Scope States (Artifact)

Hendrik van Antwerpen &
Delft University of Technology, The Netherlands

Eelco Visser &
Delft University of Technology, The Netherlands

— Abstract

Compilers that can type check compilation units
in parallel can make more efficient use of multi-
core architectures, which are nowadays widespread.
Developing parallel type checker implementations
is complicated by the need to handle concurrency
and synchronization of parallel compilation units.
This artifact contains benchmarks and sources for a
new framework for implementing hierarchical type
checkers that provides implicit parallel execution
in the presence of dynamic and mutual dependen-
cies between compilation units. The resulting type
checkers can be written without explicit handling of

communication or synchronization between differ-
ent compilation units. We achieve this by providing
type checkers with an API for name resolution based
on scope graphs, a language-independent formal-
ism that supports a wide range of binding patterns.
Our framework is implemented in Java using the
actor paradigm. We evaluated our approach by
parallelizing the solver for Statix, a meta-language
for type checkers based on scope graphs, using our
framework. Benchmarks show that the approach
results in speedups for the parallel Statix solver of
up to 5.0x on 8 cores for real-world code bases.

2012 ACM Subject Classification Software and its engineering — Compilers; Theory of computation —

Parallel algorithms

Keywords and phrases type checking, name resolution, parallel algorithms

Digital Object Identifier 10.4230/DARTS.7.2.1

Funding NWO VICI Language Designer’s Workbench project (639.023.206)

Acknowledgements We thank the anonymous reviewers for their helpful comments.

Related Article Hendrik van Antwerpen and Eelco Visser, “Scope States: Guarding Safety of Name
Resolution in Parallel Type Checkers”, in 35th European Conference on Object-Oriented Programming
(ECOOP 2021), LIPIcs, Vol. 194, pp. 1:1-1:29, 2021.
https://doi.org/10.4230/LIPIcs.ECO0P.2021.1

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12-16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

The artifact supports the following contributions from the paper:

We present a scope graph-based name resolution API for use by type checker implemen-
tations (Section 4.3).

We present an actor-based algorithm that implements the hierarchical compilation unit
model and the name resolution API, and provides implicit parallel execution of the
compilation units (Section 5).

We present a fine-grained deadlock handling approach to ensure termination that is
well-suited for interactive applications of the type checkers (Section 5).

The parallel type checker framework is implemented as a library, and its source is included in
the artifact (see section 10). This library is independent of the Statix type checker implementation,
and reusable for other type checkers.
© Hendrik van Antwerpen and Eelco Visser;

oY licensed under Creative Commons License CC-BY 4.0
Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 1, pp. 1:1-1:7
Dagstuhl Artifacts Series

DAGSTUHL
\\v ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl Publishing, Germany

mailto:h.vanantwerpen@tudelft.nl
https://orcid.org/0000-0001-5117-0921
mailto:e.visser@tudelft.nl
https://orcid.org/0000-0002-7384-3370
https://doi.org/10.4230/DARTS.7.2.1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

1:2

Scope States (Artifact)

We show that our framework captures the scheduling behavior of Rouvoet et al. [13],
by porting the Statix solver to our framework. We discuss inference support and the
need for a specification style that splits a declaration and its type into two connected
scopes (Section 6). We parallelize all Statix type checkers, provided they follow this
specification style.

A Statix solver is implemented on top of the parallel framework, and its source is included in
the artifact (see section 10). This solver implementation is not tied to a specific Statix specification,
and the included integration test is an example of another specification. The integration test
runs the same specification against the original and the parallel Statix solver to ensure that the
behavior of the original is preserved.

We benchmark the parallelized Statix solver using a specification for a subset of Java on
a few real world projects, showing speedups up to approximately 3x on 6 cores for larger
projects.

The benchmark is included in the artifact, both as source and as executable (see section 9).
The sources of the Statix specification, as well as the sources of the benchmark Java projects, are
included in the artifact (see section 10).

2 Content

The artifact consists of the following:
An executable JAR of the benchmark.
Sources of the parallel type checker framework and the scope graph resolution algorithm.
Sources of the Statix implementation based on the parallel type checker framework.
Sources of the Statix specification, of a subset of Java, that is used in the benchmark.
Sources of the Java projects that are used in the benchmark.

The artifact archive contains two directories:

Description Directory

Self-contained benchmark JAR and sources scope-states-artifact

Virtual machine self-contained benchmark JAR, sources, and pre- scope-states-artifact-vm
installed dependencies

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

Running the virtual machine requires an x86-64 system with preferably 8GiB of RAM (4GiB
is an absolute minimum), and virtualization software. An OVF compatible application such as
VirtualBox!, or QEMU? are both supported virtualization software.

! https://www.virtualbox.org/
2 https://www.qemu.org/

https://www.virtualbox.org/
https://www.qemu.org/

H. van Antwerpen and E. Visser

Running the benchmark locally requires a x86-64 system running Linux or macOS and at least
4GiB of RAM. The following software needs to be installed:

Java® (versions 8-11 have been tested), to run the benchmark.

Maven?, to build the sources.

R or Rstudio®, for plotting benchmark results. Ensure the following R packages are installed:

tidyverse, whereami, and knitr.

5 License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

6 MD5 sum of the artifact

14d77d071cfa046e3259465de789e8b9

7 Size of the artifact

1.5 GiB

8 Getting Started

This section describes how to get the artifact running.

8.1 Running the Virtual Machine

To run the artifact virtual machine, follow the steps in this section.

While this is the easiest method to run the artifact, benchmark results may be unreliable,
depending on the specifics of virtualization. When in doubt, consider running benchmarks
directly on the host.

Unpack the ZIP archive scope-states-artifact.zip, and change to the directory
scope-states-artifact-vm. On Linux/macOS this can be done using

unzip scope-states-artifact-vm.zip
cd scope-states-artifact-vm

To run the virtual machine with QEMU, simply execute:

3 https://adoptopenjdk.net/
4 https://maven.apache.org/
5 https://www.r-project.org/ or http://www.rstudio.com/

1:3

DARTS

http://www.apache.org/licenses/LICENSE-2.0
https://adoptopenjdk.net/
https://maven.apache.org/
https://www.r-project.org/
http://www.rstudio.com/

1:4

Scope States (Artifact)

./run

Otherwise, import artifact.ovf in VirtualBox and start the machine.

e N
The virtual machine is started with 4 virtual cores and 8G of RAM by default. To change

these defaults, set the CORES and/or MAXMEM environment variable before invoking run, or
change their values in VirtualBox. Running with less than 4G is not recommended. For
example run with 10GB and 8 cores by invoking:

CORES=8 MAXMEM=10G ./run

Details on expected memory usage of the different benchmark projects can be found in

ion 9.
\sect09)

Once the virtual machine has started, you are automatically logged in, and the artifact files are
found in the user’s home directory.

Shutdown can be triggered from the virtualization application, or by executing the following
command:

sudo shutdown -h now

Starting a graphic environment.
It is possible to start a graphic environment inside the virtual machine. Once the machine is
started, execute:

startx

The graphic environment can be particularly helpful to view the plots generated from the benchmark
results.

8.2 Running Locally

Unpack the ZIP archive scope-states-artifact.zip, and change to the directory
scope-states-artifact. On Linux/macOS this can be done using

unzip scope-states-artifact.zip
cd scope-states—-artifact

8.3 Running the Benchmark
First, execute the type checker on one of the benchmark projects using:
./benchmark/java-run review $(nproc) commons-csv

This starts a single run of the type checker, using all cores, on the smallest benchmark project:
commons-csv.

Benchmarks get 6G of RAM by default. Set MAXMEM to specify a different amount. For this
initial run, using MAXMEM=2G should be enough. Details on expected memory usage of the
different projects can be found in section 9.

This produces output similar to:

Running concurrent solver...
Reported errors: 367+1
Finished after 10.361 s.

H. van Antwerpen and E. Visser

The type checker reports a number of errors, because the Java specification does not support
all the features that are used in the project code yet. The number is very high because Statix
also reports many cascading errors that come from a single root cause.

Run statistics are written to a file, with a name determined by the benchmark parameters:
java-run-PROJECT-DATETIME-review-HOSTNAME-CORES. csv. Plot the distribution of estimated
run times per compilation unit and the top 10% longest-running units, by running:

./Rscripts/plot-java-run.R java-run-*.csv

The resulting plots are stored in java-run-*.runtime_{histogram,topl10}.pdf. Details on the
resulting plots are found in section 9.

A benchmark consists of running multiple iterations of the type checker with different parame-
ters for projects and parallelism. Run a simple benchmark with:

./benchmark/java-benchmark 1 3 review 1,2 commons-csv

This runs the type checker on the commons-csv project with 1 warmup and 3 sample iterations,
using 1 and 2 cores. The benchmark tool reports progress and ends with a summary of the results,
similar to:

Benchmark (parallelism) (project) (specVersion) Mode Cnt Score Error Units
JavaBenchmark.run 1 commons-csv ... ss 3 9.194 x 3.773 s/op
JavaBenchmark.run 2 commons-csv ... ss 3 5.314 £ 1.587 s/op
JavaBenchmark.run 4 commons-csv ... ss 3 4.404 £ 9.747 s/op
JavaBenchmark.run 8 commons-csv ... ss 3 4.346 + 3.568 s/op

Benchmark result is saved to java-benchmark-*.csv

Benchmark statistics are written to a file, with a name determined by the benchmark parameters:
java-benchmark-DATETIME-review-HOSTNAME-WARMUP+SAMPLES. csv. Plot runtime and speedup
versus the number of cores, by running:

./Rscripts/plot-java-benchmark.R java-benchmark-*.csv

The resulting plots are stored in java-benchmark-*.{runtime, speedup}{summary,details}.pdf.

Details on the resulting plots are found in section 9.
Inside the graphic environment, plots can be displayed by executing the following inside a
terminal:

xpdf FILENAME.pdf

This is everything necessary to run benchmarks and reproduce the result plots. Read on for
more details on the benchmark and the sources.

9 Benchmark: In Detail

This section describes the setup and parameters of the benchmark, and explains how to run the
benchmark and how to interpret the produced results.

There are many factors that may influence and invalidate the results of a benchmark. Here
are a few to consider when using this artifact:
Other active programs. If other programs are active during the benchmark, performance
of the benchmark may decrease.
CPU scaling. If the OS does automatic CPU scaling (e.g., based on core temperature or
net /battery power), the performance may decrease, as well as vary during the benchmark.

1:5

DARTS

1:6

Scope States (Artifact)

Reported CPU’s versus hardware cores. CPU’s with hyper threading or similar techniques
may report more CPU’s than there are physical cores. Since type checking is a CPU
bound problem, the scaling may taper of quickly above the number of physical cores.
Not enough memory. If not enough memory is allocated to the benchmark, the JVM will
spend more time garbage collecting, which is detrimental to performance. See below for
approximate memory usage of the different benchmark projects.

Running inside a virtual machine. The effect of the virtual machine on performance can
be unpredictable. For the most accurate results, we recommend running the benchmark

directly on the host.
_ /

9.1 Benchmark Parameters

The benchmark is controlled by four parameters:
The project to analyze: commons-csv, commons-io, commons-lang3,
single-unit-clusters-call.
The parallelism to use for analysis, that is, the number of cores.
The number of warmup iterations.
The number of sample iterations.

The following table gives approximate running times and memory usage of individual runs for
the different projects, when using 8 cores, on a Apple MacBook Pro with 2.8 GHz Intel Core i7
and 16 GB RAM:

Project Runtime (s) Max. Memory (GB)
commons-csv 26 2
commons-io 36 3
commons-lang3 86 3.5
single-unit-clusters-call 110 4

9.2 Paper Benchmark
The results from the paper were obtained by running the following command:

./java-benchmark 5 15 review \
1,2,4,6,8,12,16,24 \
commons-csv,commons—io,commons—-lang3,single-unit-clusters—-call

The benchmark was executed on a Linux system with 128 AMD EPYC 7502 32-Core Processors
1.5GHz and 256GB RAM. The benchmark ran with 5 warmup and 15 sample iterations for each
of the projects with increasing number of cores from 1 to 24. Total runtime was approximately
6 hours. We also ran each project individually using 8 cores to gather per-unit statistics. The
resulting files for all these can be found in statix-benchmark/results/20210415.

9.3 Results

The main results are the *.speedup_summary.pdf and *.speedup_details.pdf plots, which
show the speedup achieved by using more cores. The speedup values are also saved in
* . speedup_data.csv files.

Use the runtime plots to understand the scaling profile in more detail. The
*.runtime_summary.pdf and *.runtime_details.pdf plots show the absolute runtime mea-
sured during the benchmark. The *.runtime_top10.pdf and *.runtime_histogram.pdf plots

H. van Antwerpen and E. Visser

from individual runs show the runtime of individual compilation units. The runtime of the whole
problem is necessarily determined by the longest runtime of any individual unit. We found that
the point where the scaling curve flattens, the total benchmark is close to the runtime of the

longest running unit.

10 Sources: In Detail

This section gives pointers to the most interesting parts of the sources.
The implementation of the parallel framework can be found in sources/statix/p_raffrayi.
The following files may be of interest:
src/main/java/mb/p_raffrayi/ITypeChecker. java implements the TypeChecker interface
from Algorithm 1.
src/main/java/mb/p_raffrayi/ITypeCheckerContext.java implements the
CompilationUnit interface from Algorithm 1.
src/main/java/mb/p_raffrayi/impl/TypeCheckerUnit. java implements most of
Algorithms 4-6.

The implementation of parallel Statix can be found in sources/statix/statix.solver. The
following files may be of interest:

src/main/java/mb/statix/concurrent/UnitTypeChecker. java implements the type checker

for files, which in turn calls src/main/java/mb/statix/concurrent/StatixSolver. java

which actually uses the provided API.

The Statix specification for the subset of Java can be found in
sources/java-front/lang. java.statics/. It is located in the trans folder and follows roughly
the structure of the Java Language Specification.

The sources of the benchmark projects can be found in sources/java-evaluation. For
technical reasons the Java files have the file extension .jav.

Finally, the benchmark runner, based on JMH, can be found in sources/statix-benchmark.
The Java code is located in the directory statix.benchmark. The directory results contains
the result files, including for the last experiment of 20210430, which is reported in the paper.

1:7

DARTS

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	8 Getting Started
	8.1 Running the Virtual Machine
	8.2 Running Locally
	8.3 Running the Benchmark

	9 Benchmark: In Detail
	9.1 Benchmark Parameters
	9.2 Paper Benchmark
	9.3 Results

	10 Sources: In Detail

