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Preface

This volume contains the full papers presented at the 27th International Workshop on Cellular
Automata (CA) and Discrete Complex Systems (DCS), AUTOMATA 2021.

AUTOMATA is an annual series established in 1995 as a collaboration forum between
researchers in CA and DCS, and as the official annual event of the International Federation
for Information Processing (IFIP), Technical Committee 1, on Foundations of Computer
Science, Working Group 5, on Cellular Automata and Discrete Complex Systems. Current
topics of the conference include, but are not limited to, dynamical, topological, ergodic and
algebraic aspects of CA and DCS, algorithmic and complexity issues, emergent properties,
formal languages, symbolic dynamics, tilings, models of parallelism and distributed systems,
timing schemes, synchronous versus asynchronous models, phenomenological descriptions,
scientific modeling, and practical applications.

This year’s event takes place on July 12th-14th, 2021, in a hybrid mode, both online and
at the Centre International de Rencontres Mathématiques (CIRM) in Marseille, France. It is
colocated with the Workshop on Automata Networks, and both events are the opportunity
to jointly celebrate Eric Goles’s 70th birthday, from Universidad Adolfo Ibañez, Chile, who
is a prominent actor in both communities. More information about the conference can be
found at

https://automata2021.lis-lab.fr/.
This volume includes four papers written by the the invited speakers of the conference:

Maximilien Gadouleau (Durham University, UK);
Luca Priogioniero (Università degli Studi di Milano, Italy);
Siamak Taati (American University of Beirut, Lebanon);
Ilkka Törmä (University of Turku, Finland).

We sincerely thank them for accepting the invitation and their very valuable contributions.
We received nine submissions as full papers to the conference. Each submission was

reviewed by three members of the Program Committee. Based on these reviews and on an
open discussion, eight papers were accepted to be presented at the conference as full papers
and to be included in this volume. We thank all authors for their contributions and hard
work that made this event possible.

The conference program also involved short presentations of exploratory papers that are
not included in these proceedings, and we wish to extend our thanks to the authors of the
exploratory submissions.

We are indebted to the Steering Committee, Program Committee, and additional reviewers
for their valuable help during the last months. We are very grateful for the support of the
Local Organizing Committee. Finally, we acknowledge the excellent cooperation from the
OASIcs team for their help in producing this volume in time for the conference.
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Dynamical Properties of Disjunctive Boolean
Networks
Maximilien Gadouleau !

Durham University, UK

Abstract
A Boolean network is a mapping f : {0, 1}n → {0, 1}n, which can be used to model networks
of n interacting entities, each having a local Boolean state that evolves over time according to a
deterministic function of the current configuration of states. In this paper, we are interested in
disjunctive networks, where each local function is simply the disjunction of a set of variables. As
such, this network is somewhat homogeneous, though the number of variables may vary from entity
to entity, thus yielding a generalised cellular automaton. The aim of this paper is to review some of
the main results, derive some additional fundamental results, and highlight some open problems
on the dynamics of disjunctive networks. We first review the different defining characteristics of
disjunctive networks and several ways of representing them using graphs, Boolean matrices, or
binary relations. We then focus on three dynamical properties of disjunctive networks: their image
points, their periodic points, and their fixed points. For each class of points, we review how they
can be characterised and study how many they could be. The paper finishes with different avenues
for future work on the dynamics of disjunctive networks and how to generalise them.

2012 ACM Subject Classification Applied computing → Biological networks; Hardware → Quantum
dots and cellular automata

Keywords and phrases Boolean networks, disjunction, conjunction, fixed points, rank

Digital Object Identifier 10.4230/OASIcs.AUTOMATA.2021.1

Category Invited Talk

1 Introduction

Consider a finite network of n entities 1 ≤ i ≤ n, where each has a Boolean state xi ∈ {0, 1}
that evolves over time according to a deterministic rule fi(x1, . . . , xn) : {0, 1}n → {0, 1}.
The evolution of the configuration of states x = (x1, . . . , xn) is fully characterised by the
global update function f = (f1, . . . , fn) : {0, 1}n → {0, 1}n. Such a function is called a
Boolean network. Boolean networks are a versatile model and as such have been used to
represent different networks, such as gene networks, neural networks, social networks, or
network coding (see [16] and references therein for the applications of Boolean networks).

Cellular automata form a major model of discrete interactions. The network of entities
(sometimes referred to as cells) is homogeneous, in the sense that the local update functions
are all similar, and even though the number of cells is usually infinite, the interactions
are only local. Cellular automata have attracted a huge amount of interest, both for their
theoretical properties and their numerous applications (see [24, 27]).

Boolean networks and Cellular automata share some common typical characteristics,
such as discrete space, discrete time, and finite state values for each entity (though some
generalisations do not share all those characteristics). However, they differ in many aspects.
Boolean networks are very general, with heterogeneous network topology, different local func-
tions, finite number of entities, and various update schedules (synchronous or asynchronous).
Cellular automata are much more restricted, with regular topology (usually a lattice Zd),
the same local update function everywhere, an infinite number of cells, and typically parallel
updates.

© Maximilien Gadouleau;
licensed under Creative Commons License CC-BY 4.0

27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA
2021).
Editors: Alonso Castillo-Ramirez, Pierre Guillon, and Kévin Perrot; Article No. 1; pp. 1:1–1:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.r.gadouleau@durham.ac.uk
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Disjunctive Boolean Networks

There are many ways to possibly bridge the gap between these two models, by either
relaxing some properties of CA or focusing on specific Boolean networks. In this paper, we
are interested in a special class of Boolean networks where the local functions fi are “the
same” everywhere, despite different cells interacting with more or less cells. In particular, we
focus on disjunctive networks, where the local function at every entity is the disjunction of
some variables:

fi(x) =
∨

j∈N(i)

xj .

The set of variables N(i) does depend on the entity and its size may vary.
Since disjunctions are such special Boolean functions, disjunctive networks can be char-

acterised in different ways. We first review these characterisations in Section 2.2. Also,
disjunctive networks can be represented using graphs, Boolean matrices, or binary relations;
again, we review these representations in Section 2.3.

The dynamical properties of Boolean networks have been thoroughly studied, see [3, 6, 7,
17, 20, 22, 31] for example. Due to their different representations, disjunctive networks have
attracted interest inside and outside of the Boolean network community. For instance, some
early work on binary relations and Boolean matrices classifies convergent and idempotent
disjunctive networks [10, 30, 35]. The main interests in the dynamical properties of disjunctive
networks include the transient length [21], the characterisation of their cycle structure [21, 28],
and in particular determining when they present no oscillations [1, 28]. It is worth noting
that some results on disjunctive networks are included in works that consider related or more
general classes of Boolean networks, e.g. [2, 3, 5, 7]. Even though in this paper we focus on
the synchronous dynamics (i.e. parallel updates), the reader interested in the asynchronous
dynamics of disjunctive networks is directed to [18].

In this paper, we are interested in the following three dynamical features of a disjunctive
network. An image point of f is a reachable state; a periodic point is a recurring state ;
and a fixed point is a stationary state. We first give characterisations of their sets of image
points, periodic points, and fixed points, respectively in Section 3.1. We then consider the
number of image, periodic, and fixed points of disjunctive networks. We prove some results
on the possible values these numbers can take in Section 3.2.

In this paper, we survey some of the main results on disjunctive networks, obtain some new
results, and highlight some open problems in that area. The rest of this paper is organised
as follows. Section 2 defines disjunctive networks, gives different characterisations of such
networks, and illustrates how they can be represented. In Section 3, we study the dynamical
properties of disjunctive networks when updated synchronously, with a focus on image points,
periodic points, and fixed points. Finally, some possible avenues for generalisations and
future work are given in Section 4.

2 Elementary properties

2.1 Definition
We denote the Boolean alphabet as B = {0, 1}, which we endow with the natural order 0 < 1.
For any x, y ∈ B, their disjunction is simply x ∨ y = max{x, y}. The disjunction operation
satisfies the following properties (for all x, y, z ∈ Bn):

It is associative: x ∨ (y ∨ z) = (x ∨ y) ∨ z.
It is commutative: x ∨ y = y ∨ x.
It has an identity element, namely 0: x ∨ 0 = 0 ∨ x = x.
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In view of these properties, we can generalise disjunction to an arbitrary number of Boolean
variables. Let S be a finite set and consider a configuration x = (xs : s ∈ S) ∈ BS , then

∨
s∈S

xs =
{

1 if ∃t ∈ S : xt = 1
0 otherwise.

In particular, if S = ∅, then
∨

s∈S xs = 0; if S = {s}, then
∨

s∈S xs = xs.
The conjunction of x, y ∈ B is x ∧ y = min{x, y}. Since conjunction and disjunction are

dual, i.e. they are equivalent up to re-ordering 0 and 1, all the results we shall state about
disjunction can be translated to apply to conjunction as well. In particular, we can define
the conjunction of an arbitrary set of variables. For our purposes, it will be useful to group
disjunction and conjunction under one common name. As such, we say that an operation is
a junction if it is either a disjunction or a conjunction.

A point x ∈ Bn is called a configuration, which we shall denote as x = (x1, . . . , xn) where
xi ∈ B for all i ∈ [n] := {1, . . . , n}. We introduce some further notation for configurations:
we write x = (xi, x−i) where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Bn−1, and we define the
unit configuration ej to satisfy ej

j = 1, ej
−j = 0−j . The Hamming distance between x, y ∈ Bn

is the number of coordinates they disagree: dH(x, y) = |{i ∈ [n] : xi ̸= yi}|; the Hamming
weight of x is the number of ones in x: wH(x) = |{i : xi = 1}|.

A Boolean network of dimension n is a mapping f : Bn → Bn. We also split f as
f = (f1, . . . , fn) where fi : Bn → B is a Boolean function representing the update of the
state xi of the i-th entity of the network. A Boolean network f is disjunctive if fi is a
disjunction for all i ∈ [n].

A (directed) graph D = (V, E) is a pair where V is the set of vertices and E ⊆ V 2

is the set of arcs of D [8]. In this paper, we only consider finite graphs and we shall
usually identify isomorphic graphs. For any vertex i ∈ V , its in-neighbourhood in D is
N in(i) = {j ∈ V : (j, i) ∈ E} and its in-degree is the size of its in-neighbourhood; the out-
neighbourhood an out-degree are defined similarly. A vertex is a source (sink, respectively)
if its in-neighbourhood (out-neighbourhood, respectively) is empty.

The interaction graph of f , denoted as D(f), represents the influences of entities on
one another. Formally, D(f) = (V, E), where V = [n] and (i, j) ∈ E if and only if fj depends
essentially on xi, i.e. there exists a−i such that

fj(0, a−i) ̸= fj(1, a−i).

If D is the interaction graph of f , we then say that f is a Boolean network on D. Clearly,
for every graph D there is a unique disjunctive network on D.

2.2 Characterisations
We can extend the order 0 < 1 in B to configurations x, y ∈ Bn componentwise: we write
x ≤ y if and only if xi ≤ yi for all i ∈ [n]. We can also extend the disjunction notation to
configurations by applying it componentwise: x ∨ y = z with zi = xi ∨ yi for all i ∈ [n]. We
then have

x ≤ y ⇐⇒ x ∨ y = y. (1)

A Boolean function ϕ : Bn → B is monotone if x ≤ y implies ϕ(x) ≤ ϕ(y). It is easily
checked that any junction is monotone. We say a Boolean network f is monotone if x ≤ y

implies f(x) ≤ f(y); clearly f is monotone if and only if fi is monotone for all i.

AUTOMATA 2021



1:4 Disjunctive Boolean Networks

▶ Lemma 1. [25, Theorem 11.1] A Boolean network f is monotone if and only if for all
x, y ∈ Bn,

f(x ∨ y) ≥ f(x) ∨ f(y). (2)

Proof. Suppose f : Bn → Bn is monotone, then f(x ∨ y) ≥ f(x) and f(x ∨ y) ≥ f(y), hence
f(x ∨ y) ≥ f(x) ∨ f(y). Conversely, if f(x ∨ y) ≥ f(x) for all x, y, then for any a ≤ b we have
f(b) = f(a ∨ b) ≥ f(a), hence f is monotone. ◀

Combining (1) and (2), we obtain a characterisation of monotone networks based on an
equation.

▶ Corollary 2. [25, Example 11.5] A Boolean network f is monotone if and only if for all
x, y ∈ Bn,

f(x ∨ y) = f(x) ∨ f(x ∨ y).

The first, and arguably canonical, characterisation of disjunctive networks is that they
are the endomorphisms of the disjunction on Bn. As such, disjunctive networks are those
that reach equality in (2) and that fix the all-zero configuration. The latter property is a
technical detail, which comes the fact that the constant Boolean function ϕ(x) = 1 is not a
disjunction and yet also satisfies ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y).

▶ Theorem 3. A Boolean network f is disjunctive if and only if f(0, . . . , 0) = (0, . . . , 0) and
for all x, y ∈ Bn,

f(x ∨ y) = f(x) ∨ f(y).

Proof. The forward implication is straightforward; we focus on the reverse implication.
Suppose f fixes (0, . . . , 0) and f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ Bn. First, by Lemma 1,
f is monotone. If f is not disjunctive, then fi is not a disjunction for some i, and hence
by monotonicity there exists j ∈ N in(i) such that fi(ej) = 0. There exists a−j such that
fi(0, a−j) = 0 and fi(1, a−j) = 1. We obtain

fi((0, a−j) ∨ ej) = fi(1, a−j) = 1,

fi(0, a−j) ∨ fi(ej) = 0 ∨ 0 = 0,

which is the desired contradiction. ◀

The second characterisation is that disjunctive networks are precisely the submodular
monotone networks. A Boolean network is submodular if for all x, y ∈ Bn,

f(x ∨ y) ∨ f(x ∧ y) ≤ f(x) ∨ f(y).

Submodular Boolean functions form an important class of Horn functions; the interested
reader is directed to [9, Section 6.9.1] and references therein. Theorem 3 then immediately
yields a second characterisation of disjunctive networks, implicit from Theorems 11.1 and
11.4 in [25].

▶ Theorem 4. A Boolean network is disjunctive if and only if it is monotone and submodular
and it fixes the all-zero configuration.
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The third characterisation of disjunctive networks is that of maximal locally idempotent
networks. A Boolean function ϕ : Bn → B is idempotent if ϕ(0, . . . , 0) = 0 and ϕ(1, . . . , 1) =
1 [32]. We then say a Boolean network f is locally idempotent if fi is idempotent for all
i; equivalently f is locally idempotent if it fixes the all-zero and the all-one configurations.
Since an idempotent Boolean function is not constant, the interaction graph of a locally
idempotent network has no sources. Conversely, any monotone network on a graph with no
sources is locally idempotent. For two Boolean networks f, g : Bn → Bn, we naturally write
f ≤ g if f(x) ≤ g(x) for all x ∈ Bn.

▶ Theorem 5. Let f be a locally idempotent network with interaction graph D and let f∧

and f∨ be the conjunctive and disjunctive networks on D, respectively. Then

f∧ ≤ f ≤ f∨.

Proof. For all x ∈ Bn and all i ∈ [n],

fi(x) = 0 =⇒ xN in(i) ̸= (1, . . . , 1) =⇒ f∧
i (x) = 0,

fi(x) = 1 =⇒ xN in(i) ̸= (0, . . . , 0) =⇒ f∨
i (x) = 1.

This yields f∧
i (x) ≤ fi(x) ≤ f∨

i (x). ◀

The fourth characterisation of disjunctive networks is to be “closest” to constant networks–
technically this does not fully characterise disjunctive networks, as any network where the
local function is a junction satisfies this property. The distance between two Boolean
networks f, g : Bn → Bn is

d(f, g) :=
∑

x∈Bn

dH(f(x), g(x)).

A Boolean network g is constant if there exists c ∈ Bn for which g(x) = c for all x ∈ Bn; we
denote the set of constant networks as C. The distance to constant networks of f is
then defined as

dC(f) := min{d(f, g) : g ∈ C}

= min
c∈Bn

∑
x∈Bn

dH(f(x), c).

Then dC(f) ranges from 0 (whenever f is constant) to n2n−1 (whenever f is a permutation,
amongst others).

▶ Theorem 6. Let f be a Boolean network with interaction graph D and let f∧ and f∨ be
the conjunctive and disjunctive networks on D, respectively. Then

dC(f) ≥ dC(f∨) = dC(f∧).

Proof. For any a, b ∈ B, we denote a ⊕ b = a + b mod 2, i.e. a ⊕ b = 1 if and only if a = ¬b.
We have

dC(f) = min
c∈Bn

∑
x∈Bn

∑
i∈[n]

fi(x) ⊕ ci

= min
c∈Bn

∑
i∈[n]

|f−1
i (¬ci)|.
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For any i, let di denote the in-degree of i in D; let T denote the set of non-sources of D. We
have

dC(f) = min
c∈Bn

∑
i∈[n]

|f−1
i (¬ci)|

=
∑
i∈[n]

min{|f−1
i (0)|, |f−1

i (1)|}

=
∑
i∈T

min{|f−1
i (0)|, |f−1

i (1)|}

≥
∑
i∈T

2n−di .

It is clear that the last inequality is reached for the disjunctive (or conjunctive) network on
D. ◀

2.3 Representations
Let f be the disjunctive network on D = (V = [n], E). We give below four representations
of f .
Boolean linear mapping A graph can be represented by its adjacency matrix AD where

ai,j = 1 if and only if (i, j) ∈ E. The product of two Boolean matrices is AB = C where

cij =
n∨

k=1
aik ∧ bkj .

Boolean matrix theory has been widely studied from an algebraic and combinatorial
point of view, and has found applications in different areas of computer science; the
interested reader is directed to the authoritative book [30]. A Boolean linear mapping
is any g : Bn → Bn of the form g(x) = xA for some Boolean matrix A. In our case,
the disjunctive network on D satisfies f(x) = xAD. Since any Boolean matrix is the
adjacency matrix of some graph, disjunctive networks are exactly the Boolean linear
mappings. We remark that Boolean linear mappings are different from their finite field
counterparts, which are usually simpler to analyse.

Out-neighbourhood function Identifying x ∈ Bn with its support X = supp(x) = {i ∈ [n] :
xi = 1}, we can identify f with the mapping on the power set of [n] defined by

f(X) = Nout(X).

Binary relation A binary relation R on [n] is a subset of [n] × [n]. Binary relations
are in one-to-one correspondence with Boolean matrices; as such, the semigroup of
binary relations has been widely studied [26]. Clearly graphs are also in one-to-one
correspondence with binary relations (the edge set E of D is a binary relation). We can
then represent f as f(X) = {y ∈ [n] : ∃s ∈ X, (s, y) ∈ E}.

Token sliding We can rewrite the representation above as

fi(X) =
⋃

j∈N in(i)

Xj .

This can be interpreted as follows. Suppose there are n tokens T = {t1, . . . , tn} on the n

vertices of D. Let Xi ⊆ T denote the collection of tokens that i holds at a given time. At
each time step every vertex i broadcasts all its tokens to all possible destinations. Then
vertex j obtains all tokens from its in-neighbours, and hence Xj becomes

⋃
j∈N in(i) Xj .
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3 Dynamical properties

Let f be a Boolean network. We consider three types of points for f :
An image point of f is x ∈ Bn such that f(y) = x for some y ∈ Bn. In the transformation
semigroup literature, the number of image points is usually called “rank”. However,
different ranks for the matrix AD have been proposed [30]. Therefore, in order to
emphasize that we are counting the number of image points, we shall use refer to the
number of image points of f as its image rank.
A periodic point of f is x ∈ Bn such that fk(x) = x for some k ≥ 1. The number of
periodic points of f is called the periodic rank of f . Clearly, the periodic rank of f is
equal to the image rank of f2n , and is less than or equal to the image rank of fp for any
p ≥ 1.
A fixed point of f is x ∈ Bn such that f(x) = x. The number of fixed points of f is
called the fixed rank of f . Unlike the image and periodic ranks, the fixed rank of a
Boolean network can be equal to zero.

3.1 Image, periodic and fixed points
In this subsection, we review some of the key results describing the sets of image points,
periodic points, and fixed points of disjunctive networks. It will be convenient to identify a
Boolean configuration x ∈ Bn with its support X = {i ∈ [n] : xi = 1} ⊆ [n] and to view the
disjunctive network on D as f : X 7→ Nout(X).

3.1.1 Image points
Given a disjunctive network f and a subset X, it is easy to verify whether X is an image
point of f . By definition, X belongs to the image of f if it is the out-neighbourhood of
some set of vertices: X = Nout(Y ) for some Y ⊆ [n]. The key property is that there is a
unique maximal preimage Y ∗ of X, so we only need to compute f(Y ∗) and check whether it
matches with X.

▶ Proposition 7. For any X ⊆ [n], let

Y ∗ := [n] \
(
N in([n] \ X)

)
.

Then X is an image point of f if and only if X = Nout(Y ∗). If that is the case, then

Y ∗ =
⋃

Y ∈f−1(X)

Y.

Proof. Suppose X = f(Y ) for some Y . Firstly, Y ⊆ Y ∗, for if j ∈ Y ∩ N in(i) for some
i /∈ X, then i ∈ Nout(Y ). Therefore, X ⊆ f(Y ∗). Conversely, Nout(Y ∗) ⊆ X. Indeed, for
any j /∈ X, N in(j) ∩ Y ∗ = ∅ and hence j /∈ Nout(Y ∗). Combining, we obtain X = f(Y ∗).

The second statement follows from the fact that f(Y ) = X implies Y ⊆ Y ∗. ◀

Determining the image rank of a function of the form f(x) = xM , where M is over a
finite field GF(q), is simple: it is given by qrank(M), where the rank can be computed in
polynomial time. On the other hand, it is not even clear whether computing the image rank
of a disjunctive network can be done in polynomial time.

▶ Problem 1. What is the complexity of the following problem: given a graph D, what is the
image rank of the disjunctive network on D?
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3.1.2 Periodic points
The set of periodic points of the disjunctive network f on D have been studied in [21, 28, 1].
In order to keep the notation simple and to give the intuition behind the main results, we
focus on the case where D is strong (a.k.a. strongly connected), i.e. there is a path from i

to j for any two vertices i and j. For results about general graphs, see [28].
The loop number l(D) of D is the greatest common denominator of all the cycle lengths

in D. If l(D) = 1 and D is strong, we say that D is primitive (graphs with loop number
one are sometimes called aperiodic). It is well known that if l(D) = 2, then the graph is
bipartite: we can partition its vertex set in two parts such that all the arcs go between the
parts. This is generalised as follows.

▶ Lemma 8. [8, Theorem 17.8.1] If a strong digraph D = (V, E) has loop number l(D) = l ≥
2, then V can be partitioned into V0, . . . , Vl−1 such that Nout(Vi) = Vi+1 (indices computed
modulo l).

Say a subset of vertices X is D-partite if

X = Vi1 ∪ · · · ∪ Via

for some i1, . . . , ia ∈ [l]. Clearly, X is a periodic point, since f l(X) = X. The key result is
that a subset is a periodic point if and only if it is D-partite. Indeed, let Y be non-D-partite
and let s ∈ Y ∩ Vi and t ∈ Vi \ Y . There is a path from s to t; that path must have length
equal to kl for some k, hence t ∈ fkl(Y ). Generalising this idea, we obtain that fq(Y ) will
eventually be D-partite for q large enough.

▶ Theorem 9. [21] Let D be a strong graph, then a subset X of vertices is a periodic point
of the disjunctive network f on D if and only if X is D-partite.

The period of a periodic point X is the smallest p ≥ 1 such that fp(X) = X. We have
seen that f l(D)(X) = X, which immediately yields:

▶ Corollary 10. [21, 28] The period of a periodic point of f divides l(D). Conversely, for
any p | l(D), there is a periodic point of period p.

In particular, if D is primitive, then the only periodic points are ∅ and [n], which are
fixed points. More results can be obtained, for instance the time it takes to reach a periodic
points can be upper bounded [21] and the number of periodic points of a certain period can
be determined [28].

3.1.3 Fixed points
We give a classification of the set of fixed points of a disjunctive network. In order to keep it
simple, we focus on nontrivial graphs, where every vertex belongs to a cycle.

The axioms of topology simplify greatly for finite spaces: a collection T of subsets of [n]
is a topology on [n] if and only if ∅, [n] ∈ T and

X, Y ∈ T =⇒ X ∪ Y, X ∩ Y ∈ T.

Let D = ([n], E) be a nontrivial graph and for any i, j ∈ [n] denote i ≤ j if there is a path
from i to j. We note that ≤ is only a preorder relation, and that reflexivity is guaranteed by
the fact that D is nontrivial. For any S ⊆ [n], let the up-set of S to be the set of vertices
reachable from S:

S↑ := {j : ∃i ∈ S, i ≤ j}.
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It is easily checked that the collection of up-sets forms a topology. We denote this collection
as

T(D) := {S↑ : S ⊆ [n]}.

▶ Theorem 11. The set of fixed points of the disjunctive network on the nontrivial graph D

is T(D).

Proof. The subset X is a fixed point of f if and only if X = Nout(X), that is X = S↑ for
some S. ◀

In fact, any finite topology arises from a nontrivial graph; this well known result is usually
given in terms of preorders (see [11]).

▶ Lemma 12. [11, Theorem 3.9.1] Let T be a topology on [n], then T = T(D) for some
nontrivial graph D on [n].

The Knaster-Tarski theorem asserts that the set of fixed points of a monotone network
forms a lattice. Conversely, for any lattice of configurations of Bn, it is easy to construct a
monotone network whose set of fixed points is exactly that lattice. Therefore, a subset of Bn

is the set of fixed points of a monotone network if and only if it forms a lattice. We obtain a
similar characterisation for the sets of fixed points of disjunctive networks.

▶ Corollary 13. T is the set of fixed points of a disjunctive network on a nontrivial graph if
and only if it is a topology.

3.2 Values of the image, periodic and fixed ranks
In this subsection, we consider the values that can be taken by the different ranks of a
disjunctive network. Foremost, a Boolean network is idempotent if f2 = f , i.e. f(f(x)) =
f(x) for all x ∈ Bn. It is clear that a Boolean network is idempotent if and only if its fixed
rank, periodic rank and image rank are all equal. Idempotent disjunctive networks were
characterised, under the guise of binary relations, by Rosenblatt [35] (see [10]).

The values the image/periodic/fixed rank can take for a monotone network are easy to
characterise. Note that the Knaster-Tarski theorem implies that any monotone network has
at least one fixed point.

▶ Proposition 14. For any n and any 1 ≤ k ≤ 2n, there exists an idempotent monotone
network of dimension n with exactly k image points.

Proof. Sort the configurations of Bn in non-decreasing order of Hamming weight, so that
x0 = (0, . . . , 0), . . . , x2n−1 = (1, . . . , 1) and xi ≤ xj implies i ≤ j. Let f be defined as

f(xa) =
{

xa if 0 ≤ a ≤ k − 2
x2n−1 if k − 1 ≤ a ≤ 2n−1.

Then f is idempotent, monotone and has image/periodic/fixed rank k. ◀

On the other hand, the situation for disjunctive networks is more complex. We shall
obtain some results on the values the image/periodic/fixed rank of a disjunctive network can
take but we will remain far from classifying them.

▶ Problem 2. What is the complexity of the following problem: given k and n, is there a
disjunctive network of dimension n with image rank k?
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First, we consider the maximum value of the image/periodic/fixed ranks. Clearly, it is
given by 2n, but we can even classify the disjunctive networks with image/periodic rank 2n.
(There is only one Boolean network with fixed rank 2n, namely the identity, which happens
to be disjunctive.) In fact, the only bijective monotone networks are permutations of
variables. This classification is folklore, and is related to the classification of isometries of
the hypercube. The symmetric group on [n] acts naturally on configurations in Bn, whereby
π(x) = (xπ(1), . . . , xπ(n)) for any permutation π of [n]. Any such Boolean network is called a
permutation of variables. Note that permutations of variables are disjunctive networks: they
correspond to interaction graphs that are disjoint unions of cycles.

▶ Theorem 15. A monotone Boolean network is bijective if and only if it is a permutation
of variables.

Proof. Let f be a bijective monotone Boolean network. We first prove that f preserves the
Hamming weight. Any x ∈ Bn of Hamming weight k belongs to a maximal chain

x0 = (0, . . . , 0) < x1 < · · · < xk = x < · · · < xn = (1, . . . , 1),

where wH(xi) = i for all 0 ≤ i ≤ n. By monotonicity and injectivity, we have

f(x0) < f(x1) < · · · < f(xn),

whence wH(f(xi)) = i for all 0 ≤ i ≤ n, and in particular wH(f(x)) = x.
We now prove that f(x) = π(x) for some permutation π, by induction on k = wH(x).

The base cases k = 0 and k = 1 are clear, so let us assume k ≥ 2 and that it holds for up to
k − 1. Suppose xi = xj = 1, and denote x−i = (0, x−i) and x−j = (0, x−j). We have

f(x) ≥ f(x−i) ∨ f(x−j) = π(x−i) ∨ π(x−j) = π(x).

Since f(x) and π(x) both have Hamming weight k, we have equality: f(x) = π(x). ◀

We now move on to singular networks, i.e. those that are not bijective. Even though there
are monotone Boolean networks of image rank k for all 1 ≤ k ≤ 2n, and in particular for
k = 2n − 1, the image rank of singular disjunctive networks is upper bounded by 3/4 · 2n. We
fully classify the graphs that reach the upper bound in Theorem 16 below. The classification
is based on the following three families of connected graphs:
1. Cn (n ≥ 1) is the cycle on n vertices, with vertex set V = Zn and arcs E = {(i, i + 1

mod n) : i ∈ Zn} for n ≥ 2 and E = {(0, 0)} for n = 1.
2. Ap,q (0 ≤ q ≤ p − 1) is the chorded cycle: the cycle Cp, augmented by the chord {(0, q)}.
3. Bs,t (s, t ≥ 1) is the link of cycles: formed of two cycles Cs and Ct, with a single arc from

Cs to Ct. We denote the vertices of Cs as 0, . . . , s − 1 and those of Ct as 0, . . . , t − 1.
Examples of these graphs (C4, A6,2 and B1,3) are displayed on Figure 1 . We then say that a
graph is near-cyclic if one of its connected components is a chorded cycle or a link of cycles,
and all other connected components are cycles. More formally, D is near-cyclic if it is of the
form D = Ap,q ∪ Cn1 ∪ · · · ∪ Cnc or D = Bs,t ∪ Cn1 ∪ · · · ∪ Cnc for some choice of parameters.

▶ Theorem 16. For n ≥ 2, the maximum image rank of a singular disjunctive network of
dimension n is 3/4 · n, and it is reached if and only if its interaction graph is near-cyclic.

Proof. We first prove that the image rank is upper bounded by 3/4 · 2n. Let f be a singular
disjunctive network and D be its interaction graph.
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Figure 1 Graphs used in Theorem 16.

If all the vertices of D have in-degree one, then it must have a sink k (otherwise, f would
be a permutation of variables). But then, any two configurations only differing in position k

have the same image under f , and hence |f(Bn)| ≤ 1
2 2n.

If D has a vertex i of in-degree d ≥ 2, then |f−1
i (0)| = 2n−d, and hence

|f(Bn)| ≤ |{y ∈ Bn : yi = 1}| + |f−1
i (0)|

≤ 2n−1 + 2n−d

≤ 3/4 · 2n.

If D has a source i, then |f−1
i (1)| = 0, and we similarly obtain |f(Bn)| ≤ 1/2 · 2n.

We now characterise the graphs that reach the upper bound. By the above, there is a
vertex of in-degree 2. We first prove that it is unique. Suppose for the sake of contradiction
that both i and j have in-degree 2. We do a case analysis based on |N in(i, j)|. For the sake
of simplicity, we write {ab = 01, 10} as a shorthand for {y ∈ Bn : yayb ∈ {01, 10}} and we
extend this shorthand notation to arbitrary sets of coordinates and values.

|N in(i, j)| = 2. Then fi = fj and hence

|f(Bn)| ≤ |{ij = 00, 11}| = 1
22n.

|N in(i, j)| = 3. Say N in(i) = {a, b} and N in(j) = {a, c}. Then

|f(Bn)| = |f({abc = 000, 001, 010})| + |f({abc = 011, 100, 101, 110, 111})|
≤ |{abc = 000, 001, 010}| + |{ij = 11}|

= 5
82n.

|N in(i, j)| = 4. Say N in(i) = {a, b} and N in(j) = {c, d}. Then

|f(Bn)| = |f({abcd = 0000, 0001, 0010, 0011, 0100, 1000, 1100})|
+ |f({abcd = 0101, 0110, 0111, 1001, 1010, 1011, 1101, 1110, 1111})|

≤ |{abcd = 0000, 0001, 0010, 0011, 0100, 1000, 1100}| + |{ij = 11}|

= 11
162n.

We can now prove the result for reflexive graphs. A graph is reflexive if (i, i) ∈ E for all
i ∈ V . The only reflexive graph with a unique vertex of in-degree 2 is Gn = B1,1∪C1∪· · ·∪C1,
displayed on Figure 2; it is easy to check that the disjunctive network on Gn indeed has
image rank 3/4 · 2n.
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1

2

3 . . . n

Figure 2 The graph Gn.

Let G = (V, E) be a graph and π be a permutation of V . We define D = Gπ the graph
with vertex set V and arc set {(i, π(j)) : (i, j) ∈ E}. In general, if a graph D admits a
Boolean network with image rank greater than 1/2 · 2n, then it must be coverable by cycles
[14], i.e. there exists a permutation π of [n] such that D = Gπ, where G is reflexive. Thus, if
D is the interaction graph of a disjunctive network of image rank 3/4 · 2n, then it is of the
form D = Gnπ for some permutation π. If π(1) and π(2) belong to the same cycle of π, we
obtain D = Ap,q ∪ Cn1 ∪ · · · ∪ Cnc ; otherwise we obtain D = Bs,t ∪ Cn1 ∪ · · · ∪ Cnc . ◀

We also obtain the corresponding result for the periodic rank.

▶ Corollary 17. For n ≥ 2, the maximum periodic rank of a singular disjunctive network
of dimension n is 3/4 · 2n, and reached if and only if the interaction graph is of the form
B1,1 ∪ Cn1 ∪ · · · ∪ Cnc .

Proof. Let f be a disjunctive network on the near-cyclic graph D, and let D2 denote the
interaction graph of f2. If D has an Ap,q component, then D2 has two vertices of in-degree
at least two, namely q and q + 1. A similar argument holds for a Bs,t component with t ≥ 2.
For a Bs,1 component with s ≥ 2, the vertex 0 has in-degree 3 in D2. Therefore, in any case,
the image rank of f2 is less than 3/4 · 2n, and so is the periodic rank of f . ◀

The corresponding result for the fixed rank immediately follows.

▶ Corollary 18. For n ≥ 2, the maximum fixed rank of a singular disjunctive network of
dimension n is 3/4 · 2n, and reached if and only if the interaction graph is Gn.

Proof. If a disjunctive network is singular, then its fixed rank is at most 3/4 · 2n by Corollary
17. Therefore, we can restrict ourselves to disjunctive networks on near-cyclic graphs of the
form B1,1 ∪ Cn1 ∪ · · · ∪ Cnc

. It is clear that if any cycle Cni
has ni ≥ 2, then the disjunctive

network has periodic points that are not fixed points; conversely the disjunctive network on
Gn is idempotent. ◀

We next consider the opposite problem: what is the smallest “missing value” of the
image/periodic/fixed rank? Obviously, we consider a nonzero fixed rank.

▶ Problem 3. Given n, what is the minimum k ≥ 1 such that there is no disjunctive network
of dimension n and image/periodic/fixed rank k?

We give a lower bound on that quantity below, for all three ranks.

▶ Theorem 19. For any n, there exists an idempotent disjunctive network on n vertices
with image, periodic, and fixed ranks r for all 1 ≤ r ≤ p − 1, where p is the smallest prime
number greater than n + 1.



M. Gadouleau 1:13

Proof. The reflexive transitive tournament Ta on a vertices has arcs ij for all i ≤ j. Let f

be the disjunctive network on Ta, then it is easily seen that f is idempotent and that its
image is {

∨a
i=j ei : 1 ≤ j ≤ a + 1}.

We can now prove the result; it is clear for n ≤ 2 so we suppose n ≥ 3. First, suppose
r ≤ n + 1. We denote the empty graph on c vertices as Ec. Then the disjunctive network
on Tr−1 ∪ En−r+1 is idempotent and has image rank r. Second, suppose n + 2 ≤ r ≤ p − 1.
Then by Bertrand’s postulate, p ≤ 2n − 1 and hence r ≤ 2n − 2. Since r is composite,
we have r = ab for a + b ≤ 2 + r/2 ≤ n + 1. Thus the disjunctive network on the graph
Ta−1 ∪ Tb−1 ∪ En−a−b+2 is idempotent and has image rank r. ◀

4 Outlook

4.1 Disjunctive networks compared to other networks
It would be interesting to compare the disjunctive network on D with the other Boolean
networks on D. Firstly, we want to investigate when the disjunctive network has as many
image/periodic/fixed points as possible. There are three main upper bounds on the im-
age/periodic/fixed rank of a Boolean network with interaction graph D, that depend on
three graph parameters reviewed in [15]. The image rank of a Boolean network f on D is
at most 2α1(D) [14], while its periodic rank is at most 2αn(D) [14], and its fixed rank is at
most 2τ(D) (the famous feedback bound [33, 4]). Those bounds are not always reached (e.g.
the pentagon does not reach any). The graphs where the feedback bound is reached by a
monotone network are classified in [7]. Similar classification results for disjunctive networks
seem close at hand.

▶ Problem 4. Classify the graphs D such that:
1. the image rank of the disjunctive network on D is 2α1(D).
2. the periodic rank of the disjunctive network on D is 2αn(D).
3. the fixed rank of the disjunctive network on D is 2τ(D).

Secondly, we want to investigate when the disjunctive network minimises the image/peri-
odic/fixed rank. Since disjunctive networks are the closest to being constant by Theorem 6,
one might expect that they should minimise the image rank over all networks with a given
interaction graph. This is true in the following extreme cases, where the minimum rank is
equal to 1, 2, or 2n [15]. However, this turns out not to be the case in general: [15, Theorem
5] gives a counter-example, where the minimum image rank is not achieved by the disjunctive
network, but can be actually achieved by another monotone network. We therefore ask the
following two questions.

▶ Problem 5. Classify the graphs D such that the disjunctive network on D minimises the
image rank over
1. all Boolean networks on D;
2. all monotone networks on D.

For periodic points, we do not know which graphs D admit a Boolean network with a
single periodic point (the so-called nilpotent networks) [16]. As such it seems difficult to
characterise the graphs where the disjunctive network minimises the periodic rank. For
fixed points, on the other hand, the problem is straightforward. If D is acyclic, then all
the Boolean networks on D have a unique fixed point by Robert’s celebrated theorem [34].
Conversely, Aracena and Salinas (private communication) showed that any non-acyclic graph
D admits a fixed point free Boolean network.
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4.2 Generalisations
We mention three possible avenues of generalising the scope of the current study of disjunctive
networks. For each, it would be interesting to see how the results presented here might
generalise to these broader classes of networks.
Other Boolean networks There are many classes of Boolean networks that contain, or are

closely related to, disjunctive networks, e.g. AND-OR networks [2], AND-OR-NOT
networks [3], nested canalyzing networks [29], threshold networks [19, 20], and of course
monotone networks [5].

Higher alphabets The disjunction can be easily generalised to variables taking their values
over a linearly ordered alphabet, by taking the maximum [1]. This is not the only choice
that maintains some of the desirable properties of Boolean disjunction; in fact, a thorough
study and classification of disjunction functions in multiple valued logics is given in [23].
A different approach views the conjunction as the product: x ∧ y = xy for all x, y ∈ B [12].
One can then consider so-called monomial dynamical systems over finite fields [13], where
each local function is a product of variables; note that those networks are not monotone.

Infinite graphs One can define the disjunction of any set of Boolean variables, whether finite
or infinite. Considering disjunctive networks over infinite graphs would be another step
to link Boolean networks and Cellular automata.

References
1 J.A. Aledo, S. Martínez, F.L. Pelayo, and Jose C. Valverde. Parallel discrete dynamical

systems on maxterm and minterm boolean functions. Mathematical and Computer Modelling,
55:666–671, 2012.

2 J. Aracena, J. Demongeot, and Eric Goles. Fixed points and maximal independent sets in
AND-OR networks. Discrete Applied Mathematics, 138:277–288, 2004.

3 J. Aracena, A. Richard, and L. Salinas. Maximum number of fixed points in and-or-not
networks. Journal of Computer and System Sciences, 80(7):1175–1190, 2014. doi:10.1016/j.
jcss.2014.04.025.

4 Julio Aracena. Maximum number of fixed points in regulatory Boolean networks. Bulletin of
mathematical biology, 70:1398–1409, 2008.

5 Julio Aracena, Jacques Demongeot, and Eric Goles. On limit cycles of monotone functions
with symmetric connection graph. Theoretical Computer Science, 322:237–244, 2004.

6 Julio Aracena, Jacques Demongeot, and Eric Goles. Positive and negative circuits in discrete
neural networks. IEEE Transactions on Neural Networks, 15(1):77–83, January 2004.

7 Julio Aracena, Adrien Richard, and Lilian Salinas. Number of fixed points and disjoint cycles
in monotone boolean networks. SIAM journal on Discrete mathematics, 31(3):1702–1725,
2017.

8 Jorgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, 2009.

9 Endre Boros. Boolean functions, chapter Horn functions, pages 269–321. Cambridge University
Press, 2011.

10 Kim Ki-Hang Butler. The number of idempotents in (0, 1)-matrix semigroups. Linear Algebra
and its Applications, 5:233–246, 1972.

11 Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge University
Press, Cambridge, UK, 1994.

12 O. Colón-Reyes, R. Laubenbacher, and B. Pareigis. Boolean monomial dynamical systems.
Annals of Combinatorics, 8(4):425–439, 2005.

13 Omar Colón-Reyes, Abdul Salam Jarrah, Reinhard Laubenbacher, and Bernd Sturmfels.
Monomial dynamical systems over finite fields. Complex Systems, 16:333–342, 2006.

https://doi.org/10.1016/j.jcss.2014.04.025
https://doi.org/10.1016/j.jcss.2014.04.025


M. Gadouleau 1:15

14 Maximilien Gadouleau. On the rank and periodic rank of finite dynamical systems. Electronic
Journal of Combinatorics, 25(3):1–16, 2018.

15 Maximilien Gadouleau. On the influence of the interaction graph on a finite dynamical system.
Natural Computing, 19:15–28, 2020.

16 Maximilien Gadouleau and Adrien Richard. Simple dynamics on graphs. Theoretical Computer
Science, 628:62–77, 2016.

17 Maximilien Gadouleau, Adrien Richard, and Søren Riis. Fixed points of boolean networks,
guessing graphs, and coding theory. SIAM Journal on Discrete Mathematics, 29(4):2312–2335,
2015.

18 E. Goles and M. Noual. Disjunctive networks and update schedules. Advances in Applied
Mathematics, 48(5):646–662, 2012.

19 E. Goles and J. Olivos. Comportement périodique des fonctions à seuil binaires et applications.
Discrete Applied Mathematics, 3:93–105, 1981.

20 Eric Goles. Dynamics of positive automata networks. Theoretical Computer Science, 41:19–32,
1985.

21 Eric Goles and Gonzalo Hernández. Dynamical behavior of Kauffman networks with AND-OR
gates. Journal of Biological Systems, 8(2):151–175, 2000.

22 Eric Goles and M. Tchuente. Iterative behaviour of generalized majority functions. Mathemat-
ical Social Sciences, 4:197–204, 1983.

23 Siegfried Gottwald. A Treatise on Many-Valued Logics. Research Studies Press Ltd., Baldock,
Hertfordshire, England, 2001.

24 Karl-Peter Hadeler and Johannes Müller. Cellular Automata: Analysis and Applications.
Springer, Cham, Switzerland, 2017.

25 Lisa Hellerstein. Boolean functions, chapter Characterizations of special classes by functional
equations, pages 487–506. Cambridge University Press, 2011.

26 John M. Howie. Fundamentals of Semigroup Theory. Oxford Science Publications, 1995.
27 Andrew Ilachinski. Cellular Automata: A Discrete Universe. World Scientific, Singapore,

2001.
28 A. Salam Jarrah, R. Laubenbacher, and A. Veliz-Cuba. The dynamics of conjunctive and

disjunctive boolean network models. Bulletin of Mathematical Biology, 72:1425–1447, 2010.
29 S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Genetic networks with canalyzing

boolean rules are always stable. Proceedings of the National Academy of Sciences of the United
States of America, 101:17102–17107, 2004.

30 Ki Hang Kim. Boolean Matrix Theory and Applications. Marcel Dekker, Inc., New York, 1982.
31 Loïc Paulevé and Adrien Richard. Static analysis of boolean networks based on interaction

graphs: A survey. Electronic Notes in Theoretical Computer Science, 284:93–104, 2012.
32 Reinhard Pöschel and Ivo Rosenberg. Boolean models and methods in mathematics, computer

science, and engineering, chapter Compositions and clones of Boolean functions, pages 3–38.
Cambridge University Press, 2010.

33 Søren Riis. Utilising public information in network coding. In General Theory of Information
Transfer and Combinatorics, volume 4123/2006 of Lecture Notes in Computer Science, pages
866–897. Springer, 2006.

34 F. Robert. Iterations sur des ensembles finis et automates cellulaires contractants. Linear
Algebra and its Applications, 29:393–412, 1980.

35 David Rosenblatt. On the graphs of finite idempotent boolean relation matrices. Journal
of Research of the National Bureau of Standards–B. Mathematics and Mathematical Physics,
67B(4):259–256, October–December 1963.

AUTOMATA 2021





Regular Languages:
To Finite Automata and Beyond
Succinct Descriptions and Optimal Simulations

Luca Prigioniero # Ñ

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

Abstract
It is well known that the class of regular languages coincides with the class of languages recognized by
finite automata. Nevertheless, many other characterizations of this class in terms of computational
devices and generative models are present in the literature. For example, by suitably restricting more
powerful models such as context-free grammars, pushdown automata, and Turing machines, it is
possible to obtain formal models that generate or recognize regular languages only. These restricted
formalisms provide alternative representations of regular languages that may be significantly more
concise than other models that share the same expressive power.

The goal of this work is to provide an overview of old and recent results on these formal systems
from a descriptional complexity perspective, that is by considering the relationships between the
sizes of such devices. We also present some results related to the investigation of the famous question
posed by Sakoda and Sipser in 1978, concerning the size blowups from nondeterministic finite
automata to two-way deterministic finite automata.
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1 Introduction

The investigation of computational models operating under restrictions is one of classical
topics of computer science.

In one of his pioneer papers, Chomsky introduced a hierarchy of classes of languages,
also known as Chomsky hierarchy, obtained by applying increasing restrictions to general
grammars, that characterize the class of recursively enumerable languages [7]. In this way he
introduced the classes of context-sensitive, context-free, and regular languages.

For the same classes of languages, there also exist characterizations in terms of compu-
tational devices. Even in this case, bounding computational resources of general models,
less powerful devices can be obtained. For example, while Turing machines (Tm for short),
even in the variant with one tape only, characterize recursively enumerable languages, by
restricting the working space they are allowed to use to the portion of the tape that initially
contains the input, linear bounded automata are obtained, that are equivalent to context-
sensitive grammars [33]. Also finite automata and pushdown automata (pda), that are
standard recognizers for regular and context-free languages, respectively, can be considered as
particular Turing machines in which the capacity or access to the memory storage is limited.
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Besides the standard models mentioned thus far, considering machines that make a
restricted use of resources, it is possible to obtain alternative characterizations of the classes
of the hierarchy. For example, Hennie proved that when the length of the computations, i.e.,
the time, is linear in the input length, one-tape Turing machines are no more powerful than
finite automata, that is, they recognize regular languages only [22].

As remarked by Chomsky, context-free languages have the property of being able to
describe recursive structures such as, for instance, nested parentheses, arithmetic expressions,
and typical programming language constructs. In terms of recognizing devices, this capability
is typically implemented through the pushdown store, a memory structure in which the
information is stored and recovered in a “last in–first out” way, which adds recursion to finite
automata, so making the resulting model (pushdown automata), equivalent to context-free
grammars (cfg) [8].

To emphasize the ability of context-free grammars to generate recursive sentential forms,
Chomsky investigated the self-embedding property: a context-free grammar is self-embedding
if it contains some variable which, in some sentential form, is able to reproduce itself
enclosed between two nonempty strings [6]. Roughly speaking, this means that such a self-
embedded variable can generate a “true” recursion that needs an auxiliary memory (typically
a pushdown) to be implemented (in contrast with tail or head recursions, corresponding to
the cases in which the two strings surrounding the variable are empty, that can be easily
eliminated). Chomsky proved that, among all context-free grammars, only self-embedding
ones can generate nonregular languages. Hence, non-self-embedding grammars (nse) are no
more powerful than finite automata [7, 6].

Counterpart devices for non-self-embedding grammars, for which the capability of recog-
nizing recursive structures is limited by placing some restrictions on the size of the memory
of the corresponding general model, are constant-height pushdown automata (h-pda). More
precisely, these devices are standard nondeterministic pushdown automata where the amount
of available pushdown store is bounded by some constant h ∈ N. Hence, the number of their
possible configurations is finite, thus implying that they are no more powerful than finite
automata.

By contrast to models that make use of space or time restrictions, Hibbard introduced
d-limited automata (d-la), that are obtained by limiting the writing capabilities of linear
bounded automata allowing overwriting of each tape cell only the first d times that it is
scanned, for some fixed d ≥ 0 [23]. Nevertheless, the cell may be visited again and the
information stored therein read arbitrarily many more times, but its contents is frozen for the
remainder of the computation. Hibbard proved that, for each d ≥ 2 this model characterizes
context-free languages and showed the existence of an infinite hierarchy of deterministic
d-limited automata, whose first level (i.e., corresponding to deterministic 2-limited automata)
has been later proved to coincide with the class of deterministic context-free languages [43].
(See [34] and references therein for further connections between limited automata and context-
free languages.) Furthermore, as shown by Wagner and Wechsung, when d = 1, that is,
when these devices are allowed to overwrite the contents of each tape cell during the first
visit only, 1-limited automata (1-la) are equivalent to finite automata [56]. It is a trivial
observation that even when d = 0, and hence no writings on the tape are allowed, the model
still recognizes regular languages only: 0-limited automata correspond to finite automata
that can move their input head back and forth on the input tape, namely two-way finite
automata.1

1 Further technical details, properties, examples, and references about limited automata can be found in
the recent survey by Pighizzini [41].
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General devices and their restrictions characterizing regular languages and discussed in
this work are depicted in Figure 1.

Rec. Enumerable

Context-Sensitive

Context-Free

Regular

CFG

Regular Finite Automata

h-PDA 1-LA Linear-Time TmNSE

CSG

Unrestricted

PDA d-LA

LBA

One-Tape Tm

Figure 1 Models representing regular languages obtained by posing some restrictions on standard
grammars (on the left, in gold) and recognizers (on the right, in green) characterizing the classes of
the Chomsky hierarchy.

Descriptional Complexity of Formal Systems

In this work we shall focus on the models characterizing the bottom level of the Chomsky
hierarchy: the class of regular languages. We give an overview of some recent results obtained
in the area of descriptional complexity, specifically, the study of the capability of these
devices of representing the same class of languages in a more, or less, concise way. More
precisely, descriptional complexity is a branch of theoretical computer science whose goal
is the investigation of the relationships between the sizes of the representations of formal
systems that share the same computational power, or, in other words, the study of how
concisely a system can describe a class of problems (or languages).

The devices characterizing the class of regular languages introduced at the beginning of
the section are obtained by limiting some resources of more general models. Therefore, the
main question we are interested about is “How much does the limitation of one resource cost
in terms of another resource, or, in other words, what are the upper and lower bounds of
such trade-offs?” [14].

Since our goal is comparing the sizes of the descriptions of devices and formal systems,
for each model under consideration we evaluate its size as the total number of symbols used
to describe it, or, in other words, to write down its description. In particular, to measure
the size of recognizing devices, we consider the amount of memory required to store the
“algorithm” they implement (their transition function), so, for example, the size of finite
automata is bounded by a polynomial in the number of their states. On the other hand,
the size of grammars is given by the number of symbols used to write down their derivation
rules [32].

Given two different classes of computational models M1 and M2 characterizing regular
languages, there are natural questions we are interested in:

Does a function F exist, such that for all the regular languages L, the size of the smallest
device of type M1 for L is upper bounded by the function F of the size of the smallest
equivalent device of type M2? If F exists, it is an upper bound for the increase (blow-up)
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in complexity when changing from a minimal model of type M2 for an arbitrary regular
language to an equivalent minimal model of type M1.
Do an infinite family of distinct regular languages Li and a function f exist, such that
for all i ∈ N, the size of any device of type M1 for Li is lower bounded by the function f

of the size of the smallest equivalent device of type M2? If f exists, it is a lower bound
for the increase in complexity when changing from a minimal model of type M2 to an
equivalent minimal model of type M1 for infinitely many languages.

If there is no recursive function upper bounding the trade-off between two computational
models M1 and M2, the trade-off is non-recursive. Furthermore, if the lower and the
upper bounds coincide, we say that the bound is optimal. For more details about the
area of descriptional complexity see, e.g., the surveys by Goldstine et al., and Holzer and
Kutrib [14, 24].

A classical problem in this field is the investigation of the relationships between determinis-
tic and nondeterministic devices. It is well known that one-way deterministic finite automata
(1dfa) are sufficient for regular languages. By allowing nondeterministic transitions, thus
obtaining one-way nondeterministic finite automata (1nfa), the computational power does
not increase [51]. A natural question concerning models that share the same computational
power is the comparison of their size.

As an example, consider, for any fixed integer n ≥ 0, the language Ln = (0+1)∗1(0+1)n−1,
composed by strings on the alphabet { 0, 1 } whose n-th to last symbol is 1. A 1nfa An

could recognize Ln by moving the input head forward on the input tape, until reaching
the n-th symbol from the end, that is detected by performing a nondeterministic guess. If
such a symbol is 1, the automaton checks whether the length of the remaining part of the
input string is n − 1. Therefore, it is easy to check that the number of states for a 1nfa
accepting Ln is n + 1. On the other hand, a 1dfa accepting Ln cannot guess which is the
n-th symbol from the end of the input string. So, intuitively, it has to “remember” a factor
representing the last n symbols read, by storing it in the finite control. When the end of the
input is reached, the device checks that the leftmost symbol of the current factor is 1. It
is easy to see that the number of the possible factors of length n is 2n, and each of them
is stored by using a state of the 1dfa, thus implying an exponential blowup in states with
respect to the equivalent 1nfa An.

Therefore, even if deterministic and nondeterministic finite automata characterize the
same class of languages, one-way deterministic automata can require exponentially many
states with respect to equivalent nondeterministic automata. Hence, there is an exponential
size gap from one-way nondeterministic to one-way deterministic automata.

It is also known that even providing finite automata with the capability of moving
the input head back and forth along the tape, thus obtaining two-way finite automata
(2dfa and 2nfa), their recognizing power does not increase. In fact, Shepherdson and,
independently, Rabin and Scott, proved this result by giving two constructions based on the
analysis of the moves of the input head of the automata between the tape cells [51, 53]. Both
constructions, given a two-way finite automaton, return an equivalent one-way deterministic
finite automaton whose size is exponential in the square of the size of the automaton given
in input.

At this point, one could ask “Is it possible to exploit the ability to scan the input in a
two-way fashion in finite automata to eliminate the nondeterminism?”. Differently from the
one-way case, the question about the size cost of the conversion of (one-way and two-way)
nondeterministic finite automata into two-way deterministic finite automata, that was posed
by Sakoda and Sipser, is open since 1978. In their paper, Sakoda and Sipser formulated the
problem by the questions
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1. For every 2nfa A, does an equivalent 2dfa A′ exist, such that A′ has only polynomially
more states than A?

2. For every 1nfa A, does an equivalent 2dfa A′ exist, such that A′ has only polynomially
more states than A?

They conjectured that, in both cases, the answer is negative and an exponential increase of
the size is necessary.

The question has been solved in some special cases that can be grouped in three classes:
by considering restrictions on the simulating machines (e.g., sweeping [54], oblivious [27],
few reversals two-way deterministic finite automata [28]), by considering restrictions on
languages (e.g., unary case [12]), by considering restrictions on the simulated machines (e.g.,
outer-nondeterministic automata [10, 30]). However, in spite of all attempts, in the general
case the question remains open.

The importance of this open problem is supported by its similarity to the well-known
P ?= NP problem [52] and by relationships with the LogSpace ?= NLogSpace question [5,
13, 29, 30]. (See [40] for further details and references.)

Outline

This work is an excerpt of the dissertation [48] and an informal version appeared in [49].
It is organized as follows (a summary of some of the main results obtained is depicted in
Figure 2).

NSE h-PDA 1-LA ltTm

2NFA2DFA

poly (Sec 2)poly (Sec 2)

poly (Sec 2) exp (Sec 2)

exp (Sec 2)

exp exp [42, Thm 4]

?
[Sakoda-Sipser problem]

poly (Sec 4)

poly (Sec 3)

Figure 2 Some of the main results discussed in the work. Dotted arrows denote trivial relationships,
while the dashed arrow indicates the Sakoda and Sipser’s question [52]. Linear-time Turing machines
are denoted ltTm.

Section 2 presents some results on non-self-embedding grammars and their descriptional
complexity [46], and their relations in size with constant-height pushdown automata and
1-limited automata [15].

Section 3 investigates machines one-tape Turing machines working in linear time. It is not
decidable whether a one-tape Turing machine works in linear time, even if it is deterministic
and restricted to use only the portion of the tape which initially contains the input, unless
the machine is weight-reducing, i.e., syntactically forced to operate in linear-time [16]. By
relating the study of Turing machines working in linear time to the above-mentioned open
question of Sakoda and Sipser, we present the costs of the conversion of nondeterministic finite
automata into equivalent linear-time one-tape deterministic machines. A polynomial blowup
from two-way nondeterministic finite automata into equivalent weight-reducing one-tape
deterministic machines (that work in linear time) has been obtained.
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The investigation about devices working in linear time is continued in Section 4, where
the time complexity of 1-limited automata is analyzed from a descriptional complexity point
of view [19]. Though the model recognizes regular languages only, it may use quadratic time
in the input length. With a polynomial increase in size and preserving determinism, each
1-limited automaton can be transformed into a linear-time equivalent one. We also obtained
polynomial transformations into linear-time Turing machines.

Section 5 turns the attention to pushdown automata [45]. In particular, we studied
pushdown automata without any restriction on the pushdown height and we showed that
it cannot be decided whether these devices accept using constant pushdown height, with
respect to the input length, or not. Furthermore, in the case of acceptance in constant height,
the height cannot be bounded by any recursive function in the size of the description of the
machine. In contrast, in the restricted case of pushdown automata over a one-letter input
alphabet, i.e., unary pushdown automata, the above property becomes decidable. Moreover,
if the height is bounded by a constant that does not depend on the input length, then it is
at most exponential with respect to the size of the description of the pushdown automaton.
This bound cannot be reduced. Finally, if a unary pushdown automaton uses non-constant
height to accept, then the height should grow at least as the logarithm of the input length.
This bound is optimal.

In conclusion, in Section 6 we briefly discuss some possible future research directions and
open problems.

2 Non-Self-Embedding Grammars, Constant-Height Pushdown
Automata, and Limited Automata

As mentioned in Section 1, Chomsky investigated the self-embedding property of context-free
grammars, and proved that non-self-embedding grammars only generate regular languages.
The proof of the result given by Chomsky is constructive: it provides a method for obtaining
a finite automaton equivalent to a given non-self-embedding grammar [7, 6]. A different
constructive proof of the same result was given by Anselmo, Giammarresi, and Varricchio,
who showed that it is possible to decompose non-self-embedding grammars into regular
grammars and then to iteratively apply regular substitutions in order to obtain equivalent
finite automata [2]. In the same paper, the authors also presented an nse grammar for the
following family of languages. For any fixed integer n, let Un = { a2n } be the singleton
composed by the unary string of length 2n. Un can be generated by an nse grammar
with variables { A0, . . . , An } such that, for each i = 1, . . . , n, the variable Ai generates two
occurrences of the variable Ai−1, and the variable A0 produces the terminal a. It is possible
to see that the variable Ai derives the string a2i , for i = 0, . . . , n. Hence, the language
generated is Un. Moreover, the size of the grammar is linear in the parameter n, while it is not
hard to verify that the equivalent minimum deterministic finite automaton has 2n + 1 states.
Actually, as a consequence of state lower bound presented by Mereghetti and Pighizzini, the
same amount of states is also necessary to accept Un by using a 2nfa [36]. Therefore, this
language witnesses that the size gap between non-self-embedding grammars and equivalent
finite automata is at least exponential.

It is worthwhile to mention that, as proved by Meyer and Fischer, for any recursive func-
tion f and arbitrarily large integer n, there exists a context-free grammar whose description
has size n, the generated language is regular, and any equivalent finite automaton requires at
least f(n) states [37]. This means that it is not possible to obtain a recursive bound relating
the size of context-free grammars generating regular languages with the number of states of
equivalent finite automata. It is important to notice that the result by Meyer and Fischer
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was obtained by considering grammars with a two-letter terminal alphabet. The unary case
was studied by Pighizzini, Shallit, and Wang, who obtained optimal recursive bounds [47].

We recently proved that also in the case of non-self-embedding grammars the bounds are
recursive, independently on the alphabet size [46]. In particular, by inspecting and refining
the construction presented by Anselmo, Giammarresi, and Varricchio, we showed that

▶ Result 2.1 ([46]). Each non-self-embedding grammar of size n can be converted into equiv-
alent nondeterministic and deterministic automata with 2O(n) and 22O(n) states, respectively.

We also obtained a family of languages that witnesses that these gaps cannot be reduced.
Furthermore, these gaps do not change if we allow the variables generating only unary strings
(i.e., strings consisting of occurrences of only one terminal) to be self-embedded.

Other formal models characterizing the class of regular languages and exhibiting gaps of
the same order with respect to deterministic and nondeterministic automata are constant-
height pushdown automata and 1-limited automata. So, it is natural to study the size
relationships between non-self-embedding grammars, constant-height pushdown automata,
and 1-limited automata, three models that restrict context-free acceptors to the level of
regular recognizers.

The exponential and double exponential gaps from constant-height pushdown automata
to nondeterministic and deterministic automata have been proven by Geffert, Mereghetti,
and Palano [11]. Furthermore, Bednárová et al. showed the interesting result that the
gap from nondeterministic to deterministic constant-height pushdown automata is double
exponential also [3]. We remind the reader that both non-self-embedding grammars and
constant-height pushdown automata are restrictions of the corresponding general models,
where true recursions are not possible. By adapting the standard transformation from pda
to cfgs, and by modifying the decomposition of nse grammars presented by Anselmo,
Giammarresi, and Varricchio, we proved that

▶ Result 2.2 ([15]). Non-self-embedding grammars and constant-height pushdown automata
are polynomially related in size.

Also 1-limited automata can be significantly smaller than equivalent finite automata.
The equivalence between 1-limited automata and finite automata has been investigated from
the descriptional complexity point of view by Pighizzini and Pisoni, who proved that each
1-limited automaton A with n states can be simulated by a one-way deterministic automaton
with a number of states doubly exponential in a polynomial in n. Furthermore, in the worst
case, double exponentially many states are necessary for this simulation. The cost reduces to
a single exponential when A is deterministic [42]. The lower bounds in this result have been
obtained by providing witness languages defined over a binary alphabet.

We investigated the unary case, for which it was an open question whether the same
bounds held. In particular, we obtained that

▶ Result 2.3 ([44]). There is an exponential gap between unary deterministic 1-limited
automata and two-way nondeterministic finite automata.

To this end, we showed that, for each n > 1, the singleton language Un = { a2n } can be
recognized by a deterministic 1-limited automaton having 2n + 1 states and a description
of size O(n2). Since the same language requires 2n + 1 states to be accepted by a one-way
nondeterministic automaton, it turns out that the state gap between deterministic 1-limited
automata and one-way nondeterministic automata in the unary case is the same as in the
binary case. It is an easy observation that the gap does not reduce if we want to convert
unary deterministic 1-limited automata into two-way nondeterministic automata.
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We also considered the relationships between 1-limited automata and unary context-free
grammars. The cost of the conversion of these grammars into finite automata has been
investigated: exponential gaps have been proven by Pighizzini, Shallit, and Wang [47]. With
the help of a result presented by Okhotin [38], we proved that

▶ Result 2.4 ([44]). Each unary context-free grammar G can be converted into an equiva-
lent 1-limited automaton whose description has a size that is polynomial in the size of G.

Let us now turn our attention to the size relationships between 1-limited automata and
non-self-embedding grammars.

We obtained a construction transforming each non-self-embedding grammar into a 1-lim-
ited automaton of polynomial size. In particular, given an input w, the 1-la nondeterminis-
tically generates a compression of a derivation tree of w. Then, it verifies the validity of such
a guess. As a consequence,

▶ Result 2.5 ([15]). Each constant-height pushdown automaton can be transformed into an
equivalent 1-limited automaton of polynomial size.

Even the conversion of deterministic constant-height pushdown automata into deterministic
1-limited automata costs polynomial in size. For the converse transformation, we showed
that an exponential size is necessary. Indeed, consider the following family of languages. For
any fixed integer n > 0, let Pn be the language of the powers of any string u of length n

over the alphabet { 0, 1 }, i.e., Pn = { uk | u ∈ { 0, 1 }n
, k ≥ 0 }. Pn can be accepted by a

two-way deterministic finite automaton (and, hence, by a 1-la) with O(n) states, but requires
exponentially many states to be accepted even by an unrestricted pushdown automaton,
which is forced to store the word u in its finite control. From the cost of the conversion of
1-limited automata into nondeterministic automata, it turns out that for the conversion of
1-limited automata into non-self-embedding grammars an exponential size is also sufficient.

▶ Result 2.6 ([15]). The size cost of the conversion of 1-limited automata into non-self-
embedding grammars and constant-height pushdown automata is exponential.

Bednárová et al. raised the question of the cost of the conversion of deterministic h-pda
into 1nfas [3]. To this regard, it is possible to observe that, for any integer n ≥ 0, the
language Sn =

(
a2n)∗ is accepted by a deterministic h-pda of size polynomial in n (a

constant-height pushdown automaton for Sn with a constant number of states, h = n,
and 2n + 1 pushdown symbols can be found in [45]) but, as discussed at the beginning of this
section, it requires an exponential number of states to be accepted by a finite automaton.
Hence, we can conclude that the cost of both simulations from two-way automata to h-pda
and from h-pda to two-way automata is at least exponential.

More details about the results presented in this section can be found in [15, 44, 46].

3 Two-Way Automata and One-Tape Machines

In this section we present some results on one-tape Turing machines working in linear time
and on the relationships between the sizes of their descriptions with those of equivalent finite
automata. We consider the following variants of one-tape deterministic Turing machines:
End-marked machines. We say that a device is end-marked if each input string is surrounded

by two special symbols called the left and the right endmarkers and the machine is
restricted to use only the portion of the tape that initially contains the input (plus the
endmarkers), that cannot be left by the head.
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Weight-reducing Turing machines. Roughly speaking, in weight-reducing Turing machines
each overwriting is decreasing with respect to some fixed order on the working alphabet.
As a consequence, after overwriting a cell with a minimal symbol, such a machine cannot
visit the cell again. By this condition, in weight-reducing Turing machines the number of
visits to each tape cell is bounded by a constant. However, weight-reducing machines
could have non-halting computations which, hence, visit infinitely many tape cells.

Linear-time Turing machines. A deterministic Turing machine is said to be linear-time if,
over each input w, its computation halts within O(|w|) steps.

Hennie machines. A Hennie machine is a linear-time Turing machine which is, furthermore,
end-marked.

Weight-Reducing Hennie machines. These devices are defined by combining previous con-
ditions. Observe that each end-marked weight-reducing Turing machine can execute a
number of steps which is at most linear in the length of the input. Consequently, end-
marked weight-reducing deterministic Turing machines are necessarily Hennie machines.

It is useful to recall that it cannot be decided whether or not a one-tape Turing machine
works in linear time.2 Furthermore, there is no recursive function bounding the size blowup
from one-tape Turing machines working in linear time to equivalent finite automata. We
proved that these results remain true even in the restricted case of end-marked machines.

▶ Result 3.1 ([16, 18]). It is undecidable whether an end-marked Turing machine works in
linear time.

To overcome the above-mentioned “negative” results, we considered weight-reducing machines,
that can be seen as a syntactical restriction of one-tape Turing machines. In this case, it
can be decided whether a deterministic Turing machine is weight reducing. These devices
can have non-halting computations. However, they work in linear time as soon as they are
halting. In fact, we showed that it is possible to decide whether a weight-reducing machine
is halting. As a consequence,

▶ Result 3.2 ([16, 18]). It is possible to decide whether a weight-reducing machine works in
linear time.

Moreover, by a polynomial size increase, each weight-reducing machine can be transformed
into an equivalent one which always halts and works in linear time. The same blowup is
easily extended to weight-reducing Hennie machines.

▶ Result 3.3 ([16, 18]). With a polynomial size increase, any weight-reducing machine
can be made halting, so working in linear time. Furthermore, the cost of the simulation of
weight-reducing machines by 1dfa is doubly exponential.

Furthermore, we proved that

▶ Result 3.4 ([16, 18]). Each linear-time machine T can be converted into an equivalent
weight-reducing one whose size is bounded by a polynomial function in the size and in the
execution time of T .

We also related the study of these restricted variants of Turing machines accepting only
regular languages to the Sakoda and Sipser question. In this case, we propose a new approach

2 We mention that it is decidable, though, whether or not a machine makes at most cm + d steps on input
of length m, for any fixed c, d > 0 [9].
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in which we considered, as target devices, linear-time one-tape deterministic Turing machines.
It turned out that each 2nfa A can be simulated by a one-tape deterministic Turing machine
which works in linear time (with respect to the input length) and which has a polynomial
size with respect to the size of A. We point out that the resulting machine can use extra
space, besides the tape segment which initially contained the input. Next, the machine is
halting and weight reducing, thus implying a linear execution time. Hence,

▶ Result 3.5 ([16, 17]). Nondeterminism can be eliminated from 2nfa with at most a
polynomial size increase, obtaining a linear execution time in the input length, provided the
ability to rewrite tape cells and to use some extra space.

We then investigated what happens by removing the latter possibility, namely if the
machine does not have any further tape storage, i.e., it is a Hennie machine. We proved that
even under this restriction it is still possible to obtain a machine of polynomial size, namely

▶ Result 3.6 ([16, 17]). Each 2nfa can be transformed into an equivalent Hennie machine
of polynomial size.

However, the machine resulting from our construction is not weight reducing, unless we
require that it agrees with the given 2nfa only on sufficiently long inputs. This problem
does not occur in the unary case, where we proved that

▶ Result 3.7 ([16, 17]). Each unary 2nfa can be simulated by a weight-reducing Hennie
machine of polynomial size.

Similar results have been obtained for the transformation of 1nfas into variants of one-tape
deterministic machines.

For details about the results discussed in this section we address the reader to [16, 17, 18].

4 Limited Automata: A Time Constraint

As proved by Hennie, deterministic one-tape Turing machines operating in linear time
recognize exactly the class of regular languages [22]. The result has later been extended
to the nondeterministic case by Pighizzini and Tadaki, Yamakami, and Lin [39, 55]. Here,
operating in linear time means that every computation has length linearly bounded in
the input length. In particular, linear-time machines are necessarily halting – see [39] for
investigations of alternative linear-time restrictions. The above-mentioned result implies that
every Hennie machine is equivalent to some finite automaton. From the opposite point of
view, this means that providing two-way finite automata with the ability to overwrite the
tape cells does not extend the expressiveness of the model, as long as the time is linearly
bounded in the length of the input.

However, it is undecidable, given an end-marked deterministic Turing machine (i.e., a
deterministic linear bounded automaton), to check whether it works in linear time over all
input strings, or, in other words, whether it is actually a deterministic Hennie machine [16,
17, 50]. To avoid this drawback, Průša proposed the weight-reducing variant of Hennie
machines, in which the time limitation is syntactic. As a consequence, the number of visits
of a cell by the head is bounded by some constant (i.e., not depending on the input length),
hence the device works in linear time over every input string.

By contrast to Hennie machines, in d-limited automata the head is allowed to visit a
cell after the d-th visit, even if it cannot rewrite the contents anymore. This allows to use
super-linear time.
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As an example let us consider, for each fixed integer n ≥ 0, the language

Qn = { x0x1 · · · xk | k > 0, for each i : xi ∈ Σn and for some j ̸=0: xj = x0 }

on the alphabet Σ = { 0, 1 }. A deterministic 1-la An may recognize Qn as follows. It first
scans the factor x0, overwriting each input symbol with a marked copy. Then, An repeats a
subroutine which overwrites a factor xj with the marker ♯ /∈ Σ, while checking whether xj

equals x0 or not. This can be achieved as follows. Before overwriting the ℓ-th symbol of xj ,
first, An, with the help of a counter modulo n, moves the head leftward to the position ℓ

of x0 and stores the unmarked scanned symbol σ in its finite control; second, it moves the
head rightward until reaching the position ℓ of xj , namely, the leftmost position that has
not been overwritten so far. At this point, An compares the scanned symbol (i.e., the ℓ-th
symbol of xj) with σ (i.e., the ℓ-th symbol of x0). When An finds out that a complete
factor xj matches x0, it reaches the end of the input checking that has length multiple of n.

It is possible to implement An with a number of states linear in n and #Σ+1 working
symbols. Since for each position of a factor xi, i > 0, the head has to move back to the
factor x0, it is possible to observe that An works in quadratic time in the length of the input
string.

Therefore, also in the case d = 1, d-limited automata can operate in super-linear time.
This contrasts with Hennie machines which operate in linear time by definition. The question
we addressed is whether this ability of 1-limited automata with respect to Hennie machines
yields a gap between the two models in terms of the size of their representations.

We proved that operating in super-linear time is not essential for 1-la, if allowing a
polynomial increase in the number of states. In other words,

▶ Result 4.1 ([19]). With a polynomial increase in size, each 1-limited automaton can be
transformed into an equivalent linear-time 1-limited automaton, or, alternatively, into a
weight-reducing Hennie machine.

Furthermore, the obtained device is deterministic when the original machine is deterministic
as well. This is achieved by extending the exponential-cost simulation of 1-la by 2nfa given
in [42] (which in turn extends Shepherdson’s classic conversion of 2dfa into 1dfa [53]) with a
method for storing and accessing a carefully chosen subcollection of the many “Shepherdson
tables” that a 1nfa would need to remember in its states: the simulating automaton can
both store the tables (despite the 1-limitation) and access them efficiently (in both size and
time).

For details about the results discussed in this section please refer to [19].

5 Pushdown Automata and Space Restrictions

As discussed in Section 2, constant-height pushdown automata, that are pushdown automata
in which the maximum height of the pushdown is limited by some constant, allow more
succinct representations of regular languages than finite automata [11], and are polynomially
related in size with their natural generative counterpart, nse grammars, roughly context-free
grammars without “true” recursion [7].

In this section we turn our attention to standard pushdown automata, namely with an
unrestricted pushdown store, that, however, are able to accept their inputs by making use
only of a constant amount of the pushdown store. More precisely, we say that a pushdown
automaton M accepts in constant height h, for some given h, if for each word in the language
accepted by M there exists one accepting computation in which the maximum height reached
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by the store is bounded by h. Notice that this does not prevent the existence of accepting or
rejecting computations using an unbounded pushdown height.

It is a simple observation that a pushdown automaton M accepting in constant height h

can be converted into an equivalent constant-height pushdown automaton: in any configu-
ration it is enough to keep track of the current height in order to stop and reject when a
computation tries to exceed the height limit. The description of the resulting constant-height
pushdown automaton has size polynomial in h and in the size of the description of M.

While studying these size relationships, we tried to understand how large the height h of
the pushdown can be with respect to the size of the description of M. We discovered that h

can be arbitrarily large. Indeed, adapting an argument presented by Meyer and Fischer to
prove non recursive trade-offs between the size of pda accepting regular languages and the
number of states of equivalent automata [37], we showed that

▶ Result 5.1 ([45]). There is no recursive function bounding the maximal height reached by
the pushdown store in a pushdown automaton accepting in constant height, with respect to
the size of its description.

With the same argument, we obtained that

▶ Result 5.2 ([45]). There is no recursive function bounding the size blowup from pda
accepting in constant height to finite automata.

Moreover, using a technique introduced by Hartmanis, based on suitable encodings of
single-tape Turing machine computations [21], we also proved that

▶ Result 5.3 ([45]). It cannot be decided whether a pushdown automaton accepts in constant
height or not.

We also investigated the unary case. By studying the structure of the computations of
unary pushdown automata, we were able to prove that, in contrast to the general case,

▶ Result 5.4 ([45]). It can be decided whether or not unary pushdown automata accept in
constant height.

Furthermore, we proved that

▶ Result 5.5 ([45]). If a unary pushdown automaton M accepts in height h, constant with
respect to the input length, then h is bounded by an exponential function in the size of M.

By presenting a suitable family of pushdown automata, we showed that this bound is optimal.
Let us turn our attention to pushdown automata that accept using height which is

not constant in the input length, in order to investigate how the pushdown height grows.
In particular, we asked if there exists a minimum growth of the pushdown height, with
respect to the length of the input, when it is not constant. The answer to this question is
already known and it derives from results on Turing machines: the height of the store should
grow at least as a double logarithmic function [1]. This lower bound cannot be increased,
because a matching upper bound has been recently obtained in [4]. As a consequence of the
constructions obtained for automata accepting unary languages, we were able to prove that

▶ Result 5.6 ([45]). In the unary case, the height of the store should grow at least as a
logarithmic function, and this lower bound cannot be further increased.

For more details about the results discussed in this section we refer the reader to [45].
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6 Future Work and Open Problems

In this work we summarized some old and recent results related to the area of descriptional
complexity, and, in this regard, we focused on the class of regular languages. To conclude,
we discuss possible directions for future research in this field.

First of all, it is worth mentioning that there exist other models characterizing the
class of regular languages besides the ones analyzed here. One example are the well-known
regular expressions, widely discussed in classical textbooks (see, e.g. [26]). From regular
expressions we can derive a more succinct representation of regular languages, by using
straight-line programs, namely programs representing directed acyclic graphs, whose internal
nodes correspond to the basic regular operations (i.e., union, concatenation, and star).
Descriptional complexity of straight-line programs has been analyzed. It has been proved
that straight-line programs are polynomially related in size with constant height pushdown
automata [11]. Anyways, it would be interesting to deepen the study of descriptional
complexity of models “derived” from regular expressions.

As widely discussed, the question posed by Sakoda and Sipser in 1978 about the elimination
of nondeterminism from finite automata using the two-way motion is still open. We plan
to continue the investigation on this question by considering models that have the same
computational power as finite automata and by studying the relations in sizes between these
nondeterministic devices and deterministic machines. For example, as remarked by Pighizzini
in a recent survey, at the moment, direct simulations of 1-limited automata by deterministic
1-limited automata and by two-way deterministic automata are not known [41]. It could
be interesting to know if, when simulating unary and non-unary 1-limited automata by
two-way (instead of one-way) deterministic finite automata, the cost reduces from a double
exponential to a simple exponential.

It could be also interesting to study “relaxed” versions of the problem of Sakoda and
Sipser, in which the simulating machine is a deterministic 1-limited automaton (i.e., a
deterministic two-way automaton with the capability of rewriting the contents of tape cells
during the first visit).

Moreover, following the research line started in [10], one could deepen the investigation
on the Sakoda and Sipser problem in case of simulated devices that perform a limited use of
nondeterminism. In this regard, it is possible to consider several restrictions like, for example,
on the number of nondeterministic choices along the computation (see, e.g. [25]), or on the
number of total, or accepting, computations (also known as degree of ambiguity [20, 31, 35]).
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Abstract
We consider reversible and surjective cellular automata perturbed with noise. We show that, in the
presence of positive additive noise, the cellular automaton forgets all the information regarding its
initial configuration exponentially fast. In particular, the state of a finite collection of cells with
diameter n becomes indistinguishable from pure noise after O(log n) time steps. This highlights the
seemingly unavoidable need for irreversibility in order to perform scalable reliable computation in
the presence of noise.
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1 Introduction

1.1 Background
A major challenge regarding the physical implementation of computation is the inevitability
of transient errors due to noise. The difficulty is that, even if each component of the system is
built to be highly accurate and has a very small probability of error, in a lengthy computation,
occasional errors are bound to occur. Such errors may then propagate and entirely corrupt
the computation. The problem of how to perform computation reliably in the presence of
noise (via suitable error-correcting mechanisms) goes back to von Neumann and has been
studied since [36, 12].

At the nanoscopic scale, the issue of thermal noise becomes even more pressing. Not
only are the nano-scale components more sensitive to any sort of fluctuations, but also
the heat generated by the computational process has little time and space to escape the
system, and thus leads to an increase in thermal noise. Landauer argued that the heat
generated by a computational process is associated to its logical irreversibility, and identified
a theoretical lower bound for the amount of heat dissipated in the process of erasing a
bit of information [18]. Bennett, Fredkin and Toffoli showed that, at least in theory, any
computation can be efficiently simulated by a logically reversible one, hence requiring virtually
no dissipation [2, 3, 9, 4]. The output of the reversible computation will consist of the intended
output as well as some extra information that allows one to trace the computation backwards.
If need be, this extra information can be erased away from the computer core, hence avoiding
the accumulation of heat.

By the virtue of their “physics-like” features, cellular automata (CA) have been a popular
mathematical model for studying the physical aspects of computation. The notion of
reversibility has a natural formulation in the setting of CA, and reversible CA have been
widely studied, not only as models of reversible computers, but also as models of physical
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3:2 Reversible CA with Noise

processes and from other points of view [30, 35, 22, 31, 26, 32, 16, 7, 25, 29, 28, 17]. The
reliability of computation in the presence of noise is also studied in the setting of cellular
automata [33, 10, 13, 5, 6, 11, 23, 14, 20].

Although logical reversibility solves the issue of heat generation in a computational
process, it leads to another difficulty. Even if it does not dissipate heat itself, the process is
still exposed to external noise. This external noise can potentially be reduced with proper
insulation but can never be eliminated altogether. The logical reversibility of the process
entails that the noise entering the system is not dissipated and hence accumulates inside the
system. This means that, unless one finds a clever workaround, the state of the system will
eventually be overcome by noise [3].

For a model of noisy reversible circuits, Aharonov, Ben-Or, Impagliazzo and Nisan [1]
identified the limitation imposed by the accumulation of noise. They considered reversible
circuits in which errors occur on wires at each “time unit”, and proved that the output of
such a circuit is indistinguishable from pure noise unless the size of the circuit is exponential
in its depth. Conversely, they showed that every classical Boolean circuit with size s and
depth d can be simulated by a noisy reversible circuit with size O

(
s × 2O(d)) and depth O(d).

In particular, polynomial-size noisy reversible circuits have the power of the complexity
class NC1. They also proved a similar (though not as sharp) result concerning noisy quantum
circuits.

The result we present here formulates a similar limitation imposed by the accumulation
of noise in the setting of cellular automata. We show that a reversible CA subject to positive
additive noise forgets its initial configuration exponentially fast, in the sense that the state
of any finite collection of its cells with diameter n becomes indistinguishable from pure noise
after O(log n) number of time steps. It remains open whether any meaningful computation
can be done reliably with such a limitation.

Mathematically, the forgetfulness of a reversible CA subject to noise corresponds to the
exponential ergodicity of the resulting probabilistic CA. This means that the distribution
of the process converges exponentially fast to a unique invariant measure, which in this
case is the uniform Bernoulli measure (i.e., the distribution of a configuration chosen by
independent coin flips). This result improves upon an earlier partial ergodicity result [20],
which was limited to shift-invariant initial measures, and in which the rate of convergence
was not identified. The exponential ergodicity of noisy reversible CA is a special case of
a more general ergodicity result concerning positive-rate probabilistic CA with Bernoulli
invariant measures and their asynchronous counterparts [21].

The structure of the paper is as follows. In Section 1.2, we introduce the setting, and in
Section 1.3 we state the main result. The proof of the main result, which is based on entropy,
appears in Section 2. Section 3 is dedicated to the interpretation of the result regarding
the rapid information loss of reversible computers in the presence of noise. The paper is
concluded with some discussions in Section 4.

1.2 Setting

General notation

We will use the notation N ≜ {0, 1, 2, . . .} and Z+ ≜ {1, 2, 3, . . .}. We will write Jn, mK to
denote the integer interval {n, n + 1, . . . , m}. We use the notation xA for the restriction of a
function x to a subset A of its domain. We write Z ∼ q to indicate that Z is a random variable
with distribution q. The total variation distance between two probability distributions p and
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q on a finite set A is

∥q − p∥TV ≜ sup
E⊆A

|q(E) − p(E)| = 1
2

∑
a∈A

|q(a) − p(a)| .

Throughout this article, log(·) stands for the natural logarithm.

Cellular automata

Cellular automata (CA) are abstract models of massively parallel computation. A config-
uration of the model is an assignment of symbols from a finite alphabet Σ to every site of
the lattice Zd (for d = 1, 2, . . .). The sites of the lattice are called cells and the symbol on
each cell is referred to as its state. At each step of the computation, the states of all cells
are simultaneously updated according to a local rule. The local rule takes into account the
current state of the cell to be updated as well as its neighbours. More specifically, the local
rule is a function f : ΣN → Σ, where N ⊆ Zd is a finite set indicating the relative positions
of the neighbours of each cell, possibly including the cell itself. A configuration x ∈ ΣZd is
updated to a configuration Fx ∈ ΣZd , where (Fx)i ≜ f

(
(xi+a)a∈N

)
for each cell i ∈ Zd. We

refer to F as the global map of the CA. The computation thus consists in iterating the global
map F on an initial configuration. We identify a CA with its global map F and speak of the
CA F .

Surjectivity, injectivity, and reversibility

A CA is said to be surjective (resp., injective, bijective) if its global map is surjective (resp.,
injective, bijective). It is well-known that every injective CA is also surjective, and hence
bijective. In fact, the Garden-of-Eden theorem states that surjectivity is equivalent to pre-
injectivity [24, 27]. A CA F is said to be pre-injective if whenever two distinct configurations
x and y agree on all but finitely many cells, their images Fx and Fy are distinct.

A CA F is said to be reversible if F is an invertible map and F −1 is itself a CA. It follows
from a topological argument that every bijective CA is automatically reversible [15]. Thus,
injectivity, bijectivity and reversibility are equivalent conditions.

Noise

In this paper, we are concerned with the effect of transient noise on the computation carried
out by a CA. In the presence of noise, random errors might occur during the updates of the
cells.

We restrict ourselves to a specific model of noise, namely additive noise, although the
results of the current paper remain true with the somewhat more general model of permutation
noise [20]. We (arbitrarily) identify Σ with an Abelian group (Σ, +). Subject to an additive
noise with noise distribution q, a symbol a is replaced with a + Z, where Z is a random
variable with distribution q. We will assume that the noise distribution q is strictly positive.
In particular, P(a + Z = b) = q(b − a) > 0 for every a, b ∈ Σ.

At each time step of the computation, the state of each cell is first updated according
to the local rule of the CA and is then perturbed with positive additive noise. The noise
variables at different cells and different time steps are all assumed to be independent.

More specifically, the noise is described by a family (Zt
i )i∈Zd,t∈Z+ of independent random

variables with distribution q. The trajectory of the noisy computation starting from a
configuration x is given by a sequence of random configurations (Xt)t∈N, where X0 ≜ x, and

Xt
i ≜ f

(
(Xt−1

i+a )a∈N
)

+ Zt
i

for every time step t > 0 and every cell i ∈ Zd.

AUTOMATA 2021
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Probabilistic CA

The noisy computation can be described by a probabilistic CA. In a probabilistic CA (PCA),
the local rule is probabilistic and the updates at different cells and different time steps are
performed independently. More specifically, the local rule is given by a stochastic matrix
φ : ΣN ×Σ → [0, 1] (hence,

∑
b∈Σ φ(u, b) = 1 for each u ∈ ΣN ). A configuration x is updated

to a random configuration Y with distribution

P(YA = yA) =
∏
i∈A

φ
(
(xi+a)a∈N , yi

)
for every finite set A ⊆ Zd. The role of the global map in the deterministic case is played by
a (global) transition kernel Φ where Φ(x, ·) indicates the distribution of Y . (See [34] or [20]
for more details.) The trajectory of a PCA Φ is a Markov process with transition kernel Φ,
that is, a sequence (Xt)t∈N of random configurations such that

(i) Given Xt, the configuration Xt+1 is independent of the configurations
X0, X1, . . . , Xt−1.

(ii) Given Xt, the distribution of Xt+1 is given by Φ(Xt, ·).

In the case of a CA F with additive noise, the local rule of the resulting PCA is given by

φ(u, b) ≜ q
(
b − f(u)

)
,

where f is the local rule of F and q is the noise distribution.

Ergodicity

We say that a probability measure λ on ΣZd is invariant under a PCA Φ if Xt+1 ∼ λ

whenever Xt ∼ λ. We say that Φ is ergodic if it has a unique invariant measure λ and
furthermore, for any (possibly random) starting configuration X0, the distribution of Xt

converges weakly to λ. This means that for every finite set A ⊆ Zd and every u ∈ ΣA,

P(Xt
A = u) → λ

(
{x̂ : x̂A = u}

)
as t → ∞.

We can interpret the ergodicity of a PCA Φ as Φ “forgetting” its initial configuration.
However, the convergence (and hence the process of forgetting the initial configuration) can
potentially be slow.

Among the PCA that are ergodic, it is quite common that the convergence towards the
unique invariant measure is exponentially fast, in the sense that, for every finite set A ⊆ Zd,∥∥P(Xt

A ∈ · ) − λ
(
{x̂ : x̂A ∈ · }

)∥∥
TV ≤ αAe−βt ,

where β > 0 is a constant (independent of A) and αA depends on the set A but not on t or
the initial configuration X0 = x. (Here, P(Xt

A ∈ · ) stands for the distribution of Xt
A and

λ
(
{x̂ : x̂A ∈ · }

)
for the marginal of λ on A.) It is the dependence of αA on the set A that

has more relevant information on the speed of convergence. We will discuss this further in
Section 3.

In the current paper, the unique invariant measure of the PCA we study will be the
uniform Bernoulli measure, that is, the distribution of a random configuration in which the
states of different cells are chosen uniformly at random from Σ and independently from one
another.
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1.3 Statement of the theorem
While the primary interest here is in reversible CA in the presence of noise, our main result
remains true for surjective CA. By the diameter of a finite set A ⊆ Zd we mean the smallest
n ∈ N such that A ⊆ u + J0, n − 1Kd for some u ∈ Zd.

▶ Theorem 1 (Surjective CA with additive noise). Let F : ΣZd → ΣZd be a surjective CA.
Let Φ be a PCA describing the perturbation of F with positive additive noise. Then, Φ is
exponentially ergodic with the uniform Bernoulli measure λ as the unique invariant measure.

More specifically, there exist constants α, β, a, b > 0 such that if (Xt)t∈N is a trajectory
of Φ with arbitrary initial configuration, then∥∥P(Xt

A ∈ · ) − λ
(
{x̂ : x̂A ∈ · }

)∥∥
TV ≤ αe−βtn(d−1)/2 ,

for every finite set A ⊆ Zd with diameter n and every t ≥ a log n + b.

The above theorem completes an earlier partial result in which the uniqueness and conver-
gence (without rate of convergence) was established only among shift-invariant measures [20].
Theorem 1 is a special case (relevant to reversible computing) of a more general result: every
probabilistic CA with strictly positive transition probabilities which has a Bernoulli invariant
measure is exponentially ergodic [21].

2 Accumulation of entropy

Like the result of Aharonov et al. [1], the proof of Theorem 1 is based on entropy. Recall
that the (Shannon) entropy of a discrete random variable X (measured in nats) is defined as

H(X) ≜ −
∑

x

P(X = x) logP(X = x) .

The entropy of X measures the average information content of X. If X takes its values within
a finite set Γ, then H(X) ≤ log|Γ|, with equality if and only if X is uniformly distributed
over Γ. We refer to [8] for information on entropy and its properties.

We follow the approach of the earlier proof of ergodicity modulo shift [20]. Namely, we
use the fact that positive additive noise increases the entropy of every finite collection of
cells, while a surjective CA does not erase the entropy and only “diffuses” it. In order to
achieve complete ergodicity with sharp rate of convergence, we use two new ingredients:
(a) An explicit bound on the amount of entropy increase due to noise,
(b) A “bootstrap argument” showing that if the rate of entropy increase is high compared to

the rate of entropy leakage, then the entropy of each finite set will inevitably accumulate
and rise up to its maximum capacity.

That the proof is based on entropy is natural. A reversible CA in the presence of noise
can be thought of as a (microscopically reversible) physical system in contact with a heat
bath. The entropy increase is therefore a manifestation of the second law of thermodynamics
for such systems.

2.1 Effect of additive noise on entropy
We set h ≜ log|Σ|, so that h is the highest possible entropy of a Σ-valued random variable.
Throughout this section, we also let q : Σ → (0, 1) be a strictly positive probability distri-
bution, and set κ ≜ |Σ| mina∈Σ q(a). Note that 0 < κ ≤ 1. To avoid trivial situations, we
assume that Σ has at least two elements and that q is not uniform. Hence, h > 0 and κ < 1.

AUTOMATA 2021
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▶ Lemma 2 (Effect of additive noise on entropy). If A and N are independent Σ-valued
random variables with N ∼ q, then

H(A + N) ≥ κh + (1 − κ)H(A) .

Proof. The distribution q can be decomposed as

q = κu + (1 − κ)q̃

where u is the uniform distribution on Σ and q̃ is another distribution on Σ given by
q̃(a) ≜ q(a)−κ/|Σ|

1−κ for a ∈ Σ. Thus, without loss of generality (by defining a new probability
space if necessary), we can assume that N = BU + (1 − B)Ñ where B ∼ Bernoulli(κ),
U ∼ Uniform(Σ) and Ñ ∼ q̃, and the variables A, B, U and Ñ are independent.

Using this representation, we have

H(A + N)
= H(A + BU + (1 − B)Ñ)
≥ H(A + BU + (1 − B)Ñ | B)
= κH(A + BU + (1 − B)Ñ︸ ︷︷ ︸

= U when B = 1

| B = 1) + (1 − κ)H(A + BU + (1 − B)Ñ︸ ︷︷ ︸
= Ñ when B = 0

| B = 0)

= κh + (1 − κ)H(A + Ñ) .

The claim follows once we recall that H(A + Ñ) ≥ H(A) whenever A and Ñ are independent
Σ-valued random variables. Namely, we have

H(A + Ñ , Ñ) = H(Ñ) +

=H(A)︷ ︸︸ ︷
H(A + Ñ | Ñ)

H(A + Ñ , Ñ) = H(A + Ñ) + H(Ñ | A + Ñ)

from which we get H(A + Ñ) = H(A) + I(A + Ñ ; Ñ) where I(A + Ñ ; Ñ) ≥ 0 is the mutual
information between A + Ñ and Ñ . ◀

The conditional version of the above lemma can be proven similarly, or by reducing it to
the unconditional version.

▶ Lemma 3 (Effect of additive noise on conditional entropy). If A and N are Σ-valued random
variables and C is another random variable conditioned on which A and N are independent
with N ∼ q, then

H(A + N | C) ≥ κh + (1 − κ)H(A | C) .

For a collection of random symbols subjected to independent noise, we have the following
lemma as a corollary.

▶ Lemma 4 (Effect of additive noise on joint entropy). If A ≜ (A1, A2, . . . , An) and N ≜
(N1, N2, . . . , Nn) are two independent collections of Σ-valued random variables and N1, N2,

. . . , Nn are i.i.d. with distribution q, then

H(A + N) ≥ nκh + (1 − κ)H(A) .
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Proof. Using the chain rule and the fact that Nk’s are independent of one another and
independent Ak’s, we have

H(A) =
n∑

k=1
H

(
Ak

∣∣ (Ai)i<k

)
(1)

and

H(A + N) =
n∑

k=1
H

(
Ak + Nk

∣∣ (Ai + Ni)i<k

)
≥

n∑
k=1

H
(
Ak + Nk

∣∣ (Ai)i<k, (Ni)i<k

)
=

n∑
k=1

H
(
Ak + Nk

∣∣ (Ai)i<k

)
. (2)

Applying Lemma 3 to the corresponding terms in (1) and (2) yields the result. ◀

2.2 Effect of a surjective CA on entropy
The effect of surjective CA on entropy was clarified in the earlier proof of ergodicity modulo
shift [20]. For completeness, we recall the proof. Given a set J ⊆ Zd and an integer r ≥ 0,
we denote by Mr(J) ≜ J + J−r, rKd the set of all cells that are within distance r from J .
We also define ∂Mr(J) ≜ Mr(J) \ J .

▶ Lemma 5 (Effect of a surjective CA on entropy). Let F : ΣZd → ΣZd be a surjective CA
with neighbourhood N ⊆ J−r, rK. Then, for every random configuration X and every finite
set J ⊆ Zd we have

H
(
(FX)J

)
≥ H(XJ) − c(J)

where c(J) ≜
(∣∣∂M2r(J)

∣∣ +
∣∣∂Mr(J)

∣∣)h.

Proof. By the Garden-of-Eden theorem, F is pre-injective [24, 27]. From the pre-injectivity
of F it follows that for every configuration x, the pattern xJ is uniquely determined from the
patterns x∂M2r(J) and (Fx)Mr(J). Indeed, suppose that x and x′ are two configurations such
that x′

∂M2r(J) = x∂M2r(J) and (Fx′)Mr(J) = (Fx)Mr(J). Let x′′ be another configuration
that agrees with x′ on M2r(J) and with x outside J . Then, x and x′′ agree everywhere
except possibly on J . On the other hand, Fx = Fx′′ because

Fx′′ and Fx agree outside Mr(J) because x′′ and x agree outside J ,
Fx′′ and Fx′ agree on Mr(J) because x′′ and x′ agree on M2r(J), and Fx′ and Fx

agree on Mr(J) by assumption.
The pre-injectivity of F now implies x′′ = x. It follows that x and x′ agree on J .

Now, consider a random configuration X. Since XJ is a function of X∂M2r(J) and
(FX)Mr(J), we have

H(XJ) ≤ H
(
X∂M2r(J), (FX)Mr(J)

)
= H

(
(FX)J

)
+ H

(
X∂M2r(J), (FX)∂Mr(J)

∣∣ (FX)J

)
≤ H

(
(FX)J

)
+

(∣∣∂M2r(J)
∣∣ +

∣∣∂Mr(J)
∣∣)h ,

proving the claim. ◀

AUTOMATA 2021
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2.3 Evolution of entropy
Combining the above lemmas we obtain the following proposition.

▶ Proposition 6 (Evolution of entropy). Let Φ be a PCA describing the perturbation of a sur-
jective CA F : ΣZd → ΣZd with positive additive noise, and let q : Σ → (0, 1) denote the noise
distribution. Let X0, X1, . . . be a trajectory of Φ starting from an arbitrary configuration X0.
Then, for every finite J ⊆ Zd and each t ≥ 0 we have

H
(
Xt

J

)
≥ [1 − (1 − κ)t]|J |h − c̃(J)

where κ ≜ |Σ| mina∈Σ q(a) and c̃(J) ≜
( 1−κ

κ

)(∣∣∂M2r(J)
∣∣ +

∣∣∂Mr(J)
∣∣)h.

Proof. According to Lemma 5, for every s > 0 we have

H
(
(FXs−1)J

)
≥ H(Xs−1

J ) − c(J) .

Lemma 4 on the other hand gives

H(Xs
J) ≥ κ|J |h + (1 − κ)H

(
(FXs−1)J

)
.

Combining the two, we find that for s > 0,

H(Xs
J) ≥ (1 − κ)H(Xs−1

J ) + κ|J |h − (1 − κ)c(J) .

Multiplying by (1 − κ)t−s, we obtain

(1 − κ)t−sH(Xs
J) ≥ (1 − κ)t−s+1H(Xs−1

J ) + κ(1 − κ)t−s|J |h − (1 − κ)t−s+1c(J) .

Summing over s from 1 to t, we get

t∑
s=1

(1 − κ)t−sH(Xs
J) ≥

t∑
s=1

(1 − κ)t−s+1H(Xs−1
J )

+
[
1 − (1 − κ)t

]
|J |h −

[ <1︷ ︸︸ ︷
1 − (1 − κ)t

]1 − κ

κ
c(J)

which after cancellation of the common terms gives

H(Xt
J) ≥ (1 − κ)tH(X0

J) +
[
1 − (1 − κ)t

]
|J |h − c̃(J)

≥
[
1 − (1 − κ)t

]
|J |h − c̃(J) . ◀

As a corollary, we get the following proposition.

▶ Proposition 7 (Evolution of entropy). Let Φ be a PCA describing the perturbation of a
surjective CA F : ΣZd → ΣZd with positive additive noise, and let q : Σ → (0, 1) denote
the noise distribution. There are two constants a0, b0 > 0 with the following property. If
X0, X1, . . . is a trajectory of Φ starting from an arbitrary configuration X0, then for every
finite set J ⊆ Zd, we have

H(Xt
J) ≥ |J |h − 2c̃(J) for all t ≥ a0 log |J |

c̃(J) + b0

where c̃(J) ≜
( 1−κ

κ

)(∣∣∂M2r(J)
∣∣ +

∣∣∂Mr(J)
∣∣)h.
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Proof. From Proposition 6, it follows that in order to have H(Xt
J) ≥ |J |h − 2c̃(J), it is

sufficient that (1 − κ)t|J |h ≤ c̃(J). We have,

(1 − κ)t|J |h ≤ c̃(J) ⇐⇒ t log(1 − κ) ≤ log c̃(J) − log|J | − log h

⇐⇒ t ≥ log|J | − log c̃(J) + log h

− log(1 − κ)

⇐⇒ t ≥ a0 log |J |
c̃(J) + b0

where a0 ≜ −1/ log(1 − κ) and b0 ≜ − log h/ log(1 − κ). ◀

The latter proposition can be interpreted as follows. For n ≥ 0, consider a hypercube
Sn ≜ J0, n − 1Kd of size nd in the lattice. Then, c̃(Sn) = Θ(nd−1) as n → ∞. Thus, according
to Proposition 7, irrespective of the distribution of the initial configuration X0, we have
H(Xt

Sn
) ≥ ndh − Θ(nd−1) (i.e., Sn lacks no more than Θ(nd−1) nats of entropy at time t) as

soon as t ≥ Θ(log n).

2.4 A bootstrap lemma

The next step is a “bootstrap argument”. The intuitive idea is as follows. The effect of noise
on a hypercube Sn ≜ J0, n − 1Kd is to accumulate entropy as long as the entropy of Sn is less
than its maximum capacity |Sn|h. A surjective CA on the other hand keeps the entropy of
Sn almost preserved except for a leakage of size O(|∂Sn|) per iteration through the boundary
of Sn. The “equilibrium” is reached at time tn = O(log n), when the rate of accumulation
and the maximum rate of leakage roughly match. Now consider a much larger hypercube
Sm which contains many disjoint copies of Sn. For Sm, a similar “equilibrium” is reached
at time tm = O(log m). However, the entropy leaking from the copies of Sn will not have
enough time to reach and escape through the boundary of Sm before time tm, and will hence
have to accumulate inside Sm. This implies that the entropy missing from each copy of Sn

at time tm must in fact be much less than Θ(|∂Sn|).
Let us make this argument precise. Given a random configuration X and finite set

A ⊆ Zd, let us write Ξ(XA) ≜ |A|h − H(XA) for the difference between the entropy of XA

and the maximum entropy capacity of A. Note that Ξ(XA) ≥ 0 with equality if and only if
XA is uniformly distributed over ΣA.

▶ Lemma 8 (Bootstrap lemma). Let Φ be a PCA on ΣZd with neighbourhood N ⊆ J−r, rKd.
Let τ, δ : Z+ → [0, ∞) be two functions satisfying the following property:

for every trajectory X0, X1, . . . of Φ and each n ∈ Z+, we have Ξ(Xt
Sn

) ≤ δ(n) for all
t ≥ τ(n), irrespective of the distribution of X0.

Let k, m, n, t ∈ Z+ be such that m ≥ k(n + 2rt) and t ≥ τ(m). Then, for every trajectory
X0, X1, . . . of Φ, we have Ξ(Xt

Sn
) ≤ δ(m)/kd.

Proof. Observe that we can pack kd disjoint copies of Mrt(Sn) in Sm. Namely, for w ∈ Sk,
let Qw ≜ (n + 2rt)w + Jrt, rt + n − 1Kd. Then, the sets Mrt(Qw) (for w ∈ Sk) are disjoint
and are all included in Sm. Construct a random configuration Y by choosing the patterns
YMrt(Qw) (for w ∈ Sk) independently according to the distribution of X0

Mrt(Sn), and assigning
arbitrary values to the remaining cells. Consider a trajectory Y 0, Y 1, . . . of Φ with initial
configuration Y 0 ≜ Y . Clearly, the patterns Y t

Qw
(for w ∈ Sk) are independent and have the
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same distribution as Xt
Sn

. Therefore, using the chain rule, we have

H(Y t
Sm

) =
∑

w∈Sk

H(Y t
Qw

) + H

(
Y t

Sm\
⋃

w∈Sk
Qw

∣∣∣∣ Y t⋃
w∈Sk

Qw

)
≤ kdH(Xt

Sn
) +

∣∣∣∣Sm \
⋃

w∈Sk

Qw

∣∣∣∣h ,

which implies

Ξ(Y t
Sm

) ≥ kdΞ(Xt
Sn

) .

Now, since Y 0, Y 1, . . . is a trajectory of Φ and t ≥ τ(m), we have Ξ(Y t
Sm

) ≤ δ(m). It follows
that Ξ(Xt

Sn
) ≤ δ(m)/kd, as claimed. ◀

2.5 Proof of the theorem
Proof of Theorem 1. Let X0, X1, . . . be a trajectory of Φ. For every finite set A ⊆ Zd, we
show that Ξ(Xt

A) = |A|h − H(Xt
A) → 0 exponentially fast as t → ∞. This would imply

that the distribution of Xt converges weakly to the uniform Bernoulli measure λ. We then
translate the bound on Ξ(Xt

A) to a bound on total variation distance.
Let r ∈ N be such that the neighbourhood of F (and hence also of Φ) is included

in J−r, rKd. Let c̃(J) and a0, b0 > 0 be as in Proposition 7, and note that c̃(Sn) = Θ(nd−1)
as n → ∞. Choose constants a1, b1, c1 > 0 such that τ(n) ≜ a1 log n + b1 ≥ a0 log |Sn|

c̃(Sn) + b0

and δ(n) ≜ c1nd−1 ≥ 2c̃(Sn) for every n ∈ Z+. Then, by Proposition 7, for each n ∈ Z+ we
have Ξ(Xt

Sn
) ≤ δ(n) whenever t ≥ τ(n), hence the hypothesis of Lemma 8 is satisfied.

Suppose that A ⊆ Zd is a finite set of cells with diameter n. This means that A ⊆ u + Sn

for some u ∈ Zd. For t ≥ 0, define mt ≜ kt(n + 2rt), where kt ∈ Z+ is to be determined.
Then, according to Lemma 8,

Ξ(Xt
A) ≤ δ(mt)

kd
t

= c1kd−1
t (n + 2rt)d−1

kd
t

= c1k−1
t (n + 2rt)d−1 ,

provided that

t ≥ τ(mt) = a1 log kt + a1 log(n + 2rt) + b1 . (3)

Now, pick β1 such that 0 < β1 < 1/a1, and set kt ≜ ⌊eβ1t⌋. Observe that with this
choice, condition (3) is satisfied for all sufficiently large t. In particular, we can find constants
a, b > 0 such that (3) holds whenever t ≥ a log n + b. It follows that, for a suitable constant
c2 > 0, Ξ(Xt

A) ≤ c2e−β1t(n + 2rt)d−1 for all t ≥ a log n + b. (Here, we need a new constant c2
instead of c1 in order to compensate for replacing ⌊eβ1t⌋ with eβ1t.) In particular, Ξ(Xt

A) → 0
exponentially fast as t → ∞.

Next, let µt denote the distribution of Xt, and denote by µt
A and λA the marginals of µt

and λ on A. Observe that Ξ(Xt
A) is the same as D(µt

A∥λA), the Kullback–Leibler divergence
of µt

A relative to λA. According to Pinsker’s inequality [8, Lemma 11.6.1], we have

∥µt
A − λA∥TV ≤

√
1
2D(µt

A∥λA) =
√

1
2Ξ(Xt

A) .

We conclude that

∥µt
A − λA∥TV ≤

√
c2/2 e−(β1/2)t(n + 2rt)(d−1)/2

for every finite A ⊆ Zd with diameter n and all t ≥ a log n + b. The claim follows by choosing
β > 0 slightly smaller than β1/2 and α > 0 sufficiently large. ◀
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3 Rapid information loss

3.1 Reversible CA on an infinite lattice
Theorem 1 shows that for a surjective CA subject to positive additive noise, mixing occurs
quite fast, in the sense that it takes only O(log n) steps before the marginal on each hypercube
of size nd is within ε-distance from its stationary value.

To make this precise, let us use the notation

∥µ − ν∥A ≜ ∥µA − νA∥TV = 1
2

∑
u∈ΣA

|µ([u]) − ν([u])|

for the total variation distance between the marginals of two measures µ and ν on A ⋐ Zd.
Let

dA(t) ≜ sup
x∈ΣZd

∥Φt(x, ·) − λ∥A

be the maximum distance from stationarity of the marginal on A at time t. Note that dA(t)
is non-increasing with t. Given a finite set A ⊆ Zd and ε > 0, we let

tmix(A, ε) ≜ inf{t : dA(t) ≤ ε} .

We call tmix(A, ε) the mixing time of set A at accuracy level ε (cf. [19]).
As before, we let Sn ≜ J0, n − 1Kd be a hypercube of size nd in the lattice.

▶ Corollary 9 (Mixing time of surjective CA with additive noise). Let Φ be a PCA describing
the perturbation of a surjective CA F : ΣZd → ΣZd with positive additive noise. For every
ε > 0, we have tmix(Sn, ε) = O(log n) as n → ∞.

Proof. According to Theorem 1,

dSn
(t) ≤ αe−βtn(d−1)/2

for every n ∈ Z+ and t ≥ a log n + b. Therefore, dSn
(t) ≤ ε as soon as

t ≥ max
{

a log n + b,
d − 1

2β
log n + 1

β
(log α − log ε)

}
,

which means tmix(Sn, ε) = O(log n). ◀

In other words, for every n > 0 and any accuracy ε > 0, the distribution of the pattern
on Sn becomes ε-indistinguishable from the uniform distribution after O(log n) time steps.

3.2 Reversible parallel computers with finite space
In the proof of Theorem 1, the bootstrap lemma was needed to handle the potential diffusion
of entropy on the infinite lattice. For a reversible parallel computer with finite space, a
simpler entropy argument can be used to show that, in the presence of positive additive noise,
the state of the system becomes indistinguishable from pure noise in logarithmic number of
steps. This is a reformulation of Theorem 2 of Aharonov et al. [1] in a slightly more general
setup.

We consider a model of parallel reversible computation with finite space in which every
piece of data is (reversibly) processed at each time step, and is hence exposed to noise. More
specifically, let A be a finite set and Σ a finite alphabet. Let F be a family of bijective maps
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F : ΣA → ΣA. Consider a computational process whose data is an element of ΣA, and in
which, at every step, an arbitrary map from F is applied to the data, and the result is then
subjected to positive additive noise. For instance, a reversible logic circuit with t layers, n

nodes per layer, and wires between consecutive layers only, in which every node is subject to
positive noise fits in this setting.

The above process can be described by a time-inhomogeneous finite-state Markov chain
which mixes rapidly. To make this precise, let us review some terminology and notation
regarding finite-state Markov chains [19]. Let Φ be an ergodic (possibly time-inhomogeneous)
Markov chain with finite state space X and unique stationary distribution π. We write Φs→t

for the transition matrix from time s to time t. Let

dΦ(t) ≜ sup
x∈X

∥Φ0→t(x, ·) − π∥TV

denote the maximum distance from stationarity of the distribution at time t. Since Φ is
ergodic, d(t) → 0 monotonically as t → ∞. The mixing time at accuracy ε > 0 is defined as

tmix(Φ, ε) ≜ inf{t : dΦ(t) ≤ ε} .

▶ Theorem 10 (Rapid mixing of reversible computer with noisy components). Let A be a finite
set and Σ a finite alphabet. Let F be a family of bijective maps F : ΣA → ΣA. Let Φ be a
time-inhomogeneous Markov chain on ΣA in which, at each time step, first an (arbitrary)
element of F is applied to the current state, and then the state is subjected to positive additive
noise with fixed noise distribution. Then, Φ is ergodic with the uniform distribution on ΣA as
the stationary distribution. Furthermore, for every ε > 0, tmix(Φ, ε) = O(log|A|) as |A| → ∞.

Proof. Let Xt denote the state of the Markov chain at time t. Let λ denote the uniform
distribution on ΣA. Let Ft ∈ F be the map applied at time t, and let q denote the noise
distribution. Thus, Xt is obtained from Xt−1 by applying additive noise with distribution q

to Ft(Xt−1). Let κ ≜ |Σ| mina∈Σ q(a).
The bijective maps Ft do not change the entropy, hence according to Lemma 4,

H(Xt) ≥ |A|κh + (1 − κ)H
(
Ft(Xt−1)

)
= |A|κh + (1 − κ)H(Xt−1)

for each t ≥ 1. Therefore, setting Ξ(Xt) ≜ |A|h − H(Xt), we have

Ξ(Xt) ≤ (1 − κ)tΞ(X0) ≤ (1 − κ)t|A|h

for every t ≥ 0. This shows that the Markov chain is ergodic with λ as the unique stationary
distribution.

Now, recall that Ξ(Xt) is the same as the Kullback–Leibler divergence D(µt ∥ λ), where µt

is the distribution of the Markov chain at time t. Therefore, Pinsker’s inequality [8,
Lemma 11.6.1] gives

∥µt − λ∥TV ≤
√

1
2D(µt ∥ λ) =

√
1
2Ξ(Xt

A) ≤
√

h/2|A|1/2(1 − κ)t/2 .

Since X0 is arbitrary, we get

dΦ(t) ≤
√

h/2|A|1/2(1 − κ)t/2 ,

from which it follows that tmix(Φ, ε) = O(log|A|) as |A| → ∞. ◀
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4 Discussion

Is there anything we can do with a noisy reversible CA?

Since an input of size n is lost in O(log n) steps, no cell on the lattice will have time to
“sense” all the input. Thus, it seems unlikely that one can do any meaningful computation
with a noisy reversible CA in a scalable fashion.

Theorem 1 of Aharoni et al. [1] states that, with exponential redundancy, any logic circuit
can be simulated by a reliable reversible circuit. In order to simulate a computation with
d steps (i.e., a circuit of depth d), every input bit is provided in 3d separate copies. The
i-th step of the computation is performed 3d−i+1 times in parallel on separate copies, and
majority vote on groups of 3 is used to pass the results of the i-th step to the next step. Such
an error-correcting mechanism cannot be implemented in the setting of cellular automata
on Zd, because the dependence graph of each cell grows at most polynomially.

Reversible serial computers

Theorem 10 describes the loss of information in a parallel model of a reversible computer in
which every bit of data is updated at every step of the computation and is therefore subjected
to noise. In a serial computer (such as a Turing machine) on the other hand, only a bounded
portion of data is operated on at each step, and only that portion is affected by significant
noise. We can there wonder about the possibility of having a reversible serial computer that
is capable of performing a significantly long computation reliably in the presence of noise.

How much irreversibility is needed to do reliable computation with a CA?

Theorem 1 suggests that, in order to perform reliable computation (with a CA-like computer),
some degree of irreversibility is unavoidable. Can we quantify the degree of irreversibility
needed to perform reliable computation at a given noise level?
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Abstract
The fixed point construction is a method for designing tile sets and cellular automata with highly
nontrivial dynamical and computational properties. It produces an infinite hierarchy of systems
where each layer simulates the next one. The simulations are implemented entirely by computations
of Turing machines embedded in the tilings or spacetime diagrams. We present an overview of the
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1 Introduction

In this short survey we present an overview of the fixed point construction of Wang tile sets
and cellular automata, also known as programmatic self-simulation. It is a method of defining
an infinite sequence of tile sets (Tk)k≥0 with the property that each Tk simulates Tk+1, in
the sense that valid tilings over Tk have the form of infinite regular Nk ×Nk grids for some
constant Nk > 1 and each grid cell behaves like a tile of Tk+1. The simplest variant has
Tk = Tk+1 for all k, so that T0 simulates itself. The defining property of the technique is that
the simulations are implemented almost entirely “in software” by computations of embedded
universal Turing machines. This provides considerable flexibility, since modifying the next
tile set Tk+1 is as easy as modifying the program of the machine that runs on Tk. On the flip
side, the flexibility comes with the price of nonmodularity, as nontrivial constructions are
hard to reuse without presenting them in detail. The tile sets produced by the fixed point
method are also inevitably massive, and it is usually impractical to determine them exactly.
Of course, this is true for most constructions in symbolic dynamics that involve simulating
nontrivial computation, but the fixed point construction stands out by requiring it even for
results that do not have a computational flavor, such as the existence of an aperiodic tile set.

The fixed point construction has its roots in Kurdyumov’s informal article [24] on
probabilistic cellular automata. Kurdyumov’s ideas were implemented rigorously by Gács in
his disproof of the positive rates conjecture [13, 14], which uses programmatic self-simulation
as the basis of an extremely intricate construction. Durand, Romashchenko and Shen isolated
this part of the construction and applied it to Wang tile sets in a series of papers [8, 9, 10, 11]
culminating in [12]. A series of further applications by them and other authors has followed.
Interestingly, many of these share a common theme: a result on tiling systems, sofic shifts
or cellular automata was proved in all dimensions except one or two using a geometric
construction, such as Robinson tiles [28] or Mozes’s realization of substitutive shifts [27], and
the remaining low-dimensional cases were settled by a fixed point construction.

© Ilkka Törmä;
licensed under Creative Commons License CC-BY 4.0

27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA
2021).
Editors: Alonso Castillo-Ramirez, Pierre Guillon, and Kévin Perrot; Article No. 4; pp. 4:1–4:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iatorm@utu.fi
https://orcid.org/0000-0001-5541-8517
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.4
https://arxiv.org/abs/2105.00443
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Fixed Point Constructions in Tilings and Cellular Automata

2 Definitions and notation

Let A be a finite alphabet and d ≥ 1. A pattern is a function P : D → A with domain
D = D(P ) ⊆ Zd. Patterns of domain Zd are called configurations, and they form the
d-dimensional full shift AZd . Define the shift map τ : Zd ×AZd → AZd by (τ n⃗x)v⃗ = xv⃗+n⃗. A
set of finite patterns F defines a subshift as the subset XF = {x ∈ AZd | ∀P ∈ F, v⃗ ∈ Zd :
(τ v⃗x)|D(P ) ̸= P} where no pattern from F occurs at any position. If F is finite, XF is a
shift of finite type (SFT), and if F is computably enumerable, XF is an effective subshift.
A pattern is locally valid for F if no element of F occurs in it as a sub-pattern. The set
of domain-D patterns occurring in a subshift X is denoted LX(D) = {x|D | x ∈ X}. If a
subshift X does not properly contain another nonempty subshift, it is minimal. If a subshift
X is a union of minimal subshifts, it is quasiperiodic.1

A particular class of 2-dimensional SFTs is given by sets of Wang tiles, which are squares
with colored edges. Formally, a Wang tile set is a subset of C4 for a finite set C of colors,
with the four components representing the colors of the east, north, west and south edges
of the square. We forbid exactly those 1 × 2 and 2 × 1 patterns where the adjacent edges
of the two tiles have different colors. A d-dimensional SFT X is aperiodic if for all x ∈ X

and p⃗ ∈ Zd there exists v⃗ ∈ Zd with xv⃗+p⃗ ̸= xv⃗. A set of Wang tiles is called aperiodic if it
defines a nonempty aperiodic SFT.

A function ϕ : X → Y between subshifts X ⊆ AZd

, Y ⊆ BZd is a block map if there is a
finite neighborhood N ⊂ Zd and local function Φ : LX(N) → B such that ϕ(x)v⃗ = Φ((τ v⃗x)|N )
for all x ∈ X and v⃗ ∈ Zd. If X is an SFT and ϕ is surjective, then Y is a sofic shift and
X is an SFT cover of Y . A cellular automaton (CA) is a block map from a full shift to
itself. A spacetime diagram of a CA ϕ : AZd → AZd is a configuration x ∈ AZd+1 with
x|Zd×{i+1} = ϕ(x|Zd×{i}) for each i ∈ Z. In a spacetime diagram, the d-dimensional slices
obtained by fixing the last coordinate form a trajectory of ϕ.

A standard reference for one-dimensional subshifts, with a short appendix on the multidi-
mensional setting, is [25]. See [23] for a survey on the theory of CA. Wang tiles were first
defined in [32], and aperiodic sets of Wang tiles were first constructed in [2].

3 The fixed point construction

3.1 Tile sets
In this section we present an outline of the fixed point construction in the context of Wang
tiles following [12]. We omit much of the detail.

▶ Definition 1. Let T and S be two sets of Wang tiles. A simulation of S by T with zoom
factor N is an injective function α : S → TN×N such that:

For any s1, s2 ∈ S, the horizontal concatenation s1s2 is locally valid over T if and only if
α(s1)α(s2) is locally valid over S, and similarly for their vertical concatenation.
For every valid tiling x ∈ TZ2 , there is a unique vector v⃗ ∈ [0, N − 1]2 such that
(τ v⃗+(iN,jN)x)|[0,N−1]2 ∈ α(S) for all (i, j) ∈ Z2.

Suppose first that we are given the tile set S and wish to define, for each large enough
zoom factor N , a tile set T = T (N) and a simulation α : S → TN×N . We will implement T
in a way that makes the choice S = T possible with relatively minor modifications. Assume

1 Note that an arbitrary union of minimal subshifts is generally not a subshift.
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the colors of S-tiles are binary strings of some length k, that is, elements of {0, 1}k. First,
each tile T has an address (i, j) ∈ [0, N − 1]2. Local rules ensure that its east and north
neighbors have addresses (i + 1, j) and (i, j + 1) modulo N , respectively. Concretely, the
set of colors of T is [0, N − 1] × C for some auxiliary set C, and each tile with address (i, j)
has the form ((j + 1, ce), (i+ 1, cn), (j, cw), (i, cs)) for some ce, cn, cw, cs ∈ C. Then in a valid
tiling x ∈ TZ2 , the tiles are partitioned into a grid of N ×N blocks called macrotiles whose
southwest corners are the tiles with address (0, 0). The address of each tile is its relative
position within the macrotile containing it.

Each tile of a macrotile t ∈ TN×N has a specific role that depends on its address. A fixed
rectangular subset R = [a, b] × [c, d] ⊂ [0, N − 1]2 of addresses forms the computation zone.
It stores a simulated computation of a Turing machine M , which recognizes the set S in the
sense that it halts on input w ∈ {0, 1}4k if and only if w encodes a tile of S. A reasonable
choice for the parameters is a = c = ⌊N/3⌋ and b = d = ⌊2N/3⌋, so that the dimensions of
R increase linearly in N . The simulation of M is implemented in some standard way, such
as the one presented in [28]. The bottom row of R initializes the computation, and each row
above it simulates one computation step. If M does not halt before reaching the top row
of R, a tiling error is produced. As long as N (and thus R) is large enough, the simulated
machine has enough time and space to verify any input that encodes a tile of S.

Fix an interval I ⊂ [0, N − 1] of length k, the number of bits in a color of S. Each tile
with address in B = ({0, N − 1} × I) ∪ (I × {0, N − 1}) stores an additional bit, called a
border bit. Their purpose is to encode the four colors of the simulated tile of S. The border
bits are constrained to be equal to those of the neighboring macrotiles. For each address in
B, we fix a contiguous path of addresses to the bottom row of the computation cone, making
sure that paths originating from distinct addresses are pairwise disjoint. Using local rules,
we force all tiles with addresses on a given path to store the same bit. In this way the border
bits are routed to the computation zone, and the resulting binary word of length 4k forms
the input to the simulated machine M . If M accepts this word, then it represents a tile
s ∈ S, and we set α(s) = t. With this construction the set of locally valid macrotiles equals
α(S), and the adjacency rules of macrotiles are identical to those of S. Thus T simulates S
with zoom factor N .

We would now like to choose S = T , so that T = T (N) simulates itself. There are a few
complications that we need to handle. First, the colors of T must be binary words of constant
length. We encode one component of the address in ⌈log2 N⌉ bits and the remaining data in
another m = ⌈log2 |C|⌉ bits. Second, the state set and transition rules of the Turing machine
M , which are part of the tile set T , depend on S. We replace M by a fixed universal Turing
machine MU that takes as input a binary word w ∈ {0, 1}∗ and, on a separate track of the
tape, a program p ∈ {0, 1}∗, and computes p(w). The machine MU should also be efficient in
the sense that for any Turing machine M ′, there is a program p such that MU(p, w) = M ′(w)
for all w and the number of computation steps in MU(p, w) is polynomial in |p|, |w|, and the
number of computation steps in M ′(w). Now the set C of auxiliary colors of T (N) (and thus
the number m) is fixed, and to simulate T (N) itself, it suffices to find a suitable program
pT = pT (N). We enforce the simulation by requiring that each tile with address (a + i, b)
stores the bit (pT )i on the program track of the simulated tape of MU, where (a, b) is the
southeast corner of the computation zone. We call this the program condition, and it is part
of the definition of T .

Since we introduced the program condition into T , we must enforce it in the simulated
version as well. Namely, suppose for a moment that the machine MU always has enough time
and space to finish its simulated computation in a macrotile. At this point of the construction
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we then have a tile set T that simulates “tile set T without the program condition,” which is
of course not equal to T . We can enforce the program condition in the simulated tiling as
well by modifying the program pT as follows. If the machine MU simulated inside a macrotile
t ∈ TN×N is given inputs that correspond to a tile with address (a+ i, b) on the bottom row
of the computation zone, then it reads the program bit d ∈ {0, 1} of any tile of t with address
(a+ i, b′) for b′ ∈ [0, N − 1] (which are all equal), and verifies that the simulated program bit
of t equals d. The program condition of T ensures that the initial tape of the machine MU
contains the program pT , so we are guaranteed that d = (pT )i. After this modification, T
simulates itself (given the assumption on MU).

Finally, consider the time and space requirements of MU. The number of bits needed to
store a color of T (N) is ℓ = ⌈log2 N⌉ +m = O(logN), since m is fixed. The program pT can
store the number N in a variable, so its length is likewise O(logN). It should be clear that
for each w ∈ {0, 1}4ℓ the computation of pT (w) runs in time and space O(poly(logN)) as
long as we implement T and pT in a reasonable way. For large enough N the computation
zone can accommodate the computation, and then T = T (N) is a self-simulating tile set.
Each valid tiling over T is divided into macrotiles of level 1, which form macrotiles of level
2, which form macrotiles of level 3, and so on. In particular, the tile set is aperiodic. In
the standard terminology, a level-k macrotile is a child of the level-(k + 1) macrotile that
contains it.

The simulation function α : T → TN×N can be seen as a two-dimensional substitution.
We can iterate it to obtain substitutions αk : T → TNk×Nk for k ≥ 0, and define the
substitutive subshift Xα ⊂ TZ2 by forbidding all finite patterns that do not occur in any αk(t)
for k ≥ 0 and t ∈ T . The set of valid tilings over T contains Xα, and T can quite easily
be modified to guarantee that these subshifts are equal. In [7], Durand and Romashchenko
presented a variant of the construction in which α is primitive, meaning that for some k ≥ 0,
every t ∈ T occurs in αk(s) for every s ∈ T . In this case Xα is a minimal subshift. We will
discuss their results more thoroughly in Section 4.2.

3.2 Cellular automata

The main idea of the fixed point construction for one-dimensional cellular automata is the
same as for tile sets, and in fact the “good” spacetime diagrams of a fixed point CA have
a similar substitutive structure to those of fixed point tilings, except that the width and
height of the macrotiles are distinct. The usual terminology is somewhat different, as is the
implementation of information transfer between macrotiles. As before, we first construct a
CA ϕ : AZ → AZ that simulates a given CA ψ : BZ → BZ. The notion of simulation has long
been used informally in CA literature, but for the sake of being exact, let us use a version of
injective bulking as studied in [5].

▶ Definition 2. A cellular automaton ϕ : AZ → AZ simulates another CA ψ : BZ → BZ

if there exist integers Q,U ≥ 1 and s ∈ [0, Q − 1] and an injection α : B → AQ such that
ϕU (τ s(α(x))) = α(ψ(x)) for all x ∈ BZ. Here α(x) ∈ AZ is defined by concatenating the
blocks α(xi) for i ∈ Z.

We assume that ψ has neighborhood N = {−1, 0, 1} and its state set consists of binary
words of constant length k, and construct ϕ so that it also has neighborhood N . The
simulation parameters Q < U are called the colony size and work period, and we choose s = 0.
The work period U is typically vastly larger than Q, but it is possible to implement the CA so
that Q/U is arbitrarily close to 1. Every state of ϕ consists of an element of [0, Q−1]×[0, U−1]
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called its address and age2 plus some additional data. Say that a configuration x ∈ AZ is
valid at i ∈ Z if the states xi−1xixi+1 have addresses j, j + 1, j + 2 mod Q for some j and
their ages are equal. We only define the prototypical CA ϕ on configurations that are valid
everywhere. In this case, the address of a cell never changes and its age increases by 1 modulo
U on every time step.

A colony is a sequence of Q adjacent cells with addresses 0, 1, 2, . . . , Q− 1 and equal ages.
Each cell of a colony stores a simulation bit, and the k leftmost bits form the simulated state
of the colony. The “life cycle” of a colony, usually called a work period when it cannot be
confused with U , begins at age 0 and ends at age U − 1. At the first step of the work period
when each cell has age 0, the simulation bits of the cells are copied onto two separate tracks
called the left and right mailboxes. If the age of a cell is between 1 and Q, it copies the
contents of these tracks from its left and right neighbors. Otherwise they remain unchanged.
In this way, during the first Q+ 1 steps of its life cycle every colony transmits its simulation
bits to its nearest neighbors. The details of this process vary between implementations. Here
we have followed [31] and in particular assumed that ϕ is synchronous and deterministic. If
it is asynchronous or subject to local errors, a different scheme is needed to minimize loss of
transmitted data.

Each cell of a colony also stores a program bit, and these bits together form a program
p ∈ {0, 1}∗. At age Q + 1, the leftmost cell of each colony initializes the computation of
the efficient universal Turing machine MU. The simulated head of MU is usually called
the agent. The agent scans the program bits, simulation bits and mailboxes of the colony,
computes a new simulated state w ∈ {0, 1}k according to the program p, and writes w onto
the simulation bits of the k leftmost cells. We assume that the agent never steps outside the
colony and halts before the work period ends at age U − 1. Then the age of the colony resets
to 0 and its life cycle begins anew.

As in the previous section, the CA ϕ simulates ψ as long as Q and U are large enough to
satisfy the time and space requirements of MU. A suitable choice of the parameters allows
self-simulation, meaning that we can choose ϕ = ψ. Note that a correct simulation hierarchy
requires a program pϕ implementing ϕ to be stored in every colony of the initial configuration,
on every simulation level. On the first level this can be enforced by restricting the state set
of ϕ analogously to the program condition of the tile set construction, and then MU can
check whether the next simulation level uses an identical program. It depends entirely on the
application how the CA behaves if the programs do not match, or if the simulation structure
is invalid in some other way: it can try to correct the error, produce a special error state, or
have only a partially defined local rule.

3.3 Variable zoom factor and communication between simulation levels
The construction is flexible enough that instead of having the tile set or the CA simulate
itself, we can modify the simulated system depending on the simulation level, resulting in a
sequence of tile sets (Tk)k≥0 or automata (ϕk)k≥0. The motivation is that the tile set or CA
has some desirable property P (N) that is limited by the zoom factor N , and by increasing
the zoom factor on consecutive simulation levels it may be possible to obtain P (N) for all
N ∈ N. A common use case is that P (N) has a computational flavor, such as tiling the plane
only if a fixed Turing machine halts within N steps.

2 Notice the difference in terminology to the tile set construction, where address referred to a two-
dimensional vector.

AUTOMATA 2021



4:6 Fixed Point Constructions in Tilings and Cellular Automata

We discuss the implementation only in the case of tile sets, as the same ideas apply to the
CA construction. Our goal is then to define a sequence (Tk, Nk)k≥0 of tile sets and numbers
such that each tile set Tk simulates Tk+1 with zoom factor Nk, and we would like to have
as much freedom as possible in choosing the latter. For this, we modify the construction
of Section 3.1 as follows. The program pT has an additional integer parameter: pT (k,w)
determines if w encodes a tile of Tk. The program condition is extended so that in addition
to the program pT , each tile of T0 stores the number 0. For each k ≥ 0, the tile set Tk

implements a variant of the program condition where each tile of Tk+1 stores pT and the
number k + 1. This ensures that all macrotiles have access to their simulation level.

The constraints on the zoom factors are slightly different than in the uniform case.
First, both Nk+1 and Tk+1 should be computable from k in time and space O(Nk). Second,
Nk = Ω(logNk+1 + log k) since the binary representation of any address in [0, Nk+1 − 1]2
and the simulation level k should fit in any level-k macrotile. To get a sense of the class
of allowed sequences, Nk = ⌈log k⌉ for large enough k grows too slowly, while Nk+1 = 2Nk

grows too fast. The choices Nk = Θ(ka) for a ∈ Q>0, Nk = Θ(2k) and Nk = Θ(222k

) are all
acceptable.

In most applications, each macrotile stores some amount of additional information not
listed above, and there are additional relations between the data stored by macrotiles of
consecutive levels. In some sense, a macrotile can “communicate” with its children. The
technical details vary, but the main idea is that each level-k macrotile contains a special
field in its state set which the simulated machine MU of its parent is allowed to access. The
parent may thus read an arbitrary “message” from a subset of macrotiles on the bottom row
of the computation zone. The children can synchronize this message among themselves using
local rules, so that it is visible to all of them or some convenient subset. In the CA context,
the agent of a colony can read and modify any data that was stored in the children during
the last work period, so inter-level communication is slightly easier to implement.

4 History and applications

4.1 Fault-tolerant cellular automata
The fixed point construction was first introduced in the context of probabilistic cellular
automata (PCA). We give some basic definitions; see [26] for a more thorough review on the
subject. A d-dimensional PCA ϕ on AZd consists of a neighborhood N ⊂ Zd and a local rule
Φ : AN → P(A), where P(A) is the set of probability distributions over A. The local rule is
applied to every coordinate of a configuration x ∈ AZd as in the case of deterministic CA, but
the result is the probability distribution ϕ(x) ∈ P(AZd) where the value of each cell ϕ(x)v⃗ is
drawn independently from Φ((τ v⃗x)|N ). In this way ϕ lifts to a function ϕ : P(AZd) → P(AZd)
on distributions, denoted µ 7→ µϕ. Every PCA has at least one fixed point, called an
invariant measure. If ϕ has a unique invariant measure µ and for every other measure ν
the sequence (νϕn)n∈N converges weakly to µ, then ϕ is ergodic. Intuitively, an ergodic
PCA gradually forgets all details about its initial state. We say ϕ has positive rates if the
probability of Φ(P ) = a is positive for all P ∈ AN and a ∈ A. In other words, every local
transformation occurs under ϕ with positive (but possibly very small) probability. The
positive rates conjecture states that if a one-dimensional PCA has positive rates, then it must
be ergodic.

In 1986 (and with an expanded paper in 2001), Gács disproved the conjecture by an
intricate construction of a PCA that behaves like a deterministic CA except that at each
time step, each cell has an extremely small but positive probability of “making an error” and
ending up in an arbitrary state [13, 14]. The design is based on a short paper of Kurdyumov
from 1978 that likewise claims to refute the conjecture, but lacks detail [24].
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▶ Theorem 3 (Gács). There exists a nonergodic 1D PCA with positive rates.

The construction uses self-simulation to recognize and correct clusters of errors that occur
at various scales. Non-ergodicity is achieved by defining the state set as a product {0, 1} ×A,
initializing each cell in some state xi ∈ {b} ×A for the same bit b, and “remembering” the bit
in the sense that the probability of seeing the opposite bit 1 − b in any given cell at any given
time is low.3 If the error rate is small enough, an argument from percolation theory shows
that errors will almost surely occur in semi-isolated “bursts” that fit in finite (but unbounded)
space-time rectangles. At the lowest simulation level, each cell contains information about
its own simulation values (address, age. . . ) and the bit to remember, as well as those of its
nearest neighbors, and isolated individual errors can be fixed in one time step by a majority
vote between three cells. Larger bursts of errors are detected and repaired by higher-level
colonies. One of the main difficulties is that long sequences of errors can produce a segment
of states that resembles a valid simulation structure. Its incompatibility with the global
hierarchy is only visible on its endpoints, where it cannot be determined locally which side
belongs to the erroneous segment. See Gray’s condensed version of the construction for more
(but not nearly all) technical details [16]. Gács and Çapuni have applied the same ideas to
fault-tolerant Turing machines [4].

4.2 Realizations by sofic shifts
In [20], Hochman proved that d-dimensional effectively closed subshifts can be realized as
the projective sybdynamics of (d+ 2)-dimensional sofic shifts, that is, sets of d-dimensional
hyperplanes occurring in them. The construction uses the older result of Mozes that two-
dimensional substitutive subshifts are sofic [27] to divide each configuration into regions of
increasing size containing simulations of Turing machines. The dimension was reduced from
d+ 2 to d+ 1 independently by Aubrun and Sablik in [1] with Robinson tiles [28], and by
Durand, Romashchenko and Shen in [12] using fixed point tilings. It has since been used as
a “black box” in numerous other constructions. Incidentally, the realization result of Mozes
was also reproved with a fixed point construction in [12].

▶ Theorem 4 (Aubrun & Sablik; Durand & Romashchenko & Shen). Let X ⊆ AZd be an
effectively closed subshift. Then the higher-dimensional subshift Y = {y ∈ AZd+1 | ∃x ∈ X :
∀w⃗ ∈ Zd+1 : yw⃗ = xπd(w⃗)} is sofic, where πd : Zd+1 → Zd is defined by πd(i1, . . . , id+1) =
(i1, . . . , id).

The article [12] is a culmination of a series of shorter papers by the same authors. It
presents the prototypical fixed point construction, collects their previous results into one
place, and extends some of them. In their proof of Theorem 4 (in the case d = 1), there
is a separate layer of A-tiles in which each vertical stripe is tiled with copies of a single
A-symbol. The simulations have zoom factors Nk = Qck for some large constant Q and c > 2.
A macrotile of level k with address (x, y), where y <

∏k
i=0 Ni, is tasked with retrieving and

storing the symbols of f(k) consecutive columns of the A-layer situated y steps away from
its left border, where f : N → N is a very slowly growing function. The definition of Nk

ensures that Nk+1 ≪
∏k

i=0 Ni, so that in a level-(k + 1) macrotile t, every length-f(k) word
of the A-layer occurring within it (or right at the border between it and its neighbor) is
stored in at least one child. Using a series of inter-level messages, t is in turn able to retrieve

3 In fact, the construction can remember an infinite sequence of bits.
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4:8 Fixed Point Constructions in Tilings and Cellular Automata

its designated length-f(k + 1) word. It also computes a prefix of the sequence of forbidden
patterns that defines X and verifies that none of them occur in the word it retrieved. As a
direct application, the authors reprove the main result of [6]: there exists a tile set where
the Kolmogorov complexity of every N ×N pattern that occurs in a tiling is Ω(N), which
is asymptotically optimal for an SFT. Namely, we can define X ⊂ {0, 1}Z by forbidding all
words w whose Kolmogorov complexity is below a|w| − b for suitable constants a, b > 0 and
apply Theorem 4.

Some dynamical properties of the subshift X in Theorem 4 can be lifted to the SFT
cover Z of Y . One of the main results of Durand and Romashchenko in [7] states that if
X is minimal or quasiperiodic, then the same property can be imposed on Z. They modify
the construction so that every macrotile contains a zone of “diversification slots” where all
valid 2 × 2 patterns of tiles are manually forced to appear. In the minimal case, there is the
additional complication that if the positions of the macrotile grids and the layer of A-tiles in
the SFT cover can be independent, the result is generally not minimal. This is overcome by
choosing a canonical configuration from each and implementing the minimal shift generated
by their combination. In the same article, the authors characterize the Turing degree spectra
of quasiperiodic SFTs, which are exactly the upper closures of effectively closed subsets of
{0, 1}N (see [7, Theorem 4] for details). In particular, there exist nonempty quasiperiodic
SFTs with only noncomputable configurations.

In [33], Westrick proves two sofic realization results that utilize the fixed point construction.
They concern two-dimensional binary subshifts where every connected component of 1-cells
is a (possibly degenerate) square.

▶ Theorem 5 (Westrick). Let Xsq ⊆ {0, 1}Z2 be the 2D subshift where every connected
component of 1-cells is either a finite square, a quarter-plane, a half-plane, or the entire Z2.
(a) Every effectively closed subshift X ⊆ Xsq that forbids all pairs of distinct squares of

identical size (and possibly other patterns) is sofic.
(b) For S ⊆ N, let XS ⊆ Xsq be the subshift that forbids the n× n squares for all n ∈ N \ S.

If S is computably enumerable, then XS is sofic.

We only sketch the construction proving the first result, as the other is quite similar. The
subshift Xsq is easily seen to be sofic, so we focus on the additional constraints of X. Westrick
uses the variable zoom factors Nk = 222k

. In addition to the simulation structure, each
macrotile t stores the following information: first, the size and relative position of each finite
square of 1-cells that has at least one side completely inside t or one of its neighbors; second,
the orientation and relative position of each corner and horizontal or vertical boundary of
1-cells in t or its neighbors that if not part of an already stored finite square; third, auxiliary
bits that help enforce the consistency of this information between t and its parent.

If the sizes of all squares are distinct, then each level-k macrotile can contain at most
O(L2/3

k ) squares, where Lk =
∏k

i=0 Nk is its side length, and their sizes and positions can
be encoded in O(L2/3

k logLk) bits. This data is small enough to fit in the macrotile, but
transporting it from its children to the computation zone is nontrivial, since it is too large to
be simply broadcast to each child. Westrick uses a graph theoretical argument to show that
one can route the information in a nondeterministic way. Additionally, the universal Turing
machine MU needs to be replaced by a multi-tape machine to speed up the computation of
the relative offsets of the squares. As in Theorem 4, the number of additional time steps
used for computing the forbidden patterns of X is increased at each simulation level. The
patterns formed by small squares are checked first, so any forbidden pattern will be eventually
discovered and leads to a tiling error.
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4.3 Robust tilings
In addition to Theorem 4 and related realization results, the paper [12] presents tile sets that
are robust with respect to random errors, meaning that a configuration that is locally valid
on a large subset of Z2 is guaranteed to be equal to a single valid tiling in a large4 subset of
Z2. In fact, the main result is the construction of a tile set that combines robustness with
the aforementioned property that every tiling is algorithmically complex.

▶ Definition 6. Let T be a set of Wang tiles and E ⊆ Z2. A (T,E)-tiling is a configuration
x ∈ TZ2 such that for all neighboring coordinates v⃗, w⃗ ∈ Z2 \ E, the colors at the common
border of xv⃗ and xw⃗ match. The Bernoulli distribution on subsets of Z2 with P(v⃗ ∈ E) = ϵ

for each v⃗ is denoted Bϵ.

▶ Theorem 7 (Durand & Romashchenko & Shen). There exists a tile set T that tiles the
plane and a, b > 0 with the following properties. In every valid x ∈ TZ2 , every n× n square
has Kolmogorov complexity at least an − b. For small enough ϵ > 0, for Bϵ-almost every
E ⊆ Z2, for each (T,E)-tiling x, the Kolmogorov complexity of x[−n,n]2 is Ω(n), and there is
a valid tiling y ∈ TZ2 with lim supn |{v⃗ ∈ [−n, n]2 | xv⃗ ̸= yv⃗}|/(2n+ 1)2 ≤ 1/10.

The construction of robust self-simulating tile sets turns out to be much simpler than
the error-correcting CA discussed in Section 4.1. Similarly to that construction, if ϵ is small
enough, then almost all error sets E can be decomposed into isolated finite subsets that can
be handled separately. It is then enough to modify the prototypical fixed point construction
so that every locally valid pattern shaped like the 5 × 5 annulus [−2, 2]2 \ [−1, 1]2 can be
extended into a valid 5 × 5 rectangle in a unique way. Namely, this property is inherited
by macrotiles of all simulation levels, which can then correct arbitrarily large (but finite)
incorrect patterns. The additional condition on the Kolmogorov complexity of (T,E)-tilings
requires a little more machinery, since the uniformity of the vertical columns that store the
bits of the high-complexity shift X can be broken by the error set E. This is remedied by
duplicating the information in several columns of macrotiles and periodically checking it
against an error-correcting code.

4.4 Unique ergodicity
The article [31] by Törmä is an application of the fixed point construction to the dynamics
of cellular automata. It concerns a weakening of the notion of nilpotency.

▶ Definition 8. A CA ϕ : AZd → AZd with a quiescent state 0 ∈ A is nilpotent if there
exists n ∈ N such that ϕn(AZd) = {0Zd}. It is asymptotically nilpotent if for each x ∈ AZd

we have ϕn(x) → 0Zd in the product topology as n → ∞. It is uniquely ergodic if it has a
unique invariant measure.

A nilpotent CA sends every initial configuration into the same uniform “sink” in a
bounded number of steps. Asymptotic nilpotency means that for every initial configuration,
each cell will be in a nonzero state on only a finite (but not necessarily uniform) number
of time steps. It was shown in [17] that asymptotically nilpotent one-dimensional CA are
in fact nilpotent, and the result was generalized in [29, 30]. As for unique ergodicity, note
that since 0 is quiescent, the unique invariant measure cannot be any other than the Dirac

4 Large in a slightly different sense: the first subset comes from a measure-1 set with respect to a biased
Bernoulli distribution, the second has asymptotic density close to 1.

AUTOMATA 2021
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point measure concentrated on 0Zd . Then by classical results of ergodic theory, ϕ is uniquely
ergodic if and only if for every initial configuration, the asymptotic proportion of time steps
that any given cell spends in a nonzero state equals zero. The main result of [31] states that
even one-dimensional uniquely ergodic CA are not necessarily nilpotent.

▶ Theorem 9 (Törmä). There exists a uniquely ergodic CA ϕ : AZ → AZ that has a quiescent
state and is not nilpotent.

This CA is defined by a fixed point construction with variable zoom factors. The alphabet
of the CA ϕk on each simulation level k contains a designated “blank” state Bk, with B0 = 0.
Each cell of a level-k colony will spend a proportion pk of its work period simulating the
state Bk, with pk → 1 as k → ∞. If a colony and both of its neighbors simulate the state Bk,
it is temporarily replaced by a segment of 0-cells. Any local inconsistency in the simulation
structure causes all nearby colonies to assume the blank state. These properties ensure
that every locally correct simulation structure is asymptotically infinitely sparse, and locally
incorrect structures are quickly destroyed. On the other hand, since a carefully chosen initial
condition gives rise to an infinite nested simulation, the CA is not nilpotent.

4.5 Realization of topological entropy
The topological entropy of a topological dynamical system measures its complexity and
unpredictability. In the case of subshifts and cellular automata, it can be characterized as
a limit of counting patterns of increasing sizes that occur in the valid configurations and
spacetime diagrams.

▶ Definition 10. The topological entropy of a subshift X ⊆ AZd is the limit h(X) =
limn→∞ n−d log |{x[0,n−1]d | x ∈ X}|. The topological entropy of a CA ϕ on AZd is h(ϕ) =
limr→∞ limn→∞ n−1 log |{(ϕt(x)[0,r−1]d)n−1

t=0 | x ∈ AZd}|.

By classical results in symbolic dynamics (see Sections 4 and 11 of [25]), the entropy
of a one-dimensional SFT is efficiently computable and its possible values are exactly the
nonnegative integer multiples of logarithms of Perron numbers. The entropies of two- and
higher-dimensional SFTs were characterized by Hochman in [22] as the nonnegative right-
computable numbers, that is, limits of computable decreasing sequences of rational numbers.
Independently in the preprint [15] using a variant of Robinson tiles and in [7] using fixed
point tile sets, it was shown that they can be realized with transitive SFTs.

▶ Theorem 11 (Gangloff & Sablik; Durand & Romashchenko). The topological entropies of
transitive 2D SFTs are exactly the nonnegative right-computable numbers.

The topological entropies of three- and higher-dimensional CA were characterized in [20].
Guillon and Zinoviadis handled the remaining dimensions, 1 and 2, in [19]. Their proof uses
the fixed point construction.

▶ Theorem 12 (Hochman; Guillon & Zinoviadis). The topological entropies of one-dimensional
CA are exactly the nonnegative right-computable numbers, and those of two- and higher-
dimensional CA are exactly the limits of increasing computable sequences of nonnegative
right-computable numbers (including ∞).

The high-level idea in each construction is the same. In the SFT case, given a number
α ≥ 0 in the appropriate class, construct an SFT that factors onto a subshift X ⊆ {0, 1}Zd

where the maximal asymptotic density of 1-symbols in a configuration equals α, and then
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allow any subset of 1s to be independently replaced by 2s. In the case of cellular automata,
a d-dimensional self-simulating CA with variable zoom factor is used to analyze a separate
binary layer of the configuration, which is not modified by the CA except when erased by
the error state. The CA produces a spreading error state if the local density of 1-symbols is
too high, which guarantees that such patterns are transient and thus do not contribute to
the entropy. This density is converted into entropy by replacing an arbitrary subset of 1s by
2s and composing the CA with a shift.

4.6 Expansive directions

Subshifts are expansive dynamical systems: a configuration x ∈ X ⊆ AZd can be reconstructed
from any family of good enough approximations of the shifts τ v⃗x for v⃗ ∈ Zd. Boyle and Lind
studied a stronger variant called directional expansivity, where a certain subset of the shifts
suffices to determine x, in [3]. For convenience, we define it only in the two-dimensional case.

▶ Definition 13. Let 0⃗ ∈ L ⊂ R2 be a line through the origin with direction (slope)
ℓ ∈ Ṙ = R ∪ {∞}. We say ℓ is expansive for a subshift X ⊂ AZ2 , if there exists r ≥ 0 such
that the function x 7→ x|D is injective on X, where D = (L + [−r, r]2) ∩ Z2. Denote the
nonexpansive directions by N(X) ⊆ Ṙ.

For any infinite two-dimensional subshift X, the set N(X) is nonempty and closed. Boyle,
Lind and Hochman proved in [3, 21] that every nonempty closed subset L ⊆ Ṙ occurs
as N(X) for some subshift X. The subshifts constructed by Boyle and Lind consist of
two layers, each of which contains regularly spaced discrete approximation of lines, and it
realizes every L except singleton irrational directions. Hochman handled the remaining case
with a subshift resembling the set of spacetime diagrams of a fixed point CA with variable
zoom factor, but without the simulated Turing machines. Since X is not required to be
of finite type, the hierarchical structure can be enforced. Building on Hochman’s proof,
Guillon and Zinoviadis have characterized the sets of nonexpansive directions of SFTs in an
unpublished manuscript [18], which also contains several realization results of SFTs with a
unique nonexpansive direction. The results are reported in Zinoviadis’s PhD dissertation [34].
In the next result, a subset A ⊆ Ṙ is effectively closed if there exists a computable sequence
(In)n∈N of open intervals (which may have the form (a,∞] ∪ (−∞, b)) with rational endpoints
such that Ṙ \A =

⋃
n∈N In.

▶ Theorem 14 (Guillon & Zinoviadis). The sets N(X) for two-dimensional SFTs X are
exactly the effectively closed subsets of Ṙ.

The main technical contribution of the dissertation is a fixed point construction for
reversible partial cellular automata (RPCA), which are defined by a local rule that is a
partial function. Note that the fixed point CA presented in Section 3.2 is not reversible.
The set of spacetime diagrams of a one-dimensional RPCA is a two-dimensional SFT for
which all directions −1 < ℓ < 1 are expansive. For an RPCA obtained by the fixed point
construction with variable zoom factor, if

∏∞
k=0 Qk/Uk = 0, then every direction except ∞

(the vertical line) is expansive. A shift map by Dk ∈ Z cells is then applied to each level k of
the simulation hierarchy, which changes the direction of the unique nonexpansive line. These
numbers and the simulation parameters Qk, Uk are allowed to vary within a suitable set of
sequences computed by the simulated Turing machines, which provides enough control on
the nonexpansive directions to realize any effectively closed set.

AUTOMATA 2021
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Abstract
Though iterated maps and dynamical systems are not new to combinatorics, they have enjoyed a
renewed prominence over the past decade through the elevation of the subfield that has become
known as dynamical algebraic combinatorics. Some of the problems that have gained popularity can
also be cast and analyzed as finite asynchronous cellular automata (CA). However, these two fields
are fairly separate, and while there are some individuals who work in both, that is the exception
rather than the norm. In this article, we will describe our ongoing work on toggling independent sets
on graphs. This will be preceded by an overview of how this project arose from new combinatorial
problems involving homomesy, toggling, and resonance. Though the techniques that we explore
are directly applicable to ECA rule 1, many of them can be generalized to other cellular automata.
Moreover, some of the ideas that we borrow from cellular automata can be adapted to problems in
dynamical algebraic combinatorics. It is our hope that this article will inspire new problems in both
fields and connections between them.
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1 Dynamical algebraic combinatorics

The subfield of dynamical algebraic combinatorics covers a wide swath of problems involving
actions on combinatorial objects. Of particular interest is the study of the orbit structure,
such as their sizes, and the variation of combinatorial statistics within or across orbits. One
such example is the concept of homomesy, which is a statistic whose average value is constant
over all orbits. Another popular new idea in dynamical algebraic combinatorics involves
breaking up global maps into compositions of local involutions called toggles. These generate
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so-called toggle groups, which can be useful in explaining certain structural properties of
the orbits, such as the phenomenon of resonance. In this paper, we will show how, in some
settings, these toggles can be modeled as an asynchronous cellular automaton (CA). For
two fun and easy-to-read articles on dynamical algebraic combinatorics, homomesy, and
toggling, containing many examples and colorful pictures, we will refer the reader to surveys
by Roby [20] and Striker [24]. We will begin this paper with a crash course on homomesy
and toggling – just enough to motivate the idea of why one should be interested in toggling
independent sets, and then we will show how this can be realized with ECA rule 1. We will
discuss our techniques from combinatorics, some of which can be extended to study other
CAs, and conversely, how ideas from CAs can be used to pose and explore new questions in
combinatorics. However, before we will do any of that, we will begin with a few concepts
from the theory of Coxeter groups, which underlies both subjects.

1.1 Some basic Coxeter theory
The toggling operations that we will introduce in this section are involutions, and so the
groups generated by these toggles will always be quotients of Coxeter groups [2]. A Coxeter
system (W, S) consists of a group W generated by a set S = {s1, . . . , sn} with presentation

W =
〈
s1, . . . , sn | s2

i = 1, (sisj)mij = 1 for i ̸= j
〉

,

where mij = |sisj | ∈ {2, 3, . . . } ∪ {∞}. We can encode this by a Coxeter diagram Γ(W, S),
which is a graph with vertex set S and an edge {si, sj} for each non-commuting pair, labeled
with mij .1 We will refer to the unlabeled version as the Coxeter graph, Γ. A Coxeter
element of W is the product of the generators in some order, i.e.,

cπ := sπ1sπ2 · · · sπn
∈ W,

for some permutation π = π1 · · · πn ∈ Sn. We denote the set of Coxeter elements by
C(W, S). There is an obvious bijection between Coxeter elements and the set Acyc(Γ) of
acyclic orientations, where we orient the edge {si, sj} as si → sj if si comes before sj in
cπ. Conversely, every acyclic orientation of Γ defines a partial order on S, and the Coxeter
element arises from any of its linear extensions.

It is well known that two Coxeter elements c, c′ ∈ C(W, S) are conjugate if and only
their corresponding acyclic orientations are torically equivalent, which means that they
differ by a sequence of source-to-sink conversions [8]. In [18], Pretzel showed that a complete
invariant for this is the circulation ν around each cycle, which is the number of “forward”
edges minus the number of “backward” edges.2

Figure 1 shows five acyclic orientations of a Coxeter graph. The circulation around the
unique cycle of the first three orientations is ν = 0. For the fourth, ν = 2, and for the fifth,
ν = −2. This means that the first three orientations represent conjugate Coxeter elements,
while the other two fall into two different conjugacy classes.

1.2 Homomesy, rowmotion, promotion, and toggles
Consider a set X of combinatorial objects. There are a surprising number of group actions
on X where some statistic X → R, though not constant, has a constant average of c over all
orbits. This is called a homomesy, and such a statistic is said to be homomesic, or c-mesic.

1 Note that si and sj commute if and only if mij = 2.
2 If the graph is planar, then we can take “forward” to be clockwise and “backward” to be counterclockwise.

It is elementary to extend this notion for non-planar graphs, but we do not need to do that here.
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“left-to-right” “top-to-bottom” “middle row last” “clockwise” “counterclockwise”

Figure 1 Five acyclic orientations of a Coxeter graph Γ. The first three describe conjugate
Coxeter elements, because their circulations around the cycle is ν = 0. The last two have circulations
of ν = 2 and ν = −2, respectively.

In many cases, the analysis into why such phenomena arise uncovers the often unexpected
fact that the actions can be broken up into a sequence of involutions called toggles.

To introduce this idea, let P be a poset over [n] = {1, . . . , n}, and let J(P) be its set
of order ideals (i.e., I ⊆ P such that if y ∈ I and x ≤ y, then x ∈ I). The operation
of rowmotion, introduced in 1995 by Cameron and Fon-Der-Flaass [3], is a bijection
J(P) → J(P) defined by sending an ideal I to the ideal generated by the antichain of
minimal elements of P \ I. An example of rowmotion on the root poset of type A3 is shown
in Figure 2. Elements in the ideals are denoted by solid black dots. Notice that for this
example, there are three orbits of sizes 8, 4, and 2.

Figure 2 Rowmotion maps an order ideal to the ideal generated by the antichain of minimal
elements of its complement. This can also be realized by “toggling” elements in/out (when possible)
from top-to-bottom, i.e., along any linear extension of the second acyclic orientation from Figure 1.
The number of maximal elements is homomesic because its average is 3/2 on all orbits.

A statistic on order ideals is a function J(P) → R. Three examples, which we will refer
back to, include the cardinality of the ideal, the number of minimal elements, and the number
of maximal elements. Notice how over the large orbit in Figure 2, the average cardinality
is 5/2, the average number of minimal elements is 2, and the average number of maximal
elements is 3/2. On the medium orbit, these averages are 7/2, 9/4, and 3/2, respectively.
Finally, on the small orbit, they are all 3/2. Consequently, the statistic that counts the
number of maximal elements is 3

2 -mesic.
Though it appears infeasible to analyze rowmotion systematically on arbitrary posets, it

has some surprising properties on certain families. One such example is the family of rc-posets
[26], which are characterized by having well-defined notions of “rows” and “columns,” such as
in Figure 2. For example, if a and b are chains of size a and b, respectively, then rowmotion
on their product P = a × b has order a + b and exhibits the cyclic sieving phenomenon [19].
These properties arise because rowmotion can be decomposed as a product of n involutions,
called toggles, one for each k ∈ P . Loosely speaking, given an ideal I and an element k ∈ P
of a poset, toggling at k attempts to add/remove k to/from I. More precisely, toggling I

at k means:
1. if k ̸∈ I and I ∪ {k} ∈ J(P), then add it;
2. if k ∈ I and I \ {k} ∈ J(P), then remove it;
3. otherwise, do nothing.
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Toggles corresponding to elements k, ℓ commute when neither k nor ℓ covers the other. Thus,
in an rc-poset such as in Figure 2, the toggles of any two elements in the same horizontal
row commute, as do the toggles of any two elements in the same vertical column. Therefore,
it is well-defined to speak of toggling elements from top-to-bottom, from left-to-right, etc.

Since each individual toggle is a bijection on J(P), the set of toggles forms a group that
we call the toggle group, or more specifically, the order ideal toggle group Tog(J(P)) =
⟨t1, . . . , tn⟩ . Clearly, each generating toggle is an involution, and so Tog(J(P)) is the quotient
of a Coxeter group. Following Coxeter theory, we will define a Coxeter element to be the
product of all toggles of P in some order. The name “rowmotion” is partially inspired by the
fact that it is one of these Coxeter elements, which we will denote as Row.

▶ Theorem 1. If P is a ranked poset, then rowmotion is the Coxeter element Row ∈ Tog(J(P))
defined by toggling across rows, from top-to-bottom.

One can also ask what is the result of “toggling by columns”. Doing so from left-to-right
is called promotion, denoted Pro ∈ Tog(J(P)), because for certain posets, it agrees with a
well-known operation with the same name, first introduced in 1972 by Schützenberger [23].
Promotion was originally defined as an action on the set L(P) of linear extensions of a poset.
Striker and Williams showed that promotion on two-row rectangular tableaux SYT(2 × b) is
equivalent to promotion on the positive root poset of Coxeter type Ab−1 [26]. The action of
promotion on the root poset of type A3 is shown in Figure 3.

Figure 3 Promotion can be realized by toggling from left-to-right, i.e., any linear extension of
the first acyclic orientation in Figure 1. The average cardinality of the ideals, and of the minimal
elements, is the same as for rowmotion, but the statistic that counts the number of maximal elements
is no longer homomesic. In particular, its average is 13/8, 5/4, and 3/2 across the three orbits.

One immediate observation from Figures 2 and 3 is that promotion and rowmotion have
the same orbit structure. This is a simple consequence from Coxeter theory – since the
acyclic orientation defined by toggling top-to-bottom has the same circulation as the one
defined by toggling left-to-right, they are torically equivalent. Therefore, the corresponding
Coxeter elements Row and Pro are conjugate in Tog(J(P)). However, not all statistics are
preserved by conjugation. Observe that the average order ideal cardinality, and the average
number of minimal elements, are the same for promotion and rowmotion. However, the
number of maximal elements is no longer homomesic: it is 13/8 for the large orbit, 5/4 for
the medium orbit, and 3/2 for the small orbit. It is easy to check from Figures 2 and 3
that none of these statistics are preserved elementwise by conjugation from rowmotion to
promotion, but the average number of elements in each orbit is preserved.

Another fundamental feature of an action on a set of combinatorial objects is the collection
of orbit sizes. Though each of these has to divide the size of the toggle group, in practice,
such groups are often large, and this does not provide meaningful information. In a number
of cases, computational experiments are used to answer this question for small n. It has
often been observed that most, but not necessarily all, of the orbits in an action are divisible
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by some integer ω > 1. Such actions are said to resonate with ω, though for years, people
did not know exactly how to precisely define this, because it involved “most,” rather than
“all” orbits. For example, on the poset P = a × b × c, a product of three chains, the sizes of
most orbits under rowmotion are multiples of a + b + c − 1. The sizes of all 21156 rowmotion
orbits of P = 4 × 4 × 4 are multiples of 11: six have size 33 and the others all have size 11.
However, for the rowmotion orbits of P = 4 × 4 × 5, most of the orbits have sizes divisible
by 12 (136822 of size 12, 4 of size 24, 100 of size 36), but there are also 6 orbits of size 2, 8
of size 3, and 162 of size 6. In 2015, the concept of resonance was formally defined, involving
commutative diagrams of actions of cyclic groups [6].

1.3 Generalized toggling
The idea of toggling an order ideal I at an element k by attempting to add/remove it is easy
to generalize to other combinatorial objects [25]. Consider a finite set X, such as a graph
or a poset, and a collection L ⊆ 2X of subsets that have a particular property (such as “is
an order ideal”). For each k ∈ X and subset E ∈ L, we say that toggling E at k is the
function

tk : L −→ L, tk(E) =


E ∪ {k} k ̸∈ E and E ∪ {k} ∈ L
E \ {k} k ∈ E and E \ {k} ∈ L
E otherwise.

We sometimes speak of the first case above as “toggling in k” and the second case as “toggling
out k.” It should be clear that tk is either the identity or an involution.

For some examples of generalized toggling, we can always toggle out, but not always
toggle in. For example, if we toggle the set L = A(P) of antichains of a poset P, then
tk(A) = A \ {k} whenever k ∈ A, because removing any element from an antichain results in
another antichain. This is closely related to order ideal toggling, because every order ideal is
uniquely determined by an antichain – the minimal elements of its complement. In particular,
the toggle groups are isomorphic, despite the individual toggles having fundamentally different
properties [9]. In contrast, there are other settings where we can always toggle in, but not
necessarily toggle out. Toggling vertex covers, edge covers, or dominating sets of a graph are
such examples.

Sometimes, there are sets of objects that do not seem to be “togglable” upon first glance,
but admit a nice toggle action if one views them the right way. For example, a noncrossing
partition of [n] is a partition such that if the numbers 1, . . . , n are arranged cyclically, then
the convex hulls of the blocks are disjoint. An alternate way to represent a noncrossing
partition is with an arc diagram: draw the numbers 1, . . . n in a line, and draw an arc
between all consecutive vertices in the same block. By construction, every collection of arcs
on [n] represents a noncrossing partition if it does not contain any of the three motifs shown
in Figure 4.

i j k ℓ i j k i j k

Figure 4 Disallowed pairs of arcs in a noncrossing partition: crossing, left-nesting, and right-
nesting, respectively.

Let X = {{i, j} | 1 ≤ i < j ≤ n} be the set of arcs on [n], and NC(n) ⊆ 2X the set of
noncrossing partitions. It should now be easy to see how to toggle a noncrossing partition
π ∈ NC(n). Specifically, for each arc {i, j} ∈ X, the toggle ti,j removes it from π if it already
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contains it. Otherwise, ti,j adds the arc, as long as π ∪ {{i, j}} does not contain one of
the forbidden motifs from Figure 4. Notice that arcs can always be toggled out, but not
necessarily in. Figure 5 shows an example of toggling a noncrossing partition of size n = 12,
both as arc diagrams and as convex hulls. Computational experiments originally suggested
the surprising fact that under any Coxeter element, the arc count statistic is n−1

2 -mesic, and
this was proven in [7].

1 2 3 4 5 6 7 8 9 10 11 12

τ6,7
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Figure 5 An example of toggling a noncrossing partition of [n] = [12].

The Coxeter graph of Tog(NC(n)) can be constructed by putting the toggle ti,j in the
(i, j) position of a grid, arranged in the upper-triangular entries of a matrix. In doing so, each
column and each row is a complete graph (i.e., no two toggles in the same row or column
commute), and there are some other edges as well, the details of which are not important
here, other than the fact that they all have a “negative slope.” An example of this graph for
n = 5 is shown in Figure 6. One key observation is that the Coxeter element by rows (from
top-to-bottom) and the Coxeter element by columns (from left-to-right) both arise from the
same acyclic orientation, constructed by orienting all edges in the “south, east, or southeast
directions.” In other words, toggling by rows is the same element in the toggle group as
toggling by columns. It turns out that this element is the inverse of the well-studied Kreweras
complement κ on noncrossing partitions [11], an operation that has the curious property
that κ2 is a rotation of the “convex hull” diagram by 2π/n. In [1], this map, along with
rowmotion, was used to construct a uniform bijection between noncrossing and nonnesting
partitions in Weyl groups of all classical types.

1

2

34

5

1 2 3 4 5

π =
{

{1, 4}, {2, 3}, {4, 5}
}

.

(1,2) (1,3) (1,4) (1,5)

(2,3) (2,4) (2,5)

(3,4) (3,5)

(4,5)

Figure 6 There is a bijection between noncrossing partitions on [n] and independent sets of the
Coxeter diagram of the NC toggle group. An example of this for n = 5 is shown.

The arcs in a noncrossing partition form an independent set of the Coxeter graph,
and every such independent set corresponds to a noncrossing partition. In other words,
toggling noncrossing partitions is just a special case of a more general construction: toggling
independent sets in a graph. However, the Coxeter graphs of the NC toggle group are quite



L. David, C. Defant, M. Joseph, M. Macauley, and A. McDonough 5:7

complicated. The third author and Roby studied toggling independent sets of the path graph
in [10], and the toggle groups were recently shown to be symmetric groups [17]. In an ongoing
project [4], the authors of this paper are studying toggling independent sets of the cycle
graph. Early computational experiments, motivated by the search for examples of homomesy
and resonance, brought other curious properties to light. For example, if one records the
frequency with which each vertex is toggled in over time, this cyclic vector always has odd
period under the update order π = 1, . . . , n, but not necessarily under other update orders.
There are interesting observations to be made about the period and the sizes of the orbits, as
well as how this depends on the update order and on n. In the next section, we will show how
this framework can be viewed as an asynchronous CA. We will also describe the analytical
tools and techniques we developed, inspired by ideas from dynamical algebraic combinatorics,
that we think are mostly new in the field of cellular automata. Additionally, we will discuss
ideas from cellular automata that we are bringing back to the field of dynamical algebraic
combinatorics.

2 Toggling independents sets in a cellular automata framework

2.1 Asynchronous cellular automata
A cellular automaton (CA) is a discrete dynamical system over a regular grid. A one-
dimensional CA is either over an infinite path or a cycle graph Cn. We will assume that Cn

has vertex set v(Cn) = [n], sometimes called cells, and take the indices modulo n, when
appropriate. Vertex i has a Boolean state xi ∈ F2 = {0, 1} and a function that updates this
state based on the states of itself and its neighbors. We encode each function fi : F3

2 → F2
with a number between 0 and 255, based on the binary string a7a6 · · · a1a0, defined from its
truth table, as follows:

xi−1xixi+1 111 110 101 100 011 010 001 000
fi(xi−1, xi, xi+1) a7 a6 a5 a4 a3 a2 a1 a0

These functions are called elementary cellular automata (ECA) rules, and have been
well-studied since CAs gained popularity in the 1980s. In a classical CA, the individual
functions are updated synchronously to define the dynamical system map f : Fn

2 → Fn
2 , which

is iterated to generate the global dynamics. In this section, we will consider a common
asynchronous framework, where the dynamical system map is defined by updating each
function in some predetermined order, sometimes called a fixed sweep [22].

Fix an ECA rule, and for each vertex function fi : F3
2 → F2, define the function

Fi : Fn
2 −→ Fn

2 , Fi : (x1, . . . , xi, . . . , xn) 7−→
(
x1, . . . , fi(xi−1, xi, xi+1), . . . , xn

)
, (1)

which simply updates the global state vector (x1, . . . , xn) at only the ith position. Let
π = π1 · · · πn ∈ Sn be a permutation of the vertices of Cn, written as a word in v(Cn). The
fixed sweep asynchronous cellular automaton (ACA) map with respect to π is

Fπ : Fn
2 −→ Fn

2 , Fπ = Fπn
◦ · · · ◦ Fπ1 .

A point x ∈ Fn
2 is periodic if F k

π (x) = x for some k ≥ 1, and transient otherwise. The fixed
points are those for which Fπ(x) = x, and they do not depend on π. The periodic points
are partitioned into periodic orbits. An ACA is a special case of a sequential dynamical
system (SDS), which is defined over arbitrary graphs and with update functions that need
not be the same at every vertex [16].
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The dynamics of an ACA depends on the update order π = π1 · · · πn, which we can
encode as an acyclic orientation Oπ of Cn, just as we did for Coxeter elements. This defines
a map

Sn −→ Acyc(Cn), π 7−→ Oπ,

and it is easy to see that if Oπ = Oπ′ , then Fπ = Fπ′ as ACA maps, for any fixed ECA
rule. Moreover, if Oπ and Oπ′ are torically equivalent, then the ACA maps Fπ and Fπ′ are
topologically conjugate when restricted to their respective sets of periodic points [14].

2.2 Togglable ACAs
An ACA is togglable if its set of periodic points does not depend on the update order π ∈ Sn.
When this happens, each function Fi restricted to the periodic points is a bijection, and
F 2

i = 1, since it either fixes or flips each ith bit. In other words, if ECA rule k is togglable,
then we have a natural toggle action on the set Per(k)

n of periodic points, and we denote the
toggle group by

Tog(k)
n = ⟨F1, . . . , Fn⟩ .

It is known that 104 of the 256 ECA rules are togglable [13], and their toggle groups have
been classified [12]. Those two papers predate the notion of generalized toggling, and so
in them, the property of being togglable is called order independent, and the toggle groups
are called dynamics groups. It is easy to see that Tog(k)

n is trivial if and only if all periodic
points are fixed points.

Every ECA rule is equivalent to the ECA rules formed by “mirror reflection” (swapping
xi−1 with xi+1), “logical complement” (swapping 0 with 1), and doing both operations. Some
rules are their own reflection, own complement, or both. As such, the 256 ECA rules are
partitioned into 88 equivalence classes, of sizes 1, 2, and 4. Of these, exactly 41 classes
are togglable, but some are for obvious reasons: 26 have trivial toggle groups (i.e., only
fixed points), 9 are reversible (i.e., the maps Fn

2 → Fn
2 in Eq. (1) are invertible), and 1 is

both. Some of the invertible rules have interesting toggle groups, and these are described
in Section 5 of [12]. The conjectured group for ECA rules 54 and 57 (also conjectured
independently in [27]) was recently proven by Salo [21]. Two of the invertible rules: the parity
function and its complement (rules 150 and 105), each of which is in a size-1 equivalence
class, were recently studied in the context of toggling by the second author [5].

In this paper, we are doing the opposite: taking a problem from combinatorics, toggling
independent sets in Cn, and studying it in an ACA framework. Specifically, an independent
set of Cn is a length-n binary string with no consecutive 1’s, including wrapping around the
end. Let In be the set of independent sets of Cn. Toggling in In can be realized by one of
several rules, such as ECA rule 1, or the invertible rule 201:

xi−1xixi+1 111 110 101 100 011 010 001 000
f

(1)
i (xi−1, xi, xi+1) 0 0 0 0 0 0 0 1

f
(201)
i (xi−1, xi, xi+1) 1 1 0 0 1 0 0 1

The only differences between these two rules are on the three inputs that do not arise for
independent sets: 111, 110, and 011. We are primarily interested in studying the dynamics of
ECA rule 1 and Tog(1)

n , because Per(1)
n = In, whereas Per(201)

n = Fn
2 . However, since rule 201

is invertible, we have a surjective homomorphism Tog(201)
n → Tog(1)

n between toggle groups.
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The third author and Roby studied toggling independent sets of path graphs [10]. One
simplification of this framework is that all acyclic orientations of a tree are torically equivalent,
and so all Coxeter elements are conjugate. In contrast, over the cycle graph Cn, there are
n − 1 toric equivalence classes, distinguished by their circulations ν = n − 2, n − 4, . . . , −(n −
4), −(n − 2). An example of this for n = 6 is shown in Figure 7. However, since a vertical
reflection, which is an automorphism of Cn, reverses the sign of the circulation, there are at
most ⌊ n

2 ⌋ equivalence classes up to dynamical equivalence.

1 2

3

45

6 ν = 4

π = 123456

1 2

3

45

6 ν = 2

π = 123465

1 2

3

45

6 ν = 0

π = 123654

1 2

3

45

6 ν = −2

π = 126543

1 2

3

45

6 ν = −4

π = 165432

Figure 7 Representatives of the five torically non-equivalent Coxeter elements of C6 and their
circulations ν, which fall into only three classes under the action of Aut(C6).

As a consequence, to understand toggling independent sets over Cn, we only need to
consider ⌊ n

2 ⌋ update orders. Specifically, we may choose those of the form

π = 12 · · · k n(n − 1) · · · (k + 1), for k =
⌈n

2

⌉
, . . . , n − 1. (2)

Experimental evidence has shown that, for even n, under the identity update order
π = 12 · · · n, the ACA map tends to have larger orbits than over other update orders. We
have also observed a peculiar feature about the periodicity of the average number of 1s. For
these reasons, we began our analysis using this update order, and that is what we will use for
the remainder of this paper. In the next section, we will describe the methods we developed
and preliminary results.

Though our focus in the remainder of this paper is on ECA rule 1 under π = 12 · · · n,
we want our techniques to be adaptable to other update orders, other togglable ECA rules,
and more general toggle actions. Since ECA rule 1 only has one 1 in its truth table, the
occurrences of 1s in its periodic orbits are sparse. As such, to understand the dynamics,
it helps to look at the pattern of the 1s. If we have a rule that has mostly 1s, then its
complement is an equivalent rule that has mostly 0s. Thus, we can always assume, without
loss of generality, that we are studying a rule that has at least as many 0s as 1s in its periodic
orbits. We will refer to such rules as being sparse.

2.3 Scrolls and ticker tapes
In this section, we will describe some tools and results for toggling independent sets of Cn. We
will view them in two formats: a bi-infinite periodic table of 0s and 1s called the scroll, and a
bi-infinite sequence called the ticker tape. A function called the successor on the live entries
(the set of 1s) defines equivalence classes called snakes. A “dual” commuting function called
the shadow allows us to travel between snakes, and defines less visually obvious equivalence
classes called co-snakes. These functions generate the abelian snake group that acts simply
transitively on the set of live entries. If we quotient out by a periodic orbit, sending the
infinite scroll to a finite table, then each snake (respectively, co-snake) merges into a finite
ouroboros (respectively, co-ouroboros) on a torus. Topologically, this is a covering map, and
it induces a homomorphism from the snake group to the ouroboros group, that acts simply
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transitively on the live entries in the finite orbit table. Studying this action algebraically
allows us to deduce properties about the structure of the dynamics. Near the end of this
paper, we will formalize an abstraction of this, called commuting complementary pairs, which
can be adapted to other update orders, other ECA rules, and even arbitrary binary tables
and other combinatorial actions.

Fix an initial state x = x(0) = (x1, . . . , xn) ∈ In and update order π = π1 · · · πn ∈ Sn.
Let x(i) be the result of iterating Fπ exactly i times from x. Since Fπ is bijective on In,
we can define this for all i ∈ Z. Consider the bi-infinite table with n columns, indexed by
j = 1, . . . , n, and rows indexed downward by i ∈ Z. The (i, j)-entry Xi,j is the state of cell
vπj

in x(i). In other words, the ith row consists of the states of the cells at time t = i, in the
order that they are updated. This infinite table is called the scroll of x and π, and denoted
S = (Xi,j) = Scroll(x, π).

The global dynamics of Fπ is read off the scroll as one reads from a book: left-to-right
across rows, and the rows vertically downward. This defines a bi-infinite sequence called
the ticker tape, denoted X = (Xk) = Tape(x, π). We will index the entries so X0 = X0,π1 ,
X1 = X0,π2 , and so on, so in general, Xr = X⌊r/n⌋,π1+(r mod n) . It is elementary to translate
results in the orbit table framework to ticker tapes or vice-versa, but sometimes, one format
is easier to work with that the other. Formally, the live entries, in both formats, are the sets

Live(S) =
{

(i, j) ∈ Z × Zn | Xi,j = 1
}

, Live(X ) =
{

k ∈ Z | Xk = 1
}

.

An example of a portion of a scroll, corresponding to a single periodic orbit, is shown
twice in Figure 8. In the top one, the live entries are colored by equivalence classes called
snakes, and in the bottom one, by co-snakes. We will refer back to this example when we
formally define these and related terms, such as the successor, shadow, and slither.

· · · 0 0 · · ·
· · · 0 1 0 a · · ·
· · · 0 0 a 0 · · ·

“successor of (i, j)”

· · · 0 0 · · ·
01 · · ·· · ·

0
0
0 · · ·· · ·

· · · bb · · ·
“shadow of (i, j)”

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 8 The scroll of ECA rule 1, with π = 12 · · · n, consists of the seven rows x(0), . . . , x(6),
repeated indefinitely. This is shown twice to emphasize the snakes and co-snakes, separately. The top
scroll highlights the two snakes, which are generated by the successor function, and have standard
slither (D2)3. In the bottom scroll, the colors distinguish the six co-snakes, generated by the shadow
function, which have standard co-slither S2.
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2.4 Snakes in scrolls
For the remainder of this section, we will assume that our update order is π = 12 · · · n,
and we will omit this from the notation and write, e.g., Scroll(x) and Tape(x). If we take
an arbitrary live entry (i, j), we can draw conclusions about its surrounding entries. For
example, the entries to the left and right (Xi,j−1 and Xi,j+1) are both 0, as are the entries
directly above and below (Xi−1,j and Xi+1,j). Since the scroll is just a rendering of the
ticker tape, when we get to the end of a row, the next entry is the first entry of the following
row. As such, we will assume that Xi,n+1 = Xi+1,1.

It is not hard to show that for every live entry (i, j), we must have Xi,j+2 + Xi+1,j+1 = 1.
We will call the coordinates of whichever of these states is live the successor of (i, j), denoted
s(i, j). Similarly, we also must have Xi+2,j−2 + Xi+2,j−1 = 1, and we call the coordinates
of whichever of these is live the shadow, denoted c(i, j). Iterating the successor function
defines equivalence classes on Live(S) that we will call snakes, due to their visual appearance
in the scroll, as shown in Figure 8. Iterating the shadow function defines equivalence classes
that we will call co-snakes.

▶ Definition 2. Given a live entry (i, j) in a scroll, the snake and the co-snake containing
it are the sets

Snake(i, j) =
{

sk(i, j) | k ∈ Z
}

, CoSnake(i, j) =
{

ck(i, j) | k ∈ Z
}

.

A key property about the successor and shadow functions, illustrated by Figure 9, is that
they commute.

▶ Proposition 3. The successor of the shadow is the shadow of the successor. That is, for
any live entry (i, j), we have s(c(i, j)) = c(s(i, j)).

· · · 0 0 · · ·
· · · 0 1 0 a · · ·

· · · 0 0 0 a 0 · · ·
· · · 0 1 0 a 0 · · ·

0 0· · · a 0 · · ·

· · · 0 0 · · ·
· · · 010 a · · ·
· · · 00 a 0 · · ·

· · · 0 1 0 a · · ·
· · · 00 a 0 · · ·

Figure 9 Given a live entry Xi,j = 1, the two cases shown here illustrate the property that “the
successor of the shadow is the shadow of the successor”.

We can record the “shape” of a snake by starting at any live entry (i, j), iterating the
successor function, and recording a 2 or a D depending on whether the successor is (in
ticker tape notation) Xi+2 or Xi+n+1. This defines a periodic bi-infinite sequence, and
a subsequence that generates it is called a slither. Two slithers are equivalent if they
generate the same bi-infinite sequence. We can use exponents for ease of notation, e.g.,
(2D)3 = 2D2D2D ∼ D2D2D2 = (D2)3. Of course, these are equivalent to 2D and D2, but
as we will see, the most canonical form of a slither is not necessarily a minimal periodic
subsequence. Similarly, we can record the shape of a co-snake with a bi-infinite sequence
called its co-slither. If (i, j) is live, then its shadow is either (i − 1, j + 2) or (i − 2, j + 2).
We will refer to the former as a short step and the latter as a long step, and denote these by
S and L, respectively.

▶ Proposition 4. In any scroll, all snakes have a common slither, and all co-snakes have a
common co-slither.
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If we start at (i, j) ∈ Live(S) and iterate the successor function until we return to the
same co-snake, then the corresponding sequence of 2s and Ds is called the standard slither.
Similarly, iterating the shadow function until we return to the same snake, defines the
standard co-slither. This allows us to prove the following.

▶ Proposition 5. For any live entry (i, j) in S,

s#co-snakes(i, j
)

= c#snakes(i, j
)
. (3)

Returning to our example in Figure 8, it is easy to check that the two snakes have
standard slither (D2)3, the six co-snakes have standard slither S2, and that s6 = c2.

The successor and shadow functions generate an abelian group, which we write mul-
tiplicatively to suggest function composition, and because biologically, not all snakes are
adders.

▶ Definition 6. Suppose S has α snakes and β co-snakes. The snake group is defined as

G(S) =
〈
s, c | sc = cs, sβ = cα

〉
.

It is not clear a priori whether there are other relations between the successor and shadow
functions, but the following guarantees that there are none.

▶ Theorem 7. The snake group G(S) acts simply transitively on Live(S).

This action endows Live(S) with the structure of a Cayley diagram for G(S). Moreover,
the snakes and co-snakes are cosets of ⟨s⟩ and ⟨c⟩, respectively. The number of snakes is
[G(S) : ⟨c⟩], the length of the standard co-slither, and the number of co-snakes is [G(S) : ⟨s⟩],
the length of the standard slither.

2.5 Ouroboroi in orbit tables
Though the scroll is infinite, it will often be helpful to restrict our attention to a single orbit,
and allow snakes and co-snakes to “wrap around” from bottom-to-top. We will refer to such
a “circular snake” as an ouroboros, inspired by the ancient symbol of a snake swallowing its
tail. Suppose x lies in a periodic orbit x = x(0), . . . , x(m−1), x(m) = x of size m. The m × n

table with top row x(0) and bottom row x(m−1) is the orbit table, denoted T = Table(x, π),
or Table(x) if π = 12 · · · n is understood.

Let Live(T ) ⊆ Zm × Zn be the set of live entries in the orbit table, which is the image
of the set of live entries of the scroll under the natural quotient map p : Live(S) → Live(T )
that reduces the first coordinate modulo m. The shadow and successor functions descend
to bijections on Live(T ) that we will call the mod m successor function s̄, and mod m

shadow function c̄, respectively. This is illustrated by the following commutative diagram;
there is an analogous one for c and c̄.

Live(S)

p

��

s // Live(S)

p

��
Live(T ) s̄ // Live(T )

(a + km, b)
❴

p

��

✤ s // s(a + km, b)
❴

p

��
(a, b) ✤ s̄ // s̄(a, b)

The functions s̄ and c̄ generate a finite abelian group called the ouroboros group, denoted
G(T ). Cosets of ⟨s̄⟩ and ⟨c̄⟩ are called ouroboroi and co-ouroboroi, respectively.
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▶ Definition 8. Given a live entry (i, j) in an orbit table, the ouroboros and co-ouroboros
containing it are the sets

Ouro(i, j) =
{

s̄k(i, j) | k ∈ Z
}

, CoOuro(i, j) =
{

c̄k(i, j) | k ∈ Z
}

.

The quotient map p : Live(S) → Live(T ) induces a homomorphism p∗ : G(S) → G(T )
sending s 7→ s̄ and c 7→ c̄. The (co-)ouroboros degree is the number of (co-)snakes in the
p-preimage of each (co-)ouroboros. We denote these as

deg(p∗) := [G(S) : ⟨s⟩]
[G(T ) : ⟨s̄⟩] , codeg(p∗) := [G(S) : ⟨c⟩]

[G(T ) : ⟨c̄⟩] .

Returning back to the example from Figure 8, the portions of the scrolls shown can also
be considered as orbit tables. It is easy to check by applying the mod m shadow function
to any live entry on the bottom row that both snakes merge into a single ouroboros, hence
the ouroboros degree is two. Similarly, the co-ouroboros degree is three, because the six
co-snakes merge into two co-ouroboroi.

▶ Theorem 9. Suppose S has α snakes, β co-snakes, ᾱ ouroboroi, β̄ co-ouroboroi, and that
τ = |Live(T )|. The ouroboros group has presentation

G(T ) =
〈

s̄, c̄
∣∣ s̄c̄ = c̄s̄, s̄β = c̄α, s̄ τ/ᾱ = c̄ τ/β̄ = 1

〉
,

and it acts simply transitively on Live(T ).

Recall that we can endow Live(S) with a natural Cayley diagram structure of the snake
group. The simply transitive action of G(T ) on Live(T ) gives it a Cayley diagram structure
for the ouroboros group, and the quotient map p : Live(S) → Live(T ) is a covering map.

Another advantage of orbit tables is that we can easily define the sum vector as the
n-tuple that records the number of live entries in each column. Early computational results
suggested the curious property that the period of the sum vector, viewed as a cyclic word, is
always odd.

▶ Proposition 10. For update order π = 12 · · · n, the sum vector of any orbit table has odd
period.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

x(0) 1 0 1 0 0 0 0 0 1 0 1 0
x(1) 0 0 0 1 0 1 0 0 0 0 0 1
x(2) 0 1 0 0 0 0 1 0 1 0 0 0
x(3) 0 0 1 0 1 0 0 0 0 1 0 1
x(4) 0 0 0 0 0 1 0 1 0 0 0 0

Sum: 1 1 2 1 1 2 1 1 2 1 1 2

Figure 10 An orbit of ECA rule 1 with update order π = 12 · · · n. Note that the period of the
sum vector (1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2) is 3, as guaranteed by Proposition 10.

The sum vector of the orbit table in Figure 8 has period 1, as each column contains
exactly two live entries. See Figure 10 for an orbit table with a sum vector of period 3. The
proof of Proposition 10 follows from translating into ticker tape notation, the fact that the
standard slither must have an odd number of Ds. This last fact is due to the relation in
Eq. (3) with the observation that the shadow function always skips exactly two rows, but
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loses one when it wraps around the end of the table. For example, in Figure 10, where
s6 = c2, we can travel from position (0, 1) to (3, 10) via the standard slither (D2)3 or the
standard co-slither SL. Both S and L skip two rows, but we lose one with the S because it
wraps back to (1, 12).

It is worth noting that Proposition 10 does not necessarily hold for other update orders.
For example, if n = 4 with update order π = 1243, there is a size-2 orbit {0100, 0001} whose
sum vector (0, 1, 0, 1) has period 2. More generally, the methods and theory developed here
do not carry over seamlessly to toggling independent sets under other update orders, but we
are working on adapting them. It helps that for many problems, we only need to consider
the ⌈ n

2 ⌉ update orders described in Eq. (2).
By knowing that the standard slither must contain an odd number of Ds, we can construct

and characterize all possible scrolls and orbit tables. Without loss of generality, we can
assume that the “first entry,” i.e., cell 1 at t = 0, is live.

▶ Theorem 11. For a fixed n, we can construct all scrolls having X0,1 = 1 through the
following procedure:
1. Take a solution to the equation

2a + 3b + 4c = n + 1 with a, b, c ∈ Z≥0 and b + c > 0. (4)

2. Choose any sequence of 2(b + c) − 1 instances of D and a instances of 2. This gives the
standard slither of each snake.

3. Choose any sequence of b instances of S, and c instances of L. This gives the standard
co-slither of each co-snake.

Furthermore, each solution descends to a unique orbit table under the quotient map p (though
some of these orbit tables may arise from ticker tapes that differ only by translation).

Being able to characterize all possible scrolls for a fixed n by constructing their standard
slithers and co-slithers also tells us the possible snake and ouroboros groups. In other words,
it gives essential information about the feasible topological structures on the set of live entries.
It should be possible to say more for special cases, such as when n is prime, even, odd, etc.
This would relate fundamental topological and dynamical properties of ECA rule 1.

3 Ongoing and future work

This paper arose out of our work on toggling independent sets from combinatorics, the
connections we saw to cellular automata, and how both fields complement each other. Our
original goal was to prove our data-driven conjecture that the period of the sum vector is
always odd under the ACA map F12···n. We expected this to lead us to explore homomesies
and how the dynamics behaves under toric equivalent update orders, because these questions
arose in earlier work of toggling independent sets over the path graph [10]. However, once
we encountered the algebraic and topological structures that arose from the commuting
successor and shadow functions, our research went in a different direction.

Many of the general ideas in this paper, such as studying tables of 0s and 1s in a CA, are
obviously not new, and have been around for decades. Nevertheless, there are many novel
approaches within our techniques that we think should open up new avenues for research
within the fields of both combinatorics and cellular automata. We would still like to return
to studying homomesy, resonance, and toric equivalence in ECA rule 1. We would also like
to investigate this over other families of graphs, such as the “distance-2 cycle graph”. In the
literature, some of this is done under the name of “SDSs with logical NOR functions” [15].
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However, to our knowledge, these have not been studied using the algebraic framework in
this paper. More generally, studying homomesy and resonance in other asynchronous cellular
automata beyond rule 1, and relating them to the algebraic features of toggle groups and the
combinatorial features of the Coxeter elements, is mostly unexplored. This is an example of
theory from dynamical algebraic combinatorics contributing to the field of cellular automata.

For another example, the idea behind the shadow and successor functions can be general-
ized to other ECA rules. Namely, if Xi,j = 1, then we will call positions (i′, j′) and (i′′, j′′)
in a scroll a complementary pair of (i, j) if Xi′,j′ + Xi′′,j′′ = 1. Given a live position (i, j),
every complementary pair defines a function that outputs the position of the unique live entry.
By Proposition 3, the successor and shadow functions are commuting complementary
pairs. This defines the abelian “snake group,” and it guarantees that all (co-)snakes have
a common (co-)slither, because they arise as cosets. The natural simply transitive actions
of these groups define Cayley diagram structures on the live entries of the scrolls and orbit
tables, and a topological covering map relating the two. We have a paper in preparation,
which also includes the proofs of many results stated here, that uses the theory of covering
spaces and deck transformations to deduce properties about the periodicity within the scrolls
and ticker tapes. It would be interesting to find examples of complementary pairs arising
from other ECA rules, either under a fixed sweep Fπ, or synchronous update. If two such
pairs commute, then this opens to door to using algebraic and topological tools to analyze
those dynamical systems. Even if they do not commute, it is still likely that much of the
framework still carries over, but with a nonabelian group.

The complementary pairs that define the successor and shadow functions are characterized
by Xi,j+2 + Xi+1,j+1 = 1 and Xi+2,j−2 + Xi+2,j−1 = 1. We can try to directly define other
commuting complementary pairs by modifying these indices, and investigate which ones give
rise to infinite binary scrolls of width n, that a so-called “generalized snake group” acts on
simply transitively. When this happens, we can ask whether or not such a scroll arises from
a togglable CA, SDS, or automata network (i.e., possibly over a different graph), how to
characterize those that do, and whether all of the orbits can be specified in a number-theoretic
manner, such as in Theorem 11.

Of course, these ideas can be extended beyond just pairs – e.g., to a set of 3 entries that
must contain exactly 1 (or 2) live entries. Scrolls of ECA rule 1 with π = 12 · · · n have two
commuting complementary pairs, but rules that are less sparse might have scrolls that are
characterized by three or more. It seems like if this were to happen, the resulting three-
generator abelian group would not act freely on the live entries, because of the two-dimensional
structure of a scroll. However, this is all speculative, and deserves investigation.

The previous examples are all instances of ideas from dynamical algebraic combinatorics
posing new questions in the field of cellular automata. On the other hand, ideas from CAs
can lead to new problems in combinatorics. For example, it is easy to define what it means
to toggle other graph-theoretic objects, such as vertex covers or dominating sets. Over the
cycle graph Cn, each of these can also be viewed as a CA, albeit a distance-2 one. Though
it is more complicated, the idea of complementary pairs should be adaptable for certain
toggling problems that do not involve CAs, such as order ideal or antichain toggling. This
amounts to finding invariants of an arbitrary live entry at time t, in terms of a pair of entries
at, e.g., time t′ and time t′′. Each such pair will define a bijection on the live entries and
thereby generate an equivalence relation. This is just one example of how it might be feasible
to adapt tools developed from analyzing tables of 0s and 1s arising from ECA rule 1 to new
techniques applicable to generalized toggling problems in combinatorics.
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Abstract
The generic limit set of a cellular automaton is a topologically defined set of configurations that
intends to capture the asymptotic behaviours while avoiding atypical ones. It was defined by Milnor
then studied by Djenaoui and Guillon first, and by Törmä later. They gave properties of this set
related to the dynamics of the cellular automaton, and the maximal complexity of its language. In
this paper, we prove that every non trivial property of these generic limit sets of cellular automata
is undecidable.
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1 Introduction

Cellular automata (CA) are discrete dynamical systems defined by a local rule, introduced
in the 40s by John von Neumann [13]. Given a finite alphabet A, the global rule on AZ

is given by the synchronous application of the local one at every coordinate. They can be
seen as models of computation, dynamical systems or many phenomena from different fields,
providing links between all of these [5, 9].

The asymptotic behaviour of CA has been studied a lot, mainly using the definition
of limit set: the set of points that can be observed arbitrarily far in time. In particular
concerning the complexity of this set: it can be non-recursive, the nilpotency problem is
undecidable and there is Rice’s theorem on properties of the limit set of CA [6, 7, 8]. Rice’s
theorem states that every nontrivial property of the limit set of CA is undecidable. Other
definitions were introduced in order to restrain to typical asymptotic behaviour. Milnor
proposed the definition of likely limit set and generic limit set in [11] in the more general
context of dynamical systems. While the likely limit set is defined in the measure-theoretical
world, the generic limit set is a topological variant. Djenaoui and Guillon proved in [4] that
both are equal for full-support σ-ergodic measures in the case of CA.

The generic limit set is the smallest closed subset of the fullshift ΣZ containing all limit
points of all configurations taken in a comeager subset of ΣZ. Djenaoui and Guillon studied
the generic limit set in [4], proving results on the structure of generic limit sets related
to the directional dynamics of CA. They also provide a combinatorial characterization of
the language of the generic limit sets and examples of CA with different limit, generic
limit and µ-limit sets. The latter was introduced in [10] by Kůrka and Maass as another
measure-theoretical version of limit set.

The µ-limit set is determined by its language which is the set of words that do not
disappear in time, relatively to the measure µ. Amongst the results on the µ-limit set, it
was proved in [1] that the complexity of the language is at the level 3 of the arithmetical
hierarchy (Σ0

3), with a complete example, it was also proved that the nilpotency problem is
Π0

3-complete. Rice’s theorem also holds stating that each nontrivial property has at least Π0
3

complexity. A slightly different approach led Hellouin and Sablik to similar results on the
limit probability measure in [2].
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In [12], Törmä proved computational complexity results on the generic limit sets, in
particular an example of a CA with a Σ0

3-complete generic limit set, and constraints on the
complexity when the dynamics of the CA is too simple on the generic limit set.

In this paper, we prove Rice’s theorem on generic limit sets combining ideas from [8]
and [1].

2 Definitions

In this paper, we consider the countable set Q = {q0, q1, q2, . . . }. Every finite alphabet will
be a finite subset of Q. Given a finite alphabet Σ ⊆ Q and a radius r ∈ N, a local rule is a
map δ : Σ2r+1 → Σ and a cellular automaton F : ΣZ → ΣZ is the global function associated
with some local rule δ: for every c ∈ ΣZ and every i ∈ Z, F(c)i = δ(ci−r, ci−r+1, . . . , ci+r).
We call configurations the elements of ΣZ. The orbit of an initial configuration c under F is
called a space-time diagram. Time goes upward in the illustrations of this paper.

Define the Cantor topology on ΣZ using the distance d(c, c′) = 1
2i where i = min{j ∈

N, cj ̸= c′
j or c−j ̸= c′

−j}. For any word w ∈ Σ∗, denote |w| the length of w and [w]i = {c ∈
ΣZ : ∀k < |w|, ci+k = wk} the associated cylinder set, which is a clopen set.

Denote σ the shift on ΣZ, which is the CA such that ∀c ∈ ΣZ, ∀i ∈ Z, σ(c)i = ci+1. A
subshift is a closed σ-invariant subset of ΣZ. A subshift can be equivalently defined by the
set of forbidden words, in this case a subshift is the set of configurations that do not belong
to any [w]i where w is forbidden.

In this paper, a Turing machine works on a semi-infinite (to the right) tape, with a finite
alphabet A containing a blank symbol ⊥. It has one initial state q0 and one final state qf .
At each step of the computation, the head of the machine reads the symbol at the position
on the tape to which it points, and decides the new symbol that is written on the tape, the
new state it enters, and its move (one cell at most). It can be simulated by a CA using states
that can contain the head of the machine and the tape alphabet. We will here only simulate
machines in a finite space in which there is only one head.

2.1 Limit sets of cellular automata
Different definitions of the asymptotic behavior of a CA have been given. The most classical
one is the limit set ΩF =

⋂
t∈N F t(ΣZ) of a CA F , that is the set of configurations that can

be seen arbitrarily late in time. For any subset X ⊆ ΣZ, define ω(X) as the set of limit
points of orbits of configurations in X: c ∈ ω(X) ⇔ ∃c′ ∈ X, lim inft→∞ d(F t(c′), c) = 0.
The set ω(ΣZ) is called the asymptotic set of F .

A subset X ⊆ ΣZ is said to be comeager if it contains a countable intersection of dense
open sets. It implies in particular that X is dense (Baire property).

For X ⊆ ΣZ, define the realm of attraction D(X) = {c ∈ ΣZ : ω(c) ⊆ X}. The generic
limit set ω̃(F) of F is then defined as the intersection of all closed subsets of ΣZ whose realms
of attraction are comeager.

The following two examples show differences between all these sets, they were already
presented in [4].

▶ Example 1 (The Min CA). Consider the CA F of radius 1 on alphabet {0, 1} whose local
rule is (x, y, z) 7→ min (x, y, z). The state 0 is spreading, that is, every cell that sees this
state will enter it too. A space-time diagram of the MIN CA is represented in Figure 1.

We have:
ΩF = {c ∈ {0, 1}Z : ∀i ∈ Z, k ∈ N∗, c /∈ [10k1]i]};
ω̃(F) = {0Z} and it is equal to the µ-limit set for a large set of measures containing every
non degenerate Markov measure.
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Figure 1 Some part of a space-time diagram of the Min CA, 0 is represented by the white state
and 1 by the black state.

> < > > < < < < > > > < > > > <

> > > < < < < > > > >

> > < < < > > > >

> < < > > > >

> < < > > > >

< > > >

< > >

< > >

Figure 2 The < and > states of the Gliders CA are particles going in different directions and
annihilating each other when they cross.

▶ Example 2 (Gliders). Consider the CA F of radius 1 on alphabet {0, >, <}. The states <

and > are respectively speed −1 and 1 signals over a background of 0s. When a < and a >

cross, they both disappear. A space-time diagram of this CA is represented in Figure 2. For
a complete description of the rule, see for example [10, Example 3].

We have:
ΩF = {c ∈ {0, <, >}Z : ∀i ∈ Z, k ∈ N, c /∈ [< 0k >]i]};
ω̃(F) = ΩF ;
the µ-limit set depends here of µ. With µ the uniform Bernoulli measure, it is {0Z}. If µ

is Bernoulli with a bigger probability for < than for >, then the µ-limit set is {{0, <}Z}.

2.2 Preliminary properties of generic limit sets of CA
Many properties of generic limit sets were proved either in [11] or in [4] for the particular
case of CA.

▶ Proposition 3 (Prop 4.2 of [4]). Given a CA F , the realm of attraction of ω̃(F) is comeager.

▶ Proposition 4 (Prop 4.4 of [4]). Given a CA F , ω̃(F) is a subshift.

Note that the limit set of a CA is also a subshift whereas the asymptotic limit set may not
be.

▶ Proposition 5 (Cor 4.7 of [4]). Given a CA F on alphabet Σ, ω̃(F) = ΣZ ⇔ F is surjective.

The last result of this section comes from Remark 4.3 of [4] and is reformulated as Lemma
2 of [12]:

▶ Lemma 6. Let F be a CA on ΣZ. A word s ∈ Σ∗ occurs in ω̃(F) if and only if there
exists a word v ∈ Σ∗ and i ∈ Z such that for all u, w ∈ Σ∗, there exist infinitely many t ∈ N
with F t([uvw]i−|u|) ∩ [s] ̸= ∅.

The word v is said to enable s.
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3 General structure of the construction

The proof of the main result of this paper relies on a construction already presented in [3, 1, 2].
The present section contains the description of this tool. The idea is to erase most of the
content of the initial configuration and start a protected (hence controled) and synchronized
evolution. Of course, to ensure that this property holds for any configuration, one needs
strong constraints on the dynamics of the CA. Here, we also want to allow a wide variety
of dynamics, hence this property shall hold for almost every initial configuration. In the
above-cited articles, it was true for µ-almost every configuration, and here we will use a
topological variant.

A brief description of this CA F follows. Its radius should be at least 2.

3.1 Overview
Some particular state * ∈ Σ can only appear in the initial configuration: there is no rule that
produces it. The states * will trigger the desired evolution. In order to avoid having to deal
with anything unwanted on the initial configuration (like words produced by the evolution
of the CA placed in a wrong context), we add a mechanism that cleans the configuration
from anything that is not produced by * . This is achieved through the propagation of large
signals that have the information of the time passed since a * state produced it, that is
their age. Then, when two such signals going in opposite directions meet, they compare their
ages and only the younger survives.

With this trick, any configuration that contains infinitely many * on both sides will
ultimately be covered by protected areas. The * states also transform into # ∈ Σ states,
and we consider the words in the space-time diagram that are delimited by # states produced
by * states, we call them segments. The dynamics of the CA inside a segment only depends
on its size. In particular, the simulation of the computation of a given Turing machine can
be started on each # state when it appears.

A close construction with a more precise and complete description can be found in [1,
Section 3.1].

3.2 Initialization and counters
The state * can only appear in the initial configuration: it is not produced by any rule
and it disappears immediately. Consider a cell at coordinate i that contains a * state in
the initial configuration. On each side of the * state, two signals are sent at speed sf and
sb to the right and symmetrically to the left. The fastest one (speed sf ) erases everything
it encounters except for its symmetrical counterpart. Each couple of signals is seen as one
counter whose value is encoded by the distance ⌊k(sf − sb)⌋ after k steps of the CA. The key
point is that, at any time, the value of a counter is minimal exactly for counters generated
by a * state.

When two counters meet, they compare their values without being affected until the
comparison is done. The comparison process is done via signals bouncing on the borders
of the counters. The speed of these inner signals is greater than the speeds (sf and sb) of
the border signals. As the value is encoded by the distance between border signals, it is a
geometric comparison illustrated in Figure 3. If one counter is younger than the other one,
the older one is deleted (the right one in Figure 3). If they are equal, both counters, that is
the 4 signals, are deleted.
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Figure 3 When counters meet in O, signals move at speed 1 towards the borders of the counters
that they reach at points C and C′. They bounce back until they cross the sign left at point O. The
one that arrives first has crossed the most narrow (hence youngest) one. It bounces once again to
erase the opposite counter whose border is reached at point E.

▷ Claim 7. For any configuration c where * occurs, and any coordinate i ∈ Z, denote
di = min{|i − j| : cj = * }. Then for any t > sbdi (where sb is the speed of the inner border
of the counter), F t(c)i does not contain a counter state.

Proof. Each sequence of consecutive * states creates a left counter at its left extremity and
a right counter at its right extremity. They all share a common age which is the minimal
one, hence they cannot be crossed by another counter. Thus, at most one of the youngest
counters can cross cell i. And due to the speed of the inner border of the counters, this is
done after sbdi steps. ◁

Last rule of this construction: every * state that is not surrounded by other * states
on both sides is replaced by a # state after it gave birth to the counters. Figure 4 shows
how a typical initial configuration evolves.

For any time t ∈ N and any configuration c, we call segment a set of consecutive cells
from coordinate i to j in F t(c) with i, j ∈ Z such that:

F t(c)i = # = F t(c)j

for every i < k < j, F t(c)k ̸= #

ci = * and cj = * .

Note that if the radius of the CA can be arbitrarily large, any choice of speeds sf > sb

can be made.

▷ Claim 8. For any s ∈ Q, there exists a CA implementing such a construction with speed
sb > s (and hence sf ).

Proof. A big enough radius allows fast enough signals to perform the comparison of counters
in due time. ◁
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Figure 4 Starting from a configuration containing infinitely many * states on the left and on
the right, the * states generate counters (filled in grey) on both sides that erase everything but
another counter going in the opposite direction. These counters eventually meet their opposite and
disappear after comparing their ages, hence remain an immaculate configuration with # states in
some positions.

4 Rice’s theorem

Following the steps of the historical proof of Rice and concerning CA, the theorems on limit
sets in [8] and µ-limit sets in [3], we first define properties of generic limit sets of CA, then
prove that every non trivial such property is undecidable.

The CA used in [3] to prove Rice’s theorem for µ-limit sets also has the general structure
presented in the previous section. The difference lies in what is done inside segments. In the
case of µ-limit sets (regardless of the choice of µ), it is possible to dedicate a small technical
space inside segments to any activity that shouldn’t appear in the µ-limit set, as long as this
space tends to disappear in density. This is achieved through larger and larger segments.
Nothing prevents the states of this technical space to appear in the generic limit set.

4.1 Properties of generic limit sets of CA

A property of the generic limit set of CA is a set of subshifts and we say that a generic limit
set have this property if it belongs to this set. This way, it depends only on the generic limit
set: if two CA have the same generic limit set, this common generic limit set either has or
not the property. As mentionned earlier, we consider the countable set Q = {q0, q1, . . . }, and
every alphabet is a finite subset of Q = {q0, q1, . . . }.

▶ Definition 9. A property P of generic limit sets of cellular automata is a subset of the
powerset P(QZ). A generic limit set of some cellular automaton is said to have property P
if it is in P.

Note that many sets that are not subshifts can belong to a property P , as every generic
limit set is a subshift, they do not matter. In particular, every property that does not contain
a subshift is equivalent to the empty property that no generic limit set has. A property is
said to be trivial when either it contains all generic limit sets or none. The most natural
example of a non trivial property is the generic nilpotency, which is given by the family
{{qZi }, i ∈ N}.

This definition prevents confusions between properties of generic limit sets and properties
concerning generic limit sets. For example the property containing every fullshift on finite
alphabets is not surjectivity, since the generic limit set of a CA on alphabet Σ could be a
fullshift on a strictly smaller alphabet. Hence surjectivity is not a property of generic limit
sets even if being surjective is equivalent to having a full generic limit set. .
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4.2 The theorem
▶ Theorem 10. Every non trivial property of the generic limit sets of CA is undecidable.

This section is dedicated to the proof of Rice’s theorem. It is a many-one (actually
one-one) reduction from the Halting problem on empty input for Turing machines. Take a
non trivial property P of generic limit sets of CA. Assume for example that P ∩{{qZk }, k ∈ N}
is infinite (the other case leads to a symmetric proof). As P is non trivial, it is possible to
choose qn ∈ Q and a CA F1 such that ω̃(F1) /∈ P and qn /∈ Σ1 where Σ1 is the alphabet of
F1. Denote now F0 the CA on alphabet {qn} whose local rule always produces {qn}. Hence
ω̃(F0) = {qZn} ∈ P.

For any Turing machine M , we produce a CA FM such that:
if M eventually halts on empty input, the generic limit set of FM is {qZn};
if M never halts on empty input, then the generic limit set of FM is ω̃(F1).

4.2.1 Construction of FM

The CA FM contains two layers, one for each of the main tasks. Denote π1 and π2 the
projections on the first and second layer. The first layer uses alphabet Σ0 and it implements
the construction described in Section 3. Denote _ the blank state of Σ0. The second layer
simulates the CA F1. In some cases, the first layer can be erased, we also add a state qn,
hence the alphabet of FM is Σ = (Σ0 × Σ1) ∪ {qn} ∪ Σ1.

The set Σ0 × Σ1 can be mapped to a subset of Q \ ({qn} ∪ Σ1) to ensure that Σ ⊂ Q.
For the clarity of the presentation, we will denote the elements of Σ0 × Σ1 as couples.

The idea is to let F1 compute on the second layer (or by itself if the first layer has been
erased), while computation on the first layer will either lead to erase this layer or generate a
qn state that will be spreading (erasing everything but counters) over the whole configuration.

On the first layer, once a # state appears (from a * state), a simulation of M is started
on its right. In the general case, another # state exists further on the right, in which case
this simulation takes place in a segment. We will show later that the other case is irrelevant
when considering the generic limit set. The simulation evolves freely except if it is blocked
by the inner border of a counter, if this happens the simulated Turing head waits until it has
enough space to make one more step. A binary counter is started in parallel to the right of
the # state.

The simulation inside a segment should always be finite, it can be interrupted for one of
the following reasons.

The simulation of M halts (because M reaches a final state). Then the state qn is
written, erasing both layers of FM . This state spreads to both of its neighbors erasing
everything, even the # states, except for the inner and outer borders of the counters of
the construction of Section 3.
It reaches a # on its right. That is there is not enough space inside the segment and the
simulation is aborted. The first layer content of the segment will be erased as explained
later.
The counter reaches another # state. The time allowed for the simulation is over and
the simulation is aborted. This third case is necessary to avoid problems due to a loop of
the Turing machine in a finite space.

The states used for the simulation should not appear in the generic limit set, hence they
have to be erased once the simulation halts or is aborted. In the first case, the state qn is
written in every cell. In the second case, the first layer only is erased. For the same reason,
the # state has to be erased when the simulation is over in both the segments it delimits.
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Figure 5 Starting from the cells in state * in the initial configuration, the counters (grey
areas) protect everything above them. Segments are delimited by # states and in each of them a
simulation of the computation of a Turing machine takes place (the red curve gives the position of
the head). The green curve represents the extension of the binary counter used to limit the time of
the simulation. In segment a⃝, the counter reaches the limit and an abortion signal is sent (blue).
In segment b⃝, the head reaches the right of counter and the simulation is stopped with an abortion
signal sent to the left. In segment c⃝, the Turing machine halts and the spreading state qn is written.

If the simulation is aborted (due to lack of space or end of the allowed time in the
segment), an abortion signal is sent in both directions that erases everything of the first layer
(except outer or inner border of counters) until it reaches a # state. A # state that receives
such an abortion signal transforms into a #’ state. If a #’ state receives an abortion signal, it
disappears. The point is to ensure that the abortion signals do not travel too far: if the first
abortion signal deletes the # state on the side of the segment, then the one arriving from
the other side will cross. This could lead to the presence of abortion signals in the generic
limit set.

Figure 5 is a schematic view of the evolution of CA FM on an ordinary initial configuration.

▷ Claim 11. There exists an increasing function f : N → N such that the computation of M

simulated in a segment of length n either halts or is aborted before time f(n).

Proof. In a segment of length n, due to the binary counter, if the simulation of M has not
reached a final state after 2n steps, the computation is aborted. ◁

4.2.2 Ensuring a sound computation on the second layer
The proof relies on the fact that, with most initial configurations:

if M halts, there will exist a large enough segment in which the computation has enough
space and time to reach its end, thus producing state qn that erases everything.
if M does not halt, the computation will be eventually aborted in every segment and
only the second layer will remain with a computation of F1.

In order to ensure the second point, we need to deal with the case of qn states existing
before the counters of Section 3 clean the configuration on the first layer. It can for example
happen due to qn states on the initial configuration. In this case, the content of the second
layer is lost. As it is impossible to control what happens outside the area protected by
counters, the counters will not only stop the spreading of qn but also write a possible
configuration for F1, thus deleting all data that does not descend from the cells containing
* in the first layer of the initial configuration.
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Figure 6 Partial representation of a space-time diagram of FM . The red cells are where the
counters rewrite the second layer assuming that what does not come from a * state is x0. The blue
cells are where the computation of F1 happens normally on the second layer. The yellow lines are
the outer borders of counters, we assume here they have speed 1 for the illustration. Denote δ1 the
local rule of F1. Then q′ = δ1(x, y, z) which are its state (y) and the ones of its neighbors (x and z)
at time 0. And q = δ1(x0, x, y).

Let us assume for simplicity that the radius of F1 is 1. For the rest of the proof of the
theorem, denote x0 some state of Σ1. The space-time diagram of F1 with initial configuration
xZ

0 is ultimately periodic, contains only uniform configurations and is entirely described by a
finite sequence of distinct states (x0, x1, . . . , xp, . . . , xp+T , xp). The counters will write the
second layer of the configuration as if every information coming from outside the protected
area (between counters) was obtained from the uniform initial configuration xZ

0 :
xt at step t ≤ p;
xp+(t−p) mod T at step t ≥ p.

As a finite amount of information is needed, the local rule of the CA FM can be designed
to do so. This is illustrated in Figure 6. As said in Claim 8, it is possible to use that
construction with outer borders of counters moving at speed 1.

If the first layer contains * , the state on the second layer is not rewritten and is used for
the simulation of F1.

To any initial configuration x ∈ ΣZ, corresponds a configuration in ΣZ
1 where all the

deleted data is replaced by x0. Denote ϕ : Σ → Σ1 such that:
ϕ( * , x) = x;
ϕ(s, x) = x0 when s ̸= * ;
ϕ(x) = x0 when x ∈ Σ1 ∪ {qn}.

It can be extended to words in Σ∗ and configurations in ΣZ.

▷ Claim 12. Let c be a configuration in ΣZ and i ∈ Z a coordinate such that there exists
j < i < k with cj = * = ck. Then for any t > sbdi (as in Claim 7),

π2
(
F t

M (c)i

)
∈

{
F t

1(ϕ(c))i, qn

}
We extend here π2 as the identity to Σ1 ∪ {qn}.

Proof. As t > sbdi, the cell at coordinate i is in the protected area (above * states or
counters) at time t. Then the second layer has been computed with the rule of F1 and the
second layer of the configuration rewritten by counters into images of ϕ(c). The only way to
interrupt the computation of F1 is to erase the cell and write qn, hence the claim. ◁

4.2.3 Proof of the theorem
It remains to prove the next 2 lemmas.

▶ Lemma 13. If M eventually halts on the empy input, then ω̃(FM ) = ω̃(F0) ∈ P.
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Figure 7 The word v (in blue) is supposed to enable state s. Then for a good choice of u (in
red), a segment will simulate a computation of M that eventually halts and produces qn. This state
spreads (in yellow) and eventually reaches coordinate 0.

Proof. Suppose that M eventually halts on the empty input. Then there exists a large
enough size S such that the computation in any segment larger than S has enough time and
space to reach its end. Then the state qn appears and spreads at speed 1 in both directions
except if it encounters an inner or outer border of a counter.

If some state s ∈ Σ occurs in ω̃(FM ) then according to Lemma 6, there exists a word v

that enables it when placed at position i ∈ Z. Take now u = (_ * _S
* _, xS+4

0 ), w the empty
word and some c ∈ [uvw]i−|u|. Counters are generated by the two * states at coordinates
i − (S + 3) and i − 2, hence there exists t0 ∈ N such that at time t0, the cell 0 has been
crossed by counters generated by * states. According to Claim 7, it will not contain any
state of outer or inner border of a counter anymore. Moreover, a segment is created between
coordinates i − (S + 3) and i − 2. As it is large enough, the state qn will be written at time
t1 ∈ N. Then it will spread and reach cell 0 before time t1 + max(|i − (S + 2)|, |i − 2|) or t0
if the inner border of a counter slows it down. This is illustrated by Figure 7. Hence there
exists t2 ∈ N such that ∀t ≥ t2, F t

M (c) ∈ [s] ⇔ s = qn. Thus ω̃(FM ) ⊆ {qn}Z. As ω̃(FM )
cannot be empty, we have ω̃(FM ) = {qn}Z = ω̃(F0) and ω̃(FM ) ∈ P . ◀

▶ Lemma 14. If M never halts on the empty input, then ω̃(FM ) = ω̃(F1) /∈ P.

Proof. Suppose now that M never halts on the empty input. We will show that ω̃(F1) =
ω̃(FM ).

First, we show that:

▷ Claim 15. ω̃(FM ) ⊆ ω̃(F1)

Proof. Let s be a word that occurs in ω̃(FM ). According to Lemma 6, there exists a word
v that enables s when placed at coordinate i. As any word containing v as a factor also
enables s, we can choose v such that i < 0 and i + |v| > |s|.

We prove that v′ = ϕ(v) at coordinate i enables s for F1. To do so, we will use Lemma 6.
Take u′, w′ ∈ Σ∗

1 and denote u = ( * _|u′|−1, u′) and w = (_|w′|−1
* , w′). Denote n = |uvw|,

T ≥ max(sbn, f(n) + n) (where sb is the speed of inner borders of counters), z1 = i − |u|
and z2 = i + |vw|. Apply Lemma 6 with FM , v, u and w. For infinitely many times t, there
exist a configuration c ∈ [uvw]i−|u| such that F t

M (c) ∈ [s]. Using Claim 12 with cells at
coordinates z1 and z2 containing state * , we get that for any t > T ,

∀z1 ≤ j ≤ z2, π2
(
F t

M (c)j

)
∈

{
F t

1(ϕ(c))j , qn

}
That is : π2(s) = π2

(
F t

M (c)[0,|u|−1]
)

∈
{

F t
1(ϕ(c))[0,|u|−1], q

|u|
n

}
.
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Due to the * states placed at coordinates z1 and z2, we can also apply Claim 11 and
we get that the computation is finished in any segment between coordinates z1 and z2 at
time f(n). After n more steps, the potential abortion signals have reached the borders and
every cell between coordinates z1 and z2 contains a state in Σ1 ∪ {qn}. Moreover, as these
cells belonged to a segment in the protected area, and since M never halts on the empty
input, this state cannot be qn. Hence s ∈ Σ∗ and as π2 is the identity on Σ, necessarily
s = π2(s) = F t

1(ϕ(c))[0,|u|−1].
As ϕ(c) ∈ [u′v′w′]i−|u′| and as F t

1(ϕ(c))[0,|u|−1] = s for infinitely many times t, Lemma 6
allows to conclude that v′ enables s that is v′ occurs in ω̃(F1). ◁

Then we prove the opposite:

▷ Claim 16. ω̃(F1) ⊆ ω̃(FM )

Proof. Let s be a word that occurs in ω̃(F1). According to Lemma 6, there exists a word v

that enables it when placed at coordinate i. We prove that v′ = (_|i|
*

|v|_|i|+|s|, x
|i|
0 vx

|i|+|s|
0 )

at coordinate i − |i| enables s for FM .
For any u′, w′ ∈ Σ∗, denote n = |u′v′w′|. Let T ≥ max(sbn, f(n) + n) (where sb is still

the speed of inner borders of counters) and denote
u = ϕ(π2(u′))x|i|

0 ;
w = x

|i|+|s|
0 ϕ(π2(w′)).

As v enables s for F1, there exists c ∈ [uvw]i−|u| and t ≥ T such that F t
1(c) ∈ [s]. We

can write c as c−uvwc+ where c− and c+ are semi-infinite configuration in ωΣ1 and Σω
1

respectively. Define c′ = (ω
* , c−)u′v′w′( *

ω, c+) ∈ [u′v′w′]i−|i|−|u′|, we will prove that
F t

M (c′) ∈ [s]. First, note that c = ϕ(π2(c′)). Then using Claim 12, we have that for every
j ∈ [|i − |i|, i + |i| + |s|]:

π2
(
F t

M (c′)j

)
∈

{
F t

1(c)j , qn

}
As t ≥ T ≥ sbn and M does not halt on the empty input, π2 (F t

M (c′))j ̸= qn. And as
t ≥ T ≥ f(n) + n, the computation is aborted in every segment fully located between
coordinates |i − |i| and i + |i| + |s| before step f(n). After n more steps, the first layer
of these segments is erased, in particular for coordinates j with 0 ≤ j < |s|. Hence
F t

M (c′)[0,|s|−1] = π2 (F t
M (c′))[0,|s|−1] = F t

1(c)[0,|s|−1] = s and s ∈ ω̃(FM ). ◁

◀

The last two lemmas show that M 7→ FM is a reduction from the Halting problem of
Turing machines on empty input to the problem of decision of P.

5 Conclusion and perspectives

We proved Rice’s theorem for generic limit sets of CA, which means that for example generic
nilpotency is undecidable. In the case of limit sets and µ-limit sets, the nilpotency problem
has the lowest complexity in the arithmetical hierarchy amongst properties of limit or µ-limit
sets (Σ0

1-complete for limit sets and Π0
3-complete for µ-limit sets). It may be the case once

more for generic limit sets. Lemma 6 gives a Π0
3 upper bound on the complexity of generic

nilpotency and Törmä suggests in [12] that the exact complexity could be obtained using a
construction close to the one presented in [1] or in the present paper. One might think that
another version of Rice’s theorem could be deduced where the lower bound of complexity on
non trivial properties of generic limit sets is higher than Σ0

1.
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Using again constructions of [1], one can certainly prove properties similar to the ones
obtained on µ-limit sets in the same paper, but also build examples to show that the languages
of µ-limit set and generic limit set can have totally distinct complexities like Σ0

3-complete
versus a full-shift.
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Abstract
In this paper, we formalize precisely the sense in which the application of a cellular automaton to
partial configurations is a natural extension of its local transition function through the categorical
notion of Kan extension. In fact, the two possible ways to do such an extension and the ingredients
involved in their definition are related through Kan extensions in many ways. These relations provide
additional links between computer science and category theory, and also give a new point of view
on the famous Curtis-Hedlund theorem of cellular automata from the extended topological point
of view provided by category theory. These links also allow to relatively easily generalize concepts
pioneered by cellular automata to arbitrary kinds of possibly evolving spaces. No prior knowledge of
category theory is assumed.
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1 Introduction

Cellular automata are usually presented either as a local behavior extended to a global and
uniform one or as a continuous uniform global behavior for the appropriate topology [1, 3]. We
offer here a third, fruitful, point of view easing many generalizations of the concepts pioneered
by cellular automata, e.g. via so-called global transformation [2, 5]. The goal of this paper is
not to elaborate on these generalizations but to focus on some simple foundational bridges
allowing these generalizations. In particular, we focus on Kan extensions, a categorical notion
allowing, as we show here, to capture local/global descriptions [4]. While categories are
generalizations of monoids and posets, the case of cellular automata can be fully treated
in terms of posets only. Once the involved structures made clear via posets, the transition
to categories is precisely what enables the generalizations in a surprisingly smooth way as
discussed in the final section.

In this paper, we recall the direct definitions of cellular automata on groups, local
transition function, global transition function, shift action, and also consider the counterparts
of these functions on arbitrary partial configurations. This bigger picture allows to show that
the various local/global relations between these objects are all captured by left and right
Kan extensions, the latter providing an alternative definition of these objects. The proofs are
provided in detail to show how the concept can be easily manipulated once understood. We
also introduce slightly more generality than one would typically need in order to enrich the
presentation of Kan extensions in a hopefully useful way. In the final section, we comment
on the link with Curtis-Hedlund theorem and discuss briefly the smooth transition to more
general systems where the space itself has to evolve.
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2 Cellular Automata and Kan Extensions

Let us give some basic definitions to fix the notations. We also note small caveats early on,
to avoid having to deal with many unrelated details at the same time in a single proof or
construction later on.

2.1 Cellular Automata
▶ Definition 1. A group is a set G with a binary operation − · − : G × G → G which is
associative, which has a neutral element 1 and for which any g ∈ G has inverse g−1. A
right action of the group on a set X is a binary operation − ◀ − : X × G → X such that
x ◀ 1 = x and (x ◀ g) ◀ h = x ◀ (g · h).

In cellular automata, the group G represents the space, each element g ∈ G being at
the same time an absolute and a relative position. This space is decorated with states that
evolve through local interactions only. The classical formal definitions go as follows and work
with the entire, often infinite, space.

▶ Definition 2. A cellular automaton on a group G is given by a finite neighborhood
N ⊆ G, a finite set of states Q, and a local transition function δ : QN → Q. The
elements of the set QN are called local configurations. The elements of the set QG are
called global configurations and a right action − ◀ − : QG × G → QG is defined on QG

by (c ◀ g)(h) = c(g · h). The global transition function ∆ : QG → QG of such a cellular
automaton is defined as ∆(c)(g) = δ((c ◀ g) ↾ N).

▶ Proposition 3. The latter right action is indeed a right action.

Proof. For any g, h ∈ G, we have ((c ◀ g) ◀ h)(i) = (c ◀ g)(h ·i) = c(g ·h ·i) = (c ◀ (g ·h))(i)
for any i ∈ G, so ((c ◀ g) ◀ h) = (c ◀ (g · h)) and also (c ◀ 1)(i) = c(1 · i) = c(i) as required
by Definition 1 of right actions. ◀

This choice of definition and right notation for the so called shift action has two advantages.
Firstly, the definition of the action is a simple associativity. Secondly, when instantiated with
G = Z with sum, the content of c ◀ 5 is the content of c shifted to the left, as the symbols
indicates. Indeed, for c′ = c ◀ 5, c′(−5) = c(0) and c′(0) = c(5).

▶ Proposition 4. For all c ∈ QG and g ∈ G, ∆(c)(g) is determined by c ↾ g · N .

Proof. Indeed, ∆(c)(g) = δ((c ◀ g) ↾ N) so the value is determined by (c ◀ g) ↾ N . But for
any n ∈ N , (c ◀ g)(n) = c(g · n) by definition of ◀. ◀

In common cellular automata terms, this proposition means that the neighborhood of g is
g · N , in this order. Let us informally call objects of the form c ↾ g · N ∈

⋃
g∈G Qg·N a shifted

local configuration. Note that, at our level of generality, two different positions g ̸= g′ ∈ G

might have the same neighborhood g · N = g′ · N . Although the injectivity of the function
(− · N) could be a useful constraint to add, which is often verified in practice, we do not
impose it so the reader should keep this in mind.

▶ Proposition 5. The function − · N : G → 2G is not necessarily injective.

Proof. Considering the group G = Z/2Z × Z and N = {(0, 0), (1, 0)}, we have (0, 0) + N =
(1, 0) + N = {(0, 0), (1, 0)} because of the torsion. ◀
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Because of this, it is useful to replace the shifted local configurations, i.e. the union⋃
g∈G Qg·N , by the disjoint union

⋃
g∈G({g} × Qg·N ). The elements of the latter are of the

form (g ∈ G, c ∈ Qg·N ) and keep track of the considered “center” of the neighborhood. More
explicitly, two elements (g0, c ↾ g0 · N), (g1, c ↾ g1 · N) ∈

⋃
g∈G({g} × Qg·N ) are different as

soon as g0 ̸= g1 even if g0 · N = g1 · N . This encodes things according to the intuition of a
centered neighborhood.

2.2 The Poset of (Partial) Configurations
In the previous formal statements, one sees different kinds of configurations, explicitly or
implicitly: global configurations c ∈ QG, local configurations (c ◀ g) ↾ N ∈ QN , shifted local
configurations c ↾ g · N ∈ Qg·N , and their resulting “placed states” (g 7→ ∆(c)(g)) ∈ Q{g}. In
the cellular automata literature, one often considers configurations defined on other subsets
of the space, e.g. finite connected subsets. More generally, we are interested in all partial
configurations QS for arbitrary subsets S ⊆ G. The restriction operation (− ↾ −) used many
times above gives a partial ordering of these partial configurations.

▶ Definition 6. A (partial) configuration c is a partial function from G to Q. Its domain
of definition is denoted |c| and called its support. The set of all configurations is denoted
Conf =

⋃
S⊆G QS. We extend the previous right action ◀ and define it to map each c ∈ Conf

to c ◀ g having support |c ◀ g| = {h ∈ G | g · h ∈ |c|} and states (c ◀ g)(h) = c(g · h).

▶ Proposition 7. The latter right action is well-defined and is a right action.

Proof. The configuration c ◀ g is well-defined on all of its support. Indeed for any h ∈ |c ◀ g|,
(c ◀ g)(h) = c(g · h) and g · h ∈ |c| by definition of h. The right action property is verified as
in the proof of Proposition 3. ◀

Let us restate Proposition 4 more precisely using Definition 6.

▶ Proposition 8. For all c ∈ QG and g ∈ G, (c ◀ g) ↾ N = (c ↾ g · N) ◀ g.

Proof. Indeed, |(c ↾ g · N) ◀ g| = {h ∈ G|g · h ∈ |(c ↾ g · N)|} = {h ∈ G|g · h ∈ g · N} =
N = |(c ◀ g) ↾ N |. Also for any n ∈ N , ((c ◀ g) ↾ N)(n) = (c ◀ g)(n) = c(g · n) and
((c ↾ g · N) ◀ g)(n) = (c ↾ g · N)(g · n) = c(g · n). ◀

▶ Definition 9. A partial order on a set X is a binary relation ⪯ ⊆ X ×X which is reflexive,
transitive, and antisymmetric. A set endowed with a partial order is called a partially ordered
set, or poset for short.

▶ Definition 10. Given any two configurations c, c′ ∈ Conf, we set c ⪯ c′ if and only if
∀g ∈ |c|, g ∈ |c′| ∧ c(g) = c′(g). This is read “c is a subconfiguration of c′” or “c′ is a
superconfiguration of c”.

▶ Proposition 11. The set Conf with this binary relation is a poset. In this poset, the
shifted local configurations c ∈

⋃
g∈G Qg·N are subconfigurations of the (appropriate) global

configurations c′ ∈ QG. Shifted local configurations form an antichain. Global configurations
form an antichain.

Proof. As can be readily seen, since each global configuration restricts to many shifted local
configurations, and recalling that an antichain is a subset S of the poset such that neither
x ⪯ x′ nor x′ ⪯ x hold for any two different x, x′ ∈ S. ◀

AUTOMATA 2021
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2.3 Kan Extensions (in the 2-Category of Posets)
Given three sets A, B and C such that A ⊆ B, we say that a function g : B → C extends a
function f : A → C if g ↾ A = f , or equivalently if g ◦ i = f where i is the obvious injective
function from A to B. For a given f : A → C, there are typically many possible extensions.
Roughly speaking, Kan extensions formalizes, among many things, the mathematical practice
where extensions are rarely arbitrary. One usually chooses the “best” or “most natural”
extensions. There is therefore an implicit comparison considered between the extensions.

This is the reason why Kan extensions are formally defined at the level of 2-categories:
A, B, C are objects, f , g, i, and all (not necessarily “most natural”) extensions are 1-
morphisms between these objects, and the “naturality” comparison between 1-morphisms
are 2-morphisms. However, we do not need to discuss things at this level of generality here.
For our particular case, the objects are posets, the 1-morphisms are monotonic functions and
the monotonic functions are compared pointwise.

▶ Definition 12. Given two posets (X, ⪯X) and (Y, ⪯Y ), a function f : X → Y is said to be
monotonic if for all x, x′ ∈ X, x ⪯X x′ implies f(x) ⪯Y f(x′).

▶ Proposition 13. For any g ∈ G, the function (− ◀ g) : Conf → Conf is monotonic.

Proof. Given any c, c′ ∈ Conf such that c ⪯ c′, this claim is equivalent to:

(c ◀ g) ⪯ (c′ ◀ g) (by Def 12)
⇐⇒ ∀h ∈ |c ◀ g|; h ∈ |c′ ◀ g| ∧ (c ◀ g)(h) = (c′ ◀ g)(h) (Def 10)
⇐⇒ ∀h ∈ G s.t. g · h ∈ |c|; g · h ∈ |c′| ∧ c(g · h) = c′(g · h) (Def 6)

which is true by the application of Definition 10 of c ⪯ c′ on g · h. ◀

▶ Definition 14. Given two posets (X, ⪯X) and (Y, ⪯Y ), we define the binary relation − ⇒ −
on the set of all monotonic functions from X to Y by f ⇒ f ′ ⇐⇒ ∀c ∈ X, f(c) ⪯Y f ′(c).

▶ Proposition 15. Given two posets (X, ⪯X) and (Y, ⪯Y ), the set of monotonic functions
between them together with this binary relation forms a poset.

Proof. As one can easily check. ◀

▶ Definition 16. In this setting, given three posets A, B and C, and three monotonic
functions i : A → B, f : A → C and g : B → C, g is said to be the left (resp. right) Kan
extension of f along i if g is the ⇒-minimum (resp. ⇒-maximum) element in the set of
monotonic functions {h : B → C | f ⇒ h ◦ i} (resp. {h : B → C | h ◦ i ⇒ f}).

This concept is particularly useful because, whenever it applies, it is also a complete
characterization as stated in the following proposition in the left case.

▶ Proposition 17. The left (resp. right) Kan extension g is unique when it exists.

Proof. It is defined as the minimum of a set, and as any minimum, it may not exist, but
when it does, it is always unique. ◀

Another suggestive way to read the concept of Kan extensions with respect to this paper
is to say that a function g on a poset can be summarized into, or generated by, a part of
its behavior f on just a small part of the poset. Note however that i does not need to be
injective in this definition.
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3 Kan Extensions in Cellular Automata

3.1 A First Approach To Partial Configurations
The first, intuitive, approach is to take a configuration c, look for all places g where the whole
neighborhood g · N is defined and to take the local transition result of these places only. We
first give a direct formal definition, and then show that this is a left Kan extension. This
shows in particular that the global transition function is the left Kan extension of the “fully
shifted” local transition. The sense of “fully shifted” is described below and is only necessary
because we restrict ourselves to posets, as discussed in the final section of this paper.

3.1.1 A Direct Definition
▶ Definition 18. The interior of a subset S ⊆ G is int(S) = {g ∈ G | g · N ⊆ S}.

▶ Definition 19. The coarse transition function Φ : Conf → Conf is defined for all c ∈ Conf
as |Φ(c)| = int(|c|) and Φ(c)(g) = δ((c ◀ g) ↾ N).

▶ Proposition 20. For any c ∈ Conf and g ∈ G, the statements g ∈ int(|c|), g · N ⊆ |c|, and
N ⊆ |c ◀ g| are equivalent. (So Φ is well-defined in Definition 19.)

Proof. The first and second statements are equivalent by Definition 18 of int. The second
and third statements are equivalent by Definition 6 of ◀. ◀

Remember Proposition 5. If we do have injectivity of neighborhoods, we have int(g · N) =
{g}. But since we do not assume it, we only have the following.

▶ Proposition 21. Let S ⊆ G. It is always the case that S ⊆ int(S · N) but we do not
necessarily have equality, even when S = {g} for some g ∈ G.

Proof. Consider any s ∈ S. Clearly, s·N ⊆ S ·N , so by Definition 18, s ∈ int(S ·N). However,
we do not have equality in the example of the proof of Proposition 5 with S = {(0, 0)}.
Indeed, in this case, int(S · N) = {(0, 0), (1, 0)}. ◀

Another useful remark on which we come back below is the following.

▶ Proposition 22. For any g ∈ G, any M ⊊ N , and any c ∈ Qg·M , |Φ(c)| = ∅. Also, for
any c ∈ QG, |Φ(c)| = |∆(c)|.

Proof. By Definition 19 of Φ. ◀

3.1.2 Characterization as a Left Kan Extension
The coarse transition function Φ is defined on the set of all configurations Conf and we claim
that it is generated, in the Kan extension sense, by the local transition function δ shifted
everywhere. We define the latter, with Proposition 5 in mind.

▶ Definition 23. We define Loc to be the poset Loc =
⋃

g∈G({g} × Qg·N ) with trivial partial
order (g, c) ⪯ (g′, c′) ⇐⇒ (g, c) = (g′, c′). The “fully shifted local transition function” δ :
Loc → Conf is defined, for any (g, c) ∈ Loc as |δ(g, c)| = {g} and δ(g, c)(g) = δ(c ◀ g). The
second projection of Loc is the monotonic function π2 : Loc → Conf defined as π2(g, c) = c.

▶ Proposition 24. Loc is a poset and δ and π2 are monotonic functions.

AUTOMATA 2021
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Proof. Indeed, the identity relation is an order relation and any function respects the identity
relation. ◀

▶ Proposition 25. The coarse transition function Φ is monotonic.

Proof. Indeed, take c, c′ ∈ Conf such that c ⪯ c′. We want to prove that Φ(c) ⪯ Φ(c′) and
this is equivalent to:

∀g ∈ |Φ(c)|, g ∈ |Φ(c′)| ∧ Φ(c)(g) = Φ(c′)(g)
⇐⇒ ∀g ∈ int(|c|), g ∈ int(|c′|) ∧ δ(c ◀ g ↾ N) = δ(c′ ◀ g ↾ N)
⇐⇒ ∀g ∈ G s.t. g · N ⊆ |c|, g · N ⊆ |c′| ∧ δ(c ◀ g ↾ N) = δ(c′ ◀ g ↾ N),

by Definition 6 of ⪯, Definition 19 of Φ, and Definition 18 of int. The final statement is
implied by:

∀g ∈ G s.t. g · N ⊆ |c|, g · N ⊆ |c′| ∧ c ◀ g ↾ N = c′ ◀ g ↾ N

⇐⇒ ∀g ∈ G s.t. g · N ⊆ |c|, g · N ⊆ |c′| ∧ ∀n ∈ N, (c ◀ g)(n) = (c′ ◀ g)(n)
⇐⇒ ∀g ∈ G s.t. g · N ⊆ |c|, g · N ⊆ |c′| ∧ ∀n ∈ N, c(g · n) = c′(g · n),

the last equivalence being by Definition 6. To prove it, take g ∈ G such that g · N ⊆ |c|, and
n ∈ N . By Definition 10, since c ⪯ c′ and g ·n ∈ |c|, we have g ·n ∈ |c′|, and c(g ·n) = c′(g ·n)
as wanted. ◀

▶ Proposition 26. Φ is the left Kan extension of δ along π2 : Loc → Conf.

Proof. By Definition 16 of left Kan extensions, we need to prove firstly that Φ is such that
δ ⇒ Φ ◦ π2, and secondly that it is smaller than any other such monotonic function.

For the first part, δ ⇒ Φ ◦ π2 is equivalent to:

∀(g, c) ∈ Loc, δ(g, c) ⪯ Φ(c) (Defs. 14 and 23 of ⇒ and π2)
⇐⇒ ∀(g, c) ∈ Loc, ∀h ∈ |δ(g, c)|, h ∈ |Φ(c)| ∧ δ(g, c)(h) = Φ(c)(h) (D. 10 of ⪯)
⇐⇒ ∀(g, c) ∈ Loc, g ∈ |Φ(c)| ∧ δ(c ◀ g) = Φ(c)(g) (Def. 23 of δ)
⇐⇒ ∀(g, c) ∈ Loc, g · N ∈ |c| ∧ δ(c ◀ g) = δ((c ◀ g) ↾ N) (Defs 18, 19 of Φ).

This last statement is true by Definition 23 of Loc, i.e. since c ∈ Qg·N , c ◀ g = (c ◀ g) ↾ N .
For the second part, let F : Conf → Conf be a monotonic function such that δ ⇒ F ◦ π2.

We want to show that Φ ⇒ F , which is equivalent to:

∀c ∈ Conf, Φ(c) ⪯ F (c) (Def. 14 of ⇒)
⇐⇒ ∀c ∈ Conf, ∀g ∈ |Φ(c)|, g ∈ |F (c)| ∧ Φ(c)(g) = F (c)(g) (Def. 10 of ⪯)
⇐⇒ ∀c ∈ Conf, ∀g ∈ int(|c|), g ∈ |F (c)| ∧ F (c)(g) = δ((c ◀ g) ↾ N) (Def. 19)

So take c ∈ Conf and g ∈ int(|c|), and consider dg = c ↾ g · N . Since dg ⪯ c and F is
monotonic, we have F (dg) ⪯ F (c). Moreover δ ⇒ F ◦ π2 and (g, dg) ∈ {g} × Qg·N ⊆ Loc, so
δ(g, dg) ⪯ F (dg) by Definitions 14 and 23 of ⇒ and π2. By transitivity δ(g, dg) ⪯ F (c). By
Definition 23 of δ and Definition 10 of ⪯, we obtain g ∈ |F (c)|, and F (c)(g) = δ(g, dg)(g) =
δ((c ◀ g) ↾ N), as wanted. ◀

As a sidenote, remark that in order to have the equality δ = Φ ◦ π2, one needs to have
the injectivity of neighborhood function. Indeed, without injectivity, we have two different
g, g′ ∈ G having the same neighborhood M , i.e. M = g · N = g′ · N . This means that,
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given any local configuration c ∈ QM on this neighborhood, each pair (g, c), (g′, c) ∈ Loc
have different results δ(g, c) ∈ Q{g} and δ(g′, c) ∈ Q{g′} with different support {g} and {g′}.
However, their common projection π2(g, c) = π2(g′, c) = c have a unique result Φ(c) with a
support such that {g, g′} ⊆ |Φ(c)|. So we have a strict comparison δ ⇒ Φ ◦ π2. When the
neighborhood function is injective, π2 is also injective and the previous situation can not
occur so we have equality δ = Φ ◦ π2.

3.2 A Second Approach To Partial Configurations
For some applications, the previous definitions are too naive. For example, it is common
to consider two cellular automata to be essentially the same if they generate the same
global transition functions. However, here, two such cellular automata give different coarse
transition function if they have a different neighborhood.

To refine the previous definitions, a second approach is to take a configuration c, and
look at all places for which the result is already determined by the partial data defined in
c. So we consider all g ∈ G for which all completions of the data present on the defined
neighborhood g · N ∩ |c| into a configuration on the complete neighborhood g · N always lead
to the same result by δ.

3.2.1 A Direct Definition
▶ Definition 27. For any c ∈ Conf and g ∈ G, let cg = c ↾ (g · N ∩ |c|).

▶ Definition 28. Given a configuration c ∈ Conf, its determined subset is det(c) = {g ∈
G | ∃q ∈ Q, ∀c′ ∈ Qg·N , c′ ↾ |cg| = cg =⇒ δ(c′ ◀ g) = q}. For any g ∈ det(c), we denote
qc,g ∈ Q the unique state q having the mentioned property.

Note that this definition depends on the cellular automaton local transition function δ

and on the data of the configuration c, contrary to Definition 18 of interior that only depends
on its neighborhood N and on the support of the configuration.

▶ Definition 29. Given a cellular automaton, its fine transition function ϕ : Conf → Conf
is defined as |ϕ(c)| = det(c) and ϕ(c)(g) = qc,g, i.e. ϕ(c)(g) = δ(c′ ◀ g) for any c′ ∈ Qg·N

such that c′ ↾ |cg| = cg.

▶ Proposition 30. The fine transition function ϕ is well defined.

Proof. This is the case precisely because we restrict the support of ϕ(c) to the determined
subset of the c. ◀

▶ Proposition 31. Consider the constant cellular automaton δ(c) = q ∀c ∈ QN for a specific
q ∈ Q and regardless of the neighborhood N chosen to represent it. We have |ϕ(c)| = G for
any c ∈ Conf.

Proof. Indeed, even with no data at all, i.e. for c such that |c| = ∅, the result at all position
is determined and is q. ◀

Note that, contrary to Proposition 22 of the coarse transition function, the fine transition
function definition is explicitly about considering non-empty results for some configurations
of support M ⊊ N . When there is no such “sub-local” configuration with determined result,
the two transition functions are actually equal. But let us note insist on this point.
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3.2.2 Characterization as a Right Kan Extension
As for the coarse transition function, the fine transition function ϕ is defined on the set of
all configurations Conf and we claim that it is generated, in the Kan extension sense. We
consider two ways to generate it and start by the simplest one. The second one is considered
in the following section using sub-local configurations in order to be closer to the direct
definition and to be a “from local to global” characterization.

▶ Proposition 32. For any g ∈ G, the function −g : Conf → Conf of Definition 27 is
monotonic.

Proof. As one can easily check. ◀

▶ Proposition 33. The fine transition function ϕ is monotonic.

Proof. Indeed, take c0, c1 ∈ Conf such that c0 ⪯ c1. We want to prove that ϕ(c0) ⪯ ϕ(c1)
and this is equivalent to:

∀g ∈ |ϕ(c0)|, g ∈ |ϕ(c1)| ∧ ϕ(c0)(g) = ϕ(c1)(g) (Def 10 of ⪯)
⇐⇒ ∀g ∈ det(c0), g ∈ det(c1) ∧ qc0,g = qc1,g (Def 29 of ϕ)

Take g ∈ det(c0). We want to prove that g ∈ det(c1), which means by Definition 28 of
det(c1):

∃q ∈ Q, ∀c2 ∈ Qg·N , c2 ↾ |(c1)g| = (c1)g =⇒ δ(c2 ◀ g) = q

We claim that the property is verified with q = qc0,g. Indeed, take any c2 ∈ Qg·N such that
c2 ↾ |(c1)g| = (c1)g. We also have that c2 ↾ |(c0)g| = (c0)g since the hypothesis c0 ⪯ c1 implies
(c0)g ⪯ (c1)g by Proposition 32. By Definition 28 of det(c0), we obtain that δ(c2 ◀ g) = qc0,g,
so q = qc0,g has the wanted property, which implies that g ∈ det(c1) as wanted. But the
above property of q set it to be precisely what we denote by qc1,g (Def 28 of qc1,g), so
qc0,g = qc1,g. ◀

▶ Proposition 34. The fine transition function ϕ is the right Kan extension of the global
transition function ∆ along the inclusion i : QG → Conf.

Proof. By Definition 16 of right Kan extensions, we need to prove firstly that ϕ is such that
ϕ ◦ i ⇒ ∆, and secondly that it is greater than any other such monotonic functions.

For the first part, we actually have ϕ ◦ i = ∆ since for any c ∈ QG, |ϕ(c)| = det(c) = G =
|∆(c)| and for any g ∈ G, we have ϕ(c)(g) = qc,g = δ(cg ◀ g) = δ((c ↾ g · N) ◀ g) = δ((c ◀
g) ↾ N) = ∆(c)(g) by Defs. 29, 28, 27, 2 of ϕ, det, cg and ∆ and Prop. 8.

For the second part, let f : Conf → Conf be a monotonic function such that f ◦ i ⇒ ∆.
We want to show that f ⇒ ϕ, which is equivalent to:

∀c ∈ Conf, f(c) ⪯ ϕ(c) (Def. 14 of ⇒)
⇐⇒ ∀c ∈ Conf, ∀g ∈ |f(c)|, g ∈ |ϕ(c)| ∧ f(c)(g) = ϕ(c)(g) (Def. 10 of ⪯)
⇐⇒ ∀c ∈ Conf, ∀g ∈ |f(c)|, g ∈ det(c) ∧ f(c)(g) = qc,g (Def. 36 of ϕ)
⇐⇒ ∀c ∈ Conf, ∀g ∈ |f(c)|, ∀c′ ∈ Qg·N , c ⪯ c′ =⇒ f(c)(g) = δ(c′ ◀ g) (D. 28)

So take c ∈ Conf and g ∈ |f(c)| and c′ ∈ Qg·N such that c ⪯ c′. Consider any c′′ ∈ QG

such that c′ ⪯ c′′ (or equivalently c′′ ↾ g · N = c′). Since f is monotonic, we have
f(c) ⪯ f(c′′), which means that f(c)(g) = f(c′′)(g) by Def. 10. But since f ◦ i ⇒ ∆, we have
f(c)(g) = ∆(c′′)(g) = δ((c′′ ◀ g) ↾ N) by Def. 14 of ⇒ and Def. 2 of ∆. But by Prop. 8,
(c′′ ◀ g) ↾ N = (c′′ ↾ g · N) ◀ g = c′ ◀ g. ◀
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▶ Proposition 35. Let us consider another cellular automaton having neighborhood N ′ ⊆ G

and local transition function δ′ : QN ′ → Q. Consider its corresponding global transition
function ∆′ : QN → QN and fine transition function ϕ′ : Conf → Conf. Then if ∆′ = ∆,
then ϕ′ = ϕ.

Proof. By Propositions 34 and 17, ϕ is determined by ∆, and ϕ′ by ∆′. So ∆′ = ∆ gives
ϕ = ϕ′. ◀

3.3 Introducing Sub-Local Configurations
The direct definition of the fine transition function is explicitly about assigning a result for a
configuration c at a given g ∈ G even when the whole neighborhood g · N is not complete.
By isolating these “shifted sub-local configurations” in the poset of configurations, we can
(right-)extend the local transition to them and show that, in the same way as the coarse
transition function is the left Kan extension of the local transition function, the fine transition
function is the left Kan extension of the sub-local transition function.

3.3.1 Direct Definition
▶ Definition 36. We define Sub =

⋃
g∈G,M⊆N ({g} × Qg·M ) with partial order defined as

(g, c) ⪯ (g′, c′) if and only if g = g′ and c ⪯ c′. The “fully shifted sub-local transition
function” δ : Sub → Conf is defined, for any g ∈ G, any M ⊆ N and any c ∈ Qg·M , as
|δ(g, c)| = {g} ∩ det(c) and, if g ∈ det(c), δ(g, c)(g) = qc′,g, i.e. δ(g, c)(g) = δ(c′ ◀ g) for any
c′ ∈ Qg·N such that c = c′ ↾ |c|. The second projection of Sub is the function π2 : Sub → Conf
defined as π2(g, c) = c.

In this definition, a given sub-local configuration can result either in an empty configuration
when the transition is not determined, or in a configuration with only singleton support
when the transition is determined.

Note that for a given cellular automaton, it is possible to restrict the poset Sub to an
antichain. Indeed, any time a result is determined by a sub-local configuration (g, c), all
bigger sub-local configuration (g, c′) with c ⪯ c′ does not contribute anything new. We do
not elaborate on this because this antichain would be different for each cellular automaton,
blurring the global picture presented below.

3.3.2 Characterization as a Right Kan Extension
▶ Proposition 37. The fully shifted sub-local transition function δ is monotonic

Proof. As usual, take (g, c), (g′, c′) ∈ Sub such that (g, c) ⪯ (g′, c′). First note that g = g′

by Definition 36. We want to prove that δ(g, c) ⪯ δ(g, c′) and this is equivalent to:

∀h ∈ |δ(c)|, h ∈ |δ(c′)| ∧ δ(c)(h) = δ(c′)(h)
⇐⇒ ∀h ∈ {g} ∩ det(c), h ∈ {g} ∩ det(c′) ∧ qc,g = qc′,g

⇐⇒ g ∈ det(c) =⇒ g ∈ det(c′) ∧ qc,g = qc′,g′ ,

by Definition 6 of ⪯ and Definition 36 of δ. The end of this proof is similar to the one of
Proposition 33. ◀

▶ Proposition 38. The fully shifted sub-local transition function δ is the right Kan extension
of the fully shifted local transition function δ along the inclusion i : Loc → Sub.

AUTOMATA 2021



7:10 Cellular Automata and Kan Extensions

Proof. By Definition 16 of right Kan extensions, we need to prove firstly that δ is such that
δ ◦ i ⇒ δ, and secondly that it is greater than any other such monotonic functions.

For the first part, δ ◦ i ⇒ δ is equivalent to:

∀(g, c) ∈ Loc, δ(g, c) ⪯ δ(g, c) (Def. 14 of ⇒)
⇐⇒ ∀(g, c) ∈ Loc, ∀h ∈ |δ(g, c)|, h ∈ |δ(g, c)| ∧ δ(g, c)(h) = δ(g, c)(h) (D. 10 ⪯)
⇐⇒ ∀(g, c) ∈ Loc, g ∈ det(c) =⇒ g ∈ |δ(g, c)| ∧ qc,g = δ(g, c)(g) (Def. 36 of δ)
⇐⇒ ∀(g, c) ∈ Loc, g ∈ det(c) =⇒ g ∈ {g} ∧ qc,g = δ(c ◀ g) (Def 23 of δ).

This last statement is true by Def. 28 of qc,g.
For the second part, let f : Sub → Conf be a monotonic function such that f ◦ i ⇒ δ.

We want to show that f ⇒ δ, which is equivalent to:

∀(g, c) ∈ Sub, f(g, c) ⪯ δ(g, c) (Def. 14 of ⇒)
⇐⇒ ∀(g, c) ∈ Sub, ∀h ∈ |f(g, c)|, h ∈ |δ(g, c)| ∧ f(g, c)(h) = δ(g, c)(h) (Def. 10)
⇐⇒ ∀(g, c) ∈ Sub, ∀h ∈ |f(g, c)|, h ∈ {g} ∩ det(c) ∧ f(g, c)(h) = qc,g (Def. 36)

So take (g, c) ∈ Sub and h ∈ |f(g, c)|. Consider any c′ ∈ Loc such that c ⪯ c′. Since f

is monotonic, we have f(g, c) ⪯ f(g, c′), which means that h ∈ |f(g, c′)| and f(g, c)(h) =
f(g, c′)(h) by Def. 10. But since f ◦ i ⇒ δ, we have h ∈ |δ(g, c′)| = {g} and f(g, c′)(h) =
δ(g, c′)(h) = δ(c′ ◀ g) by Def. 14 of ⇒ and Def. 23 of δ. Since this is true for any c′, this
establishes exactly the defining property of det(c) by Def. 28. ◀

3.3.3 The Second Approach as a Left Kan Extension
▶ Proposition 39. The projection function π2 : Sub → Conf is monotonic.

Proof. As can be readily checked in Definition 36. ◀

▶ Proposition 40. ϕ is the left Kan extension of δ along π2 : Sub → Conf.

Proof. By Definition 16 of left Kan extensions, we need to prove firstly that ϕ is such that
δ ⇒ ϕ ◦ π2, and secondly that it is smaller than any other such monotonic functions.

For the first part, δ ⇒ ϕ ◦ π2 is equivalent to:

∀(g, c) ∈ Sub, δ(g, c) ⪯ ϕ(c) (Defs. 14 and 36 of ⇒ and π2)
⇐⇒ ∀(g, c) ∈ Sub, ∀h ∈ |δ(g, c)|, h ∈ |ϕ(c)| ∧ δ(g, c)(h) = ϕ(c)(h) (Def 10 of ⪯)
⇐⇒ ∀(g, c) ∈ Sub, g ∈ det(c) =⇒ g ∈ |ϕ(c)| ∧ qc,g = ϕ(c)(g) (Def. 36 of δ)
⇐⇒ ∀(g, c) ∈ Sub, g ∈ det(c) =⇒ g ∈ det(c) ∧ qc,g = qc,g (Def 29 of ϕ),

a most trivial statement.
For the second part, let f : Conf → Conf be a monotonic function such that δ ⇒ f ◦ π2.

We want to show that ϕ ⇒ f , which is equivalent to:

∀c ∈ Conf, ϕ(c) ⪯ f(c) (Def. 14 of ⇒)
⇐⇒ ∀c ∈ Conf, ∀g ∈ |ϕ(c)|, g ∈ |f(c)| ∧ ϕ(c)(g) = f(c)(g) (Def. 10 of ⪯)
⇐⇒ ∀c ∈ Conf, ∀g ∈ det(c), g ∈ |f(c)| ∧ qc,g = f(c)(g) (Def. 29 of ϕ)

So take c ∈ Conf and g ∈ det(c). Since cg ⪯ c (Def 27) and f is monotonic, we have
f(cg) ⪯ f(c). Moreover δ ⇒ f ◦ π2 and (g, cg) ∈ Sub so δ(g, cg) ⪯ f(cg) by Definitions 14
and 23 of ⇒ and π2. By transitivity δ(g, cg) ⪯ f(c). By Definition 36 of δ and Definition 10
of ⪯, we therefore have g ∈ |f(c)|, and f(c)(g) = δ(g, dg)(g) = qc,g as wanted. ◀
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4 Final Discussion

There are additional simple structural facts to note about the monotonic functions considered.
The first one is that the shift action on partial configurations, as given in Definition 6, is
the right Kan extension of the shift action on global configurations, as given in Definition 2.
Another one is that Φ ⇒ ϕ, hence the names of these transition functions, coarse and fine.
In fact, any monotonic function f : Conf → Conf such that δ ⇒ f ◦ π2 is necessarily such
that Φ ⇒ f ⇒ ϕ. This shows, in some sense, the efficiency of the simple constraints of
monotonicity and δ ⇒ f ◦ π2.

In the formal development presented here, we explicitly “copy” a single local behavior δ

on all g ∈ G to obtain δ and work with it. It is readily possible to put a different behavior
on each g ∈ G, with no real modification to the proofs. The statements are therefore valid
for non-uniform cellular automata and automata networks. We do not even insist of the
number of states to be finite. At this point, the reader might have the feeling that these
results are not really about cellular automata, and there are at least three answers to that.
The first answer is that one could easily impose the shift and simultaneously prevent the
use of a highly redundant “fully shifted local transition function”, but this requires using a
category of configurations instead of a poset of configurations. The former is very similar to
the poset, except that the yes/no question “is this configuration a subconfiguration of this
other one ?” is replaced by the open-ended question “where does this configuration appear
in this other one ?” [5]. The goal of this paper is indeed to introduce the concepts needed
for this other point of view, among many others. The second answer is that the proofs are
more about the decomposition/composition process involved in the local/global definition
of cellular automata. Because of the simplicity of cellular spaces, groups, the description
is very simple to make “directly”. In other situations, a Kan extension presentation is the
most effective way to describe the spatial extensions/restriction, for example when the space
is an evolving graph [2, 5]. The third answer is that, with small modifications, this result
is closely related to the Curtis-Hedlund theorem. Indeed, if one restores the finiteness of
the set of states constraints, one can see that the poset of finite support configurations is
a “generating” part of the poset of open subsets of the product topology. In this case, the
fine transition function ϕ can be viewed as encoding an important part of the topological
behavior of the global transition function ∆ [1, 3].

To finish, let us mention an important aspect of the Kan extensions considered here and
in other papers of the authors [2, 5]. They have the property to be pointwise. Intuitively,
this means that they can be computed “algorithmically” using simple building blocks. This
formulation in terms of building blocks is completely equivalent and is the one used in
the other papers, firstly because it is via these building blocks that the authors discovered
these links between spatially-extended dynamical systems and category theory, and secondly
because this formulation is closer to the software implementations of the considered models.
In fact, it is possible to have an implementation completely generic over the particular kind
of space considered, e.g. evolving graphs of any sort, evolving higher-order structures such
as abstract cell [5], evolving strings such as Lindenmayer systems [2], or Cayley graphs as
considered here.
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Abstract
The expressive power of the class Conj of conjunctive languages, i.e. languages generated by
the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear
conjunctive grammars equals the class of languages recognized by real-time one-dimensional one-way
cellular automata. We prove two weakened versions of the open question Conj ⊆? RealTime1CA,
where RealTime1CA is the class of languages recognized by real-time one-dimensional two-way cellular
automata:
1. it is true for unary languages;
2. Conj ⊆ RealTime2OCA, i.e. any conjunctive language is recognized by a real-time two-dimensional

one-way cellular automaton.
Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly
characterize the complexity classes RealTime1CA and RealTime2OCA.
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1 Introduction

For decades, logic has maintained close relationships with, on the one hand, computational
models [31] and computational complexity [3], in particular through descriptive complexity [7,
16, 21, 11, 14, 2], and on the other hand with formal language theory and grammars [8, 21].

Conjunctive grammars versus logic. Okhotin [26] wrote that “context-free grammars
may be thought of as a logic for inductive description of syntax in which the propositional
connectives available... are restricted to disjunction only”. Thus, twenty years ago, the same
author introduced conjunctive grammars [22] as an extension of context-free grammars by
adding an explicit conjunction operation within the grammar rules.
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As shown by Okhotin [22], conjunctive grammars – and more generally, Boolean gram-
mars [24, 26] – inherit the parsing algorithms of the ordinary context-free grammars, without
increasing their computational complexity. However, the expressive power of these grammars
is largely unknown. The fact that the class Conj of languages generated by conjunctive gram-
mars has many closure properties – it is trivially closed under reverse, concatenation, Kleene
closure, disjunction and conjunction – suggests that this class has equivalent definitions in
computational complexity and/or logic.

Conjunctive grammars versus real-time cellular automata. Note that the LinConj subclass
of languages generated by linear conjunctive grammars was found to be equal to the Trellis
class of languages recognized by trellis automata [25], or equivalently, one-way real-time
cellular automata. Faced with this result, it is tempting to ask the following question: is
the larger class Conj equal to the class RealTime1CA of languages recognized by two-way
real-time cellular automata? Either answer to this question has strong consequences:

If Conj = RealTime1CA then each of the two classes will benefit from the closure properties
of the other class; in particular, RealTime1CA would be closed under reverse, which was
shown by [15] to imply RealTime1CA = LinearTime1CA, i.e. real-time is nothing but
linear time for cellular automata, a surprising positive answer to a longstanding open
question [6, 28, 30].
If Conj ̸= RealTime1CA then Conj ⊊ DSPACE(n) or RealTime1CA ⊊ DSPACE(n): any of
these strict inclusions would be a striking result.

Real-time is the minimal time of cellular automata (CA). Recall that RealTime1CA (resp.
Trellis) is the class of languages recognized in real-time by one-dimensional CA with two-way
(resp. one-way) communication and input word given in parallel. We know the strict inclusion
Trellis ⊊ RealTime1CA. The robustness of these classes is attested by their character-
ization by two sub-logics of ESO – the existential second-order logic, which characterizes
NP – with Horn formulas as their first-order parts1, and called respectively pred-ESO-HORN
and incl-ESO-HORN, see [12, 13]. For short, we write RealTime1CA = pred-ESO-HORN and
Trellis = incl-ESO-HORN.

Results of this paper. This paper focuses on the relationships between the class of con-
junctive languages and the real-time classes of cellular automata. Although we do not know
the answer to the question Conj =? RealTime1CA or even to the question of the inclusion
Conj ⊆? RealTime1CA, we prove two weakened versions of this inclusion:
1. Conj1 ⊆ RealTime1CA1: The inclusion holds when restricted to unary languages2.
2. Conj ⊆ RealTime2OCA: The inclusion holds for real-time of two-dimensional one-way

cellular automata (2-OCA). (We have RealTime1CA ⊆ RealTime2OCA.)
To grasp the scope of inclusion (1), it is important to note that unlike the subclass CFL1
of the unary languages of the class of context-free languages, which is reduced to regular
languages, CFL1 = Reg1, the class Conj1 was shown by Jez [17] to be much larger than Reg1.
Understanding its precise expressiveness seems as difficult a problem to us as for Conj.

Our inclusion (2) improves the inclusion CFL ⊆ RealTime2SOCA, where RealTime2SOCA
denotes the class of languages recognized by real-time sequential two-dimensional one-way
cellular automata, proved by Terrier [29], who uses a result by King [18] and improves
results by Kosaraju [20] and Chang et al. [4]. Terrier’s result derives transitively from (2):
CFL ⊆ Conj ⊆ RealTime2OCA ⊆ RealTime2SOCA.

1 The class ESO-HORN of languages defined by existential second-order formulas with Horn formulas as
their first-order parts is exactly PTIME, see [10, 11].

2 The subclass of the unary languages of a class of languages C is denoted C1.
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Inclusion (2) seems difficult to improve. Since any problem in RealTime1CA is decidable in
time O(n2) (by a RAM algorithm), the hypothetical inclusion Conj ⊆ RealTime1CA implies
that any conjunctive language is decidable in time O(n2): this would be a breakthrough!

Logic as a bridge from problems and grammars to real-time CAs. Logic has been the basis
of logic programming and database queries for decades, especially Horn logic through the
Prolog and Datalog programming languages [1, 19, 11]. Likewise, the above-mentioned logical
characterizations of real-time complexity classes of CAs, RealTime1CA = pred-ESO-HORN and
Trellis = incl-ESO-HORN, have been used to easily show that several problems belong to
the RealTime1CA or Trellis class by inductively expressing/programming the problems in
the corresponding Horn logic, see [12, 13].

In this paper, the same logic programming method is adopted. We prove inclusion
(1) Conj1 ⊆ RealTime1CA1 by expressing a unary language generated by a conjunctive
grammar in the pred-ESO-HORN logic. Inclusion (1) follows, by the equality pred-ESO-HORN =
RealTime1CA. Similarly, to prove inclusion (2) Conj ⊆ RealTime2OCA, we first design a
logic denoted incl-pred-ESO-HORN so that incl-pred-ESO-HORN = RealTime2OCA. Then, we
express any conjunctive language in this logic, proving that it belongs to RealTime2OCA, as
claimed. Thus, the heart of each proof consists in presenting a formula of a certain Horn
logic, which inductively expresses how a word is generated by a conjunctive grammar: the
Horn clauses of the formula naturally imitate the rules of the grammar.

Our proof method and the paper structure. After Section 2 gives some definitions,
Sections 3 and 4 present inclusions (1) and (2) and their proofs with a common plan:
Subsection 3.1 (resp. 4.1) expresses the inductive generating process of a conjunctive
grammar, assumed in binary (Chomsky) normal form in the logic pred-ESO-HORN (resp.
incl-pred-ESO-HORN). Subsection 3.2 (resp. 4.2) shows that any formula of this logic can
be normalized into a formula which mimics the computation of a two-dimensional (resp.
three-dimensional) grid-circuit called Grid (resp. Cube); Subsection 3.3 (resp. 4.3) trans-
lates the grid-circuit into a real-time one-dimensional CA (resp. two-dimensional OCA).
Note that we prove the equivalence of our logics with grid-circuits and CA real-time3:
pred-ESO-HORN = Grid = RealTime1CA and incl-pred-ESO-HORN = Cube = RealTime2OCA.
Section 5 deals briefly with the meaning of our results and open problems around a diagram
of the known relations between the Conj class and the CA complexity classes studied here,
for the general case and for the unary case.

2 Preliminaries

2.1 Conjunctive grammars and their binary normal form
Conjunctive grammars extend context-free grammars with a conjunction operation.

▶ Definition 1 (Conjunctive grammar, conjunctive language). [22, 23]
A conjunctive grammar is a tuple G = (Σ, N, P, S) where Σ is the finite set of terminal
symbols, N is the finite set of nonterminal symbols, S ∈ N is the initial symbol, and P is
the finite set of rules, each of the form A → α1&...&αm, for m ≥ 1 and αi ∈ (Σ ∪N)+.

3 We have chosen to give here a simplified proof of the logical characterization pred-ESO-HORN = Grid =
RealTime1CA already proved in [12] so that this paper is self-content, but above all because our proof of
the similar result incl-pred-ESO-HORN = Cube = RealTime2OCA is an extension of it.
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The set of words L(A) ⊆ Σ+ generated by any A ∈ N is defined by induction: if the
rules for A are A → α1

1&...&α1
m1

| · · · | αk
1&...&αk

mk
, then L(A) :=

⋃k
i=1
⋂mi

j=1 L(αi
j). (As

usual, take the least solution of the language equations defining the sets L(A), for A ∈ N .)
The language generated by the grammar G is L(S). It is called a conjunctive language.

Okhotin [26] gave many examples of conjunctive languages which are not context-free.
Moreover, Jez [17] proved that there are such languages on unary alphabet, in particular,
the set {a4k | k ∈ N} is a conjunctive language which is not context-free (= not regular).

We will mainly use the binary normal form of conjunctive grammars, which extends
the Chomsky normal form of context-free grammars. Each conjunctive grammar can be
rewritten in an equivalent binary normal form [22, 26].

▶ Definition 2 (Binary normal form [22]). A conjunctive grammar G = (Σ, N, P, S) is in
binary normal form if each rule in P has one of the two following forms:

a long rule: A → B1C1&...&BmCm (m ≥ 1, Bi, Cj ∈ N);
a short rule: A → a (a ∈ Σ).

2.2 Elements of logic
The underlying structure we will adopt to encode an input word w = w1 . . . wn over its index
interval [1, n] = {1, . . . , n} uses the successor and predecessor functions and the monadic
predicates min and max as its only arithmetic functions/predicates:

▶ Definition 3 (structure encoding a word). Each nonempty word w = w1 . . . wn ∈ Σn on a
fixed finite alphabet Σ is represented by the first-order structure
⟨w⟩ := ([1, n]; (Qs)s∈Σ, min, max, suc, pred)
of domain [1, n], monadic predicates Qs, s ∈ Σ, min and max such that Qs(i) ⇐⇒ wi = s,
min(i) ⇐⇒ i = 1, and max(i) ⇐⇒ i = n, and unary functions suc and pred such that
suc(i) = i+ 1 for i < n and suc(n) = n, pred(i) = i− 1 for i > 1 and pred(1) = 1.
Let SΣ denote the signature {(Qs)s∈Σ, min, max, suc, pred} of the structure ⟨w⟩.

▶ Notation 1. Let x+ k and x− k abbreviate the terms suck(x) and predk(x), for a fixed
integer k ≥ 0. We will also use the intuitive abbreviations x = 1, x = n and x > k, for a fixed
integer k ≥ 1, in place of the formulas min(x), max(x) and ¬ min(x− (k − 1)), respectively.

2.3 Cellular automata and real-time
▶ Definition 4 (1-CA and 2-0CA). A d-dimensional cellular automaton (CA) is a triple
(S,N , f) where S is the finite set of states, N ⊂ Zd is the neighborhood, and f : S|N | → S is
the transition function. We are interested in the following two special cases:

1-CA: It is a one-dimensional two-way cellular automaton (S, {−1, 0, 1}, f), for which the
state ⟨c, t⟩ of any cell c at a time t > 1 is updated in this way:
⟨c, t⟩ = f(⟨c− 1, t− 1⟩, ⟨c, t− 1⟩, ⟨c+ 1, t− 1⟩).
2-OCA: It is a two-dimensional one-way cellular automaton (S, {(0, 0), (−1, 0), (0,−1)}, f)
for which the state ⟨c1, c2, t⟩ of any cell (c1, c2) at a time t > 1 is updated in this way:
⟨c1, c2, t⟩ = f(⟨c1, c2, t− 1⟩, ⟨c1 − 1, c2, t− 1⟩, ⟨c1, c2 − 1, t− 1⟩).

▶ Definition 5 (permanent and quiescent states). In a CA, a state ♯ is permanent if a cell
in state ♯ remains in this state forever. A state λ of a CA is quiescent if a cell in state λ
remains in this state as long as the states of its neighborhood cells are quiescent or permanent.
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▶ Definition 6 (CA as a word acceptor). A cellular automaton (S,N , f) with an input alphabet
Σ ⊂ S, a permanent state ♯, a quiescent state λ, and a set of accepting states Sacc ⊂ S
acts as a word acceptor if it operates on an input word w ∈ Σ+ in respecting the following
conditions (see Figure 1).
Input. For a 1-CA, the i-th symbol of the input w = w1 . . . wn is given to the cell i at the

initial time 1: ⟨i, 1⟩ = wi. All other cells are in the permanent state ♯. For a 2-OCA,
the i-th symbol of the input is given to the cell (i, 1) at time 1: ⟨i, 1, 1⟩ = wi. At time
1, the cells (c1, c2) ∈ [1, n] × [2, n] are in the quiescent state λ, all other cells are in the
permanent state ♯.

Output. One specific cell called the output cell gives the output, “accept” or “reject”, of the
computation. For a 1-CA, the output cell is the cell 1. For a 2-OCA, the output cell is
(n, n).

Acceptance. An input word is accepted by a 1-CA (resp. 2-CA) at time t if the output cell
enters an accepting state at time t.

w1 w2 w3 w4 w5

Output

1-CA

w1 w2 w3 w4 w5

Output

2-OCA

Figure 1 Input and output of a CA acting as a word acceptor.

▶ Definition 7 (RealTime1CA, RealTime2OCA). A word is accepted in real-time by a 1-CA
(resp. 2-OCA) if the word is accepted in minimal time for the output cell 1 (resp. (n, n)) to
receive each of its letters. A language is recognized in real-time by a CA if it is the set of
words that it accepts in real-time. The class RealTime1CA (resp. RealTime2OCA) is the class
of languages recognized in real-time by a 1-CA (resp. 2-OCA).

w1 w2 w3 w4 w5

RealTime1CA

t = n

t = 1

w1w2w3w4w5

t = 1

t = n

t = 2n − 1

RealTime2OCA

Figure 2 Space-time diagrams of RealTime1CA and RealTime2OCA.

3 Real-time recognition of a unary conjunctive language

In this section, we prove our first main result:

▶ Theorem 8. Conj1 ⊆ RealTime1CA1.
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3.1 Expressing inductively a unary conjunctive language in logic
The generating process of a unary conjunctive language is naturally expressed in the logic
pred-ESO-HORN, an inductive Horn logic whose only function is the predecessor function.

▶ Definition 9 (pred-ESO-HORN). A formula of pred-ESO-HORN is a formula Φ :=
∃R∀x∀yψ(x, y) where R is a finite set of binary predicates and ψ is a conjunction of
Horn clauses, of signature SΣ ∪ R, and of one the three following forms:

an input clause: min(x) ∧ (¬) min(y) ∧Qs(y) → R(x, y) with s ∈ Σ and R ∈ R;
a computation clause: δ1 ∧ . . . ∧ δr → R(x, y) with R ∈ R and where each hypothesis
δh is an atom S(x, y) or a conjunction S(x− i, y − j) ∧ x > i ∧ y > j, with S ∈ R and
i, j ≥ 0 two integers such that i+ j > 0;
a contradiction clause: max(x) ∧ max(y) ∧R(x, y) → ⊥ with R ∈ R.

By abuse of notation, let us also call pred-ESO-HORN the class of languages defined by a
formula of pred-ESO-HORN.

▶ Notation 2. We will freely use equalities (resp. inequalities) x = i and y = j (resp. x > i,
y > j), for constants i, j, in our formulas since they can be easily defined in pred-ESO-HORN.
For example, the binary predicate Rx>2 of intuitive meaning Rx>2(x, y) ⇐⇒ x > 2 is
defined inductively by the following clauses where Rx=a(x, y) means x = a:

min(x) → Rx=1(x, y); x > 1 ∧Rx=1(x− 1, y) → Rx=2(x, y);
x > 1 ∧Rx=2(x− 1, y) → Rx>2(x, y); x > 1 ∧Rx>2(x− 1, y) → Rx>2(x, y).

Also, some other arithmetic predicates easily defined in pred-ESO-HORN will be used. For
example, y = 2x can be replaced by the atom Ry=2x(x, y), where Ry=2x is defined by the
following two clauses using the predicates Rx=1, Ry=2, Rx>1 and Ry>2:

x = 1 ∧ y = 2 → Ry=2x(x, y) ; x > 1 ∧ y > 2 ∧Ry=2x(x− 1, y − 2) → Ry=2x(x, y).

▶ Notation 3. More generally, let Rρ(x,y) denote a binary predicate whose meaning is
Rρ(x,y)(x, y) ⇐⇒ ρ(x, y), for a property or a formula ρ(x, y). We will also use a set of
binary arithmetic predicates denoted by Rarith, which consists of Rx=y, Ry=2x and Rρ(x,y),
for ρ(x, y) := x ≥

⌈
y
2
⌉
, and the predicates used to define them in pred-ESO-HORN.

Let us prove that for every unary conjunctive language, its complement can be defined in
pred-ESO-HORN1.

▶ Lemma 10. For each language L ⊆ a+, if L ∈ Conj1 then a+ \ L ∈ pred-ESO-HORN.

Proof. Let G = ({a}, N, P, S) be a conjunctive grammar in binary normal form which
generates L. For each A ∈ N and each unary word ay, we have, according to the length y,
the following equivalences which will be the basis of our induction:

if y = 1, then ay = a ∈ L(A) ⇐⇒ the short rule A → a belongs to P ;
if y > 1, then ay ∈ L(A) ⇐⇒ there is a long rule A → B1C1& . . .&BmCm in P such
that, for each i ∈ {1, . . . ,m}, there exists x ≥

⌈
y
2
⌉

such that either ax ∈ L(Bi) and
ay−x ∈ L(Ci), or ay−x ∈ L(Bi) and ax ∈ L(Ci).

We want to construct a first-order formula ∀x∀yψG(x, y) of signature SΣ ∪R, for Σ := {a}
and the set of binary predicates R := {MajA, MinA | A ∈ N} ∪ {SumBC | B,C ∈ N} ∪ Rarith

so that the formula ΦG := ∃R∀x∀yψG belongs to pred-ESO-HORN and defines the language
a+ \ L. The intuitive meanings of the predicates MajA, MinA and SumBC are as follows:

MajA(x, y) ⇐⇒
⌈

y
2
⌉

≤ x ≤ y and ax ∈ L(A);
MinA(x, y) ⇐⇒

⌈
y
2
⌉

≤ x < y and ay−x ∈ L(A) ;
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SumBC(x, y) ⇐⇒ there is some x′ with
⌈

y
2
⌉

≤ x′ ≤ x such that either ax′ ∈ L(B) and
ay−x′ ∈ L(C), or ay−x′ ∈ L(B) and ax′ ∈ L(C).

Note that for x = y, the above equivalence for MajA implies MajA(x, y) ⇐⇒ ay ∈ L(A).
Let us give and justify a list of Horn clauses whose conjunction ψ′

G defines the predicates
MajA, MinA and SumBC , using the arithmetic predicates of Rarith (see Notations 2 and 3),
namely Rx=y, Ry=2x and Rρ(x,y), for ρ(x, y) := x ≥

⌈
y
2
⌉
.

Short rules. Each rule A → a of P is expressed by the input clause:
min(x) ∧ min(y) ∧Qa(y) → MajA(x, y).

Induction on the length y. If we have for y > 1 the inequalities
⌈

y−1
2
⌉

≤ x ≤ y − 1 and
x ≥

⌈
y
2
⌉

then
⌈

y
2
⌉

≤ x ≤ y. This justifies the clause:
y > 1 ∧ MajA(x, y − 1) ∧ x ≥

⌈
y
2
⌉

→ MajA(x, y) for all A ∈ N .

For y > 1 and y = 2x, we have ax = ay−x and
⌈

y
2
⌉

≤ x < y. This justifies the clause:
y > 1 ∧ MajA(x, y − 1) ∧ y = 2x → MinA(x, y) for all A ∈ N .

If for x, y > 1 we have the inequalities
⌈

y−1
2
⌉

≤ x−1 < y−1, then
⌈

y
2
⌉

≤ x < y. Moreover,
a(y−1)−(x−1) = ay−x. This justifies the clause:

x > 1 ∧ y > 1 ∧ MinA(x− 1, y − 1) → MinA(x, y) for all A ∈ N .

Concatenation. For all B,C ∈ N , it is clear that the concatenation predicate SumBC is
defined inductively by the following three clauses:

initialization: MajB(x, y) ∧ MinC(x, y) → SumBC(x, y) ;
MinB(x, y) ∧ MajC(x, y) → SumBC(x, y);
induction: ¬min(x) ∧ SumBC(x− 1, y) → SumBC(x, y).

Long rules. Each rule A → B1C1& . . .&BmCm of P is expressed by the clause:
x = y ∧ SumB1C1(x, y) ∧ · · · ∧ SumBmCm(x, y) → MajA(x, y).

Thus, the formula ∀x∀yψ′
G where ψ′

G is the conjunction of the above clauses defines the
predicates MajA, MinA, and SumBC .

Definition of a+ \ L. We have the equivalence MajS(n, n) ⇐⇒ an ∈ L(S) ⇐⇒ an ∈ L.
Therefore, the following contradiction clause expresses an ̸∈ L:

γS := max(x) ∧ max(y) ∧ MajS(x, y) → ⊥.

Finally, observe that the formula ΦG := ∃R∀x∀yψG where ψG is γarith ∧ ψ′
G ∧ γS and

γarith is the conjunction of clauses that defines the arithmetic predicates of Rarith, belongs
to pred-ESO-HORN. Since we have ⟨an⟩ |= ΦG ⇐⇒ an ̸∈ L, as justified above, then the
language a+ \ L belongs to pred-ESO-HORN, as claimed. ◀

3.2 Equivalence of logic with grid-circuits
We introduce the grid-circuit as an intermediate object between our logic and the real-time
cellular automaton: see Figure 3.

▶ Definition 11. A grid-circuit is a tuple C := (Σ, (Inputn)n>0,Q,Qacc, g) where
Σ is the input alphabet and (Inputn)n>0 is the family of input functions Inputn :
Σn × [1, n]2 → Σ ∪ {$} such that, for w = w1 . . . wn ∈ Σn, Inputn(w, x, y) = wy if x = 1
and Inputn(w, x, y) = $ otherwise,
Q ∪ {♯} is the finite set of states and Qacc ⊆ Q is the subset of accepting states,
g : (Q ∪ {♯})2 × (Σ ∪ {$}) → Q is the transition function.
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8:8 Conjunctive Grammars, Cellular Automata and Logic

▶ Definition 12 (computation of a grid-circuit). The computation Cw of a grid-circuit
C := (Σ, (Inputn)n>0,Q,Qacc, g) on a w = w1 . . . wn ∈ Σn is a regular grid of (n+ 1)2 sites
(x, y) ∈ [0, n]2, each in a state ⟨x, y⟩ ∈ Q ∪ {♯} computed inductively:

each site in {0} × [0, n] or [0, n] × {0} is in the particular state ♯;
the state of each site (x, y) ∈ [1, n]2 is ⟨x, y⟩ = g(⟨x, y − 1⟩, ⟨x− 1, y⟩, Inputn(w, x, y)).

w1

w2

w3

w4

w5

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

1

n

Inputn(w)
[1, n] × [1, n]

♯♯

♯

♯

♯

♯

♯

♯

♯

♯

♯

♯0

n Output

x

y

States of Cw
[0, n] × [0, n]

Figure 3 The grid-circuit.

A word w = w1 . . . wn ∈ Σn is accepted by the grid-circuit C if the output state ⟨n, n⟩ of Cw

belongs to Qacc. The language recognized by C is the set of words it accepts. We denote by
Grid the class of languages recognized by a grid-circuit.

Actually, our predecessor Horn logic is equivalent to grid-circuits.

▶ Lemma 13 ([12]). pred-ESO-HORN = Grid.

Proof. In some sense, a grid-circuit is the “normalized form” of a formula of pred-ESO-HORN.
So, the inclusion Grid ⊆ pred-ESO-HORN is proved straightforwardly.

The first step of the proof of the converse inclusion pred-ESO-HORN ⊆ Grid is to show
that every formula Φ := ∃R∀x∀yψ(x, y) in pred-ESO-HORN is equivalent to a formula
Φ′ ∈ pred-ESO-HORN in which the only hypotheses of computation clauses are atoms S(x, y)
and conjunctions S(x− 1, y) ∧ x > 1 and S(x, y − 1) ∧ y > 1 .

Elimination of atoms R(x − i, y − j) for i + j > 1. The idea is to introduce new “shift”
predicates Rx−i′,y−j′ for fixed integers i′, j′ > 0 with the intuitive meaning:
Rx−i′,y−j′(x, y) ⇐⇒ R(x− i′, y − j′) ∧ x > i′ ∧ y > j′.
Let us explain the method by an example. Assume we have in ψ the Horn clause
(1) x > 3 ∧ y > 2 ∧ S(x− 3, y − 2) → T (x, y). This clause is replaced by the clause
(2) Sx−2,y−2(x− 1, y) ∧ x > 1 → T (x, y)
for which the predicates Sx−1, Sx−2, Sx−2,y−1 and Sx−2,y−2 are defined by the respect-
ive clauses: x > 1 ∧ S(x − 1, y) → Sx−1(x, y), x > 1 ∧ Sx−1(x − 1, y) → Sx−2(x, y),
y > 1 ∧ Sx−2(x, y − 1) → Sx−2,y−1(x, y), and y > 1 ∧ Sx−2,y−1(x, y − 1) → Sx−2,y−2(x, y),
which imply together the clause x > 2 ∧ y > 2 ∧ S(x− 2, y − 2) → Sx−2,y−2(x, y) and then
also x > 3 ∧ y > 2 ∧ S(x− 3, y − 2) → Sx−2,y−2(x− 1, y).

It is clear that the formula Φ := ∃R∀x∀yψ is equivalent to the formula Φ′ := ∃R′∀x∀yψ′

where R′ := R ∪ {Sx−1, Sx−2, Sx−2,y−1, Sx−2,y−2} and ψ′ is the conjunction ψreplace ∧ ψdef,
where ψreplace is the formula ψ in which clause (1) is replaced by clause (2), and ψdef is the
conjunction of the above clauses defining the new predicates of R′.

Thus, any formula Φ ∈ pred-ESO-HORN is equivalent to a formula Φ′ ∈ pred-ESO-HORN
whose computation clauses only contain hypotheses of the following three forms:
R(x− 1, y) ∧x > 1 ; R(x, y− 1) ∧ y > 1 ; R(x, y). The next step is to eliminate these R(x, y).
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Elimination of hypotheses R(x, y). (sketch of proof): The first idea is to group together
in each computation clause the hypothesis atoms of the form R(x, y) and the conclusion of
the clause. As a result, the formula can be rewritten in the form

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


where the Ci’s are the input clauses and the contradiction clauses, and each computation
clause is written in the form αi(x, y) → θi(x, y), where αi(x, y) is a conjunction of formulas
of the only forms R(x− 1, y) ∧ x > 1, R(x, y − 1) ∧ y > 1, and θi(x, y) is a Horn clause in
which all atoms are of the form R(x, y).

The second idea is to “solve” the Horn clauses θi according to the input clauses and all
the possible conjunctions of hypotheses αi that may be true. Notice the two following facts:
the hypotheses of the input clauses are input literals and the conjuncts of the αi’s are of the
only forms R(x− 1, y) ∧x > 1, R(x, y− 1) ∧ y > 1. So, we can prove by induction on the sum
x+ y that the obtained formula Φ′ in which no atom R(x, y) appears as a clause hypothesis,
is equivalent to the above formula Φ. The complete proof is given in Appendix A.

Transformation of the formula into a grid-circuit. Let R = {R1, . . . , Rm} denote the
set of binary predicates of the formula. By a case separation of the clauses, it is easy to
transform the formula into an equivalent formula Φ := ∃R∀x∀yψ where ψ is a conjunction
of clauses of the following forms (a-e), in which s ∈ Σ, j ∈ [1,m], and A,B are (possibly
empty) subsets of [1,m]:
(a) x = 1 ∧ y = 1 ∧Qs(y) → Rj(x, y);
(b) x = 1 ∧ y > 1 ∧Qs(y) ∧

∧
i∈A Ri(x, y − 1) → Rj(x, y);

(c) x > 1 ∧ y = 1 ∧
∧

i∈A Ri(x− 1, y) → Rj(x, y);
(d) x > 1 ∧ y > 1 ∧

∧
i∈A Ri(x− 1, y) ∧

∧
i∈B Ri(x, y − 1) → Rj(x, y);

(e) x = n ∧ y = n ∧Rj(x, y) → ⊥.

Now, transform this formula into a grid-circuit C := (Σ, (Inputn)n>0,Q,Qacc, g). The
idea is that the state of a site (x, y) ∈ [1, n]2 is the set of predicates Ri such that Ri(x, y) is
true. Let Q be the power set of the set of R indices: Q := P([1,m]). There are four types of
transition (a-d) which mimic the clauses (a-d) above. These are, for s ∈ Σ and q, q′ ∈ Q:
(a) g(♯, ♯, s) = {j ∈ [1,m] | there is a clause (a) with Qs, and conclusion Rj(x, y)};
(b) g(q, ♯, s) = {j ∈ [1,m] | there is a clause (b) with Qs, and A ⊆ q, and conclusion

Rj(x, y)};
(c) g(♯, q, $) = {j ∈ [1,m] | there is a clause (c) with A ⊆ q, and conclusion Rj(x, y)};
(d) g(q, q′, $) = {j ∈ [1,m] | ∃ a clause (d) with A ⊆ q, B ⊆ q′, and conclusion Rj(x, y)}.

Of course, the set of accepting states of C is determined by the contradiction clauses (e):
Qacc := {q ∈ Q | q contains no j such that Rj occurs in a clause (e)}.

We can easily check the equivalence, for each w ∈ Σ+: ⟨w⟩ |= Φ ⇐⇒ C accepts w.
Therefore, the inclusion pred-ESO-HORN ⊆ Grid is proved. ◀

3.3 Grid-circuits are equivalent to real-time 1-CA
▶ Lemma 14. [12] Grid = RealTime1CA.

Proof. Figure 4 shows how Grid is simulated on RealTime1CA and Figure 5 shows how
RealTime1CA is simulated on Grid. The proof is detailed in Appendix B. ◀
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Figure 4 Simulation of Grid on RealTime1CA.
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Figure 5 Simulation of RealTime1CA on the grid-circuit.

Proof of Theorem 8. Lemmas 13 and 14 give us the following equalities of classes:
pred-ESO-HORN = Grid = RealTime1CA. These equalities trivially hold when restricted
to unary languages: pred-ESO-HORN1 = Grid1 = RealTime1CA1.

From the fact that the class RealTime1CA1 is closed under complement and from Lemma 10,
we deduce Conj1 ⊆ pred-ESO-HORN1 = Grid1 = RealTime1CA1. ◀

4 Real-time recognition of a conjunctive language: the general case

Recall the inclusions4 RealTime1CA ⊆ RealTime2OCA ⊆ RealTime2SOCA.

Our second main result strengthens the inclusion CFL ⊆ RealTime2SOCA of Terrier [29]:

▶ Theorem 15. Conj ⊆ RealTime2OCA.

4.1 Expressing a conjunctive language in logic: the general case
The generating process of a conjunctive language is naturally expressed in the Horn logic
incl-pred-ESO-HORN. This is a hybrid logic with three first-order variables x, y, z, whose
name means that it makes inductions on the variable interval [x, y], by inclusion, and on the
individual variable z, by predecessor.

▶ Definition 16 (incl-pred-ESO-HORN). A formula of incl-pred-ESO-HORN is a formula
Φ := ∃R∀x∀y∀zψ(x, y, z) where R is a finite set of ternary predicates, and ψ is a conjunction
of Horn clauses, of signature5 SΣ ∪ R ∪ {=,≤}, and of the three following forms:

an input clause: x = y ∧ min(z) ∧Qs(x) → R(x, y, z) with s ∈ Σ and R ∈ R;

4 Recall that RealTime2SOCA is the class of languages recognized by sequential two-dimensional one-way
cellular automata in real-time: this is the minimal time, 3n − 1, for the output cell (n, n) to receive the
n letters of the input word, communicated sequentially by the input cell (1, 1).

5 This definition must consider = and ≤ as primitive symbols.
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a computation clause: δ1 ∧ . . . ∧ δr → R(x, y, z) with R ∈ R and where each hypothesis
δh is an atom S(x, y, z) or a conjunction S(x + i, y − k, z − k) ∧ x + i ≤ y − j ∧ z > k

with S ∈ R and i, j, k ≥ 0 three integers such that i+ j + k > 0;
a contradiction clause: min(x) ∧ max(y) ∧ max(z) ∧R(x, y, z) → ⊥ with R ∈ R.

Let us also call incl-pred-ESO-HORN the class of languages defined by a formula of
incl-pred-ESO-HORN.

▶ Lemma 17. For each language L ⊆ Σ+, if L ∈ Conj, then Σ+ \L ∈ incl-pred-ESO-HORN .

Proof. The proof is a variation (an extension) of the proof of the same result, Lemma 10, in
the unary case. This is why we insist on the differences. Let G = (Σ, N, P, S) be a conjunctive
grammar in binary normal form which generates L and let w be a word w = w1 . . . wn ∈ Σ+.
For each A ∈ N and each factor wx,y := wx . . . wy, we have, according to the length y− x+ 1
of wx,y, the following equivalences which will be the basis of our induction:

if x = y, then wx,y ∈ L(A) ⇐⇒ the short rule A → wx belongs to P ;
if x < y, then wx,y ∈ L(A) ⇐⇒ there is a long rule A → B1C1& . . .&BmCm

in P such that, for each i ∈ {1, . . . ,m}, there exists z ≥ ⌈(y − x+ 1)/2⌉ such that
either wx,x+z−1 ∈ L(Bi) and wx+z,y ∈ L(Ci), or wx,y−z ∈ L(Bi) and wy−z+1,y ∈ L(Ci).

Thus, a double induction is performed, on the index interval [x, y] of a factor wx,y and
the maximal z among the lengths of the two sub-factors u, v of the m decompositions
wx,y = uv, u ∈ L(Bi), v ∈ L(Ci), for a long rule. This is naturally expressed in the logic
incl-pred-ESO-HORN.

We want to construct a first-order formula ∀x∀y∀zψG of signature SΣ ∪ R ∪ {=,≤},
for the set of ternary predicates R := {PrefMaj

A , PrefMin
A , SuffMaj

A , SuffMin
A | A ∈ N} ∪

{ConcatBC | B,C ∈ N} ∪ Rarith, so that the formula ΦG := ∃R∀x∀y∀zψG belongs to
incl-pred-ESO-HORN and defines the language Σ+ \ L. The intuitive meanings of the predic-
ates PrefMaj

A , PrefMin
A , SuffMaj

A , SuffMin
A and ConcatBC are as follows:

PrefMaj
A (x, y, z) ⇐⇒

⌈
y−x+1

2
⌉

≤ z ≤ y − x+ 1 and wx,x+z−1 ∈ L(A);
PrefMin

A (x, y, z) ⇐⇒
⌈

y−x+1
2
⌉

≤ z ≤ y − x and wx,y−z ∈ L(A);
SuffMaj

A (x, y, z) ⇐⇒
⌈

y−x+1
2
⌉

≤ z ≤ y − x+ 1 and wy−z+1,y ∈ L(A);
SuffMin

A (x, y, z) ⇐⇒
⌈

y−x+1
2
⌉

≤ z ≤ y − x and wx+z,y ∈ L(A);
ConcatBC(x, y, z) ⇐⇒ there is some z′ with

⌈
y−x+1

2
⌉

≤ z′ ≤ z such that
either wx,x+z′−1 ∈ L(B) and wx+z′,y ∈ L(C), or wx,y−z′ ∈ L(B) and wy−z′+1,y ∈ L(C).

Note that the above equivalences for PrefMaj
A and SuffMaj

A imply in the particular case
z = y − x+ 1 the equivalences PrefMaj

A (x, y, z) ⇐⇒ SuffMaj
A (x, y, z) ⇐⇒ wx,y ∈ L(A).

Let us give and justify a list of Horn clauses whose conjunction ψ′
G defines the predicates

PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A and ConcatBC , using the arithmetic predicates z = y−x+1,
y − x+ 1 = 2z, and z ≥

⌈
y−x+1

2
⌉

easily defined in incl-pred-ESO-HORN.

Short rules. Each rule A → s of P is expressed by the two clauses:
x = y ∧ z = 1 ∧Qs(x) → PrefMaj

A (x, y, z) ; x = y ∧ z = 1 ∧Qs(x) → SuffMaj
A (x, y, z).

Induction for prefixes. If we have for x < y the inequalities⌈
(y−1)−x+1

2

⌉
≤ z ≤ (y− 1) −x+ 1 and z ≥

⌈
y−x+1

2
⌉

then
⌈

y−x+1
2
⌉

≤ z ≤ y−x+ 1. This
justifies the clause:

x ≤ y − 1 ∧ PrefMaj
A (x, y − 1, z) ∧ z ≥

⌈
y−x+1

2
⌉

→ PrefMaj
A (x, y, z), for all A ∈ N .

For x < y and y − x + 1 = 2z, we have wx,x+z−1 = wx,y−z and
⌈

y−x+1
2
⌉

≤ z ≤ y − x.
This justifies the clause:

x ≤ y − 1 ∧ PrefMaj
A (x, y − 1, z) ∧ y − x+ 1 = 2z → PrefMin

A (x, y, z), for all A ∈ N .

AUTOMATA 2021



8:12 Conjunctive Grammars, Cellular Automata and Logic

For x < y and z > 1 and
⌈

(y−1)−x+1
2

⌉
≤ z−1 ≤ (y−1)−x, we have

⌈
y−x+1

2
⌉

≤ z ≤ y−x.
This justifies the clause:

x ≤ y − 1 ∧ z > 1 ∧ PrefMin
A (x, y − 1, z − 1) → PrefMin

A (x, y, z), for all A ∈ N .

Induction for suffixes. As this induction is symmetric to the one for prefixes, we do not
justify the following list of induction clauses for the predicates SuffMaj

A and SuffMin
A , A ∈ N :

x+ 1 ≤ y ∧ SuffMaj
A (x+ 1, y, z) ∧ z ≥

⌈
y−x+1

2
⌉

→ SuffMaj
A (x, y, z);

x+ 1 ≤ y ∧ SuffMaj
A (x+ 1, y, z) ∧ y − x+ 1 = 2z → SuffMin

A (x, y, z);
x+ 1 ≤ y ∧ z > 1 ∧ SuffMin

A (x+ 1, y, z − 1) → SuffMin
A (x, y, z).

Concatenation. For all B,C ∈ N , it is clear that the concatenation predicate ConcatBC is
defined inductively by the following three clauses:

initialization: PrefMaj
B (x, y, z) ∧ SuffMin

C (x, y, z) → ConcatBC(x, y, z);
PrefMin

B (x, y, z) ∧ SuffMaj
C (x, y, z) → ConcatBC(x, y, z);

induction: z > 1 ∧ ConcatBC(x, y, z − 1) → ConcatBC(x, y, z).

Long rules. Each rule A → B1C1& . . .&BmCm of P is expressed by the two clauses:
z = y − x+ 1 ∧ ConcatB1C1(x, y, z) ∧ · · · ∧ ConcatBmCm

(x, y, z) → PrefMaj
A (x, y, z);

z = y − x+ 1 ∧ ConcatB1C1(x, y, z) ∧ · · · ∧ ConcatBmCm
(x, y, z) → SuffMaj

A (x, y, z).
Thus, the formula ∀x∀y∀zψ′

G where ψ′
G is the conjunction of the above clauses defines the

predicates PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A , and ConcatBC .

Definition of Σ+\L. We have the equivalence PrefMaj
S (1, n, n) ⇐⇒ w ∈ L(S) ⇐⇒ w ∈ L.

Therefore, the following contradiction clause expresses w ̸∈ L:
γS := min(x) ∧ max(y) ∧ max(z) ∧ PrefMaj

S (x, y, z) → ⊥.

Finally, observe that the formula ΦG := ∃R∀x∀y∀zψG where ψG is γarith ∧ ψ′
G ∧ γS

and γarith is the conjunction of clauses that define the arithmetic predicates, belongs to
incl-pred-ESO-HORN. Since we have ⟨w⟩ |= ΦG ⇐⇒ w ̸∈ L, as justified above, then the
language Σ+ \ L belongs to incl-pred-ESO-HORN, as claimed. ◀

4.2 Equivalence of logic with cube-circuits
We now introduce the cube-circuit, an extension of the grid-circuit to three dimensions. It
will make the link between our logic incl-pred-ESO-HORN and the class RealTime2OCA.

▶ Definition 18. A cube-circuit is a tuple C := (Σ, (Inputn)n>0,Q,Qacc, g) where
Σ is the input alphabet and (Inputn)n>0 is the family of input functions Inputn :
Σn × [1, n]3 → Σ ∪ {$} such that, for w = w1 . . . wn ∈ Σn, Inputn(w, x, y, z) = wx if
x = y and z = 1, and Inputn(w, x, y, z) = $ otherwise,
Q ∪ {♯} is the finite set of states and Qacc ⊆ Q is the subset of accepting states,
g : (Q ∪ {♯})3 × (Σ ∪ {$}) → Q is the transition function.

▶ Definition 19 (computation of a cube-circuit). The computation Cw of a cube-circuit
C := (Σ, (Inputn)n>0,Q,Qacc, g) on a word w = w1 . . . wn ∈ Σn is a grid of (n+ 1)3 sites
(x, y, z) ∈ [1, n+ 1] × [0, n]2, each in a state ⟨x, y, z⟩ ∈ Q ∪ {♯} computed inductively:

each site (x, y, z) such that x > y or z = 0 is in the state ♯;
the state of each site (x, y, z) ∈ [1, n]3 such that x ≤ y and z > 0 is
⟨x, y⟩ = g(⟨x+ 1, y, z⟩, ⟨x, y − 1, z⟩, ⟨x, y, z − 1⟩, Inputn(w, x, y, z)).
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A word w = w1 . . . wn ∈ Σn is accepted by the cube-circuit C if the output state ⟨1, n, n⟩
of Cw belongs to Qacc. The language recognized by C is the set of words it accepts. We
denote by Cube the class of languages recognized by a cube-circuit.

x

z y

w1
w2

w3
w4

w5

Figure 6 The cube-circuit.

Actually, the logic incl-pred-ESO-HORN is equivalent to cube-circuits.

▶ Lemma 20. incl-pred-ESO-HORN = Cube.

Proof. The proof is similar to that of pred-ESO-HORN = Grid (Lemma 13). The cube-
circuit can be seen as the “normalized form” of a formula of incl-pred-ESO-HORN, proving
the inclusion Cube ⊆ incl-pred-ESO-HORN. The proof of the inverse inclusion is divided
into the same three steps as for Lemma 13, which must be adapted to three variables:
1) elimination of atoms R(x+ i, y− j, z− k) for i+ j+ k > 1 (instead of elimination of atoms
R(x− i, y − j) for i+ j > 1); 2) elimination of hypotheses R(x, y, z) (instead of elimination
of hypotheses R(x, y)); 3) transformation of the resulting formula into a cube-circuit.

Steps 1 and 2 are adapted straightforwardly. Let us describe in detail step 3. Let
R = {R1, . . . , Rm} denote the set of ternary predicates of the formula resulting from step 2.
By a case separation of the clauses, it is easy to transform this formula into an equivalent
formula Φ := ∃R∀x∀y∀zψ where ψ is a conjunction of clauses of the following forms (a-e), in
which s ∈ Σ, j ∈ [1,m], and A,B,C are (possibly empty) subsets of [1,m]:
(a) x = y ∧ z = 1 ∧Qs(x) → Rj(x, y, z);
(b) x < y ∧ z = 1 ∧

∧
i∈A Ri(x+ 1, y, z) ∧

∧
i∈B Ri(x, y − 1, z) → Rj(x, y, z);

(c) x = y ∧ z > 1 ∧
∧

i∈A Ri(x, y, z − 1) → Rj(x, y, z);
(d) x < y∧z > 1∧

∧
i∈A Ri(x+1, y, z)∧

∧
i∈B Ri(x, y−1, z)∧

∧
i∈C Ri(x, y, z−1) → Rj(x, y, z);

(e) x = 1 ∧ y = n ∧ z = n ∧Rj(x, y, z) → ⊥.

Now, transform this formula into a cube-circuit C := (Σ, (Inputn)n>0,Q,Qacc, g). The
idea is still that the state of a site (x, y, z) ∈ [1, n]3 is the set of predicates Ri such that
Ri(x, y, z) is true, and Q is again the power set of the set of R indices: Q := P([1,m]).
There are four types of transition (a-d), which mimic the clauses (a-d) above. These are, for
s ∈ Σ and q, q′, q′′ ∈ Q:
(a) g(♯, ♯, ♯, s) = {j ∈ [1,m] | ∃ a clause (a) with Qs, and conclusion Rj(x, y, z)};
(b) g(q, q′, ♯, $) = {j ∈ [1,m] | ∃ a clause (b) with A ⊆ q, B ⊆ q′, and conclusion Rj(x, y, z)};
(c) g(♯, ♯, q, $) = {j ∈ [1,m] | ∃ a clause (c) with A ⊆ q, and conclusion Rj(x, y, z)};
(d) g(q, q′, q′′, $) = {j ∈ [1,m] | ∃ a clause (d) with A ⊆ q, B ⊆ q′, C ⊆ q′′, and conclusion

Rj(x, y, z)}.

Here again, the set of accepting states of C is determined by the contradiction clauses (e):
Qacc := {q ∈ Q | q contains no j such that Rj occurs in a clause (e)}.
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w

Communication

(x, y, z)

(x = c1 + c2 − t, y = c1, z = c2)

Cube

w

Communication

7→

7→

(c1 = y, c2 = z, t = z + y − x)

(c1, c2, t)

RealTime2OCA

Figure 7 Bijection between the sites of Cw and the space-time sites of a 2-OCA on w.

We can easily check the equivalence, for each w ∈ Σ+: ⟨w⟩ |= Φ ⇐⇒ C accepts w.
Therefore, the inclusion incl-pred-ESO-HORN ⊆ Cube is proved. ◀

4.3 Cube-circuits are equivalent to real-time 2-OCA
One observes that by a one-to-one transformation, the computation Cw of a cube-circuit C on
a word w is nothing else than the space-time diagram of a real-time 2-OCA on the input w.
This yields:

▶ Lemma 21. Cube = RealTime2OCA.

Proof. The bijection between the sites (x, y, z) of the computation Cw of a cube-circuit C
on a word w and the sites (c1, c2, t) of the space-time diagram of a real-time 2-OCA on the
input w is depicted in Figure 7. We check that this bijection respects the communication
scheme and the input/output sites of both computation models as shown in Figure 7.
By this transformation, the transition function g of the cube-circuit, which is ⟨x, y, z⟩ =
g(⟨x+ 1, y, z⟩, ⟨x, y − 1, z⟩, ⟨x, y, z − 1⟩, Inputn(w, x, y, z)) becomes the transition function
f of the 2-OCA: ⟨c1, c2, t⟩ = f(⟨c1, c2, t− 1⟩, ⟨c1 − 1, c2, t− 1⟩, ⟨c1, c2 − 1, t− 1⟩), and vice
versa. ◀

Proof of Theorem 15. Lemmas 20 and 21 give us the following equalities of classes:
incl-pred-ESO-HORN = Cube = RealTime2OCA.

From the fact that the class RealTime2OCA is closed under complement and from
Lemma 17, we deduce Conj ⊆ incl-pred-ESO-HORN = Cube = RealTime2OCA. ◀

5 Conclusion

We have proved the inclusions Conj1 ⊆ RealTime1CA and Conj ⊆ RealTime2OCA by express-
ing in two logics (proved equivalent to RealTime1CA and RealTime2OCA, respectively) the
inductive process of a conjunctive grammar. These results contribute to a better knowledge
of relationships between automata, grammars and logic. We think that they bring us closer
to prove or disprove that Conj is a subclass of RealTime1CA.

Figure 8 recapitulates the known inclusions between the language classes that we have
considered here. For each of the ⊆ inclusions of this figure, whether it is strict or not is
an open question. Note that it was necessary to add an extra dimension to the space-time
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diagram to recognize any conjunctive language with a cellular automaton. Otherwise, any
context-free or conjunctive language would always be decided by a RAM in time O(n2),
which seems unlikely!

Besides, to grasp the expressive power, largely unknown, of the Conj (resp. Conj1)
class, it would be important to obtain exact characterizations of this class in logic and/or
computational complexity. This is a fascinating question for future research!

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1

RealTime1CA1

DSPACE1(n)

⊊ [17]

⊆
⊆

Trellis = LinConjCFL

RealTime2OCA

Conj RealTime1CA

DSPACE(n)

⊊[22]

⊊[22] ⊊[5]

⊆ ⊆

⊆ [9]

̸=

[27]

Figure 8 Relations between language classes over a unary or general alphabet.
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A Complement of proof for Lemma 13

Elimination of hypotheses R(x, y). The first idea is to group together in each computation
clause the hypothesis atoms of the form R(x, y) and the conclusion of the clause. Accordingly,
the formula obtained Φ can be rewritten in the form

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


where the Ci’s are the input clauses and the contradiction clause and each computation
clause is written in the form αi(x, y) → θi(x, y) where αi(x, y) is a conjunction of formulas
of the only forms R(x− 1, y) ∧ ¬min(x), R(x, y− 1) ∧ ¬min(y) (but not R(x, y)), and θi(x, y)
is a Horn clause whose all atoms are of the form R(x, y).
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We number R1, . . . , Rm the computation predicates of R. To each subset J ⊆ [1, k] of
the family of implications (αi(x, y) → θi(x, y))i∈[1,k] let us associate the set

KJ := {h ∈ [1,m] |
∧
i∈J

θi(x, y) → Rh(x, y) is a tautology}.

Note that the notion of tautology used in the definition of KJ is “propositional” because all
the atoms involved are of the form Ri(x, y), i.e., refer to the same pair of variables (x, y).
Also, note that the function J 7→ KJ is monotonic: for J ′ ⊆ J , we have KJ′ ⊆ KJ because∧

i∈J′ θi(x, y) → Rh(x, y) implies
∧

i∈J θi(x, y) → Rh(x, y).

Clearly, it is enough to prove the following claim:

▷ Claim 22. The formula Φ is equivalent to the following formula Φ′, whose clauses have no
hypothesis R(x, y).

Φ′ := ∃R∀x∀y

 ∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y) → Rh(x, y)
) 

Proof of the implication Φ ⇒ Φ′: It is enough to prove the implication ∧
i∈[1,k]

(αi(x, y) → θi(x, y))

 →

[∧
i∈J

αi(x, y) →
∧

h∈KJ

Rh(x, y)
]

for all set J ⊆ [1, k]. The implication to be proved can be equivalently written:∧
i∈J

αi(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

 →
∧

h∈KJ

Rh(x, y).

The sub-formula between brackets above implies the conjunction
∧

i∈J θi(x, y). As the implic-
ation

∧
i∈J θi(x, y) →

∧
h∈KJ

Rh(x, y) is a tautology (by definition of KJ), the implication
to be proved is a tautology too.

The converse implication Φ′ ⇒ Φ is more difficult to prove. It uses a folklore property of
propositional Horn formulas easy to be proved:

▶ Lemma 23 (Horn property: folklore). Let F be a strict Horn formula of propositional
calculus, that is a conjunction of clauses of the form p1 ∧ . . . ∧ pk → p0 where k ≥ 0 and the
pi’s are propositional variables. Let F ′ be the conjunction of propositional variables q such
that the implication F → q is a tautology. F has the same minimal model 6 as F ′.

Proof of the implication Φ′ ⇒ Φ: Let ⟨w⟩ be a model of Φ′ and let (⟨w⟩,R) be the minimal
model of the Horn formula

φ′ := ∀x∀y

 ∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y) → Rh(x, y)
) .

6 For example, for F := p1 ∧p3 ∧ (p1 ∧p3 → p5)∧ (p1 ∧p2 → p4), we have F ′ := p1 ∧p3 ∧p5, which has the
same minimal model I as F ; this model is given by I(p1) = I(p3) = I(p5) = 1 and I(p2) = I(p4) = 0.
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It is enough to show that (⟨w⟩,R) also satisfies the formula

φ := ∀x∀y

 ∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

 .
As each αi is a conjunction of formulas of the form R(x− 1, y) ∧ ¬min(x), or R(x, y − 1) ∧
¬min(y), we make an induction on the domain {(a, b) ∈ [1, n]2 | a + b ≤ t}, for t ∈ [1, 2n].
More precisely, we are going to prove, by recurrence on the integer t ∈ [1, 2n], that the
minimal model (⟨w⟩,R) of φ′ satisfies the “relativized” formula φt of the formula φ defined
by

φt := ∀x∀y

x+ y ≤ t →

 ∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


As the hypothesis x+ y ≤ 2n holds for all x, y in the domain [1, n], φ2n is equivalent to φ on
the structure (⟨w⟩,R).

Basis case: For t = 1 the set {(a, b) ∈ [1, n]2 | a+ b ≤ t} is empty so that the “relativized”
formula φ1 is trivially true in the minimal model (⟨w⟩,R) of φ′.

Recurrence step: Suppose (⟨w⟩,R) |= φt−1, for an integer t ∈ [2, 2n]. It is enough to show
that, for each couple (a, b) ∈ [1, n]2 such that a+b = t, we have (⟨w⟩,R) |=

∧
i∈[1,k](αi(a, b) →

θi(a, b)). Let Ja,b be the set of indices i ∈ [1, k] such that the couple (a, b) satisfies αi:

Ja,b := {i ∈ [1, k] | (⟨w⟩,R) |= αi(a, b)}.

Recall that each αi(a, b) is a (possibly empty) conjunction of atoms R(a′, b′) with (a′, b′) =
(a− 1, b) or (a′, b′) = (a, b− 1), therefore such that a′ + b′ = t− 1. Let J ⊆ [1, k] be any set.
Let us examine the two possible cases:

1) J ⊆ Ja,b: then the conjunction
∧

i∈J αi(a, b) holds in (⟨w⟩,R); hence, in (⟨w⟩,R), the
conjunction

∧
h∈KJ

(
∧

i∈J αi(a, b) → Rh(a, b)) is equivalent to
∧

h∈KJ
Rh(a, b);

2) J \ Ja,b ≠ ∅: then the conjunction
∧

i∈J αi(a, b) is false in (⟨w⟩,R); hence, the
conjunction

∧
h∈KJ

(
∧

i∈J αi(a, b) → Rh(a, b)) holds in (⟨w⟩,R).

From (1) and (2), we deduce that in (⟨w⟩,R) the conjunction
∧

J⊆[1,k]
∧

h∈KJ
(
∧

i∈J αi(a, b) →
Rh(a, b)) is equivalent to the conjunction

∧
J⊆Ja,b

∧
h∈KJ

Rh(a, b), which can be simplified
as
∧

h∈KJa,b
Rh(a, b) because J ⊆ Ja,b implies KJ ⊆ KJa,b

. Consequently, for all h ∈ [1,m],
the minimal model (⟨w⟩,R) of the Horn formula φ′ satisfies the atom Rh(a, b) iff h belongs
to KJa,b

. By definition,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(x, y) → Rh(x, y) is a tautology}

or, equivalently,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(a, b) → Rh(a, b) is a tautology}.

As a consequence of Lemma 23, the two conjunctions∧
i∈Ja,b

θi(a, b) and
∧

h∈KJa,b

Rh(a, b)
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have the same minimal model, which is also the restriction of the minimal model (⟨w⟩,R) of
φ′ to the set of atoms Rh(a, b), for h ∈ [1,m]. Therefore, if i ∈ Ja,b, then (⟨w⟩,R) |= θi(a, b).
If i ∈ [1, k] \ Ja,b, then we have (⟨w⟩,R) |= ¬αi(a, b), by definition of Ja,b. Therefore, for
all i ∈ [1, k], we get (⟨w⟩,R) |= ¬αi(a, b) ∨ θi(a, b). In other words, for all (a, b) such that
a+ b = t, we have : (⟨w⟩,R) |=

∧
i∈[1,k](αi(a, b) → θi(a, b)) and then (⟨w⟩,R) |= φt.

This concludes the inductive proof that (⟨w⟩,R) |= φt, for all t ∈ [1, 2n], and then
⟨w⟩ |= Φ. This proves the converse implication Φ′ ⇒ Φ. Claim 22 is demonstrated. □

B Complement of proof for Lemma 14

Grid ⊆ RealTime1CA. To prove this inclusion, we show how to simulate the computation
of the grid-circuit on a real-time CA. The simulation is made by a geometric transformation
that embeds the grid-circuit in the space-time diagram of a real-time CA. This transformation
is divided into three steps:
1. a variable change: we apply to each site (x, y) ∈ [1, n]2 of the grid-circuit the variable

change (x, y) 7→ (c′ = y − x+ 1, t′ = x+ y − 1);
2. a folding: we fold the resulting diagram along the axis c′ = 1: each site (c′, t′) with c′ < 1

is send to its symmetric counterpart (−c′ + 1, t′);
3. a grouping: each site (c, t) = (⌈ c′

2 ⌉, ⌈ t′

2 ⌉) of the new diagram records the set of sites
{(c′ − 1, t′ − 1), (c′, t′), (c′ + 1, t′ − 1)} with c′ and t′ odd and greater than 1.

The resulting diagram is the expected space-time diagram of a real-time CA, proving the
inclusion.

RealTime1CA ⊆ Grid. To simulate a real-time CA A = (S, Saccept, {−1, 0, 1}, f) on the grid,
we first turn A into an equivalent CA A′ = (S, Saccept, {−2,−1, 0}, f). This transformation
can be seen as the variable change (c, t) 7→ (c+ t− 1, t). The diagram of A′ is then embedded
on the grid-circuit C′ by applying to its sites (c′, t′) the variable change (c′, t′) 7→ (t′, c′). The
local and uniform communication of the embedded diagram can easily be carried out by the
grid-circuit communication scheme.
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Abstract
We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold
rotational symmetry for any n. This construction is based on the dualization of regular n-fold
multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on
trigonometric diophantine equations. A SageMath program that computes these tilings and outputs
svg files is publicly available in [7].
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(a) G4( 1
2 ). (b) G5( 1

2 ).

Figure 1 Examples of multigrids.

Let us now give the relevant definitions for rhombus tilings and for the multigrid method
before stating the main results.

A rhombus tiling is a covering of the plane without overlap by a set of rhombus tiles. Here
we actually consider rhombus tilings of the complex plane C and we only consider the case
where the set of tiles is finite up to translation and where the tiling is edge-to-edge i.e. any
two tiles in the tiling either do not intersect, intersect on a single common vertex or intersect
along a full common edge. A patch is a finite simply-connected set of non-overlapping tiles
and a pattern is a patch up to translation.

A tiling is called periodic of period v⃗ ̸= 0⃗ when it is invariant under the translation of
vector v⃗ and non-periodic when it admits no period. A tiling is called uniformly recurrent
or uniformly repetitive when for any pattern p that appears in the tiling, there exists an
“appearance” radius R such that in the intersection of any open ball of radius R with the
tiling there is an occurrence of the pattern p. A tiling is called quasiperiodic when it is both
non-periodic and uniformly recurrent.

A tiling is said to have global n-fold rotational symmetry when there exists a point z,
usually the origin, such that the tiling is invariant under the rotation of center z and angle
2π
n . The crystallographic restriction theorem states that the only rotational symmetries

possible for periodic tilings are 2-fold, 3-fold, 4-fold and 6-fold. Hence a tiling that has n-fold
rotational symmetry for n /∈ {2, 3, 4, 6} is non-periodic.

Cut-and-project tilings are tilings that can be seen as the projection of a discrete plane of
some Rn to the plane. The tiles of a cut-and-project tiling are the projection of the facets that
form the corresponding discrete plane. We will not give here a precise definition since we will
not use it later, for precise definitions see [1] or [9]. Note that cut-and-project tilings are used
to model quasicrystals which means that they are not only of interest to mathematicians and
theoretical computer-scientists but also to physicists and crystallographists. The only result
we will use on cut-and-project tilings is that they are uniformly recurrent [9], in particular
this implies that cut-and-project tilings with n-fold rotational symmetry for n /∈ {2, 3, 4, 6}
are quasiperiodic.
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Let us now define grids, multigrids and their dual tilings. The grid of direction ξ ∈ C
with |ξ| = 1 and offset γ ∈ R, denoted by H(ξ, γ), is the set of equidistant lines orthogonal
to ξ and with offset γ from the origin

H(ξ, γ) :=
{

z ∈ C | Re
(
z · ξ̄

)
− γ ∈ Z

}
.

In this definition the important offset is actually the fractional part of γ so we restrict
the definition to the case 0 ⩽ γ < 1. The multigrid of pairwise non-collinear directions
ξ = (ξi)0⩽i<n and offsets γ = (γi)0⩽i<n, denoted by Gξ(γ) is the union of the grids

Gξ(γ) :=
⋃

0⩽i<n

H(ξi, γi).

For an integer n ⩾ 3 we define the n-fold direction ζn as

ζn =

ei 2π
n if n is odd

ei π
n if n is even

The n-fold multigrid of offsets γ = (γi)0⩽i<n denoted Gn(γ) is the multigrid with
directions (ζi

n)0⩽i<n

Gn(γ) :=
⋃

0⩽i<n

H(ζi
n, γi)

For simplicity for some real number x ∈ [0, 1[ we denote Gn(x) the multigrid with all offsets
equal to x i.e.

Gn(x) := Gn(x, . . . x) =
⋃

0⩽i<n

H(ζi
n, x)

See Figure 1 for a picture of G4( 1
2 ) and G5( 1

2 ).
From a multigrid Gξ(γ) we can define a tiling Pξ(γ) by a duality process. This tiling is

dual to the multigrid in the sense that the multigrid, seen as a graph, is the adjacency graph
of the tiling, see Figure 2 for an example. We will define this tiling only in the n-fold case,
but one can easily adapt it to the general case by replacing the directions ζi

n by ξi.
Given a n-fold multigrid Gn(γ) we define two functions K : C → Zn and f : C → C as

K(z) :=
(⌈

Re
(

z · ζ̄i
n

)
− γi

⌉)
0⩽i<n

f(z) :=
n−1∑
i=0

⌈
Re

(
z · ζ̄i

n

)
− γi

⌉
ζi

n.

Remark that the functions K and f are constant on the interior of each cell, also called mesh,
of the multigrid, so f sends a cell of the multigrid to a single vertex.

The multigrid dual tiling of a n-fold multigrid Gn(γ), denoted by Pn(γ), is defined by its
set of vertices V and of edges E as

V := f(C) E :=
{

{z, z′}, z, z′ ∈ V | ∃i, z′ = z + ζi
n

}
In this dualization process each cell or mesh of the multigrid is sent to a vertex of the

dual tiling, see for example the cells in red and yellow and their dual in Figure 2, and
each intersection point of the multigrid is sent to a tile of the dual tiling. The dual of an
intersection point where k lines intersect is a 2k-gon with unit sides as shown in Figure 3
for the case of 5-fold multigrids. The dual of a line of the multigrid is a chain or ribbon of
tiles that share an edge, see for example the green and blue line and their dual in Figure 2.
Recall that multigrid dual tilings are cut-and-project tilings [9, 5, 1].

AUTOMATA 2021
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(a) The 5-fold multigrid or pentagrid G5( 1
2 ). (b) The dual tiling P5( 1

2 ).

Figure 2 Example of a regular grid and its dual tiling, some elements of the multigrid and their
dual in the tiling have been colored.

Figure 3 Some possible intersection points in G5(γ) and their dual tiles.

A multigrid is called singular when there is at least one intersection point where at least
3 lines intersect, and is called regular otherwise. By definition, the dual tilings of regular
multigrids are edge-to-edge rhombus tilings. For an example of a regular multigrid and its
dual tiling, see Figure 2 where some elements of the multigrid and their dual are highlighted
to emphasize the dualization process.

Now that we have defined all relevant terms, we can state the main result.

▶ Theorem 1.
1. For any integer n ⩾ 4, the n-fold multigrid dual tiling Pn( 1

2 ) is a cut-and-project qua-
siperiodic edge-to-edge rhombus tiling with global 2n-fold rotational symmetry.

2. For any odd integer n ⩾ 5, the n-fold multigrid dual tiling Pn( 1
n ) is a cut-and-project

quasiperiodic edge-to-edge rhombus tiling with global n-fold rotational symmetry.

Theorem 1 is actually a corollary of Theorem 2 on the regularity of n-fold multigrids. See
Figures 4 and 6 for examples of tilings Pn( 1

2 ) and Pn( 1
n ), these figures have been produced

using a SageMath program which is publicly available in [7].

▶ Theorem 2.
1. For any n ⩾ 3 and any non-zero rational offset r ∈ Q ∩ ]0, 1[ the n-fold multigrid Gn(r)

is regular.
2. For any odd n ⩾ 3 and any tuple of non-zero rational offsets γ = (γi)0⩽i<n ∈ (Q ∩ ]0, 1[)n

the n-fold multigrid Gn(γ) is regular.
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(a) 7-fold : P7( 1
7 ) . (b) 8-fold : P4( 1

2 ). (c) 9-fold : P9( 1
9 ).

(d) 10-fold : P5( 1
2 ). (e) 11-fold : P11( 1

11 ). (f) 12-fold : P6( 1
2 ).

Figure 4 Central patch of the multigrid dual tiling with exactly n-fold rotational symmetry for
n ∈ {7, 8, 9, 10, 11, 12}.

Remark that Theorem 2 is not an exact characterization of regular n-fold multigrid but
rather an easily checked sufficient condition for regularity. In [4] N. G. de Bruijn gives an
exact characterization of regular pentagrids in the specific Penrose case (sum of the offsets is
an integer), but this characterization is not easily generalized to the non-Penrose case and to
all n-fold multigrids.

In Section 2 we show how Theorem 1 is a corollary of Theorem 2. In Section 3 we present
the link between the regularity of multigrids and some trigonometric equations. In Section 4
we present the results of Conway and Jones on trigonometric diophantine equations [3]. In
Section 5 we combine the results of Sections 3 and 4 to prove Theorem 2.

2 From regular n-fold multigrids to tilings with global n-fold symmetry

Let n ⩾ 3 be an integer. By Theorem 2 the multigrid Gn( 1
2 ) and Gn( 1

n ) are regular, so their
dual tilings Pn( 1

2 ) and Pn( 1
n ) are edge-to-edge rhombus tilings. As mentioned above, the

multigrid dual tilings are cut-and-project [5] and therefore also uniformly recurrent.
Let us remark that the dualization process commutes with rotations around the origin,

so if a multigrid has some rotational symmetry around the origin then so does its dual tiling.
So for odd n, Pn( 1

n ) has global n-fold rotational symmetry because the grid also has
global n-fold rotational symmetry, indeed applying the rotation of angle 2π

n centered on the
origin to the multigrid sends ζk

n to ζk+1
n and since the offset is the same on all directions the

rotated multigrid is the same as the original one. However this does not hold for even n

since in that case we chose ζn = ei π
n so we have ζn

n = eiπ = −1 = −ζ0
n so the grid of offset 1

n

for even n ⩾ 4 does not have any rotational symmetry.

AUTOMATA 2021



9:6 n-Fold Cut-And-Project Tilings

Also for odd n, Pn( 1
2 ) has global 2n-fold rotational symmetry because the image of ζ0

n by
the rotation of angle π

n is

ei π
n = −ei (n+1)π

n = −ei
2⌈ n

2 ⌉π

n = −ζ
⌈ n

2 ⌉
n

so with 1 − 1
2 = 1

2 (i.e. the offset in direction ζi
n and in its reverse direction −ζi

n is the same)
we get global 2n-fold rotational symmetry for Gn( 1

2 ) and Pn( 1
2 ). For even n we use also the

fact that with offset 1
2 we get offset along ζi

n is the same as along the opposite direction
−ζi

n together with ζn = ei π
n which means that ζn+i

n = −ζi
n to get global 2n-fold rotational

symmetry for Gn( 1
2 ) and Pn( 1

2 ).
When we combine these with the crystallographic restriction which implie that for any

n ⩾ 4 these tilings are non-periodic we get Theorem 1. Remark that for even n, Pn( 1
2 ) has

global 2n-fold rotational symmetry and P n
2

( 1
2 ) has exactly n-fold global rotational symmetry.

So for any n there exists a tiling with exactly n-fold global rotational symetry, see the
examples for n ∈ {7, 8, 9, 10, 11, 12} in Figure 4, and for n = 23 in Figure 6.

Remark also that for odd n, for any r ∈ Q ∩ ]0, 1[ the multigrid Gn(r) is regular and
the multigrid dual tiling Pn(r) has global n-fold rotational symmetry, except the specific
case r = 1

2 that has global 2n-fold rotational symmetry. The choice of r = 1
n is mainly due

to the fact that the canonical Penrose rhombus tiling is P5( 1
5 ) so Pn( 1

n ) is in that sense a
generalization of the canonical Penrose rhombus tiling.

Note that Theorem 1 is stated for n > 3 because for n = 3 the multigrid dual tilings with
offset 1

2 and 1
3 are periodic.

3 Regularity of n-fold multigrids and trigonometric equations

In this section we present the link between the regularity or singularity of n-fold multigrids
and some trigonometric equations.

▶ Proposition 3 (Regularity of multigrids and trigonometric equations). Let n ∈ N, and
γ0, γ1, . . . γn−1 be offsets in [0, 1[. Assume that for any p, q such that 0 < q < p < n and any
r0 ∈ Z − γ0, rq ∈ Z − γq and rp ∈ Z − γp we have either Inequation (1) when n is odd, or
Inequation (2) when n is even.

(n odd ) r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n ̸= 0 (1)

(n even ) r0 sin (p−q)π
n + rp sin qπ

n − rq sin pπ
n ̸= 0 (2)

Then the grid Gn(γ0, γ1, . . . γn−1) is regular.

Proof. We will prove this proposition by contradiction i.e. we assume a grid is singular and
we show that it implies the existance of r0, rp, rq such that the Inequation (1) is contradicted
if n is odd, and Inequation (2) is contradicted if n is even.

We will actually prove it for odd n, the proof for even n is exactly the same and it is only
needed to replace the formula of ζk

n which in the even case is ei kπ
n instead of ei 2kπ

n , which
means that in the angles we remove the factor 2.

Let n be an odd integer and let γ0, γ1, . . . γn−1 ∈ [0, 1[ such that Gn(γ0, γ1, . . . γn−1) is
singular. This means that there exist z ∈ C at the intersection of three lines, up to relabeling
and rotation we chose to consider it is at the intersection of H(ζ0

n, γ0), H(ζq
n, γq) and H(ζp

n, γp)
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Figure 5 Intersection of three lines.

for some 0 < q < p < n, see Figure 5. This means that there exist k0, kq, kp ∈ Z such that
Re(z) = k0 − γ0

Re(z · ζ̄q
n) = kq − γq

Re(z · ζ̄p
n) = kp − γp

Write z = k0 − γ0 + iy and ζn = e
2iπ
n . Now we have

z = k0 − γ0 + iy

(k0 − γ0) cos 2qπ
n + y sin 2qπ

n = kq − γq

(k0 − γ0) cos 2pπ
n + y sin 2pπ

n = kp − γp

Let us now cancel out the y terms by substituting the third line by sin 2pπ
n times the seconde

equality minus sin 2qπ
n times the third equality.

z = k0 − γ0 + iy

(k0 − γ0) cos 2qπ
n + y sin 2qπ

n = kq − γq

(k0 − γ0)(cos 2qπ
n sin 2pπ

n − cos 2pπ
n sin 2qπ

n ) = (kq − γq) sin 2pπ
n − (kp − γp) sin 2qπ

n

Now let us study the third line to simplify it.

(k0 − γ0)
(
cos 2qπ

n sin 2pπ
n − cos 2pπ

n sin 2qπ
n

)
= (kq − γq) sin 2pπ

n − (kp − γp) sin 2qπ
n

⇔ (k0 − γ0) sin 2(p−q)π
n + (kp − γp) sin 2qπ

n − (kq − γq) sin 2pπ
n = 0

If we rewrite k0 − γ0, kp − γp, kq − γq as r0, rp, rq we obtain

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n = 0

which is exactly the contradiction of Inequation (1). ◀

In the next section we consider the solutions to these kind of trigonometric equations.
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4 Trigonometric diophantine equations

We call rational angles the set πQ. We consider now equations of the type

A cos a + B cos b + C cos c = 0 (3)

with a, b and c rational angles.
In the previous paragraph we had sine instead of cosine but we can always convert sine

to cosine, and we had A ∈ Z − γ for some real number 0 ⩽ γ < 1 and similarly for B and C

but now we will consider A, B and C to be rationals.
The following result is from Conway and Jones.

▶ Theorem 4 ([3]). Suppose we have at most four distinct rational angles strictly between 0
and π

2 for which some rational linear combination of their cosines has rational value but no
proper subset has this property.
Then the appropriate linear combination is proportional to one from the following list:

cos π
3 = 1

2 (4)
− cos ϕ + cos

(
π
3 − ϕ

)
+ cos

(
π
3 + ϕ

)
= 0 (0 < ϕ < π

6 ) (5)
cos π

5 − cos 2π
5 = 1

2 (6)
cos π

7 − cos 2π
7 + cos 3π

7 = 1
2 (7)

cos π
5 − cos π

15 + cos 4π
15 = 1

2 (8)
− cos 2π

5 + cos 2π
15 − cos 7π

15 = 1
2 (9)

cos π
7 + cos 3π

7 − cos π
21 + cos 8π

21 = 1
2 (10)

cos π
7 − cos 2π

7 + cos 2π
21 − cos 5π

21 = 1
2 (11)

− cos 2π
7 + cos 3π

7 + cos 4π
21 + cos 10π

21 = 1
2 (12)

− cos π
15 + cos 2π

15 + cos 4π
15 − cos 7π

15 = 1
2 (13)

See the original article [3] for the proof. The proof is based on a more general result on
vanishing sums of roots of unity. And this is proved using complex numbers and the theory
of vanishing formal sums. If we adapt this result for sums of three cosines that have value
zero we get:

▶ Corollary 5. Let a ⩽ b ⩽ c be rational angles strictly between 0 and π
2 and not all equal,

and let A, B, C be non-zero rationals.
If A cos a + B cos b + C cos c = 0 then either

a = π
5

b = π
3

c = 2π
5

B = C = −A

or


0 < a < π

6

b = π
3 − a

c = π
3 + a

B = C = −A

Proof. We just need to apply Theorem 4. First remark that there is no solution for
A cos a + B cos b = 0 with a and b distinct and strictly between 0 and π

2 , and A and B non
zero. Now with 0 < a < b < c < π

2 , we have either a combination of Equations (4) and (6)
(first case) or Equation (5) (second case). ◀

5 Proof of Theorem 2

Here we use Proposition 3 and Corollary 5 to prove Theorem 2.



V. H. Lutfalla 9:9

5.1 For odd n

First let us remark that in Theorem 2 the first statement when restricted to odd n is a strict
subcase of the second statement, so here we will prove the second statement which is as follows:
for any odd n ⩾ 3 and any tuple of non-zero rational offsets γ = (γi)0⩽i<n ∈ (Q ∩ ]0, 1[)n

the n-fold multigrid Gn(γ) is regular. We reformulate this with Proposition 3 as: for any
odd n ⩾ 3, for any 0 < p < q < n and any three non-zero rational offsets γ0, γp, γq, for any
r0 ∈ Z − γ0, rp ∈ Z − γp and rq ∈ Z − γq we have

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n ̸= 0.

Actually we prove a slitghly reformulated version: for any odd n ⩾ 3, for any 0 < p < q < n

and any three non-zero rationals r0, rp, rq ∈ Q\{0} we have

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n ̸= 0.

To apply Corollary 5 we first need to translate the formula with sine and with angles in
[0, 2π[ as a formula with cosine and angles in

]
0, π

2
[
.

▶ Lemma 6 (Sine and Cosine). For θ ∈ [0, 2π[ we have

sin θ = (−1)⌊
θ
π ⌋ cos

(
(−1)⌊

2θ
π ⌋(

⌊
θ
π

⌋
π + π

2 − θ)
)

and (−1)⌊
2θ
π ⌋(

⌊
θ
π

⌋
π + π

2 − θ) ∈
[
0, π

2
]
.

Proof. This result is just a rewriting of :
if 0 ⩽ θ < π

2 then sin θ = cos( π
2 − θ) and ( π

2 − θ) ∈
[
0, π

2
]

if π
2 ⩽ θ < π then sin θ = cos(θ − π

2 ) and (θ − π
2 ) ∈

[
0, π

2
]

if π ⩽ θ < 3π
2 then sin θ = − cos( 3π

2 − θ) and ( 3π
2 − θ) ∈

[
0, π

2
]

if 3π
2 ⩽ θ < 2π then sin θ = − cos(θ − 3π

2 ) and (θ − 3π
2 ) ∈

[
0, π

2
]

◀

We define ϵ(θ) := (−1)⌊
θ
π ⌋ and ϕ(θ) := (−1)⌊

2θ
π ⌋(

⌊
θ
π

⌋
π + π

2 − θ). Remark that this means
that θ =

⌊
θ
π

⌋
π + π

2 − (−1)⌊
2θ
π ⌋ϕ(θ).

Let n, p, q be integers such that n is odd, n ⩾ 3 and 0 < q < p < n. By contradiction
suppose that there exists r0,rp and rq non-zero rationals such that

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n = 0.

By Lemma 6 we have

r0ϵ( 2(p−q)π
n ) cos(ϕ( 2(p−q)π

n )) + rpϵ( 2qπ
n ) cos(ϕ( 2qπ

n )) − rqϵ( 2pπ
n ) cos(ϕ( 2pπ

n )) = 0.

Which we reformulate as

r′
0 cos θ0 + r′

p cos θq + r′
q cos θp = 0,

with r′
0 := r0ϵ( 2(p−q)π

n ), r′
p := rpϵ( 2qπ

n ), r′
q := −rqϵ( 2pπ

n ) and θ0 := ϕ( 2(p−q)π
n ), θq := ϕ( 2qπ

n ),
θp := ϕ( 2pπ

n ).
Remark that for odd n and any 0 < k < n we have 2kπ

n /∈ {0, π
2 , π, 3π

2 }, so ϕ( 2kπ
n ) /∈ {0, π

2 }.
This implies that 0 < θ0, θp, θq < π

2 .
Moreover for odd n we have that θ0, θp, θq are not all equal. By contradiction if θ0 = θp =

θq we have that 2pπ
n , 2qπ

n , 2(p−q)π
n ∈ ϕ−1({θ0}) = { π

2 − θ0, π
2 + θ0, 3π

2 − θ0, 3π
2 + θ0} which is

impossible. So we have

r′
0 cos θ0 + r′

p cos θq + r′
q cos θp = 0,

with non-zero rationals r′
0, r′

p, r′
q and with three angles strictly between 0 and π

2 and not all
equal.

AUTOMATA 2021
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So we can apply Corollary 5 and we now have two cases:
1. {θ0, θp, θq} = { π

5 , π
3 , 2π

5 }
2. {θ0, θp, θq} = {θ, π

3 − θ, π
3 + θ} for some 0 < θ < π

6
Let us now show that both cases lead to a contradiction. In the first case we have that
{ 2pπ

n , 2qπ
n , 2(p−q)π

n } = {θ1, θ2, θ3} with

θ1 ∈ ϕ−1({ π
5 }) = { 3π

10 , 7π
10 , 13π

10 , 17π
10 }

θ2 ∈ ϕ−1({ π
3 }) = { π

6 , 5π
6 , 7π

6 , 11π
6 }

θ3 ∈ ϕ−1({ 2π
5 }) = { π

10 , 9π
10 , 11π

10 , 19π
10 }

This is impossible because by definition 2pπ
n = 2qπ

n + 2(p−q)π
n and we have no θ1, θ2, θ3 as

defined above such that one is the sum of the two other.
In the second case we have that {θ0, θp, θq} = {θ, π

3 − θ, π
3 + θ} for some 0 < θ < π

6 . Now
we use 2pπ

n = 2qπ
n + 2(p−q)π

n and by definition we have

2pπ
n =

⌊ 2p
n

⌋
π + π

2 − (−1)⌊
4p
n ⌋θp =

⌊ 2p
n

⌋
π + π

2 ± θp

2qπ
n =

⌊ 2q
n

⌋
π + π

2 − (−1)⌊
4q
n ⌋θq =

⌊ 2q
n

⌋
π + π

2 ± θq

2(p−q)π
n =

⌊
2(p−q)

n

⌋
π + π

2 − (−1)
⌊

4(p−q)
n

⌋
θ0 =

⌊
2(p−q)

n

⌋
π + π

2 ± θ0

By assembling these two we get

(
⌊ 2p

n

⌋
−

⌊ 2q
n

⌋
−

⌊
2(p−q)

n

⌋
− 1)π + π

2 = ±θp ± θ0 ± θq

And with {θ0, θp, θq} = {θ, π
3 − θ, π

3 − θ} we get

(±θp ± θ0 ± θq) ∈ {±3θ, ±θ, ± 2π
3 ± θ}

However this is impossible since for 0 < θ < π
6 , we have(

Zπ + π
2

)
∩ {±3θ, ±θ, ± 2π

3 ± θ} = ∅

By contradiction we proved that for odd n, any n-fold multigrid with non-zero rational
offsets is regular.

5.2 For even n

Let us now prove the first statement of Theorem 2 for even n which is: for any even n ⩾ 4
and any non-zero rational offset r ∈ Q ∩ ]0, 1[ the n-fold multigrid Gn(r) is regular. We
reformulate it using Proposition 3 as: for any even n ⩾ 4 and any non-zero rational offset
r ∈ Q ∩ ]0, 1[, for any 0 < q < p < n and any r0 ∈ Z − r, rp ∈ Z − r and rq ∈ Z − r we have

r0 sin (p−q)π
n + rp sin qπ

n − rq sin pπ
n ̸= 0.

We will prove this by contradiction. Let n ⩾ 4 be an even integer and r be a non-zero
rational offset. Suppose that there exists p, q, r0, rp, rq with p, q integers, 0 < q < p < n and
r0 ∈ Z − r, rp ∈ Z − r and rq ∈ Z − r, such that

r0 sin (p−q)π
n + rp sin qπ

n − rq sin pπ
n = 0.

We apply Lemma 6 with the fact that since 0 < pπ
n , qπ

n , (p−q)π
n < π we have ϵ( kπ

n ) = 1 and
ϕ( kπ

n ) = (−1)⌊
2k
n ⌋( π

2 − θ) for k ∈ {p, q, (p − q)}. We obtain

r0 cos θ0 + rp cos θq − rq cos θp = 0
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with θ0 = ϕ( (p−q)π
n ), θp = ϕ( pπ

n ) and θq = ϕ( qπ
n ). And since 0 < pπ

n , qπ
n , (p−q)π

n < π we have
θ0, θp, θq ∈

[
0, π

2
[
. In particular since n is even we can have pπ

n = π
2 which means that we can

have θp = 0 (and also for θ0 or θq). Note also that with n even (contrary to the odd case) we
can have θ0 = θp = θq, for example with n = 6, q = 2 and p = 4 we have θ0 = θp = θq = π

6 .
Which means that now we have a disjunction of four cases:
1. θ0 = θp = θq

2. 0 < θ0, θp, θq < π
2 and not all equal

3. two of the angles are 0 and the other one is not
4. one of the angles is 0 and the other two are not

The first case reduces to (r0 + rp − rq) cos θ0 = 0 and with θ0 ∈
[
0, π

2
[

we have cos θ0 ̸= 0
so (r0 + rp − rq) = 0 but this is impossible because (r0 + rp − rq) ∈ Z− r and 0 /∈ (Z− r) for
r ∈ (Q ∩ ]0, 1[).

The second case is the same as the one discussed in Subsection 5.1 above, the main thing
we used in the proof for odd n is the fact that 2pπ

n = 2qπ
n + 2(p−q)π

n but we have the same for
even n with pπ

n = qπ
n + (p−q)π

n . So the proof holds and this case is impossible.
The third case is impossible because for two angles to be 0, we need two of { pπ

n , qπ
n , (p−q)π

n }
to be π

2 but this is impossible with 0 < q < p < n.
The fourth case reduces to A cos a + B cos b = C with A, B, C ∈ Z − r ⊂ Q so we can

apply Theorem 4 and we get that either a = b = π
3 or a = π

5 and b = 2π
5 . The first subcase

is impossible because {θ0, θp, θq} = {0, π
3 } implies { pπ

n , qπ
n , (p−q)π

n } ⊆ { π
6 , π

2 , 5π
6 } and this is

incompatible with pπ
n = qπ

n + (p−q)π
n . The second subcase is also impossible for the same

reason as (up to interchanging θ0, θp and θq) we would have θ0 = 0, θp = π
5 and θq = 2π

5
which means that (p−q)π

n = π
2 , pπ

n ∈ { 3π
10 , 7π

10 } and qπ
n ∈ { π

10 , 9π
10 } and this is incompatible

with pπ
n = qπ

n + (p−q)π
n .

Note that only in the first case we use the fact that the offset are all the same r ∈ Q∩]0, 1[,
the three other case work for any non-zero rational offsets as for the odd cases. And actually
we could refine the condition because what is important here is that 0 /∈ (Z − γ0 − γq + γp)
with γ0, γp and γq the rational offsets. So for even n if we have a tuple of rational offsets
γ = (γi)0⩽i<n such that for any distinct i, j, k we have γi − γj − γk ̸= 0 then the multigrid
Gn(γ) is regular.
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Abstract
Boolean networks are discrete dynamical systems where each automaton has its own Boolean function
for computing its state according to the configuration of the network. The updating mode then
determines how the configuration of the network evolves over time. Many of updating modes from
the literature, including synchronous and asynchronous modes, can be defined as the composition
of elementary deterministic configuration updates, i.e., by functions mapping configurations of the
network. Nevertheless, alternative dynamics have been introduced using ad-hoc auxiliary objects,
such as that resulting from binary projections of Memory Boolean networks, or that resulting from
additional pseudo-states for Most Permissive Boolean networks. One may wonder whether these
latter dynamics can still be classified as updating modes of finite Boolean networks, or belong to a
different class of dynamical systems. In this paper, we study the extension of updating modes to the
composition of non-deterministic updates, i.e., mapping sets of finite configurations. We show that
the above dynamics can be expressed in this framework, enabling a better understanding of them as
updating modes of Boolean networks. More generally, we argue that non-deterministic updates pave
the way to a unifying framework for expressing complex updating modes, some of them enabling
transitions that cannot be computed with elementary and non-elementary deterministic updates.
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1 Introduction

Boolean networks (BNs) are formal dynamical systems composed of automata, each of them
having a Boolean state. A major difference between BNs and cellular automata (CAs) is that
each automaton of a BN follows its own rules for computing its next state depending on the
states of the other automata in the network. Consequently, whereas influences between cells
in a CA are structured homogeneously according to a cellular space, those between automata
in a BN are structured according to any directed graph. In this paper, only finite BNs are
considered, as it is generally the case in the literature, notably because BNs are mostly
viewed as both a real-world computational model and a real-world modeling framework.

The study of BNs led to fundamental results linking the network architecture (structure
of influences between automata) to the existence of fixed points and to the number of limit
cycles they can exhibit [1, 10, 4]. Notably, it is well known that such limit behaviors may
depend on the way automata update their state over time [3, 12, 2, 22]. This emphasizes the
importance of what is classically called the updating modes in the analyses of BNs.
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10:2 Non-Deterministic Updates of Boolean Networks

BNs are widely employed to model natural systems, with prominent applications in
biology. These applications inspired the definition of various updating modes aiming at
reflecting constraints related to the quantitative nature of the abstracted system, such as
reaction duration and influence thresholds. There is actually no consensus about one updating
mode that would be the most likely, the most representative of the biological reality. As a
consequence, the choice of this or that updating mode strongly depends on the problematics,
on the nature of the questions addressed. Thus, it remains essential to analyze the impact of
a wide range of updating modes with distinct features.

In this paper, we address the formalization of updating modes in the framework of BNs.
From a very general perspective, given a BN and one of its configurations, an updating mode
specify how to compute the possible next configurations (plural implying non-deterministic
systems).

A large majority of updating modes introduced so far can be expressed using deterministic
functions mapping the configurations of the network. This leads to elementary transitions,
as it is the case with synchronous (or parallel) and asynchronous [23] updating modes, which
may result in non-deterministic dynamics. These functions may also be composed, as in
block-sequential [25] and block-parallel [11] updating modes, generating non-elementary
transitions.

These compositions of deterministic updates, however, do not cover all the updating
modes introduced in the literature. Indeed, updating modes may also make use of parameters
that cannot a priori and intuitively be directly captured by these deterministic updates.
These parameters can represent kinds of delays or threshold effects of state changes. In this
paper, we focus on 3 examples of BN dynamics which have been recently introduced and
defined using ad-hoc formalizations:

Memory Boolean networks (MBNs) [14, 15] take into account some kind of delay for the
decrease of automata. They have been introduced by the means of a deterministic dynam-
ical system with non-binary configurations, whose updates are computed deterministically
from the BN and a memory vector, specifying the delay for each automaton.
Interval Boolean networks (IBNs) [7] account for a duration for updating an automaton.
The other automata can be updated until the former automaton eventually change of
state. They have been defined by an encoding as the fully-asynchronous updating of a
BN of dimension 2n. The dynamics of the original BN are then recovered by projection.
Most Permissive Boolean networks (MPBNs) [24] bring a formal abstraction of trajectories
of quantitative models which are compatible with the BN formalism: from an initial
configuration, if there is no trajectory where a given automaton is 1 (or 0), then, no
quantitative refinement of the model can increase (or decrease) the value of this automaton.
MPBNs have been defined by introducing additional states for automata to account for
their state change (increasing and decreasing). An automaton in one of these states can
be read non-deterministically as 0 or 1.

Overall, the definition of these BN dynamics involve either non-Boolean configurations,
projections of higher-dimension BN, or both. Importantly, they suggest that deterministic
updates are not expressive enough to capture specific dynamics. This is striking with IBNs
and MPBNs which can generate transitions that are neither elementary nor non-elementary
transitions, and thus predict trajectories that are impossible with the asynchronous updating
mode.

We show that these dynamics can all be expressed using Boolean configurations in a
simple generic framework, which extends the deterministic updates to non-deterministic
updates: functions mapping sets of configurations. In the case of MBNs, the obtained
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definition from the binary projections of their deterministic discrete dynamics actually help
to understand the generated dynamics: the transitions match with a particular subset of
elementary transitions, suggesting a simpler parameterization. In the case of IBNs and
MPBNs, the transitions extend the elementary and non-elementary transitions by considering
some delay for the state changes, and having different interpretation of how to “read” an
automaton in the course of state change. The obtained definitions suggest many variants for
generating sub-dynamics, similarly to the asynchronous mode which generates all elementary
transitions.

Thus, non-deterministic updates offer a unified yet simple framework for defining and
understanding BN updating modes with more expressivity than usual deterministic updates.
However, should any set update be considered as a BN updating mode? We propose an
argumentation for a reasonable updating mode in the last section, where we suggest that the
state change should always be justified by the application of a local function. This suggests
that the MP updating mode generates the largest set of transitions that fulfill this criterion.

Notations. The Boolean domain {0, 1} is denoted by B; the set {1, · · · , n} is denoted by
JnK. Given a finite domain A with a partial order ⪯, and a function h mapping elements
of A to A, for any k ∈ N>0, we write hk for h iterated k times. Whenever for any a ∈ A,
a ⪯ h(a), we write hω for the iteration of h until reaching a fixed point (in this paper, A is
often a power set with ⪯ being the subset relation).

2 Boolean networks and dynamics

A Boolean network (BN) of dimension n is specified by a function f : Bn → Bn mapping
Boolean vectors of dimension n. The components JnK of the BN are called automata. For
each automaton i ∈ JnK, fi : Bn → B is the i-th component of this function, that we call the
local function of automaton i. The 2n Boolean vectors of Bn are called the configurations of
the BN. In a configuration x ∈ Bn, xi is the state of automaton i.

Updating modes. Given a BN f of dimension n and one of its configurations x ∈ Bn,
an updating mode µ characterizes the possible evolutions of x with respect to f(x). The
dynamical system (f, µ) defines a binary transition relation between configurations of Bn

denoted by −→(f,µ) ⊆ Bn × Bn. This dynamical system can be represented by a directed
graph D(f,µ) = (Bn, −→(f,µ)). This graph is usually called the transition graph of (f, µ). The
reflexive and transitive closure of relation −→(f,µ), denoted by −→∗

(f,µ) can be defined as follows:
given two configurations x, y ∈ Bn, x −→∗

(f,µ) y if and only if x = y or there exists a path
from x to y in D(f,µ).

A deterministic updating mode ensures that, for any BN f of dimension n, each configur-
ation has at most one outgoing transition (∀x, y, z ∈ Bn, x −→(f,µ) y and x −→(f,µ) z only if
y = z). Otherwise, the updating mode is qualified as non-deterministic.

In the following, we consider the BN f to be fixed, and thus, for the sake of simplicity,
we omit the subscript f : the transition relation is denoted by −→µ and the transition graph
by Dµ.

Dynamical properties. A configuration x ∈ Bn is transient if there exists a configuration
y such that x −→∗

µ y and y ̸−→∗
µ x. Configurations that are not transient are called limit

configurations. Because n is finite, these configurations induce the terminal strongly connected
components of Dµ, called the limit sets of (f, µ). If there exists at least one path from a
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10:4 Non-Deterministic Updates of Boolean Networks

Table 1 Configurations, local functions ((fi)i∈J3K) and four updating functions (ϕ∅, ϕ1, ϕ{2,3},
and ϕJ3K) of Boolean network f presented in Example 2.

x = (x1, x2, x3) f1(x) f2(x) f3(x) ϕ∅(x) ϕ1(x) ϕ{2,3}(x) ϕJ3K(x) ≡ f(x)
(0, 0, 0) 1 0 1 (0, 0, 0) (1, 0, 0) (0, 0, 1) (1, 0, 1)
(0, 0, 1) 0 1 1 (0, 0, 1) (0, 0, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 0) 1 0 1 (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1)
(0, 1, 1) 0 1 1 (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 0) 1 0 0 (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 1) 0 0 0 (1, 0, 1) (0, 0, 1) (1, 0, 0) (0, 0, 0)
(1, 1, 0) 1 0 0 (1, 1, 0) (1, 1, 0) (1, 0, 0) (1, 0, 0)
(1, 1, 1) 0 0 0 (1, 1, 1) (0, 1, 1) (1, 0, 0) (0, 0, 0)

transient configuration to a limit set, this limit set is called an attractor of (f, µ) [8, 21].
The basin of attraction of an attractor A of (f, µ), denoted by B(A), is the sub-graph of
Dµ induced by the set of transient configurations x such that, for any limit configuration
y belonging to A, x −→∗

µ y. A limit set of cardinal 1, i.e. composed of a unique limit
configuration x is called a fixed point of (f, µ). A limit set of cardinal greater than 1 is called
a limit cycle of (f, µ).

3 Updating modes with deterministic updates

Elementary transitions

Let us consider a BN f of dimension n and one of its configurations x ∈ Bn. Whenever x and
f(x) differ by more than one component, one may define several ways to update x: either by
replacing it with f(x), i.e., applying simultaneously the local functions on every automata,
or by modifying the state of only a subset of automata. For each set of automata to update,
we obtain a deterministic function mapping configurations, that we refer to as an elementary
deterministic update:

▶ Definition 1. Given a BN f of dimension n and a set of automata W ⊆ JnK, ϕW : Bn → Bn

is an elementary deterministic update with

∀x ∈ Bn, ∀i ∈ JnK, ϕW (x)i =
{

fi(x) if i ∈ W ,
xi otherwise.

Whenever referring to singleton sets {i} with i ∈ JnK, we write ϕi instead of ϕ{i}. Notice
that ϕJnK = f .

▶ Example 2. Let us consider the BN f of dimension n = 3 with f(x) = f1(x) = ¬x3
f2(x) = ¬x1 ∧ x3
f3(x) = ¬x1

.

Table 1 shows four distinct updatings on its configurations. The first updating is ineffective
and consists in changing nothing. The second updating changes the state of automaton 1 by
application of ϕ1, the third one changes the states of both automata 2 and 3 by application
of ϕ{2,3}, and the fourth one changes the state of every automaton by application of ϕJ3K.

We can then define the notion of elementary transitions of a BN, that are the transitions
obtained by applying any elementary update on a non-empty subset of automata.
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Figure 1 Distinct possible block-sequential dynamics of BN f defined in Example 2: (left
panel) its parallel dynamics associated with ordered partition (J3K); (central panel) the block-
sequential dynamics associated with ({2, 3}, {1}); (right panel) the sequential dynamics associated
with ({3}, {1}, {2}).

▶ Definition 3. Given a BN f , its elementary transitions −→e ⊆ Bn × Bn are such that,
for all configurations x, y ∈ Bn, x −→e y if and only if there exists a non-empty subset of
automata W ⊆ JnK with y = ϕW (x).

Let us now define some classical deterministic and non-deterministic updating modes
from these elementary updates.

Examples of deterministic updating modes

The most direct updating mode is the application of f to the configuration x, resulting in
the configuration f(x), or, equivalently, ϕJnK(x):

▶ Definition 4. The synchronous (or parallel) updating mode of a BN f of dimension n

generates the transition relation →p ⊆ Bn × Bn such that, for all configurations x, y ∈ Bn,
x →p y if and only if y = ϕJnK(x).

Sequential updating modes are parameterized by a permutation of JnK, fixing an ordering
of elementary updates of single automata [13, 17, 9]. They can be generalized to block-
sequential updating modes [25, 3, 16], parameterized by a permutation of a partition of JnK:

▶ Definition 5. Given a BN f of dimension n and bs = (W1, · · · , Wp) an ordered partition
of JnK, the block-sequential updating mode generates the transition relation →bs ⊆ Bn × Bn

such that, for all configurations x, y ∈ Bn, x →bs y if and only if y = ϕWp
◦ · · · ϕW1(x).

Remark that the transitions of sequential and block-sequential modes may not be ele-
mentary. However, they always correspond to a path of elementary transitions: x →bs y only
if x →∗

e y.
Going further in generalization, one may consider deterministic updating modes as infinite

sequences of sets of automata, so that automata of a same subset execute their local function
in parallel while the subsets are iterated sequentially. Remark that any of these possible
deterministic updating modes will generate transitions corresponding to specific paths of
elementary transitions.

Examples of non-deterministic updating modes

It is important to notice that deterministic updates can lead to non-deterministic dynamics
by allowing different updates on a same configuration. The most obvious example is the
asynchronous mode1 consisting of all the elementary transitions.

1 The asynchronous mode is often referred to as general asynchronous in the systems biology modeling
community.
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Figure 2 Fully-asynchronous (left) and asynchronous (right) dynamics of BN f defined in
Example 2.

▶ Definition 6. The asynchronous updating mode of a BN f generates the transition relation
→a ⊆ Bn × Bn as →a = →e.

One of the most usual non-deterministic updating modes of BNs is the fully-asynchronous
mode2, where only one automaton is updated in a transition. It is largely employed for
the analysis of models of biological systems, arguing it enables capturing (some) behaviors
caused by different time scale for automata updates.

▶ Definition 7. The fully-asynchronous updating mode of a BN f generates the transition
relation →fa ⊆ Bn × Bn such that, for all configurations x, y ∈ Bn: x →fa y if and only if
there exists i ∈ JnK with y = ϕi(x).

Figure 2 shows the dynamics generated by the fully-asynchronous and asynchronous
updating modes on the BN of Example 2.

4 Non-deterministic updates as set updates

The updates considered so far are deterministic, and can thus be defined as functions mapping
configurations, i.e., of the form ϕ : Bn → Bn. As we have seen above, deterministic updates
can generate non-deterministic updating modes, by allowing different updates to be applied
on a same configuration.

Let us now extend to non-deterministic updates, that we model by functions mapping
sets of configurations, i.e., of the form Φ : 2Bn → 2Bn . We define Φ as a map from sets
of configurations to sets of configurations for enabling iterations and compositions of non-
deterministic updates. Nevertheless, we assume that for any X ⊆ Bn, Φ(X) =

⋃
x∈X Φ({x}):

one can define Φ only from all singleton configuration set. This restriction ensures that, for
any X ⊆ Bn, each configuration in the image set y ∈ Φ(X) can be computed from a singleton
set {x} for some x ∈ Bn. In the following, we call such updates set updates.

Starting from a singleton configuration set {x}, the iteration of set updates delineates
the domains of configurations the system can evolve to. Thus, set updates naturally define
transition relations between configurations:

▶ Definition 8. Given a set update function Φ for BNs of dimension n, the generated
transition relation is given by δ : (2Bn → 2Bn) → 2Bn×Bn with δ(Φ) = {(x, y) | x ∈ Bn, y ∈
Φ({x})}.

2 The fully-asynchronous mode is usually referred to as asynchronous in the system biology modeling
community.
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In contrast with deterministic updates, non-deterministic updating modes can be charac-
terized directly by set updates. Indeed, non-deterministic updating modes allow “superposing”
alternative updates to generate different transitions from a single configuration x, although
each of them is computed with a deterministic update. For instance, with one update
ϕ where ϕ(x) = y and another update ϕ′ where ϕ′(x) = y′ ̸= y. Now, let us imagine
an updating mode superposing two set updates, Φ and Φ′ where, for some configurations
x ∈ Bn, Φ({x}) \ Φ′({x}) ̸= ∅. One can then build a single set update Φ∗ such that
Φ∗(X) = Φ(X) ∪ Φ′(X). It results that δ(Φ∗) = δ(Φ) ∪ δ(Φ′), thus the updating mode can
be assimilated to Φ∗.

Finally, notice that limit sets of the generated dynamics δ(Φ) can be characterized as the
⊆-smallest sets of configurations X ⊆ Bn such that Φ(X) = X.

5 Updating modes selecting elementary transitions

With deterministic updates as building blocks, we have seen that one can define non-
deterministic updating modes by superposing different update functions. The resulting
transition relation is then the union of the transition relation generated by each individual
update (each of them giving a deterministic dynamics). Set updates offer an alternative way
to formalize the resulting dynamics, by directly defining the set of out-going transitions from
a given configuration. As we will illustrate with the memory updating mode below, this
enables a fine-grained selection of the elementary transitions which may then depend on the
configuration.

5.1 Asynchronous and fully-asynchronous updating modes
As a first illustration of set updates and how they can characterize updating modes, consider
the following set update for BNs of dimension n:

Φe(X) = {ϕW (x) | x ∈ X, ∅ ̸= W ⊆ JnK}.

This set update generates exactly all the elementary transitions: δ(Φe) = →e. Thus, Φe
characterizes the asynchronous updating mode. Similarly, let us now consider the following
set update:

Φfa(X) = {ϕi(x) | x ∈ X, i ∈ JnK}.

Remark that δ(Φfa) =→fa, i.e., Φfa characterizes the fully-asynchronous updating mode.

5.2 Memory updating mode
Until now, all the updating modes that have been discussed depend on deterministic updates
that are context free, which leads to deal with memoryless dynamical systems. In [14, 15]
have been introduced another model of BNs, called Memory Boolean networks (MBNs).
The first objective of MBNs is to capture the biologically relevant gene-protein BN model
introduced in [18], that builds on the following principles:

automata are split in two types: a half models genes, the other half models their associated
one-to-one proteins;
each protein has its own decay time: the number of time steps during which it remains
present in the cell after having been produced by the punctual expression of its associated
gene.
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In their original definition given below, MBNs of dimension n are BNs of dimension
n parameterized with a vector M ∈ Nn

>0, setting the maximal delay (called memory) for
the degradation of each automaton. Then, an automaton is considered active (Boolean 1)
whenever its delay to degradation is not 0. Formally, MBN are defined as follows:

▶ Definition 9. A Memory Boolean network of dimension n is the couple of a BN f of
dimension n and of a memory vector M = (M1, . . . , Mn) ∈ Nn

>0. The set of its configurations
is defined as X(f,M) = {(x, d) ∈ Bn × Nn | ∀i ∈ JnK, di ∈ {0, . . . , Mi}, xi = 0 ⇐⇒ di =
0 and xi = 1 ⇐⇒ di ∈ {1, . . . , Mi}}. The dynamical system ((f, M), p) is defined by the
transition graph D((f,M),p), with p the parallel updating mode, made of transitions based on
updating function ϕ⋆ : X(f,M) → X(f,M) depending on the memories such that:

∀(x, d), (y, d′) ∈ X(f,M), (x, d) −→((f,M),p) (y, d′) ⇐⇒ (y, d′) = ϕ⋆
JnK(x, d),

where ∀i ∈ JnK, ϕ⋆
JnK(x, d)i = (yi, d′

i), with:

d′
i =


0 if fi(x) = 0 and di = 0,
di − 1 if fi(x) = 0 and di ≥ 1,
Mi if fi(x) = 1,

and yi =
{

1 if d′
i ≥ 1,

fi(x) if d′
i = 0.

From this initial definition, it is easy to see that the dynamics of a MBN is deterministic
and operates on discrete configurations that are not Boolean anymore. But we will see that
MBNs enable to develop a new updating mode, called the memory updating mode, that
operates directly on Boolean configurations.

First, let us define α(x) the set of memory configurations corresponding to any binary
configuration x ∈ Bn, and conversely, β(d) the binary configuration corresponding to a
memory configuration d ∈ Nn. Notice that ∀x ∈ Bn, ∀d ∈ α(x), β(d) = x.

α(x) = {d ∈ Nn | xi = 0 ⇔ di = 0, xi = 1 ⇔ di ∈ JMiK},
∀i ∈ JnK β(d)i = min{di, 1}.

It appears that X(f,M) = {(β(d), d) | d ∈ Nn, ∀i ∈ JnK, di ∈ {0, . . . , Mi}}. Thus one can
reformulate the original definition by considering the deterministic parallel update of memory
configurations d ∈ Nn, and replacing x with β(d): an automaton i ∈ JnK is set to state Mi

whenever its local function fi is evaluated to 1 on the corresponding binary configuration
β(d); otherwise, its state is decreased by one, unless it is already 0. In particular, one can
define the deterministic memory update ϕ∗

M : Nn → Nn such that, for each i ∈ JnK,

ϕ∗
M(d)i =


0 if fi(β(d)) = 0 and di = 0,
di − 1 if fi(β(d)) = 0 and di ≥ 0,
Mi if fi(β(d)) = 1.

Let us now extend the above definitions to sets:
∀X ⊆ Bn, A(X) =

⋃
x∈X α(x);

∀D ⊆ Nn, B(D) = {β(d) | d ∈ D};
∀D ⊆ Nn, Φ∗

M(D) = {ϕ∗
M(d) | d ∈ D}.

The memory set update can then be defined for any set of configurations X ⊆ Bn by first
generating the set of corresponding memory configurations, then applying the deterministic
update on them, and finally converting them back to binary configurations:

ΦM(X) = B ◦ Φ∗
M ◦ A(X).
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Figure 3 Memory dynamics with M = {1} (left), interval dynamics (center), and MP dynamics
(right) of the BN of Example 2. In these two latter, the elementary transitions are dotted and loops
are omitted.

With this formulation, one can see that the memory updating mode, being the projection
of MBN configurations on their binary part, lead to non-deterministic dynamics. Indeed,
whenever a configuration gets mapped to several possible memory configurations, and
whenever for two of these configurations d and d′, there is an automaton i ∈ JnK where
ϕM(d)i = 0 and ϕM(d′)i ≥ 1. This can occur if and only if Mi ≥ 2, xi = 1, and fi(x) = 0.
Thus, the memory updating mode of BNs can equivalently be parameterized by a set of
automata M = {i ∈ JnK | Mi ≥ 2} and defined as the following set update:

ΦM(X) = {ϕW (x) | x ∈ X, W ⊆ JnK, W ⊇ {i ∈ JnK | i /∈ M ∨ fi(x) = 1}}.

Remark that this definition no longer relies on memory configurations in Nn. Overall,
the memory updating mode of BNs can be understood as a particular set of elementary
transitions: those where automata not in M or automata that can change from state 0 to 1
are always updated, together with any subset of the others (automata in M that can change
from state 1 to 0): automata in M that are decreasing are updated asynchronously, while the
others are updated in parallel.

Figure 3(left) gives the dynamics generated by the interval updating mode on the BN of
Example 2 with M = {1}.

6 Updating modes going beyond (non-)elementary transitions

BNs are widely used to model dynamics of biological systems, notably implying gene regulation.
Gene regulation is a dynamical biological process that involves numerous mechanisms
and entities among which some of them, like RNAs and proteins, have specific influences
that depend on their concentration. In other terms, the regulation process in its whole
admits significant quantitative parts. The question arises then of how faithful are Boolean
dynamics with respect to the quantitative dynamics. It has been recently underlined in [24]
that the elementary and non-elementary transitions of BNs are not complete enough to
capture particular quantitative trajectories. With a fixed logic, and starting from similar
configurations, the quantitative system shows that an automaton can eventually get activated,
whereas the asynchronous dynamics of the BN shows it is impossible.

In this section, we address the set update reformulation of two recently introduced
dynamics of BNs which generate transitions that are neither elementary nor non-elementary:
they result in set updates Φ where, for some BNs of dimension n and for some configurations
x ∈ Bn, there is k ∈ N such that there exists y ∈ Φk({x}) whereas x ̸→∗

e y.

AUTOMATA 2021
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6.1 Interval updating mode
From the concurrency theory, it is known that the execution of 1-bounded contextual Petri
nets corresponding to the asynchronous updating mode (known as steps semantics) may miss
some transitions that can be triggered when considering certain delay of state change [6, 5].
In [7] is proposed a translation of the interval semantics of Petri nets to BNs, showing it can
predict transitions that are neither elementary nor non-elementary transitions: configurations
that are not reachable with the asynchronous mode from a fixed initial configuration x

become reachable with Interval Boolean networks.
The main principle of the interval dynamics is to decompose the change of state of

an automaton, allowing interleaving the update of other automata. For instance, let us
assume that automaton i can change from state 0 to 1. In the interval dynamics, we register
that i will eventually change to state 1, and then allow the update of other automata, still
considering that i is in state 0. In [7], this is applied to any BN of dimension n by an
encoding with the fully-asynchronous dynamics of a BN of dimension 2n: each automaton is
split in a read and write automaton, where the write automaton register the next state of
the original automaton, and the read automaton keeps its current state and will eventually
copy the value of the write automaton. The dynamics of the original BN is then obtained by
projecting the configurations on the read automata.

We provide below an equivalent formulation as a composition of set updates. Essentially,
whenever an automaton i can change its state, we hold it and compute the possible state
changes of the automata different than i. Thus, during this evaluation, we have a growing
number of held automata, that we denote by L, waiting for their state to be updated. The
set update ΦInt,L extends a given set of configurations with the possible state change of
automata not in L. The function Φi/L(x) first computes all possible state changes by iterating
ΦInt,L∪{i} until a fixed point, and then apply the state change for the automaton i on all the
resulting configurations.

▶ Definition 10. The Interval set update ΦInt of a BN of dimension n is given by ΦInt = ΦInt,∅
where

ΦInt,L(X) = X ∪ {y ∈ Φi/L(x) | x ∈ X, i ∈ JnK, i /∈ L, fi(x) ̸= xi},

Φi/L(x) = {yi | y ∈ Φω
Int,L∪{i}({x})}.

The interval updating mode preserves the fixed points of f : for any configuration x ∈ Bn,
ΦInt({x}) = {x} if and only if f(x) = x. Moreover, one can prove that it includes all the
elementary transitions: for any configuration x ∈ Bn, Φe({x}) ⊆ ΦInt({x}).

▶ Example 11. Figure 3 shows the transitions generated by the interval updating mode on
the BN of Example 2. Notice that there is a path from 000 to 111, which does not exist
in the asynchronous dynamics (Figure 2). Indeed, let us partially compute ΦInt,∅({000}) =
{000} ∪ Φ1/∅(000) ∪ Φ3/∅(000).

Let us focus on the interval update of automaton 1 with Φ1/∅(000), which requires com-
puting all the iterations of ΦInt,{1}({000}). The first iteration gives ΦInt,{1}({000}) =
{000} ∪ Φ3/{1}(000) = {000, 001}, then Φ2

Int,{1}({000}) = {000, 001} ∪ Φ2/{1}(001) =
{000, 001, 011} = Φω

Int,{1}({000}).
Finally, we get Φ1/∅(000) = {100, 101, 111}. Thus, 111 ∈ ΦInt({000}).

6.2 Most Permissive updating mode
Most Permissive Boolean networks (MPBNs) have been designed to capture all automata
updates that could occur in any quantitative refinement of the BN. We will come back more
formally to this notion later in this section.
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The main feature of MPBNs is to abstract all the possible interaction thresholds between
automata. Consider the case whenever the state of an automaton i is used to compute the
state of two distinct automata j and k, and assume that i is increasing from 0: during its
increase, there are times when i may be high enough for trigger a state change of j but
not (yet) high enough for k. This can be illustrated on a concrete biological example, the
so-called incoherent feed-forward loop of type 3 [20]: a BN f of dimension 3 with

f1(x) = 1 f2(x) = x1 f3(x) = ¬x1 ∧ x2.

Starting from the configuration 000, the asynchronous updating mode predicts only the
following non-reflexive transitions: 000 →a 100 →a 110. Notice that in this case, the
interval updating mode results in the same transitions. However, it has been observed
experimentally [27] and in quantitative models [19, 26] that depending on reaction kinetics,
one can actually activate transiently the automata 3. Essentially, the idea is that during
the increase of the state of automaton 1, there is period of time where 1 is high enough so 2
can consider it active (x1 true) but 3 still considers it inactive (x1 false). Then, the state of
automaton 2 can increase, and so do the state of automaton 3. This activation of 3 cannot be
predicted with BN updating modes defined so far, whereas the logic encoded by f is correct.

Without introducing any parameter, MPBNs capture these additional dynamics by ac-
counting for all possible thresholds ordering, for all updates that can happen between a switch
of a Boolean state. In some sense, the MP updating mode abstracts both the quantitative
domain of automata and the duration of state changes. Their original definition [24] is based
on the introduction pseudo dynamic states, namely increasing and decreasing. An automaton
can change from 0 to increasing whenever it can interpret the state of the other automata
so that its local function is satisfied. Once in increasing state, it can change to the state 1
without any condition, or to the decreasing state whenever it can interpret the state of other
automata so that its local function is not satisfied. Whenever an automaton is in a dynamic
state, the automata can freely interpret its state as either 0 or 1. Remark that the possible
interpretations of the MP configurations always result in a hypercube (a set of automata
fixed to a Boolean value, and the others free).

Here, we show that the MP dynamics can be expressed in a more standard way by the
means of composition of set updates. A first stage consists in widening all the elementary
set updates to compute all the possible interpretations of automata changing of state. The
widening is defined using the function ∇ : 2Bn → 2Bn which computes the vertices of the
smallest hypercube containing the given set of configurations. For instance, ∇({01, 10}) =
{00, 01, 10, 11}. Given a set of automata W , the widening set update ΦW,∇ : 2Bn → 2Bn

applies this operator on the results of the elementary set update, or equivalently with the
fully-asynchronous set update, on the automata of W (Subsection 5.1). This widening is
re-iterated until a fixed point is reached. Then, a narrowing ΛW : 2Bn → 2Bn filters the
computed configurations X to retain only those where the states of automata in W can be
computed with f from X.

▶ Definition 12. The Most Permissive set update ΦMP of a BN of dimension n is given by

ΦMP(X) =
⋃

W ⊆JnK

ΛW ◦ Φω
W,∇(X),

where, for any X ⊆ Bn and any W ⊆ JnK:

∇(X) = {x ∈ Bn | ∀i ∈ JnK, ∃y ∈ X : xi = yi}, (1)
ΦW,∇(X) = ∇(X ∪ {ϕi(x) | x ∈ X, i ∈ W}), (2)

ΛW (X) = {x ∈ X | ∀i ∈ W, ∃y ∈ X : xi = fi(y)}. (3)
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▶ Example 13. Figure 3 shows the dynamics generated by the MP updating mode on the
BN of Example 2. With the BN f of the incoherent feed-forward loop introduced at the
beginning of Subsection 6.2 page 10:11, we obtain:

Φ{1,2,3},∇({000}) = ∇({000, 100}) = {000, 100},
Φ2

{1,2,3},∇({000}) = ∇({000, 100} ∪ {110}) = {000, 100, 010, 110},
Φ3

{1,2,3},∇({000}) = ∇({000, 1000, 010, 110} ∪ {011}) = Bn,
Λ{1,2,3}(Bn) = {100, 101, 110, 111}.

Thus, 111 ∈ ΦMP({000}), whereas 000 ̸→∗
e 111 and 111 /∈ ΦInt({000}).

Let us now list some basic properties of the MP updating mode:
1. MP preserves the fixed points of f : for any configuration x ∈ Bn, f(x) = x if and only if

ΦMP(x) = {x}.
2. MP subsumes elementary transitions: →e ⊆ δ(ΦMP).
3. MP transition relation is transitive and reflexive: ΦMP = Φ2

MP.
4. (by 2 and 3) MP transition relation subsumes non-elementary transitions: →∗

e ⊆ δ(ΦMP).
5. (by 4 and the example) there exist BNs f such that the MP transition relation is strictly

larger than non-elementary transitions, i.e., there exist x, y ∈ Bn such that y ∈ ΦMP({x})
but x ̸→∗

e y.

In [24], it has been demonstrated that MP dynamics of a BN f forms a correct abstraction
of the dynamics of any quantitative model being a refinement of f . A quantitative model F

can be defined as a function mapping discrete or continuous configurations to the derivative
of the state of automata. Then, F is a refinement of f if and only if the derivative of
automaton i is strictly positive (resp. negative) in a given quantitative configuration z only
if there is a binarization z̃ of z so that fi(z̃) = 1 (resp. 0). It has also been proven to be
minimal for the abstraction of asynchronous discrete models. Moreover, the complexity for
deciding the existence of a path between two configurations as well as deciding whether a
configuration belongs to a limit set is respectively in PNP and in coNPcoNP in general and in
P and in coNP for locally monotonic BNs (each local function is monotonic with respect to
a specific component-wise ordering of configurations), in contrast with the other updating
modes where these problems are PSPACE-complete.

7 Discussion

By extending to non-deterministic updates modeled as set updates, we can reformulate
in a unified manner a range of BN dynamics introduced in the literature with ad-hoc
definitions, and for which the usual deterministic updates seem not expressive enough. These
reformulations bring a better understanding and comparison of dynamics as more classical
BN updating modes. Moreover, they allow envisioning new families of updating modes
as variations of the one presented here. For instance, the given MP set update allows to
readily define restrictions of it: similarly to the block-sequential updating mode, one could
parameterize the MP set update to only consider particular sequences of sets of automata
to update. One could also consider different narrowing operators and different manners to
compose them with the widening, with the goal of reducing the set of generated transitions.

On the one hand, these set updates foster the definitions of totally new kinds of updating
modes. On the other hand, they raise the question of a potential upper limit on which
transitions could be considered as valid, or at least reasonable.
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On reasonable set updates

Of course, from a purely theoretical standpoint, any set update which is mathematically
correct is reasonable but, if we consider set updates in a context of modeling, some constraints
need to be taken in account. This second standpoint is the one on which is based the
following discussion. Indeed, as evoked in the introduction of this paper, BNs are a classical
mathematical model in systems biology. They are notably widely used to model genetic
regulation networks, in which their use rests for instance on the fact that their limit sets
model real observable “structures” such as differentiated cellular types (fixed points), or
specific biological paces (limit cycles). In this sense, a basic criterion would be that an
updating mode for a BN f is admissible only if the fixed points of f are fixed points of the
generated dynamics as well. This criterion would allow capturing the fundamental property
of fixed point stability of dynamical system theory. For instance, let us consider the set
update Φ⊤(X) = Bn: clearly, the set of fixed points of the generated dynamical system is
always empty, and thus do not include those of f whenever f has at least one fixed point.
Therefore, such a set update does not appear satisfying.

Now, let us discuss about set updates which would give sets larger than MP for some
singleton configuration set {x}. First, what about defining a widening operator larger than
∇? For any set of automata W and for any configuration x, remark that Φω

W,∇({x}) = Y

is the smallest hypercube containing x verifying for each automata i ∈ W that for any
configuration y ∈ Y , if fi(y) ̸= xi, then there exists a configuration z ∈ Y with zi ̸= xi.
Thus, an automaton in W is either fixed to its state in x, or it has been computed with
its local function from at least one configuration from a smaller hypercube. Therefore, a
widening operator ∇′ verifying for some X ⊆ Bn, ∇′(X) ⊋ ∇(X) implies that the state of
at least one configuration is not computed using f on X. Now, what about a less stringent
narrowing operator. Let us consider a configuration y ∈ ΦW,∇({x}) = Y for some set of
automata W , but y /∈ ΛW (Y ). This implies that there exists an automaton i ∈ W such that
∀z ∈ Y , yi ̸= fi(z), i.e., yi cannot be computed by fi from X. Overall, a set update giving
configuration sets strictly larger than the MP update implies that for some configurations,
the state of at least one automaton is not computed using its local function.

Simulations by deterministic updates

A perspective of the work presented in this paper focuses on simulations of BNs evolving
with non-deterministic updates by BNs evolving with deterministic updates. A first natural
way is by following a classical determinization of the dynamics. Indeed, one can encode any
set of configurations in Bn as one configuration in B2n . Let us consider such an encoding
c : 2Bn → B2n where, for all x ∈ Bn, c(X)x = 1 if x ∈ X, otherwise c(X)x = 0 (we slightly
abuse notations here, by specifying a vector index by its binary representation). Now, it
is clear that for any set update Φ : 2Bn → 2Bn of a BN f of dimension n, one can define a
BN g such that for all sets of configurations X ⊆ Bn, g(c(X)) = c(Φ(X)). This encoding is
complete in the sense that any transition generated by Φ is simulated in (g, p). But these
simulations are nothing else but a brute-force encoding in which we get rid of the transition
relation by increasing exponentially the state space. Moreover, with this deterministic
encoding, the structure of the transition relation of (f, µ = Φ) is lost, which make much more
difficult characterizing dynamical features of (f, µ) such as its limit sets for instance.

Actually, a fundamental matter here lies in the concept of simulation at stake here:
we are interested in intrinsic simulations which go far beyond the classical concepts of
encoding or simulation. Indeed, intrinsic simulations aim at conserving dynamical structures
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in addition to operated computations. So, one of the first question to answer would consist
in defining formally different kinds of intrinsic simulations. Nevertheless, firstly, consider the
following intrinsic simulation: a dynamical system (f, µ) simulates another (g, µ′) if D(g,µ′) is
a subgraph of D(f,µ). With this rather simple definition, it is direct to state that, with a and
M the asynchronous and memory updating modes respectively, for any BN f , (f, a) simulates
(f, M). Some natural questions related to BNs updated with memory are the following:

Are there BNs whose dynamics obtained according to M remains deterministic, whatever
M?
If so, what are their properties and what are the equivalent deterministic updating modes?

To go further, consider the MP updating mode. It is direct that (f, µ) does not simulate
(f, MP), except for very particular f . Let us now consider a more general intrinsic simulation:
a dynamical system (f, µ) simulates another (g, µ′) if D(g,µ′) is a graph obtained from D(f,µ)
thanks to edge deletions, and vertex shortcuts. A lot of promising questions arise from this,
in particular related to M and MP updating modes, among which for instance:

Let per be a deterministic periodic updating mode. How can (f, M) be simulated by
(g, per)? The answer is known for per = p [14], but it seems pertinent to find a general-
ization to deterministic periodic updating modes, and even more general deterministic
updating modes.
Intuitively, any (f, MP) might be simulated by (g, a), where f and g are BNs and the
dimension of g is greater than that of f . But how many automata need to be added to g

depending on the dimension of f?
All answers, even partial or negative, will bring a better understanding of updating modes
and BNs, which would lead to pertinent further development in both BN theory and their
application in systems biology.
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Abstract
We show that a cellular automaton on a mixing subshift of finite type is a von Neumann regular
element in the semigroup of cellular automata if and only if it is split epic onto its image in the
category of sofic shifts and block maps. It follows from [S.-Törmä, 2015] that von Neumann regularity
is decidable condition, and we decide it for all elementary CA.
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1 Introduction

The von Neumann regular elements – elements a having a weak inverse b such that aba = a

– of cellular automaton (CA) semigroups are studied in [1]. We show that in the context
of cellular automata on mixing subshifts of finite type, von Neumann regularity coincides
with the notion of split epicness onto the image, another generalized invertibility notion from
category theory.

Question 1 of [1] asks which of the so-called elementary cellular automata (ECA) are von
Neumann regular. They determine this for all ECA except ones equivalent to those with
numbers 6, 7, 9, 23, 27, 28, 33, 41, 57, 58 and 77, see the next section for the definition of
the numbering scheme.

What makes this question interesting is that von Neumann regularity of one-dimensional
cellular automata is not obviously1 decidable – clearly checking if g is a weak inverse is
semidecidable, but it is not immediately clear how to semidecide the nonexistence of a weak
inverse. However, split epicness has been studied previously in [9], and in particular it was
shown there that split epicness of a morphism between two sofic shifts is a decidable condition.
This means Question 1 of [1] can in theory be decided algorithmically.

As the actual bound stated in [9] is beyond astronomical, it is an interesting question
whether the method succeeds in actually deciding each case. With a combination of this
method, computer and manual searches, and some ad hoc tricks, we prove that ECA 6, 7,
23, 33, 57 and 77 are von Neumann regular, while 9, 27, 28, 41 and 58 are not, answering
the remaining cases of Question 1 of [1].

1 Specifically, many things about “one-step behavior” of cellular automata (like surjectivity and injectivity)
are decidable using automata theory, or the decidability of the MSO of the natural numbers under
successor. No decision algorithm for split epicness using these methods is known.
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The von Neumann regular CA on this list have weak inverses of radius at most five.
Non-regularity is proved in each case by looking at eventually periodic points of eventual
period one. The non-regularity of all but ECA 9 and ECA 28 can be proved by simply
observing that their images are proper sofic, though we also explain why they are not regular
using the method of [9].

2 Preliminaries

The full shift is ΣZ where Σ is a finite alphabet, carrying the product topology, It is a
dynamical system under the shift σ(x)i = xi+1. Its subsystems (closed shift-invariant
subsets) are called subshifts. A cellular automaton (CA) is a shift-commuting continuous
function f : X → X on a subshift X. The cellular automata on a subshift X form a monoid
End(X). A CA f is reversible if ∃g : f ◦ g = g ◦ f = id.

A cellular automaton has a local rule, that is, there exists a radius r ∈ N such that
f(x)i is determined by x|[i−r,i+r] for all x ∈ X (and does not depend on i). The elementary
cellular automata (ECA) are the CA on the binary full shift {0, 1}Z which can be defined with
radius 1. There is a numbering scheme for such CA: If n ∈ [0, 255] has base 2 representation
b7b6...b1b0, then ECA number n is the one mapping

f(x)i = 1 ⇐⇒ b(x[i−1,i+1])2 = 1

where (x[i−1,i+1])2 is the number represented by x[i−1,i+1] in base 2. This numbering scheme
is from [11].

We recall [1, Definition 3]: define maps R, S : {0, 1}Z → {0, 1}Z by the formulas R(x)i =
x−i and S(x)i = 1 − xi. Two cellular automata f, g ∈ End({0, 1}Z) are equivalent if
f ∈ ⟨S⟩◦g ◦⟨S⟩∪⟨S⟩◦R◦g ◦R◦⟨S⟩, where ◦ denotes function composition and ⟨S⟩ = {id, S}.

The usage of base 10 in this notation is standard, and many CA researchers remember
ECA by these numbers. However, for clarity we switch to hexadecimal notation from radius
2 upward.

A subshift can be defined by forbidding a set of finite words from appearing as subwords
of its points (which themselves are infinite words), and this is in fact a characterization of
subshifts. A subshift is of finite type or SFT if it can be defined by a finite set of forbidden
patterns, and sofic if it can be defined by a forbidden regular language in the sense of
automata and formal languages.

The language L(X) of a subshift X is the set of finite words that appear in its points.
An SFT X is mixing if L = L(X) satisfies ∃m : ∀u, v ∈ L : ∃w ∈ L : |w| = m ∧ uwv ∈ L.

If u ∈ A∗ is a finite word, we write ∞u∞ for the |u|-periodic point (i.e. fixed point of
σ|u|) in AZ whose subword at {0, 1, ..., |u| − 1} is equal to u.

See standard references for more information on symbolic dynamics [6] or automata
theory [4].

3 Split epicness and von Neumann regularity

In this section, we show split epicness and von Neumann regularity are equivalent concepts
on mixing SFTs. On the full shift, this is simply a matter of defining these terms.

If S is a semigroup, then a ∈ S is (von Neumann) regular if ∃b ∈ S : aba = a ∧ bab = b.
We say b is a generalized inverse of a. If aba = a, then b is a weak generalized inverse of a.

▶ Lemma 1. If a has a weak generalized inverse, then it has a generalized inverse and thus
is regular.
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Proof. If aba = a, then letting c = bab, we have aca = ababa = aba = a and cac = bababab =
babab = bab = c. ◀

If C is a category, a morphism f : X → Y is split epic if there is a morphism g : Y → X

such that f ◦ g = idY . Such a g is called a right inverse or a section.
Note that in general category-theoretic concepts depend on the particular category at

hand, but if C is a full subcategory of D (meaning a subcategory induced by a subclass of
the objects, by taking all the morphisms between them), then split epicness for a morphism
f : X → Y where X, Y are objects of C means the same in both.

We are in particular interested in the category K3 (in the naming scheme of [9]) with sofic
shifts as objects, and block maps, i.e. shift-commuting continuous functions f : X → Y as
morphisms. More generally, morphisms between general subshifts have the same definition.

The following theorem is essentially only a matter of translating terminology, and works
in many concrete categories.

▶ Theorem 2. Let X be a subshift, and f : X → X a cellular automaton. Then the following
are equivalent:

f : X → f(X) has a right inverse g : f(X) → X which can be extended to a morphism
h : X → X such that h|f(X) = g,
f is regular as an element of End(X).

Proof. Suppose first that f is regular, and h ∈ End(X) satisfies fhf = f and hfh = h.
Then the restriction g = h|f(X) : f(X) → X is still shift-commuting and continuous, and
∀x : fg(f(x)) = f(x) implies that for all y ∈ f(X), fg(y) = y, i.e. g is a right inverse for the
codomain restriction f : X → f(X) and it extends to the map h : X → X by definition.

Suppose then that fg = idf(X) for some g : f(X) → X, as a right inverse of the codomain
restriction f : X → f(X). Let h : X → X be such that h|f(X) = g, which exists by
assumption. Then fh(f(x)) = fg(f(x)) = f(x). Thus f is regular, and hfh is a generalized
inverse for it. ◀

Note that when X is a full shift, extending morphisms is trivial: simply fill in the local
rule arbitrarily. The Extension Lemma generalizes this idea to mixing SFTs:

▶ Theorem 3. Let X be a mixing SFT, and f : X → X a cellular automaton. Then the
following are equivalent:

f : X → f(X) is split epic in K3.
f is regular as an element of End(X).

Proof. It is enough to show that any right inverse g : f(X) → X can be extended to
h : X → X such that h|f(X) = g. By the Extension Lemma [6], it is enough to show the
“X ↘ X condition” [6], which means that for every point x ∈ X with minimal period p,
there is a point y ∈ X with minimal period dividing p. This holds trivially. ◀

Theorem 2 clearly implies that regularity respects equivalence (this is not difficult to
obtain directly from the definition either).

▶ Corollary 4. if f, g ∈ End({0, 1}Z) are equivalent, then f is regular if and only if g is
regular.
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4 Deciding split epicness

We recall the characterization of split epicness [9, Theorem 1]. This is Theorem 7 below.

▶ Definition 5. Let X, Y be subshifts and let f : X → Y be a morphism. Define

Pp(Y ) = {u ∈ L(Y ) | ∞u∞ ∈ Y, |u| ≤ p}.

We say f satisfies the strong p-periodic point condition if there exists a length-preserving
function G : Pp(Y ) → L(X) such that for all u, v ∈ Pp(Y ) and w ∈ L(Y ) with ∞u.wv∞ ∈ Y ,
there exists an f-preimage for ∞u.wv∞ of the form ∞G(u)w′.w′′w′′′G(v)∞ ∈ X where |u|
divides |w′|, |v| divides |w′′′| and |w| = |w′′|. The strong periodic point condition is that the
strong p-periodic point condition holds for all p ∈ N.

Note that G is simply a notation for a choice of periodic preimage for each periodic point,
and the condition simply states that periodic tails of eventually periodic points eventually
map according to G.

The strong periodic point condition is an obvious necessary condition for having a right
inverse, as the right inverse must consistently pick preimages for periodic points, and they
must satisfy these properties. Let us show the XOR CA with neighborhood {0, 1} is not
regular using this method – this is clear from the fact it is surjective, and from the fact there
are 1-periodic points with no inverse of period 1, but it also neatly illustrates the strong
periodic point method.

▶ Example 6. The CA f : {0, 1}Z → {0, 1}Z defined by

f(x)i = 1 ⇐⇒ xi + xi+1 ≡ 1 mod 2

is not regular. To see this, consider the strong p-periodic point condition for p = 1. Since
f(0Z) = f(1Z) = 0Z, the point 0Z has two preimages, and we must have either G(0) = 0
or G(0) = 1. It is enough to show that neither choice of a = G(0) is consistent, i.e. there
is a point y which is in the image of f such that y has no preimage that is left and right
asymptotic to aZ. This is shown by considering the point

y = ...0000001000000...

(which is in the image of f since f is surjective). It has two preimages, and the one
left-asymptotic to aZ is right-asymptotic to (1 − a)Z. #

In [9, Theorem 1], it is shown that the strong periodic point condition actually characterizes
split epicness, in the case when X is an SFT and Y is a sofic shift.

▶ Theorem 7. Given two objects X ⊂ SZ and Y ⊂ RZ and a morphism f : X → Y in K3,
it is decidable whether f is split epic. If X is an SFT, split epicness is equivalent to the
strong periodic point condition.

We note that Definition 5 is equivalent to a variant of it where G is only defined on
Lyndon words [7], i.e. lexicographically minimal representative words of periodic orbits: if
G is defined on those, it can be extended to all of Pp in an obvious way, and the condition
being satisfied by minimal representatives implies it for all eventually periodic points.
▶ Remark 8. It is observed in [1, Theorem 1] that if f : X → Y is split epic, then every
periodic point in Y must have a preimage of the same period in X – this is a special case of
the above, and could thus be called the weak periodic point condition. In [9, Example 5],
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an example is given of morphism between mixing SFTs which satisfies the weak periodic
point condition but not the strong one. We have not attempted to construct an example of
a CA on a full shift which has this property onto its image, and we did not check whether
any non-regular ECA satisfies it. In [1, Theorem 4], for full shifts on finite groups, the weak
periodic point condition is shown to be equivalent to split epicness (when CA are considered
to be morphisms onto their image). In the context of CA on Z2, there is no useful strong
periodic point condition in the sense that split epicness is undecidable, see Corollary 13.

In the proof of Theorem 7 in [9], decidability is obtained from giving a bound on the
radius of a minimal inverse, and a very large one is given, as we were only interested in the
theoretical decidability result. The method is, however, quite reasonable in practise:

To semidecide non-(split epicness), look at periodic points one by one, and try out
different possible choices for their preimages. Check by automata-theoretic methods (or
“by inspection”) which of these are consistent in the sense of Definition 5.
To semidecide split epicness, invent a right inverse – note that here we can use the other
semialgorithm (running in parallel) as a tool, as it tells us more and more information
about how the right inverse must behave on periodic points, which tells us more and
more values of the local rule.

One of these is guaranteed to finish eventually by [9].
Proposition 10 below is a slight generalization of [9, Proposition 1]. We give a proof here,

as the proof in [9] unnecessarily applies a more difficult result of S. Taati (and thus needs
the additional assumption of “mixing”). This Proposition allows us to obtain non-regularity
of all of the non-regular ECA considered here apart from ECA 9 and 28, though we do also
provide a strong periodic point condition argument for all the non-regular ECA.

▶ Lemma 9. If X is an SFT and f : X → X is idempotent, i.e. f2 = f , then f(X) is an
SFT.

Proof. Clearly x ∈ f(X) ⇐⇒ f(x) = x, which is an SFT condition. ◀

▶ Proposition 10. If X is an SFT and f : X → X is regular, then f(X) is of finite type.

Proof. Let g : X → X be a weak inverse. Then g ◦ f : X → X is idempotent, so g(f(X)) is
an SFT. Note that the domain-codomain restriction g|f(X),g(f(X)) : f(X) → g(f(X)) is a
conjugacy between f(X) and g(f(X)): its two-sided inverse is f |g(f(X)) → f(X) by a direct
computation. Thus f(X) is also an SFT. ◀

We also mention another condition, although it is not applicable in the proofs.

▶ Lemma 11. Let X be a subshift with dense periodic points and f : X → X a cellular
automaton. If f is injective, it is surjective.

Proof. The set Xp = {x ∈ X | σp(x) = x} satisfies f(Xp) ⊂ Xp. Since f is injective and Xp

is finite, we must have f(Xp) = Xp. Thus f(X) is a closed set containing the periodic points.
If periodic points are dense, f(X) = X. ◀

We are interested mainly in mixing SFTs, where periodic points are easily seen to be
dense. We remark in passing that in the case of mixing SFTs, the previous lemma can also
be proved with an entropy argument: An injective CA cannot have a diamond2 when seen as

2 This means a pair of distinct words whose long prefixes and suffixes agree, and which the local rule
maps the same way, see [6].
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a block map, so [6, Theorem 8.1.16] shows that the entropy of the image f(X) of an injective
CA is equal to the entropy of X. By [6, Corollary 4.4.9], X is entropy minimal, that is, has
no proper subshifts of the same entropy, and it follows that f(X) = X.

▶ Proposition 12. Let X be a mixing SFT and f : X → X a surjective cellular automaton.
Then f is injective if and only if it is regular.

Proof. Suppose f is a surjective CA on a mixing SFT. If it is also injective, it is thus bijective,
thus reversible, thus regular. Conversely, let f be surjective and regular, and let g : X → X

be a weak generalized inverse. Then g is injective, so it is surjective by the previous lemma.
Thus f must be bijective as well. ◀

More generally, the previous proposition works on surjunctive subshifts in the sense of [2,
Exercise 3.29], i.e., subshifts where injective cellular automata are surjective. In particular
this is the case for full shifts on surjunctive groups [3, 10] such as abelian ones. Since
injectivity is undecidable for surjective CA on Zd, d ≥ 2 by [5], we obtain the following
corollary.

▶ Corollary 13. Given a surjective CA f : ΣZ2 → ΣZ2 , it is undecidable whether f is split
epic.

5 Von Neumann regularity of elementary CA

▶ Theorem 14. The elementary CA with numbers 6, 7, 23, 33, 57 and 77 are regular.

Proof. It is a finite case analysis to verify that the CA defined in Figure 1, Figure 2, Figure 3,
Figure 4, Figure 5 and Figure 6 in Appendix A are generalized inverses of the respective CA.
Code for verifying this and discussion on how such rules were found is included in the arXiv
version [8]. ◀

▶ Theorem 15. The elementary CA with numbers 9, 27, 28, 41 and 58 are not regular.

Proof. See the lemmas below. ◀

▶ Lemma 16. The elementary CA 9 is not regular.

Proof. Let f be the ECA 9, i.e. f(x)i = 1 ⇐⇒ x[i−1,i+1] ∈ {000, 011}. The image X of f

is the SFT with forbidden patterns 1011, 10101, 11001, 11000011 and 110000101. One can
verify3 this with standard automata-theoretic methods.

We have f(0Z) = 1Z and f(1Z) = 0Z, so if g : X → {0, 1}Z is a right inverse for f , then
g(0Z) = 1Z. Consider now the configuration

x = ...0000011.00000... ∈ X

where coordinate 0 is to the left of the decimal point (i.e. the rightmost 1 or the word 11).
Let g(x) = y. Then yi = 1 for all large enough i and yi = 0 for some i. Let n be maximal
such that yn = 0. Then y[n,n+2] = 011 so f(y)n+1 = 1 and f(y)n+1+i = 0 for all i ≥ 1. Since
f(y) = x, we must have n = −1 and since {000, 011} does not contain a word of the form
a01, it follows that f(y)−1 = 0 ̸= x−1, a contradiction. ◀

3 For verifying only the proof of this lemma, i.e. the non-regularity of ECA 9, it is enough to show that
the point x below is in X, that is, it has some preimage (...0100100001001001... is one). Knowing the
SFT is, however, essential for finding such an argument, so we argue in this way, again to illustrate the
method.
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The proof shows that the CA does not have the strong periodic point property for p = 1.
In general, for fixed p one can use automata-theory to decide whether it holds up to that p,
though here (and in all other proofs) we found the contradictions by hand before we had to
worry about actually implementing this.

▶ Lemma 17. The ECA 27 is not regular.

Proof. Let f be the ECA 27, i.e. f(x)i = 1 ⇐⇒ x[i−1,i+1] ∈ {000, 001, 011, 100}. The image
X of f is proper sofic, we omit the automaton and argue directly in terms of configurations.
Proposition 10 directly shows that the CA can not be regular in the case when the image is
proper sofic, but we give a direct proof to illustrate the method (and so that we do not have
to provide a proof that the image is sofic, which is straightforward but lengthy).

Again, we will see that this CA does not satisfy the strong periodic point condition for
p = 1. Observe that f(1Z) = 0Z and f(0Z) = 1Z so if g is a right inverse from the image to
{0, 1}Z, then g(0Z) = 1Z and g(1Z) = 0Z. Let y = ...000001100.10101010... and observe that

f(y) = f(...000001100.10101010...) =
...111111011.00000000... = x ∈ X.

We now reason similarly as in Lemma 16. We have g(x)i = 1 for all large enough i, and
if n is maximal such that g(x)n = 0, then f(g(x))n+1 = 1 and f(g(x))n+1+i = 0 for all i ≥ 1,
so again necessarily n = −1. A short combinatorial analysis shows that no continuation to
the left from n produces f(g(x))n = 1 and f(g(x))n−1 = 0, that is, the image of g has no
possible continuation up to coordinate −1. ◀

▶ Lemma 18. The ECA 28 is not regular.

Proof. Let f be the ECA 28, i.e. f(x)i = 1 ⇐⇒ x[i−1,i+1] ∈ {010, 011, 100}. The image X

of f is the SFT with the single forbidden pattern 111.
We have f(0Z) = f(1Z) = 0Z. The point

...0000.10000... ∈ X

contradicts the choice g(0Z) = 0Z by a similar analysis as in previous theorems; similarly as
in Example 6, computing the preimage from right to left, the asymptotic type necessarily
changes to 1s. Thus we must have g(0Z) = 1Z.

On the other hand, if g(0Z) = 1Z, then going from right to left, we cannot find a preimage
for

...0001.10000... ∈ X.

(Alternatively, going from left to right, the asymptotic type necessarily changes to 0s or never
becomes 1-periodic.)

It follows that g(0Z) has no consistent possible choice, a contradiction. ◀

▶ Lemma 19. The ECA 41 is not regular.

Proof. Let f be the ECA 41, i.e. f(x)i = 1 ⇐⇒ x[i−1,i+1] ∈ {000, 011, 101}. The image X

of f is proper sofic, we omit the automaton and argue directly in terms of configurations.
Again Proposition 10 would also yield the result.
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Again, we will see that this CA does not satisfy the strong periodic point condition for
p = 1. Observe that f(1Z) = 0Z and f(0Z) = 1Z so if g is a right inverse from the image to
{0, 1}Z, then g(0Z) = 1Z and g(1Z) = 0Z. Let y = ...00000001.00100100... so

f(y) = f(...00000001.00100100...) =
...11111100.00000000... = x ∈ X.

In the usual way (right to left), we verify that x has no preimage that is right asymptotic to
1Z, obtaining a contradiction. ◀

▶ Lemma 20. The ECA 58 is not regular.

Proof. Let f be the ECA 58, i.e. f(x)i = 1 ⇐⇒ x[i−1,i+1] ∈ {001, 011, 100, 101}. The
image X of f is proper sofic, we omit the automaton. Again Proposition 10 would also yield
the result.

The point 0Z has two 1-periodic preimages. We show neither choice satisfies the strong
periodic point condition: if g(0Z) = 1Z, then g cannot give a preimage for

...0000000.10000000...

If g(0Z) = 0Z, then it cannot give a preimage for

...0000000.11000000...

It is easy to find preimages for these two configurations, however, so ECA 58 is not regular. ◀
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A Weak generalized inverses
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Figure 1 A weak generalized inverse of ECA 6. The rules are applied row by row, and on each
row from left to right. An empty box denotes a wildcard symbol, and the first rule to apply is used.
The rightmost coordinate is not actually read by any rule. This is the radius 5 binary CA with the
hex number

00000000000000000000FFF3000000FF0000FFFF000000F00000FF000000FFFF
00000000000000000000FFF30000FFFF0000FFFF0000FFFF0000FFF00000FFFF
00000000000000000000FFF3000000FF0000FFFF000000F00000FF000000FFFF
00000000000000000000FFF30000FFFF0000FFFF000000FF0000FFF30000FFFF
00000000000000000000FFF3000000FF0000FFFF000000F00000FF000000FFFF
00000000000000000000FFF30000FFFF0000FFFF0000FFFF0000FFF00000FFFF
00000000000000000000FFF3000000FF0000FFFF000000F00000FF000000FFFF
00000000000000000000FFF30000FFFF0000FFFF000000F00000FFF30000FFFF

0 0
1

0 1
0

0 1
1 0

Figure 2 A weak generalized inverse of ECA 7. This is the radius 2 binary CA with the hex
number 23232323, equal to ECA 35 composed with σ.
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Figure 3 A weak generalized inverse of ECA 23. This is the radius 2 binary CA with the hex
number 23FF003B.
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Figure 4 A weak generalized inverse of ECA 33. This is the radius 2 binary CA with the hex
number 0C070F07.
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Figure 5 A weak generalized inverse of ECA 57. This is the radius 4 binary cellular automaton
with the hex number

0000F00F00FFFFFF00E3FEFF0000FFFF0003FC0F0003FFFF00E3F60F0000FFFF
0000F00F000FFFFF00E3FE0F0000FFFF0003FC0F00C3FFFF00E3F60F0000FFFF
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Figure 6 A weak generalized inverse of ECA 77. This is the radius 2 binary CA with the hex
number 107331F7.
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Abstract
State-based opacity is a special type of opacity as a confidentiality property, which describes whether
an external intruder cannot make for sure whether secret states of a system have been visited by
observing generated outputs, given that the intruder knows complete knowledge of the system’s
structure but can only see generated outputs. When the time of visiting secret states is specified as
the initial time, the current time, any past time, and at most K steps prior to the current time,
the notions of state-based opacity can be formulated as initial-state opacity, current-state opacity,
infinite-step opacity, and K-step opacity, respectively. In this paper, we formulate the four versions
of opacity for real-time automata which are a widely-used model of real-time systems, and give
2-EXPTIME verification algorithms for the four notions by defining appropriate notions of observer
and reverse observer for real-time automata that are computable in 2-EXPTIME.
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1 Introduction

1.1 Background
Opacity is a confidentiality property that is firstly proposed in [8] to characterize information
flow security, and has been widely used to describe all kinds of scenarios in security/privacy
problems. It describes whether a system can forbid an external intruder from making for sure
whether some secrets have been visited by using observed outputs, given that the intruder
knows complete knowledge of the system’s structure but can only see outputs generated by
the system. In [3], a general run-based opacity framework is proposed for labeled transition
systems (LTSs), where such a system is opaque if for every secret run, there exists a non-secret
run such that the two runs have the same observation. Later on, two special types of secrets
are studied: subsets of event sequences (aka traces) and subsets of states. According to the
two types of secrets, opacity is classified into language-based opacity and state-based opacity.
The former refers to as for every generated secret trace, there is a non-secret generated trace
such that they have the same observation; the latter means whenever a run passes through a
secret state at some instant, there exists another run that does not pass any secret state at
the same instant such that the two runs have the same observation.

1.2 Literature review
In order to apply opacity to different scenarios, different notions of opacity in different models
have been studied, e.g., four types of state-based opacity, called initial-state opacity (ISO)
[13], current-state opacity (CSO) [5], infinite-step opacity (InfSO) [12], and K-step opacity
(KSO) [11] for labeled finite automata (LFAs) are proved to be decidable in PSPACE with
PSPACE lower bounds in [13, 5, 12] and with an NP lower bound in [11]. Unlike LFAs, ISO
of labeled Petri nets is undecidable [3, 16]. Language-based opacity is more involved, because
it is already undecidable in finite LTSs (i.e., LFAs) with ϵ-labeling functions [3]. In [7],
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language-based opacity is shown to be decidable in EXPTIME for LFAs when secret languages
and non-secret languages are regular. Moreover, in [19, 1], ISO, CSO, InfSO, KSO, and the
special language-based opacity (as in [7]) in LFAs are reduced to each other all in polynomial
time, so the decision problems for the five definitions of opacity are all PSPACE-complete.
Other related opacity results for untimed systems can be found in [19, 20, 2, 6], etc.

In contrast to untimed systems, in real-time systems, except for an observable transition,
the execution of an unobservable transition may also cost time, so the study of opacity
in real-time systems is much more complicated, and there have been rare opacity results.
In [4], a notion of L-opacity (the counterpart of CSO generalized to timed automata) is
proved to be undecidable for a very restrictive class of timed automata called event recording
automata, in which each clock is associated with an event and when an event occurs the
corresponding clock is reset. Later in [18, 17], language-based opacity of real-time automata
(RTAs, in which there is a single clock that is reset at the occurrence of each event) is proved
to be decidable, where the secret languages and non-secret languages are those recognized by
RTAs, hence ISO is also decidable as a special case of the considered language-based opacity.
The overall verification idea is to compute the intersection of the secret language and the
complement of the non-secret language for a given RTA.

1.3 Contribution of the paper

In this paper, we formulate the above mentioned four types of state-based opacity (ISO,
CSO, InfSO, and KSO) for an RTA A (where the ISO is the same as that in [18, 17]),
and show that they are all decidable in 2-EXPTIME. The verification method used in the
current paper (totally different from the one used in [18, 17]) is firstly to define and compute
notions of observer Aobs and reverse observer AR obs in 2-EXPTIME in the size of A, and
secondly use Aobs and AR obs to verify the four notions of opacity in time linear or quadratic
polynomial in the sizes of Aobs and AR obs. Compared with LFAs, the transitions of RTAs
carry real intervals which denote that the time consumption of a transition’s execution may
be any real in the corresponding interval, so that RTAs can represent real-time systems. The
considerable difficulty in characterizing opacity for RTAs compared with that for LFAs just
comes from the intervals in RTAs. Note that the method of using observers to verify opacity
is a conventional one used in LFAs, e.g., in [10], a notion of observer (actually the powerset
construction used for determinizing nondeterministic finite automata with ϵ-transitions [15])
is used to verify CSO of LFAs; in [19], a notion of reverse observer is used to verify ISO of
LFAs; in [20], a notion of two-way observer (combining an observer and a reverse observer)
is used to verify InfSO and KSO, all in EXPTIME. The essential technical difficulty of the
current paper lies in how to define suitable notions of observer and reverse observer for RTAs
and how to compute them.

The remainder is structured as follows. In Section 2, we introduce necessary notation,
show the exact run length problem that belongs to NP, and also introduce based knowledge
in RTAs; In Section 3, we show the main results of the paper, which include four definitions
of state-based opacity for RTAs, notions of observer and reverse observer and how to compute
them, and necessary and sufficient conditions for the four definitions of state-based opacity.
Section 4 ends up the paper with a short conclusion.
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2 Preliminaries

2.1 Notation
Symbols N, Z, Z`, Q, Qě0, R, and Rě0 denote the sets of nonnegative integers, integers,
positive integers, rational numbers, nonnegative rational numbers, real numbers, and non-
negative real numbers, respectively. For a, b P R Y t˘8u such that a ď b, we use xa, by to
denote an interval, where “x” represents “r” (left-closed) or “p” (left-open), “y” represents “s”
(right-closed) or “q” (right-open). For a finite alphabet Σ, Σ˚ denotes the set of words over
Σ including the empty word ϵ. Σ` :“ Σ˚ztϵu. For a word s “ s1s2 . . . sn P Σ˚, |s| stands for
its length n, sR denotes the mirror image sn . . . s2s1 of s. For s P Σ` and k P N, sk denotes
the concatenation of k copies of s. For a word s P Σ˚, a word s1 P Σ˚ is called a prefix of s,
denoted as s1 Ă s, if there exists another word s2 P Σ˚ such that s “ s1s2. For s P Σ˚ and
s1 Ă s, we use szs1 to denote the word s2 such that s1s2 “ s. For two nonnegative integers
i ď j, Ji, jK denotes the set of all integers no less than i and no greater than j; for a set S,
|S| denotes its cardinality and 2S its power set.

2.2 The exact run length problem
Let Int be the set of nonempty intervals of R having left endpoints in Q Y t´8u and right
endpoints in Q Y t`8u. Note that ˘8 do not belong to any interval of Int. Consider a
k-dimensional duration directed graph G “ pIntk, V, Aq, where k P Z`, Intk is the k-fold
Cartesian product of Int, V a finite set of vertices, A Ă V ˆ Intk

ˆV a finite set of directed
edges (arcs) with weights in Intk. A run of G is defined by v0

z1
ÝÑ v1

z2
ÝÑ ¨ ¨ ¨

zn
ÝÑ vn “: r,

where n P Z`, v0, . . . , vn P V , for all i P J1, nK, zi “ pzip1q, . . . , zipkqq P Rk, pvi´1, inti, viq P A

for some inti “ pintip1q, . . . , intipkqq P Intk, and zipjq P intipjq for all j P J1, kK. The weight
of run r is defined by

řn
i“1 zi. We sometimes write v1 Ñ v2 to denote a run from v1 to v2

without specifying the intermediate vertices and vectors. For an edge pv1, intv1v2 , v2q “: a P A,
we denote tailpaq “ v1 and headpaq “ v2.

▶ Problem 1 (ERL). Given a positive integer k, a k-dimensional duration directed graph
G “ pIntk, V, Aq, two vertices v1, v2 P V , and a vector z P Qk, determine whether there exists
a run from v1 to v2 with weight z.

We set as usual for n P Z`, the size sizepnq of n to be the length of its binary representation;
then sizep´nq “ sizepnq ` 1; sizep0q “ 1; for a rational number m{n, where m, n are
relatively prime integers, sizepm{nq “ sizepmq ` sizepnq, then for a vector z P Qk, its size
is the sum of the sizes of its components. In addition, sizep`8q “ sizep´8q “ 2. For
a duration directed graph G “ pIntk, V, Aq, for every edge pv1, intv1v2 , v2q P A, denote
intv1v2 “ pintv1v2 p1q, . . . , intv1v2 pkqq, where intv1v2 piq “ xai

v1v2
, bi

v1v2
y, ai

v1v2
P Q Y t´8u,

bi
v1v2

P Q Y t`8u, i P J1, kK. The size sizepGq of a given graph G is equal to |V | ` sizepAq “

|V | `
ř

pv1,intv1v2 ,v2qPAp2 ` 2k `
řk

i“1psizepai
v1v2

q ` sizepbi
v1v2

qqq. Then the size of an instance
pk, G, v1, v2, zq of the ERL problem is sizepkq ` sizepGq ` 2 ` sizepzq.

For every edge pv1, intv1v2 , v2q P A (sometimes also written as pv1, v2q P A for short),
we denote w1

v1v2
“ pa1

v1v2
, . . . , ak

v1v2
q P pQ Y t´8uqk and w2

v1v2
“ pb1

v1v2
, . . . , bk

v1v2
q P pQ Y

t`8uqk. We set as usual ´8 ă a ă `8, a ` p˘8q “ p˘8q ` a “ ˘8 for all a P R,
b ¨ p˘8q “ p˘8q ¨ b “ ˘8 for all 0 ‰ b P R. We also set 0 ¨ p˘8q “ p˘8q ¨ 0 “ 0. For two
vectors z1, z2 in pQ Y t˘8uqk, we write z1 ď z2 and z2 ě z1 if z1piq ď z2piq for all i P J1, kK.
For r P R and z “ pzp1q, . . . , zpkqq P Rk, we write r ` z “ z ` r “ pzp1q ` r, . . . , zpkq ` rq.

▶ Lemma 1. The ERL problem belongs to NP.
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Proof. Consider an instance pk, G, v1, v2, zq of the ERL problem.
We add an edge pv2, pr0, 0s, . . . , r0, 0sq

looooooooomooooooooon

k

, v1q “: ā, then w1
ā “ w2

ā “ p0, . . . , 0q
loooomoooon

k

“: 0k. For

each edge a in A, we define a variable xa. For edge ā, we also define a variable xā. Consider
the following inequality

xāw1
ā `

ÿ

aPA

xaw1
a ď z, (1a)

´xāw2
ā ´

ÿ

aPA

xaw2
a ď ´z, (1b)

with constraints

xā “ 1, (2a)
xa P N for all a P A, (2b)

ÿ

aPAYtāu

headpaq“v

xa “
ÿ

aPAYtāu

tailpaq“v

xa for all v P V, (2c)

the edges a such that xa ą 0 form a strongly connected component, (2d)
for every a P A, if xa ą 0, then for all i P J1, kK, if xai

a, bi
ay is left-open (resp.,

right-open), then the i-th component of (1a) (resp., (1b)) must hold strictly.
(2e)

If px̃aqaPAYtāu is a solution to (1) satisfying constrains (2), then there exists a run from
v1 to v2 having x̃a repetitive edges a P A therein with weight z by continuity of R, i.e.,
pk, G, v1, v2, zq is a positive instance of the ERL problem. If (1) has no solution satisfying
constraints (2), then pk, G, v1, v2, zq is a negative instance of the ERL problem.

For an edge a P A and i P J1, kK such that w1
apiq “ ´8, we either put xa “ 0 into (1) (in

this case, w1
apiq is eliminated) or remove the i-th component from (1a) in case xa ě 1 (in this

case, xa ě 1 implies that the i-th component of (1a) always holds no matter what values
the other variables are in). For an edge a P A and i P J1, kK such that w2

apiq “ `8, we do
similar things. Then we obtain a number ď 4k|A| of standard integer linear programming [14,
Cor. 17.1d] (i.e., of the form Ax ď b with constraints, where constants A P Qmˆn, b P Qmˆ1,
variables x P Nnˆ1) that is solvable in NP. Hence inequality (1) with constraints in (2) can
be solved in NP in the size of the instance pk, G, v1, v2, zq. ◀

▶ Remark 2. For a duration directed graph G, if all intervals shrink to a singleton, then the
ERL problem reduces to the NP-complete exact path length problem proved in [9]. The proof
of Lemma 1 is inspired by the proof of the NP membership of the exact path length problem
in [9] but is more involved.

In order to obtain our main results on verification of state-based opacity for RTAs, we
need the following component-length-equal run (CLER) problem.

▶ Problem 2 (CLER). Given a positive integer k ą 1, a k-dimensional duration directed
graph G “ pIntk, V, Aq, two vertices v1, v2 P V , and an edge pv2, intv2v3 , v3q P A, determine
whether there exists a run v1 ÝÑ v2

wv2v3
ÝÝÝÝÑ v3 whose weight has equal components in Q, where

v1 ÝÑ v2 does not contain v3, wv2v3 piq P intv2v3 piq for all i P J1, kK.

▶ Lemma 3. The CLER problem belongs to NP.
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Proof. Consider a k-dimensional (k ą 1) duration directed graph G “ pIntk, V, Aq, and
an instance pk, G, v1, v2, v3q of the CLER problem, where pv2, intv2v3 , v3q P A for some
intv2v3 P Intk. We next construct a pk ´ 1q-dimensional duration directed graph G1 “

pIntk´1, V, A1q, and transform the instance pk, G, v1, v2, v3q of the CLER problem to an
instance pk ´ 1, G1, v1, v3, 0k´1q of the ERL problem. G1 is obtained from G as follows: for
every edge pv1, intv1v2 , v2q P A, denote intv1v2 “ pxa1

v1v2 , b1
v1v2 y, . . . , xak

v1v2 , bk
v1v2 yq P Intk, we

compute int1
v1v2 “ pxa1

v1v2 ´ bk
v1v2 , b1

v1v2 ´ ak
v1v2 y, . . . , xak´1

v1v2 ´ bk
v1v2 , bk´1

v1v2 ´ ak
v1v2 yq P Intk´1,

where for all i P J1, k ´ 1K, xai
v1v2 ´ bk

v1v2 , bi
v1v2 ´ ak

v1v2 y is left-open (resp., right-open) if and
only if either xai

v1v2 , bi
v1v2 y is left-open or xak

v1v2 , bk
v1v2 y is right-open (resp., either xai

v1v2 , bi
v1v2 y

is right-open or xak
v1v2 , bk

v1v2 y is left-open). We set A1 “ tpv1, int1
v1v2 , v2q|pv1, intv1v2 , v2q P Au.

We then have (i) pk, G, v1, v2, v3q is a positive instance of the CLER problem if and only
if (ii) pk ´ 1, G1, v1, v3, 0k´1q is an instance of the ERL problem such that in G1, there exists a

run v1 Ñ v2
w1

v2v3
ÝÝÝÝÑ v3 with weight 0k´1, where w1

v2v3
piq P int1

v2v3
piq for all i P J1, k´1K and v3

appears only once in the run. Note that (ii) implies that there exists a run v1 ÝÑ v2
wv2v3

ÝÝÝÝÑ v3
in G whose weight has equal components w in R, where v1 ÝÑ v2 does not contain v3,
wv2v3 piq P intv2v3 piq for all i P J1, kK. If w is irrational, we can add a very small real number
ε to all components of wv2v3 such that v2

wv2v3 `ε
ÝÝÝÝÝÑ v3 is still a run and w ` ε P Q, because

Q is dense in R, hence (i) holds. In order to check whether pk ´ 1, G1, v1, v3, 0k´1q meets
the satisfaction, by Lemma 1, we need to add the additional constraint xpv2,v3q “ 1 into
the corresponding constraints (2), and then solve the corresponding inequality (1) with the
modified constraints. Hence the CLER problem belongs to NP. ◀

2.3 Real-time automata
A real-time automaton (RTA) is a tuple A “ pQ, E, Q0, ∆, µ, Σ, ℓq, where Q is a nonempty
finite set of states, E a finite alphabet (elements of E are called events), Q0 Ă Q a nonempty
set of initial states, ∆ Ă QˆE ˆQ a transition relation (elements of ∆ are called transitions),
µ assigns to each transition pq, e, q1q P ∆ (also written as q

e
ÝÑ q1) a nonempty interval µpeqqq1

of Rě0 with left endpoint and right endpoint being a and b, where a P Qě0, b P Qě0 Yt`8u1,
a ď b, Σ is a finite set of outputs, and ℓ : E Ñ Σ Y tϵu is an output/labeling function. A state
q P Q is called dead if for all e P E and q1 P Q, pq, e, q1q R ∆.

The size of a given A is defined by |Q| ` |Q0| ` |∆| ` sizepµq ` sizepℓq, where the sizes
of ˘8 and rational numbers have been defined before, sizepµq “

ř

pq,e,q1qP∆ sizepµpeqqq1 q “
ř

pq,e,q1qP∆p2 ` sizepaq,e,q1 q ` sizepbq,e,q1 qq, aq,e,q1 and bq,e,q1 are the endpoints of the interval
µpeqqq1 , 2 is used to denote the sum of the sizes of “r” (resp., “p”) and “s” (resp., “q”),
sizepℓq “ |tpe, ℓpeqq|e P Eu|.

A transition pq, e, q1q P ∆ is interpreted as when A is in state q and event e occurs after
some time segment in µpeqqq1 , A transitions to state q1. When event e P E occurs, the output
ℓpeq of e will be observed if ℓpeq ‰ ϵ (in this case we call e observable); while nothing will
be observed if ℓpeq “ ϵ (in this case we call e unobservable). A transition pq, e, q1q is called
observable (resp., unobservable) if e is observable (resp., unobservable). We denote by Eo

and Euo the sets of observable events and unobservable events, respectively. Output function
ℓ is extended to E ˆ Rě0 as follows: ℓppe, tqq “ pℓpeq, tq if e P Eo, ℓppe, tqq “ ϵ otherwise.
Then ℓ is recursively extended to E˚ as ℓpe1 . . . enq “ ℓpe1q . . . ℓpenq and also to pE ˆ Rě0q˚

analogously.

1 When b “ `8, the possible intervals can only be of the form ra, `8q or pa, `8q; when a “ b, the
possible intervals can only be ra, as “ tau.
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A path of A is defined by the empty word ϵ or a sequence q0
e1

ÝÑ q1
e2

ÝÑ ¨ ¨ ¨
en

ÝÑ qn, where
n P Z`, pqi´1, ei, qiq P ∆ for all i P J1, nK. A path is called a cycle if its start state and terminal
state coincide. A run of A is either ϵ or a sequence q0

e1{t1
ÝÝÝÑ q1

e2{t2
ÝÝÝÑ ¨ ¨ ¨

en{tn
ÝÝÝÑ qn “: π,

where, n P Z`, pqi´1, ei, qiq P ∆, ti P µpeiqqi´1qi
for all i P J1, nK. The timed word of run π is

defined by τpπq “ pe1, t1
1qpe2, t1

2q . . . pen, t1
nq, where t1

i “
ři

k“1 tk for all i P J1, nK. The weight
WTπ of π is defined by t1

n. A run is called instantaneous if its weight is equal to 0, and called
noninstantaneous otherwise. A run π is called unobservable if ℓpe1 . . . enq “ ϵ, and called
observable otherwise. A path can also be defined to be either unobservable or observable
analogously. We use initpπq (resp., lastpπq) to denote its first state q0 (resp., last state qn),
respectively. For a set Π of runs, we use initpΠq (resp., lastpΠq) to denote the set of the initial
states (resp., last states) of the runs of Π. The set of runs starting at q0 P Q and ending at
q P Q is denoted by q0 ù q. For e1, . . . , en P E, q0

e1...en q denotes the set of all runs of
the form q0

e1{t1
ÝÝÝÑ q1

e2{t2
ÝÝÝÑ ¨ ¨ ¨

en´1{tn´1
ÝÝÝÝÝÝÑ qn´1

en{tn
ÝÝÝÑ q, where q1, . . . , qn´1 P Q. For two runs

π1 “ q0
e1{t1

ÝÝÝÑ q1
e2{t2

ÝÝÝÑ ¨ ¨ ¨
en{tn

ÝÝÝÑ qn and π2 “ qn
en`1{tn`1

ÝÝÝÝÝÝÑ qn`1
en`2{tn`2

ÝÝÝÝÝÝÑ ¨ ¨ ¨
en`m{tn`m

ÝÝÝÝÝÝÝÑ

qn`m, we use π1π2 to denote the concatenation q0
e1{t1

ÝÝÝÑ q1
e2{t2

ÝÝÝÑ ¨ ¨ ¨
en`m{tn`m

ÝÝÝÝÝÝÝÑ qn`m

(removing either lastpπ1q or initpπ2q). For a run π satisfying q0 P Q0, ℓpτpπqq P pΣ ˆ Rě0q˚

is called a timed output sequence generated by A. In this case, we observe ℓpeiq at time t1
i if

ei P Eo, observe nothing at time t1
i if ei P Euo, i P J1, nK. We extend function τ as follows:

for all γ “ pσ1, t1q . . . pσn, tnq P pΣ ˆ Rě0q˚,

τpγq “ pσ1, t1
1q . . . pσn, t1

nq, (3)

where t1
j “

řj
i“1 ti for all j P J1, nK. The timed language LpAq generated by A is denoted

by the set of timed words of all runs of A starting from initial states; LpAq is the set
of timed output sequences generated by A. For a sequence γ P pΣ ˆ Rě0q˚, we use
rγs to denote the set of runs π of A starting from initial states such that ℓpτpπqq “ γ.
For w “ pe1, t1qpe2, t2q . . . pen, tnq P pΣ ˆ Rq˚ and t P R, we define w ˘ t “ t ˘ w “

pe1, t1 ˘ tqpe2, t2 ˘ tq . . . pen, tn ˘ tq; define initpwq “ pinitLpwq, initRpwqq “ pe1, t1q, lastpwq “

plastLpwq, lastRpwqq “ pen, tnq; and also define τ´1pwq “ pe1, t1qpe2, t2 ´t1q . . . pen, tn ´tn´1q.
Hence for a run q0

e1{t1
ÝÝÝÑ q1

e2{t2
ÝÝÝÑ ¨ ¨ ¨

en{tn
ÝÝÝÑ qn “: π, pτ´1 ˝ τqpπq “ pe1, t1qpe2, t2q . . . pen, tnq.

For γ1γ2 P LpAq, we use intermpγ1, γ2q “ tq P Q|pD runs π1, π2qrpinitpπ1q P Q0q^plastpπ1q “

initpπ2q “ qq ^ pℓpτpπ1qq “ γ1q ^ pℓpτpπ1π2qq “ γ1γ2q ^ pWTπ1 “ lastRpγ1qq ^ pWTπ2 “

lastRpγ2q ´ lastRpγ1qqsu to denote the set of states A can be in when A has just generated
timed output sequence γ1, given that the current observation is timed output sequence γ1γ2.

3 Main results

3.1 Current-state estimate

For A, a subset x Ă Q of states, and a sequence γ P pΣ ˆ Rě0q`, we define the current-state
estimate as

MpA, γ|xq :“ tq P Q|pDq0 P xqpDn P Z`qpDm P Nq
ˆ

D a run π “ q0
e1{t1

ÝÝÝÑ ¨ ¨ ¨
en{tn

ÝÝÝÑ qn
en`1{0

ÝÝÝÝÑ ¨ ¨ ¨
en`m{0

ÝÝÝÝÝÑ q

˙

rpen P Eoq ^ pen`1 . . . en`m P pEuoq˚q ^ ℓpτpπqq “ γsu. (4)



K. Zhang 12:7

Particularly for A and x Ă Q, we define the instantaneous-state estimate as

MpA, ϵ|xq :“ x Y tq P Q|pDq0 P xqpDn P Z`qpD a run π “ q0
e1{0

ÝÝÝÑ ¨ ¨ ¨
en{0

ÝÝÝÑ qq

re1 . . . en P pEuoq˚su. (5)

For all γ P pΣ ˆ Rě0q˚, MpA, γ|Q0q is also rewritten as MpA, γq for short. Intuitively,
for γ “ pσ1, t1q . . . pσn, tnq P pΣ ˆ Rě0q`, MpA, γ|xq denotes the set of states A can be
in when γ has just been generated by A since A started from some state of x. Hence
MpA, γq Ă lastprγsq, and Ĺ may hold. In order to fit the setting of current-state estimate,
after the occurrence of the last observable event en (i.e., en occurs at the current time), we
only allow unobservable, instantaneous runs, which is represented by qn

en`1{0
ÝÝÝÝÑ ¨ ¨ ¨

en`m{0
ÝÝÝÝÝÑ q

and en`1 . . . en`m P pEuoq˚. Particularly, MpA, ϵ|xq denotes the set of states A can be in at
the instant when A just transitions to some state of x (since there may exist instantaneous
transitions, at the instant, A may be in some state outside of x).

3.2 The notions of state-based opacity
In order to define state-based opacity, we need to specify a special subset QS Ă Q of secret
states. The notions of state-based opacity describe the ability of an RTA A forbidding an
external intruder from making sure whether some secret state has been visited when the
intruder observes timed output sequences generated by A, given that the intruder knows
full knowledge of the structure of A. Before defining opacity formally, we specify a special
class of states from which a secret state will definitely be reached through unobservable
transitions. A state q of RTA A is called eventually secret if either (1) q is secret or (2) there
is an unobservable path starting from q and along each of such paths at least one secret
state will be visited. Hence a state q is not eventually secret if and only if (1) q R QS and (2)
either there is no unobservable path starting from q or there is an unobservable path starting
at q without any secret state that either ends at a dead state or contains repetitive states.

▶ Definition 4 (ISO). An RTA A is called initial-state opaque (with respect to QS) if for
every γ P LpAq, initprγsq Ć QS.

▶ Definition 5 (CSO). An RTA A is called current-state opaque (with respect to QS) if
every γ P LpAq, in MpA, γq there exists at least one non-eventual-secret state of A.

▶ Definition 6 (InfSO). An RTA A is called infinite-step opaque (with respect to QS) if for
all γ1γ2 P LpAq such that |γ2| ě 1, intermpγ1, γ2q contains a state q such that there is a run
q Ñ q1 e{t

ÝÝÑ q2 with weight initRpγ2q ´ lastRpγ1q, where q Ñ q1 is unobservable and contains
no secret state, e is observable and ℓpeq “ initLpγ2q, q2 P intermpγ1 initpγ2q, γ2z initpγ2qq.

▶ Definition 7 (KSO). Let K be in Z`. An RTA A is called K-step opaque (with respect
to QS) if for all γ1γ2 P LpAq such that 1 ď |γ2| ď K, intermpγ1, γ2q contains a state q

such that there is a run q Ñ q1 e{t
ÝÝÑ q2 with weight initRpγ2q ´ lastRpγ1q, where q Ñ q1

is unobservable and contains no secret state, e is observable and ℓpeq “ initLpγ2q, q2 P

intermpγ1 initpγ2q, γ2z initpγ2qq.

Intuitively, when an intruder observes a timed output sequence generated by an RTA A,
if A is initial-state opaque, then the intruder cannot make sure whether the initial state is
secret; is current-state opaque, then the intruder cannot make sure after the last observable
event occurred (observing lastLpγq) and before any new observable event occurs, whether a
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secret state has been visited (note that the “current time” here means the weight of any run
of rγs, so is no less than lastRpγq and ą may hold); infinite-step opaque, then the intruder
cannot make sure whether a secret state was visited after observing lastLpγ1q and before
observing initLpγ2q; and K-step opaque, then the intruder cannot make sure whether the
state prior to at most K observed outputs is secret. Different notions have different privacy
levels, so they may have different applications.

3.3 The notion of observer
In this subsection we define and compute a notion of observer Aobs to concatenate current-
state estimates along timed output sequences generated by A in 2-EXPTIME in the size of A.
Later, we will use Aobs to give a necessary and sufficient condition for CSO. Before defining
Aobs, we need to define a notion of pre-observer Apre

obs.

▶ Definition 8. For an RTA A, we define its pre-observer as a deterministic automaton

Apre
obs “ pX, Σ ˆ Rě0, x0, δpre

obsq, (6)

where X Ă 2QztHu is the state set, Σ ˆ Rě0 the alphabet, x0 “ MpA, ϵq P X the unique
initial state, δpre

obs Ă X ˆ pΣ ˆ Rě0q ˆ X the transition relation. For all nonempty x Ă Q

different from x0, x P X if and only if there is γ P pΣ ˆ Rě0q` such that x “ MpA, γq. For
all x, x1 P X and pσ, tq P Σ ˆ Rě0, px, pσ, tq, x1q P δpre

obs if and only if x1 “ MpA, pσ, tq|xq.

In Definition 8, after δpre
obs is recursively extended to δpre

obs Ă X ˆ pΣ ˆ Rě0q˚ ˆ X, one
has for all x P X and pσ1, t1q . . . pσn, tnq “: γ P pΣ ˆ Rě0q`, px0, γ, xq P δpre

obs if and only if
MpA, τpγqq “ x, where τpγq is defined in (3), i.e., x is the set of states that A can be in
when timed output sequence τpγq has just been generated.

Note that the alphabet Σ ˆRě0 is not finite, so we cannot compute the whole Apre
obs. Next,

we define observer Aobs as a computable sub-automaton of Apre
obs.

▶ Definition 9. For an RTA A, consider its pre-observer (8), we define its observer as a
finite automaton

Aobs “ pX, Σobs, x0, δobsq, (7)

where Σobs (resp., δobs) is a finite subset of Σ ˆ Qě0 (resp., δpre
obs), such that if there exists a

transition from x P X to x1 P X in δpre
obs then at least one such transition belongs to δobs.

Note that for an RTA A, its observer may not be unique, because Σobs may not be
unique; however, X and x0 must be unique. In Definition 9, after δobs is recursively extended
to δobs Ă X ˆ pΣobsq˚ ˆ X, one has for all x P X and pσ1, t1q . . . pσn, tnq “: γ P pΣobsq`,
px0, γ, xq P δobs if and only if MpA, τpγqq “ x.

▶ Theorem 10. For an RTA A, its observer Aobs can be computed in 2-EXPTIME in the
size of A.

Here we only give a sketch of the proof, the entire proof is put in Appendix. The initial
state x0 “ MpA, ϵq is trivially computable in polynomial time. We then start from x0,
find all reachable states step by step together with the corresponding transitions, which
is equivalent to checking for all x1, x2 Ă Q and σ P Σ, whether there is a transition
px1, pσ, tq, x2q for some t P Qě0. In addition, we require that for all x1, x2, x3 Ă Q, if we
find two transitions px1, pσ, tq, x2q and px1, pσ, t1q, x3q for some t, t1 P Qě0, then x2 Ă x3
implies x3 Ć MpA, pσ, tq|x1q. This guarantees that if there exists a transition from x1 Ă Q

to x2 Ă Q in Apre
obs, then there also exists a transition from x1 Ă Q to x2 Ă Q in Aobs.
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3.4 The notion of reverse observer
In this subsection we define and compute a notion of reverse observer AR obs that will be
used to verify ISO. To this end, we also need to define a notion of pre-reverse observer Apre

R obs.
Similarly to observer Aobs, AR obs can also be computed in 2-EXPTIME in the size of A.

For an RTA A, a subset x Ă Q of states, and a sequence γ P pΣ ˆ Rě0q`, we define the
reverse-current-state estimate as

MRpA, γ|xq :“ tq P Q|pDq1 P xqpDn P Z`qpDm P Nq
ˆ

D a run π “ q
e1{t1

ÝÝÝÑ ¨ ¨ ¨
en{tn

ÝÝÝÑ qn
en`1{0

ÝÝÝÝÑ ¨ ¨ ¨
en`m{0

ÝÝÝÝÝÑ q1

˙

rpen P Eoq ^ pen`1 . . . en`m P pEuoq˚q ^ ℓpτpπqq “ γsu. (8)

MRpA, γ|xq denotes the subset of states of Q starting from which at instant 0, A can
generate timed output sequence γ P pΣ ˆ Rě0q` and can only be in any one state of x at
instant lastRpγq.

▶ Definition 11. For an RTA A, we define its pre-reverse observer as a deterministic
automaton

Apre
R obs “ pXR, Σ ˆ Rě0, Q, δpre

R obsq, (9)

where XR Ă 2QztHu is the state set, Σ ˆ Rě0 the alphabet, Q the unique initial state,
δpre

R obs Ă XR ˆ pΣ ˆRě0q ˆ XR the transition relation. For all x, x1 P XR and pσ, tq P Σ ˆRě0,
px, pσ, tq, x1q P δpre

R obs if and only if x1 “ MRpA, pσ, tq|xq, i.e., x1 is the subset of states of Q

starting from which at instant 0, A can generate timed output sequence pσ, tq and can only
be in any one state of x at instant t.

▶ Definition 12. For an RTA A, consider its pre-reverse observer (9), we define its reverse
observer as a finite automaton

AR obs “ pXR, ΣR obs, Q, δR obsq, (10)

where ΣR obs (resp., δR obs) is a finite subset of Σ ˆ Qě0 (resp., δpre
R obs) such that for all

x1, x2 P XR, if there is a transition from x1 to x2 in δpre
R obs then at least one such transition

belongs to δR obs.

In AR obs, ΣR obs and δR obs may not be unique but must be finite. The following result
follows from a similar proof compared with that of Theorem 10.

▶ Theorem 13. For an RTA A, its reverse observer AR obs can be computed in 2-EXPTIME
in the size of A.

3.5 Necessary and sufficient conditions for notions of state-based
opacity

In this subsection, we use the notions of observer and reverse observer to give necessary and
sufficient conditions for the four notions of opacity.

▶ Theorem 14. Consider an RTA A. A is initial-state opaque if and only if in reverse
observer AR obs, for every reachable state x, if x X Q0 ‰ H then x X Q0 Ć QS; A is current-
state opaque if and only if in observer Aobs, every reachable state x contains at least one
non-eventual-secret state of A.
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Proof. Consider an arbitrary γ P LpAq.
By definition, initprγsq “ MRpA, γ|Qq X Q0; and in reverse observer AR obs, there exists

γ1 P p ΣR obsq˚ such that pQ, γ1, MRpA, γ|Qqq P δR obs. For every γ2 P p ΣR obsq˚ and state
x of AR obs such that pQ, γ2, xq P δR obs, x “ MRpA, τppγ2qRq|Qq. Hence the set tx X

Q0|x is reachable in AR obsu is equal to the set tinitprγsq|γ P LpAqu. Then, A is initial-state
opaque if and only if for every reachable state x of AR obs, if x X Q0 ‰ H, then x X Q0 Ć QS .

By definition, there exists γ1 P pΣobsq˚ such that px0, γ1, MpA, γqq P δobs. Conversely, for
every γ2 P pΣobsq˚ and x P X such that px0, γ2, xq P δobs, one has x “ MpA, τpγ2qq, where
τpγ2q P LpAq. Then, A is current-state opaque if and only if every reachable state of Aobs
contains at least one non-eventual-secret state of A. ◀

By Theorem 10, Theorem 13, and Theorem 14, the initial-state opacity and current-state
opacity of an RTA A can be verified in time linear in the size of AR obs and Aobs, respectively,
hence in 2-EXPTIME in the size of A.

▶ Theorem 15. Consider an RTA A and K P Z`. A is infinite-step opaque if and only
if for every reachable state x of observer Aobs and every transition px2, pσ, tq, x1q of reverse
observer AR obs with x2 being reachable in AR obs, if x X x1 ‰ H, then x X x1 contains a state
q P Q such that there is a run q Ñ q1 e{t1

ÝÝÑ q2 with weight t, where q Ñ q1 is unobservable and
contains no secret state of QS, e is observable and ℓpeq “ σ, q2 P x2; A is K-step opaque if
and only if the above necessary and sufficient condition for InfSO holds, and x2 additionally
satisfies that there is γ P p ΣR obsq˚ such that |γ| ď K ´ 1 and pQ, γ, x2q P δR obs.

Proof. By definition of pre-reverse observer Apre
R obs, one sees that for all γ1γ2 P LpAq such that

|γ2| ě 1, intermpγ1, γ2q “ MpA, γ1q X x1, where x1 satisfies pQ, pτ´1pγ2 ´ lastRpγ1qqqR, x1q P

δpre
R obs. Choose x2 P XR such that px2, initpγ2q ´ lastRpγ1q, x1q P δpre

R obs. Then by definition
of InfSO, one has A is infinite-step opaque if and only if for all such γ1γ2, x1, and x2, if
MpA, γ1q X x1 ‰ H, then MpA, γ1q X x1 contains a state q P Q such that there is a run
q Ñ q1 e{t1

ÝÝÑ q2 with weight initRpγ2q ´ lastRpγ1q, where q Ñ q1 is unobservable and contains
no secret state of QS , e is observable and ℓpeq “ initLpγ2q, q2 P x2. By definitions of observer
Aobs and reverse observer AR obs, there exist γ̄1, γ̄2 P pΣ ˆ Qě0q˚ such that |γ̄1| “ |γ1|,
|γ̄2| “ |γ2|, px0, γ̄1, MpA, γ1qq P δobs, pQ, γ̄2, x1q P δR obs, and px2, lastpγ̄2q, x1q P δR obs. Then
one has the necessary and sufficient condition for InfSO holds. Similarly one has the necessary
and sufficient condition for KSO also holds. ◀

We next give an upper bound for K.

▶ Proposition 16. Consider an RTA A and a positive integer K P Z`. A is K-step opaque
if and only if it is mintK, 2|Q|u-step opaque.

Proof. By definition, if A is K-step opaque, then it is K 1-step opaque for all 1 ď K 1 ă K.
Then the “only if” part holds.

Next we prove the “if” part. Assume K ą 2|Q| and A is not K-step opaque. By The-
orem 15, for observer Aobs and reverse observer AR obs, there exist γ1 P pΣobsq˚, γ2 P p ΣR obsq˚,
x1 P X, x2, x1

2 P XR, such that px0, γ1, x1q P δobs, pQ, γ2, x2q P δR obs, px1
2, lastpγ2q, x2q P δR obs,

and 1 ď |γ2| ď K; x1 X x2 is nonempty and does not contain a state q of Q such that there
is a run q Ñ q1 e{t1

ÝÝÑ q2 with weight lastRpγ2q, where q Ñ q1 is unobservable and contains no
secret state of QS , e is observable and ℓpeq “ lastLpγ2q, q2 P x1

2. Because AR obs has at most
2|Q| states, there exists γ3 P p ΣR obsq˚ such that |γ3| ď 2|Q| ´ 1 and pQ, γ3, x1

2q P δR obs. Then
also by Theorem 15, A is not 2|Q|-step opaque. ◀
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By Theorem 10, Theorem 13, Theorem 15, and Proposition 16, for any K P Z`, the
infinite-step opacity and K-step opacity of an RTA A can be verified in 2-EXPTIME in the
size of A.

▶ Example 17. Consider the toy RTA A1 in Figure 1. When A1 starts at q0, and a occurs
at instant between 1 and 2, A1 can transition to either q1 or q2; but if a occurs at instant in
p2, 3s, A1 can only transition to q1.

q0 q2

q1 q3

q4

a{
r1,

3s

a{r1, 2s

a{r1, 1s

a{r1, 2s

Figure 1 An RTA A1, where a state with an arrow from nowhere denotes an initial state, e.g.,
q0; a is an observable event, ℓpaq “ a.

One of its observers is shown in Figure 2.

q0 q1

q1q2

q3

q4q3q4

pa
, 2q

pa, 3q pa, 1q

pa, 2qpa, 1q

Figure 2 One observer A1 obs of RTA A1 in Figure 1.

One of its reverse observers is shown in Figure 3.

q0q1q2q3q4q0q1q2

q0q2q0

pa, 1q

pa
,2

qpa
, 3q

pa, 1q

pa
,1

q

Figure 3 One reverse observer AR 1 obs of RTA A1 in Figure 1.

One sees two runs q0
a{2

ÝÝÑ q1
a{1

ÝÝÑ q3 and q0
a{1

ÝÝÑ q2
a{1

ÝÝÑ q4 of A1, where 2 P µpaqq0q1 “

r1, 3s.
Now assume q3 is secret, all the other states are non-secret. By definition, only q3 is

eventually secret, because there is no unobservable path starting from any other state. By
observer A1 obs and Theorem 14, A1 is not current-state opaque with respect to tq3u because
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there is a reachable state tq3u in A1 obs that only contains eventually secret states of A1
(that is, q3). On the other hand, after observing pa, 3qpa, 4q, one can make sure that A1 is in
state q3 by A1 obs.

Now assume only q1 is secret. In observer A1 obs there is a reachable state tq1u, in
reverse observer AR 1 obs there is a reachable transition tq0, . . . , q4u

pa,1q
ÝÝÝÑ tq0, q1, q2u. One

has tq1u X tq0, q1, q2u “ tq1u, which contains only secret states. Then by Theorem 15, A1 is
not infinite-step opaque with respect to tq1u.

4 Conclusion

In this paper, we formulated four notions of state-based opacity for real-time automata, and
proved that the four notions are decidable in 2-EXPTIME by defining notions of observer
and reverse observer and computing them in 2-EXPTIME. The lower bounds for verifying
the four notions are not known.

In addition, one can see from Theorem 10 and Theorem 13 that if an RTA A has no
unobservable cycle, then its observers and reverse observers can be computed in EXPTIME
in the size of A without using the ERL problem. Hence by Theorem 14 and Theorem 15,
the four notions of opacity can also be verified in EXPTIME in this special case.
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A Appendix

Proof. (of Theorem 10) The initial state x0 “ MpA, ϵq is trivially computable in polynomial
time. We then start from x0, find all reachable states step by step together with the
corresponding transitions, which is equivalent to checking for all x1, x2 Ă Q and σ P

Σ, whether there is a transition px1, pσ, tq, x2q for some t P Qě0. If it does exist, then
px1, pσ, tq, x2q is a transition of Aobs, otherwise there is no transition px1, pσ, t1q, x2q for any
t1 P Qě0 in Aobs, and furthermore there is no transition px1, pσ, t2q, x2q for any t2 P Rě0 in
Apre

obs, because Qě0 is dense in Rě0. In addition, we require that for all x1, x2, x3 Ă Q, if
we find two transitions px1, pσ, tq, x2q and px1, pσ, t1q, x3q for some t, t1 P Qě0, then x2 Ă x3
implies x3 Ć MpA, pσ, tq|x1q. This guarantees that if there exists a transition from x1 Ă Q

to x2 Ă Q in Apre
obs, then there also exists a transition from x1 Ă Q to x2 Ă Q in Aobs. The

procedure for doing the above check is as follows.
Choose a state x1 “ tq1, . . . , qnu P X that we have just computed, where n P Z`, and

|x| “ n. Choose σ P Σ. For each i P J1, nK, compute subautomaton Aqi of A that consists of
all paths of the form

qi
s1

i
ÝÑ q1

i
ei

ÝÑ q2
i (11)

such that s1
i P pEuoq˚, ei P Eo, and ℓpeiq “ σ. Denote the set of all such q2

i by x̄2.
We next check for each H ‰ x̃2 Ă x̄2, whether px1, pσ, tq, MpA, ϵ|x̃2qq P δobs for some

t P Qě0, in the order |x̃2| decreases. For every x̃2 Ĺ x̂2 Ă x̄2, if we have found a transition
px1, pσ, t1q, MpA, ϵ|x̂2qq before checking x̃2, then we must choose t such that MpA, ϵ|x̂2q Ć

MpA, pσ, tq|x1q. In order to finish the construction of Aobs, we need to do the check for at
most 2|Q|2|Q| times.
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[A] For each i P J1, nK, denote the number of states q2
i shown in (11) by i2 P N, and denote

these states by q2
i,1, . . . , q2

i,i2
. Here one may have i2 “ 0, which implies that there is no

path of the form (11) starting from qi.
[B] Nondeterministically compute asynchronous product

11

2
â

i“1
Aq1 b ¨ ¨ ¨ b

n1

2
â

i“1
Aqn

, (12)

where i1
2 ď i2, i P J1, nK, states q2

1,1, . . . , q2
1,11

2
, . . . , q2

n,1, . . . , q2
n,n1

2
are pairwise different

and

tq2
1,1, . . . , q2

1,11
2
, . . . , q2

n,1, . . . , q2
n,n1

2
u “ x̃2,

this also guarantees that
řn

i“1 i1
2 ď |Q|; the states of the product are

pq1,1, . . . , q1,11
2
, . . . , qn,1, . . . , qn,n1

2
q,

where qi,1, . . . , qi,i1
2

are states of Aqi
, i P J1, nK; there is a transition

pq1,1, . . . , q1,11
2
, . . . , qn,1, . . . , qn,n1

2
q

pe1,1,...,e1,11
2

,...,en,1,...,en,n1
2

q

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q

in product (12) if and only if either one of the two conditions holds.

[a] For some i P J1, nK and j P J1, i1
2K, qi,j

ei,j
ÝÝÑ q1

i,j is an unobservable transition of Aqi
,

for all other pairs pk, lq, ek,l are qual to ϵ, and qk,l “ q1
k,l. In this case, µ assigns to

the transition a vector, where the pi, jq-component is the interval µpei,jqqi,jq1

i,j
, for

all other pk, lq-components, µpek,lqqk,lq1

k,l
“ r0, 0s.

[b] For all i P J1, nK and j P J1, i1
2K, qi,j

ei,j
ÝÝÑ q1

i,j is an observable transition of Aqi
. In

this case, µ assigns to the transition a vector, whether the pi, jq-components are
intervals µpei,jqqi,jq1

i,j
.

[C] In product (12), guess transition

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q

pē1,1,...,ē1,11
2

,...,ēn,1,...,ēn,n1
2

q

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

pq2
1,1, . . . , q2

1,11
2
, . . . , q2

n,1, . . . , q2
n,n1

2
q,

where ē1,1, . . . , ē1,11
2
, . . . , ēn,1, . . . , ēn,n1

2
are observable (i.e., item (Bb) is satisfied). Then

check in product (12), whether there exists a run π1 in

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q

pē1,1,...,ē1,11
2

,...,ēn,1,...,ēn,n1
2

q

pq2
1,1, . . . , q2

1,11
2
, . . . , q2

n,1, . . . , q2
n,n1

2
q

and an unobservable run π2 in

pq1, . . . , q1
loooomoooon

11
2

, . . . , qn, . . . , qn
loooomoooon

n1
2

q ù pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q (13)

such that the weight of π2π1 has equal components that are equal to a rational number,
which actually corresponds to a positive instance p

řn
i“1 i1

2, (12), pq1, . . . , q1
loooomoooon

11
2

, . . . , qn, . . . , qn
loooomoooon

n1
2

q,
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pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q, pq2

1,1, . . . , q2
1,11

2
, . . . , q2

n,1, . . . , q2
n,n1

2
qq of the CLER prob-

lem (Problem 2). If Yes, then the weight is denoted by t P Qě0, and we find a transition

px1, pσ, tq, MpA, ϵ|x̃2qq (14)

of Aobs.

We need to do the above check (C) for at most 2|Q|2|Q||Q||Q| “ 22|Q|
2 log |Q| times

(corresponding to nondeterministic computations of product (12)). Each check can be done
by solving the corresponding CLER problem (Problem 2), and hence can be done in NP in the
size Opp|Q||Q|q2p|Eo||Eo| ` |Q||Euo|qq “ Op2|Q|

2 log |Q|p2|Eo| log |Eo| ` |Q||Euo|qq of the product
(12) by Lemma 3. Hence, the total time consumption of computing Aobs is 2-EXPTIME in
the size of A. ◀
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