client p (which can be correct or Byzantine). We claim that there is some correct server i

that eventually adds record r to its replica Si. This is true when p is Byzantine, since that is
the requirement for an add(r) operation of a Byzantine client to be considered.

On the other hand, if p is correct, let us assume for contradiction that no correct server
i adds record r to its replica Si. Process p sends request add(c, p, r) to 2f + 1 servers,
out which at least f + 1 are correct. By assumption, r /∈ Sj when each of these servers j

processes the request, and hence all of them execute BRB-broadcast(propagate(j, add(c, p,
r))) (Line 6 of Algorithm 2). Then, from the Termination 1 and Termination 2 properties of
the BRB service, some correct server i will BRB-deliver at least f +1 messages propagate(j,
add(c, p, r)) from different servers j, and then record r will be added to Si in Line 11. This
is a contradiction, and some correct server i eventually adds record r to its replica Si when
client p is correct.

Hence, we have that, independently of whether p is correct, some correct server i added
record r to its set Si. Observe that a correct process i only adds records to its replica Si, in
Line 11, when BRB-deliver at least f +1 messages propagate(j, add(c, p, r)) from different
servers j. Then, if i adds r to Si, from the Termination 2 property all correct servers will
eventually BRB-deliver at least f + 1 messages propagate(j, add(c, p, r)) from different
servers j, and they will all add r to their replicas.

Let t be the first time all correct servers have r in their corresponding replica. Then,
for every GS.get() operation invoked after t, the responses from correct servers collected in
Line 5 of Algorithm 1 have replicas Si with record r. Since there at least f +1 responses from
correct servers, in Line 6 r is included in the set S, which is then returned by GS.get(). ◀

4 Applications of BDSOs

In this section we demonstrate the usability of BDSOs by using them to provide consensus-free
solutions to the Atomic Appends and Atomic Adds problems, as well as a consensus-free
construction of a Single-Writer Byzantine-tolerant Distributed Ledger Object (BDLO).
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4.1 The Atomic Appends Problem
The Atomic Appends problem was introduced in [10] as a basic interconnection problem
among distributed ledgers (DLOs); see Appendix A for basic definitions with respect to
DLOs. Informally, Atomic Appends requires that several records must be appended in their
corresponding DLOs, so that either all records are appended (each in the appropriate DLO)
or none is appended to any DLO. In [6], the problem was formulated (and solved) in the
presence of Byzantine servers and clients.

Definition of the problem. For completeness, we provide the formal definition as given
in [6]. A record r depends on a record r′ if r may be appended on its intended BDLO, say L,
only if r′ is appended on its intended BDLO, say L′. Two records, r and r′ are mutually
dependent if r depends on r′ and r′ depends on r.

▶ Definition 5 (2-AtomicAppends [6]). Consider two clients, p and q, with mutually dependent
records rp and rq. We say that records rp and rq are appended atomically in BDLO Lp and
BDLO Lq, respectively, when:

AA-safety (AAS): The record rp of a correct client p is appended in Lp only if the record
of the other client q (which may be correct or not) is also appended in Lq.
AA-liveness (AAL): If both p and q are correct, then both records are appended eventually.

Observe that it is not possible to prevent a faulty client q from appending its record
rq, even if the correct client p does not append its record. What the safety property AAS
guarantees is that the opposite cannot happen. This is analogous of the property in atomic
cross-chain swaps [14] that a correct process cannot end up worse than at the beginning.

We say that an algorithm solves the 2-AtomicAppends problem4 under a given system, if
it guarantees properties AAS and AAL of Definition 5 in every execution. Since we consider
Byzantine failures, our system model with respect to the Atomic Appends problem is such
that the correct processes want to proceed with the append of the records (to guarantee
liveness AAL), while the Byzantine processes may try to get correct clients to append without
the Byzantine clients doing so (to prevent safety AAS).

Prior solution. The solution of 2-AtomicAppends in [6], following the work in [10], uses an
auxiliary, special purpose BDLO, called Smart BDLO (SBDLO) to aggregate and coordinate
the append of multiple records. In a nutshell, the solution in [6] is as follows. Consider two
clients, p and q, that wish to append atomically two mutually dependent records, rp and rq,
in BDLOs Lp and Lq, respectively. Then, they both send matching atomic append requests
to the SBDLO. Once both requests are received by the SBDLO (otherwise the atomic append
never takes place), the servers implementing the SBDLO proceed to append each record
to the appropriate BDLOs. In particular, the servers of the SBDLO now become clients
issuing the corresponding appends to the servers implementing the DBLOs Lp and Lq (each
BDLO could be implemented by different servers, as these are essentially different distributed
ledger systems). The whole process involves several algorithms: the algorithm run by the
clients to issue the atomic append request, the algorithm run by servers to implement the
SBDLO, and the algorithm run by the servers of the SBDLO (as clients) with the servers of
each individual BDLO. Once both append operations are completed, the SBDLO servers
acknowledge this to clients p and q. It is shown that the combination of these algorithms
guarantee Properties AAS and AAL above, despite having Byzantine servers and clients.

4 The k-AtomicAppends problem, for k ≥ 2, is a generalization of the 2-AtomicAppends that can be
defined in the natural way: k clients, with k mutually dependent records, to be appended to k BDLOs.
To keep the presentation simple, we focus in the case of k = 2.
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Algorithm 3 API for the 2-AtomicAppend of records rp and rq in ledgers Lp and Lq by clients p

and q, respectively, using SBDSO GS. Code for Client p.

1: function AtomicAppends(p, {p, q}, rp,Lp, rq)
2: GS.add(⟨p, {p, q}, rp,Lp, rq⟩)
3: return ack
4: // Client p will know the Atomic Appends operation was completed successfully when it receives

notifications from f + 1 different SBDSO servers. //

Algorithm 4 Server algorithm for Smart Byzantine-tolerant DSO. Code for Server i.

1: Init: Si ← ∅
2: receive (get(c, p)) from process p ▷ Signature of p is validated
3: send response getResp(c, i, Si) to p

4: receive (add(c, p, r)) from process p ▷ Signature of p is validated
5: if (r /∈ Si) then
6: BRB-broadcast(propagate(i, add(c, p, r)))
7: wait until r ∈ Si

8: send response addResp(c, i, ack) to p

9: upon (BRB-deliver(propagate(j, add(c, p, r)))) do ▷ Signatures of j and p are validated
10: if (r /∈ Si) and (add(c, p, r) was received from f + 1 different servers j) then
11: Si ← Si ∪ {r}
12: if (r.v = ⟨p, {p, q}, rp,Lp, rq⟩) and
13: (∃r′ ∈ Si : r′.v = ⟨q, {p, q}, rq,Lq, rp⟩) then
14: Lp.append(rp); Lq.append(rq)
15: Notify clients p and q that records rp and rq have been appended to Lp and Lq

Our approach. In this work we treat the part of the individual BDLOs (Lp and Lq)
implementations as black boxes and we focus on the auxiliary entity that is used for
coordinating the atomic append requests. In [6], the SBDLO, being a Distributed Ledger
object, required the use of a Byzantine Total-order Broadcast [17] service. It was shown
in [10] that consensus is required for implementing a (B)DLO; this is because of the strong
prefix property of (B)DLOs (see Appendix A), which requires that records must be totally
ordered. Hence, atomic appends was solved using consensus to implement the SBDLO.
However, one can notice that in the auxiliary entity, the atomic append requests do not need
to be totally ordered. It is sufficient to only keep track whether both requests have been
made. In other words, why keeping these requests in a sequence, and not in a set?

In this respect, we show that instead of using a special purpose BDLO as the auxiliary
entity, we can simply use a special purpose eventually consistent BDSO, which we will be
referring as SBDSO. As we have seen in Section 3, eventually consistent BDSOs can be
implemented without consensus (instead of a Byzantine total-order broadcast service, we use
only a Byzantine reliable broadcast service), yielding a consensus-free solution to Atomic
Appends (with respect to the actual atomic append requests).

Our solution. Algorithm 3 specifies how processes p and q delegate the task of appending
their records in the respective ledgers. They do so by adding in the SBDSO a description
of the Atomic Appends operation to be completed. Client p uses the GS.add operation to
provide the SBDSO with the data it requires to complete the Atomic Appends, namely the
participants in the Atomic Appends, the record rp, the BDLO Lp, and the record rq the
other client is appending. (The other client must do the same.)
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For the SBDSO, it suffices to implement an eventually consistent BDSO in which up to f

servers out of n ≥ 3f + 1 are Byzantine, but that only allows the creator of a record to add
it (signatures are used for this purpose). Algorithm 4 describes the processing of the add
message by the SBDSO. As expected, it is very similar to the implementation of a BDSO, but
with an important difference: every time a record r is added to the sequence Si, it is checked
whether a matching record r′ is already there. This is the case if r.v = ⟨p, {p, q}, rp, Lp, rq⟩,
and r′.v = ⟨q, {p, q}, rq, Lq, rp⟩. If so, the corresponding append operations are issued in the
respective BDLOs Lp and Lq (the implementation of this part is the one described in [6]).
So, essentially the servers implementing the SBDSO, become proxies of clients p and q, and
once the above condition is met, they issue the corresponding appends. When these appends
are successful, the servers implementing the ledgers Lp and Lq, acknowledge the SBDSO
servers. In turn, the SBDSO servers notify clients p and q that records rp and rq have been
appended to Lp and Lq, respectively. Clients p and q will know that the Atomic Appends
operations was completed successfully when they receive these notifications from at least
f + 1 different SBDSO servers.

▶ Theorem 6. The combination of Algorithms 3 and 4 solves the 2-AtomicAppends problem.

The proof follows from the one in [6], taking into consideration the above discussion.
▶ Remark. Following the approach described in [6, Section IV-B], the SBDSO can be replaced
by a “classical” BDSO GS and the use of a set of “helper” processes. The helper processes
take upon themselves the task of consulting GS periodically in order to find new matching
descriptions of and Atomic Appends operation. When such a match is found, they complete
the corresponding appends (as done in Lines 13-15 of Algorithm 4).

4.2 The Atomic Adds Problem
Inspired by the Atomic Appends problem, one could define the analogous problem on BDSOs,
Atomic Adds: several records must be added in their corresponding BDSOs, and either all
records are added (each in the appropriate BDSO) or none is added. The formal definition
follows that of the Atomic Appends.

▶ Definition 7 (2-AtomicAdds). Consider two clients, p and q, with mutually dependent
records5 rp and rq. We say that records rp and rq are added atomically in BDSO GSp and
BDSO GSq, respectively, when:

AAd-safety (AAdS): The record rp of a correct client p is added in GSp only if the record
of the other client q (which may be correct or not) is also added in GSq.
AAd-liveness (AAdL): If both p and q are correct, then both records are added eventually.

The k-AtomicAdds problem can be defined in the natural way: k clients, with k mutually
dependent records, to be appended to k BDSOs. It is not difficult to see that a consensus-free
algorithmic solution for this problem can be derived by simple modifications of our solution
to the Atomic Appends problem and the use of the BDSO implementation of Section 3.

Atomic Adds API and server code. The Atomic Adds API, shown in Algorithm 5, is very
close to Algorithm 3. The main difference is the content of the data to be added (since now
we have G-Sets and not ledgers). The code run by the servers of SBDSO is the same as
in Algorithm 4, with the difference that Lines 12 and 13 check for matching atomic add

5 The definition of mutually dependent records is as in the case of Atomic Appends, but for BDSOs
instead of BDLOs.
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Algorithm 5 API for the 2-AtomicAdds of records rp and rq in BDSOs GSp and GSq by clients p

and q, respectively, using SBDSO GS. Algorithm for Client p.

1: function AtomicAdds(p, {p, q}, rp,GSp, rq)
2: GS.add(⟨p, {p, q}, rp,GSp, rq⟩)
3: return ack
4: // Client p will know the Atomic Adds operation was completed successfully when it receives

notifications from f + 1 different SBDSO servers. //

Algorithm 6 Client API and algorithms for Eventually Consistent Single-Writer BDLO L with
n ≥ 4f + 1 and writer process w. Code for Client p.

1: Init: c← 0, k ← 0
2: function L.get( )
3: c← c + 1
4: send request get(c, p) to 3f + 1 different servers
5: wait responses getResp(c, i, Si) from 2f + 1 different servers
6: A← {r : record r is in at least f + 1 sets Si}
7: S ← {r ∈ A : (r.k = 1) ∨ (∃r′ ∈ A : r.k = r′.k + 1)}
8: return sequence ⟨ρ1, . . . , ρm⟩, where m = |S| and rℓ = (ℓ, ρℓ) ∈ S

9: function L.append(ρ) ▷ Can only be called by process w

10: c← c + 1, k ← k + 1
11: r ← (k, ρ)
12: send request add(c, w, r) to ⌊n/2⌋+ 2f + 1 different servers
13: wait responses addResp(c, i, ack) from f + 1 different servers
14: return ack

requests, and once found, in Line 14 will call the corresponding add operations, GS.add(rp)
and GS.add(rq), which are implemented by the algorithms in Section 3. Note that the
condition in Line 10 of Algorithm 2 may have to be expanded in order to prevent the (up to
f) Byzantine servers that implement the SBDSO from adding spurious records in GSp and
GSq. This may be achieved adding a record r in these DSOs only if at least f + 1 clients
(the servers of the SBDSO) request it to be added, similarly as done in [6].

The sequence of events is now as described in the Atomic Appends solution, with the
difference that no BDLOs are now involved, only BDSOs. Putting everything together, we
obtain the following, whose proof details are omitted (it is essentially a restatement of the
corresponding observations in the atomic appends proof in [6], and the correctness of the
algorithms in Section 3):

▶ Theorem 8. The combination of the API of Algorithm 1, the API of Algorithm 5, and the
revised versions of Algorithms 2 and 4, yields a solution to the 2-AtomicAdds problem.

As noted above, the SBDSO could be replaced by a “classical” BDSO and the use of a
set of “helper” processes. See [6, Section IV-B] for this approach.

4.3 Consensus-free Single-Writer BDLO
The BDSO can also be used to implement a Single-Writer BDLO without relying on consensus.
This is obtained with a BDSO that allows only a single writer process w to add records,
in which each record has an index determining its position in the BDLO sequence, and
that does not allow adding more than one record with the same index. Allowing only add
operations from w is trivially achieved by validating the signature when a request is received
by a server, and will not be done explicitly in our algorithms. To prove correctness we
need to show that any execution of the Single-Writer BDLO L we implement satisfies the

FAB 2021



2:14 Byzantine-Tolerant Distributed Grow-Only Sets: Specification and Applications

Algorithm 7 Server algorithm for Eventually Consistent Single-Writer BDLO L with n ≥ 4f + 1
and writer process w. Code for Server i, and Writer w.

1: Init: Si ← ∅, T ← ∅
2: receive (get(c, p)) from process p

3: send response getResp(c, i, Si) to p

4: receive (add(c, w, r)) from process w

5: if (r.k /∈ T ) then
6: BRB-broadcast(propagate(i, add(c, w, r)))
7: T ← T ∪ {r.k}
8: wait until r ∈ Si

9: send response addResp(c, i, ack) to w

10: end receive
11: upon (BRB-deliver(propagate(j, add(c, w, r)))) do
12: if (add(c, w, r) was received from ⌊n/2⌋+ f + 1 different servers j) then
13: Si ← Si ∪ {r}

Byzantine Completeness and Byzantine Eventual Consistency properties, but redefined for
the L.append() and L.get() operations, and sequences instead of sets (see Appendix A).
Additionally, the Byzantine Strong Prefix property, as defined in [6], must also be satisfied.

▶ Definition 9 (Byzantine Strong Prefix [6]). If two correct clients of a BDLO L issue two
L.get() operations that return record sequences S and S′ respectively, then either S is a prefix
of S′ or vice-versa.

Algorithm 6 presents the API and the code executed by a client of the Single-Writer
BDLO L, while Algorithm 7 presents the code executed by the servers that implement it.
These algorithms require that the number of servers n satisfies n ≥ 4f + 1. As can be seen,
the append operation assigns an index k to every record data d appended by w, so the record
added is in fact the pair r = (k, d). Observe that Algorithms 6 and 7 are very similar to
Algorithms 1 and 2, but have a few differences. (1) In Algorithm 6, L.append(d) adds an
index k to each record and sends the append requests to a potentially much larger set of
⌊n/2⌋ + 2f + 1 servers, while L.get() filters the set to be returned so it is a sequence of
records with consecutive indices. (2) Algorithm 7 avoids appending different records with
the same index r.k by using this field for comparisons, keeping track in T of the indices that
have been BRB broadcast, and collecting at least ⌊n/2⌋ + f + 1 messages propagate(j,
add(c, w, r)) before adding r to the set. Observe that the requirement on n comes from the
fact that the append requests are sent to ⌊n/2⌋ + 2f + 1 servers, and hence, f < n/4.

▶ Theorem 10. Algorithms 6 and 7 implement an eventually consistent Single-Writer
BDLO L.

Proof. We will first show Byzantine Completeness, then Byzantine Eventual Consistency
and lastly Byzantine Strong Prefix.

Byzantine Completeness: Let us consider an L.get() operation invoked by a correct client
p. Then request get(c, p) is sent to 3f + 1 different servers so at least 2f + 1 correct ones
will eventually send back their responses; in fact correct servers simply answer back in Line 3
of Algorithm 7 with a getResp(c, i, Si) containing their local Si. Then, the condition of
the wait operation in Line 5 is eventually satisfied and the operation completes.

Let us now assume that w is correct, and consider an L.append() operation. Then, requests
add(c, w, r) will be sent (Line 12 of Algorithm 6) to ⌊n/2⌋ + 2f + 1 servers, so at least
⌊n/2⌋ + f + 1 correct ones will receive it. Since w is correct, it increments k before sending
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the add(c, w, r) messages (Line 10 of Algorithm 6), so the same index k is not used twice.
Then, every correct process that receives add(c, w, r) finds that r.k /∈ T (since T is updated
in Line 7 of Algorithm 7 only after this check). Hence, the BRB-broadcast(propagate(i,
add(c, w, r))) in Line 6 is called at least by ⌊n/2⌋ + f + 1 correct servers. For this reason,
by the Termination properties of the BRB service, the condition in Line 12 will eventually
be satisfied exactly once and record r is inserted in the local set Si (Line 13 of Algorithm 7).
So the condition in Line 8 of Algorithm 7 turns true and the response is sent back to the
correct client w. Since this holds for at least ⌊n/2⌋ + f + 1 correct servers that received the
request, and ⌊n/2⌋ + f + 1 > f + 1, the condition in Line 13 of Algorithm 6 will be satisfied
and the append operation will terminate.

Byzantine Eventual Consistency: In order to demonstrate Byzantine Eventual Consistency
we need to demonstrate Properties (a) and (b) of Definition 2 with respect to histories HL
that contain only events of get operations by correct clients and append operations of records
that are returned in those get operations. Note that L.append(ρ) and L.get() are considered
in place of GS.add(r) and GS.get().

Property (a): Let L.get be a complete operation in HL. Let S be the set from where the
sequence returned by L.get is extracted. Then, from Line 7 of Algorithm 6, ∀r ∈ S the
client verified that r belongs to f + 1 different sets Si (Line 6 of Algorithm 6) returned
in a getResp(c, i, Si) by different servers. This means that at least a correct server
has r ∈ Si. A server only adds data to its local set Si if that data was BRB-delivered in
propagate(-, add(-, -, r)) messages from ⌊n/2⌋ + f + 1 different servers. Thanks to
the Validity property of the BRB service, this means that at least ⌊n/2⌋ + f + 1 servers
called BRB-broadcast with that message. Again, at least ⌊n/2⌋ + 1 of them are correct,
and they called BRB-broadcast because they received add(c, p, r) from client w. So,
∀r = (k, ρ) ∈ S, an L.append(ρ) invocation precedes the L.get response.
Property (b): This is equivalent to say that ∀ρ such that L.append(ρ) ∈ HL, eventually
there exist a time t such that ρ will be included in all the sequences returned by complete
L.get ∈ HL invoked after t.
Assume w is Byzantine and consider an operation L.append(ρ) ∈ HL. Then, some L.get()
operation by a correct client returned a sequence with r = (k, ρ), which means that it
received at least f + 1 messages getResp(c, i, Si) in which r ∈ Si. This means that at
least one correct server i had r ∈ Si. Then, server i BRB-delivered at least ⌊n/2⌋ + f + 1
propagate(-, add(-, -, r)) messages, and by the Termination properties of the BRB
service all correct servers j will do as well, and will include r in their local sets Sj . Then,
any other get operation will always have f + 1 responses including r from correct servers.
Assume now that w is correct. Then, it sends requests add(c, w, r) with r = (k, ρ) to
at least ⌊n/2⌋ + 2f + 1 servers, so that at least ⌊n/2⌋ + f + 1 correct ones will process
it calling BRB-broadcast in Line 6 of Algorithm 7. From the Termination properties
of the BRB service, ⌊n/2⌋ + f + 1 propagate(-, add(-, -, r)) messages coming from
different servers will be eventually BRB-delivered to all correct servers. Then, all correct
servers will eventually add r to their local Si because of the fulfilment of ⌊n/2⌋ + f + 1
requirement in Line 12 of Algorithm 7. L.get(), on its side, returns r if it was seen at least
in f + 1 out of 2f + 1 different responses. Since at most f can have Byzantine behaviour
and eventually all server will include r in their local Si, there will exist a moment in
which L.get() will always have f + 1 responses including r from correct servers.
We have shown that, independently of whether w is correct, if ρ is returned in some get
operation of a correct client, eventually a record r = (k, ρ) will be in all the sets Sj of
all correct servers j. Then, there exist a moment in which r is definitely always part of
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temporary set A in Line 6 of Algorithm 6 in all get operations. Now, in order to ensure
that r is part of S, and the sequence returned, we need to demonstrate that Line 7 of
client Algorithm 6 does not filter it, eventually. We proceed by induction. If r.k = 1 then
record r is included in S. If r.k > 1, assume the claim true for record r′ = (k − 1, ρ′).
I.e., there is a time t′ after which r′ is always in A. Then, there is a time t ≥ t′ in which
both r and r′ are always in A. After t record r will always be included in S and returned
by all get operations.

Byzantine Strong Prefix: Let S = (r0, ..., ra) and S′ = (r′
0, ..., r′

b) the two sets from which
the sequences returned by the two L.get() operations are extracted in Line 8. Just as a
convenience in notation, we will refer r = (k, ρ) as rk = ρ. Line 7 of the client Algorithm 6
ensures that records in S and S′ can be ordered and that there are not missing element in
the sequence. If S and/or S′ are empty then one is trivially prefix of the other. So let’s
assume they both have at least one element and, without loss of generality, that a ≤ b.
Also, let us assume by way a contradiction that the sequence extracted from S is not a
prefix of the sequence from S′. This is equivalent to state that ∃i ≤ a : ri ̸= r′

i. From
Line 6 of Algorithm 6 we know that rj and r′

j with 1 ≤ j ≤ a were returned at least by one
correct server in their respective get operations. So, assuming that such an index i exists
means that at least two correct servers executed Line 13 of Algorithm 7 for the two records,
respectively. This implies that, for both, the condition of Line 12 was true because they
received messages propagate(−, add(c,p,ri)) from a set C of at least ⌊n/2⌋ + f + 1 servers,
and messages propagate(−, add(c,p,r′

i)) from a set C ′ of at least ⌊n/2⌋ + f + 1 servers.
Note that each C and C ′ contains at least ⌊n/2⌋ + 1 correct servers. It is obvious that
broadcasters of these propagate messages must intersect in at least one correct server j.
So, from the Validity property of the BRB service, at least correct server j called both BRB-
broadcast(propagate(j, add(c,p,ri))) and BRB-broadcast(propagate(j, add(c,p,r′

i))).
Line 5 of Algorithm 7 filters the received add(c,p,r) request, so only if r.k /∈ T they are
propagated via the BRB-broadcast. If so, Line 7 of Algorithm 7 adds r.k to T right after the
BRB-broadcast. Assume, w.l.o.g., that j received add(c,p,ri) before receiving add(c,p,r′

i).
As soon as j BRB-broadcast propagate(i, add(c,p,ri))), it added ri.k to T . Then, when it
received add(c,p,r′

i) it found that r′
i.k ∈ T , and BRB-broadcast(propagate(i, add(c,p,r′

i)))
was not executed. But this contradicts our assumption that ∃i ≤ a : ri ̸= r′

i. Hence, the
sequence extracted from S must be a prefix of the sequence from S′. ◀

5 Conclusions and Future Work

In this paper we formally define the notion of a Byzantine-tolerant Distributed G-Set Object
(BDSO) and provide client and server algorithms to implement a consensus-free eventually
consistent BDSO. Then we proceed with some use cases for BDSO. Building on the work
in [6] and using BDSOs we provide a consensus-free solution to the Atomic Appends problem.
Similarly, we provide a consensus-free solution to the Atomic Adds problem, the analogous
problem that uses sets instead of ledgers. Finally, we show how a few modifications to the
client and server algorithms of BDSO, enable to realise an eventual consistent Single-Writer
Byzantine Distributed Ledger without solving consensus among servers but still guaranteeing
the Byzantine Strong Prefix property. Single-Writer consensus-free BDLO can be suitable for
many use cases, like implementing a cryptocurrency or a punch in/out system for employees
of a company. These are scenarios where realising transactional systems in a Byzantine
failure model through consensus may not provide reasonable performance, since the need of
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updating the system global status prevents sustaining a high throughput of operations. Our
future plans include implementing and experimentally evaluating the algorithms proposed in
this work, as well as specifying a cryptocurrency based on single-writer BDLOs.
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A DLO Definitions

For the reader’s convenience, we provide the basic definitions regarding Distributed Ledger
Objects [10].

A ledger L is a concurrent object that stores a totally ordered sequence L.S of records and
supports two operations (available to any process p): (i) L.getp(), and (ii) L.appendp(r). The
sequential specification of a ledger L is as follows:

▶ Definition 11. The sequential specification of a ledger L over the sequential history HL is
defined as follows. The value of the sequence L.S of the ledger is initially the empty sequence.
If at the invocation event of an operation π in HL the value of the sequence in ledger L is
L.S = V , then:
1. if π is an L.getp() operation, then the response event of π returns V , and
2. if π is an L.appendp(r) operation, then at the response event of π, the value of the

sequence in ledger L is L.S = V ∥r (where ∥ is the concatenation operator).
A Distributed Ledger Object, DLO for short, is a concurrent ledger object that is
implemented in a distributed manner. In particular, the ledger object is implemented by
servers, and clients invoke the get() and append() operations.

▶ Definition 12. A DLO L is eventually consistent if, given any history HL,
(a) Let S be the sequence of records returned by any complete operation π = get() ∈ HL and

ρi the generic record that belongs to S. For each ρi ∈ S then HL contains append(ρj)
for j = 1...i whose invocation events appear before the response event of π in HL, and

(b) for every complete operation L.append(ρ) ∈ HL, there exists a history H ′
L that extends

HL such that, for every history H ′′
L that extends H ′

L, every complete operation L.get()
in H ′′

L \ H ′
L returns a sequence that contains ρ.

Observe that the above definition is equivalent to the one given in [10, Definition 4].

A DLO is an eventually consistent Byzantine-tolerant DLO (BDLO), if it satisfies the
next three properties:

Byzantine Completeness (BC): All the get() and append() operations invoked by correct
clients eventually complete.
Byzantine Strong Prefix (BSP): If two correct clients issue two get() operations that
return record sequences S and S′ respectively, then either S is a prefix of S′ or vice-versa.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/1435417.1435432
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Byzantine Eventual Consistency (BEC): This is the property of Definition 12 with respect
to the get() operations invoked by correct clients and the append(r) operations that
append the records r returned in those get() operations.

B Acronyms table

Table 1 Meaning of acronyms.

DLT Distributed Ledger Technologies
DLO Distributed Ledger Object

SDLO Smart Distributed Ledger Object
BDLO Byzantine-tolerant Distributed Ledger Object

SBDLO Smart Byzantine Distributed Ledger Object
G-Set Grow-only Set
DSO Distributed Grow-only Set Object

BDSO Byzantine-tolerant Distributed Grow-only Set Object
BRB Byzantine Reliable Broadcast
BToB Byzantine Total-order Broadcast Service

CRDTs Conflict-Free Replicated Data Type
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Abstract
We present a computational simulation of the single-collateral DAI stablecoin launched by the
MakerDAO project in 2017. At the core of the simulation is a model of cryptocurrency investors
acting as rational Markowitz mean-variance portfolio optimizers, with heterogeneous risk tolerance.
The simulator, called DAISIM, incorporates automated order matching and price update mechanisms
to determine the DAI price. We use the simulator to evaluate how the single-collateral DAI price,
as well as portfolio allocations, vary for a given population of investors as a function of exogenous
parameters such as the price of ETH and various system parameters including stability rate and
transaction fee. DAISIM is being made available as open-source and may be useful in evaluating
other similar projects.
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1 Introduction

A stablecoin [11, 12] is a digital token that is designed to minimize price volatility against a
peg. They are pegged to fiat currencies (most commonly the US Dollar), other assets such
as gold or a basket of assets. By tying the value to an asset, stablecoins aim to mitigate the
high volatility associated with other cryptocurrencies such as Bitcoin. By achieving stability,
these tokens have a higher potential to be utilized as a unit of account, a store of value
and a medium of exchange compared to volatile cryptocurrencies. Various methods have
been developed to stabilize the value of the token. These include backing by fiat currencies,
crypto-assets or using algorithmic stabilization (not backed by any asset).

One of the prominent projects is MakerDAO [6], a decentralized Stablecoin project
on Ethereum blockchain launched in 2017. The Maker smart contract platform offers a
crypto-asset backed Stablecoin called DAI, which has a 1:1 soft peg to the US dollar. The
initial single-collateral DAI on the platform was called ‘SAI’ after transitioning to the
new Maker Protocol with multiple collateral types. SAI officially shutdown in May 2020.
Stability of single-collateral DAI was provided by Collateralized Debt Positions (CDP), Maker
Governance who held the governance token called MKR and incentivized external actors.
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Our goal in this paper is to develop a computational simulation framework for modeling
MakerDAO, to understand how well its underlying mechanism works under different settings.
The simulation model is somewhat parsimonious, trading off some loss in realism in exchange
for computational tractability, insight, and ease of exposition.

The crux of our model is to focus on the population of investors and investigate whether
and when they choose to mint or burn DAI, and when they choose to buy and sell ETH or
DAI. We model the investors using Markowitz’s Optimal Portfolio Theory [4]. Specifically,
we model them as maintaining and updating a portfolio consisting of four assets USD, ETH,
DAI, and cETH (collateralized-ETH, used as collateral deposit to borrow/mint DAI), as
well as a debt instrument (as interest is owed on any DAI that is borrowed), accounting
also for transaction fees, in order to maximize their expected return while minimizing risk.
A weight-parameter characterizes the risk-tolerance of each user. Given a population of
such investors and their preferred allocations, our simulator iteratively updates the price of
DAI and matches buyers and sellers to determine the market clearing or settling price. It
allows us to set and modify various exogenous parameters such as return and risk associated
with various assets and the price of ETH as well as system parameters such as interest rate
(known as stability rate in the MakerDAO ecosystem) and transaction fees, allowing us to
examine how the DAI price depends on these various parameters.

The key contributions of our work are as follows:
We show how to model the MakerDAO ecosystem using optimal portfolio theory to model
investor behavior with respect to relevant assets including USD, ETH, DAI and cETH,
while accounting for transaction fees and the stability rate.
We present our design and implementation of a computational market simulator, DAISIM,
that handles order matching and price updates to determine the DAI price for a given
set of parameters.
We use the simulator to study how the DAI price and DAI supply/demand and portfolio
allocation is affected by various exogenous parameters (such as risk tolerance of investors,
ETH price, mean and covariance of asset returns) and system parameters (such as stability
rate and transaction fees).
The simulator itself is made available as an open-source simulation tool for use by the
research community online at https://github.com/ANRGUSC/DAISIM.

The rest of the paper is organized as follows: in section 2, we describe the basics of
the MakerDAO project with a focus on the simple single-collateral DAI launched in 2017
(extension to multi-collateral DAI is the focus of our future work). In section 3, we briefly
survey the relevant prior work. In section 4, we present our simulation model and how the
simulator is designed. In section 5, we present some illustrative results from the simulator to
show how DAI price and investor decisions are affected by various key parameters. Finally,
we present our conclusions in section 6.

2 MakerDAO – Background

At the heart of the MakerDAO is an autonomous mechanism to allow users to mint the
DAI token. Before the launch of multi-collateral DAI (MCD), single-collateral DAI (SAI)
could only be generated through a Collateralized Debt Position (CDP), a smart contact that
required the user to lock in excess collateral above a minimum ratio called Liquidation Ratio
at which the collateral is subjected to forced liquidation. After MCD, CDPs are now called
“Vaults” but we call them CDPs for brevity. DAI can be used for trading, borrowing, making
payments and more recently, also, saving. Some key statistics of MakerDAO can be found
at [10].

https://github.com/ANRGUSC/DAISIM
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Figure 1 A sample CDP opening and closing transaction assuming that 1 ETH is equal to $150
and the minimum collateralization ratio is 150%.

Prior to the launch of multi-collateral DAI (MCD) in November 2019, DAI could only be
generated through the single-collateral type, ETH1. MCD is now available to users at different
Liquidation Ratios derived as a function of the risk pertaining the underlying collateral type
determined by the Maker Risk Teams and Maker Governance.

After the user chooses a collateral-to-debt ratio (also known as the collateralization ratio)
and the amount of single-collateral DAI they would like to borrow from the CDP, the smart
contract deposits the collateral and returns DAI. The collateral is locked until the outstanding
debt is paid in addition to the CDP Interest Rate (Stability Rate) that has accrued over
time.

A CDP/Vault can be closed at any time once the debt and the CDP Interest Rate
(Stability Rate) are paid. The collateralization ratio of a CDP can also be adjusted while it
is active given that it is collateralized above the liquidation ratio. If a collateral becomes too
risky when collateralization ratio drops to the liquidation ratio, the CDP is automatically
acquired by the system and liquidated. Before MCD, liquidation was executed through a
Liquidity Providing Contract whereas in MCD, an auction mechanism is used for liquidation.
After the debt, Stability Rate and Liquidation Penalty have been recovered, the left-over
collateral is returned to the CDP owner.

2.1 CDP and the Stability Rate
The Stability Rate acts like an interest rate on the loan. It plays a key role in maintaining
stability of DAI through active governance. It is shown in DAI and paid in MKR that is
removed out of circulation upon payment. When the value of DAI is below the Target Price,

1 CDPs/Vaults can result in having more debt versus the value of collateral if there is an abrupt market
crash in ETH. In this case, the collateral i.e ETH is diluted to recapitalize the system by the platform.
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increasing the Stability Rate incentives users to close CDPs. Thus, it removes DAI from
supply and helps restore the peg. Similarly, when the value of DAI is above the Target Price,
decreasing the Stability Rate incentivizes users to open more CDPs. This increases the DAI
supply and helps restore the peg. In addition to the Stability Rate, Debt Ceiling, Liquidation
Ratio and Penalty Ratio are other key risk parameters for CDPs.

3 Prior work

We briefly present some relevant prior works focused on the evaluation of stablecoins, still a
relatively sparse area of research. A broad survey of stablecoins is provided by Clark et al. [1].
Mundt and Minca [9] describe a complementary model of noncustodial stablecoins and explore
different models of the liquidation structure that affects speculator decision-making and then
analytically characterize the stability. Mundt and Minca [8] analyze the effects of deleveraging
feedback effects that cause illiquidity during crises for non-custodial cryptocurrency-backed
stable coins. Mundt et al. [7] propose a framework for relating economic mechanics of
all stablecoins and formulated three classes of models for non-custodial stablecoins, for
which traditional financial models are sparse. Lyons and Natraj [5] examine the efficiency
and working mechanisms of stablecoins in the digital economy. They analyze how price
stabilization functions in the case of stablecoins. Gudgeon et al. [3] investigate the feasibility
of attacking the MakerDAO governance mechanism from a security perspective. Gu and
Kothari [2] discuss a multiagent simulation of a generic asset-backed stablecoin with a focus
on understanding demand dynamics for a stable coin in the face of exogenous price shocks.

Figure 2 Overview of the DAISIM Simulator.

4 Design of the DAISIM Simulator

Considering that the Maker protocol has rapidly evolved in the last few years, this paper
will assume that DAI mentioned in the subsequent sections refers to single-collateral DAI
(SAI) for brevity.
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4.1 System model
Our full system model for the single-collateral DAI ecosystem and our simulator is as shown
in Figure 2. Exogenous inputs to the model include the price of ETH, expected return and
risk (covariance) for USD, ETH, DAI and cETH. System parameters include the Stability
Rate rs and the Transaction Fees β. Additional simulation parameters include the size of
the market n (number of investors), their risk profile (captured by a weight parameter λi for
the ith investor), and parameters pertaining to the price update algorithm employed in the
simulation. The simulator allows investors to buy ETH on an open market as per the current
ETH price PET H ; it allows investors to open and close CDP’s per the current stability rate;
and it allows investors to buy and sell DAI from/to each other in the simulated market. All
these transactions incur a constant transaction fee as specified by β. The simulator takes
care of matching buy/sell orders for DAI and determining the market clearing (settling) price
for DAI PDAI . We describe these mechanisms in more detail below.

4.2 Price Settling Algorithm
The Price Settling Algorithm involves three steps i.e., Asset Optimization Mechanism, Order
Matching Mechanism, and the Price Update Mechanism. We assume n investors each with
an initial asset holdings x and a risk tolerance parameter λ. It is assumed that if λ is low,
then the investor is risk-tolerant, and if it is high, then the investor is risk-averse. For each
of these investors, we use the asset optimization mechanism to find out an optimal portfolio,
xopt and then use the Order Matching Mechanism to verify if all DAI Buy orders, B and the
Sell Orders, S can be met. This mechanism proposes a new asset allocation of xM

i,j for the
asset j ∈ {USD, ETH, DAI, cETH} of the ith investor based on xopt

i,j . Then using the price
update mechanism, we estimate the supply/demand of DAI based on the DAI bought/sold
by the investors to achieve the optimal allocation and then update the DAI price, PDAI .
Table 1 can be referred for the details of different notations and their definitions used in this
paper.

4.2.1 Asset Optimization Mechanism
For the ith investor, consider the vector x = [xi,1, xi,2, xi,3, xi,4] which represents the ith

investor’s holdings in each asset class: USD, ETH, DAI and cETH, respectively. We assume
that the investor collateralizes at a constant safety ratio ρ that is well above the liquidation
ratio of the protocol. Let rs represents the stability rate. Let µ be the vector of expected
return on investment in each of the four assets, and let Σ be the covariance matrix associated
with the value of these assets. Let β be the transaction fee to buy or sell 1 USD worth of
ETH/DAI and Ψ be the overall transaction fee incurred to reach the optimal allocation.
Let δDAI represents the current DAI debt for the investor. This debt corresponds to the
amount of DAI minted from the CDP, and given the fixed collateralization ratio is assumed
to be exactly equal to xi,4

ρ . Then, it is easy to see that an optimal portfolio i.e., xopt for
the ith investor with a total initial investment capital of m = Σx corresponds to one that
maximizes:

xT µ − λxΣxT − xi,4

ρ
rs − Ψ (1)

subject to the constraints:

Ψ =| xi,2 − xint
i,2 + xi,4 − xint

i,4 | · β+ | xi,3 − xint
i,3 | · β (2)
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xint
i,1 ≥ Ψ, xint

i,2 ≥ 0, xint
i,3 ≥ 0, xint

i,4 ≥ 0 (3)

Σxint = Σx = m (4)

Please note that xint
i,j is an intermediate allocation of the asset j for the ith investor. It

should also be noted that the transaction fees also apply to cETH as we need to buy ETH to
deposit it as collateral. Constraints (2) and (3) ensure that the investors have enough USD
holdings after choosing a portfolio allocation to cover any transaction fees incurred. After
deducting the transaction fees Ψ, the updated asset holdings of the ith investor are given as:

xopt
i,1 = xint

i,1 − Ψ, xopt
i,2 = xint

i,2 , xopt
i,3 = xint

i,3 , xopt
i,4 = xint

i,4 .

Table 1 Notations and Definitions.

Notations Definitions
n Number of investors participating in DAISIM
x Investor’s initial asset’s holdings
xi,j Initial investment of ith investor in the asset j;

j ∈ {USD, ETH, DAI, cETH}
λi Risk tolerance parameter of ith investor
xopt

i,j Optimal asset allocation for the ith investor for asset j

as suggested by the Asset Optimization Mechanism
B Total outstanding buy order
S Total outstanding sell order
xM

i,j Actual asset allocation for the ith investor for asset j

given by Order Matching Mechanism
ρ Safety ratio
rs Stability rate
µ Vector of expected return on investment in each

of the four assets
Σ Covariance matrix associated with the value of the assets
β Transaction fee to buy or sell 1 USD worth of ETH/DAI
δDAI Current DAI debt for the investor
m Initial investment capital
xint

i,j Intermediate allocation of the asset j for the ith investor.
Dov

i DAI bought/sold by ith investor to achieve optimal allocation
PET H Price of ETH provided by the price oracle
PDAI Price of DAI determined by the price settling algorithm
Dom

i DAI Bought by ith investor in Order Matching Mechanism
Dcdp

i DAI to be minted/returned by ith investor to achieve optimal cETH allocation
πj Mean asset holdings for investors j; j ∈ {USD, ETH, DAI, cETH}

4.2.2 Order Matching Mechanism

We assume that the market doesn’t have any external source of DAI, thus we need to
make sure that the total DAI in the market is fixed during the course of the Price Settling
Algorithm. Let order value, Dov

i = xopt
i,3 − xi,3 denote the amount of DAI the ith investor

needs to buy/sell in order to reach its optimal allocation. Let B denote the total outstanding
buy order, and S represents the total outstanding sell order in the market.
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B =
∑

min(Dov
i , 0) (5)

S =
∑

max(Dov
i , 0) (6)

If B > S i. e. buy orders exceed sell orders, then all the sell orders can easily be met
whereas when S > B all buy orders can easily be met. In case all buy and sell orders cannot
be met, the buy/sell order of an ith investor is achieved in proportion to their Dov

i value.
The different possible scenarios of the Order Matching Mechanism can be illustrated with
the help of the following examples:

▶ Example 1. Assume we have 4 investors with the following order values.
Dov

1 = 100 , Dov
2 = 120 , Dov

3 = −130 , Dov
4 = −190

Total Buy orders, B = 220
Total Sell orders, S = 320
Since S > B, We can meet all buy orders, but not all sell orders.
Total DAI Bought in Market = 220
Investor 3 sells 130/320 ∗ 220 = 89.375
Investor 4 sells 190/320 ∗ 220 = 130.625
Let Dom

i denotes the DAI bought by ith investor in the Order Matching Mechanism. Thus,
Dom

1 = 100, Dom
2 = 120, Dom

3 = −89.375, Dom
4 = −130.625

▶ Example 2. Assume we have 4 investors with the following order values.
Dov

1 = 500 , Dov
2 = 120 , Dov

3 = −130 , Dov
4 = −190

Total Buy orders, B = 620
Total Sell orders, S = 320
Since B > S, We can meet all sell orders.
Total DAI Sold in Market = 320
Investor 1 buys 500/620 ∗ 320 = 258.06
Investor 2 buys 120/620 ∗ 320 = 61.93
Dom

1 = 258.06, Dom
2 = 61.93, Dom

3 = −130, Dom
4 = −190

At the end of the Order Matching Mechanism, we have xM
i,1 = xi,1 − Ψ, xM

i,2 = xopt
i,2 ,

xM
i,3 = xi,3 + Dom

3 , xM
i,4 = xopt

i,4 . The transaction fees in this step of the algorithm is,

Ψ = | xM
i,2 − xi,2 + xM

i,4 − xi,4 | · β+ | xM
i,3 − xi,3 | · β

4.2.3 Price Update Mechanism
It is evident from the above discussion that the Asset Optimization Mechanism estimates
the market’s demand for DAI whereas the Order Matching Mechanism tries to fulfill the
demand keeping total DAI in the market constant. The Price Update Mechanism updates
PDAI based on the supply and demand of DAI in the market. We assume that DAI minted
by CDPs as another indicator for PDAI . Let Dcdp

i = (xopt
i,4 −xi,4)∗PET H

PDAI ∗ρ be the DAI to be
minted/returned by ith investor to achieve optimal cETH allocation.

n∑
i=1

(Dov
i − Dcdp

i ) ≥ 0 ⇒ High Demand

n∑
i=1

(Dov
i − Dcdp

i ) < 0 ⇒ High Supply

If we are in a high demand zone, we raise the price, else we reduce it. At the end of each
iteration we fix the asset allocation xi,j = xM

i,j .
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Figure 3 Investor Asset Holdings vs. rs.

5 Simulation Results

We present here some results illustrating the DAISIM Market simulation model which allows
us to show the impact of various parameters on the investors’ optimal portfolio. Purely as an
illustrative example, we assume that the return rates on the four assets i.e., [USD, ETH,DAI,
cETH] are given by µ = [0.08, 0.22, 0.18, 0.16] and that their covariance matrix is given as
follows:

Σ =


0.04 0 0 0

0 0.64 0.048 0.36
0 0.048 0.09 0.015
0 0.36 0.015 0.25

 (7)

These parameters have been chosen arbitrarily for illustration, but intuitively encode the
following assumptions. The returns and variance in increasing order are USD < cETH <

DAI < ETH. Returns on USD is assumed to be uncorrelated with other assets while DAI
is weakly correlated with ETH and cETH. ETH and cETH are relatively highly correlated
with each other.

5.1 Baseline parameters and portfolio

Considering our baseline model with parameters n = 10, πUSD = $1000, πDAI = $1000, πeth

= $0, πceth = $0, rs = 0.06, β = 0.01, we analyze how does the transaction fee β, Stability
Rate rs and risk preference λ affect the PDAI and the optimal portfolio of an investor. We
fix λ = 0.01 for a risk-averse investor and λ = 0.003 for a risk-tolerant investor.

In a population of n investors with 2 possible risk values i.e., λ ∈ {0.003, 0.01}, we have
2n different risk profiles for n investors. When n = 10, we have 210 = 1024 different risk
profiles for an investor population. Also, when we fix λ for a single investor, we have 512
different risk profiles for the remaining 9 investors. In each of these 512 risk profiles, we find
the assets bought or sold by the investor and we call the mean of this value as Mean Asset
Change. For example, Mean cETH Change (∆ cETH) refers to the mean cETH bought or
sold by an investor when we change λ for the other 9 investors. Mean DAI Settling Price is
also similarly defined.
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Figure 4 Investor Asset Trends.

FAB 2021



3:10 DAISIM: Simulator for MakerDAO

200 400 600 800 1,000
0

1

2

3

4

πDAI

P
D

A
I

rs = 0.06, β = 0.01

πUSD: 100.0
πUSD: 325.0
πUSD: 550.0
πUSD: 775.0
πUSD: 1000.0

(a) PDAI vs. πDAI .

200 400 600 800 1,000
0

1

2

3

4

πusd

P
D

A
I

rs = 0.06, β = 0.01

πDAI : 100.0
πDAI : 325.0
πDAII: 550.0
πDAI : 775.0
πDAI : 1000.0

(b) PDAI vs. πUSD.

0 20 40 60 80 100
0.35

0.40

0.45

0.50

0.55

0.60

Percentage of Risky Investors

P
D

A
I

rs = 0.06

β: 0.03
β: 0.06
β: 0.09
β: 0.12

(c) PDAI vs. Percentage of risky investors.

Figure 5 PDAI v/s Investor population aggregates.

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.65

0.70

0.75

0.80

rs

M
ea

n
P

D
A

I

λ = 0.01, β = 0.01

(a) Mean PDAI vs. rs.

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.70

0.75

0.80

0.85

0.90

β

M
ea

n
P

D
A

I

λ = 0.01, rs = 0.06

(b) Mean PDAI vs. β.

Figure 6 Mean PDAI vs. rs & β.

5.2 Investor Assets

In this section, we describe how does risk preference λ, transaction fee β & stability rate rs

impact an investor’s asset allocation. In Figure 3, we analyze the impact of change in rs

on the distribution of an investor’s assets. It is observed that once the value of rs increases
from 0.02 to 0.1, the distribution of different assets (shown in different colors) changes. An
increase in rs makes it costlier to open a CDP and therefore disincentivizes an investor from
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Figure 7 Relationship b/w PDAI & PET H .

holding cETH. At the same time, as β remains constant, the cost of holding ETH remains the
same. It is evident from Figure 3 that an investor reduces its cETH holdings and increases
its ETH holdings as rs increases. This is because holding ETH becomes cheaper and more
profitable given its high return rate.

5.2.1 Impact of Risk Preference
A risk-tolerant investor is more likely to invest in ETH as compared to a risk-averse investor
given that ETH is the riskiest asset. In Figures 4a through 4j, we make the following
observations,

In Figures 4a, 4b the cETH holdings of a risk-tolerant investor quickly reach 0. It appears
that a risk-tolerant investor is very sensitive to β.
In Figures 4c, 4d, we see that a risk-tolerant investor invests in the riskiest asset i.e., ETH,
while a risk-averse investor doesn’t invest in ETH at all. For the risk-tolerant investor as
β increases, we observe that ETH holdings first increase and then decrease. We believe
that an investor prefers to convert its cETH to ETH as it offers a better return rate but
once its cETH holdings reach 0, the taxation from β comes into the picture which causes
a decline in ETH Holdings.
In Figures 4e, 4f, we see that a risk-tolerant investor prefers to hold DAI vs. a risk-averse
investor that wants to minimize total DAI held. At lower β’s an investor is very sensitive
to the risk parameters of other n − 1 investors.
In Figures 4g, 4h, we see that the cETH holdings of a risk-tolerant investor are also very
sensitive to rs. And from Figures 4i, 4j, we see that a risk-tolerant investor holds more
ETH than a risk-averse investor.

5.2.2 Impact of Transaction Fee
In Figures 4a, 4b we see that as β goes up, the mean cETH change decreases. In Figure 4e,
4f we see that as we increase β, the absolute mean DAI Change also reduces to 0. Similarly,
an investor is also less likely to buy/sell ETH. These trends are easy to explain because a
transaction fee on buying/selling of any asset is similar to a tax. A higher β disincentivizes
an investor from buying and selling assets.

FAB 2021
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In Figure 6b, we see that as β increases from 0.01 to 0.14 with πUSD = $325 & πDAI =
$300, mean PDAI first decreases and then increases. An increase in β has two side effects
i.e., reduction in DAI demand and reduction in DAI supply. We believe that, when DAI
demand reduces more than DAI supply we see a decrease in PDAI and when DAI supply
reduces more than DAI demand we see an increase in PDAI .

5.2.3 Impact of Stability Rate
In Figures 4g, 4h we see that as rs increases from 0.02 to 0.1, with all parameters matching
the baseline, the mean cETH change for an investor decreases because it becomes costlier to
open a CDP for minting DAI. In Figures 4i, 4j it is also seen that the mean ETH change for
an investor increases initially and then flattens out. The Stability Rate rs doesn’t affect the
mean ETH change directly but as rs increases, it becomes prohibitively expensive to hold
cETH, and as a result, the investor converts its cETH to ETH which causes an increase in
mean ETH change. As all of the cETH is converted to ETH, a further increase in rs does
not affect the mean ETH change. Also, a change in rs does not directly affect an investor’s
willingness to buy/sell DAI.

5.3 DAI Settling Price
In this section we analyze the impact of stability rate rs, transaction fee β, mean USD
holdings for the investor population πUSD, mean DAI holdings for the investor population
πDAI , price of ETH PET H and investor risk preference on the DAI Settling Price PDAI .

5.3.1 Impact of mean DAI and USD holdings
In Figure 5a, we see that as πDAI in the market increases, PDAI decreases because an increase
in DAI supply while keeping the demand constant drives down PDAI . Similarly in Figure
5b, we see that as πUSD in the market increases PDAI increases because as investors have
more money to spend, they want to invest more in stable assets such as DAI. An increase in
demand for DAI while keeping supply constant drives up the PDAI .

5.3.2 Impact of Investor Risk Preference
In Figure 5c, as we increase the percentage of risk-tolerant investors in the market, PDAI

increases. As a risk-tolerant investor prefers to hold more DAI than a risk-averse investor, we
can say that a risk-tolerant investor has a tendency to buy DAI and a risk-averse investor has
a tendency to sell DAI. As we increase the number of risk-tolerant investors in the market,
two things occur. Firstly, with more risk-tolerant investors we have more investors with a
higher DAI demand which increases the total DAI demand in the market. Secondly, with
less risk-averse investors we have fewer investors willing to sell DAI which reduces the total
DAI supply in the market. These two factors are sufficient to drive up PDAI .

5.3.3 Impact of stability rate
In Figure 6a, we see that as rs increases from 0.02 to 0.1, with πUSD = $325 & πDAI =
$300, mean PDAI increases. This is because with an increase in rs, people are less likely
to open a CDP to mint DAI which reduces the DAI supply keeping DAI demand constant.
This directly leads to an increase in PDAI .
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5.3.4 Impact of ETH price
In Figure 7a, we observe how PDAI changes as we perform the market simulation over
multiple days with an external ETH price feed. We observe that the PDAI closely mirrors
the changes in PET H . From Figure 7b we see that the PDAI is highly correlated to PET H .
We also observe that PDAI varies slightly with large PET H changes showing that the PDAI

is resistant to rapid PET H changes.

6 Conclusions

We have presented DAISIM, the first open-source computational simulation of the single-
collateral DAI stablecoin from MakerDAO. The simulation models investors as rational
portfolio optimizers and simulates DAI trading on a market to determine the DAI price as
a function of various relevant parameters. In future work this simulation could be used to
develop automated mechanisms to steer or control the price of DAI by modifying relevant
control parameters. We also plan to extend DAISIM to handle the newer multi-collateral
version of DAI that has been introduced more recently.
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Abstract
As the popularity of blockchains continues to rise, blockchain platforms must be enhanced to support
new application needs. In this paper, we propose one such enhancement that is essential for financial
applications and online marketplaces – support for time-based logic such as verifying deadlines or
expiry dates and examining a time window of recent account activity. We present a lightweight
solution to reach consensus on the current time without relying on external time oracles. Our
solution assigns timestamps to blocks at transaction validation time and maintains a cache reflecting
the effects of recent transactions. We implement a proof-of-concept prototype, called TimeFabric, in
Hyperledger Fabric, a popular permissioned blockchain platform, and experimentally demonstrate
high throughput and minimal overhead (approximately 3%) of maintaining trusted time. We also
demonstrate a 2x performance improvement due to the cache, compared to reconstructing account
histories from the ledger.
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systems and networks

Keywords and phrases Permissioned Blockchain, Timestamp, Clock, Sliding Window, Hyerpleger
Fabric

Digital Object Identifier 10.4230/OASIcs.FAB.2021.4

Supplementary Material Software (Source Code):
https://github.com/aritramitra14/fabric/tree/timefabric

1 Introduction

Blockchain systems have received substantial interest due to their ability to maintain a
trusted transaction log in a decentralized environment. The earliest platform, Bitcoin [12],
allowed the exchange of digital currency among peers in a distributed network. Ethereum [20]
then introduced smart contracts, which are Turing-complete stored procedures that expanded
the applicability of blockchains beyond cryptocurrencies into finance [11] [6], supply chain
management [14] and healthcare [1]. Recently, permissioned systems such as Hyperledger
Fabric [2] have been proposed for enterprise settings in which only authenticated entities
participate in the network.

When processing transactions, blockchain systems must accomplish two goals: consensus
on the order of transactions and consensus on the validity of transactions. In early blockchains
such as Bitcoin and Ethereum, the miner selected to create a block provides consensus on
order, and validity is independently verified by each peer in the network. However, in
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Figure 1 Different sliding windows seen by nodes with different clocks.

permissioned blockchains such as Fabric, consensus on order is obtained by using an ordering
service and consensus on validity by using a subset of peers in the network (details in
Section 2).

In simple cases, transaction validity can be determined based on account balance alone.
Many blockchain systems thus use an account-based data model, in which each peer maintains
the current state of each account in a so-called state database. This allows peers to validate
transactions without having to reconstruct account balances from the entire history stored
in the ledger. However, as permissioned blockchains gain traction in enterprise settings,
blockchain systems must be enhanced to support new application needs. In this paper, we
target applications such as financial services and online auctions and marketplaces, in which
determining transaction validity is more complex and depends on time.

For example, assume a decentralized retail setting with a blockchain platform operated
by manufacturers, sellers and regulators. The platform must not allow the participating
entities to manipulate timestamps in an attempt to sell expired products. Furthermore, in a
financial setting, a bank may allow an overdraft (i.e., allow a withdrawal despite insufficient
funds) if an account is in good standing based on recent transactions. Thus, access to a time
window of recent account activity is required when executing these transactions.

To validate transactions whose correctness depends on time, a common solution is to
obtain the current time from an external trusted oracle, along with the oracle’s certificate of
the current timestamp. This allows each peer to establish validity, and for all peers to come
to the same deterministic conclusion. However, this approach breaks down when validity is
independently determined by multiple peers, as is the case in permissioned blockchains such
as Fabric or Corda [5]. In these situations, we need to obtain consensus on the current time
among the endorser peers as a precondition to obtaining consensus on validity. Otherwise,
it may be impossible to agree on the transaction outcome. For example, when processing
an overdraft transaction, peer nodes with different current times may consider a different
window of recent activity. We show an example in Figure 1, with two nodes and five recent
transactions. Node 1 considers a window with transactions tx1 through tx4. Node 2 uses a
different current time and considers a different window, with transactions tx2 through tx5.

To address the above issues in support of smart contracts with time-based logic, we make
the following contributions.

1. Trusted time for time-based transactions: Instead of relying on external time oracles, we
propose a light-weight consensus mechanism for time that assigns a trusted timestamp
to each block. Block timestamps can then be used by the network to deterministically
execute time-based smart contracts.

2. Data layer support for time-based transactions: We extend the account-based data model
to store a sliding window of recent states, effectively maintaining a cache reflecting the
effects of recent transactions. If a peer node needs to examine the recent history of an
account, it can access the cache instead of reconstructing the account history from the
ledger.
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3. Implementation and experimental evaluation: We implement our solution, called Time-
Fabric, in Fabric 1.4, and experimentally verify that the overhead of maintaining trusted
time is low (under 3%) and that the cache reduces the time to retrieve a window of recent
history by a factor of two. Notably, we make minimal changes to Fabric’s transaction
processing methodology and we preserve Fabric’s modular design, which allows different
consensus algorithms to be plugged in without affecting transaction execution. The
TimeFabric source code is publicly available at https://github.com/aritramitra14/
fabric/tree/timefabric.

While we use Fabric in our proof-of-concept implementation, our solution generally applies
to any blockchain in which multiple entities independently judge the validity of transactions.
Thus, we allow a migration path for these types of blockchains if they do not wish to trust
an external oracle to validate time-based transactions.

The remainder of this paper is organized as follows. Section 2 provides background
information, including an overview of Hyperledger Fabric, Section 3 presents our solution,
Section 4 discusses the experimental results, Section 5 reviews previous work, and Section 6
concludes the paper with directions for future work.

2 Background

Blockchain platforms can be categorized as public, or permissionless, and private, or permis-
sioned; the former allows anyone to join the network whereas a private blockchain, commonly
used in enterprise collaborations, includes a membership service that only allows authentic-
ated entities to participate in the network. However, the authenticated entities do not have
to fully trust each other.

Public blockchains such as Bitcoin and Ethereum follow an Order-Execute (OE) transac-
tion model. Transactions are first ordered using a protocol such as Proof of Work, and then
are executed sequentially by each node. In contrast, Fabric follows an Execute-Order-Validate
(EOV) model, alternatively referred to a Simulate-Order-Validate-Commit model [17], in
which transactions are executed in parallel in a sandboxed environment, ordered, and valid-
ated before being committed to the ledger. We explain the details below, and we summarize
the transaction processing workflow in Figure 2 (ignore the steps marked in red, which
correspond to our modifications in TimeFabric and will be discussed later).

2.1 Hyperledger Fabric Overview
Entities participating in a Fabric network are called nodes and can be categorized as peers
and orderers. Peers execute smart contracts, called chaincode in Fabric. Orderers, collectively
referred to as the ordering service, are responsible for transaction ordering and creation of
blocks. Each peer maintains a local copy of the ledger as well as a state database (LevelDB
by default), which is a key-value representation of the current state of the ledger. A record
in the state database contains three pieces of information: a key (e.g., account ID), a value
(e.g., the current account balance), and a version number. The state database is used during
transaction processing; for example, it can be used to determine whether a given account
has a sufficient balance to make a purchase without having to retrieve all the transactions
for this account from the ledger. Whenever a transaction (i.e., the execution of a smart
contract) is committed to the ledger, the effects of the transaction are persisted in the state
database. That is, the new values are written to the database and the corresponding version
numbers are incremented. Old versions are eventually discarded from the state database by
a background garbage-collection process.
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Fabric’s Execute-Order-Validate transaction processing protocol proceeds as follows.

2.1.1 The Execute Step
Client applications submit transaction proposals to the Fabric network (step 1 in Figure 2).
A subsets of peers, called endorsers, concurrently simulate the execution of the corresponding
smart contracts in a sandboxed environment, i.e., without persisting the effects in the state
database. Two such endorsers are shown in Figure 2. Each endorser then sends a response
to the client application if the corresponding smart contract was successfully simulated. The
response contains the endorser’s signature as well as a read set and write set, which consist
of the keys and their version numbers that were read from the state database, and keys
(plus their new values) that were updated, respectively, during the simulated execution of
the transaction proposal. The write sets thus capture the effects of transactions that must
eventually be reflected in the state database.

2.1.2 The Order Step
An endorsement policy, set by the network, specifies the number of endorsements a transaction
needs. After a client application receives the required number of endorser responses (step 3
in Figure 2), it sends the transaction proposal, with endorsements attached, to the orderers
(step 4 in Figure 2). The orderer nodes run a consensus protocol to determine the order
of transactions received from various client applications. Fabric allows various consensus
protocols to be plugged into the ordering stage (e.g., Kafka or Raft), with crash-fault
(rather than Byzantine fault) tolerant protocols used in practice since the participants in a
permissioned blockchain system are known and incentivized to behave honestly. Transactions,
with endorsements attached, are segmented into blocks; a block is created if the maximum
number of transactions per block (set by the application) arrive or if a block timeout period is
exceeded (the default block timeout in Fabric is two seconds). Blocks are then disseminated
to the peers (step 5 in Figure 2). Note that orderers are only responsible for ordering the
transactions and batching them into blocks; they do not examine transaction contents for
correctness or validity.

2.1.3 The Validate Step
Finally, peers serially validate (endorser signatures and read-write sets of) transactions in a
block, and, upon successful validation, persist the effects of transactions in the local state
database and append the block to the local copy of the ledger (step 6 in Figure 2; committer
peers are the non-endorsing peers). Transaction validation succeeds if the version numbers
of the keys in the transaction read sets are the same as the current version numbers in the
state database.

Validation is required because transaction proposals are executed in parallel during the
initial Execute stage, and thus transaction conflicts may arise. For example, suppose two
client transactions wish to withdraw money from the same account, with key 123, whose
current version number in the world state is 100. Suppose no other transactions in this block
touch this key. The read sets of both of these transactions include key 123 with version
number 100. During validation, the first of these transactions will be committed because key
123 still has version number 100 in the state database (it has not been modified by any other
transaction from this block). After the first transaction is committed, the new version of key
123 will be 101. Now, the second transaction fails because the version number of key 123 in
its read set is 100, but it is 101 in the state database. Failed (or aborted) transactions are
marked as such and remain in the block.
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Transaction validation prevents read-write and write-write conflicts. In a given block,
at most one transaction can write to a key, and if another transaction only reads this key
without writing to it, this transaction must be ordered before the one that writes to this key
(otherwise, the version numbers will not match). This prevents double-spending, but may
also prevent legitimate transactions from being committed. In the above example, even if
there is sufficient balance in account 123 for both withdrawals, only the first transaction will
succeed. The second transaction will need to be re-submitted by the client application for
re-endorsement, and will be put in a new block for validation.

Note that once the transactions in a block have been ordered, they are sequentially
validated by each peer in the same order. As a result, each peer makes the same transaction
commit (or not) decisions, and thus each peer stores the same version of the ledger and the
state database. Also note that smart contracts are not re-executed during validation; only
their effects are persisted in the state database.

2.2 Timestamps and Account Histories in Hyperledger Fabric
We now outline existing Fabric functionality related to transaction timestamps and transaction
histories. Clients can set transaction timestamps when creating transaction proposals, which
are recorded in the transaction header and ultimately appear in the blockchain. Fabric
exposes a method GetTxTimestamp(transaction_id) for chaincode to access transaction
timestamps. However, transaction timestamps are not endorsed during the execute step or
verified during the validate step.

Furthermore, chaincode can call GetHistoryForKey(key) to obtain a history of all values
for a given key, along with the transaction timestamps corresponding to each update (querying
a specific time window is not supported). This is done by consulting an index that points to
(the blocks containing) transactions that have modified a given key. These transactions are
then retrieved from the blockchain to compute the history, which is expensive. This index is
stored in the state database, in addition to the keys and their latest values.

3 Our Solution

In this section, we present our solution to support smart contracts with time-based logic.
Our design goals are:
1. to provide a trusted and consistent time reference for peers that validate transactions,

without the need to consult external oracles,
2. to process transactions that reference this trusted time efficiently, with minimal overhead,
3. and to preserve the underlying blockchain system architecture as much as possible while

making minimal modifications.

We address goal #1 in Section 3.1 and goal #2 in Section 3.2. We then describe
implementation details of our proof-of-concept, TimeFabric, which is based on Hyperledger
Fabric 1.4 (Section 3.3), followed by a discussion of TimeFabric’s failure model compared to
the underlying Fabric (Section 3.4).

3.1 Trusted Time
Our approach to maintain trusted time consists of the following steps.

1. Validation of transaction timestamps. Peers that validate transactions are given
an additional responsibility: to ensure that the transaction timestamp is within δ time
units of the current trusted time (this will be defined shortly). Thus, transactions with
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timestamps too far into the past or the future will be rejected. The value of δ can be set in
the corresponding smart contract code, and we will discuss how to choose an appropriate
value for δ in Section 3.3.

2. Assigning trusted block timestamps. Additionally, peers that validate transactions
need to assign block timestamps. In particular, they set the block timestamp to be the
most recent or the median transaction timestamp within the block, among transactions
that have been validated and have not been rejected1. However, if this timestamp is older
than the timestamp of the previous block, then the timestamp of the new block equals
the timestamp of the previous block plus a small constant ϵ (in our implementation, ϵ = 1
millisecond). To do this, when validating transactions within a block, each peer must
keep track of the latest transaction timestamp seen, and finally append it to the block.
Block timestamps become part of the blockchain and are included in the block hash for
immutability.

3. A heartbeat mechanism. Suppose no transactions arrive for some time, say, one
minute. Then, when a transaction finally arrives, its timestamp would be a minute into
the future relative to the timestamp of the latest committed block. To ensure that trusted
time moves forward, we require a “dummy” client that sends mock transactions even
during periods of inactivity. A mock transaction updates a reserved “dummy” account
with a random value, and its transaction timestamp equals the local time of the client.
We will discuss how often these mock transactions need to be sent in Section 3.3.

Time thus advances one block at a time, based on validated transaction timestamps,
giving every peer a common time reference. At any point, the current trusted time, or block
time, as required for transaction validation, is the time of the latest block that has been
committed to the ledger. The block time is used for any reference to time in a smart contract.

Our solution uses one timestamp per block rather than one timestamp per transaction
for several reasons. The first is efficiency: in general, obtaining consensus on a value in a
decentralized setting is expensive. The second is to ensure a monotonically increasing time
reference: transactions within a block may not be ordered by their timestamps.

3.2 Data Layer Support
Given our notion of trusted time, we create three methods that are accessible to smart
contracts.

1. GetTimenow() returns the current block time.
2. GetHistoryRangeForKey(key, start, end) returns a history of values for a given key with

block timestamps in the interval [start, end].
3. GetStateWindow(key,window_length) is a wrapper over GetTimenow() and GetHis-

toryRangeForKey(). It obtains a history of values for a given key with block timestamps
in the interval [current_time − window_length, current_time].

GetTimenow() can be used when validating transaction timestamps, which can then
be used during smart contract execution, e.g., to verify if deadlines are met. A simple
implementation of this method is to extract the timestamp from the latest block in the ledger.
Another option is to cache the block time at the validating peers.

GetHistoryRangeForKey() is meant to be used during smart contract execution to retrieve
recent histories. A naive implementation is to reconstruct the account history from the
ledger, which is expensive. Our solution is to maintain a cache capturing the effects of recent

1 We will discuss the choice between maximum and median transaction timestamps in Section 3.3.
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transactions. First, we assume that validating peers use the account-based data model and
already maintain a key-value state database with the current account states. Additionally,
we require each validating peer to maintain a cache database. Each record in the cache
database is a key-value pair. The key is a concatenation of the corresponding key in the state
database and the block timestamp of the transaction that updated the key. The value is the
corresponding updated value. For example, suppose that key 123 is updated to have value 50
by a transaction belonging to a block with Unix timestamp 1607994614. The corresponding
key-value pair in the state database is (123, 50), plus the version number. The key-value pair
in the cache database is (123 : 1607994614, 50).

To populate the cache database, we make another modification to the validating peers.
In addition to writing key-value pairs to the state database, we require the validating peers
to write key-value pairs (with timestamps concatenated to the key) to the cache database.
GetHistoryRangeForKey() can then be answered via a range query on the key against the
cache database. For example, a query for the history of key 123 between Unix timestamps
1600000000 and 1607994614 becomes a range query against the cache database for keys in
the range from 123 : 1600000000 to 123 : 1607994614.

There is one important distinction between the state database and the cache database.
In the former, values of existing keys are updated since only the most recent value needs to
be stored. In contrast, the cache database is append only: an update of the state database
results in a new key added to the cache database since keys in the cache database include
block timestamps. Thus, if not pruned, the cache database will grow indefinitely.

To avoid this problem, we borrow a common solution, similar to the calendar queue, used
by data stream management systems to maintain sliding windows [7]. The idea is to partition,
or shard, the cache database by time, and, instead of deleting individual records over time,
periodically drop the oldest part. For example, suppose that an application requires a 7-day
history. Peers may partition the cache database by day. Every day, a new part is added to
store new records generated that day, and the oldest day is dropped. The window length
and the number of shards are parameters that may be decided by the network along with
other blockchain configuration parameters.

Technically, there is no limit on how much history can be stored in the cache database.
However, to ensure high transaction throughput, it should be ensured that the cache database
(and, of course, the state database) fits in memory.

3.3 TimeFabric Implementation
We now discuss the implementation details of TimeFabric, which is based on Hyperledger
Fabric 1.4. Our modifications to Fabric’s transaction validation pipeline are shown in red in
Figure 2 and are explained below.

In the validation step, peers have two additional tasks:
1. In Fabric, transactions are validated by committer peers once a block is received from

the ordering service. Each transaction in the block is unpacked and validated by the
committer peer in parallel using multiple Go routines. At this stage, we additionally
identify the maximum or median timestamp across the valid transactions, and we insert
this timestamp into the block metadata.

2. We add a cache database that must by maintained by the peers over time (i.e., periodically
create new shards and drop old shards). We modify the block commitment stage to add
this new database (which is a hashmap in our implementation). Each transaction in a
block is unpacked to extract the write-sets. We then compute new keys to be written to
the cache database by concatenating the timestamp to the original key, and we insert
this key-value pair to the cache database.
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Figure 2 Transaction flow in Hyperledger Fabric. In TimeFabric, we make changes in steps 2
and 6, shown in red.

In the execute step, endorsing peers have one additional task: validate transaction
timestamps by comparing them to the current block time (via the new method GetTimenow()).
We implemented this method in the Fabric RPC server by querying the ledger to retrieve
the latest block, and extract the block timestamp from the block metadata. We considered
caching the block time at the endorsers, but the performance gains were minimal since the
latest block is already cached in memory by Fabric.

Additionally, smart contracts have access to recent histories via GetStateWindow(),
which queries the cache database (and the state database for the latest value). In our
implementation, the partitioned cache database consists of separate instances of hashmaps,
and GetHistoryRangeForKey() is handled by issuing a range query against each instance.

We note a subtle but important issue related to read set validation in TimeFabric. Assume
a transaction that fetches a window of recent account history, including the current balance,
for account 123, and updates the account balance if the account history satisfies some
condition. This transaction can use GetHistoryRangeForKey(), which fetches a window of
recent history of key 123 from the cache database. However, we wish to re-use Fabric’s
transaction conflict logic during transaction validation. For example, this transaction should
not be committed if another transaction from the same block had updated account 123. To
identify these types of conflicts, we modify GetHistoryRangeForKey() to also fetch the latest
key-value pair from the state database (in addition to fetching the history of this key from
the cache database). Next, only the records read from the state database are validated to
make sure the version numbers match; records in the cache database are never updated
(only new keys are added), so their version numbers are always ‘1’ and do not need to be
validated. In our example, only the latest version of key 123 obtained from the state database
is validated, and the window of recent history of key 123 obtained from the cache database
is not. However, the transaction’s read set contains all keys read from the state database
and the cache database for auditability (recall that the read and write sets becomes part of
the blockchain).

Finally, there are no modifications to Fabric’s ordering step. This satisfies design goal
#3: Fabric’s modular design suggests that orderers should only be responsible for ordering
transactions. To maintain compatibility with various plug-and-play consensus algorithms for
the ordering step, our modification are restricted to the endorsers and the validators.
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In addition to the above changes to Fabric, our implementation of TimeFabric requires
the addition of a dummy client for heartbeats (recall Section 3.1). To decide when to send a
heartbeat, we observe that Fabric orderers disseminate a new block when it is full (contains
the maximum number of transactions) or if it contains at least one transaction and no other
transaction has arrived for two seconds (the default timeout period). Thus, we configure the
dummy client to send a mock transaction every two seconds.

Now, recall the δ parameter for transaction timestamp validation. In our implementation,
block time is permitted to be two seconds in the past in the worst case, if no new transactions
have arrived and a heartbeat transaction was just generated. To account for this delay and
network delays between clients and the Fabric/TimeFabric network, we set δ to two seconds
plus the expected network delay. Large values of δ should be avoided to prevent malicious
clients from submitting transactions with future timestamps and therefore advancing the
block time too quickly. On the other hand, delays must be taken into account to ensure
that legitimate transactions are not rejected, although a client who experiences an unusually
long delay can always resubmit its transaction. Note that in a permissioned blockchain, even
malicious clients need permission to access the blockchain by requesting access credentials
from a membership service. Hence, clients exhibiting malicious behaviour can be ejected
from the system. Nevertheless, if one wishes to err on the side of caution, malicious behavior
can be reduced by setting the block timestamp to the median value of the timestamps in a
block, rather than the maximum, since the median is harder to manipulate.

Finally, recall that our solution assigns one timestamp per block rather than one timestamp
per transaction. However, observe that block timestamps alone produce totally ordered key
histories in TimeFabric because Fabric’s validation step ensures that a key can be updated
at most once per block (recall Section 2).

3.4 TimeFabric Failure Model

In this section, we discuss the impact of our modifications on the failure model of the system.
In Fabric, the membership service that authenticates the participating entities must be
fault-tolerant, and this does not change in TimeFabric. Similarly, we do not change Fabric’s
ability to plug in various ordering algorithms, which can be crash-fault or Byzantine-fault
tolerant, as desired by the application.

We also retain Fabric’s endorsement policies, specifying the number of endorser responses
required by a client transaction. Having to collect multiple endorser responses prevents
collusion between client applications and an endorser, and this extends to TimeFabric’s
endorsement of transaction timestamps.

Furthermore, the ledger is replicated among the peers, each block contains a hash pointer to
the previous block to ensure immutability, and every peer independently validates transactions
and appends new blocks to the chain, as in Fabric. TimeFabric adds block timestamping
to each peer’s responsibilities, resulting in the same failure model: any inconsistencies at
one peer can be easily detected by comparing other peers’ ledgers. In contrast to Fabric,
TimeFabric peers also maintain a cache database. In case of a crash fault, a peer can rebuild
its cache database by unpacking transactions from recent blocks. (Similarly, a peer (in Fabric
and TimeFabric) recovering from a failure can rebuild its state database from the ledger).

Finally, as for the mock client that implements the heartbeat mechanism, we install one
such client at each endorser for crash-fault tolerance.
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Table 1 End to End Throughput.

Fabric 1.4 TimeFabric
2927 ± 136 2831 ± 196

4 Experiments

In this section, we experimentally evaluate TimeFabric, which we implemented in Fabric
version 1.4 (our modifications remain compatible with the recent release of version 2 since we
do not change Fabric’s modular design). We use six local servers connected through a 1Gbit/s
switch. In practice, Fabric deployments may be geo-distributed, but our experiments focus on
commit overhead and database access times at individual peers, which are independent of how
the peers nodes are distributed. Each server is equipped with two Intel Xeon CPU E5-2620
v2 processors at 2.10 GHz, and 64 GB of RAM. Our experiments are conducted using Fabric
binaries and we only use docker containers for the chaincode runtime environment. All tests
are conducted with non-conflicting and valid transactions to ensure that all transactions go
through the entire lifecycle (endorsement, ordering, validation and commit) without being
aborted. This helps us to evaluate the worst-case performance of the system in terms of
transaction throughput.

Our experiments have two goals: 1) evaluating our implementation of trusted block time
and 2) evaluating the performance of the new API to obtain the current block time and a
recent history for a given key. To evaluate the implementation of block time, we measure the
overhead introduced by our changes to the Fabric transaction processing lifecycle, specifically,
the overhead incurred by committer peers. To isolate this overhead, we send pre-endorsed
transactions to the orderer and measure the transaction throughput at committer peers. We
also measure the latency of the block time, i.e., how far back it is compared to the wall clock,
for various block sizes. To evaluate the performance of the new API, we measure the runtime
overhead of our new method GetTimenow(), and we compare our method GetStateWindow()
to Fabric’s GetHistoryForKey().

4.1 Block Time Implementation
Committer Overhead. In this experiment, we compare the transaction throughput at
the committer peer for Fabric 1.4 and TimeFabric. We use a single endorser and a single
committer peer, a solo orderer, and four client machines that generate transaction proposals.
We first send 25,000 transaction proposals from each client to the endorser and obtain the
proposal responses. We then set up 25 threads in each client (totaling 100 threads) to send
a total of 100,000 transactions to the orderer. Subsequently, we measure the total time by
the committer peer to commit all the blocks to the ledger and then derive the throughput.
Following prior work on improving the throughput of Fabric [8], we set the block size to 100.
We conduct 30 runs and report the mean throughput and the standard deviation in Table 1.
This experiment shows that our changes only add about 3% overhead to the block validation
and commit process.

Block Time Latency. In this experiment, we record the time difference between an endorser’s
local clock and the block time, i.e., the time assigned to the latest committed block. We
expect lower latencies for smaller block sizes, with size corresponding to the number of
transactions per block. Since we want to measure the latency from the point of view of
a single endorsing peer, we use a single peer with a solo orderer and one client node. We
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Table 2 Block time latency for various block sizes.

Block Time Latency

Block Size 50 75 100 125 150

Mean (ms) 97 186 192 244 480
Median (ms) 90 131 175 223 285
Range (ms) 51-2343 85-2445 103-2591 104-2603 164- 2670

execute a smart contract that calls our method, GetTimenow(), to obtain the current block
time. The smart contract then calculates the difference between its local clock and the block
time, and writes this difference to a new key in the state database. That is, the sole purpose
of this smart contract is to record block time latencies. We execute 25000 such transactions
for varying block sizes, and we compute the mean and median latencies as well as the latency
range, as seen by these transactions.

We show the results in Table 2. We observe that mean latency increases with the block
size. However, as we noted earlier, prior work observed the highest throughput at a block
size of 100. Given this block size, the mean block time latency is under 200 milliseconds.
Note that these result correspond to a scenario in which transactions arrive continuously and
blocks fill up naturally, without the need for heartbeat transactions to create new blocks. As
we discussed earlier, if transactions stop arriving, then the block time latency increases to
just over two seconds, which is the timeout period plus the time to commit the block with
the heartbeat transaction.

4.2 Time Query Performance
Endorser Overhead of GetTimenow(). In this experiment, we measure the performance of
GetTimenow() by monitoring the endorsement time for transactions on a single peer. For
this, we implement a smart contract that corresponds to a retail purchase transaction for a
perishable product. The transaction is endorsed if its timestamp is earlier than product expiry
date; if so, the chaincode additionally decrements the available quantity of the product, which
involves one key read and one key write. In TimeFabric, the chaincode calls GetTimenow()
to obtain the time. In Fabric, the chaincode simply obtains the local time at the endorser.
We send a series of transactions to the endorsing peer from a single client and calculate the
total time for obtaining all the responses. We repeat this experiment by varying the number
of transactions and recording the endorsement time.

We show the results in Figure 3, which reveals that the performance overhead of GetTi-
menow() is statistically insignificant.

Endorser Overhead of GetStateWindow(). We compare the performance of GetStateWin-
dow() in our implementation against GetHistoryForKey() in Fabric 1.4. Since Fabric fetches
key histories directly from blocks, we expect a performance improvement in our imple-
mentation that uses the cache database for recent history. We start by loading the state
database with 500 keys, and then each key is updated between 10 an 200 times, depending
on the experiment. The chaincode for this experiment corresponds to a financial overdraft
transaction: it reads the full history of the key (between 10 and 200 values, depending on
the experiment, to simulate different window lengths) and writes a new value for this key if
the history shows that this account has maintained some minimum balance. We use a single
client to execute the transactions for all 500 keys and we record the total time for collecting
all proposal responses from a single endorser.
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Figure 3 Endorsement time comparison.

Figure 4 Endorsement time for window queries.

We show the results in Figure 4. The performance of Fabric’s GetHistoryForKey()
degrades as the window length increases since there is more history to retrieve. On the other
hand, the running time of our implementation of GetStateWindow() increases only slightly
as the window length increases. For a window of 200 historical values, TimeFabric is nearly
twice as fast as Fabric 1.4.

5 Related Work

Hyperledger Fabric is actively being developed and various performance optimizations have
recently been proposed, including adding parallelism and caching to the transaction processing
pipeline[8, 17]. Our solution is compatible with these optimizations since our modifications
leave Fabric’s modular structure intact.

Perhaps the closest work to ours is that of Zan and Xu [22], which proposes to add a
separate global clock node to Fabric, whose purpose is to periodically synchronize the local
clocks of endorsers, orderers and committers during the transaction lifecycle. Although this
approach can improve the accuracy of local clocks, it cannot fully synchronize them, as we do
using block time. Additionally, our solution goes one step further to ensure that time-related
operations such as sliding windows can be done efficiently.
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FabricSharp [16] is a proposal to add timestamp-based optimistic concurrency control to
Fabric. However, instead of using physical time, FabricSharp uses block sequence numbers
and it does not solve our problem of maintaining trusted time for use by smart contracts.
This precludes, for example, applications that depend on a time window.

LineageChain [15] extends Fabric by exposing provenance information, i.e., key histories,
to smart contracts. For efficiency, LineageChain maintains an index over the provenance tree.
This is conceptually similar to our use of the cache database to speed up sliding window
queries. However, LineageChain does not offer a notion of time and its provenance queries
do not support sliding windows.

An index to speed up temporal queries in Fabric was proposed in [9]. Account histories
are stored in blocks on the file system and the index consists of pointers stored in the
state database. The pointers identify blocks that contain transactions for a given account
whose timestamps are within a given interval. The index is meant for off-line analytics over
account histories. In contrast, our solution maintains an in-memory time window of the
effects of recent transactions for use by smart contracts. Furthermore, our solution includes a
notion of trusted time, whereas the index proposed in [9] was based on unverified transaction
timestamps.

Next, we review time-related concepts in permissionless blockchains such as Bitcoin and
Ethereum. In systems that use Proof of Work for consensus, block timestamps are usually
set by the miners when forming new blocks. Ethereum enforces a protocol to not accept a
new block if the timestamp provided by the miner is earlier than timestamp of the previous
block. Additionally, if a block timestamp is set in future, other mining nodes may not want
to build on that block, resulting in forks. Bitcoin’s protocol is to not propagate a block
whose miner-assigned timestamp is earlier than the median of the previous 11 blocks or more
than two hours into the future. We incorporate similar constraints in our solution: block
timestamps must be monotonically increasing, and they are based on verified transaction
timestamps that cannot be too far in the past or the future.

While protocols exist in permissionless systems to reject blocks with suspicious timestamps,
there has also been work describing attacks related to time manipulation [19],[4],[21],[3].
These works highlight vulnerabilities but do not propose solutions, except [18] – in that work,
focusing on Bitcoin, a verifier node requests a timestamping authority (TSA) to validate
block timestamps. The verifier node unpacks the block header, has the TSA timestamp the
block, and includes the hash of the data in a subsequent transaction that is included in the
next block. The next block header is again unpacked, timestamped by TSA and returned
to the verifier. As a result, any discrepancy in block time can be found by comparing the
block time (set by the miner) against the two timestamps obtained from the TSA. Our
solution avoids a timestamping authority and instead leverages the additional trust inherent
in permissioned blockchains by using client transaction timestamps (properly verified) as a
basis of trusted block timestamping.

Finally, other studies such as [13] and [10] argue that block sequence numbers are intrinsic
to blockchains and best represent the temporal progression of a blockchain. Reference [13]
specifically states that any reference to an external time oracle violates the decentralized
property of a blockchain network. Our solution avoids the use of external time oracles,
and, again, leverages the additional trust inherent in permissioned systems to assign block
timestamps.
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6 Conclusions

In this paper, we presented a method to support smart contracts with time-based logic
referencing current time or a time window of recent history. We showed that existing solutions
such as querying an external time oracle, break down for systems in which multiple peers
independently validate transactions. Instead, our solution assigns trusted block timestamps
at transaction validation time, which can then be used by all peers to reach consensus on
time-based transaction validity. To ensure that time-based smart contracts can be executed
efficiently, our solution also adds a cache database storing a window of recent transactions.
We implemented a proof-of-concept prototype, TimeFabric, on top of Hyperledger Fabric.
Experimental results show that our modifications add little overhead to the transaction
processing pipeline in Fabric and that time-based smart contracts can be executed efficiently
by fetching account histories from the cache.

In future work, we plan to investigate new applications that can leverage trusted time
and access to sliding windows of account histories enabled by TimeFabric, in areas such as
finance, retail, supply chains and online auctions.
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Abstract
One of the exciting recent developments in decentralized finance (DeFi) has been the development of
decentralized cryptocurrency exchanges that can autonomously handle conversion between different
cryptocurrencies. Decentralized exchange protocols such as Uniswap, Curve and other types of
Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained
to maintain at all times a mathematical relation to each other, defined by a given function or curve.
Examples of such functions are the constant-sum and constant-product AMMs. Existing systems
however suffer from several challenges. They require external arbitrageurs to restore the price of
tokens in the pool to match the market price. Such activities can potentially drain resources from
the liquidity pool. In particular dramatic market price changes can result in low liquidity with
respect to one or more of the assets and reduce the total value of the LP. We propose in this work a
new approach to constructing the AMM by proposing the idea of dynamic curves. It utilizes input
from a market price oracle to modify the mathematical relationship between the assets so that the
pool price continuously and automatically adjusts to be identical to the market price. This approach
eliminates arbitrage opportunities and, as we show through simulations, maintains liquidity in the
LP for all assets and the total value of the LP over a wide range of market prices.
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1 Introduction

Since the introduction of Bitcoin as the first peer-to-peer digital cash [15], the birth of
different cryptocurrencies has revolutionized the world of finance [21]. As of the time of
writing this article, it is estimated that the total cryptocurrency market capitalization is
more than $600 Billion, involving thousands of different coins [10].

Traditionally, cryptocurrency exchanges, which use an order book mechanism, are cent-
ralized. They suffer from concerns about the concentration of financial power [14] and being
prone to a single point of failure, resulting in a potentially significant loss of funds when
attacked [3]. Additionally, they also pose a liquidity problem for tokens with a smaller market
capitalization resulting in barriers to entry to the financial market [14].

On the other hand, it is difficult to implement the order book model in a decentralized
manner in the form of a blockchain smart contract [20] [3]. First, market makers will face
high gas costs to execute transactions, regardless of their sizes [20]. Second, it will require a
complex matching algorithm to support a variety of order types [3].
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Automated Market Makers such as Hanson’s logarithmic market scoring rules (LMSRs)
are widely used in traditional prediction markets to address the problem of low liquidity
and trading volume [13, 19]. An LMSR-based AMM is also used in decentralized prediction
markets such as Gnosis [12] and Augur [16]. Given certain similar market characteristics,
curve-based Automated Market Makers (AMM) were recently introduced to address the
challenges in a currency exchange context. They are currently one of the areas of decentralized
finance receiving the most attention. Instead of relying on the traditional market makers to
provide liquidity, decentralized exchanges utilizing curve-based AMMs, such as Bancor [14],
Uniswap [1], StableSwap/Curve [11] and many others implement a liquidity pool (LP) using
smart contracts on a blockchain. In this model, liquidity providers supply single or multiple
types of tokens to the designated liquidity pools, and traders exchange against the pools
of tokens instead of relying on order matching. The liquidity pool of these AMMs track a
pre-defined mathematical function (curve), thus determining how many tokens of one type
to provide to a trader in exchange for a certain amount of another. Curve-based AMMs
provide a continuous supply of liquidity compared to the order book model. Additionally,
depending on the mathematical function (curve) utilized, they can potentially allow for a
wide range of exchange prices. However, the token price within a liquidity pool for a given
AMM (which we refer to as the pool price) might be different from the market price.

When such a gap occurs on a decentralized AMM-based exchange, arbitrageurs may
have the opportunity to buy or sell tokens to set the pool price equal to the market price,
restoring equilibrium. However, in some cases, particularly when the market price changes
dramatically, the AMM-based LP could lose liquidity with respect to one or more of the assets.
We propose in this work a new approach to constructing the AMM by proposing the idea of
dynamic curves. It utilizes input from a market price oracle to modify the mathematical
relationship between the assets so that the pool price continuously and automatically adjusts
to be identical to the market price. This eliminates arbitrage opportunities and, as we show
through simulations, helps the AMM-based LP maintain liquidity and total value over a
wide range of market prices.

The following are the key contributions of this work:
We present a simple and unified mathematical and conceptual framework (in section 3)
describing existing curve-based AMMs and key metrics such as pool price, slippage,
divergence loss. It unifies much of what is known about them today. We believe this
section will be of independent interest to researchers starting out in this area.
We focus on the liquidity problem posed by arbitrageurs on existing AMMs, especially
when the market price for one of the assets becomes too high, causing asset depletion
and value reduction of the liquidity pool.
We present a new dynamic curve mechanism, which is general enough to be adapted to
any monotonic function/curve used on an AMM. This mechanism relies on an external
market price oracle and eliminates arbitrageurs. We illustrate the mechanism concretely
through generalizations of both constant-sum and constant-product models.
We present numerical simulations showing the clear advantages of our proposed dynamic
curve mechanism in a) retaining greater liquidity in the pool to benefit small traders, b)
retaining greater total value in the liquidity pool, and c) functioning effectively over a
much larger range of market prices.

The rest of this paper is organized as follows: we present and discuss relevant prior work
in section 2. In section 3 we give a unified treatment and definition of key concepts and
metrics relevant to decentralized AMMs. In section 4 we propose and describe our new
dynamic AMM models. In section 5 we present agent-based simulations and compare the
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performance of four different AMMs, including two static AMMs (Constant- Sum AMM,
Constant-Product AMM) and their two dynamic generalizations that we introduce in this
work. We present concluding comments in section 6.

2 Related Work

Bancor was the first DEX to implement the type of AMM called Bonding Curve, which
provides continuous liquidity [14]. In this type of AMM, there is a single token (Bancor
Network Token - BNT) used as an intermediate currency. There are separate pools for each
non-native currency to be traded against BNT. This model is a little different from the
arbitrary two-asset curve based AMM’s that we focus on in this paper (though there are
significant connections as well). In curve-based AMMs, any two currencies could be traded
directly against each other.

Borrowing solutions from the prediction market, Buterin [6] first proposed such a curve-
based AMM for a decentralized exchange. Specifically, he proposed the Constant Product
Curve. It is a convex curve that takes the form of x · y = k, where x and y are the total
supply of two tokens in a liquidity pool and k is the product constant. It was subsequently
implemented by Adams et al. [1] to create Uniswap.

With the shape of a downward-sloping straight line, the Constant Sum Curve [5][7] takes
the form of x + y = k. x and y are the total supply of two tokens in a liquidity pool, and k

is the sum constant. StableSwap/Curve [11] implemented an AMM curve that is a blend of
Constant Sum and Constant Product to provide continuous liquidity, price stability and a
built-in pool balancing mechanism.

Wang [19] proposed the Constant Ellipse Curve AMM with the general form of (x − a)2 +
(y − a)2 + b · xy = C, in which a and b are constant. One can choose between the concave
and the convex curve in the first quadrant [19]. Wang also presents the curve corresponding
to the LMSR rule.

Angeris and Chitra analyze such curve-based AMMs, which they refer to as constant
function market makers in the general case, i.e., with arbitrarily many tokens [2]. They
analyze various mathematical properties of such AMMs, including formulating the optimal
arbitrage by traders as a convex optimization problem.

2.1 Performance metrics for AMMs
Slippage and divergence loss are the two main factors contributing to the proposal and
adoption of different AMMs. The former is directly tied to the loss of traders, while the
latter is directly connected to the liquidity providers’ returns.

Slippage is the difference between the expected and actual trade execution price [18], and
in the AMM context, it is defined as the gap between the pool price before a trade and the
effective price obtained for the trade (see section 3.3). As long as token price changes during
trade, slippage incurs. In addition, when large trades happen compared to pool size, slippage
increases dramatically, resulting in lower trading profits [9].

Divergence loss, sometimes called impermanent loss, incurs when liquidity providers
withdraw liquidity with the presence of a difference in token price before and after trades [17].
If funds are pulled out during a large price swing, liquidity providers will suffer a loss of total
asset value, compared to simply holding the assets [8]. Given trades might affect token pool
prices and hence divergence loss, it is important to distinguish between regular and arbitrage
trading. Divergence loss due to arbitrage trading in closing pool and market price gap can
be mitigated by incorporating reliable oracles to protect liquidity providers [4].
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2.2 Slippage and Divergence Loss in AMMs
In Bancor, given the dynamic pool price by design, trades experience slippage. Divergence
loss incurs as the pool price is intrinsic and relies on arbitrageurs to close price gaps [14].
To protect liquidity providers, Bancor v2 integrates with Chainlink price oracle to reduce
divergence loss from arbitraging [4].

In Uniswap, similar to Bancor, the pool price is inherently unstable and the size of trades
in relation to pool size affects pool price to different extents. The larger the trades are, the
higher slippage and divergence loss can occur.

The constant-sum curve has zero slippage [5, 7] and no divergence loss (as we show in
section 3). However, because it has a fixed price and finite liquidity, it is only suitable
for stablecoins and could easily be depleted of one of its pool assets; for this reason, it is
primarily of theoretical interest [5, 7]. We use it as a baseline in our work.

StableSwap/Curve introduces an invariant that allows trading on a Constant Sum shaped
curve when the portfolio is relatively balanced and switch trading to a Constant Product
shaped curve when imbalanced [11]. Such a design allows much lower slippage and divergence
loss but is only applicable to stablecoins as the price of the desired trading range is always
close to 1.

The constant ellipse curve introduced by Wang [19] has a fixed price range compared
to that of a Constant Product Curve and thus a fixed range of slippage and divergence
loss. Wang also concludes that the LMSR curve would not be suitable for exchanges if the
numbers of the two tokens are not balanced in the liquidity pool.

The proposal in this paper presents an approach for AMM-based decentralized exchanges
using dynamic curves that eliminates the possibility of arbitrage and thus any divergence loss.
Instead, as we show, depending on the chosen family of curves, any slippage loss incurred by
traders is converted to an equivalent gain for the liquidity providers. A dynamic version of
the constant sum curve is a special case of our proposed solution, and in that case, there is
no slippage loss at all.

2.3 Simulation
There are two simulations conducted respectively on StableSwap/Curve and Uniswap v1 to
evaluate the DEXes performance. Egorov [11] suggests that StableSwap/Curve generates
312% APR and 0.06% fee per trade for liquidity providers with total liquidity of $30000
in DAI, USDC and USTD over 6 months. Angeris et al. [3] conduct an agent-based
simulation to test the hypothesis that Uniswap has a robust market mechanism with little
arbitrage opportunities under various market conditions. Three types of agents, including
profit-maximizing arbitrageurs, traders with exogenous motives and liquidity providers (both
active/Markowitz portfolio optimizing and passive), interact in the Uniswap and a stochastic
reference markets. The results show that Uniswap tracks market prices closely in different
market environments, and Constant Product Curves have the potential to be price oracles [3].

3 Background - AMM Curves and Key Metrics

Consider a liquidity pool with two coins, whose amounts are denoted by x and y. For
convenience, we will refer to these two tokens as X and Y . The AMM will allow the exchange
of one token for another following a given function f as follows:

y = f(x) (1)
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Figure 1 Illustration of Price Slippage on a Trade.

We refer to a plot of this function showing all allowed combinations of y and x as the AMM
curve. For example, there can be a constant product curve, which is y = k

x or a constant sum
curve, which would be denoted as y = c − x. It is generally considered reasonable for the
AMM curve to be convex and monotonically decreasing because this ensures (as we shall see
in the next section) that the price for the token X is monotonically decreasing as a function
of its availability in the pool, as should be expected of a typical supply curve.

3.1 Price Curve
Given an AMM curve, we can derive the price of the X token as follows:

pX(x, y) = − dy

dx
(2)

For example, for the constant product curve, we would get pX(x, y) = k
x2 and likewise for

the constant sum curve, we would get that pX(x, y) = 1.
A plot of pX(x, y) versus x shows how the price of token X varies with its supply in the

liquidity pool. Such a curve is referred to as a price curve. Note that if f(x) is monotonically
decreasing, then the price will always be positive, and if f(x) is convex, then the price curve
will be monotonically decreasing (as it should, being a type of supply curve).

3.2 Value of the pool
Given the definition of price, we can also assess the value of a given liquidity pool (measured
in terms of Y ) as follows:

Vp(x, y) = pX · x + y (3)

3.3 Slippage
For curve-based AMM, slippage is defined as the loss incurred by a trader due to the price
mismatch between the pool price at which the trade is initiated and the effective price
obtained during the trade. Let us consider a trader seeking to buy ∆x units of token X

when the LP is at a state (x0, y0). Say that on the curve, the new point after the trade
will be (xn, yn), where xn = x0 − ∆x. The amount that the trader would then need to put
into the LP will be ∆y = yn − y0. If the pool price at the original point was p0, then the
buyer would have to pay ∆y0 = p0∆x. The difference between ∆y and ∆y0 is defined as the
slippage loss S(x0, y0, ∆x). This is illustrated in Figure 1.
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Similarly, when the trader wishes to sell ∆x units of token X, the gap between the
∆y0 = p0∆x that the trader would like to receive and the ∆y = y0 − yn that he will actually
receive would be the slippage loss on the sale, which could be expressed as S(x0, y0, −∆x).

It is easy to see that on a constant sum AMM, the slippage loss is always 0 (because the
price is constant at all points on the curve, or, equivalently, the tangent line at any point
and the AMM curve always coincide). On any strictly convex curve, because the tangent line
is always below the curve, the slippage loss will always be a positive quantity (i.e., the trader
always incurs a penalty). The total slippage will be higher for a larger trade, and therefore
acts as a disincentive for a trader to make large trades with the LP.

3.4 Divergence Loss
In general, when a trade is made, the price may change, as the original pair of values (xo, yo)
moves to a new pair (xn, yn) following the curve, resulting in a new price pn. Accordingly,
the value of the liquidity pool could potentially decrease after a trade. This decrease as a
relative or percentage decrease is referred to as divergence loss δ, and can be formally defined
as follows:

δ = Vpn
(xn, yn) − Vpn

(x0, y0)
Vpn(x0, y0) (4)

We work out below the divergence loss for the two example curves.

3.4.1 Divergence loss for constant-product curve
For the constant product curve, recall that the following hold:

pn(xn, yn) = k

x2
n

=⇒ xn =

√
k

pn
(5)

yn = k

xn
=⇒ yn =

√
k · pn (6)

Similarly, we also have that xo =
√

k
po

and yo =
√

k · po.
Then we can define Vpn

(xn, yn) as follows:

Vpn(xn, yn) = pn · xn + yn

= pn

√
k

pn
+

√
k · pn

= 2
√

k · pn (7)

Likewise, we can define Vpn
(xo, yo) as follows:

Vpn(xo, yo) = pn · xo + yo

= pn

√
k

po
+

√
k · po (8)

Based on the above two equations, we can calculate the divergence loss as follows:

δ =
2
√

k · pn − pn

√
k
po

+
√

k · po

pn

√
k
po

+
√

k · po

(9)
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Denoting by ρ the ratio of the two prices pn

po
, the divergence loss for the constant product

curve can be simplified to:

δ =
2√

ρ − 1 − ρ

1 + ρ
(10)

This result is given in [17].

3.4.2 Divergence loss for constant-sum curve
Here the price is always 1. The two values can be written as follows:

Vpn
(xo, yo) = xo + yo = c

Vpn
(xn, yn) = xn + yn = c (11)

Since both are the same, the liquidity pool does not show any change in value, and thus
the divergence loss in this case will be 0.

4 Dynamic curves

In the prior work on AMMs, the curve has a fixed form and the exact shape is determined by
the initial total liquidity. E.g., in the constant product curve, the parameter k = xi · yi where
xi, yi are the initial amounts of the two tokens. In other words, the curve can only change if
the liquidity providers add/remove tokens from the pool, but not from trading activity.

Consider a trade that happens while the market price of token X remains unchanged at
some price pmkt. If the pool changes from the state (xo, yo) to a new state (xn, yn), then the
pool price would potentially change from p(xo, yo) to p(xn, yn) (assuming the curve is not
the constant-sum curve in which case there is no change in the pool price). This can result
in at least a temporary difference between the pool price and the market price. As we do in
the rest of the paper, we are assuming here that the pool’s capitalization is a relatively small
fraction of the total market capitalization of the underlying assets so that the market price
is not determined or affected by the pool price.

Another reason for a temporary difference between the pool price and the market price
could be that the market price changes due to some external market conditions. In either
case, traditionally, it is expected that these temporary differences will be erased by the action
of arbitrageurs, restoring the pool price back to the market price.

We propose a new mechanism that instead changes the curve every time the market
price changes in such a way as to ensure that the current pool price will always equal the
market price, without requiring action by external arbitrageurs. We illustrate below how this
new mechanism would generalize the constant-product and constant-sum curves – the same
approach can be used to generalize other smooth, decreasing, convex curves to the dynamic
setting as well.

4.1 Dynamic curve adjustment to generalize constant-sum
In this case, we can describe the market-price-tracking dynamic curve as follows:

pmkt(t) · (x(t) − a(t)) + y(t) = c (12)

Here, the parameter a(t) will also be adjusted dynamically when the market price changes,
to ensure that the new linear curve passes through the current pair of (x(t), y(t)) values. For
simplicity, say the market is initialized at some pair (x(0), y(0) at a market price of 1. Then
c could be set to be x(0) + y(0), with the original a(0) = 0.
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If the market shifts to a price of pmkt(t) at some time t and the liquidity pool at this
arbitrary time is (x(t), y(t)), then the value of a(t) will also be adjusted as follows to match
the above dynamic curve:

a(t) = x(t) − c − y(t)
pmkt(t)

(13)

Intuitively, this dynamic curve is always a line that has the slope corresponding to the
current market price and always passing through the current liqudity pair (x(t), y(t)).

Any trade that happens uses the current (instantaneous) curve. This allows the constant
sum AMM to flexibly support a wider range of market prices while still providing 0 slippage
compared to the original design (which allows only a fixed pool price and thus will not work
when the market price is dramatically different).

4.2 Dynamic curve adjustment to generalize constant-product
In this case, we can describe the market-price-tracking dynamic curve as follows:

w(t) · (x(t) − a(t)) · y(t) = k (14)

Or alternatively, as:

y(t) =
k

w(t)

x(t) − a(t) (15)

Note that in the above expressions, x(t) and y(t) must always be strictly positive; a(t)
must be constrained to be always strictly less than x(t); and w(t) should always be strictly
positive. The instantaneous price corresponding to the dynamic version of the constant
product curve can be defined as follows:

pX(t) = k

w(t) · 1
(x − a(t))2 (16)

When the market price changes, then both w(t) and a(t) will have to be changed in order
to (a) make sure that the new market price pmkt(t) matches pX(t) in equation (16) and (b)
x(t),y(t) match the curve described in equation (14). Thus we have to solve two equations
and two unknowns. The solution turns out to be the following :

a(t) = x(t) − y(t)
pmkt(t)

w(t) = k · pmkt(t)
y(t)2 (17)

We remark: the first expression above ensures the requirement mentioned above that
a(t) will remain strictly less than x(t) and the second expression ensures that w(t) is strictly
positive, so long as k, pmkt(t), x(t) and y(t) are all kept strictly positive at all.

4.3 From divergence loss to slippage gain
As with the static setting, there is no slippage loss for traders or divergence loss in the case
of dynamic constant sum AMM. This is because in the absence of any change in market
price, the pool price does not change during a trade.



B. Krishnamachari, Q. Feng, and E. Grippo 5:9

In the case of the dynamic constant product AMM, the traders do experience a slippage
loss just like in the static constant product AMM case. However, corresponding gain in
value is accrued entirely to the liquidity pool and could be referred to as a slippage gain
for the LP. Further, in the absence of change in the market price, because the pool price
does not change in the dynamic constant product curve, there is no divergence loss. Rather,
the LP benefits from each trade by the same slippage gain. Thus, the dynamic constant
product AMM provides a strict improvement from the LP’s perspective. This result, in fact,
generalizes to the dynamic version of any strictly convex curve, as we show below.

Proposition 1. In a dynamic AMM based on a family of monotonically decreasing y = f(x)
curves that are strictly convex, when the market price remains fixed, the LP will gain value
after each trade by an amount equivalent to the slippage loss of the trader.

Proof. Assuming the market price does not change during a trade, for any strictly convex
curve, the trader suffers a slippage loss at each trade. This is because the tangent to the curve
(whose slope is equal to the pool price and therefore the market price) lies below the curve
if it is strictly convex. If the trader buys X tokens, it will therefore have to give the pool
an amount of Y tokens that exceeds what it should have given at the current market price.
Likewise, if the trader sells X tokens, it will receive an amount of Y tokens less than what it
should have received at the current market price. The gap, in either case, corresponds to the
slippage loss. An equivalent amount is gained by the LP (when the trader buys X tokens,
the excess Y tokens are sent to the LP; when the trader sells X tokens, the gap corresponds
to Y tokens are withheld by the LP). There is no other source of divergence loss for the
LP because the pool price is readjusted to the market price immediately after execution of
the trade - its value increases precisely by the amount of slippage loss experienced by the
trader. ◀

5 Simulation Results

We conduct a number of simulations to compare the performance of four different AMM’s,
two static AMM’s (Constant-Sum AMM, Constant-Product AMM) and their two dynamic
generalizations that we have introduced in section 4. Although it is not practically imple-
mented due to its shortcomings, we nevertheless use the constant-sum AMM as a baseline to
highlight how the dynamic version of this scheme has advantages and may be more interesting
from a practical perspective.

5.1 Simulation Setup
In all our simulations, we consider the three parties involved:

The liquidity pool (LP).
A trader (which could be viewed as a collection or series of independent traders who are
merely interested in exchanging a relatively small amount of one of the tokens in the LP
for another).
An arbitrageur (a profit-maximizing agent responding specifically to any gaps in price
between the pool and the broader market; the arbitrageur in our simulation could also be
viewed as a collection or series of independent arbitragers).

Initially, all three parties have 1000 X tokens and 1000 Y tokens. At each time, a trader
makes a random trade (buy or sell X token) drawn from a standard normal distribution
(i.i.d. Gaussian process with zero mean and unit variance). The relatively small standard
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(a) X token holdings (b) Y token holdings (c) Total Value

(d) Market vs Pool Price (e) Collected Fees (f) Declined Trades

Figure 2 Simulation of a Static Constant Sum AMM.

deviation would result in relatively light trading or profit from transaction fees collected
from trades (that are not for the purpose of arbitrage). We use the exact same sequence of
random trades in evaluating all four AMM’s, to enable a fair comparison. We model the
market price as undergoing a linear increase from 0 to 10 over the course of 1000 time steps.

5.2 Static Constant Sum AMM
Figure 2 shows the results for the baseline static constant AMM. As shown by Figure 2(d),
the market price is initially below the pool price of 1, and after 100 time steps it switches to
being above the pool price. As can be seen from Figure 2 (a), (b), the arbitrageur initially
sells all its X tokens to buy up all of the Y tokens from the LP when the market price is
low, and then it buys up all the X tokens from the LP when the market price becomes
high. By draining the pool of its liquidity in one of its assets, to the pool’s disadvantage,
the arbitrageur effectively extracts most of the total value from the LP. Figure 2(c) shows
the total value of the LP, the arbitrageur and the trader measured in terms of the market
price at the end of the simulation (when X tokens are worth 10 Y tokens); it shows that the
LP ends up with only about a tenth of the value it had at the beginning of the simulation.
The LP does collect some fees from the arbitrageur (per Figure2(e)), but they are relatively
modest compared to the loss in value. Although the trader doesn’t suffer slippage loss in this
case, it can be disappointed and face a rejection of its requested trade whenever the pool
lacks sufficient tokens of the type sought by the trader (as shown in figure 2(f); this happens
particularly early on when the arbitrageur is able to cause the LP to be nearly empty of one
of its assets, then another, disrupting the LP’s ability to serve the regular trader).

5.3 Static Constant Product AMM
Figure 3 shows the results for the static constant product AMM. Here too, we can see from
Figures 3(a) and (b), the arbitrageur has a big impact on the token holdings of the LP.
Over time, as the market price goes up, the arbitrageur keeps buying X tokens from the
pool, equalizing the pool price and the market price. Eventually the arbitrageur has no
more Y tokens available (after which point the pool prize stays below the market price, see
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(a) X token holdings (b) Y token holdings (c) Total Value

(d) Cumulative Slippage (e) Market vs Pool Price (f) Collected Fees

Figure 3 Simulation of a Static Constant Product AMM.

(a) X token holdings (b) Y token holdings (c) Total Value

(d) Market vs Pool Price (e) Collected Fees (f) Declined Trades

Figure 4 Simulation of a Dynamic Constant Sum AMM.

Figure 3(e)). As shown in Figure 3(c), the total value of the LP reduces while that of the
arbitrageur grows until the latter runs out of Y tokens. In reality, however, a well-funded
arbitrageur would keep going until all X tokens are depleted from the LP, causing it to
lose even more value. The trader suffers some constant slippage on average in every trade,
as illustrated by the cumulative slippage showing a linear increasing trend in Figure 3(d).
There are again some collected fees from the arbitrageur and the regular trader, but here too
they pale in comparison to the loss in value caused by the arbitrageur’s actions. It is clear
that just like with the constant sum setting, in the long term, the LP is at the mercy of the
arbitrageur in the presence of significant market price volatility.
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(a) X token holdings (b) Y token holdings (c) Total Value

(d) Cumulative Slippage (e) Collected Fees (f) Market vs Pool Price

Figure 5 Simulation of a Dynamic Constant Product AMM.

5.4 Dynamic Constant Sum AMM
Figure 4 shows the results for the dynamic constant sum AMM. Here the arbitrageur is
eliminated as the pool price is automatically adjusted to the market price after each trade.
The total tokens of either types X or Y remain the same and the holdings of the LP and
the trader are mirror images of each other, as shown in Figures 4(a) and 4(b). The total
value of the LP doesn’t show a dramatic change other than random fluctuation caused by
stochastic trading on the pool. In the absence of aggressive arbitrage, the collected fees
are somewhat modest. As shown by Figure 4(e), the LP collects the expected amount of
fees (about 80 over 1000 trades, corresponding to the expectation of the absolute value of
a normal random variable). A noticeable fact about the dynamic constant sum AMM is
that the LP maintains more than 85% of the original amount of tokens of both types at all
times during the simulation. This is in sharp contrast to the liquidity problems observed in
the static settings (Figures 2 and 3). As a result, there are no declined trades, as evidenced
by Figure 4(f). Another related comment to be made here is that there is little incentive
for large trades in this dynamic AMM because the price is always pegged to the market
price and the transaction fees (being a constant percentage) impose a higher cost in absolute
terms on larger trades.

5.5 Dynamic Constant Product AMM
Finally, Figure 5 shows the results for the dynamic constant product AMM. Here too, the
arbitrageur is eliminated as the pool price is automatically adjusted to the market price after
each trade (see Figure 5(f)), and the X and Y tokens held by the trader and LP mirror each
other as shown in Figure 5(a) and Figure 5(b). The total value of the LP in Figure 5(c)
doesn’t show a dramatic change other than the fluctuation caused by stochastic trading on
the pool and a slight increase in value for the LP due to the slippage gain discussed earlier
in this paper. The corresponding cumulative slippage loss for the trader, equivalent to the
cumulative slippage gain for the LP, is shown in Figure 5(d), and it is this gain that results
in a slight positive drift in the LP value over time. As with the dynamic constant sum AMM,
in the absence of aggressive arbitrage, the LP collects the expected amount of fees from the
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regular trader (≈ 80 over 1000 trades, corresponding to the expectation of the absolute value
of a normal random variable). Compared to the dynamic constant sum setting, here, there
is even less incentive for any trader to execute a large trade as they would suffer a large
slippage loss in addition to paying transaction fees. Figure 5(a) and Figure 5(b) show that
the LP maintains high liquidity in both assets again – more than 90% of the original amount
of tokens of both types at all times during the simulation.

6 Conclusions

We have given a detailed introduction to curve-based AMMs for decentralized cryptocurrency
exchanges in this work. We introduced a new approach to operating such curve-based
AMM decentralized exchanges that utilizes an oracle with a real-time market price feed to
continuously and automatically adjust the pool price to the market price by dynamically
adjusting the curves over time. We showed that in such a dynamic AMM, there is no room
for arbitrage. The slippage loss for traders is converted to an equivalent gain for the liquidity
pool. The LP maintains a high level of liquidity in all assets and its total value stays fairly
stable over time. Such a dynamic AMM results in a slightly lower collection of transaction
fees due to the elimination of arbitrageurs, but this loss is more than offset by the ability to
maintain the total value of the pool.

From a practical perspective, implementing such a dynamic AMM requires the use of a
low-latency and accurate market price oracle. It would be of great interest to develop and
evaluate a real-world decentralized exchange based on this approach.
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