
mist: Refinements of Futures Past (Artifact)
Anish Tondwalkar #

University of California, San Diego, CA, USA

Matt Kolosick #

University of California, San Diego, CA, USA

Ranjit Jhala #

University of California, San Diego, CA, USA

Abstract
mist is a tiny language for teaching and experiment-
ing with refinement types, in the style of Liquid-
Haskell. We use it as a platform for experimenting
with and as a demonstration of implicit refinement
types as presented in the ECOOP21 paper Refine-
ments of Futures Past: Higher-Order Specification
with Implicit Refinement Types. We start with the
parser and AST we use to teach our undergradute

compilers class, and layer upon it a refinement type
checker directly translated from the typing rules
presented in that paper, which produces constraints
that are solved with the liquid-fixpoint horn
clause solver.

We present source code and binaries for mist
in a container image that includes installations of
the competing tools we compare to.

2012 ACM Subject Classification Theory of computation → Program constructs; Theory of computation
→ Program specifications; Theory of computation → Program verification
Keywords and phrases Refinement Types, Implicit Parameters, Verification, Dependent Pairs
Digital Object Identifier 10.4230/DARTS.7.2.3
Funding This work was supported by NSF grant CCF-1911213.

Related Article Anish Tondwalkar, Matthew Kolosick, and Ranjit Jhala, “Refinements of Futures
Past: Higher-Order Specification with Implicit Refinement Types”, in 35th European Conference on
Object-Oriented Programming (ECOOP 2021), LIPIcs, Vol. 194, pp. 18:1–18:29, 2021.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12–16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

This artifact allows users to reproduce the results of the experiments presented in the ECOOP21
paper and to test the system against examples and benchmarks of their own conception.

2 Content

The artifact package is a docker image that includes:
The source code for the mist programming language
Binary releases of: mist, competing tools fstar and mochi, as well as all of their dependencies.
A tutorial on how to use to artifact and on programming in the mist programming language

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
as a git repository at https://github.com/ucsd-progsys/mist. The version of the code held
in the archive corresponds to the ecoop21 branch.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Anish Tondwalkar, Matt Kolosick, and Ranjit Jhala;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 3, pp. 3:1–3:11
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:atondwal@eng.ucsd.edu
mailto:mkolosick@eng.ucsd.edu
mailto:rjhala@eng.ucsd.eduu
https://github.com/ucsd-progsys/liquidhaskell
https://github.com/ucsd-progsys/liquidhaskell
https://doi.org/10.4230/DARTS.7.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://github.com/ucsd-progsys/mist
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

3:2 mist: Refinements of Futures Past (Artifact)

4 Tested platforms

This artifact with developed and tested on Ubuntu 20.04, and tested on Mac OS. Requires at least
4GB of RAM.

5 License

The artifact is available under an MIT license.

6 MD5 sum of the artifact

aa4c6b98c4c7b17c67c9369ae9e3aff7

7 Size of the artifact

7.54 GiB

8 Initial build, install, and running all tests

You can use the Docker image or install mist manually. The Docker image also includes the tools
we compare against.

8.1 Using docker

Windows and Mac users: Make sure your docker container has at least 4GB of RAM

The following command will download an image containing mist, fstar, and mochi, run the
full mist test suite, and then drop you into an interactive shell at the root of the mist code
repository.

$ docker run -it atondwal/mist

If you want to skip the test suite, instead run

$ docker run -it atondwal/mist /bin/bash

You can then (re)run all of the tests in the tests/ directory (perhaps after editing some) at
any time by running

$ stack test

8.1.1 Juggling containers
You can use docker ps to see the running container and open another shell to it using docker
exec, e.g.:

$ docker ps
CONTAINER ID IMAGE STATUS NAMES
696b2221e3ad atondwal/mist Up 45 seconds vibrant_leavitt
$ docker exec -it vibrant_leavitt bash
ecoop21@696b2221e3ad:~/mist$

A. Tondwalkar, M. Kolosick, and R. Jhala 3:3

You can use docker start to restart exited containers

$ docker ps -a
CONTAINER ID IMAGE STATUS NAMES
696b2221e3ad atondwal/mist Exited (137) 5 seconds ago vibrant_leavitt
$ docker start vibrant_leavitt
vibrant_leavitt
$ docker exec -it vibrant_leavitt bash
ecoop21@696b2221e3ad:~/mist$

8.2 Manually
You’ll need git, z3 version 4.8.10, and stack.

$ git clone -b ecoop21 --recursive https://github.com/ucsd-progsys/mist
$ cd mist
$ stack install
$ export PATH=$HOME/.local/bin/:$PATH

You can then run the full mist test suite (which is located in the tests/ directory).

$ stack test

9 Running specific tests

You can run a specific test by calling mist on the test file, e.g.

$ mist tests/pos/incrState.hs

If you’re using the docker image, you can also run tests for fstar:

$ fstar fstar-tests/incrState.fst

10 Benchmarks from the paper

Here’s a table of where you can find each of the tests described in the paper:

Name Mist test (tests/pos/) Mochi (mochi-tests/) Fstar (fstar-tests/)

incr incr00.hs incr00.ml incr.fst
sum sum.hs sum.ml sum.fst
repeat repeat.hs repeat.ml x
d2 mochi-app-lin-ord2.hs d2.ml mochi-d2.fst

incrState incrStatePoly.hs incrState.ml incrState.fst
accessControl acl.hs acl.ml accessControl.fst
tick tick-append.hs x tick.fst
linearDSL linearTypes.hs x linearDSL.fst

pagination paginationTokens.hs x x
login idr_login.hs x x

DARTS

https://github.com/Z3Prover/z3/releases
https://docs.haskellstack.org/en/stable/README/
tests/pos/incr00.hs
mochi-tests/incr00.ml
fstar-tests/incr.fst
tests/pos/sum.hs
mochi-tests/sum.ml
fstar-tests/sum.fst
tests/pos/repeat.hs
mochi-tests/repeat.ml
tests/pos/mochi-app-lin-ord2.hs
mochi-tests/d2.ml
fstar-tests/mochi-d2.fst
tests/pos/incrStatePoly.hs
mochi-tests/incrState.ml
fstar-tests/incrState.fst
tests/pos/acl.hs
mochi-tests/acl.ml
fstar-tests/accessControl.fst
tests/pos/tick-append.hs
fstar-tests/tick.fst
tests/pos/linearTypes.hs
fstar-tests/linearDSL.fst
tests/pos/paginationTokens.hs
tests/pos/idr_login.hs

3:4 mist: Refinements of Futures Past (Artifact)

Name Mist test (tests/pos/) Mochi (mochi-tests/) Fstar (fstar-tests/)

twophase twoPhaseCommit.hs x x
ticktock ticktock3.hs x x
tcp tcp_client.hs x x

As in the paper, an x indicates that the specification cannot be directly expressed with that tool.
Unfortunately, the version of MoCHi we compare against was made available as a web demo

that is no longer functional. Since then, there has been a source release of MoCHi, but it does not
support the -relative-complete verification mode that we compared against in our paper. We
include a build of the latest version of MoCHi anyways, in case you want to play with it yourself
and get an idea of how it works:

$ mochi mochi-tests/incrState.ml

11 A quick tutorial in writing mist

A note about UX: We demonstrate the ability of our type system to localize error
messages in this prototype, but when it comes to the parser, we favor an easy to modify
and understand grammar over one that provides the best user experience. As such. . .

When experimenting with mist, we recommend starting with one of the known working test
cases, and then expanding on it to achieve the desired result, rather than starting from scratch in
an empty text file. In this short tutorial we will take the same approach, starting from a minimal
test case and building up to the pagination example from the ECOOP21 paper that demonstrates
both implicit refinement function types and pair types.

11.1 How to read this tutorial
We recommend reading the pdf version of this tutorial as it is the easiest to read, but we also
recommend keeping open a copy of the markdown source (~/mist/README.md) in your text editor
as you follow along, as the markdown source includes the location of each snippet as range of lines
in a test file, so you can open, edit, and rerun those tests yourself.

We recommend running a continuous build in a terminal while you experiment with a mist file.
For example, this sets up entr to run mist on a file every time it gets written (whether or not
it’s a mist file).

$ find tests | entr mist /_
(in another window - see above for docker instructions)
$ vim tests/.../mytest.hs

Bits of syntax that are potential sources of confusion or frustration are highlighted in grey
boxes. If you’re struggling to make your code parse, checking to see if you’ve stepped on
one of these Legos is a good place to start.

11.2 Refinement Types
We start from an extremely simple example that demonstrates the concrete semantics of mist’s
refinement type system.

tests/pos/twoPhaseCommit.hs
tests/pos/ticktock3.hs
tests/pos/tcp_client.hs
http://www.kb.is.s.u-tokyo.ac.jp/~uhiro/relcomp/

A. Tondwalkar, M. Kolosick, and R. Jhala 3:5

1 twelve :: { v : Int | v == 12 }
2 twelve = 12

Here, we have a top-level binder for the constant int. Each top level binder includes a type
signature (line 1), and a body (line 2). The body of int simply states that it’s equal to the integer
constant 12. This type signature is a minimal example of a refinement type: we refine the base
type Int, binding its values to v, and taking the quotient of this type by the proposition v == 12.
This results in a singleton type that checks against the body of twelve.

$ mist tests/pos/Int00.hs
SAFE

If we had used a different value in the type and body:

1 twelve :: { v : Int | v == 14 }
2 twelve = 12

We’d see a type error:

$ mist tests/neg/Int01.hs
Working 150% [===]
Errors found!
tests/neg/Int01.hs:2:7-9: Expected (VV##0 == 14) :

2| int = 12
^^^

11.3 Functions and polymorphism
We can extend this to writing functions in mist:

1 incr :: x:Int -> {v:Int | v == x + 1}
2 incr = \x -> x + 1
3

4 moo :: {v:Int | v == 8}
5 moo = incr 7

This program checks that incrementing 7 results in 8.
Here, the binder x:Int binds x in the type on the right-hand side of ->. Similarly, at the value

level, \ denotes a lambda.
Functions can also be polymorphic:

7 id :: rforall a. {v:a | True} -> {v:a | True}
8 id = \x -> x
9

10 bar :: {v:Int | v == 8}
11 bar = incr (id 7)

$ mist tests/pos/Inc02.hs
SAFE

DARTS

3:6 mist: Refinements of Futures Past (Artifact)

All function applications that are not directly under a binder or a function abstraction
should be enclosed in parentheses.

Here, rforall denotes that the function id is refinement polymorphic in the type variable
a. That is, a stands in for any refined type, so we know that the result of applying id to any
value will always result in a value of the same refinement type; i.e. one for which all the same
propositions are true. The only function of this type is id.

Later we will also see forall, which allows functions to be polymorphic over base types.

11.4 Implicit function types
We’re ready for our first example of a feature introduced in this paper! We write an implicit
function type the same way as a normal function, but using the squiggly arrow ~> instead of the
straight arrow ->:

1 incr :: n:Int ~> (Int -> { v : Int | v == n }) -> { v : Int | v == n + 1 }
2 incr = \f -> (f 0) + 1
3

4 test1 :: { v : Int | v == 11 }
5 test1 = incr (\x -> 10)
6

7 test2 :: m:Int -> { v : Int | v == m+1 }
8 test2 = \mv -> incr (\x -> mv)

$ mist tests/pos/incr00.hs
SAFE

Note the parentheses around (f 0) — there are no precedence rules for infix primitives.

Given a constant function, incr increments the result. This is straightforward at the value
level, but encoding it at the type level requires the use of implicit parameters. Here, n in bound at
the type level, but has no corresponding binder at the value level in the surface syntax. The body
of the function must typecheck for all values of n, but each call to the function need only be valid
for some particular choice of n. n is picked at the call site by the implicit instantiation algorithm
for refinement types described in the paper, such that the function application typechecks.

Here, for the call to incr on line 5 inside test1, n takes on the value 10, and on line 8, it
takes on the value mv.

11.5 Datatypes, axioms, and measures
Mist supports user-defined datatypes by axiomatising their constructors. In this section we’re
going to demonstrate specification and verification with the List datatype, which in Haskell one
might write:

data List a = Nil | Cons a (List a)

11.5.1 Datatypes
In mist, List a is spelled List >a

There are two things of note here:

A. Tondwalkar, M. Kolosick, and R. Jhala 3:7

1. As in Haskell, Mist datatypes are written in TitleCamelCase.
2. Unlike Haskell, datatypes carry variance annotations with them that tell you if they’re co- or

contra-variant in a given argument. Having these around can be helpful when you’re debugging
or reading code with complex subtyping relationships.

Here, the variance annotation > indicates that a appears covariantly in List (that is, List
contains things that are subtypes of a). If it appeared contravariantly, we would have written
List <a (a List of supertypes of a). Or in other words, a List >a behaves like a List that
might produce as when it is used up, whereas a List <a behaves as a list that might consume as
to use up.

This notation is intended to evoke a function arrow ->: Just as you can use a function that
returns any subtype of the type you need, and that accepts any supertype of the arguments you
have, if you’re a type variable on the pointy end of the variance annotation (or function arrow)
you’re a covariant type variable, and if you’re on the other end you’re contravariant.

If you try to pass a List >a as a List <a, that is a (base/unrefined) type error — variance
annotations are essentially a part of the type name.

You do not need to declare datatypes before using them in type signatures.
Some such datatypes (Int, Bool, Set, and Map) have special meaning when used in types, as

they come with primitives (such as +, which we saw above) that have meaning to the solver’s
theories of arithmetic, sets, maps, etc.

11.5.2 Axioms
Mist relies on axioms to introduce data constructors. An axiom in Mist is written with “as”
(assumed types) instead of “::” (checked types):

exFalsoQuodlibet as rforall a. False -> a
exFalsoQuodlibet = ...

Whatever we put for . . . is taken to be the witness of the axiom, and executed when the axiom
is used in code that is run.

You need to provide a body for every binding, axioms or otherwise.

To use the List datatype, we need constructors, and projections from these constructor (or
induction principles, but let’s keep it simple for the tutorial). To introduce axioms for each of
these, we write something like

nil as forall a. List >a
nil = ...
cons as forall a. a -> List >a -> List >a
cons = ...
first as forall a. List >a -> a
first = ...
rest as forall a. List >a -> List >a
rest = ...

where ... can be e.g. Boehm-Beraraducci (1985) encoding of constructors and projection
operators, but since we’re focused on testing the typechecker here, we generally set them equal to
0 as the witnesses to axioms don’t matter so far as the typechecker is concerned.

We can use axiomatized constructors to define a datatype Lin which is the type of terms of a
linear DSL. Here, we use Set primitives.

DARTS

3:8 mist: Refinements of Futures Past (Artifact)

4 var as x:Int -> (Lin >{v:Set >Int | v = setPlus emptySet x})

var constructs a term that is a variable mention. It checks that the variable is in the
environment. x∈Γ

Γ⊢var x

7 fun as env:(Set >Int) ~>
8 n:{v:Int | (v ∈ env) ̸= True}
9 -> (Lin >{v:Set >Int | v = setPlus env n})

10 -> (Lin >{v:Set >Int | v = env})

fun constructs a lambda term, while checking that the variable it binds is fresh. x̸∈Γ Γ∪{x}⊢e
Γ⊢fun x e

It may not always be obvious when you need parenthesis around type constructor applica-
tions. Some rules of thumb: parenthesize them on both sides of ->, but in the left-hand
side of a refinement type (the binder), “(” may not follow “:”

Note that the not-equals operator is the unicode symbol, not a multi-character sigil — infix
operators in Mist are single characters.

13 app as env1:(Set >Int) ~> env2:{v:Set >Int | env1 ∩ v = emptySet} ~>
14 (Lin >{v:Set >Int | v = env1})
15 -> (Lin >{v:Set >Int | v = env2})
16 -> (Lin >{v:Set >Int | v = env1 ∪ env2})

app applies a function to a value, checking that no variable is used more than once in either
argument. Γ1∩Γ2=∅ Γ2⊢e Γ1⊢f

Γ1∪Γ2⊢app f e

19 typecheck as (Lin >{v:Set >Int | v = emptySet}) -> (Lin >(Set >Int))

typecheck simply checks that a term is closed ∅⊢e
⊢e

25 program2 :: Lin >(Set >Int)
26 program2 = typecheck (fun 1 (fun 2 (app (var 1) (var 2))))

$ mist tests/pos/linearTypes.hs
SAFE

11.6 State
We can define a State Monad datatype! See section 2.3 of the paper for more explanation. put
takes a world (called wp), put updates the state to one where the state of the world is now wp.

20 put as wp:Int -> ST <Int >{p:Int|p==wp} >Unit

get takes a boolean and ignores it, then leaves the state of the world unchanged, but returns
its value in the ST monad.

17 get as wg:Int ~> Bool -> ST <{gi:Int|gi==wg} >{go:Int|go==wg} >{gr:Int|gr==wg}

And then we have the standard monadic interface:

A. Tondwalkar, M. Kolosick, and R. Jhala 3:9

1 -- Monadic Interface
2 ret as rforall a. wr:Int ~> x:a -> ST <{ri:Int|ri==wr} >{ro:Int|ro==wr} >a

11 bind as rforall a, b. w1:Int ~> w2:Int ~> w3:Int ~>
12 (ST <{v:Int|v==w1} >{v:Int|v==w2} >a)
13 -> (unused:a -> ST <{v:Int|v==w2} >{v:Int|v==w3} >b)
14 -> ST <{v:Int|v==w1} >{v:Int|v==w3} >b

Using this, we can verify a more stateful version of the incr example from before.

24 incr :: i:Int ~> ST <{v:Int|i==v} >{w:Int|w==i+1} >Unit
25 incr = bind (get True) (\x -> put (x+1))

$ mist tests/pos/incrState.hs
SAFE

Going forward, however, we’re going to use a more polymorphic definition of state:

13 bind :: rforall a, b, p, q, r.
14 ST <p >q >a ->
15 (x:a -> ST <q >r >b) ->
16 ST <p >r >b
17 bind = undefined
18

19 pure :: rforall a, p. x:a -> ST <p >p >a
20 pure = undefined
21

22 thenn :: rforall a, b, p, q, r.
23 ST <p >q >a ->
24 ST <q >r >b ->
25 ST <p >r >b
26 thenn = \f g -> bind f (\underscore -> g)
27

28 fmap :: rforall a, b, p, q.
29 (underscore:a -> b) ->
30 ST <p >q >a ->
31 ST <p >q >b
32 fmap = \f x -> bind x (\xx -> pure (f xx))

If a function type signature is failing to parse, try assigning a name to the argument
(e.g. x:Int -> instead of Int ->).

11.7 Implicit pair types
Next, we demonstrate how to use another core feature unique to Mist: implicit pair types as
described in the paper. In the paper the syntax is [n : Int].—, but in the implementation, we
use exists n. -. Consider iterating through an infinite stream of token handlers. The API for
getting the next token is:

DARTS

3:10 mist: Refinements of Futures Past (Artifact)

37 nextPage as
38 token:{v: Int | v ̸= done} ->
39 (exists tok:Int.
40 (ST <{v:Int | v = token}
41 >{v:Int | (v = tok) /\ (v ̸= token)}
42 >{v:Int | v = tok}))

Remember to parenthesize both sides of conjunctions (/\)!

That is, given a token, nextPage give you a state action where it picks a new token that’s not
equal to the old token, and updates the state of the world to reflect the new token.

52 client :: token:Int ->
53 (ST <{v:Int | v = token} >{v:Int | v = done} >Int)
54 client = \token ->
55 if token == done
56 then pure 1
57 else bind (nextPage token) (\tok -> client tok)

$ mist tests/pos/paginationTokens.hs
SAFE

And that concludes our short tutorial on mist. Go forth and verify!

A Appendix : Measures

But these List constructors are all a bit boring — what good are user datatypes if we can’t say
anything about them at the type level?! Until now, we’ve only been able to form refinements out
of variables and primitive functions such as + and ∩ on special types such as Int and Set. We
use (purely) refinement-level functions called measures (Vazou et al, ICFP 2014) to extend the
language of refinements and enrich the types of our constructors.

1 measure mNil :: List [>Int] -> Bool

Measures use a different syntax for types — type applications have a list of parameters in
[square, brackets, separated, by, commas], unlike applications of type constructors that
produce refinement types, which use the usual space-separated syntax.

This declares a measure mNil that takes a List of Ints and returns a Bool. Measure have
unrefined types.

If you get an error message about free vars that implicates the start of the file, you probably
tried to use a measure you didn’t declare. This will cause the solver print a list of unbound
measures and crash with some mumbo-jumbo about --prune-unsorted. Measures always
go at the top of the file.

We can use these measures in constructor axioms to effectively define structurally recursive
functions over a datatype.

10 nil as {v: List >Int | (mNil v) /\ (mLength v = 0) /\ (not (mCons v))}

A. Tondwalkar, M. Kolosick, and R. Jhala 3:11

13 cons as x:Int -> xs:(List >Int) ->
14 {v: List >Int | (mCons v) /\ (mLength v = mLength xs + 1) /\ (not (mNil v))}

17 first as {v: List >Int | mCons v} -> Int

20 rest as rs:{v: List >Int | mCons v}
21 -> {v: List >Int | mLength v + 1 == mLength rs }
22 rest = (0)

and we can then use them in verification!

24 append :: xs:(List >Int)
25 -> ys:(List >Int)
26 -> {v: List >Int | mLength v = (mLength xs) + (mLength ys)}
27 append = \xs -> \ys ->
28 if empty xs
29 then ys
30 else cons (first xs) (append (rest xs) ys)

$ mist tests/pos/recursion.hs
SAFE

DARTS

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	8 Initial build, install, and running all tests
	8.1 Using docker
	8.1.1 Juggling containers

	8.2 Manually

	9 Running specific tests
	10 Benchmarks from the paper
	11 A quick tutorial in writing mist
	11.1 How to read this tutorial
	11.2 Refinement Types
	11.3 Functions and polymorphism
	11.4 Implicit function types
	11.5 Datatypes, axioms, and measures
	11.5.1 Datatypes
	11.5.2 Axioms

	11.6 State
	11.7 Implicit pair types

	A Appendix : Measures

