
Type-Directed Operational Semantics for Gradual
Typing (Artifact)
Wenjia Ye #

The University of Hong Kong, Hong Kong

Bruno C. d. S. Oliveira #

The University of Hong Kong, Hong Kong

Xuejing Huang #

The University of Hong Kong, Hong Kong

Abstract
This artifact includes the Coq formalization associ-
ated with the paper Type-Directed Operational
Semantics for Gradual Typing submitted in
ECOOP 2021. The paper illustrates how to employ
TDOS on gradually typed languages using two cal-
culi. The first calculus, called λB, is inspired by
the semantics of the blame calculus(λBg) and is
sound with λBg. The second calculus, called λBr,
explores a different design space in the semantics of
gradually typed languages. This document explains
how to run the Coq formalization. Artifact can

either be compiled in the pre-built docker image
with all the dependencies installed or it could be
built from the scratch. Sections 1-7 explain the
basic information about the artifact. Section 7 ex-
plains how to get the docker image for the artifact.
Section 8 explains the prerequisites and the steps
to run coq files from scratch. Section 9 explains
coq files briefly. Section 10 shows the correspond-
ence of important lemmas, definitions and pictures
discussed in the paper with their respective Coq
formalization.

2012 ACM Subject Classification Software and its engineering → Object oriented languages; Theory of
computation → Type theory; Software and its engineering → Polymorphism
Keywords and phrases Gradual Typing, Operational Semantics, Type Systems
Digital Object Identifier 10.4230/DARTS.7.2.9
Funding This work has been sponsored by Hong Kong Research Grant Council projects number 17209519
and 17209520.

Related Article Wenjia Ye, Bruno C. d. S. Oliveira, and Xuejing Huang, “Type-Directed Operational
Semantics for Gradual Typing”, in 35th European Conference on Object-Oriented Programming (ECOOP
2021), LIPIcs, Vol. 194, pp. 12:1–12:30, 2021.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12–16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

This artifact contains the Coq [5] formalization associated with the paper Type-Directed
Operational Semantics for Gradual Typing submitted in ECOOP 2021. We provide the Coq
formalization of λB, λBg and λBr systems. These calculus are defined via the locally nameless
representation with cofinite quantification [3]. We relies on the Penn’s metatheory library [1].
Ott [6] tool and LNgen [2] are used to generate some of the Coq definitions and infrastructure
codes. LibTatics.v which is from the TLC Coq library [4] is also be used.

2 Content

The artifact package includes:
Calculus Coq Formalization

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Wenjia Ye, Bruno C. d. S. Oliveira, Xuejing Huang;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 9, pp. 9:1–9:6
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:wjye@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
https://doi.org/10.4230/DARTS.7.2.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


9:2 Type-Directed Operational Semantics for Gradual Typing (Artifact)

Variant Coq Formalization
Copy of related paper (Type-Directed Operational Semantics for Gradual Typing)
README file with compilation instructions

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The artifact is also available at:
https://github.com/YeWenjia/TypedDirectedGradualTyping.

4 Tested platforms

The artifact has been tested using Coq 8.10.2.

5 MD5 sum of the artifact

d9a38e1c93c960a4901f6aa9cb006062

6 Size of the artifact

2.9 GB

Acknowledgements. We thank the anonymous reviewers for their helpful comments.

7 Docker Image

This section explains how to pull the docker image of artifact from docker hub and use it. Run
the following commands one by one in terminal:

1. $ docker pull wenjiaye/ecoop2021
2. $ docker run -it wenjiaye/ecoop2021
3. $ eval $(opam env)

The artifact is located in /home/coq/coq/ directory.

There are two folders in the artifact, with make file in each:

1. Calculus → contains λB and λBg formulation
2. Variant → contains λBr formulation

Go to each folder and run make:

1. $ cd /home/coq/coq/Calculus
2. $ eval $(opam env)
3. $ make

1. $ cd /home/coq/coq/Variant
2. $ eval $(opam env)
3. $ make

https://github.com/YeWenjia/TypedDirectedGradualTyping


W. Ye, B. C. d. S. Oliveira, X. Huang 9:3

8 Build from Scratch

This section explains how to build the artifact from scratch.

8.1 Prerequisites
We tested all the Coq files using Coq version 8.10.2. Please use same version for the sake of
consistency. We recommend installing Coq using the opam package installer.

Run the following command to install Coq via opam:

$ opam install coq.8.10.2

Refer to this link for more information and installation steps: https://coq.inria.fr/opam-using.
html
Or one could download the pre-built packages for Windows and MacOS via https://github.
com/coq/coq/releases/tag/V8.10.2
Make sure Coq is installed (type coqc in the terminal, if you see “command not found” this
means you have not properly installed Coq)

8.2 Required Libraries
We rely on two Coq libraries: metalib (https://github.com/plclub/metalib) for the loc-
ally nameless representation in our proofs; and LibTactics.v (http://gallium.inria.fr/
~fpottier/ssphs/LibTactics.html), which is included in the directory.

Open the terminal and run the following commands one by one to install metalib:

1. $ git clone https://github.com/plclub/metalib
2. $ cd metalib/Metalib
3. $ make install

8.3 Getting the artifact
Use the following commands to clone our git repo. Please note that $ symbol is not a part of
command:

$ git clone https://github.com/YeWenjia/TypedDirectedGradualTyping.git
Alternatively you can download the zip file from repo and you should be able to see all the Coq
files after unzipping it.

8.4 Proof Structure
There are two folders in the artifact, docs and coq. Folder coq contains all the Coq files. Coq
files are further divided into categories with separate folders:

1. Calculus → contains λB and λBg formulation
2. Variant → contains λBr formulation

DARTS

https://coq.inria.fr/opam-using.html
https://coq.inria.fr/opam-using.html
https://github.com/coq/coq/releases/tag/V8.10.2
https://github.com/coq/coq/releases/tag/V8.10.2
https://github.com/plclub/metalib
http://gallium.inria.fr/~fpottier/ssphs/LibTactics.html
http://gallium.inria.fr/~fpottier/ssphs/LibTactics.html


9:4 Type-Directed Operational Semantics for Gradual Typing (Artifact)

8.5 Compilation

Please make sure to run the following command before running make if you installed the Coq via
opam:

$ eval $(opam env)

Makefiles are available in both Calculus and Variant folder. Run make command individually
in each folder to compile.

8.6 Paper

You can also find a copy of our ECOOP2021 paper(Type-Directed Operational Semantics for
Gradual Typing) in docs folder.

9 Overview of Coq Files

This section explains all the Coq files of λB, λBg and λBr systems that we formalized.

9.1 In the coq/Calculus directory:

Calculus directory contains the definition and proofs of the λB and λBg calculus.
syntax_ott.v: contains the locally nameless definitions of λBg.
syntaxb_ott.v: contains the locally nameless definitions of λB.
rules_inf.v and rulesb_inf.v: generated from the lngen and modified by us.
Infrastructure.v: contains the type systems of the λBg and some lemmas.
Infrastructure_b.v: contains the type systems of the λB and some lemmas.
Deterministic.v: contains the proofs of the determinism property of λBg.
Typing.v: contains the proofs of some typing lemmas of λBg.
Typing_b.v: contains the proofs of some typing lemmas of λB.
ttyping.v: contains the proofs of some elaboration typing lemmas.
Typ_Safety.v: contains the proofs of the type preservation and progress properties of λBg.
soundness.v: contains the proofs of the soundness theorem with respect to λB.
soundness_blame.v: contains the proofs of the soundness theorem with respect to λB.

9.2 In the coq/Variant directory:

Variant directory contains the definition and proofs of the variant calculus(λBr).

syntax_ott.v: contains the locally nameless definitions of λBr.
rules_inf.v: generated from the lngen and modified by us.
Infrastructure.v: contains the type systems of the λBr and some lemmas..
Deterministic.v: the proofs of the determinism property of λBr.
Type_Safety.v: the proofs of the type preservation and progress properties of λBr.
criteria.v: contains the proofs of gradual guarantee theorem of λBr.
Variant_Calculus.v: contains the proofs of the blame semantics conformance of λBr to λBg.



W. Ye, B. C. d. S. Oliveira, X. Huang 9:5

Table 1 Overview of pictures.

Picture/Definition Page Num-
ber

Coq File Name in
Coq

Figure 1 (λB calculus) Page 5 Calculus/syntaxb_ott.v
Figure 2 (syntax and well-
formed values for λBg)

Page 11 Calculus/syntax_ott.v

Definition 1 (Dynamic Types
of λBg)

Page 11 Calculus/syntax_ott.v principle_type

Figure 3 (Type system of
λBg calculus)

Page 12 Calculus/syntax_ott.v ttyping

Figure 4 (Typed Reducction
for the λBg calculus.)

Page 13 Calculus/syntax_ott.v TypedReduce

Figure 5 (Semantics of λBg) Page 15 Calculus/syntax_ott.v step
Figure 6 (Syntax of the λBr

calculus.)
Page 16 Variant/syntax_ott.v

Figure 7 (Type system of
λBr calculus)

Page 17 Variant/syntax_ott.v Typing

Definition 17 (Dynamic
Types of λBr)

Page 17 Variant/syntax_ott.v principal_type

Figure 8 (Typed Reduction
for λBr Calculus)

Page 18 Variant/syntax_ott.v TypedReduce

Figure 9 (Semantics of λBr

Calculus)
Page 20 Variant/syntax_ott.v step

Figure 10 (Translation) Page 21 Variant/syntax_ott.v trans
Figure 11 (Precision rela-
tions)

Page 22 Variant/syntax_ott.v epre and tpre

10 Correspondence

This section briefly explains the important lemmas, definitions and pictures discussed in the paper
and their correspondence with the coq formulation. Table 1 shows the correspondence of pictures
or definitions and table 2 shows the correspondence of some important lemma. For example, one
can find the Lemma 2 (Dynamic Types) in file Calculus/Typing.v and the lemma name in file
is principle_inf.

References
1 Brian Aydemir, Arthur Charguéraud, Benjamin C.

Pierce, Randy Pollack, and Stephanie Weirich. En-
gineering formal metatheory. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL
’08, page 3–15, New York, NY, USA, 2008. Asso-
ciation for Computing Machinery. doi:10.1145/
1328438.1328443.

2 Brian Aydemir and Stephanie Weirich. Lngen:
Tool support for locally nameless representations.
Technical Report MS-CIS-10-24, Department of
Computer and Information Science, University
of Pennsylvania, June 2010. URL: https://
repository.upenn.edu/cis_reports/933/.

3 Arthur Charguéraud. The locally nameless rep-
resentation. Journal of Automated Reasoning,
49(3):363–408, 2012.

4 Arthur Charguéraud and François Pottier. Tlc:
a non-constructive library for coq. https://www.
chargueraud.org/softs/tlc/.

5 The Coq Development Team. The Coq Reference
Manual, version 8.11.1, 2020. Available electronic-
ally at https://coq.inria.fr/distrib/current/
refman/.

6 Peter Sewell, Francesco Zappa Nardelli, Scott
Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, et al. Ott: Effective tool support for the
working semanticist. Journal of functional pro-
gramming, 20(1):71–122, 2010.

DARTS

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/1328438.1328443
https://repository.upenn.edu/cis_reports/933/
https://repository.upenn.edu/cis_reports/933/
https://www.chargueraud.org/softs/tlc/
https://www.chargueraud.org/softs/tlc/
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/


9:6 Type-Directed Operational Semantics for Gradual Typing (Artifact)

Table 2 Overview of lemmas.

Name of formalization Coq File Name in Coq File
Lemma 4 (Typed Reduction
Preserves Values)

Calculus/Type_Safety.v Tred_value

Lemma 5 (Preservation of
TypedReduction)

Calculus/Type_Safety.v TypedReduce_preservation

Lemma 6 (Progress of
Typed Reduction)

Calculus/Type_Safety.v tred_progress

Lemma 7 (Determinism of
Typed Reduction)

Calculus/Deterministic.v TypedReduce_unique

Lemma 8 (Typed Reduction
Respects Consistency)

Calculus/Type_Safety TypedReduce_sim

Theorem 9 (Determinism
of λBg calculus)

Calculus/Deterministic.v step_unique

Theorem 10 (Type Preser-
vation of λBg Calculus)

Calculus/Type_Safety preservation

Theorem 11 (Progress of
λBg Calculus)

Calculus/Type_Safety progress

Theorem 12 (Type-Safety
of Elaboration)

Calculus/ttyping.v elaboration_soundness

Theorem 13 (Soundness of
reduction)

Calculus/soundness.v soundness_mul_two

Theorem 14 (Soundness of
blame reduction)

Calculus/soundness_blame.v Soundness_blame_two

Lemma 15 (Soundness of
Typed Reduction)

Calculus/soundness.v Tred_soundness

Lemma 16 (Soundness of
Typed Reduction for blame)

Calculus/soundness_blame.v Tred_blame_soundness

Lemma 18 (Dynamic Types
of Values)

Variant/Type_Safety.v principle_inf2

Lemma 19 (Dynamic Types
of Saved Forms)

Variant/Type_Safety.v principle_inf

Lemma 20 (Checked expres-
sions can be inferred)

Variant/Typing Typing_chk2

Lemma 21 (Transitivity of
typed reduction)

Variant/Type_Safety.v TypedReduce_trans

Lemma 22 (Preservation of
TypedReduction)

Variant/Type_Safety.v TypedReduce_preservation

Lemma 23 (Progress of
Typed Reduction)

Variant/Type_Safety.v TypedReduce_progress

Lemma 24 (Determinism of
Typed Reduction)

Variant/Deterministic.v TypedReduce_unique

Theorem 25 (Determinism
of λBr calculus)

Variant/Deterministic.v step_unique

Theorem 26 (Type Preser-
vation of λBr Calculus)

Variant/Type_Safety preservation

Theorem 27 (Progress of
λBr Calculus)

Variant/Type_Safety progress

Theorem 28 (Conformance
of blame semantics)

Variant/Variant_Calculus variant_calculus

Theorem 29 (Static
Gradual Guarantee)

Variant/criteria.v precise_type

Lemma 30 (Dynamic
Gradual Guarantee for
Typed Reduction)

Variant/criteria.v tdynamic_guarantee

Theorem 31 (Dynamic
Gradual Guarantee)

Variant/criteria.v dynamic_guarantee

Theorem 32 (Dynamic
Gradual Guarantee)

Variant/criteria.v dynamic_guarantees


	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 MD5 sum of the artifact
	6 Size of the artifact
	7 Docker Image
	8 Build from Scratch
	8.1 Prerequisites
	8.2 Required Libraries
	8.3 Getting the artifact
	8.4 Proof Structure
	8.5 Compilation
	8.6 Paper

	9 Overview of Coq Files
	9.1 In the coq/Calculus directory:
	9.2 In the coq/Variant directory:

	10 Correspondence

