
Idris 2: Quantitative Type Theory in Practice
(Artifact)
Edwin Brady #Ñ

School of Computer Science, University of St Andrews, Scotland, UK

Abstract
Dependent types allow us to express precisely what
a function is intended to do. Recent work on Quant-
itative Type Theory (QTT) extends dependent type
systems with linearity, also allowing precision in
expressing when a function can run. This is prom-
ising, because it suggests the ability to design and
reason about resource usage protocols, such as we
might find in distributed and concurrent program-
ming, where the state of a communication channel
changes throughout program execution.

Idris 2 is a new version of Idris, implemented

in itself, and based on Quantitative Type Theory.
The paper introduces Idris 2 and describes how
QTT has influenced its design, as well as giving
several examples of how to use QTT in practice.
The artifact, correspondingly, provides an imple-
mentation of Idris 2, running on a virtual machine,
along with runnable examples from the paper. This
document explains how to install the artifact, how
to run the examples, and suggests some small ways
to experiment with and modify the examples.

2012 ACM Subject Classification Software and its engineering → Functional languages
Keywords and phrases Dependent types, linear types, concurrency
Digital Object Identifier 10.4230/DARTS.7.2.10
Acknowledgements This work was funded by EPSRC grant EP/T007265/1. Thanks to the Idris
community for their many contributions to this Idris 2 project.

Related Article Edwin Brady, “Idris 2: Quantitative Type Theory in Practice”, in 35th European
Conference on Object-Oriented Programming (ECOOP 2021), LIPIcs, Vol. 194, pp. 9:1–9:26, 2021.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12–16, 2021, Aarhus, Denmark (Virtual Conference)

1 Scope

The artifact includes the main examples from the paper, installed on a vrtual machine running a
minimal installation of Alpine Linux, with 4GB RAM. The image can be imported as an appliance
to VirtualBox and used as follows:

1. Choose File. . . Import Appliance from the VirtualBox menu
2. Choose the file VM/idris-v0.3.0-playground.ova

3. Choose settings for the VM (the default settings should be fine)
4. Click Import

5. Start the newly imported Virtual Machine. Once booted, you can log in with:
Username: idris-playground

Password: idris-playground

6. Check that Idris2 is installed and executable by entering idris2 at the shell prompt.
You can now try evaluating some Idris expressions (e.g. arithmetic expressions, or functions
from the standard prelude) or use :q to quit.

The VM installation also includes basic utilities, including text editors vim, mg (a lightweight
emacs-compatible editor). If required, you can discover further utilities using the command apk

search [name] and install packages with sudo apk add [packagename].

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Edwin Brady;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 10, pp. 10:1–10:7
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:ecb10@st-andrews.ac.uk
http://www.type-driven.org.uk/edwinb
https://orcid.org/0000-0002-9734-367X
https://doi.org/10.4230/DARTS.7.2.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

10:2 Idris 2 (Artifact)

1.1 Manual Installation of Idris
Alternatively, you can install Idris 2 on your own machine, provided you have either of the
following:

Chez Scheme (https://cisco.github.io/ChezScheme/), version 9.5 or later, or
Racket (https://racket-lang.org/), version 7 or later

You can find full instructions on how to install Idris here: https://github.com/idris-lang/

Idris2/blob/master/INSTALL.md. Briefly, unpack the artifact, navigate to the Idris2 directory,
then, if you have Chez Scheme, enter:

make bootstrap SCHEME=scheme (where scheme is the command used to start up Chez Scheme.
On some systems this may be chez, chezscheme, or chezscheme9.5)

Or, if you have Racket, enter:

make bootstrap-racket

Then, enter:

make install .

The default installation prefix is $HOME/.idris2, so you will need to add $HOME/.idris2/bin

to your PATH.
In each case, this will build an initial Idris 2 executable from either Chez Scheme or Racket

source (generated by an existing Idris 2 compiler), then use that newly built executable to build
Idris 2 and its libraries from scratch. You can check whether this succeeded by entering:

make test .

1.2 Using the Artifact
The subdirectory ECOOP21-IdrisQTT includes the examples from the paper, divided into subdir-
ectories for each section. To load an example into Idris2, navigate into one of the subdirectories,
and load the file with the command:

idris2 File.idr -p contrib

Where File.idr is the file name of the example, and -p contrib is a flag to tell Idris to look
for imports in the contrib package, which is an additional package beyond the standard library
consisting of user contributions. Some (but not all) of the examples require modules from contrib.

Note that Idris 2 does not currently use readline or support command history. You can,
however, run it via rlwrap, which is installed on the virtual machine:

rlwrap idris2 File.idr -p contrib

Once loaded, you can try evaluating the example code by entering expressions at the REPL,
or start up an editor to edit the loaded file using the command :e. The default editor is vim, but
you can change this either by setting the EDITOR environment variable, or entering :set editor

[editorcommand] at the REPL prompt.
In the rest of this section, I briefly describe the examples and suggest some things to try. For

a full tutorial on Idris 2, see https://idris2.readthedocs.io/en/latest/tutorial/index.html.
These examples illustrate the contributions of the paper:

https://cisco.github.io/ChezScheme/
https://racket-lang.org/
https://github.com/idris-lang/Idris2/blob/master/INSTALL.md
https://github.com/idris-lang/Idris2/blob/master/INSTALL.md
https://idris2.readthedocs.io/en/latest/tutorial/index.html

E. Brady 10:3

There is a full, self-hosted, implementation of Idris 2
The examples illustrate quantities for erasure (run-length encoding) and linearity (resource
usage for an ATM protocol)
There is an executable implementation of bidrectional session types

1.2.1 Idris 2 source
The Idris 2 source is available in the idris-playground home directory, under Idris2-0.3.0

(already built) and Idris2-head (directly pulled from github on 16th April 2021, and ready to
build). You can try building Idris 2 from this source following the instructions below. To install
using Chez Scheme, then test the result, type:

make bootstrap SCHEME=chez

make test

Note, however, that the tests run in parallel and you may need to increase the memory of the
VM!

1.2.2 Overview of Idris (Section2)
This section introduces Idris, with some basic examples, in the file Section2/Examples2.idr.
Navigate to the Section2 subdirectory, then load Examples2.idr:

$ cd ECOOP21-IdrisQTT

$ idris2 Examples2.idr -p contrib

____ __ _ ___

/ _/___/ /____(_)____ |__ \

/ // __ / ___/ / ___/ __/ / Version 0.3.0-7714bdf3f

/ // // / / / (__) / __/ https://www.idris-lang.org

/___/__,_/_/ /_/____/ /____/ Type :? for help

Welcome to Idris 2. Enjoy yourself!

1/1: Building Examples2 (Examples2.idr)

Main>

Note that you must load this from the correct subdirectory, due to the way Idris handles
module paths.

You can inspect the types of the defined names, or any subexpression:

Main> :t append

Main.append : List a -> List a -> List a

Main> :t printf (Num (Lit " " (Str End)))

printf (Num (Lit " " (Str End))) : Int -> String -> String

You can evaluate expressions:

Main> append ['a','b'] ['c']

['a', 'b', 'c']

DARTS

10:4 Idris 2 (Artifact)

Main> printf (Num (Lit " " (Str End))) 99 "Red Balloons"

"99 Red Balloons"

You can also inspect the types of holes. To try this, edit the file and replace the definition
of printfFmt starting on line 65 with the (commented out) definition above, quit the editor and
return to the REPL. Then try:

Main> :t printfFmt_rhs_1

x : Format

acc : String

printfFmt_rhs_1 : Int -> PrintfType x

1.2.3 Quantities in Types (Section3)
This section describes the new features in Idris 2 arising from the core language, QTT (Quantitative
Type Theory). Each source file corresponds to examples in the paper. These are:

Syntax.idr, a small example showing the syntax of quantities.
RLE.idr, the run-length encoding example showing how quantities support explicit erasure at
the type level
Linearity.idr, a small example showing a linear quantity

The example in Section 3.3.2 of the paper, showing how Idris implements I/O via linear-
ity, can be seen as part of the Idris 2 libraries. This is in the Idris 2 source tree, under
libs/prelude/PrimIO.idr.

You can try the type-directed program synthesis for uncompress, mentioned on page 11 of the
paper, by deleting the definition on lines 21–24 (but keeping the type of uncompress), reloading
RLE.idr at the REPL, then typing at the REPL:

RLE> :gd 20 uncompress

uncompress Empty = Val []

uncompress (Run n x y) = let Val ys = uncompress y in Val (x :: (rep n x ++ ys))

You can also try generating a definition for the initial type uncompress : RunLength ty xs ->

List ty (given on page 10 of the paper). To do so, change the type, then try the above command
at the REPL again:

RLE> :gd 20 uncompress

uncompress Empty = []

uncompress (Run n x y) = x :: uncompress y

Program synthesis recognises that it can’t use the list xs directly, but the type isn’t precise
enough here for it to know that it needs to produce n copies of x.

Note that program synthesis, and interactive program editing in general, is designed to be
used via a text editor, but as this is not within the scope of the paper, I have not included it as
part of the VM in order to reduce the size of the image.

E. Brady 10:5

1.2.4 Linear Resource Usage Protocols (Section4)
This section describes a resource usage protocol and shows how to implement it using quantities
to ensure that the protocol is followed accurately. There are two files:

ATM.idr which includes just the types as described in the paper
ATMsim.idr, a slightly extended version which can be compiled and executed, simulating the
ATM’s behaviour via console output.

To compile and execute this example, load ATMsim.idr then use the :exec command at the
Idris REPL:

Main> :exec main

PIN OK

Dispensing cash

Card ejected

ATM shut down

It can be instructive to replace sub-programs with holes, and inspect them at the REPL. For
example, create a new definition runATMpart:

runATMpart : L IO ()

runATMpart = do m <- initATM

m <- insertCard m

?whatNow

Then, inspecting whatNow tells us what state the ATM is in at this point in execution:

Main> :t whatNow

1 m : ATM CardInserted

whatNow : L IO ()

1.2.5 Session Types via QTT (Section5)
This section describes a larger example, implementing concurrent protocols with session types.
There are four files:

Channel.idr, the implementation of channels
TestProto.idr, a small test protocol (not described in the paper)
UtilServer.idr, the utility server described in the paper
DepSession.idr, an example of a dependent session type from the paper

For each of TestProto and UtilServer, you can load the file into Idris and execute it with
:exec main. In each case, it starts up the server, and a client sends a request to the server and
receives and prints a response.

As with the previous example, you can insert holes to see how the types change during the
protocol run. For example, in utilServer:

DARTS

10:6 Idris 2 (Artifact)

utilServer : (1 chan : Server Utils) -> L IO ()

utilServer chan

= do cmd # chan <- recv chan

case cmd of

Add => do (x, y) # chan <- recv chan

?whatNextAdd

Reverse => do str # chan <- recv chan

?whatNextRev

Inspecting whatNextAdd and whatNextRev shows what is needed on chan to complete the
protocol run:

Main> :t whatNextAdd

cmd : Command

x : Int

y : Int

1 chan : Channel (Send Int (\res => Close))

whatNextAdd : L IO ()

At this point, the type of chan tells us that we need to send an Int on the channel, then close
it.

2 Content

The artifact can be downloaded from https://www.type-driven.org.uk/edwinb/idris-playground.

tgz. This archive consists of:

The source code for Idris 2, in a subdirectory Idris2

The examples from the paper, idris-qtt.code.tgz
A virtual machine, VM/idris-v0.3.0-playground.ova with both of the above installed in the
home directory of the user idris-playground

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://www.type-driven.org.uk/edwinb/idris-playground.tgz.

4 Tested platforms

The Virtual Machine has been tested using VirtualBox 6.1, running Ubuntu Linux and MacOS.
Idris 2 works on the following platforms, with 4GB RAM:

Linux
Mac
Windows
RaspberryPi

https://www.type-driven.org.uk/edwinb/idris-playground.tgz
https://www.type-driven.org.uk/edwinb/idris-playground.tgz
https://www.type-driven.org.uk/edwinb/idris-playground.tgz

E. Brady 10:7

5 License

The artifact is available under the 3-Clause BSD licence (https://opensource.org/licenses/
BSD-3-Clause)

6 MD5 sum of the artifact

d42094219eb7956180225142cf9b728b

7 Size of the artifact

363419183 bytes (0.338 GiB)

DARTS

https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause

	1 Scope
	1.1 Manual Installation of Idris
	1.2 Using the Artifact
	1.2.1 Idris 2 source
	1.2.2 Overview of Idris (Section2)
	1.2.3 Quantities in Types (Section3)
	1.2.4 Linear Resource Usage Protocols (Section4)
	1.2.5 Session Types via QTT (Section5)

	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

