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Abstract
One of the exciting recent developments in decentralized finance (DeFi) has been the development of
decentralized cryptocurrency exchanges that can autonomously handle conversion between different
cryptocurrencies. Decentralized exchange protocols such as Uniswap, Curve and other types of
Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained
to maintain at all times a mathematical relation to each other, defined by a given function or curve.
Examples of such functions are the constant-sum and constant-product AMMs. Existing systems
however suffer from several challenges. They require external arbitrageurs to restore the price of
tokens in the pool to match the market price. Such activities can potentially drain resources from
the liquidity pool. In particular dramatic market price changes can result in low liquidity with
respect to one or more of the assets and reduce the total value of the LP. We propose in this work a
new approach to constructing the AMM by proposing the idea of dynamic curves. It utilizes input
from a market price oracle to modify the mathematical relationship between the assets so that the
pool price continuously and automatically adjusts to be identical to the market price. This approach
eliminates arbitrage opportunities and, as we show through simulations, maintains liquidity in the
LP for all assets and the total value of the LP over a wide range of market prices.
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1 Introduction

Since the introduction of Bitcoin as the first peer-to-peer digital cash [15], the birth of
different cryptocurrencies has revolutionized the world of finance [21]. As of the time of
writing this article, it is estimated that the total cryptocurrency market capitalization is
more than $600 Billion, involving thousands of different coins [10].

Traditionally, cryptocurrency exchanges, which use an order book mechanism, are cent-
ralized. They suffer from concerns about the concentration of financial power [14] and being
prone to a single point of failure, resulting in a potentially significant loss of funds when
attacked [3]. Additionally, they also pose a liquidity problem for tokens with a smaller market
capitalization resulting in barriers to entry to the financial market [14].

On the other hand, it is difficult to implement the order book model in a decentralized
manner in the form of a blockchain smart contract [20] [3]. First, market makers will face
high gas costs to execute transactions, regardless of their sizes [20]. Second, it will require a
complex matching algorithm to support a variety of order types [3].

© Bhaskar Krishnamachari, Qi Feng, and Eugenio Grippo;
licensed under Creative Commons License CC-BY 4.0

4th International Symposium on Foundations and Applications of Blockchain 2021 (FAB 2021).
Editors: Vincent Gramoli and Mohammad Sadoghi; Article No. 5; pp. 5:1–5:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bkrishna@usc.edu
mailto:fengqi@usc.edu
mailto:egrippo@usc.edu
https://doi.org/10.4230/OASIcs.FAB.2021.5
https://arxiv.org/abs/2101.02778
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Dynamic Curves for Decentrantralized Exchanges

Automated Market Makers such as Hanson’s logarithmic market scoring rules (LMSRs)
are widely used in traditional prediction markets to address the problem of low liquidity
and trading volume [13, 19]. An LMSR-based AMM is also used in decentralized prediction
markets such as Gnosis [12] and Augur [16]. Given certain similar market characteristics,
curve-based Automated Market Makers (AMM) were recently introduced to address the
challenges in a currency exchange context. They are currently one of the areas of decentralized
finance receiving the most attention. Instead of relying on the traditional market makers to
provide liquidity, decentralized exchanges utilizing curve-based AMMs, such as Bancor [14],
Uniswap [1], StableSwap/Curve [11] and many others implement a liquidity pool (LP) using
smart contracts on a blockchain. In this model, liquidity providers supply single or multiple
types of tokens to the designated liquidity pools, and traders exchange against the pools
of tokens instead of relying on order matching. The liquidity pool of these AMMs track a
pre-defined mathematical function (curve), thus determining how many tokens of one type
to provide to a trader in exchange for a certain amount of another. Curve-based AMMs
provide a continuous supply of liquidity compared to the order book model. Additionally,
depending on the mathematical function (curve) utilized, they can potentially allow for a
wide range of exchange prices. However, the token price within a liquidity pool for a given
AMM (which we refer to as the pool price) might be different from the market price.

When such a gap occurs on a decentralized AMM-based exchange, arbitrageurs may
have the opportunity to buy or sell tokens to set the pool price equal to the market price,
restoring equilibrium. However, in some cases, particularly when the market price changes
dramatically, the AMM-based LP could lose liquidity with respect to one or more of the assets.
We propose in this work a new approach to constructing the AMM by proposing the idea of
dynamic curves. It utilizes input from a market price oracle to modify the mathematical
relationship between the assets so that the pool price continuously and automatically adjusts
to be identical to the market price. This eliminates arbitrage opportunities and, as we show
through simulations, helps the AMM-based LP maintain liquidity and total value over a
wide range of market prices.

The following are the key contributions of this work:
We present a simple and unified mathematical and conceptual framework (in section 3)
describing existing curve-based AMMs and key metrics such as pool price, slippage,
divergence loss. It unifies much of what is known about them today. We believe this
section will be of independent interest to researchers starting out in this area.
We focus on the liquidity problem posed by arbitrageurs on existing AMMs, especially
when the market price for one of the assets becomes too high, causing asset depletion
and value reduction of the liquidity pool.
We present a new dynamic curve mechanism, which is general enough to be adapted to
any monotonic function/curve used on an AMM. This mechanism relies on an external
market price oracle and eliminates arbitrageurs. We illustrate the mechanism concretely
through generalizations of both constant-sum and constant-product models.
We present numerical simulations showing the clear advantages of our proposed dynamic
curve mechanism in a) retaining greater liquidity in the pool to benefit small traders, b)
retaining greater total value in the liquidity pool, and c) functioning effectively over a
much larger range of market prices.

The rest of this paper is organized as follows: we present and discuss relevant prior work
in section 2. In section 3 we give a unified treatment and definition of key concepts and
metrics relevant to decentralized AMMs. In section 4 we propose and describe our new
dynamic AMM models. In section 5 we present agent-based simulations and compare the
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performance of four different AMMs, including two static AMMs (Constant- Sum AMM,
Constant-Product AMM) and their two dynamic generalizations that we introduce in this
work. We present concluding comments in section 6.

2 Related Work

Bancor was the first DEX to implement the type of AMM called Bonding Curve, which
provides continuous liquidity [14]. In this type of AMM, there is a single token (Bancor
Network Token - BNT) used as an intermediate currency. There are separate pools for each
non-native currency to be traded against BNT. This model is a little different from the
arbitrary two-asset curve based AMM’s that we focus on in this paper (though there are
significant connections as well). In curve-based AMMs, any two currencies could be traded
directly against each other.

Borrowing solutions from the prediction market, Buterin [6] first proposed such a curve-
based AMM for a decentralized exchange. Specifically, he proposed the Constant Product
Curve. It is a convex curve that takes the form of x · y = k, where x and y are the total
supply of two tokens in a liquidity pool and k is the product constant. It was subsequently
implemented by Adams et al. [1] to create Uniswap.

With the shape of a downward-sloping straight line, the Constant Sum Curve [5][7] takes
the form of x + y = k. x and y are the total supply of two tokens in a liquidity pool, and k

is the sum constant. StableSwap/Curve [11] implemented an AMM curve that is a blend of
Constant Sum and Constant Product to provide continuous liquidity, price stability and a
built-in pool balancing mechanism.

Wang [19] proposed the Constant Ellipse Curve AMM with the general form of (x − a)2 +
(y − a)2 + b · xy = C, in which a and b are constant. One can choose between the concave
and the convex curve in the first quadrant [19]. Wang also presents the curve corresponding
to the LMSR rule.

Angeris and Chitra analyze such curve-based AMMs, which they refer to as constant
function market makers in the general case, i.e., with arbitrarily many tokens [2]. They
analyze various mathematical properties of such AMMs, including formulating the optimal
arbitrage by traders as a convex optimization problem.

2.1 Performance metrics for AMMs
Slippage and divergence loss are the two main factors contributing to the proposal and
adoption of different AMMs. The former is directly tied to the loss of traders, while the
latter is directly connected to the liquidity providers’ returns.

Slippage is the difference between the expected and actual trade execution price [18], and
in the AMM context, it is defined as the gap between the pool price before a trade and the
effective price obtained for the trade (see section 3.3). As long as token price changes during
trade, slippage incurs. In addition, when large trades happen compared to pool size, slippage
increases dramatically, resulting in lower trading profits [9].

Divergence loss, sometimes called impermanent loss, incurs when liquidity providers
withdraw liquidity with the presence of a difference in token price before and after trades [17].
If funds are pulled out during a large price swing, liquidity providers will suffer a loss of total
asset value, compared to simply holding the assets [8]. Given trades might affect token pool
prices and hence divergence loss, it is important to distinguish between regular and arbitrage
trading. Divergence loss due to arbitrage trading in closing pool and market price gap can
be mitigated by incorporating reliable oracles to protect liquidity providers [4].

FAB 2021
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2.2 Slippage and Divergence Loss in AMMs
In Bancor, given the dynamic pool price by design, trades experience slippage. Divergence
loss incurs as the pool price is intrinsic and relies on arbitrageurs to close price gaps [14].
To protect liquidity providers, Bancor v2 integrates with Chainlink price oracle to reduce
divergence loss from arbitraging [4].

In Uniswap, similar to Bancor, the pool price is inherently unstable and the size of trades
in relation to pool size affects pool price to different extents. The larger the trades are, the
higher slippage and divergence loss can occur.

The constant-sum curve has zero slippage [5, 7] and no divergence loss (as we show in
section 3). However, because it has a fixed price and finite liquidity, it is only suitable
for stablecoins and could easily be depleted of one of its pool assets; for this reason, it is
primarily of theoretical interest [5, 7]. We use it as a baseline in our work.

StableSwap/Curve introduces an invariant that allows trading on a Constant Sum shaped
curve when the portfolio is relatively balanced and switch trading to a Constant Product
shaped curve when imbalanced [11]. Such a design allows much lower slippage and divergence
loss but is only applicable to stablecoins as the price of the desired trading range is always
close to 1.

The constant ellipse curve introduced by Wang [19] has a fixed price range compared
to that of a Constant Product Curve and thus a fixed range of slippage and divergence
loss. Wang also concludes that the LMSR curve would not be suitable for exchanges if the
numbers of the two tokens are not balanced in the liquidity pool.

The proposal in this paper presents an approach for AMM-based decentralized exchanges
using dynamic curves that eliminates the possibility of arbitrage and thus any divergence loss.
Instead, as we show, depending on the chosen family of curves, any slippage loss incurred by
traders is converted to an equivalent gain for the liquidity providers. A dynamic version of
the constant sum curve is a special case of our proposed solution, and in that case, there is
no slippage loss at all.

2.3 Simulation
There are two simulations conducted respectively on StableSwap/Curve and Uniswap v1 to
evaluate the DEXes performance. Egorov [11] suggests that StableSwap/Curve generates
312% APR and 0.06% fee per trade for liquidity providers with total liquidity of $30000
in DAI, USDC and USTD over 6 months. Angeris et al. [3] conduct an agent-based
simulation to test the hypothesis that Uniswap has a robust market mechanism with little
arbitrage opportunities under various market conditions. Three types of agents, including
profit-maximizing arbitrageurs, traders with exogenous motives and liquidity providers (both
active/Markowitz portfolio optimizing and passive), interact in the Uniswap and a stochastic
reference markets. The results show that Uniswap tracks market prices closely in different
market environments, and Constant Product Curves have the potential to be price oracles [3].

3 Background - AMM Curves and Key Metrics

Consider a liquidity pool with two coins, whose amounts are denoted by x and y. For
convenience, we will refer to these two tokens as X and Y . The AMM will allow the exchange
of one token for another following a given function f as follows:

y = f(x) (1)
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Figure 1 Illustration of Price Slippage on a Trade.

We refer to a plot of this function showing all allowed combinations of y and x as the AMM
curve. For example, there can be a constant product curve, which is y = k

x or a constant sum
curve, which would be denoted as y = c − x. It is generally considered reasonable for the
AMM curve to be convex and monotonically decreasing because this ensures (as we shall see
in the next section) that the price for the token X is monotonically decreasing as a function
of its availability in the pool, as should be expected of a typical supply curve.

3.1 Price Curve
Given an AMM curve, we can derive the price of the X token as follows:

pX(x, y) = − dy

dx
(2)

For example, for the constant product curve, we would get pX(x, y) = k
x2 and likewise for

the constant sum curve, we would get that pX(x, y) = 1.
A plot of pX(x, y) versus x shows how the price of token X varies with its supply in the

liquidity pool. Such a curve is referred to as a price curve. Note that if f(x) is monotonically
decreasing, then the price will always be positive, and if f(x) is convex, then the price curve
will be monotonically decreasing (as it should, being a type of supply curve).

3.2 Value of the pool
Given the definition of price, we can also assess the value of a given liquidity pool (measured
in terms of Y ) as follows:

Vp(x, y) = pX · x + y (3)

3.3 Slippage
For curve-based AMM, slippage is defined as the loss incurred by a trader due to the price
mismatch between the pool price at which the trade is initiated and the effective price
obtained during the trade. Let us consider a trader seeking to buy ∆x units of token X

when the LP is at a state (x0, y0). Say that on the curve, the new point after the trade
will be (xn, yn), where xn = x0 − ∆x. The amount that the trader would then need to put
into the LP will be ∆y = yn − y0. If the pool price at the original point was p0, then the
buyer would have to pay ∆y0 = p0∆x. The difference between ∆y and ∆y0 is defined as the
slippage loss S(x0, y0, ∆x). This is illustrated in Figure 1.

FAB 2021
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Similarly, when the trader wishes to sell ∆x units of token X, the gap between the
∆y0 = p0∆x that the trader would like to receive and the ∆y = y0 − yn that he will actually
receive would be the slippage loss on the sale, which could be expressed as S(x0, y0, −∆x).

It is easy to see that on a constant sum AMM, the slippage loss is always 0 (because the
price is constant at all points on the curve, or, equivalently, the tangent line at any point
and the AMM curve always coincide). On any strictly convex curve, because the tangent line
is always below the curve, the slippage loss will always be a positive quantity (i.e., the trader
always incurs a penalty). The total slippage will be higher for a larger trade, and therefore
acts as a disincentive for a trader to make large trades with the LP.

3.4 Divergence Loss
In general, when a trade is made, the price may change, as the original pair of values (xo, yo)
moves to a new pair (xn, yn) following the curve, resulting in a new price pn. Accordingly,
the value of the liquidity pool could potentially decrease after a trade. This decrease as a
relative or percentage decrease is referred to as divergence loss δ, and can be formally defined
as follows:

δ = Vpn
(xn, yn) − Vpn

(x0, y0)
Vpn(x0, y0) (4)

We work out below the divergence loss for the two example curves.

3.4.1 Divergence loss for constant-product curve
For the constant product curve, recall that the following hold:

pn(xn, yn) = k

x2
n

=⇒ xn =

√
k

pn
(5)

yn = k

xn
=⇒ yn =

√
k · pn (6)

Similarly, we also have that xo =
√

k
po

and yo =
√

k · po.
Then we can define Vpn

(xn, yn) as follows:

Vpn(xn, yn) = pn · xn + yn

= pn

√
k

pn
+

√
k · pn

= 2
√

k · pn (7)

Likewise, we can define Vpn
(xo, yo) as follows:

Vpn(xo, yo) = pn · xo + yo

= pn

√
k

po
+

√
k · po (8)

Based on the above two equations, we can calculate the divergence loss as follows:

δ =
2
√

k · pn − pn

√
k
po

+
√

k · po

pn

√
k
po

+
√

k · po

(9)
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Denoting by ρ the ratio of the two prices pn

po
, the divergence loss for the constant product

curve can be simplified to:

δ =
2√

ρ − 1 − ρ

1 + ρ
(10)

This result is given in [17].

3.4.2 Divergence loss for constant-sum curve
Here the price is always 1. The two values can be written as follows:

Vpn
(xo, yo) = xo + yo = c

Vpn
(xn, yn) = xn + yn = c (11)

Since both are the same, the liquidity pool does not show any change in value, and thus
the divergence loss in this case will be 0.

4 Dynamic curves

In the prior work on AMMs, the curve has a fixed form and the exact shape is determined by
the initial total liquidity. E.g., in the constant product curve, the parameter k = xi · yi where
xi, yi are the initial amounts of the two tokens. In other words, the curve can only change if
the liquidity providers add/remove tokens from the pool, but not from trading activity.

Consider a trade that happens while the market price of token X remains unchanged at
some price pmkt. If the pool changes from the state (xo, yo) to a new state (xn, yn), then the
pool price would potentially change from p(xo, yo) to p(xn, yn) (assuming the curve is not
the constant-sum curve in which case there is no change in the pool price). This can result
in at least a temporary difference between the pool price and the market price. As we do in
the rest of the paper, we are assuming here that the pool’s capitalization is a relatively small
fraction of the total market capitalization of the underlying assets so that the market price
is not determined or affected by the pool price.

Another reason for a temporary difference between the pool price and the market price
could be that the market price changes due to some external market conditions. In either
case, traditionally, it is expected that these temporary differences will be erased by the action
of arbitrageurs, restoring the pool price back to the market price.

We propose a new mechanism that instead changes the curve every time the market
price changes in such a way as to ensure that the current pool price will always equal the
market price, without requiring action by external arbitrageurs. We illustrate below how this
new mechanism would generalize the constant-product and constant-sum curves – the same
approach can be used to generalize other smooth, decreasing, convex curves to the dynamic
setting as well.

4.1 Dynamic curve adjustment to generalize constant-sum
In this case, we can describe the market-price-tracking dynamic curve as follows:

pmkt(t) · (x(t) − a(t)) + y(t) = c (12)

Here, the parameter a(t) will also be adjusted dynamically when the market price changes,
to ensure that the new linear curve passes through the current pair of (x(t), y(t)) values. For
simplicity, say the market is initialized at some pair (x(0), y(0) at a market price of 1. Then
c could be set to be x(0) + y(0), with the original a(0) = 0.

FAB 2021
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If the market shifts to a price of pmkt(t) at some time t and the liquidity pool at this
arbitrary time is (x(t), y(t)), then the value of a(t) will also be adjusted as follows to match
the above dynamic curve:

a(t) = x(t) − c − y(t)
pmkt(t)

(13)

Intuitively, this dynamic curve is always a line that has the slope corresponding to the
current market price and always passing through the current liqudity pair (x(t), y(t)).

Any trade that happens uses the current (instantaneous) curve. This allows the constant
sum AMM to flexibly support a wider range of market prices while still providing 0 slippage
compared to the original design (which allows only a fixed pool price and thus will not work
when the market price is dramatically different).

4.2 Dynamic curve adjustment to generalize constant-product
In this case, we can describe the market-price-tracking dynamic curve as follows:

w(t) · (x(t) − a(t)) · y(t) = k (14)

Or alternatively, as:

y(t) =
k

w(t)

x(t) − a(t) (15)

Note that in the above expressions, x(t) and y(t) must always be strictly positive; a(t)
must be constrained to be always strictly less than x(t); and w(t) should always be strictly
positive. The instantaneous price corresponding to the dynamic version of the constant
product curve can be defined as follows:

pX(t) = k

w(t) · 1
(x − a(t))2 (16)

When the market price changes, then both w(t) and a(t) will have to be changed in order
to (a) make sure that the new market price pmkt(t) matches pX(t) in equation (16) and (b)
x(t),y(t) match the curve described in equation (14). Thus we have to solve two equations
and two unknowns. The solution turns out to be the following :

a(t) = x(t) − y(t)
pmkt(t)

w(t) = k · pmkt(t)
y(t)2 (17)

We remark: the first expression above ensures the requirement mentioned above that
a(t) will remain strictly less than x(t) and the second expression ensures that w(t) is strictly
positive, so long as k, pmkt(t), x(t) and y(t) are all kept strictly positive at all.

4.3 From divergence loss to slippage gain
As with the static setting, there is no slippage loss for traders or divergence loss in the case
of dynamic constant sum AMM. This is because in the absence of any change in market
price, the pool price does not change during a trade.
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In the case of the dynamic constant product AMM, the traders do experience a slippage
loss just like in the static constant product AMM case. However, corresponding gain in
value is accrued entirely to the liquidity pool and could be referred to as a slippage gain
for the LP. Further, in the absence of change in the market price, because the pool price
does not change in the dynamic constant product curve, there is no divergence loss. Rather,
the LP benefits from each trade by the same slippage gain. Thus, the dynamic constant
product AMM provides a strict improvement from the LP’s perspective. This result, in fact,
generalizes to the dynamic version of any strictly convex curve, as we show below.

Proposition 1. In a dynamic AMM based on a family of monotonically decreasing y = f(x)
curves that are strictly convex, when the market price remains fixed, the LP will gain value
after each trade by an amount equivalent to the slippage loss of the trader.

Proof. Assuming the market price does not change during a trade, for any strictly convex
curve, the trader suffers a slippage loss at each trade. This is because the tangent to the curve
(whose slope is equal to the pool price and therefore the market price) lies below the curve
if it is strictly convex. If the trader buys X tokens, it will therefore have to give the pool
an amount of Y tokens that exceeds what it should have given at the current market price.
Likewise, if the trader sells X tokens, it will receive an amount of Y tokens less than what it
should have received at the current market price. The gap, in either case, corresponds to the
slippage loss. An equivalent amount is gained by the LP (when the trader buys X tokens,
the excess Y tokens are sent to the LP; when the trader sells X tokens, the gap corresponds
to Y tokens are withheld by the LP). There is no other source of divergence loss for the
LP because the pool price is readjusted to the market price immediately after execution of
the trade - its value increases precisely by the amount of slippage loss experienced by the
trader. ◀

5 Simulation Results

We conduct a number of simulations to compare the performance of four different AMM’s,
two static AMM’s (Constant-Sum AMM, Constant-Product AMM) and their two dynamic
generalizations that we have introduced in section 4. Although it is not practically imple-
mented due to its shortcomings, we nevertheless use the constant-sum AMM as a baseline to
highlight how the dynamic version of this scheme has advantages and may be more interesting
from a practical perspective.

5.1 Simulation Setup
In all our simulations, we consider the three parties involved:

The liquidity pool (LP).
A trader (which could be viewed as a collection or series of independent traders who are
merely interested in exchanging a relatively small amount of one of the tokens in the LP
for another).
An arbitrageur (a profit-maximizing agent responding specifically to any gaps in price
between the pool and the broader market; the arbitrageur in our simulation could also be
viewed as a collection or series of independent arbitragers).

Initially, all three parties have 1000 X tokens and 1000 Y tokens. At each time, a trader
makes a random trade (buy or sell X token) drawn from a standard normal distribution
(i.i.d. Gaussian process with zero mean and unit variance). The relatively small standard

FAB 2021
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(a) X token holdings (b) Y token holdings (c) Total Value

(d) Market vs Pool Price (e) Collected Fees (f) Declined Trades

Figure 2 Simulation of a Static Constant Sum AMM.

deviation would result in relatively light trading or profit from transaction fees collected
from trades (that are not for the purpose of arbitrage). We use the exact same sequence of
random trades in evaluating all four AMM’s, to enable a fair comparison. We model the
market price as undergoing a linear increase from 0 to 10 over the course of 1000 time steps.

5.2 Static Constant Sum AMM
Figure 2 shows the results for the baseline static constant AMM. As shown by Figure 2(d),
the market price is initially below the pool price of 1, and after 100 time steps it switches to
being above the pool price. As can be seen from Figure 2 (a), (b), the arbitrageur initially
sells all its X tokens to buy up all of the Y tokens from the LP when the market price is
low, and then it buys up all the X tokens from the LP when the market price becomes
high. By draining the pool of its liquidity in one of its assets, to the pool’s disadvantage,
the arbitrageur effectively extracts most of the total value from the LP. Figure 2(c) shows
the total value of the LP, the arbitrageur and the trader measured in terms of the market
price at the end of the simulation (when X tokens are worth 10 Y tokens); it shows that the
LP ends up with only about a tenth of the value it had at the beginning of the simulation.
The LP does collect some fees from the arbitrageur (per Figure2(e)), but they are relatively
modest compared to the loss in value. Although the trader doesn’t suffer slippage loss in this
case, it can be disappointed and face a rejection of its requested trade whenever the pool
lacks sufficient tokens of the type sought by the trader (as shown in figure 2(f); this happens
particularly early on when the arbitrageur is able to cause the LP to be nearly empty of one
of its assets, then another, disrupting the LP’s ability to serve the regular trader).

5.3 Static Constant Product AMM
Figure 3 shows the results for the static constant product AMM. Here too, we can see from
Figures 3(a) and (b), the arbitrageur has a big impact on the token holdings of the LP.
Over time, as the market price goes up, the arbitrageur keeps buying X tokens from the
pool, equalizing the pool price and the market price. Eventually the arbitrageur has no
more Y tokens available (after which point the pool prize stays below the market price, see
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(a) X token holdings (b) Y token holdings (c) Total Value

(d) Cumulative Slippage (e) Market vs Pool Price (f) Collected Fees

Figure 3 Simulation of a Static Constant Product AMM.

(a) X token holdings (b) Y token holdings (c) Total Value

(d) Market vs Pool Price (e) Collected Fees (f) Declined Trades

Figure 4 Simulation of a Dynamic Constant Sum AMM.

Figure 3(e)). As shown in Figure 3(c), the total value of the LP reduces while that of the
arbitrageur grows until the latter runs out of Y tokens. In reality, however, a well-funded
arbitrageur would keep going until all X tokens are depleted from the LP, causing it to
lose even more value. The trader suffers some constant slippage on average in every trade,
as illustrated by the cumulative slippage showing a linear increasing trend in Figure 3(d).
There are again some collected fees from the arbitrageur and the regular trader, but here too
they pale in comparison to the loss in value caused by the arbitrageur’s actions. It is clear
that just like with the constant sum setting, in the long term, the LP is at the mercy of the
arbitrageur in the presence of significant market price volatility.

FAB 2021
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Figure 5 Simulation of a Dynamic Constant Product AMM.

5.4 Dynamic Constant Sum AMM
Figure 4 shows the results for the dynamic constant sum AMM. Here the arbitrageur is
eliminated as the pool price is automatically adjusted to the market price after each trade.
The total tokens of either types X or Y remain the same and the holdings of the LP and
the trader are mirror images of each other, as shown in Figures 4(a) and 4(b). The total
value of the LP doesn’t show a dramatic change other than random fluctuation caused by
stochastic trading on the pool. In the absence of aggressive arbitrage, the collected fees
are somewhat modest. As shown by Figure 4(e), the LP collects the expected amount of
fees (about 80 over 1000 trades, corresponding to the expectation of the absolute value of
a normal random variable). A noticeable fact about the dynamic constant sum AMM is
that the LP maintains more than 85% of the original amount of tokens of both types at all
times during the simulation. This is in sharp contrast to the liquidity problems observed in
the static settings (Figures 2 and 3). As a result, there are no declined trades, as evidenced
by Figure 4(f). Another related comment to be made here is that there is little incentive
for large trades in this dynamic AMM because the price is always pegged to the market
price and the transaction fees (being a constant percentage) impose a higher cost in absolute
terms on larger trades.

5.5 Dynamic Constant Product AMM
Finally, Figure 5 shows the results for the dynamic constant product AMM. Here too, the
arbitrageur is eliminated as the pool price is automatically adjusted to the market price after
each trade (see Figure 5(f)), and the X and Y tokens held by the trader and LP mirror each
other as shown in Figure 5(a) and Figure 5(b). The total value of the LP in Figure 5(c)
doesn’t show a dramatic change other than the fluctuation caused by stochastic trading on
the pool and a slight increase in value for the LP due to the slippage gain discussed earlier
in this paper. The corresponding cumulative slippage loss for the trader, equivalent to the
cumulative slippage gain for the LP, is shown in Figure 5(d), and it is this gain that results
in a slight positive drift in the LP value over time. As with the dynamic constant sum AMM,
in the absence of aggressive arbitrage, the LP collects the expected amount of fees from the
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regular trader (≈ 80 over 1000 trades, corresponding to the expectation of the absolute value
of a normal random variable). Compared to the dynamic constant sum setting, here, there
is even less incentive for any trader to execute a large trade as they would suffer a large
slippage loss in addition to paying transaction fees. Figure 5(a) and Figure 5(b) show that
the LP maintains high liquidity in both assets again – more than 90% of the original amount
of tokens of both types at all times during the simulation.

6 Conclusions

We have given a detailed introduction to curve-based AMMs for decentralized cryptocurrency
exchanges in this work. We introduced a new approach to operating such curve-based
AMM decentralized exchanges that utilizes an oracle with a real-time market price feed to
continuously and automatically adjust the pool price to the market price by dynamically
adjusting the curves over time. We showed that in such a dynamic AMM, there is no room
for arbitrage. The slippage loss for traders is converted to an equivalent gain for the liquidity
pool. The LP maintains a high level of liquidity in all assets and its total value stays fairly
stable over time. Such a dynamic AMM results in a slightly lower collection of transaction
fees due to the elimination of arbitrageurs, but this loss is more than offset by the ability to
maintain the total value of the pool.

From a practical perspective, implementing such a dynamic AMM requires the use of a
low-latency and accurate market price oracle. It would be of great interest to develop and
evaluate a real-world decentralized exchange based on this approach.
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