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Abstract
State-based opacity is a special type of opacity as a confidentiality property, which describes whether
an external intruder cannot make for sure whether secret states of a system have been visited by
observing generated outputs, given that the intruder knows complete knowledge of the system’s
structure but can only see generated outputs. When the time of visiting secret states is specified as
the initial time, the current time, any past time, and at most K steps prior to the current time,
the notions of state-based opacity can be formulated as initial-state opacity, current-state opacity,
infinite-step opacity, and K-step opacity, respectively. In this paper, we formulate the four versions
of opacity for real-time automata which are a widely-used model of real-time systems, and give
2-EXPTIME verification algorithms for the four notions by defining appropriate notions of observer
and reverse observer for real-time automata that are computable in 2-EXPTIME.
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1 Introduction

1.1 Background
Opacity is a confidentiality property that is firstly proposed in [8] to characterize information
flow security, and has been widely used to describe all kinds of scenarios in security/privacy
problems. It describes whether a system can forbid an external intruder from making for sure
whether some secrets have been visited by using observed outputs, given that the intruder
knows complete knowledge of the system’s structure but can only see outputs generated by
the system. In [3], a general run-based opacity framework is proposed for labeled transition
systems (LTSs), where such a system is opaque if for every secret run, there exists a non-secret
run such that the two runs have the same observation. Later on, two special types of secrets
are studied: subsets of event sequences (aka traces) and subsets of states. According to the
two types of secrets, opacity is classified into language-based opacity and state-based opacity.
The former refers to as for every generated secret trace, there is a non-secret generated trace
such that they have the same observation; the latter means whenever a run passes through a
secret state at some instant, there exists another run that does not pass any secret state at
the same instant such that the two runs have the same observation.

1.2 Literature review
In order to apply opacity to different scenarios, different notions of opacity in different models
have been studied, e.g., four types of state-based opacity, called initial-state opacity (ISO)
[13], current-state opacity (CSO) [5], infinite-step opacity (InfSO) [12], and K-step opacity
(KSO) [11] for labeled finite automata (LFAs) are proved to be decidable in PSPACE with
PSPACE lower bounds in [13, 5, 12] and with an NP lower bound in [11]. Unlike LFAs, ISO
of labeled Petri nets is undecidable [3, 16]. Language-based opacity is more involved, because
it is already undecidable in finite LTSs (i.e., LFAs) with ϵ-labeling functions [3]. In [7],
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12:2 State-Based Opacity of Real-Time Automata

language-based opacity is shown to be decidable in EXPTIME for LFAs when secret languages
and non-secret languages are regular. Moreover, in [19, 1], ISO, CSO, InfSO, KSO, and the
special language-based opacity (as in [7]) in LFAs are reduced to each other all in polynomial
time, so the decision problems for the five definitions of opacity are all PSPACE-complete.
Other related opacity results for untimed systems can be found in [19, 20, 2, 6], etc.

In contrast to untimed systems, in real-time systems, except for an observable transition,
the execution of an unobservable transition may also cost time, so the study of opacity
in real-time systems is much more complicated, and there have been rare opacity results.
In [4], a notion of L-opacity (the counterpart of CSO generalized to timed automata) is
proved to be undecidable for a very restrictive class of timed automata called event recording
automata, in which each clock is associated with an event and when an event occurs the
corresponding clock is reset. Later in [18, 17], language-based opacity of real-time automata
(RTAs, in which there is a single clock that is reset at the occurrence of each event) is proved
to be decidable, where the secret languages and non-secret languages are those recognized by
RTAs, hence ISO is also decidable as a special case of the considered language-based opacity.
The overall verification idea is to compute the intersection of the secret language and the
complement of the non-secret language for a given RTA.

1.3 Contribution of the paper

In this paper, we formulate the above mentioned four types of state-based opacity (ISO,
CSO, InfSO, and KSO) for an RTA A (where the ISO is the same as that in [18, 17]),
and show that they are all decidable in 2-EXPTIME. The verification method used in the
current paper (totally different from the one used in [18, 17]) is firstly to define and compute
notions of observer Aobs and reverse observer AR obs in 2-EXPTIME in the size of A, and
secondly use Aobs and AR obs to verify the four notions of opacity in time linear or quadratic
polynomial in the sizes of Aobs and AR obs. Compared with LFAs, the transitions of RTAs
carry real intervals which denote that the time consumption of a transition’s execution may
be any real in the corresponding interval, so that RTAs can represent real-time systems. The
considerable difficulty in characterizing opacity for RTAs compared with that for LFAs just
comes from the intervals in RTAs. Note that the method of using observers to verify opacity
is a conventional one used in LFAs, e.g., in [10], a notion of observer (actually the powerset
construction used for determinizing nondeterministic finite automata with ϵ-transitions [15])
is used to verify CSO of LFAs; in [19], a notion of reverse observer is used to verify ISO of
LFAs; in [20], a notion of two-way observer (combining an observer and a reverse observer)
is used to verify InfSO and KSO, all in EXPTIME. The essential technical difficulty of the
current paper lies in how to define suitable notions of observer and reverse observer for RTAs
and how to compute them.

The remainder is structured as follows. In Section 2, we introduce necessary notation,
show the exact run length problem that belongs to NP, and also introduce based knowledge
in RTAs; In Section 3, we show the main results of the paper, which include four definitions
of state-based opacity for RTAs, notions of observer and reverse observer and how to compute
them, and necessary and sufficient conditions for the four definitions of state-based opacity.
Section 4 ends up the paper with a short conclusion.
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2 Preliminaries

2.1 Notation
Symbols N, Z, Z`, Q, Qě0, R, and Rě0 denote the sets of nonnegative integers, integers,
positive integers, rational numbers, nonnegative rational numbers, real numbers, and non-
negative real numbers, respectively. For a, b P R Y t˘8u such that a ď b, we use xa, by to
denote an interval, where “x” represents “r” (left-closed) or “p” (left-open), “y” represents “s”
(right-closed) or “q” (right-open). For a finite alphabet Σ, Σ˚ denotes the set of words over
Σ including the empty word ϵ. Σ` :“ Σ˚ztϵu. For a word s “ s1s2 . . . sn P Σ˚, |s| stands for
its length n, sR denotes the mirror image sn . . . s2s1 of s. For s P Σ` and k P N, sk denotes
the concatenation of k copies of s. For a word s P Σ˚, a word s1 P Σ˚ is called a prefix of s,
denoted as s1 Ă s, if there exists another word s2 P Σ˚ such that s “ s1s2. For s P Σ˚ and
s1 Ă s, we use szs1 to denote the word s2 such that s1s2 “ s. For two nonnegative integers
i ď j, Ji, jK denotes the set of all integers no less than i and no greater than j; for a set S,
|S| denotes its cardinality and 2S its power set.

2.2 The exact run length problem
Let Int be the set of nonempty intervals of R having left endpoints in Q Y t´8u and right
endpoints in Q Y t`8u. Note that ˘8 do not belong to any interval of Int. Consider a
k-dimensional duration directed graph G “ pIntk, V, Aq, where k P Z`, Intk is the k-fold
Cartesian product of Int, V a finite set of vertices, A Ă V ˆ Intk

ˆV a finite set of directed
edges (arcs) with weights in Intk. A run of G is defined by v0

z1
ÝÑ v1

z2
ÝÑ ¨ ¨ ¨

zn
ÝÑ vn “: r,

where n P Z`, v0, . . . , vn P V , for all i P J1, nK, zi “ pzip1q, . . . , zipkqq P Rk, pvi´1, inti, viq P A

for some inti “ pintip1q, . . . , intipkqq P Intk, and zipjq P intipjq for all j P J1, kK. The weight
of run r is defined by

řn
i“1 zi. We sometimes write v1 Ñ v2 to denote a run from v1 to v2

without specifying the intermediate vertices and vectors. For an edge pv1, intv1v2 , v2q “: a P A,
we denote tailpaq “ v1 and headpaq “ v2.

▶ Problem 1 (ERL). Given a positive integer k, a k-dimensional duration directed graph
G “ pIntk, V, Aq, two vertices v1, v2 P V , and a vector z P Qk, determine whether there exists
a run from v1 to v2 with weight z.

We set as usual for n P Z`, the size sizepnq of n to be the length of its binary representation;
then sizep´nq “ sizepnq ` 1; sizep0q “ 1; for a rational number m{n, where m, n are
relatively prime integers, sizepm{nq “ sizepmq ` sizepnq, then for a vector z P Qk, its size
is the sum of the sizes of its components. In addition, sizep`8q “ sizep´8q “ 2. For
a duration directed graph G “ pIntk, V, Aq, for every edge pv1, intv1v2 , v2q P A, denote
intv1v2 “ pintv1v2 p1q, . . . , intv1v2 pkqq, where intv1v2 piq “ xai

v1v2
, bi

v1v2
y, ai

v1v2
P Q Y t´8u,

bi
v1v2

P Q Y t`8u, i P J1, kK. The size sizepGq of a given graph G is equal to |V | ` sizepAq “

|V | `
ř

pv1,intv1v2 ,v2qPAp2 ` 2k `
řk

i“1psizepai
v1v2

q ` sizepbi
v1v2

qqq. Then the size of an instance
pk, G, v1, v2, zq of the ERL problem is sizepkq ` sizepGq ` 2 ` sizepzq.

For every edge pv1, intv1v2 , v2q P A (sometimes also written as pv1, v2q P A for short),
we denote w1

v1v2
“ pa1

v1v2
, . . . , ak

v1v2
q P pQ Y t´8uqk and w2

v1v2
“ pb1

v1v2
, . . . , bk

v1v2
q P pQ Y

t`8uqk. We set as usual ´8 ă a ă `8, a ` p˘8q “ p˘8q ` a “ ˘8 for all a P R,
b ¨ p˘8q “ p˘8q ¨ b “ ˘8 for all 0 ‰ b P R. We also set 0 ¨ p˘8q “ p˘8q ¨ 0 “ 0. For two
vectors z1, z2 in pQ Y t˘8uqk, we write z1 ď z2 and z2 ě z1 if z1piq ď z2piq for all i P J1, kK.
For r P R and z “ pzp1q, . . . , zpkqq P Rk, we write r ` z “ z ` r “ pzp1q ` r, . . . , zpkq ` rq.

▶ Lemma 1. The ERL problem belongs to NP.

AUTOMATA 2021
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Proof. Consider an instance pk, G, v1, v2, zq of the ERL problem.
We add an edge pv2, pr0, 0s, . . . , r0, 0sq

looooooooomooooooooon

k

, v1q “: ā, then w1
ā “ w2

ā “ p0, . . . , 0q
loooomoooon

k

“: 0k. For

each edge a in A, we define a variable xa. For edge ā, we also define a variable xā. Consider
the following inequality

xāw1
ā `

ÿ

aPA

xaw1
a ď z, (1a)

´xāw2
ā ´

ÿ

aPA

xaw2
a ď ´z, (1b)

with constraints

xā “ 1, (2a)
xa P N for all a P A, (2b)

ÿ

aPAYtāu

headpaq“v

xa “
ÿ

aPAYtāu

tailpaq“v

xa for all v P V, (2c)

the edges a such that xa ą 0 form a strongly connected component, (2d)
for every a P A, if xa ą 0, then for all i P J1, kK, if xai

a, bi
ay is left-open (resp.,

right-open), then the i-th component of (1a) (resp., (1b)) must hold strictly.
(2e)

If px̃aqaPAYtāu is a solution to (1) satisfying constrains (2), then there exists a run from
v1 to v2 having x̃a repetitive edges a P A therein with weight z by continuity of R, i.e.,
pk, G, v1, v2, zq is a positive instance of the ERL problem. If (1) has no solution satisfying
constraints (2), then pk, G, v1, v2, zq is a negative instance of the ERL problem.

For an edge a P A and i P J1, kK such that w1
apiq “ ´8, we either put xa “ 0 into (1) (in

this case, w1
apiq is eliminated) or remove the i-th component from (1a) in case xa ě 1 (in this

case, xa ě 1 implies that the i-th component of (1a) always holds no matter what values
the other variables are in). For an edge a P A and i P J1, kK such that w2

apiq “ `8, we do
similar things. Then we obtain a number ď 4k|A| of standard integer linear programming [14,
Cor. 17.1d] (i.e., of the form Ax ď b with constraints, where constants A P Qmˆn, b P Qmˆ1,
variables x P Nnˆ1) that is solvable in NP. Hence inequality (1) with constraints in (2) can
be solved in NP in the size of the instance pk, G, v1, v2, zq. ◀

▶ Remark 2. For a duration directed graph G, if all intervals shrink to a singleton, then the
ERL problem reduces to the NP-complete exact path length problem proved in [9]. The proof
of Lemma 1 is inspired by the proof of the NP membership of the exact path length problem
in [9] but is more involved.

In order to obtain our main results on verification of state-based opacity for RTAs, we
need the following component-length-equal run (CLER) problem.

▶ Problem 2 (CLER). Given a positive integer k ą 1, a k-dimensional duration directed
graph G “ pIntk, V, Aq, two vertices v1, v2 P V , and an edge pv2, intv2v3 , v3q P A, determine
whether there exists a run v1 ÝÑ v2

wv2v3
ÝÝÝÝÑ v3 whose weight has equal components in Q, where

v1 ÝÑ v2 does not contain v3, wv2v3 piq P intv2v3 piq for all i P J1, kK.

▶ Lemma 3. The CLER problem belongs to NP.
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Proof. Consider a k-dimensional (k ą 1) duration directed graph G “ pIntk, V, Aq, and
an instance pk, G, v1, v2, v3q of the CLER problem, where pv2, intv2v3 , v3q P A for some
intv2v3 P Intk. We next construct a pk ´ 1q-dimensional duration directed graph G1 “

pIntk´1, V, A1q, and transform the instance pk, G, v1, v2, v3q of the CLER problem to an
instance pk ´ 1, G1, v1, v3, 0k´1q of the ERL problem. G1 is obtained from G as follows: for
every edge pv1, intv1v2 , v2q P A, denote intv1v2 “ pxa1

v1v2 , b1
v1v2 y, . . . , xak

v1v2 , bk
v1v2 yq P Intk, we

compute int1
v1v2 “ pxa1

v1v2 ´ bk
v1v2 , b1

v1v2 ´ ak
v1v2 y, . . . , xak´1

v1v2 ´ bk
v1v2 , bk´1

v1v2 ´ ak
v1v2 yq P Intk´1,

where for all i P J1, k ´ 1K, xai
v1v2 ´ bk

v1v2 , bi
v1v2 ´ ak

v1v2 y is left-open (resp., right-open) if and
only if either xai

v1v2 , bi
v1v2 y is left-open or xak

v1v2 , bk
v1v2 y is right-open (resp., either xai

v1v2 , bi
v1v2 y

is right-open or xak
v1v2 , bk

v1v2 y is left-open). We set A1 “ tpv1, int1
v1v2 , v2q|pv1, intv1v2 , v2q P Au.

We then have (i) pk, G, v1, v2, v3q is a positive instance of the CLER problem if and only
if (ii) pk ´ 1, G1, v1, v3, 0k´1q is an instance of the ERL problem such that in G1, there exists a

run v1 Ñ v2
w1

v2v3
ÝÝÝÝÑ v3 with weight 0k´1, where w1

v2v3
piq P int1

v2v3
piq for all i P J1, k´1K and v3

appears only once in the run. Note that (ii) implies that there exists a run v1 ÝÑ v2
wv2v3

ÝÝÝÝÑ v3
in G whose weight has equal components w in R, where v1 ÝÑ v2 does not contain v3,
wv2v3 piq P intv2v3 piq for all i P J1, kK. If w is irrational, we can add a very small real number
ε to all components of wv2v3 such that v2

wv2v3 `ε
ÝÝÝÝÝÑ v3 is still a run and w ` ε P Q, because

Q is dense in R, hence (i) holds. In order to check whether pk ´ 1, G1, v1, v3, 0k´1q meets
the satisfaction, by Lemma 1, we need to add the additional constraint xpv2,v3q “ 1 into
the corresponding constraints (2), and then solve the corresponding inequality (1) with the
modified constraints. Hence the CLER problem belongs to NP. ◀

2.3 Real-time automata
A real-time automaton (RTA) is a tuple A “ pQ, E, Q0, ∆, µ, Σ, ℓq, where Q is a nonempty
finite set of states, E a finite alphabet (elements of E are called events), Q0 Ă Q a nonempty
set of initial states, ∆ Ă QˆE ˆQ a transition relation (elements of ∆ are called transitions),
µ assigns to each transition pq, e, q1q P ∆ (also written as q

e
ÝÑ q1) a nonempty interval µpeqqq1

of Rě0 with left endpoint and right endpoint being a and b, where a P Qě0, b P Qě0 Yt`8u1,
a ď b, Σ is a finite set of outputs, and ℓ : E Ñ Σ Y tϵu is an output/labeling function. A state
q P Q is called dead if for all e P E and q1 P Q, pq, e, q1q R ∆.

The size of a given A is defined by |Q| ` |Q0| ` |∆| ` sizepµq ` sizepℓq, where the sizes
of ˘8 and rational numbers have been defined before, sizepµq “

ř

pq,e,q1qP∆ sizepµpeqqq1 q “
ř

pq,e,q1qP∆p2 ` sizepaq,e,q1 q ` sizepbq,e,q1 qq, aq,e,q1 and bq,e,q1 are the endpoints of the interval
µpeqqq1 , 2 is used to denote the sum of the sizes of “r” (resp., “p”) and “s” (resp., “q”),
sizepℓq “ |tpe, ℓpeqq|e P Eu|.

A transition pq, e, q1q P ∆ is interpreted as when A is in state q and event e occurs after
some time segment in µpeqqq1 , A transitions to state q1. When event e P E occurs, the output
ℓpeq of e will be observed if ℓpeq ‰ ϵ (in this case we call e observable); while nothing will
be observed if ℓpeq “ ϵ (in this case we call e unobservable). A transition pq, e, q1q is called
observable (resp., unobservable) if e is observable (resp., unobservable). We denote by Eo

and Euo the sets of observable events and unobservable events, respectively. Output function
ℓ is extended to E ˆ Rě0 as follows: ℓppe, tqq “ pℓpeq, tq if e P Eo, ℓppe, tqq “ ϵ otherwise.
Then ℓ is recursively extended to E˚ as ℓpe1 . . . enq “ ℓpe1q . . . ℓpenq and also to pE ˆ Rě0q˚

analogously.

1 When b “ `8, the possible intervals can only be of the form ra, `8q or pa, `8q; when a “ b, the
possible intervals can only be ra, as “ tau.

AUTOMATA 2021
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A path of A is defined by the empty word ϵ or a sequence q0
e1

ÝÑ q1
e2

ÝÑ ¨ ¨ ¨
en

ÝÑ qn, where
n P Z`, pqi´1, ei, qiq P ∆ for all i P J1, nK. A path is called a cycle if its start state and terminal
state coincide. A run of A is either ϵ or a sequence q0

e1{t1
ÝÝÝÑ q1

e2{t2
ÝÝÝÑ ¨ ¨ ¨

en{tn
ÝÝÝÑ qn “: π,

where, n P Z`, pqi´1, ei, qiq P ∆, ti P µpeiqqi´1qi
for all i P J1, nK. The timed word of run π is

defined by τpπq “ pe1, t1
1qpe2, t1

2q . . . pen, t1
nq, where t1

i “
ři

k“1 tk for all i P J1, nK. The weight
WTπ of π is defined by t1

n. A run is called instantaneous if its weight is equal to 0, and called
noninstantaneous otherwise. A run π is called unobservable if ℓpe1 . . . enq “ ϵ, and called
observable otherwise. A path can also be defined to be either unobservable or observable
analogously. We use initpπq (resp., lastpπq) to denote its first state q0 (resp., last state qn),
respectively. For a set Π of runs, we use initpΠq (resp., lastpΠq) to denote the set of the initial
states (resp., last states) of the runs of Π. The set of runs starting at q0 P Q and ending at
q P Q is denoted by q0 ù q. For e1, . . . , en P E, q0

e1...en q denotes the set of all runs of
the form q0

e1{t1
ÝÝÝÑ q1

e2{t2
ÝÝÝÑ ¨ ¨ ¨

en´1{tn´1
ÝÝÝÝÝÝÑ qn´1

en{tn
ÝÝÝÑ q, where q1, . . . , qn´1 P Q. For two runs

π1 “ q0
e1{t1

ÝÝÝÑ q1
e2{t2

ÝÝÝÑ ¨ ¨ ¨
en{tn

ÝÝÝÑ qn and π2 “ qn
en`1{tn`1

ÝÝÝÝÝÝÑ qn`1
en`2{tn`2

ÝÝÝÝÝÝÑ ¨ ¨ ¨
en`m{tn`m

ÝÝÝÝÝÝÝÑ

qn`m, we use π1π2 to denote the concatenation q0
e1{t1

ÝÝÝÑ q1
e2{t2

ÝÝÝÑ ¨ ¨ ¨
en`m{tn`m

ÝÝÝÝÝÝÝÑ qn`m

(removing either lastpπ1q or initpπ2q). For a run π satisfying q0 P Q0, ℓpτpπqq P pΣ ˆ Rě0q˚

is called a timed output sequence generated by A. In this case, we observe ℓpeiq at time t1
i if

ei P Eo, observe nothing at time t1
i if ei P Euo, i P J1, nK. We extend function τ as follows:

for all γ “ pσ1, t1q . . . pσn, tnq P pΣ ˆ Rě0q˚,

τpγq “ pσ1, t1
1q . . . pσn, t1

nq, (3)

where t1
j “

řj
i“1 ti for all j P J1, nK. The timed language LpAq generated by A is denoted

by the set of timed words of all runs of A starting from initial states; LpAq is the set
of timed output sequences generated by A. For a sequence γ P pΣ ˆ Rě0q˚, we use
rγs to denote the set of runs π of A starting from initial states such that ℓpτpπqq “ γ.
For w “ pe1, t1qpe2, t2q . . . pen, tnq P pΣ ˆ Rq˚ and t P R, we define w ˘ t “ t ˘ w “

pe1, t1 ˘ tqpe2, t2 ˘ tq . . . pen, tn ˘ tq; define initpwq “ pinitLpwq, initRpwqq “ pe1, t1q, lastpwq “

plastLpwq, lastRpwqq “ pen, tnq; and also define τ´1pwq “ pe1, t1qpe2, t2 ´t1q . . . pen, tn ´tn´1q.
Hence for a run q0

e1{t1
ÝÝÝÑ q1

e2{t2
ÝÝÝÑ ¨ ¨ ¨

en{tn
ÝÝÝÑ qn “: π, pτ´1 ˝ τqpπq “ pe1, t1qpe2, t2q . . . pen, tnq.

For γ1γ2 P LpAq, we use intermpγ1, γ2q “ tq P Q|pD runs π1, π2qrpinitpπ1q P Q0q^plastpπ1q “

initpπ2q “ qq ^ pℓpτpπ1qq “ γ1q ^ pℓpτpπ1π2qq “ γ1γ2q ^ pWTπ1 “ lastRpγ1qq ^ pWTπ2 “

lastRpγ2q ´ lastRpγ1qqsu to denote the set of states A can be in when A has just generated
timed output sequence γ1, given that the current observation is timed output sequence γ1γ2.

3 Main results

3.1 Current-state estimate

For A, a subset x Ă Q of states, and a sequence γ P pΣ ˆ Rě0q`, we define the current-state
estimate as

MpA, γ|xq :“ tq P Q|pDq0 P xqpDn P Z`qpDm P Nq
ˆ

D a run π “ q0
e1{t1

ÝÝÝÑ ¨ ¨ ¨
en{tn

ÝÝÝÑ qn
en`1{0

ÝÝÝÝÑ ¨ ¨ ¨
en`m{0

ÝÝÝÝÝÑ q

˙

rpen P Eoq ^ pen`1 . . . en`m P pEuoq˚q ^ ℓpτpπqq “ γsu. (4)
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Particularly for A and x Ă Q, we define the instantaneous-state estimate as

MpA, ϵ|xq :“ x Y tq P Q|pDq0 P xqpDn P Z`qpD a run π “ q0
e1{0

ÝÝÝÑ ¨ ¨ ¨
en{0

ÝÝÝÑ qq

re1 . . . en P pEuoq˚su. (5)

For all γ P pΣ ˆ Rě0q˚, MpA, γ|Q0q is also rewritten as MpA, γq for short. Intuitively,
for γ “ pσ1, t1q . . . pσn, tnq P pΣ ˆ Rě0q`, MpA, γ|xq denotes the set of states A can be
in when γ has just been generated by A since A started from some state of x. Hence
MpA, γq Ă lastprγsq, and Ĺ may hold. In order to fit the setting of current-state estimate,
after the occurrence of the last observable event en (i.e., en occurs at the current time), we
only allow unobservable, instantaneous runs, which is represented by qn

en`1{0
ÝÝÝÝÑ ¨ ¨ ¨

en`m{0
ÝÝÝÝÝÑ q

and en`1 . . . en`m P pEuoq˚. Particularly, MpA, ϵ|xq denotes the set of states A can be in at
the instant when A just transitions to some state of x (since there may exist instantaneous
transitions, at the instant, A may be in some state outside of x).

3.2 The notions of state-based opacity
In order to define state-based opacity, we need to specify a special subset QS Ă Q of secret
states. The notions of state-based opacity describe the ability of an RTA A forbidding an
external intruder from making sure whether some secret state has been visited when the
intruder observes timed output sequences generated by A, given that the intruder knows
full knowledge of the structure of A. Before defining opacity formally, we specify a special
class of states from which a secret state will definitely be reached through unobservable
transitions. A state q of RTA A is called eventually secret if either (1) q is secret or (2) there
is an unobservable path starting from q and along each of such paths at least one secret
state will be visited. Hence a state q is not eventually secret if and only if (1) q R QS and (2)
either there is no unobservable path starting from q or there is an unobservable path starting
at q without any secret state that either ends at a dead state or contains repetitive states.

▶ Definition 4 (ISO). An RTA A is called initial-state opaque (with respect to QS) if for
every γ P LpAq, initprγsq Ć QS.

▶ Definition 5 (CSO). An RTA A is called current-state opaque (with respect to QS) if
every γ P LpAq, in MpA, γq there exists at least one non-eventual-secret state of A.

▶ Definition 6 (InfSO). An RTA A is called infinite-step opaque (with respect to QS) if for
all γ1γ2 P LpAq such that |γ2| ě 1, intermpγ1, γ2q contains a state q such that there is a run
q Ñ q1 e{t

ÝÝÑ q2 with weight initRpγ2q ´ lastRpγ1q, where q Ñ q1 is unobservable and contains
no secret state, e is observable and ℓpeq “ initLpγ2q, q2 P intermpγ1 initpγ2q, γ2z initpγ2qq.

▶ Definition 7 (KSO). Let K be in Z`. An RTA A is called K-step opaque (with respect
to QS) if for all γ1γ2 P LpAq such that 1 ď |γ2| ď K, intermpγ1, γ2q contains a state q

such that there is a run q Ñ q1 e{t
ÝÝÑ q2 with weight initRpγ2q ´ lastRpγ1q, where q Ñ q1

is unobservable and contains no secret state, e is observable and ℓpeq “ initLpγ2q, q2 P

intermpγ1 initpγ2q, γ2z initpγ2qq.

Intuitively, when an intruder observes a timed output sequence generated by an RTA A,
if A is initial-state opaque, then the intruder cannot make sure whether the initial state is
secret; is current-state opaque, then the intruder cannot make sure after the last observable
event occurred (observing lastLpγq) and before any new observable event occurs, whether a
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secret state has been visited (note that the “current time” here means the weight of any run
of rγs, so is no less than lastRpγq and ą may hold); infinite-step opaque, then the intruder
cannot make sure whether a secret state was visited after observing lastLpγ1q and before
observing initLpγ2q; and K-step opaque, then the intruder cannot make sure whether the
state prior to at most K observed outputs is secret. Different notions have different privacy
levels, so they may have different applications.

3.3 The notion of observer
In this subsection we define and compute a notion of observer Aobs to concatenate current-
state estimates along timed output sequences generated by A in 2-EXPTIME in the size of A.
Later, we will use Aobs to give a necessary and sufficient condition for CSO. Before defining
Aobs, we need to define a notion of pre-observer Apre

obs.

▶ Definition 8. For an RTA A, we define its pre-observer as a deterministic automaton

Apre
obs “ pX, Σ ˆ Rě0, x0, δpre

obsq, (6)

where X Ă 2QztHu is the state set, Σ ˆ Rě0 the alphabet, x0 “ MpA, ϵq P X the unique
initial state, δpre

obs Ă X ˆ pΣ ˆ Rě0q ˆ X the transition relation. For all nonempty x Ă Q

different from x0, x P X if and only if there is γ P pΣ ˆ Rě0q` such that x “ MpA, γq. For
all x, x1 P X and pσ, tq P Σ ˆ Rě0, px, pσ, tq, x1q P δpre

obs if and only if x1 “ MpA, pσ, tq|xq.

In Definition 8, after δpre
obs is recursively extended to δpre

obs Ă X ˆ pΣ ˆ Rě0q˚ ˆ X, one
has for all x P X and pσ1, t1q . . . pσn, tnq “: γ P pΣ ˆ Rě0q`, px0, γ, xq P δpre

obs if and only if
MpA, τpγqq “ x, where τpγq is defined in (3), i.e., x is the set of states that A can be in
when timed output sequence τpγq has just been generated.

Note that the alphabet Σ ˆRě0 is not finite, so we cannot compute the whole Apre
obs. Next,

we define observer Aobs as a computable sub-automaton of Apre
obs.

▶ Definition 9. For an RTA A, consider its pre-observer (8), we define its observer as a
finite automaton

Aobs “ pX, Σobs, x0, δobsq, (7)

where Σobs (resp., δobs) is a finite subset of Σ ˆ Qě0 (resp., δpre
obs), such that if there exists a

transition from x P X to x1 P X in δpre
obs then at least one such transition belongs to δobs.

Note that for an RTA A, its observer may not be unique, because Σobs may not be
unique; however, X and x0 must be unique. In Definition 9, after δobs is recursively extended
to δobs Ă X ˆ pΣobsq˚ ˆ X, one has for all x P X and pσ1, t1q . . . pσn, tnq “: γ P pΣobsq`,
px0, γ, xq P δobs if and only if MpA, τpγqq “ x.

▶ Theorem 10. For an RTA A, its observer Aobs can be computed in 2-EXPTIME in the
size of A.

Here we only give a sketch of the proof, the entire proof is put in Appendix. The initial
state x0 “ MpA, ϵq is trivially computable in polynomial time. We then start from x0,
find all reachable states step by step together with the corresponding transitions, which
is equivalent to checking for all x1, x2 Ă Q and σ P Σ, whether there is a transition
px1, pσ, tq, x2q for some t P Qě0. In addition, we require that for all x1, x2, x3 Ă Q, if we
find two transitions px1, pσ, tq, x2q and px1, pσ, t1q, x3q for some t, t1 P Qě0, then x2 Ă x3
implies x3 Ć MpA, pσ, tq|x1q. This guarantees that if there exists a transition from x1 Ă Q

to x2 Ă Q in Apre
obs, then there also exists a transition from x1 Ă Q to x2 Ă Q in Aobs.
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3.4 The notion of reverse observer
In this subsection we define and compute a notion of reverse observer AR obs that will be
used to verify ISO. To this end, we also need to define a notion of pre-reverse observer Apre

R obs.
Similarly to observer Aobs, AR obs can also be computed in 2-EXPTIME in the size of A.

For an RTA A, a subset x Ă Q of states, and a sequence γ P pΣ ˆ Rě0q`, we define the
reverse-current-state estimate as

MRpA, γ|xq :“ tq P Q|pDq1 P xqpDn P Z`qpDm P Nq
ˆ

D a run π “ q
e1{t1

ÝÝÝÑ ¨ ¨ ¨
en{tn

ÝÝÝÑ qn
en`1{0

ÝÝÝÝÑ ¨ ¨ ¨
en`m{0

ÝÝÝÝÝÑ q1

˙

rpen P Eoq ^ pen`1 . . . en`m P pEuoq˚q ^ ℓpτpπqq “ γsu. (8)

MRpA, γ|xq denotes the subset of states of Q starting from which at instant 0, A can
generate timed output sequence γ P pΣ ˆ Rě0q` and can only be in any one state of x at
instant lastRpγq.

▶ Definition 11. For an RTA A, we define its pre-reverse observer as a deterministic
automaton

Apre
R obs “ pXR, Σ ˆ Rě0, Q, δpre

R obsq, (9)

where XR Ă 2QztHu is the state set, Σ ˆ Rě0 the alphabet, Q the unique initial state,
δpre

R obs Ă XR ˆ pΣ ˆRě0q ˆ XR the transition relation. For all x, x1 P XR and pσ, tq P Σ ˆRě0,
px, pσ, tq, x1q P δpre

R obs if and only if x1 “ MRpA, pσ, tq|xq, i.e., x1 is the subset of states of Q

starting from which at instant 0, A can generate timed output sequence pσ, tq and can only
be in any one state of x at instant t.

▶ Definition 12. For an RTA A, consider its pre-reverse observer (9), we define its reverse
observer as a finite automaton

AR obs “ pXR, ΣR obs, Q, δR obsq, (10)

where ΣR obs (resp., δR obs) is a finite subset of Σ ˆ Qě0 (resp., δpre
R obs) such that for all

x1, x2 P XR, if there is a transition from x1 to x2 in δpre
R obs then at least one such transition

belongs to δR obs.

In AR obs, ΣR obs and δR obs may not be unique but must be finite. The following result
follows from a similar proof compared with that of Theorem 10.

▶ Theorem 13. For an RTA A, its reverse observer AR obs can be computed in 2-EXPTIME
in the size of A.

3.5 Necessary and sufficient conditions for notions of state-based
opacity

In this subsection, we use the notions of observer and reverse observer to give necessary and
sufficient conditions for the four notions of opacity.

▶ Theorem 14. Consider an RTA A. A is initial-state opaque if and only if in reverse
observer AR obs, for every reachable state x, if x X Q0 ‰ H then x X Q0 Ć QS; A is current-
state opaque if and only if in observer Aobs, every reachable state x contains at least one
non-eventual-secret state of A.

AUTOMATA 2021



12:10 State-Based Opacity of Real-Time Automata

Proof. Consider an arbitrary γ P LpAq.
By definition, initprγsq “ MRpA, γ|Qq X Q0; and in reverse observer AR obs, there exists

γ1 P p ΣR obsq˚ such that pQ, γ1, MRpA, γ|Qqq P δR obs. For every γ2 P p ΣR obsq˚ and state
x of AR obs such that pQ, γ2, xq P δR obs, x “ MRpA, τppγ2qRq|Qq. Hence the set tx X

Q0|x is reachable in AR obsu is equal to the set tinitprγsq|γ P LpAqu. Then, A is initial-state
opaque if and only if for every reachable state x of AR obs, if x X Q0 ‰ H, then x X Q0 Ć QS .

By definition, there exists γ1 P pΣobsq˚ such that px0, γ1, MpA, γqq P δobs. Conversely, for
every γ2 P pΣobsq˚ and x P X such that px0, γ2, xq P δobs, one has x “ MpA, τpγ2qq, where
τpγ2q P LpAq. Then, A is current-state opaque if and only if every reachable state of Aobs
contains at least one non-eventual-secret state of A. ◀

By Theorem 10, Theorem 13, and Theorem 14, the initial-state opacity and current-state
opacity of an RTA A can be verified in time linear in the size of AR obs and Aobs, respectively,
hence in 2-EXPTIME in the size of A.

▶ Theorem 15. Consider an RTA A and K P Z`. A is infinite-step opaque if and only
if for every reachable state x of observer Aobs and every transition px2, pσ, tq, x1q of reverse
observer AR obs with x2 being reachable in AR obs, if x X x1 ‰ H, then x X x1 contains a state
q P Q such that there is a run q Ñ q1 e{t1

ÝÝÑ q2 with weight t, where q Ñ q1 is unobservable and
contains no secret state of QS, e is observable and ℓpeq “ σ, q2 P x2; A is K-step opaque if
and only if the above necessary and sufficient condition for InfSO holds, and x2 additionally
satisfies that there is γ P p ΣR obsq˚ such that |γ| ď K ´ 1 and pQ, γ, x2q P δR obs.

Proof. By definition of pre-reverse observer Apre
R obs, one sees that for all γ1γ2 P LpAq such that

|γ2| ě 1, intermpγ1, γ2q “ MpA, γ1q X x1, where x1 satisfies pQ, pτ´1pγ2 ´ lastRpγ1qqqR, x1q P

δpre
R obs. Choose x2 P XR such that px2, initpγ2q ´ lastRpγ1q, x1q P δpre

R obs. Then by definition
of InfSO, one has A is infinite-step opaque if and only if for all such γ1γ2, x1, and x2, if
MpA, γ1q X x1 ‰ H, then MpA, γ1q X x1 contains a state q P Q such that there is a run
q Ñ q1 e{t1

ÝÝÑ q2 with weight initRpγ2q ´ lastRpγ1q, where q Ñ q1 is unobservable and contains
no secret state of QS , e is observable and ℓpeq “ initLpγ2q, q2 P x2. By definitions of observer
Aobs and reverse observer AR obs, there exist γ̄1, γ̄2 P pΣ ˆ Qě0q˚ such that |γ̄1| “ |γ1|,
|γ̄2| “ |γ2|, px0, γ̄1, MpA, γ1qq P δobs, pQ, γ̄2, x1q P δR obs, and px2, lastpγ̄2q, x1q P δR obs. Then
one has the necessary and sufficient condition for InfSO holds. Similarly one has the necessary
and sufficient condition for KSO also holds. ◀

We next give an upper bound for K.

▶ Proposition 16. Consider an RTA A and a positive integer K P Z`. A is K-step opaque
if and only if it is mintK, 2|Q|u-step opaque.

Proof. By definition, if A is K-step opaque, then it is K 1-step opaque for all 1 ď K 1 ă K.
Then the “only if” part holds.

Next we prove the “if” part. Assume K ą 2|Q| and A is not K-step opaque. By The-
orem 15, for observer Aobs and reverse observer AR obs, there exist γ1 P pΣobsq˚, γ2 P p ΣR obsq˚,
x1 P X, x2, x1

2 P XR, such that px0, γ1, x1q P δobs, pQ, γ2, x2q P δR obs, px1
2, lastpγ2q, x2q P δR obs,

and 1 ď |γ2| ď K; x1 X x2 is nonempty and does not contain a state q of Q such that there
is a run q Ñ q1 e{t1

ÝÝÑ q2 with weight lastRpγ2q, where q Ñ q1 is unobservable and contains no
secret state of QS , e is observable and ℓpeq “ lastLpγ2q, q2 P x1

2. Because AR obs has at most
2|Q| states, there exists γ3 P p ΣR obsq˚ such that |γ3| ď 2|Q| ´ 1 and pQ, γ3, x1

2q P δR obs. Then
also by Theorem 15, A is not 2|Q|-step opaque. ◀
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By Theorem 10, Theorem 13, Theorem 15, and Proposition 16, for any K P Z`, the
infinite-step opacity and K-step opacity of an RTA A can be verified in 2-EXPTIME in the
size of A.

▶ Example 17. Consider the toy RTA A1 in Figure 1. When A1 starts at q0, and a occurs
at instant between 1 and 2, A1 can transition to either q1 or q2; but if a occurs at instant in
p2, 3s, A1 can only transition to q1.

q0 q2

q1 q3

q4

a{
r1,

3s

a{r1, 2s

a{r1, 1s

a{r1, 2s

Figure 1 An RTA A1, where a state with an arrow from nowhere denotes an initial state, e.g.,
q0; a is an observable event, ℓpaq “ a.

One of its observers is shown in Figure 2.

q0 q1

q1q2

q3

q4q3q4

pa
, 2q

pa, 3q pa, 1q

pa, 2qpa, 1q

Figure 2 One observer A1 obs of RTA A1 in Figure 1.

One of its reverse observers is shown in Figure 3.

q0q1q2q3q4q0q1q2

q0q2q0

pa, 1q

pa
,2

qpa
, 3q

pa, 1q

pa
,1

q

Figure 3 One reverse observer AR 1 obs of RTA A1 in Figure 1.

One sees two runs q0
a{2

ÝÝÑ q1
a{1

ÝÝÑ q3 and q0
a{1

ÝÝÑ q2
a{1

ÝÝÑ q4 of A1, where 2 P µpaqq0q1 “

r1, 3s.
Now assume q3 is secret, all the other states are non-secret. By definition, only q3 is

eventually secret, because there is no unobservable path starting from any other state. By
observer A1 obs and Theorem 14, A1 is not current-state opaque with respect to tq3u because
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there is a reachable state tq3u in A1 obs that only contains eventually secret states of A1
(that is, q3). On the other hand, after observing pa, 3qpa, 4q, one can make sure that A1 is in
state q3 by A1 obs.

Now assume only q1 is secret. In observer A1 obs there is a reachable state tq1u, in
reverse observer AR 1 obs there is a reachable transition tq0, . . . , q4u

pa,1q
ÝÝÝÑ tq0, q1, q2u. One

has tq1u X tq0, q1, q2u “ tq1u, which contains only secret states. Then by Theorem 15, A1 is
not infinite-step opaque with respect to tq1u.

4 Conclusion

In this paper, we formulated four notions of state-based opacity for real-time automata, and
proved that the four notions are decidable in 2-EXPTIME by defining notions of observer
and reverse observer and computing them in 2-EXPTIME. The lower bounds for verifying
the four notions are not known.

In addition, one can see from Theorem 10 and Theorem 13 that if an RTA A has no
unobservable cycle, then its observers and reverse observers can be computed in EXPTIME
in the size of A without using the ERL problem. Hence by Theorem 14 and Theorem 15,
the four notions of opacity can also be verified in EXPTIME in this special case.
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A Appendix

Proof. (of Theorem 10) The initial state x0 “ MpA, ϵq is trivially computable in polynomial
time. We then start from x0, find all reachable states step by step together with the
corresponding transitions, which is equivalent to checking for all x1, x2 Ă Q and σ P

Σ, whether there is a transition px1, pσ, tq, x2q for some t P Qě0. If it does exist, then
px1, pσ, tq, x2q is a transition of Aobs, otherwise there is no transition px1, pσ, t1q, x2q for any
t1 P Qě0 in Aobs, and furthermore there is no transition px1, pσ, t2q, x2q for any t2 P Rě0 in
Apre

obs, because Qě0 is dense in Rě0. In addition, we require that for all x1, x2, x3 Ă Q, if
we find two transitions px1, pσ, tq, x2q and px1, pσ, t1q, x3q for some t, t1 P Qě0, then x2 Ă x3
implies x3 Ć MpA, pσ, tq|x1q. This guarantees that if there exists a transition from x1 Ă Q

to x2 Ă Q in Apre
obs, then there also exists a transition from x1 Ă Q to x2 Ă Q in Aobs. The

procedure for doing the above check is as follows.
Choose a state x1 “ tq1, . . . , qnu P X that we have just computed, where n P Z`, and

|x| “ n. Choose σ P Σ. For each i P J1, nK, compute subautomaton Aqi of A that consists of
all paths of the form

qi
s1

i
ÝÑ q1

i
ei

ÝÑ q2
i (11)

such that s1
i P pEuoq˚, ei P Eo, and ℓpeiq “ σ. Denote the set of all such q2

i by x̄2.
We next check for each H ‰ x̃2 Ă x̄2, whether px1, pσ, tq, MpA, ϵ|x̃2qq P δobs for some

t P Qě0, in the order |x̃2| decreases. For every x̃2 Ĺ x̂2 Ă x̄2, if we have found a transition
px1, pσ, t1q, MpA, ϵ|x̂2qq before checking x̃2, then we must choose t such that MpA, ϵ|x̂2q Ć

MpA, pσ, tq|x1q. In order to finish the construction of Aobs, we need to do the check for at
most 2|Q|2|Q| times.
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[A] For each i P J1, nK, denote the number of states q2
i shown in (11) by i2 P N, and denote

these states by q2
i,1, . . . , q2

i,i2
. Here one may have i2 “ 0, which implies that there is no

path of the form (11) starting from qi.
[B] Nondeterministically compute asynchronous product

11

2
â

i“1
Aq1 b ¨ ¨ ¨ b

n1

2
â

i“1
Aqn

, (12)

where i1
2 ď i2, i P J1, nK, states q2

1,1, . . . , q2
1,11

2
, . . . , q2

n,1, . . . , q2
n,n1

2
are pairwise different

and

tq2
1,1, . . . , q2

1,11
2
, . . . , q2

n,1, . . . , q2
n,n1

2
u “ x̃2,

this also guarantees that
řn

i“1 i1
2 ď |Q|; the states of the product are

pq1,1, . . . , q1,11
2
, . . . , qn,1, . . . , qn,n1

2
q,

where qi,1, . . . , qi,i1
2

are states of Aqi
, i P J1, nK; there is a transition

pq1,1, . . . , q1,11
2
, . . . , qn,1, . . . , qn,n1

2
q

pe1,1,...,e1,11
2

,...,en,1,...,en,n1
2

q

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q

in product (12) if and only if either one of the two conditions holds.

[a] For some i P J1, nK and j P J1, i1
2K, qi,j

ei,j
ÝÝÑ q1

i,j is an unobservable transition of Aqi
,

for all other pairs pk, lq, ek,l are qual to ϵ, and qk,l “ q1
k,l. In this case, µ assigns to

the transition a vector, where the pi, jq-component is the interval µpei,jqqi,jq1

i,j
, for

all other pk, lq-components, µpek,lqqk,lq1

k,l
“ r0, 0s.

[b] For all i P J1, nK and j P J1, i1
2K, qi,j

ei,j
ÝÝÑ q1

i,j is an observable transition of Aqi
. In

this case, µ assigns to the transition a vector, whether the pi, jq-components are
intervals µpei,jqqi,jq1

i,j
.

[C] In product (12), guess transition

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q

pē1,1,...,ē1,11
2

,...,ēn,1,...,ēn,n1
2

q

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

pq2
1,1, . . . , q2

1,11
2
, . . . , q2

n,1, . . . , q2
n,n1

2
q,

where ē1,1, . . . , ē1,11
2
, . . . , ēn,1, . . . , ēn,n1

2
are observable (i.e., item (Bb) is satisfied). Then

check in product (12), whether there exists a run π1 in

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q

pē1,1,...,ē1,11
2

,...,ēn,1,...,ēn,n1
2

q

pq2
1,1, . . . , q2

1,11
2
, . . . , q2

n,1, . . . , q2
n,n1

2
q

and an unobservable run π2 in

pq1, . . . , q1
loooomoooon

11
2

, . . . , qn, . . . , qn
loooomoooon

n1
2

q ù pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q (13)

such that the weight of π2π1 has equal components that are equal to a rational number,
which actually corresponds to a positive instance p

řn
i“1 i1

2, (12), pq1, . . . , q1
loooomoooon

11
2

, . . . , qn, . . . , qn
loooomoooon

n1
2

q,



K. Zhang 12:15

pq1
1,1, . . . , q1

1,11
2
, . . . , q1

n,1, . . . , q1
n,n1

2
q, pq2

1,1, . . . , q2
1,11

2
, . . . , q2

n,1, . . . , q2
n,n1

2
qq of the CLER prob-

lem (Problem 2). If Yes, then the weight is denoted by t P Qě0, and we find a transition

px1, pσ, tq, MpA, ϵ|x̃2qq (14)

of Aobs.

We need to do the above check (C) for at most 2|Q|2|Q||Q||Q| “ 22|Q|
2 log |Q| times

(corresponding to nondeterministic computations of product (12)). Each check can be done
by solving the corresponding CLER problem (Problem 2), and hence can be done in NP in the
size Opp|Q||Q|q2p|Eo||Eo| ` |Q||Euo|qq “ Op2|Q|

2 log |Q|p2|Eo| log |Eo| ` |Q||Euo|qq of the product
(12) by Lemma 3. Hence, the total time consumption of computing Aobs is 2-EXPTIME in
the size of A. ◀
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