
35th European Conference on
Object-Oriented Programming

ECOOP 2021, July 11–17, 2021, Aarhus, Denmark
(Virtual Conference)

Edited by

Anders Møller
Manu Sridharan

LIPIcs – Vo l . 194 – ECOOP 2021 www.dagstuh l .de/ l ip i c s

Editors

Anders Møller
Aarhus University, Aarhus, Denmark
amoeller@cs.au.dk

Manu Sridharan
University of California, Riverside, USA
manu@cs.ucr.edu

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-190-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-190-0.

Publication date
July, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2021.0

ISBN 978-3-95977-190-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-1333-2314
mailto:amoeller@cs.au.dk
https://orcid.org/0000-0001-7993-302X
mailto:manu@cs.ucr.edu
https://www.dagstuhl.de/dagpub/978-3-95977-190-0
https://www.dagstuhl.de/dagpub/978-3-95977-190-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-190-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Message from the Chairs
Anders Møller and Manu Sridharan . 0:vii–0:ix

Message from the Artifact Evaluation Chairs
William G. J. Halfond and Quentin Stiévenart . 0:xi

Foreword by the President of AITO
Eric Jul . 0:xiii

Organization
. 0:xv–0:xvii

External Reviewers
. 0:xix

List of Authors
. 0:xxi–0:xxiii

Regular Papers

Scope States: Guarding Safety of Name Resolution in Parallel Type Checkers
Hendrik van Antwerpen and Eelco Visser . 1:1–1:29

Lossless, Persisted Summarization of Static Callgraph, Points-To and Data-Flow
Analysis

Philipp Dominik Schubert, Ben Hermann, and Eric Bodden . 2:1–2:31

Gradual Program Analysis for Null Pointers
Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader,
and Joshua Sunshine . 3:1–3:25

Covariant Conversions (CoCo): A Design Pattern for Type-Safe Modular
Software Evolution in Object-Oriented Systems

Jan Bessai, George T. Heineman, and Boris Düdder . 4:1–4:25

ALPACAS: A Language for Parametric Assessment of Critical Architecture Safety
Maxime Buyse, Rémi Delmas, and Youssef Hamadi . 5:1–5:29

CodeDJ: Reproducible Queries over Large-Scale Software Repositories
Petr Maj, Konrad Siek, Alexander Kovalenko, and Jan Vitek . 6:1–6:24

Enabling Additional Parallelism in Asynchronous JavaScript Applications
Ellen Arteca, Frank Tip, and Max Schäfer . 7:1–7:28

Differential Privacy for Coverage Analysis of Software Traces
Yu Hao, Sufian Latif, Hailong Zhang, Raef Bassily, and Atanas Rountev 8:1–8:25

Idris 2: Quantitative Type Theory in Practice
Edwin Brady . 9:1–9:26

Multiparty Session Types for Safe Runtime Adaptation in an Actor Language
Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay 10:1–10:30

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Do Bugs Propagate? An Empirical Analysis of Temporal Correlations Among
Software Bugs

Xiaodong Gu, Yo-Sub Han, Sunghun Kim, and Hongyu Zhang . 11:1–11:21

Type-Directed Operational Semantics for Gradual Typing
Wenjia Ye, Bruno C. d. S. Oliveira, and Xuejing Huang . 12:1–12:30

Linear Promises: Towards Safer Concurrent Programming
Ohad Rau, Caleb Voss, and Vivek Sarkar . 13:1–13:27

Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation
Aleksandar S. Dimovski and Sven Apel . 14:1–14:28

Best-Effort Lazy Evaluation for Python Software Built on APIs
Guoqiang Zhang and Xipeng Shen . 15:1–15:24

Accelerating Object-Sensitive Pointer Analysis by Exploiting Object Containment
and Reachability

Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue . 16:1–16:31

Signal Classes: A Mechanism for Building Synchronous and Persistent Signal
Networks

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara . 17:1–17:30

Refinements of Futures Past: Higher-Order Specification with Implicit Refinement
Types

Anish Tondwalkar, Matthew Kolosick, and Ranjit Jhala . 18:1–18:29

Dealing with Variability in API Misuse Specification
Rodrigo Bonifácio, Stefan Krüger, Krishna Narasimhan, Eric Bodden, and
Mira Mezini . 19:1–19:27

On the Monitorability of Session Types, in Theory and Practice
Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas 20:1–20:30

Pearls

λ-Based Object-Oriented Programming
Marco Servetto and Elena Zucca . 21:1–21:16

Multiparty Languages: The Choreographic and Multitier Cases
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter,
Guido Salvaneschi, and Pascal Weisenburger . 22:1–22:27

Message from the Chairs

It is our great pleasure to welcome you to ECOOP 2021, to be held during July 11–17.
ECOOP is Europe’s longest-standing annual Programming Languages conference, bringing
together researchers, practitioners, and students to share their ideas and experiences in all
topics related to programming languages, software development, object-oriented technologies,
systems and applications.

ECOOP 2021 was originally planned to take place at Aarhus University, Denmark, but the
COVID-19 pandemic made that impossible, so again this year it will be a virtual conference.
As well as technical papers and keynotes, ECOOP 2021 features a doctoral symposium, a
poster session, and a summer school. The event is co-located with the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), the International
SPIN Symposium on Model Checking of Software, the Rebase conference, and the following
workshops:

Workshop on AI and Software Testing/Analysis (AISTA)
International Workshop on Smart Contract Analysis (WOSCA)
International Workshop on Verification of Objects at Runtime Execution (VORTEX)
International Workshop on Context-Oriented Programming and Advanced Modularity
(COP)
Workshop on Implementation, Compilation, Optimization of OO Languages, Programs
and Systems (ICOOOLPS)
Workshop on Formal Techniques for Java-like Programs (FTfJP)

The ECOOP/ISSTA Summer School consists of invited lectures by Eric Bodden, Marcel
Böhme, Claire Le Goues, Satish Chandra, and Andreas Rossberg. The summer school, which
was organized by Frank Tip and Andreas Zeller, aims to provide undergraduate and graduate
students and postdocs with a gentle introduction to research that is being conducted in the
ECOOP and ISSTA communities. The ECOOP/ISSTA Doctoral Symposium, organized by
Wei Le and Eric Bodden, provides a forum for PhD students at any stage in their research
to get detailed feedback and advice, and to establish new research collaborations.

To make it easy for our international community to attend the event from anywhere
across the globe, ECOOP/ISSTA will use a 3-time-band format, with each paper presentation
being given twice (in the two time bands that are most convenient for the speaker) so that
all attendees are able to attend most talks at reasonable times.

Paper selection process

As in recent years, ECOOP 2021 supported a “journal first” track in addition to the traditional
approach of direct paper submission to be considered for the proceedings. The Science of
Computer Programming ECOOP 2021 Special Issue contains one paper that will be presented
at the conference, and a single paper from ACM Transactions on Programming Languages and
Systems will also be presented. For traditional submissions, ECOOP 2021 again supported
the six paper categories introduced in ECOOP 2019: Research Paper, Tool Insight Paper,
Reproduction Study, Experience Report, Pearl, and Brave New Idea.

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Message from the Chairs

In total, ECOOP 2021 received 57 submissions, of which 22 were accepted (38.6%
acceptance rate). There were 50 Research Paper submissions (20 accepted), 3 Pearls
(2 accepted), 2 Tool Insight submissions (none accepted), 1 Experience Report (none accepted),
and 1 Brave New Idea (none accepted). For the Science of Computer Programming Special
Issue there were 3 submissions, with 1 accepted.

ECOOP 2021 had a single Program Committee with 32 members, and no External Review
Committee. ECOOP 2021 used a strong double-blind review process: author identities of
accepted papers were only revealed after decisions were made, and author identities for
rejected papers were never revealed. Further, the review process took place fully online, with
no in-person PC meeting. Given the fully online review process and strong double-blind
reviewing, submissions from PC members could be handled via standard conflict mechanisms,
and there was no need for a separate external review committee.

Each submission was reviewed by at least three members of the Program Committee
and selected additional reviewers. Authors were given a chance to respond to all reviews of
their paper, except in rare cases where an additional review was solicited after the author
response period. For most papers, particularly those where further discussion occurred after
the author response, the authors were provided with a summary of the reviewer discussion,
and in the case of a reject decision, the main reasons for the rejection.

New for ECOOP 2021, all authors were asked about their intent to submit an artifact at
the point of paper submission. Authors could indicate whether they intended to submit an
artifact if their paper was accepted, and optionally give an explanation if no artifact would
be submitted. It was made clear to authors that artifacts may not be appropriate for all
papers and were not required. All 20 papers accepted in the Research Paper category had
expressed an intent to submit an artifact, and in the end 19 artifacts were submitted for
evaluation (the authors of the last paper could not make the artifact evaluation deadline
due to illness, but they still made a public artifact). Asking for artifact intent during paper
submission successfully led to a very high submission rate for artifact evaluation, and we
hope future ECOOP chairs will continue to use this process.

Acknowledgements

Organizing ECOOP has involved many members of our community, and we would like
to express our gratitude towards all the people involved. We are particularly thankful to
Cristian Cadar, the General Chair of ISSTA 2021, for enjoyable and effective collaboration
about the organization of the joint events, and to Lucie Lerch for managing finances and
coordination wiht AITO. We thank the Program Committee members and external reviewers
for the thorough reviews and discussions of the submitted papers, and the Artifact Evaluation
Committee for their efforts.

Many other people contributed to various aspects of the conference. We thank Marcel
Böhme and Maria Christakis for organizing an exciting collection of workshops, Ajitha Rajan
and Sebastian Erdweg for managing the poster sessions, Omer Tripp and Darko Marinov for
successfully attracting corporate supporters, and Lisa Nguyen Quang Do for taking care of
publicity. We also thank Daniel Grumberg for assisting with the website and video upload
system and Elmer van Chastelet for providing excellent support and accommodating our
requests for new features in the conf.researchr.org system.

Message from the Chairs 0:ix

We gratefully acknowledge our sponsor AITO and our financial supporters, Google,
Dragon Testing, Amazon, Microsoft Research, KBR and NASA, Facebook, and JetBrains, as
well as the cooperation with ACM and SIGPLAN. Thanks to the generous contributions
from the financial supporters, participation at ECOOP 2021 and the affiliated events is free.

Finally, we want to thank all the authors for submitting their work and the attendees for
contributing to making the conference a success. We hope that you will find the ECOOP
2021 program inspiring and valuable, and that the conference will bring new ideas and give
opportunities to meet with researchers and practitioners in our community.

Anders Møller Manu Sridharan
ECOOP 2021 General Chair ECOOP 2021 Program Chair
Aarhus University University of California, Riverside

ECOOP 2021

Message from the Artifact Evaluation Chairs

The goals of the Artifact Evaluation (AE) are to foster the reproducibility of results by
providing authors the possibility to submit an artifact for accepted papers. Artifacts include,
but are not limited to, software artifacts, data sets, and proofs. An Artifact Evaluation
Committee (AEC) reviews these artifacts and decides upon their acceptance. The accepted
artifacts are archived in the Dagstuhl Artifacts Series (DARTS) published on the Dagstuhl
Research Online Publication Server (DROPS). Each artifact is assigned a Digital Object
Identifier (DOI) that can be used in future citations.

This year, the committee evaluated 19 artifacts out of 20 papers accepted at the con-
ference’s research track. This corresponds to a record participation rate of 95%. 15 of
those artifacts were accepted (a 79% acceptance rate). In total, 75% of the regular research
papers published at ECOOP 2021 have successfully passed the AE process, indicated by an
artifact-evaluation badge on the paper. The improvement from last year continues: from
2017 to 2020, respectively 59%, 38%, 50%, and 70% of the research papers were accompanied
by accepted artifacts.

The AE process for 2021 was a continuation of the AE process of previous ECOOP
editions. In particular, the process was still based on the artifact evaluation guidelines by
Shriram Krishnamurthi, Matthias Hauswirth, Steve Blackburn, and Jan Vitek published on
the Artifact Evaluation site. The guidelines for artifacts that contain mechanized proofs
developed by the ECOOP 2018 AEC were also reused to help both reviewers and authors in
creating and reviewing such artifacts.

Each artifact was evaluated by two AEC members, which corresponded to a reviewer
load of two artifacts. The reviewing process consisted of three phases.

In the “kick-the-tires” phase, reviewers briefly verified the basic integrity of the artifacts
to discover any issues that could prevent the evaluation of the artifact (e.g., a corrupted
virtual machine image) and to assign a grade for the getting-started guide.
In case of any issues, reviewers could, as part of a response phase, indicate issues and ask
clarifying questions to the authors. Authors could respond to the reviewers’ first feedback,
and update their artifacts to address any issues that were raised by the reviewers.
In the main review phase, each reviewer had two weeks to do a comprehensive evaluation
of each artifact. Reviewers were asked to assess the consistency of the artifact with
respect to the paper, the artifact’s completeness, documentation, and reusability for
future research and to decide on an overall grade. The review phase was followed by a
discussion phase, in which artifacts were discussed to converge on either the artifacts’
acceptance or rejection. Authors that received an acceptance notification were given two
weeks to incorporate reviewers’ feedback and submit the camera-ready version of their
artifacts.
We would like to thank the 22 members of this year’s AEC, who donated their valuable

time and effort to make the AE process possible. We would also like to thank Michael
Wagner for the publication of the artifacts volume, as well as ECOOP 2021’s General Chair
Anders Møller and the Program Chair Manu Sridharan for helping us coordinate the artifact
evaluation with the paper review process.

William G.J. Halfond Quentin Stiévenart
Artifact Evaluation Co-Chair Artifact Evaluation Co-Chair
University of Southern California Vrije Universiteit Brussel

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Foreword by the President of AITO

Dear ECOOP participants,

It has been yet another year dominated by COVID-19 and so ECOOP again will be
virtual – last year was successful and this year is looking even better: The organizers have
done a great job and the program is exciting. On the up-side of doing the event virtually is
that even more will be able to attend.

ECOOP 2021 is co-located (in the virutal world) with ISSTA 2021 – a cooperation that
traditionally is fruitful.

I would like to thank the organizers – lead by Anders Møller – and the PC – lead by PC
Chair Manu Sridharan – for their parts in making ECOOP successful – and the authors for
their contributions – they provide the essentials that we are meeting to discuss and learn
from.

May ECOOP be a good experience for you – and let’s hope that for ECOOP 2022, we
again will be able to meet physically and enjoy both a great scientific program and the
benefits of social interaction.

All the best,

Eric Jul
AITO President

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

General Chair

Anders Møller (Aarhus University, Denmark)

Program Chair

Manu Sridharan (University of California at Riverside, USA)

Artifact Evaluation Co-Chairs

William G.J. Halfond (University of Southern California, USA)
Quentin Stiévenart (Vrije Universiteit Brussel, Belgium)

Workshop Co-Chairs

Marcel Böhme (Monash University, Australia)
Maria Christakis (Max Planck Institute for Software Systems, Germany)

Doctoral Symposium Co-Chairs

Wei Le (Iowa State University, USA)
Eric Bodden (Paderborn University and Fraunhofer IEM, Germany)

Summer School Co-Chairs

Frank Tip (Northeastern University, USA)
Andreas Zeller (CISPA Helmholtz Center for Information Security, Germany)

Posters Co-Chairs

Ajitha Rajan (University of Edinburgh, UK)
Sebastian Erdweg (Johannes Gutenberg University Mainz, Germany)

Sponsorship Co-Chairs

Omer Tripp (Amazon, USA)
Darko Marinov (University of Illinois at Urbana-Champaign, USA)

Finance Chair

Lucie Lerch (Czech Technical University, Czech Republic)

Publicity Chair

Lisa Nguyen Quang Do (Google, Switzerland)
35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Organization

Program Committee
Alexander J. Summers (University of British Columbia, Canada)
Alexandra Silva (University College London, United Kingdom)
Burcu Kulahcioglu Ozkan (Delft University of Technology, Netherlands)
Camil Demetrescu (Sapienza University of Rome, Italy)
Colin Gordon (Drexel University, USA)
David Grove (IBM Research, USA)
Eelco Visser (Delft University of Technology, Netherlands)
Elena Zucca (University of Genova, Italy)
Eric Bodden (Paderborn University and Fraunhofer IEM, Germany)
Fernando Magno Quintão Pereira (Universidade Federal de Minas Gerais, Brazil)
George Fourtounis (University of Athens, Greece)
Hakjoo Oh (Korea University, South Korea)
Hila Peleg (University of California, San Diego, USA)
Jens Dietrich (Victoria University of Wellington, New Zealand)
John Wickerson (Imperial College London, United Kingdom)
Jonathan Aldrich (Carnegie Mellon University, USA)
Julia Lawall (Inria, France)
Lingming Zhang (University of Illinois Urbana-Champaign, USA)
Lu Zhang (Peking University, China)
Michael Greenberg (Pomona College, USA)
Michael Pradel (University of Stuttgart, Germany)
Mira Mezini (TU Darmstadt, Germany)
Murali Krishna Ramanathan (Uber Technologies Inc., USA)
Omer Tripp (Amazon Inc., USA)
Robert O’Callahan (Pernosco, New Zealand)
Sam Tobin-Hochstadt (Indiana University, USA)
Sukyoung Ryu (KAIST, South Korea)
Todd Mytkowicz (Microsoft, USA)
Uday Khedker (IIT Bombay, India)
Viktor Kunčak (EPFL, Switzerland)
Walter Binder (University of Lugano, Switzerland)
Werner Dietl (University of Waterloo, Canada)

Artifact Evaluation Committee
Ali Shokri (Rochester Institute of Technology, USA)
Anil Koyuncu (University of Luxembourg, Luxembourg)
Arnab Sharma (Paderborn University, Germany)
Asmae Heydari Tabar (TU Darmstadt, Germany)
Chaitanya Koparkar (Indiana University, USA)
Chengyu Zhang (East China Normal University, China)
Crystal Chang Din (University of Oslo, Norway)
Eduard Kamburjan (University of Oslo, Norway)
Giovanni Ciatto (Università di Bologna, Italy)
Jordan Samhi (University of Luxembourg, Luxembourg)
Junwen Yang (University of Chicago, USA)
Jyoti Prakash (National University of Singapore, Singapore)

Organization 0:xvii

Krishna Narasimhan (TU Darmstadt, Germany)
Lorenzo Testa (Università degli Studi di Torino, Italy)
Narges Shadab (University of California at Riverside, USA)
Pietro Barbieri (Università degli Studi di Genova, Italy)
Pinjia He (ETH Zurich, Switzerland)
Raphaël Monat (LIP6, Sorbonne Université, France)
Shukun Tokas (SINTEF Digital, Oslo, Norway)
Somesh Singh (Indian Institute of Technology Madras, India)
Utpal Bora (Institute of Technology Hyderabad, India)
Yusuke Izawa (Tokyo Institute of Technology, Japan)

ECOOP 2021

External Reviewers

Davide Ancona (Universita di Genova, Italy)
Matija Pretnar (University of Ljubljana, Slovenia)

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Jonathan Aldrich (3)
Carnegie Mellon University,
Pittsburgh, PA, USA

Tomoyuki Aotani (17)
Mamezou Co.,Ltd., Tokyo, Japan

Sven Apel (14)
Saarland University, Saarland Informatics
Campus, 66123 Saarbrücken, Germany

Ellen Arteca (7)
Northeastern University, Boston, MA, USA

Johannes Bader (3)
Jane Street, New York, NY, USA

Christian Bartolo Burlò (20)
Gran Sasso Science Institute, L’Aquila, Italy

Raef Bassily (8)
Ohio State University, Columbus, OH, USA

Jan Bessai (4)
Technische Universität Dortmund, Germany

Eric Bodden (2, 19)
Heinz Nixdorf Institute, Paderborn, Germany;
Paderborn University, Germany;
Fraunhofer IEM, Paderborn, Germany

Rodrigo Bonifácio (19)
Computer Science Department,
University of Brasília, Brazil

Edwin Brady (9)
School of Computer Science,
University of St Andrews, Scotland, UK

Maxime Buyse (5)
Uber Elevate, Paris, France

Ornela Dardha (10)
School of Computing Science,
University of Glasgow, Scotland, UK

Rémi Delmas (5)
Uber Elevate, Paris, France

Aleksandar S. Dimovski (14)
Mother Teresa University, Skopje,
North Macedonia

Boris Düdder (4)
University of Copenhagen, Denmark

Sam Estep (3)
Carnegie Mellon University,
Pittsburgh, PA, USA

Simon Fowler (10)
School of Computing Science,
University of Glasgow, Scotland, UK

Adrian Francalanza (20)
Department of Computer Science,
University of Malta, Msida, Malta

Yaoqing Gao (16)
Huawei, Toronto, Canada

Simon J. Gay (10)
School of Computing Science,
University of Glasgow, Scotland, UK

Saverio Giallorenzo (22)
Università di Bologna, Italy; INRIA, Sophia
Antipolis, France

Xiaodong Gu (11)
School of Software, Shanghai Jiao Tong
University, China

Youssef Hamadi (5)
Uber Elevate, Paris, France

Yo-Sub Han (11)
Department of Computer Science,
Yonsei University, Seoul, South Korea

Yu Hao (8)
Ohio State University, Columbus, OH, USA

Paul Harvey (10)
Rakuten Mobile Innovation Studio,
Tokyo, Japan

Dongjie He (16)
University of New South Wales,
Sydney, Australia

George T. Heineman (4)
Worcester Polytechnic Institute, MA, USA

Ben Hermann (2)
Technische Universität Dortmund, Germany

Xuejing Huang (12)
The University of Hong Kong, Hong Kong

Ranjit Jhala (18)
University of California, San Diego, CA, USA

Tetsuo Kamina (17)
Oita University, Japan

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://doi.org/10.4230/LIPIcs.ECOOP.2021.17
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://orcid.org/0000-0002-0016-086X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://doi.org/10.4230/LIPIcs.ECOOP.2021.4
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://doi.org/10.4230/LIPIcs.ECOOP.2021.19
https://orcid.org/0000-0002-2380-2829
https://doi.org/10.4230/LIPIcs.ECOOP.2021.19
https://orcid.org/0000-0002-9734-367X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://orcid.org/0000-0001-9927-7875
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://orcid.org/0000-0002-3601-2631
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://orcid.org/0000-0002-0241-7729
https://doi.org/10.4230/LIPIcs.ECOOP.2021.4
https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://orcid.org/0000-0001-5143-5475
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://orcid.org/0000-0003-3829-7391
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16
https://orcid.org/0000-0003-3033-9091
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://orcid.org/0000-0002-3658-6395
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://orcid.org/0000-0002-0529-6408
https://doi.org/10.4230/LIPIcs.ECOOP.2021.11
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://orcid.org/0000-0002-7211-6657
https://doi.org/10.4230/LIPIcs.ECOOP.2021.11
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://orcid.org/0000-0003-1243-938X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16
https://doi.org/10.4230/LIPIcs.ECOOP.2021.4
https://orcid.org/0000-0001-9848-2017
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://orcid.org/0000-0002-8496-491X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://doi.org/10.4230/LIPIcs.ECOOP.2021.17
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xxii Authors

Sunghun Kim (11)
Department of Computer Science and
Engineering, The Hong Kong University of
Science and Technology, Hong Kong

Matthew Kolosick (18)
University of California, San Diego, CA, USA

Alexander Kovalenko (6)
Czech Technical University in Prague,
Czech Republic

Stefan Krüger (19)
Independent Researcher, Munich, Germany

Sufian Latif (8)
Ohio State University, Columbus, OH, USA

Jingbo Lu (16)
University of New South Wales,
Sydney, Australia

Petr Maj (6)
Czech Technical University in Prague,
Czech Republic

Hidehiko Masuhara (17)
Tokyo Institute of Technology, Japan

Mira Mezini (19)
Technical University of Darmstadt, Germany

Fabrizio Montesi (22)
University of Southern Denmark,
Odense, Denmark

Krishna Narasimhan (19)
Technical University of Darmstadt, Germany

Bruno C. d. S. Oliveira (12)
The University of Hong Kong, Hong Kong

Marco Peressotti (22)
University of Southern Denmark,
Odense, Denmark

Ohad Rau (13)
Georgia Institute of Technology,
Atlanta, GA, USA

David Richter (22)
Technical University of Darmstadt, Germany

Atanas Rountev (8)
Ohio State University, Columbus, OH, USA

Guido Salvaneschi (22)
University of St. Gallen, Switzerland

Vivek Sarkar (13)
Georgia Institute of Technology,
Atlanta, GA, USA

Alceste Scalas (20)
DTU Compute, Technical University of
Denmark, Kongens Lyngby, Denmark

Philipp Dominik Schubert (2)
Heinz Nixdorf Institute, Paderborn, Germany

Max Schäfer (7)
GitHub, Oxford, UK

Marco Servetto (21)
ECS, Victoria University of Wellington,
New Zealand

Xipeng Shen (15)
Department of Computer Science, North
Carolina State University, Raleigh, NC, USA

Konrad Siek (6)
Czech Technical University in Prague,
Czech Republic

Joshua Sunshine (3)
Carnegie Mellon University,
Pittsburgh, PA, USA

Éric Tanter (3)
Computer Science Department (DCC),
University of Chile, Santiago, Chile

Frank Tip (7)
Northeastern University, Boston, MA, USA

Anish Tondwalkar (18)
University of California, San Diego, CA, USA

Hendrik van Antwerpen (1)
Delft University of Technology, The Netherlands

Eelco Visser (1)
Delft University of Technology, The Netherlands

Jan Vitek (6)
Czech Technical University in Prague,
Czech Republic; Northeastern University,
Boston, MA, USA

Caleb Voss (13)
Georgia Institute of Technology,
Atlanta, GA, USA

Pascal Weisenburger (22)
University of St. Gallen, Switzerland

Jenna Wise (3)
Carnegie Mellon University,
Pittsburgh, PA, USA

Jingling Xue (16)
University of New South Wales,
Sydney, Australia

https://doi.org/10.4230/LIPIcs.ECOOP.2021.11
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://orcid.org/0000-0002-7194-1874
https://doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://doi.org/10.4230/LIPIcs.ECOOP.2021.19
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16
https://orcid.org/0000-0002-7441-8069
https://doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://doi.org/10.4230/LIPIcs.ECOOP.2021.17
https://doi.org/10.4230/LIPIcs.ECOOP.2021.19
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.19
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.13
https://orcid.org/0000-0002-8672-0265
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.13
https://orcid.org/0000-0002-1153-6164
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://orcid.org/0000-0002-8674-1859
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://orcid.org/0000-0003-1458-2868
https://doi.org/10.4230/LIPIcs.ECOOP.2021.21
https://doi.org/10.4230/LIPIcs.ECOOP.2021.15
https://orcid.org/0000-0002-3599-2164
https://doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://orcid.org/0000-0001-5117-0921
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://orcid.org/0000-0002-7384-3370
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://orcid.org/0000-0003-4052-3458
https://doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://doi.org/10.4230/LIPIcs.ECOOP.2021.13
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16

Authors 0:xxiii

Wenjia Ye (12)
The University of Hong Kong, Hong Kong

Guoqiang Zhang (15)
Department of Computer Science,
North Carolina State University,
Raleigh, NC, USA

Hailong Zhang (8)
Fordham University, New York, NY, USA

Hongyu Zhang (11)
The University of New Castle, Australia

Elena Zucca (21)
DIBRIS, University of Genova, Italy

ECOOP 2021

https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/LIPIcs.ECOOP.2021.15
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://doi.org/10.4230/LIPIcs.ECOOP.2021.11
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2021.21

Scope States: Guarding Safety of Name Resolution
in Parallel Type Checkers
Hendrik van Antwerpen #

Delft University of Technology, The Netherlands

Eelco Visser #

Delft University of Technology, The Netherlands

Abstract
Compilers that can type check compilation units in parallel can make more efficient use of multi-core
architectures, which are nowadays widespread. Developing parallel type checker implementations is
complicated by the need to handle concurrency and synchronization of parallel compilation units.
Dependencies between compilation units are induced by name resolution, and a parallel type checker
needs to ensure that units have defined all relevant names before other units do a lookup. Mutually
recursive references and implicitly discovered dependencies between compilation units preclude
determining a static compilation order for many programming languages.

In this paper, we present a new framework for implementing hierarchical type checkers that
provides implicit parallel execution in the presence of dynamic and mutual dependencies between
compilation units. The resulting type checkers can be written without explicit handling of communi-
cation or synchronization between different compilation units. We achieve this by providing type
checkers with an API for name resolution based on scope graphs, a language-independent formalism
that supports a wide range of binding patterns. We introduce the notion of scope state to ensure
safe name resolution. Scope state tracks the completeness of a scope, and is used to decide whether
a scope graph query between compilation units must be delayed. Our framework is implemented in
Java using the actor paradigm. We evaluated our approach by parallelizing the solver for Statix,
a meta-language for type checkers based on scope graphs, using our framework. This parallelizes
every Statix-based type checker, provided its specification follows a split declaration-type style.
Benchmarks show that the approach results in speedups for the parallel Statix solver of up to 5.0x
on 8 cores for real-world code bases.

2012 ACM Subject Classification Software and its engineering → Compilers; Theory of computation
→ Parallel algorithms

Keywords and phrases type checking, name resolution, parallel algorithms

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.1

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.1

Funding NWO VICI Language Designer’s Workbench project (639.023.206).

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Despite the general availability of multi-core architectures, many compilers do not take
advantage of these for type checking. Parallelizing a compiler remains a challenging task,
which requires dealing with explicit synchronization and communication between compilation
units. For example, the authors of GCC made the following remark about their efforts to
parallelize parts of the compiler [6]:

“One of the most tedious parts of the job was [. . .] making several global variables
threadsafe, and they were the cause of most crashes in this project.”

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Hendrik van Antwerpen and Eelco Visser;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 1; pp. 1:1–1:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.vanantwerpen@tudelft.nl
https://orcid.org/0000-0001-5117-0921
mailto:e.visser@tudelft.nl
https://orcid.org/0000-0002-7384-3370
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.4230/DARTS.7.2.1
https://doi.org/10.4230/DARTS.7.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Scope States

They continue to say that even with the help of specialized tools it remained difficult to do the
parallelization correctly. Compilers for many major languages do not support parallel front
ends, or only experimentally. Some build tools allow the compiler to be run in parallel, but
many require a static compilation order, and because they have no internal knowledge of the
language being compiled, cannot generically handle cyclic dependencies between compilation
units. A generic, reusable solution to the problem of how to implement type checkers that
can process compilation units in parallel, which correctly deals with (potentially cyclic)
dependencies between units, is missing1.

Dependencies between compilation units are the results of name lookup from one unit
into another. A correct concurrent type checker must ensure that when a lookup is done,
all relevant units have progressed enough to provide a complete answer. For languages that
support true separate compilation (e.g., [23]), there are no lookups into other units, and
processing them in parallel is trivial. It may also be possible to run type checkers in parallel
using a compilation order based on static or dynamic dependencies, which ensures units are
compiled after their dependencies. But many programming languages have features, such as
mutually recursive modules, that result in mutual dependencies between compilation units.
When compilation units are mutually dependent, neither unit can be completed before the
other is at least partially checked. A more fine-grained approach than processing compilation
units in a fixed order is required.

This paper presents a new framework for the implementation of type checkers that provides
implicit parallel execution. Type checkers are organized as a hierarchy of compilation units,
which allows modeling simple scenarios such as flat files in a project, as well as package
hierarchies. The framework supports dynamic dependencies and mutual dependencies between
compilation units. The type checkers can be written without the need to explicitly handle
communication or synchronization between units.

This is achieved by providing type checkers with an API for name resolution based on
scope graphs. Scope graphs are a language-independent formalism for name binding and
name resolution, which has been shown to support a wide range of binding patterns, and has
successfully been applied to implement type checkers [16, 31, 20]. The key to our approach
is twofold:

delay lookups when other units have not progressed enough to give a safe, that is, complete
answer, and

release delayed queries as soon as possible, even if other parts of the graph are still
incomplete.

Recent work by Rouvoet et al. [20] identifies the absence of weakly critical edges as a sufficient
condition to guarantee safe name resolution in a partial scope graph. We develop the notion
of scope state to allow fine-grained tracking of the presence or absence of weakly critical
edges. Through these scope states, which are managed by the type checkers via the name
resolution API, the framework ensures safety of name resolution. The provided API is
asynchronous, which works with type checkers that follow a synchronous pattern, where every
name resolution query is awaited, as well as with type checkers that use dynamic scheduling
techniques, such as worklists and continuations.

1 The type checkers we envision are both concurrent (i.e., units make (interleaved) progress during the
same period) and parallel (i.e., units run at the same time), and we use the terms interchangeably.

H. van Antwerpen and E. Visser 1:3

package p;

class A {
p.C f;
static class C {}

}

package p;

class B extends A {
C g;

}

package p;

class C {
A h;

}

Figure 1 Three unit Java program demonstrating mutual and discovered dependencies.

We claim the following contributions:
We propose the notion of scope state to explicitly track the presence of weakly-critical
edges (Section 3.3).
We introduce a model of hierarchical compilation units with scope sharing (Section 4.1).
We extend scope state with a notion of sharing, which allows us to track weakly-critical
edges in the hierarchy of compilation units (Section 4.2).
We present a scope graph-based name resolution API for use by type checker implemen-
tations (Section 4.3).
We present an actor-based algorithm that implements the hierarchical compilation unit
model and the name resolution API, and provides implicit parallel execution of the
compilation units (Section 5).
We present a fine-grained deadlock handling approach to ensure termination that is
well-suited for interactive applications of the type checkers (Section 5).
We show that our framework captures the scheduling behavior of Rouvoet et al. [20] by
porting the Statix solver to our framework. We discuss local inference and the need for a
specification style that models declarations and their types as separate scopes (Section 6).
We parallelize all Statix type checkers, provided they follow this specification style.
We benchmark the parallel Statix solver using a specification for a subset of Java on a
few real world projects, showing speedups up to 5.0x on 8 cores for larger projects.

All the source code and benchmark results are available in the accompanying artifact.

2 Motivation and Scope

Our goal is to develop a framework that provides implicit parallelization of type checkers. In
this section we discuss the features we want to support, the difficulties these features pose to
parallelization, and an overview of our solution.

We use an example of a Java program consisting of three compilation units, shown in
Figure 1, to illustrate the requirements on parallel type checkers. This example shows to two
dependency patterns that are challenging for parallelization. The first is mutual dependencies.
Class A refers to class p.C (qualified to distinguish it from the nested class it defines), while
class C refers to class A. The second is dynamic dependencies. These are dependencies that
are discovered during type checking, and that are not obvious without at least partially
checking the program. The reference from B to C is an example of this. The name C could
refer to the top-level class in the package, or to the nested class in A. To decide that it refers
to the nested class in A, we need to resolve the reference to the super class A and its interface.

Typical compiler design (e.g., [2]) divides compilation into phases, including parsing, type
checking, and code generation. We focus on the type checking phase, which is often difficult
to parallelize because of the context dependence of type checking and name resolution. The
type checking phase of the compiler for our example may consist of several steps: (a) build a

ECOOP 2021

1:4 Scope States

symbol table containing information on defined classes and type inheritance, (b) build the
interface for each class by processing field and method declarations, and (c) check the field
and method bodies of each class. Each step depends on the information collected in the
previous phases.

What does it take to parallelize this type checker? Compilation units are checked in
parallel, but inevitably need information provided by other compilation units. Mutual
dependencies between compilation units prevents linear ordering of compilation units, while
dynamic dependencies mean part of the work must be done before all dependencies are even
known. This immediately rules out simple parallelization schemes based on a topological
ordering of compilation units, where units are checked after their dependencies have finished.

The main challenge introduced by parallelization is therefore how to deal with partial
information during type checking (which has been called the Doesn’t Know Yet Problem [22]).
For example, the compilation unit for class B does a lookup of nested classes in its super
class A, while the compilation unit for A has not constructed its interface yet. Solving this
problem may require designing locking schemes for threads with shared data, or messaging
protocols for communicating processes, as well as keeping track of the completeness of (part
of) the symbol table or interface. Designing concurrent software is notoriously hard, and
bugs can result in deadlocks or invalid results because of the use of incomplete information.

Our solution to this problem is a framework that allows compiler engineers to write their
type checker without concern for parallelization. All the work of coordinating the parallel
units and keeping track of completeness of interfaces is handled by the framework. The key
idea is that all dependencies between units are the result of either a hierarchy between units
(e.g., compilation units in packages) or name2 lookups. The framework provides the type
checker with a name handling API based on the expressive name binding model of scope
graphs. Scope graphs are language-independent, and have been successfully used to model
a wide variety of binding patterns, including mutually recursive modules, type-dependent
names, and generics. Type checkers use this API to declare the name binding and scoping
structure, and resolve names by queries on the resulting scope graph. The scope graphs grows
monotonically with the type checker marking the parts of the graph that are completed. In
return, the framework completely hides the communication between different compilation
units and ensures only complete information is used to answer name resolution queries.

In terms of our earlier example, this means that the type checker of each compilation
unit follows the steps of the original, non-parallel, design. When the type checker for class B
queries the not-yet-constructed interface of class A, the query is simply suspended until the
unit of A has progressed enough to be able to answer the query. The type checker of unit of A,
on the other hand, is unaware of the query as the delay and answer mechanism is handled
transparently based on the monotone completion of A’s scope graph.

3 Type Checking with Scope Graphs

Scope graphs [16] are a language-independent formalism to specify name binding and name
resolution, and a key ingredient of our approach. In this section we explain scope graphs,
describe the problem of safe name resolution and its solution using critical edges [20], and
we introduce the notion of scope state to track the presence of critical edges.

2 We use name in a broad sense, as it can be complex data and does not necessarily have to appear
literally in the original program.

H. van Antwerpen and E. Visser 1:5

3.1 Scope Graphs

Scope graphs describe the name binding structure of programs as a directed graph of scopes
with associated data, connected by labeled edges. Scopes correspond to regions in the
program that behave uniformly with respect to name binding. Name resolution corresponds
to queries in the graph that find paths from references to scopes with matching associated
data (e.g., an identifier name).

The program in Figure 2 will be our running example. It consists of two files, one
containing a class A in a package p, and a class B in a package q. Class B extends class A and
refers to a field f in A from the method m. The scope graph corresponding to our example
is shown in Figure 3.3 The node labeled sR represents the root scope of the program. The
scopes sp, sq, sA, sB , sf , and sm correspond to declarations in the program, and each has
the simple class name as associated data, depicted as s → x. Edges from the containing
scopes to these declarations are labeled to indicate the kind of declaration: PKG, CLS, FLD
and MTHD for package, class, field, and method declarations respectively. The scopes sT (f)
and sT (m) represent the types of the declarations f and m, and each is connected to their
declaration with a TYPE-labeled edge. The label LEX is used for connecting a scope to its
lexical parent.4 Finally, class extension is modeled by an EXT-labeled edge between the two
class scopes, which makes the declarations from the super-class reachable from the subclass.

Name resolution is expressed by means of queries over the scope graph, finding a path
from a reference’s scope to a matching declaration. Query parameters control reachability and
disambiguation. What data in the graph is reachable is specified with a regular expression
describing valid paths and a predicate describing matching data. For example, to resolve a
reference f in the lexical context or in a super-class, one would use the regular expression
LEX∗EXT∗FLD, and a predicate matching the name f. Disambiguation determines which
data is visible if multiple reachable results are found, and is specified with an order on
edge labels and a predicate describing equivalent data. For example, if we prefer local
definitions of field references over definitions that traverse more edges, and definitions found
in super-classes over definitions found in the lexical context, we would use a label order
$ < EXT < LEX. The special label $, assumed different from all user-provided labels, is used
for end-of-path.

We use the following notation: A scope graph G is a triple ⟨S, E, ρ⟩ of scope identifiers S,
edges E, and a partial function ρ from scopes to associated data. The function scopes(G),
edges(G), and data(G) project the three components of the triple. Query parameters are a
path well-formedness regular expression re, a data matching predicate D, and a strict partial
order on labels L. We use Dx for the predicate matching the name x. The result of a query
is an answer set A of tuples (p, d) of a path p and a datum term d. A path p is either a
single scope s, or a labeled step p · l · s, and target(p) projects the last scope of path.

3 This scope graph is a simplification of the scope graph that would be necessary to support all Java’s
name resolution features, and does not account for the possibility of named and wildcard imports,
implicit package visibility, nested classes, etc.

4 We say binding is lexical if binders are only visible in sub-terms of the term where they are bound.
Examples are lambda and let expressions. If the scope of the binder is wider, we say the binding is
non-lexical. Examples are identifiers imported from modules, or references to members on expressions
of a class/record type.

ECOOP 2021

1:6 Scope States

package p;
public class A {

int f;
}

package q;
public class B extends p.A {

public int m() {
return f;

}
}

Figure 2 Example Java program with two compilation units.

sR

sp → p

PKG

sq → q

PKG

sA → A

CLS

LEX

sf → f

FLD

sT (f) → int

TYPE

sB → B

CLS

LEX

EXT

sm → m

MTHDLEX

sT (m) → fun([], int)

TYPE

p

A

f

Figure 3 Scope graph corresponding to the Java program in Figure 2.

3.2 Critical Edges for Safe Name Resolution
Type checkers use the scope graph to resolve names, but must also construct the scope graph.
When type checking starts, all we have is an empty scope graph, which is gradually built
up as type checking progresses. Rouvoet et al. [20] observe that it is not always possible to
construct the full scope graph without already querying it. This can be seen in our example
in Figure 3 as well. The construction of the extension edge from sB to sA requires resolving
the reference to A in a partial graph. This raises the question when it is safe to do so. After
all, if that query was executed before the declaration of A is added to the graph, it results
in an undeserved error. A query is considered safe to resolve when its result in the current
partial scope graph is the same as its answer in the final scope graph. Rouvoet et al. [20]
identify the absence of critical edges as the condition to guarantee safety. A critical edge is
the first edge that is missing in the partial graph that will be part of the query result in the
final graph. For example, if the graph in Figure 3 was complete except for the EXT edge
between sB and sA, this edge is critical for the resolution of the reference f. But the same
missing edge is not critical for the resolution of p.

Since determining the critical edges in an incomplete scope graph amounts to solving
the whole name resolution problem, Rouvoet et al. [20] propose weakly critical edges as a
conservative approximation of critical edges. Weakly critical edges are missing edges that
may lead to a result for the query. In our earlier example, the missing EXT edge is weakly
critical for the resolution of f even if sA does not eventually contain a declaration for f.

3.3 Scope States
The final step to guarantee safe resolution is then to determine the weakly critical edges.
The solution of Rouvoet et al. [20] is a predicate over a constraint set, which is specific to
the Statix meta-language. The crucial property of their safety predicate is that the set of
weakly critical edges only decreases as type checking progresses. They prove that this ensures

H. van Antwerpen and E. Visser 1:7

opennew closing closed
initScope(d, L)

setDatum
addEdge(l)

closeEdge(l)

ϵ†

Figure 4 Scope states. Transition diagram.

{⊤} new {O = ∅}
{⊤}initScope(d, L) {O = L ⊎ {$ | d = ⊤}}

{$ ∈ O} setDatum {$ ̸∈ O}
{l ∈ O} addEdge(l) {⊤}
{l ∈ O} closeEdge(l) {l ̸∈ O}

{O = ∅} ϵ† {⊤}

Figure 5 Scope states. Transition conditions and effects.

that once a query is executed, there can not be additions to the scope graph that lead to
new results for that query. Our purpose is to develop a language-independent framework for
parallel type checkers that correctly handles the dependencies between compilation units.
Dependencies are the result of name resolution, thus handling the dependencies between
units means ensuring name resolution between units is correct. If we can capture the presence
of weakly critical edges independently of the particular type checker and object language, we
can provide a general mechanism to delay queries until they are safe to execute.

To that purpose, we introduce the notion of scope state, which consists of a state (open,
closing, and closed) and a set of open labels O, consisting of edge labels l or the special data
label $. Then, weakly critical edges are characterized by scopes that are open and/or have
open edges. When a scope is closed, it is always safe to query, since its associated data and
outgoing edges are final. When the scope is closing, queries over labels that are not weakly
critical, i.e. that are not in O, are still safe to execute. The idea is that once the scope is
closing, the set of open labels only decreases, and only labels in O are weakly critical.

Figure 4 shows the state transition diagram for scope states, and Figure 5 shows the pre-
and post-conditions for the transitions. Initially, scopes are in the open state. In this state,
the set of open labels has not been initialized, so all labels are considered weakly critical.
Initialization with initScope(d, L) changes the state to closing. The flag d specifies if the
scope will have associated data. The set of edge labels L determines which labels outgoing
edges from this scope may have. In the state closing, the set of open labels, and therefore the
set of weakly critical edges, only decreases. The preconditions on setDatum and addEdge(l)
guarantee that the shape of the scope with respect to a label l only changes when the label
is in the set of open labels O. The associated data of a scope can only be set once, therefore
setDatum always removes the data label $ from the set of open labels. Edge labels are closed
with closeEdge(l), which removes that label from the set of open labels, after which no new
edges with that label are allowed, and the label is not weakly critical anymore. After all
labels have been closed, the scope is complete and in the state closed.

ECOOP 2021

1:8 Scope States

4 Hierarchical Compilation Units

In this section we introduce a model of hierarchical compilation units. We extend scope
states with a notion of sharing that is required by this model. Finally, we present the API of
our framework, and code samples for the type checkers that may check our running example.

4.1 The Compilation Unit Model
We propose a model of hierarchical compilation units. The goal of this model is to be flexible
enough to handle many different project structures. Examples of typical project structures
that we support are:

a flat set of compilation units for the source files in the project, each of which introduces
global declarations that are accessible from other source files,
a tree of compilation units, where intermediate nodes represent packages or modules, and
the individual source files are the leaves, or
a project which depends on a library that is otherwise independent of the project.

Each compilation unit in our model has an associated, user defined, type checker. Compi-
lation units can spawn sub-units, with their own associated type checkers. Each compilation
unit builds a local scope graph by creating scopes, setting data, and adding edges. The
compilation units are connected via scopes that are shared between units and their sub-units.
Shared scopes allow sub-units to provide declarations that are reachable for other units, and
to resolve to names in other units. The examples above all fit into this model. A project
with a flat structure consists of one project unit, which creates a global scope that is shared
with all file units, which add globally reachable declarations to the global scope. A project
with hierarchical packages has compilation units for each package level, each with their own
package scope, which is declared in the scope of the parent package. In a project consisting
of a library and a program that depends on it, the program and the library have their own
root scopes, and the dependency is reflected by an edge from the program root scope to the
library root scope.

The compilation units for our Java example of Figure 2 follow the package hierarchy.
Figure 6 shows how the scope graph of our example is distributed over compilation units.
Our example program has five compilation units, which are depicted by the dashed boxes.
At the top level, surrounding the whole scope graph, is the unit that represents the whole
program. The packages p and q are sub units, each containing the units for the class in that
package. The owner of a scope or edge in the graph is the unit that created the scope or
edge. For example, the root scope sR is owned by the root unit, while the class scope sB is
owned by the innermost unit for the class B. Visually, a scope is owned by the innermost
unit that contains it, while an edge is owned by the innermost unit that contains the edge
label. The MTHD edge is therefore owned by the unit of B, as is the LEX edge to sR.

4.2 Safe Name Resolution with Sharing
The connection between units and sub-units is established through scopes that are shared
from a unit to its sub-units. As a result, multiple units may contribute to a scope, something
that the unit owning the scope must take into account when handling queries in that scope.
Therefore, we extend scope state with sharing, to account for the fact that scope state is
determined by the owner as well as by sub-units with which the scope was shared.

H. van Antwerpen and E. Visser 1:9

sR

sp → p

PKG

sq → q

PKG

sA → A

CLS
LEX

sf → f

FLD

sB → B

CLS
LEX

EXT

sm → m

MTHD

Figure 6 Compilation units for the Java program of Figure 2. The dashed boxes indicate the
boundaries of the compilation units. A scope is owned by the innermost unit in which it appears.
Edges are owned by the innermost unit that contains their label.

Sharing can result in outgoing edges having a different owner than their source scope, as
units can contribute outgoing edges to either their own scopes, or scopes owned by one of
their enclosing units that are shared with the unit. In our example, the CLS edge to sB has
source scope sq, which is owned by the unit of package q, not by the unit of B. The data
associated with scopes can only be provided by the owner.

The compilation unit that owns a scope is responsible for executing queries on that scope.
Every unit maintains an aggregate view of each scope it owns, consisting of all the edges
contributed by itself or by sub-units that the scope is shared with. To ensure safe name
resolution in this model, we must account for sharing of scopes between units. When a unit
initializes one of its scopes, it does not necessarily know what edges any of the sub-units
may contribute. The sub-units must therefore initialize shared scopes as well, so that the
scope owner has a complete picture of the state of the scope. In the previous section, a scope
moved immediately to the closing state when it was initialized. When the scope is, or can be,
shared, this is not correct. When a scope is not in state open, we expect that the set of open
labels only decreases. The initialization of the scope by a sub-unit could increase the set of
open labels. On top of that, if the scope is shared with a new sub-unit, this sub-unit must
now also initialize the scope, potentially adding open labels. We can be sure that the set of
open labels will only decrease, when all units that the scope is shared with have initialized it,
and none of those units will share the scope with new sub-units.

To handle sharing correctly, we extend scope states with an explicit notion of sharing.
The state diagram for scope states with sharing is shown in Figure 7, and the pre- and
postconditions for the transitions in Figure 8. The extended scope state consists of a set
of open labels per unit O, a set I of units that must initialize the scope, and a set H of
units that may share the scope with new sub-units. All transitions take a parameter u

that indicates which unit is responsible for the event. Creation of a scope is indicated by
new(u, d), where u is the owner and the flag d indicates whether the scope has associated
data. The flag d is not part of initScope anymore, because only the owner can set data, but
the scope is initialized by all units that the scope is shared with. When a scope is shared with
a unit û with shareScope(u, û), that unit is added to the set I. Every unit that the scope is
shared with must initialize it with initScope(u, L, h), after which it is removed from I. A unit
initializes the scope with the set of open labels L, a well as the flag h to indicate that the
unit may share the scope with sub-units. The scope moves to the state closing when the set

ECOOP 2021

1:10 Scope States

opennew(u, d) closing closed

initScope(u, L, h)
shareScope(u, û)
closeScope(u)

setDatum(u)
addEdge(u, l)
closeEdge(u, l)

ϵ‡

setDatum(u)
addEdge(u, l)
closeEdge(u, l)

ϵ†

Figure 7 Scope states with sharing. Transition diagram.

{⊤} new(u, d)

I = {u},

O = {$ | d = ⊤},

H = ∅

u ∈ I,

O = O′,

u ̸∈ H

initScope(u, L, h)

u ̸∈ I,

O = O′ ⊎ {(u, l) | l ∈ L},

u ∈ H

{
u ∈ H,

û ̸∈ I

}
shareScope(u, û) {û ∈ I}

{u ∈ H} closeScope(u) {u ̸∈ H}
{(u, $) ∈ O} setDatum(u) {(u, $) ̸∈ O}
{(u, l) ∈ O} addEdge(u, l) {⊤}
{(u, l) ∈ O} closeEdge(u, l) {(u, l) ̸∈ O}

{I = ∅, H = ∅} ϵ‡ {⊤}
{O = ∅} ϵ† {⊤}

Figure 8 Scope states with sharing. Transition conditions and effects.

of uninitialized units I and the set of sharing units H are both empty. When the state is not
open anymore, the set of open labels will only decrease. The events setDatum(u) indicates
associated data is set, while addEdge(u, s, l, s′), and closeEdge(u, s, l) indicate adding an
edge and closing an edge label. The preconditions require that these events are only coming
from units that have already initialized the scope. Note that these events are allowed in the
states open and closing. This ensures that, if a scope is shared between multiple units, each
unit can extend that scope without having to wait for all other units to initialize the scope
first.

4.3 Name Resolution API
The key to support parallel execution of type checkers is to correctly handle the dependencies
between compilation units, which result from name resolution. Queries into a unit that
has not constructed the relevant part of its scope graph must be delayed, and executed

H. van Antwerpen and E. Visser 1:11

Algorithm 1 Type Checker and Name Resolution API.

1 interface TypeChecker
2 function run(S)
3 end
4 interface CompilationUnit
5 function freshScope(d) : s

6 function addSubUnit(tc, S)
7 function initScope(s, L, h)
8 function closeScope(s)
9 function setDatum(s, d)

10 function addEdge(s, l, s′)
11 function closeEdge(s, l)
12 async function query(s, re, D, L) : A

13 end

whenever the scope graph is complete enough. Our framework hides this scheduling from
type checkers, and thus provides implicit parallel execution. Type checkers are programmed
against a name resolution API, shown in Algorithm 1, which contains methods to specify
name binding by building a unit’s scope graph, resolve names by querying the scope graph,
and start sub-units.

Names are resolved with the query(s, re, D, L) function, which is defined as async to
reflect the fact that queries cannot always be answered directly by other compilation units.
It is up to the type checker to decide if the result should be immediately awaited, or if
other work can be done until the answer is available. The framework ensures correct query
answers by keeping track of scope states and scheduling queries based on these scope states.
Type checkers are responsible for providing the framework with the necessary information to
maintain the scope state. The type checker must therefore initialize the set of (locally) open
labels and announce whether it may share the scope with sub-units, and it must close edge
labels once all edges with that label are added. All the interaction with other units, such as
forwarding queries to the right unit, delaying queries, and maintain scope state on sharing
is completely hidden from the type checker. For example, the function addSubUnit(tc, S),
which starts a sub-unit with the given type checker tc and initial scopes S, takes care of
recording the sharing of scopes, and starts the type checker to run in parallel. Type checkers
specify what they do locally, the framework implicitly takes care of their parallel execution.

The pseudo code in Algorithm 2 shows how the API could be used to implement a type
checker that checks the Java running example.5 Each type checker is an actor that extends
the CompilationUnit actor that provides the API, which is explained in detail in Section 5.
At the top level is JavaRootTC, which takes no scope arguments, and creates the root scope
of the project. Initialization specifies no open edge labels, but does allow sharing. For each
package a new sub unit is started with a package type checker that takes the root scope
as argument. The first is the root scope, which is passed down to the class scopes. After
creating the sub units, the scope is closed, to indicate it will not be shared anymore. The
package type checkers start by initializing the shared root scope, indicating the scope may

5 We show all API calls directly, to show how the API can be used. We imagine that in an actual type
checker implementation, common patterns of usage would be abstracted away for nicer code.

ECOOP 2021

1:12 Scope States

Algorithm 2 Sketch of a simplified type checker implementation for Java packages
and classes. The type checker is defined as compilation units JavaRootTC for the project
root, JavaPkgTC for packages, and JavaClassTC for classes. The presented code shows the
construction and querying of package and class definitions.

1 actor JavaRootTC(P) extends TypeChecker
2 function Run({})
3 sR := freshScope(⊥)
4 initScope(sR, ∅, ⊤)
5 for each (p, C) ∈ P do
6 addSubUnit(JavaPkgTC (p, C), {sR})
7 closeScope(sR)
8 end
9 end

10 actor JavaPkgTC(Jpackage x;K, C) extends TypeChecker
11 function Run({sR})
12 initScope(sR, {PKG}, ⊤)
13 sp := freshScope(⊤)
14 initScope(sp, ∅, ⊤)
15 setDatum(sp, x)
16 for each c ∈ C do
17 addSubUnit(JavaClassTC (c), {sR, sp})
18 closeScope(sR)
19 closeScope(sp)
20 addEdge(sR, PKG, sp)
21 closeEdge(sR, PKG)
22 end
23 end
24 actor JavaClassTC(Jclass x extends y { ... }K) extends TypeChecker
25 function Run({sR, sp})
26 initScope(sR, ∅, ⊥)
27 initScope(sp, {CLS}, ⊥)
28 sc := freshScope(⊤)
29 initScope(sc, {LEX, EXT, FLD, MTHD}, ⊥)
30 setDatum(sc, x)
31 addEdge(sc, LEX, sR)
32 closeEdge(sc, LEX)
33 addEdge(sp, CLS, sc)
34 closeEdge(sp, CLS)
35 {(p, z)} := await query(sc, LEX∗CLS, Dx, . . .)
36 s′

c := target(p)
37 addEdge(sc, EXT, s′

c)
38 closeEdge(sc, EXT)
39 // ... etc ...
40 end
41 end

H. van Antwerpen and E. Visser 1:13

msg := Start(S) | InitScope(s, L, h) | ShareScope(s) | CloseScope(s)
| AddEdge(s, l, s′) | CloseLabel(s, l) | Query(s, re, D, L)
| DeadlockQuery(u, m) | DeadlockReply(u, m, U) | Deadlocked(U)

token := initScope(s) | closeScope(s) | closeLabel(s, l) | answer(f)

Figure 9 Compilation Unit. Messages and wait-for tokens.

be shared with sub units, and marking PKG as open to allow adding the package declaration.
A new package scope sp is created, with the package name as associated data. The root
scope and package scope are shared with the sub units for the classes in the package, after
which both scopes are closed. Finally, the package declaration is added to the root scope
and the PKG label is closed.

Although not immediately evident in this small example, the fact that the API is fine-
grained (e.g., separating closing a scope for sharing from closing an open edge label) allows
greater flexibility in how the type checker is implemented than when a type checker would
be responsible for aggregating all these events until one final event can be constructed.

The pseudo code for JavaClassTC shows a pattern in which scope graph construction
and querying are interleaved. The query for the super class is executed and the type checker
waits for the result to be able to construct the EXT edge between the class scopes. It is
important to realize that, because the framework ensures safe name resolution, this also
introduces the possibility of deadlock. If, for example, the JavaClassTC type checker would
postpone closeEdge(sc, LEX) until after awaiting the query result, the query would get stuck
on the still open edge label. It is therefore important to realize that type checker developers
are still responsible for scheduling concerns that are part of any compiler implementation
(concurrent or not), such as ensuring declarations are introduced before they are queried.
The framework cannot solve these issues, as they are dependent on the specifics of the object
language, but it ensures the local behavior is preserved when run in parallel. The Statix
meta-language [20] provides implicit maintenance of scope state and flexible scheduling
as part of the meta-language semantics, so that these concerns can be left implicit in a
Statix type system specification. The case study in Section 6 shows that it is possible to
implement a Statix solver on top of our framework, which gives the best of both worlds:
implicit parallelism and implicit handling of scope state and scheduling.

5 Parallel Actor-based Algorithm

In this section we present an algorithm that implements the compilation unit model and
API that were introduced in the previous section. First we introduce the actor model that
forms the basis of our algorithm, then we discuss the three main aspects of the algorithm:

maintaining the scope graph and scope states for owned and shared scopes,
safely resolve queries on own scopes and delegate queries on other scopes, and
detect deadlock between compilation units to ensure termination.

5.1 Compilation Unit Actors
The algorithm is written following the actor paradigm [1]. Actors are a concurrency model
based on message passing. An actor has only local state, and communicates with other actors
through messages. Actors are not internally concurrent, and they do not share state. This

ECOOP 2021

1:14 Scope States

Algorithm 3 Compilation Unit. Local actor state.

1 actor CompilationUnit()
2 var: scope graph G
3 var: counting wait-for graph WFG
4 var: delays Z := ∅

5 abstract function run(S)

makes reasoning about concurrency easier with actors than with approaches based on shared
state and explicit synchronization.

A compilation unit corresponds to a CompilationUnit actor, which definition and local
state is shown in Algorithm 3. The members of a CompilationUnit, which are introduced in
the following sections, are shown in Algorithms 4–6 and 8. The local state of compilation
units consists of a scope graph G, a counting wait-for graph WFG, and a set of delayed
queries Z. The messages that form the protocol between compilation units are listed in
Figure 9. Type checkers are implemented by extending the actor and implementing the
abstract run method.

Since there are many variations of the actor model, we give a quick overview of the
features that we assume in the model:

Actors are started using start, and form a hierarchy. The keywords self and parent
refer to the current actor or its parent actor, respectively. Actor references can be sent to
other actors.
Actors implement receive members for all messages that they accept. Inside a message
handler, the sender keyword refers to the sender of the current message. Messages are sent
using send actor , msg. Messages that require a response are sent with request actor , msg
and the response is sent from the message handler with reply msg. Messages from one
actor to another are delivered in order, but delivery of messages from different actors is
arbitrarily interleaved.
Actors may implement auxiliary function members, which can only be invoked locally.

Some algorithms are presented in an asynchronous style, using futures. They use the
following primitives:

A future f represents a value that may be provided later. The value of a future is set by
applying it, written as f(v).
Functions can be marked as async to indicate that they return a future. Inside asyn-
chronous functions, the await keyword is used to await the results of futures.
Awaited futures do not block the actor, but suspend the currently handled message and
allow other messages to be processed by the same actor. A resumed computation (as a
result of a reply or an applied future) always runs in the context of the actor that started
it, and never concurrently with message handling or other resumed computations.

The message handlers and functions of the type checker API are implemented in a straight-
forward way. The handler for the message AddEdge(s, l, s′) calls addEdge(sender, s, l, s′),
and the API function addEdge(s, l, s′) calls addEdge(self , s, l, s′).

5.2 Maintaining Scope Graph and Scope States
A compilation unit locally maintains its scope graph G and the states of the scopes it owns.
This is done by the group of functions shown in Algorithm 4. These functions are called
to handle API calls from the local type checker, or to handle messages received from other
units. In the former case, the argument u equals self , in the latter u equals sender.

H. van Antwerpen and E. Visser 1:15

Algorithm 4 Compilation Unit. Scope graph.

1 function start(S)
2 G := G ⊎ ⟨S, ∅, ∅⟩
3 foreach s ∈ S do waitFor(self , initScope(s))
4 run(S)
5 end
6 function freshScope(u, d)
7 pick s fresh in scopes(G)
8 G := G ⊎ ⟨{s}, ∅, ∅⟩
9 waitFor(u, initScope(s))

10 if d = ⊤ then waitFor(u, closeLabel(s, $))
11 return s

12 end
13 function initScope(u, s, L, h)
14 granted(u, initScope(s))
15 foreach l ∈ L do waitFor(u, closeLabel(s, l))
16 foreach i ∈ 0 . . . h do waitFor(u, closeScope(s))
17 if owner(s) = self then tryReleaseScopeDelays(s)
18 else send parent, InitScope(s, L, h)
19 end
20 function addSubUnit(u, û, S)
21 foreach s ∈ S do shareScope(û, s)
22 start û

23 send û, Start(S)
24 end
25 function shareScope(u, s)
26 waitFor(u, initScope(s))
27 if owner(s) ̸= self then send parent, ShareScope(s)
28 end
29 function closeScope(u, s)
30 granted(u, closeScope(s))
31 if owner(s) = self then tryReleaseScopeDelays(s)
32 else send parent, CloseScope(s)
33 end
34 function setDatum(u, s, d)
35 G := G ⊎ ⟨∅, ∅, {(s, d)}⟩
36 closeLabel(u, s, $)
37 end
38 function addEdge(u, s, l, s′)
39 G := G ⊎ ⟨∅, (s, l, s′), ∅⟩
40 if owner(s) ̸= self then send parent, AddEdge(s, l, s′)
41 end
42 function closeLabel(u, s, l)
43 granted(u, closeLabel(s, l))
44 if owner(s) = self then tryReleaseLabelDelays(s, l)
45 else if l ̸= $ then send parent, CloseLabel(s, l)
46 end

ECOOP 2021

1:16 Scope States

A B C

Start

InitScope
Start

InitScope
ShareScope

msc direct initialization

A B C

Start

InitScope
Start

ShareScope InitScope

InitScope

msc initialization via parent

Figure 10 Different initialization scenarios.

Scope state is maintained in a wait-for graph WFG, which consists of edges between
units, labeled by a token indicating an expected action from the target unit. The tokens
that may appear in the wait-for graph are listed in Figure 9. The state of the sets I, H,
and O of the scope state is determined by the tokens in the wait-for graph. An initScope(s)
edge to u implies u ∈ Is. A closeScope(s) edge to u implies u ∈ Hs. A closeLabel(s, l) edge
to u implies (u, l) ∈ Os. The state of a scope s can be determined from the tokens in the
wait-for graph. If the graph contains initScope(s) or closeScope(s) tokens, the scope is open.
If the graph only contains closeLabel(s, l) tokens, the scope is closing. If there are no tokens
concerning s, the scope is closed.

The functions in Algorithm 4 update the wait-for graph in correspondence with the
postconditions of the scope state transitions. When an element is added to one of the sets
of the scope state, an edge is added with waitFor(u, token). When an element is removed
from one of the sets of the scope state, an edge is removed with granted(u, token). For
example, when a fresh scope is created with freshScope, the function adds an initScope(s)
token, corresponding to the postcondition u ∈ I of new. When the scope is initialized with
initScope(s, L, h), the initScope(s) is removed, corresponding to the postcondition u ̸∈ I of
initScope.

The removal of tokens from the wait-for graph may result in changes to the weakly critical
edges of a scope. Therefore, the functions initScope, closeScope, and closeLabel call one of
the tryRelease∗ functions to trigger the release of queries that can now be executed safely.

Maintaining the scope graph and state locally is not enough for a shared scope s that is
not owned by the current unit. In such cases, when owner(s) ̸= self , the event is propagated
to the parent. Because scopes can only be shared with sub units, this means that the message
eventually reaches the owner of that scope. The benefit of propagating the message via
the parent instead of sending it to the owner of the scope directly has to do with message
ordering. Messages coming from two different units are not meaningfully ordered. This
can lead to messages arriving in unexpected order, as illustrated by the two scenarios in
Figure 10. Without message ordering, a scenario where a top-level unit A, shares a scope
with a sub-unit B, which in turn shares that scope with a sub-unit C, could result in A

receiving the initialization of C before the message from B that the scope was shared. If the
initialization goes via the parent B, then unit A always gets the ShareScope message before
the corresponding initialization.

Receiving the messages in order simplifies maintenance of the wait-for graph and makes
it easier to enforce correct usage of the API in the implementation. This is a simple solution
to achieve that without the need for more complex message ordering mechanisms such as
vector clocks. Sending messages about shared scopes via the parent is also the reason that

H. van Antwerpen and E. Visser 1:17

the wait-for graph is a counting graph, that is, tokens may appear multiple times in the
graph. To the unit A it looks as if the unit B has to initialize the shared scope twice, as it
does not know about the unit C. All messages about sharing and initialization appear to
come from B.

5.3 Resolving Queries

The name resolution algorithm, shown in Algorithm 5, implements a graph search that
follows well-formed paths to matching declarations. It is a reformulation of the algorithm
presented by Van Antwerpen et al. [30]. The entry point is the function query(p, re, D, L),
which returns the environment of paths starting with the prefix path p that matches the given
query parameters. The search starts at the target scope of the current path. If the current
scope is not owned by the current unit, the query is forwarded to the owner’s compilation
unit. Otherwise, the environment is computed locally by getEnv(p, re, D, L). That function
determines the set of labels L that is relevant given the current path well-formedness regular
expression. Edge labels l are relevant if the Brzozowski derivative [3] does not result in
the empty language. If the current regular expression is accepting, that is, its language
contains the empty string ϵ, the current scope may be an end-point, and the data label is
also relevant. The functions getEnvForLabels and getShadowedEnv together ensure that the
environment implements the label order specified for disambiguation, by ensuring results
from more specific labels shadow results from the least specific labels. For example, if the
current set of labels L = {$, FLD, LEX, EXT}, and the label order is $ < FLD < EXT < LEX,
then the resulting environment is

shadow(shadow(shadow(A$, AFLD), AEXT), ALEX)

Al is the answer set for the label l, and shadow is the function that removes answers from
the right-hand set if its datum matches any answer in the left-hand set. The environment for
a single label l is computed by getEnvForLabel(l, p, re, D, L). If the label is the data label $,
getDatum is called in the current scope to construct an answer (p, d). Otherwise, getEdges is
used to return the target scopes of all outgoing l-labeled edges, cyclic paths are filtered out
to ensure search termination, and environments are resolved for each new prefix path p′ with
the updated path well-formedness. The result is the union of all resulting environments. The
updated set of parameters is itself a valid, residual, query, which allows us to simply call the
top-level query function, which takes care of delegating the query to the right compilation
unit.

Compilation units must also ensure that name resolution is safe. When edges or data are
requested for which the label is weakly critical, the answer is delayed. When a label’s status
changes, pending delays are released. The functions isScopeOpen and isEdgeOpen implement
the check for weakly critical edges based on the wait-for graph, as explained in Section 5.2.
The functions getEdges and getDatum decide based on the result of isEdgeOpen whether the
scope graph can be used, or if it has to delay the answer. If the label is critical, a new future
is created, which is stored, together with the scope and label, in the set of delays Z. The
functions tryReleaseScopeDelays and tryReleaseLabelDelays are called whenever the scope
state changes, and return the results for any label that is not critical anymore by applying
the stored future.

ECOOP 2021

1:18 Scope States

Algorithm 5 Compilation Unit. Query resolution.

1 async function query(p, re, D, L)
2 u := owner(target(p))
3 if u = self then return await getEnv(p, re, D, L)
4 else
5 f := request u, Query(p, re, D, L)
6 waitFor(u, answer(f))
7 A := await f

8 granted(u, answer(f))
9 return A

10 end
11 async function getEnv(p, re, D, L)
12 L := {l | L(∂lre) ̸= ∅} ∪ {$ | ϵ ∈ L(re)}
13 return await getEnvForLabels(L, p, re, D, L)
14 end
15 async function getEnvForLabels(L, p, re, D, L)
16 K⃗ := ∅
17 Lmax := {l | l ∈ L, ̸ ∃l′ ∈ L. L(l, l′)}
18 for each l ∈ Lmax do
19 L′ := {l′ | l′ ∈ L. L(l′, l)}
20 K⃗ := K⃗ ∪ {getShadowedEnv(L′, l, p, re, D, L)}
21 A⃗ := awaitAll K⃗

22 return
⋃

A∈A⃗
A

23 end
24 async function getShadowedEnv(L, l, p, re, D, L)
25 kL := getEnvForLabels(L, p, re, D, L)
26 kl := getEnvForLabel(l, p, re, D, L)
27 [AL, Al] := awaitAll [kL, kl]
28 return shadow(AL, Al)
29 end
30 async function getEnvForLabel(l, p, re, D, L)
31 if l = $ then
32 d := await getDatum(target(p))
33 return {a | a = (p, d), D(d)}
34 else
35 S := await getEdges(target(p), l)
36 P⃗ := {p′ | s′ ∈ S, p′ = p · l · s′, ̸ ∃p′. (p′ · l · s prefix of p)}
37 K⃗ := {query(p′, ∂lre, D, L) | p′ ∈ P }
38 A⃗ := awaitAll K⃗

39 return
⋃

A∈A⃗
A

40 end
41 function shadow(A1, A2)
42 return A1 ∪ {(p2, d2) | (p2, d2) ∈ A2, ̸ ∃p1, d1. ((p1, d1) ∈ A1, d1 ≈ d2)}
43 end

H. van Antwerpen and E. Visser 1:19

Algorithm 6 Compilation Unit. Delays and wait-for graph maintenance.

1 function waitFor(u, token)
2 WFG := WFG ∪ {(u, token)}
3 end
4 function granted(u, t)
5 WFG := WFG − {(u, token)}
6 end
7 function isWaitingFor(u, t)
8 return (self , t, u) ∈ WFG
9 end

10 function isScopeOpen(s)
11 return ∃u. (isWaitingFor(u, initScope(s)) ∨ isWaitingFor(u, closeScope(s)))
12 end
13 function isEdgeOpen(s, l)
14 return isScopeOpen(s) ∨ ∃u. isWaitingFor(u, closeLabel(s, l))
15 end
16 async function getDatum(s)
17 if isEdgeOpen(s, $) then
18 future k

19 Z := Z ∪ {(s, $, k)}
20 return await k

21 else return data(G)(s)
22 end
23 async function getEdges(s, l)
24 if isEdgeOpen(s, l) then
25 future k

26 Z := Z ∪ {(s, l, k)}
27 return await k

28 else return {e | e ∈ edges(G), ∃s′.e = (s, l, s′)}
29 end
30 function tryReleaseScopeDelays(s)
31 if isScopeOpen(s) then return
32 foreach {l | ∃k. (s, l, k) ∈ Z} do tryReleaseLabelDelays(s, l)
33

34 end
35 function tryReleaseLabelDelays(s, l)
36 if isEdgeOpen(s, l) then return
37 for each {k | ((s, l), k) ∈ Z} do
38 Z := Z − {(s, l, k)}
39 if l = $ then k(data(G)(s))
40 else k({e | e ∈ edges(G), ∃s′. e = (s, l, s′)})
41 end

ECOOP 2021

1:20 Scope States

Algorithm 7 Java Type Checker with Incorrect Internal Scheduling.

1 actor JavaClassTC(Jclass x extends y { ... }K) extends CompilationUnit
2 function Run({sR, sp})
3 // ...
4 sc := freshScope(⊤)
5 addEdge(sp, CLS, sc)
6 A := await query(sc, LEX∗CLS, Dx, . . .)
7 closeEdge(sp, CLS)
8 // ...
9 end

10 end

5.4 Handling Deadlock

The type checkers implemented with our framework can deadlock for various reasons. The
type checker may contain obvious bugs, such as querying a scope before it is properly closed.
But many subtle situations can occur as well, if ill-bound or ill-typed input programs cause
scope graph construction to get stuck, even if no deadlocks can occur on well-typed inputs.

Whatever the reason, it is important for the user experience to ensure termination of
the type checking process and the possibility of graceful handling of deadlocks by the type
checker. Our goal is a fine-grained approach where deadlock is handled by failing individual
queries that contribute to the deadlock, and only fail whole units as a last resort. Being
fine-grained is especially important in interactive settings, when a type checker is employed
as part of an IDE. Failing the type checker without returning a result because of an ill-typed
input program completely negates the usefulness of the type checker to the programmer in
helping them fix their program.

A deadlock occurs when a group of units waits on each other without any unit being able
to make progress without receiving a message from one of the other units. We illustrate
this using a faulty version of our Java type checker example, shown in Algorithm 7. In
this implementation, the super class is resolved before closing the CLS label after the class
declaration is added. The program causing deadlock, shown in Figure 11, consists of a class
A and a class B that extends A, both defined in a package p. The two class definitions are
checked by their own units A and B, who declare the classes in the scope sp that is shared
with them by the package unit p. Unit B tries to resolve the class A before closing the
CLS edge on the shared scope sp, and the query gets delayed on that edge by unit p. Now
the units are in deadlock, since p is waiting for B to close the edge, while B is waiting for
an answer from p. We can visualize the dependencies between the units by combining the
wait-for graphs WFG of all units, as shown in Figure 12. We see that deadlock in the graph
from the knot6 of units that cannot make progress.

6 In a directed graph, a knot is a set of nodes in the graph such that each node can reach all other
nodes in the set. Communication deadlocks are characterized by knots, while resource deadlocks are
characterized by cycles.

package p;
class A {}

package p;
class B extends A {}

Figure 11 Example program that deadlocks with the buggy type checker from Algorithm 7.

H. van Antwerpen and E. Visser 1:21

Algorithm 8 Compilation Unit. Deadlock handling.

1 function deadlocked(U)
2 if |U | = 1 then
3 if failDelays(U) = false then failAll()
4 else
5 failDelays(U)
6 end
7 function failDelays(U)
8 Z := {f | (u, answer(f)) ∈ WFG, u ∈ U}
9 foreach Z do f(⊥)

10 return Z ̸= ∅
11 end
12 function failAll()
13 for each {t | (u, t) ∈ WFG} do
14 granted(self , t)
15 switch t do
16 case initScope(s) do
17 if owner(s) ̸= self then send parent, InitScope(s, ∅, false)
18 tryReleaseScopeDelays(s)
19 case closeScope(s) do
20 if owner(s) ̸= self then send parent, CloseScope(s)
21 tryReleaseScopeDelays(s)
22 case closeLabel(s, l) do
23 if owner(s) ̸= self then send parent, CloseLabel(s, l)
24 tryReleaseLabelDelays(s, l)
25 end
26 end

To understand how we can handle such deadlocks in a fine-grained way, we must under-
stand the shapes these graphs can have. The key insight is that deadlocks involving more
than one unit always involve a query. If we do not consider queries, the structure of the
wait-for graph is always a tree. Units only wait for initScope, closeScope, and closeLabel
on themselves or direct sub-units. It is waiting on answers that breaks the tree structure.
Therefore, a knot between different units can only exist if at least one query is involved. Our
approach handles deadlocks by failing involved queries whenever possible. These failures
become exceptions in the type checker, which can be handled if desired. If a deadlock does
not involve any queries, and thus involves only a single unit, the whole unit is failed and any
remaining open scopes and labels are closed.

The functions for deadlock handling are shown in Algorithm 8. Deadlock detection is imple-
mented using the distributed communication deadlock detection algorithm of Chandy et al. [4],
modified so that it collects all units involved in a deadlock. When a deadlock is detected, the
deadlocked function is called on all units involved, receiving the set U of involved units an

p B

closeLabel(sp)

closeLabel(sp)

answer(. . .)

Figure 12 Wait-for graph for the deadlocked example in Figure 11.

ECOOP 2021

1:22 Scope States

Statix
Solver

Parallel
Frame-
work

Java Subset
Statix Spec

Project
ASTs

� Project #Files LOC

commons-csv 1.7 12 1845
commons-io 2.6 118 9984
commons-lang3 3.11 210 29642
single-unit-clusters-call 100 ~32K

Figure 13 Benchmark setup.

argument. In the case that the set U is a singleton, and the deadlock is local, failing queries
is attempted by failDelays, and, if unsuccessful, the unit is failed with failAll. The function
failDelays finds all unanswered queries to units in the deadlock and raises an exception
locally (indicated by the application of the future with ⊥). The function failAll closes any
remaining open scopes and labels and informs the parent if appropriate. At this point the
type checker of the failed unit is never invoked anymore, but the unit itself can still resolve
queries for other units and participate in deadlock detection. In the case that the set U

is not a singleton, the failDelays function is used to fail any queries on other units in the
deadlock. We explicitly prevent falling back to failAll in non-singleton deadlocks because
not every unit has queries it can fail. Failing such a unit in such cases would be unnecessary,
as some other units in the deadlock can fail queries and resume type checking.

6 Evaluation

We evaluated our approach by porting an existing scope graph-based type checker for a subset
of Java to our framework, and measuring speedup resulting from using multiple cores when
analyzing Java projects. The diagram in Figure 13 summarizes the setup of the benchmark.
The benchmark executable, source code, and data of our experiments can be found in the
artifact that accompanies this paper.

6.1 Benchmark
We implemented the type checker by porting the solver of the Statix meta-language to
our framework. Adapting the Statix solver was an attractive case study, because it is a
mature project that already uses scope graphs for name resolution. The Statix solver uses
dynamic scheduling for constraint solving, where constraints are delayed on logical variable
instantiation, and was thus a good test case to show that the API provided by the framework
is flexible enough to cope with such dynamic scheduling. Therefore, we expect that type
checkers in many different scheduling styles can be implemented with our framework, which
we plan to explore in future work.

The type checker used a Statix specification for a subset of Java based on an existing
MiniStatix specification [20]. This specification focuses on name binding aspects of Java, and
implements packages, top-level and nested type definitions, type inheritance. Overloading is
partly supported, while generics and lambda expressions are not supported.

We used three existing Java projects (commons-{csv,io,lang3}) and one generated Java
project for the benchmark (single-unit-clusters-call). The existing Java projects are
projects from the Apache Commons project that have no dependencies besides the Java
standard library (JRE). The projects have different sizes, which allows us to asses the impact
of project size on potential speedup. The generated project serves as a baseline for what is
achievable with our parallel Statix implementation. It consists of a 100 classes, each class in

H. van Antwerpen and E. Visser 1:23

commons−csv commons−io commons−lang3 single−unit−clusters−call

0 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16

2

4

6

8

Number of Cores

S
pe

ed
up

n = 15, 99.9% confidence
Benchmark Speedup Details

Figure 14 Benchmark results for type checking Java projects. Each subplot shows the speedup,
relative to single-core speed, versus the number of used cores for each project. The benchmark was
executed with 15 sample iterations, and the error bars represent a 99.9% confidence interval.

its own package. The classes contain a number member methods, and each method body
consists of method calls to other members of the same class. Because the classes are isolated
and do not depend on other classes, the resulting compilation units only interact with the
package’s compilation unit and the unit for the Java standard library, and represent an ideal
scenario in terms of parallelization. All projects and project sizes are listed in Figure 13.

Early experiments showed that the JRE, which is also treated as a compilation unit,
often became the critical unit if it was served by a single actor. To eliminate this effect, the
JRE is hosted on as many actors as the number of used cores, using round-robin scheduling
to distribute queries over the actors. This is possible because the scope graph for the JRE is
precomputed and statically loaded at the start of type checking.

We ran our type checker on each of these projects using an increasing number of cores.
The benchmarks were executed using the JMH benchmark tool [17] in single-shot mode (the
analysis was run once per iteration) using 5 warm-up and 15 measurement iterations. The
benchmarks were executed on a Linux system with 128 AMD EPYC 7502 32-Core Processors
1.5GHz and 256GB RAM.

The results, shown in Figure 14, show the speedup of the parallel type checker, relative
to the single core case, for the number of used cores. The error bars indicate the 99.9%
confidence interval.

First, we see that the generated baseline project scales up to 5.6x for 8 cores. The scaling
slows down more cores are used, but keeps increasing to ~7.8x for 16 cores.

Second, we see that the other projects all have a cut-off point after which adding more
cores does not result in much speedup. The cut-offs are approximately at 4 cores for
commons-csv, the smallest of the three, with a speedup of 1.8x, at 8 cores for commons-io,
with a speedup of 5.0x, and at 8 cores for commons-lang3, with a speedup of 4.42x.

The cut-off in scaling can be explained by looking at the run time of individual compilation
units. All projects contain a few source files that are significantly larger than most others.
The cut-off happens when the run time of the whole problem is dominated by the run time
of the largest compilation unit. If we look at the speedups discussed before, the run time of
the longest-running unit as a percentage of the total run time was 84% for commons-csv,
100% for commons-io, and 81% for commons-lang3. Understanding why scaling slows down
for some projects before the longest-running unit completely dominates the run time is an
interesting question for future research.

ECOOP 2021

1:24 Scope States

These results suggest that our approach can give significant speedups for the Statix type
checker. How well the approach scales depends on the type checker implementation as well as
the granularity of parallelism. Our choice to parallelize on files means that the distribution
of file sizes is important for the speedup that can be achieved. A type checker that supports
more fine-grained parallelization (e.g., on method bodies), could possibly scale further. Our
framework does not require file granularity and supports more fine-grained parallelism. Thus,
users can experiment with the granularity that works well for their target language.

Note that these results are for a single type checker and for a single programming language.
Both the implementation of the type checker and the design of the language may influence the
possibility for effective parallel execution. The relation between language design, the resulting
dependency patterns between compilation units, and the opportunity for parallelization is an
interesting topic for future research. Our framework enables such experiments with parallel
type checkers, by taking the hard parts of parallelization away from the compiler writer.

6.2 Supporting Local Inference

The Statix solver uses unification, and often relies on unification variables in scope graph
data to be able to do inference. This posed a challenge when porting Statix to our framework.
Our framework operates under the assumption that compilation units only communicate via
the scope graph. This means the unifier of one compilation unit is not accessible to other
compilation units. While the owning compilation unit can interpret that data relative to the
local unifier, other units can not. We have a situation where a unit requires an incomplete
view of its own data, but other units should only ever get the complete data.

We added a small extension to the framework to support such local inference patterns.
Type checkers can define a function that produces a representation of data that is fit for
other units:

async function GetExternalRepresentation(d)

The function is asynchronous so the type checker can delay returning the external repre-
sentation until unification variables are instantiated. It is applied to the data of any scope
whose owner is not the unit that issued the query. This solution allows units to do local type
inference via the scope graph, while still presenting complete data to other units.

In the Statix literature, different patterns are used to associate declarations with types.
In the first, the declaration and type are combined as a tuple (x : T), and stored as the
data in a single scope [31]. In the second, the declaration only carries the name as data, and
the type is represented as the data of a separate scope connected to the declaration by an
edge [20]. We observed that the first encoding quickly results in deadlock if name resolution
queries (resolve x) are necessary to instantiate the types T : The external representation of
the whole tuple gets stuck on the logical variables in the type, therefore blocking the query
for the name. The representation using tuples can easily be converted into the latter, but is
a necessary consequence of the isolated nature of the compilation units in our approach.

7 Related Work

In this section we discuss related work on parallel approaches to build systems, compilers,
and program models used for compiler and static analysis implementation.

H. van Antwerpen and E. Visser 1:25

7.1 Parallel Compilers
Parallel compilers are certainly not a given, even for often used languages, but there are
several languages for which parallel compilers (mature or research prototypes) exist. These
compilers are all for specific languages, but it is interesting discuss the techniques they use or
the performance results they achieve. Although it is hard to find reliable information on the
parallel capabilities of compilers, online discussion in StackExchange suggest that compilers
for at least Java, C/C++, and C#, all often used, are all single-threaded [24, 25, 26]. The
concurrent compiler for Active Oberon [18] implements ideas that are similar to ours. Scopes
(following the program nesting structure) have an associated state describing whether all
symbols in the scope have been defined, and queries are delayed if scope information is
incomplete. The supported scoping structure is specific for the target language and deadlock
is avoided by being careful about what queries are done in what compilation phase. The
implementation uses a shared data structure for the symbol table with a global lock, which
is different from our approach of a distributed scope graph and units communicating by
messages only. Hydra [29] is a commercial parallel compiler for Scala, which parallelizes the
Scala compiler by running the many phases of the Scala compiler in parallel. Hydra publishes
benchmark results and reports speedups between 1.8–3.5x, depending on the project, on 4
cores [29]. Work has been done to parallelize the Rust compiler [21]. The approach is focused
in parallelizing loops in the compiler, while maintaining most of the current structure of
the compiler. However, at the time of writing the documentation mentions that “work on
explicitly parallelizing the compiler has stalled. There is a lot of design and correctness work
that needs to be done.” The Go compiler supports parallel compilation at certain levels
of the program [7]. Particularly, the compilation of functions inside a package is executed
in parallel. Finally, the Swift compiler takes an interesting approach to achieving parallel
build [28]. Every compilation task has a focus, the compilation unit it “really” needs to
compile. In the process it also compiles other units, but only as much as necessary for the
focus unit. They claim this generally works well, because the necessary work on other units
is limited.

7.2 Parallel Build Systems
Our framework shares many characteristics with build systems, as they run and order
compilation tasks based on a dependency graph. The well known build tool Make [27]
executes build tasks based on a statically known acyclic dependency graph. When the
object language allows separate compilation, it can run these tasks in parallel as well. Many
other build tools follow the model of Make, and require the dependencies to be acyclic and
known a-priori. Some build tools such as Pluto [5] and PIE [10] improve on this model by
supporting dynamic dependency discovery. The resulting dependency graph is still required
to be acyclic. What all these have in common is that the build tasks are all treated as atomic
operations, producing outputs from inputs. The build system is concerned with ordering
these tasks correctly. This is in contrast with our approach, which makes partial results of a
unit available to other units before it is completely finished. This allows us to support not
only dynamic dependencies, but also cycles in the dependency graph, something that build
systems cannot handle.

7.3 Parallel Programming Models
Another approach is to write the compiler in a programming model that supports parallel
execution, and the parallelization is not organized around compilation units anymore.

ECOOP 2021

1:26 Scope States

The JastAdd framework for reference attribute grammars supports implicitly parallel
attribute evaluation [34]. The resulting concurrency is more fine-grained than in our approach,
and not necessarily driven by dependencies between compilation units. If one writes a compiler
using reference attribute grammars, this is a convenient way to parallelize the compiler.
Compared to our approach, reference attribute grammars do not provide a ready to use
model for name binding. This means it falls on the developer to come up with suitable
representations and algorithms for the object language. Applying parallel attribute evaluation
to the ExtendJ Java compiler resulted in speedups of 1.52–2.43x on 4 cores. Although their
evaluation was done on a different set of Java projects, these results suggest that the
performance of our approach is competitive.

LVish [13] proposes a parallel programming model based on monotonically growing data
and freezing variables that reached a final state to achieve quasi-deterministic parallelism. It
has been successfully applied to parallel type inference [15]. This model is very similar to
how we handle scope states: closing scopes and edges corresponds to freezing. The difference
is that LVish is only a model for monotone state, which leaves users to build parallelization
around it. The scope state model is specialized for our purpose, which allows us to make the
parallelization and deadlock handling implicit for the user.

The theorem prover Isabelle/PIDE has strong support for implicit parallelization of proof
checking [32, 14, 33]. The granularity is much smaller than in our approach. They do not
support cyclic dependencies between parallel task, but a high degree of parallelism is achieved
by exploiting proof irrelevance: most dependencies are only on the level of the theorem
statements, but not their proofs. They report speedups up to 5.2–6.4x on 8 cores [33].

Several parallel programming models have been developed targeting static analyses.
Because of their focus, these approaches target certain kinds of computations that are
commonly used in static analyses, such as fixed points over lattices [8], parallel iteration over
sets [12], or established algorithms such as IDFS [19].

7.4 Scope Graphs
Scope graphs [16] were introduced as a language-independent model of name binding with a
focus on expressive, non-lexical, binding patterns, formalizing and generalizing the semantics
of NaBL [11]. This model was subsequently extended and used to develop formalisms for
the specification of type checkers [30, 31], resulting in the meta-language Statix. Followup
work [20] defined a formal, non-parallel, operational semantics for Statix, and proved it correct.
It introduced the notion of critical edges as a tool to reason about query answer correctness
in evolving scope graphs. Critical edges were defined in terms of the constructs of the Statix
language and the presented operational semantics. In this paper we introduce scope state as
an explicit and application independent description of the state and transitions of a scope in a
evolving scope graphs, which was only implicitly present in the Statix operational semantics.
Porting Statix to the parallel framework of this paper required reformulating the safety
conditions of the original operational semantics to explicit scope state operations. All this
work has been developed and applied in the context of the Spoofax language workbench [9].

8 Conclusion

In this paper we have introduced a framework for the implementation of implicitly parallel
type checkers. We have introduced the concept of scope state to make the notion of weakly
critical edges in evolving scope graphs explicit. We have presented a case study and shown
that the approach does result in speedups for the larger projects in our benchmark. For

H. van Antwerpen and E. Visser 1:27

all real-world projects in the benchmark the scaling was limited by a few large files, which
suggest that more fine-grained parallelism (e.g., checking method bodies in parallel) could
improve parallelism for this Java type checker. In general, investigating the relation between
the type checker implementation/Statix specification and the achievable parallelization for
different target languages is interesting follow-up research. Other interesting directions for
future research are (a) extending this work to incremental type checking of large software
projects during development, (b) developing useful abstractions for managing scope state
that sit between the fine-grained API of this paper, where scope state is completely explicit,
and the high-level abstraction offered by the Statix meta-language, where scope state and
evaluation order are completely implicit, and (c) investigating how this work can be extended
to and/or integrated with other compiler tasks such as parsing, and code generation to create
a fully parallelized compiler pipeline.

References
1 Gul A. Agha. ACTORS - a model of concurrent computation in distributed systems. MIT

Press series in artificial intelligence. MIT Press, 1990.
2 Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge University Press,

1998.
3 Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–494,

1964.
4 K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detection. ACM

Trans. Comput. Syst., 1(2):144–156, 1983. doi:10.1145/357360.357365.
5 Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and optimal incremental build

system with dynamic dependencies. In Jonathan Aldrich and Patrick Eugster, editors, Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, pages 89–106. ACM, 2015. doi:10.1145/2814270.2814316.

6 GCC. The parallel gcc. URL: https://gcc.gnu.org/wiki/ParallelGcc.
7 Go. Go 1.9: Parallel compilation. URL: https://golang.org/doc/go1.9#parallel-compile.
8 Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido

Salvaneschi, and Mira Mezini. A programming model for semi-implicit parallelization of static
analyses. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2020, page 428–439, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3395363.3397367.

9 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463,
Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869497.

10 Gabriël Konat, Sebastian Erdweg, and Eelco Visser. Scalable incremental building with
dynamic task dependencies. In Marianne Huchard, Christian Kästner, and Gordon Fraser,
editors, Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages 76–86. ACM, 2018.
doi:10.1145/3238147.3238196.

11 Gabriël Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser. Declarative name
binding and scope rules. In Krzysztof Czarnecki and Görel Hedin, editors, Software Language
Engineering, 5th International Conference, SLE 2012, Dresden, Germany, September 26-28,
2012, Revised Selected Papers, volume 7745 of Lecture Notes in Computer Science, pages
311–331. Springer, 2012. doi:10.1007/978-3-642-36089-3_18.

12 Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and
L. Paul Chew. Optimistic parallelism requires abstractions. In Jeanne Ferrante and Kathryn S.

ECOOP 2021

https://doi.org/10.1145/357360.357365
https://doi.org/10.1145/2814270.2814316
https://gcc.gnu.org/wiki/ParallelGcc
https://golang.org/doc/go1.9#parallel-compile
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1007/978-3-642-36089-3_18

1:28 Scope States

McKinley, editors, Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, pages
211–222. ACM, 2007. doi:10.1145/1250734.1250759.

13 Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton. Freeze
after writing: quasi-deterministic parallel programming with lvars. In Suresh Jagannathan and
Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages
257–270. ACM, 2014. doi:10.1145/2535838.2535842.

14 David C. J. Matthews and Makarius Wenzel. Efficient parallel programming in poly/ml and
isabelle/ml. In Leaf Petersen and Enrico Pontelli, editors, Proceedings of the POPL 2010
Workshop on Declarative Aspects of Multicore Programming, DAMP 2010, Madrid, Spain,
January 19, 2010, pages 53–62. ACM, 2010. doi:10.1145/1708046.1708058.

15 Ryan R. Newton, Ömer S. Agacan, Peter P. Fogg, and Sam Tobin-Hochstadt. Parallel type-
checking with haskell using saturating lvars and stream generators. In Rafael Asenjo 0001 and
Tim Harris, editors, Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016, page 6.
ACM, 2016. doi:10.1145/2851141.2851142.

16 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name
resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

17 OpenJDK. Java Microbenchmark Harness (JMH). URL: https://openjdk.java.net/
projects/code-tools/jmh/.

18 Patrik Reali. Structuring a compiler with active objects. In Jürg Gutknecht and Wolfgang
Weck, editors, Modular Programming Languages, Joint Modular Languages Conference, JMLC
2000, Zurich, Switzerland, September 6-8, 2000, Proceedings, volume 1897 of Lecture Notes in
Computer Science, pages 250–262. Springer, 2000.

19 Jonathan Rodriguez and Ondrej Lhoták. Actor-based parallel dataflow analysis. In Jens
Knoop, editor, Compiler Construction - 20th International Conference, CC 2011, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6601 of Lecture Notes in
Computer Science, pages 179–197. Springer, 2011. doi:10.1007/978-3-642-19861-8_11.

20 Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. Knowing when to ask: sound scheduling of name resolution in type checkers derived from
declarative specifications. Proceedings of the ACM on Programming Languages, 4(OOPSLA),
2020. doi:10.1145/3428248.

21 Rust. Parallel compilation. URL: https://rustc-dev-guide.rust-lang.org/
parallel-rustc.html.

22 V. Seshadri, David B. Wortman, Michael D. Junkin, S. Weber, C. P. Yu, and I. Small. Semantic
analysis in a concurrent compiler. In PLDI, pages 233–240, 1988.

23 Zhong Shao and Andrew W. Appel. Smartest recompilation. In POPL, pages 439–450, 1993.
24 StackExchange. Do compilers utilize multithreading for faster compile times?

URL: https://softwareengineering.stackexchange.com/questions/322494/
do-compilers-utilize-multithreading-for-faster-compile-times.

25 StackExchange. Is there something that prevents a multithreaded c# compiler imple-
mentation? URL: https://softwareengineering.stackexchange.com/questions/330026/
is-there-something-that-prevents-a-multithreaded-c-compiler-implementation.

26 StackExchange. Why isn’t javac running on multiple cores? URL: https://stackoverflow.
com/questions/46461757/why-isnt-javac-running-on-multiple-cores.

https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1145/2535838.2535842
https://doi.org/10.1145/1708046.1708058
https://doi.org/10.1145/2851141.2851142
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1007/978-3-642-19861-8_11
https://doi.org/10.1145/3428248
https://rustc-dev-guide.rust-lang.org/parallel-rustc.html
https://rustc-dev-guide.rust-lang.org/parallel-rustc.html
https://softwareengineering.stackexchange.com/questions/322494/do-compilers-utilize-multithreading-for-faster-compile-times
https://softwareengineering.stackexchange.com/questions/322494/do-compilers-utilize-multithreading-for-faster-compile-times
https://softwareengineering.stackexchange.com/questions/330026/is-there-something-that-prevents-a-multithreaded-c-compiler-implementation
https://softwareengineering.stackexchange.com/questions/330026/is-there-something-that-prevents-a-multithreaded-c-compiler-implementation
https://stackoverflow.com/questions/46461757/why-isnt-javac-running-on-multiple-cores
https://stackoverflow.com/questions/46461757/why-isnt-javac-running-on-multiple-cores

H. van Antwerpen and E. Visser 1:29

27 Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make. Free Software
Foundation, May 2016.

28 Swift. Swift compiler performance. URL: https://github.com/apple/swift/blob/master/
docs/CompilerPerformance.md.

29 Triplequote. Hydra: The parallel scala compiler. URL: https://triplequote.com/hydra/
compilation/.

30 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

31 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

32 Makarius Wenzel. Parallel Proof Checking in Isabelle/Isar. In ACM SIGSAM Workshop on
Programming Languages for Mechanized Mathematics Systems (PLMMS ’09), page 9, New
York, NY, USA, 2009. Association for Computing Machinery.

33 Makarius Wenzel. Shared-memory multiprocessing for interactive theorem proving. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving
- 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings,
volume 7998 of Lecture Notes in Computer Science, pages 418–434. Springer, 2013. doi:
10.1007/978-3-642-39634-2_30.

34 Jesper Öqvist and Görel Hedin. Concurrent circular reference attribute grammars. In
Benoît Combemale, Marjan Mernik, and Bernhard Rumpe, editors, Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017,
Vancouver, BC, Canada, October 23-24, 2017, pages 151–162. ACM, 2017. doi:10.1145/
3136014.3136032.

ECOOP 2021

https://github.com/apple/swift/blob/master/docs/CompilerPerformance.md
https://github.com/apple/swift/blob/master/docs/CompilerPerformance.md
https://triplequote.com/hydra/compilation/
https://triplequote.com/hydra/compilation/
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1145/3136014.3136032
https://doi.org/10.1145/3136014.3136032

Lossless, Persisted Summarization of Static
Callgraph, Points-To and Data-Flow Analysis
Philipp Dominik Schubert # Ñ

Heinz Nixdorf Institute, Paderborn, Germany

Ben Hermann # Ñ

Technische Universität Dortmund, Germany

Eric Bodden # Ñ

Heinz Nixdorf Institute, Paderborn, Germany
Fraunhofer IEM, Paderborn, Germany

Abstract
Static analysis is used to automatically detect bugs and security breaches, and aids compiler
optimization. Whole-program analysis (WPA) can yield high precision, however causes long analysis
times and thus does not match common software-development workflows, making it often impractical
to use for large, real-world applications.

This paper thus presents the design and implementation of ModAlyzer, a novel static-analysis
approach that aims at accelerating whole-program analysis by making the analysis modular and
compositional. It shows how to compute lossless, persisted summaries for callgraph, points-to and
data-flow information, and it reports under which circumstances this function-level compositional
analysis outperforms WPA.

We implemented ModAlyzer as an extension to LLVM and PhASAR, and applied it to 12 real-
world C and C++ applications. At analysis time, ModAlyzer modularly and losslessly summarizes
the analysis effect of the library code those applications share, hence avoiding its repeated re-analysis.
The experimental results show that the reuse of these summaries can save, on average, 72% of
analysis time over WPA. Moreover, because it is lossless, the module-wise analysis fully retains
precision and recall. Surprisingly, as our results show, it sometimes even yields precision superior to
WPA. The initial summary generation, on average, takes about 3.67 times as long as WPA.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Inter-procedural static analysis, compositional analysis, LLVM, C/C++

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.2

Funding This work was partially supported by the German Research Foundation (DFG) within the
Collaborative Research Centre 901 “On-The-Fly Computing” under the project number 160364472-
SFB901/3 and the Heinz Nixdorf Foundation.

1 Introduction

Static analysis plays an important role in modern software development. While intra-
procedural static data-flow analysis might only be useful in a limited number of use-cases,
inter-procedural analysis is a powerful building block for bug finding [4, 7, 34], compiler
optimization [6, 8] and software hardening [22,39,40,44,47].

Static analysis is known to be an undecidable problem [57], which challenges static-
analysis designers to define analyses that are both precise (yielding little to no approximate
information) and efficient. To obtain good precision, static program analyses need to be
inter-procedural, i.e., cross procedure boundaries, and also must be context sensitive [68].
Moreover, they must be based on precise points-to analyses [26].

© Philipp Dominik Schubert, Ben Hermann, and Eric Bodden;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 2; pp. 2:1–2:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp.schubert@upb.de
https://it-schubert.com/philipp/
https://orcid.org/0000-0002-8674-1859
mailto:ben.hermann@cs.tu-dortmund.de
https://www.thewhitespace.de/
https://orcid.org/0000-0001-9848-2017
mailto:eric.bodden@upb.de
https://www.bodden.de
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Lossless, Persisted Summarization for Static Analysis

Such inter-procedural analysis, however, especially if implemented as a whole-program
analysis (WPA), is notorious for causing problems with scalability in both runtime and
memory consumption. The memory consumption required for larger programs to keep the
complete program representation as well as all of the data structures required to perform the
analyses and optimizations in memory can easily grow to a large two-digit GB figure [13, 80].
Analysis times can amount to several hours, impeding development processes even in cases
where the analysis is deployed as nightly build [23,46,69].

There are application scenarios for which one can yield useful results with intra-procedural
analyses that are simple enough to scale. The clang-tidy tool [2] and Cppcheck [5] use
syntactic analyses that are able to analyze software comprising a million lines of code within
minutes. Many semantic program analyses, however, such as data-flow [42], typestate [74,75]
or shape analyses [82], for instance, require detailed program representations that incorporate
the effects of procedure calls, yet are virtually impossible to scale if computed for the
whole program at once. This precludes important application scenarios, for instance, IDE
integration or the automated scanning of frequently changing software. Facebook, for instance,
reports that its code base changes so frequently that it has become a real challenge to design
analysis tools such that they can report errors quickly enough so that they are still relevant
and actionable when reported [37].

In this work, we aim to scale static context-, flow-, and field-sensitive inter-procedural
program analysis using a compositional computation of analysis information. The effectivity
of this compositional program analysis depends on the number of reusable parts of an
application, e.g., program parts that constitute frameworks or libraries, or for parts that
simply do not change from one analysis run to the next. A recent study by Black Duck
(Synopsis) has shown that more than 96% percent of the applications they scan contain
open-source components and that those components now make up, on average, 57% of the
code [70]. As those dependencies are updated much less frequently than application code,
compositional analysis can potentially accelerate the analysis of applications by reusing
analysis results from previous runs.

Previous work on compositional program analysis has been restricted to certain types of
data-flow analysis only. Reviser [20], for instance, allows for the ahead-of-time computation
of reusable taint-analysis summaries for Java libraries. Reviser builds on concepts by Rountev
et al. [62], who showed how to obtain reusable libraries for general distributive data-flow
problems. Both those previous approaches, however, have two significant limitations: First,
they only apply to Java, making it unclear which concepts carry over to other languages,
particularly C/C++, which allow more liberal pointer accesses to the stack and heap. Second,
they only apply to data-flow analysis and leave out the composition of points-to and callgraph
information. Especially the latter is a serious practical limitation: when composing a library
summary with application code, these approaches again perform an expensive whole-program
points-to and callgraph analysis, which in itself can take several minutes if not hours to
complete. In result, these approaches incrementalize only the tip of the proverbial iceberg.
Addressing this limitation is complex as callgraph, points-to, and data-flow information are
inter-dependent. A core conceptual contribution of this paper is therefore also a mechanism
for analysis dependency management for a fully compositional analysis. This mechanism
automatically triggers updates whenever novel information becomes available that affects
existing information.

An important practical factor impacting the scalability of compositional analysis is the
mechanism to persist summaries. While the approach by Rountev et al. [62] computes
summaries, they are not persisted at all [58] but rather discarded at analysis shutdown, which

P. D. Schubert, B. Hermann, and E. Bodden 2:3

completely defeats their purpose. Reviser [20] does persist summaries, but its summary
format is only applicable to taint analysis that uses a binary lattice ⊤

⊥. Finding an efficient
summary format that is able to persist general data-flow information is challenging due
to arbitrarily complex lattices used by more advanced analyses. However, efficient and
generalized persistence of summaries is key to effective compositional analysis.

This paper presents ModAlyzer, a novel approach to compositional analysis that in
contrast to earlier approaches performs an integrated compositional analysis for callgraph,
points-to and context-sensitive data-flow information in a module-wise fashion. ModAlyzer
allows the compositional pre-computation of all three pieces of information for individual
C/C++ modules, such as libraries and frameworks. Information precomputed this way is
then efficiently persisted, and later-on merged into larger analysis scopes. Merging analysis
information efficiently is an integral part of any compositional analysis approach as combining
analysis information computed on individual pieces of code is required to produce overall
analysis results.

As our experiments show, this frequently helps to achieve a more efficient analysis of
entire applications (compared to WPA) while retaining the same level of precision and recall
of a matching WPA.

Interestingly, as this paper shows, merge operations on different types of analysis informa-
tion can be modelled in a common way by defining merge operations on their respective graph
representations. ModAlyzer thus conducts its compositional computation of callgraph,
points-to, and data-flow information using those graph operations. While ModAlyzer com-
positionally computes all these kinds of information, it also manages the dependencies among
them, and updates dependent information as required. ModAlyzer creates summaries for
callgraph and points-to analysis, and for data-flow analyses expressed in the IFDS [55] and
IDE [63] frameworks. Those frameworks support data-flow analyses whose flow functions
distribute over the meet operator, which in turn allows for an efficient and – as we also
show empirically – lossless summarization. ModAlyzer does not lose any information and
also does not have to overapproximate missing information. Instead, it leaves gaps that will
be eventually filled-in during summary application resulting in the same information that
would have been obtained by a matching whole program analysis. Many useful data-flow
analyses, among others taint analysis as well as all Gen/Kill problems, can be encoded
in those distributive frameworks. ModAlyzer also allows for the computation of more
expressive analyses in the monotone framework [41]. While one generally cannot create
data-flow summaries for such analyses (an undecidable problem), these analyses nonetheless
can benefit from summaries for points-to and callgraph information. This still allows to
greatly accelerate analysis computations even for non-distributive analysis problems.

We have implemented ModAlyzer on top of PhASAR [64] and LLVM [45]. We show
the improvements of ModAlyzer’s compositional analysis over traditional whole-program
analysis by analyzing 12 real-world C/C++ applications of various sizes, reaching from
129,000 to 1,400,000 lines of code. For each application, we perform two client analyses
(uninitialized-variables analysis and taint analysis), once in whole-program mode and once
using library summaries pre-computed by ModAlyzer. We compare the resulting running
times and client reports to validate the equivalence in precision and recall, and to assess
analysis time. Our experiments show that ModAlyzer can decrease the analyses’ runtimes
between 28% and 91% while keeping the initial one-time runtime overhead for summarization
of library parts at 3.67 times as long as the cost of a whole-program analysis.

We will make the implementation of ModAlyzer available as open source under the
permissive MIT license. We subject it to artifact evaluation. All accompanying artifacts of
this paper, including the processed target applications, their modularizations, and result
data are available online under the MIT license [16].

ECOOP 2021

2:4 Lossless, Persisted Summarization for Static Analysis

Main.cpp

Sanitizer.cpp

DbgSanitizer.cpp

cc

cc

cc

Main.o

Sanitizer.o

DbgSanitizer.o

ln P.exe

Figure 1 C/C++’s compilation model. cc is the C/C++ compiler. ln is the linker.

In summary, this paper makes the following contributions: it presents
the first integrated compositional analysis for callgraph, points-to and context-sensitive
data-flow information with appropriate summarization techniques and summary formats,
ModAlyzer, an open-source C++ implementation within the PhASAR [64] framework,
allowing the full module-wise computation of arbitrary distributive static analysis problems
(and module-wise computation of points-to and callgraph information for non-distributive
analysis problems),
and an experimental evaluation of ModAlyzer, which shows that not just in theory
but also in practice precision and recall are retained, and which assesses under which
circumstances the reuse of summaries can decrease the overall analysis time.

2 Motivating Example and Intuition

C/C++ programs are usually organized in several files that provide some limited form of
modularity. An implementation and its corresponding header file are often referred to as a
compilation unit or module. The compiler translates each module separately and thus, has
only knowledge about the information contained within the module that is currently compiled.
The resulting object file contains executable program code, which may, however, contain
unresolved references. The linker resolves these references across two or more object files
and may adds links to external libraries. The result after the linkage step is an executable
program. Figure 1 depicts the corresponding mechanism.

The vast majority of modern software is not written from scratch, but rather uses libraries,
which enable code reuse, faster development and is less error prone [12, 80]. Thus, only
a small amount of a program is actual application code and large parts are library code.
Once a library has been introduced as a dependency it is rarely changed compared to the
application code that uses it.

Our example program is comprised of three compilation units (CUs) – often called modules
in the C/C++ context – Main, Sanitizer, and DbgSanitizer shown in Listing 1, 2, and 3.
We omit the header files for brevity of presentation. The example program is built according
to the compilation model presented in Figure 1.

Let us assume that Sanitizer and DbgSanitizer form a library for sanitization tasks
called libsan. In C/C++, a library is a collection of one or more object files that have
been compiled in form of an archive or shared object file. We further assume that Main
represents the user application that makes use of the libsan library. We use the example
program shown in Figure 2 as a running example to detail on our module-wise analysis
(MWA) approach.

As a client analysis we use a taint analysis which is able to detect potential SQL injections
in programs. A taint analysis tracks values that have been tainted by one or more sources
through the program and reports a leak, if a tainted value reaches a sink. The analysis
considers all user inputs of a program which potentially contain malicious data as tainted,

P. D. Schubert, B. Hermann, and E. Bodden 2:5

1int main (int argc , char ∗∗ argv) {
2auto ∗con = dr ive r −>connect (/∗ connect ion p r o p e r t i e s ∗/) ;
3auto ∗ stmt = con−>createStatement () ;
4s t r i n g q = "SELECT name FROM students where id=" ;
5s t r i n g input = argv [1] ;
6s t r i n g san in = a p p l y S a n i t i z e r (input) ;
7auto ∗ r e s = stmt−>executeQuery (q + sanin) ;
8res −>b e f o r e F i r s t () ;
9i f (! res −>rowsCount ()) { cout << " no record found \n" ; }
10while (res −>next ()) { cout << res −>g e t S t r i n g ("name") << ’ \n ’ ; }
11delete stmt ; delete r e s ; delete con ; return 0 ;
12}

Listing (1) Main – Contains the main application code.

13struct S a n i t i z e r {
14virtual ~ S a n i t i z e r () = default ;
15virtual s t r i n g s a n i t i z e (s t r i n g &in) {
16i f (i s M a l i c i o u s (in)) { in = /∗ a c t u a l s a n i t i z a t i o n ∗/ ; }
17return in ;
18}
19bool i s M a l i c i o u s (s t r i n g &in) { return /∗ check i f ma l i c ious ∗/ ; }
20} ;
21s t r i n g a p p l y S a n i t i z e r (s t r i n g &in) {
22S a n i t i z e r ∗ s = getGlobalSan () ;
23s t r i n g out = s−>s a n i t i z e (in) ;
24return out ;
25}

Listing (2) Sanitizer – A module of the sanitization library.

26struct DbgSanit i zer : S a n i t i z e r {
27bool d i s a b l e = true ;
28~ DbgSani t i zer () override = default ;
29s t r i n g s a n i t i z e (s t r i n g &in) override {
30i f (! d i s a b l e && i s M a l i c i o u s (in)) { throw mal ic ious_input (" : ’ (") ; }
31return in ;
32}
33} ;
34S a n i t i z e r ∗ getGlobalSan () {
35stat ic S a n i t i z e r ∗ s = new DbgSanit i zer ;
36return s ;
37}

Listing (3) DbgSanitizer – A module of the sanitization library.

Figure 2 Modular example program.

e.g. the parameters argc and argv that are passed into the main() function in our example
program presented in Listing 1. The function Statement::executeQuery() serves as a sink in this
scenario. Without sanitization, a malicious user of the program could carefully craft the
string ‘‘1 OR TRUE;’’ and pass it as the program’s second command-line argument. As the
input string is just concatenated the database server will return the names of all students
not just the one where the id matches. By crafting such malicious inputs, a user can leak
or alter the data stored in the database. A tainted value may be sanitized in our scenario
by using the Sanitizer :: sanitize () function (Listing 2) that clears malicious contents, and
therefore un-taints a value. The client analysis T aims to find flows of (unsanitized) tainted
values to sinks and reports a potential SQL injection vulnerability whenever it finds such an
illegal flow.

ECOOP 2021

2:6 Lossless, Persisted Summarization for Static Analysis

points-to type hierarchy callgraph data-flow client
(5)(4)

(2)

(3)

(1)

Figure 3 Dependencies of a client analysis involving type hierarchy, points-to information, inter-
procedural control-flow and data-flow information. Numbered edges determine computation order.

3 Framework Architecture

In this section, we elaborate on our compositional, module-wise analysis. We first present
the idea of the algorithm in a nutshell and continue with our concept of summary generation.
We then explain the steps we take for result merging and optimizations. As summaries are
always depending on assumptions made, we discuss them at the end of this section.

3.1 Idea of the Algorithm
We have built our module-wise analysis approach following C/C++’s compilation model.
To determine a program property of interest, a concrete data-flow analysis, the client, may
require information from other analyses as shown in the dependency graph in Figure 3.
To be able to determine the inter-procedural data flow that a concrete client analysis is
interested in, a precise callgraph is needed. A precise callgraph, in turn, requires points-to
information [26] and the type hierarchy of the program, but points-to analysis requires a
callgraph as well. The data-flow information depends on the callgraph and the client analysis
transitively depends on all of these pieces of information. Note that a points-to analysis
does require information on subtyping. Information such as the declared and allocated
pointer types can be queried ad-hoc. Many useful static analyses can be encoded using the
dependencies show in Figure 3 and thus, we will assume such a scenario in this paper.

To achieve fully compositional analysis information for all levels of information as shown
in Figure 3, we must be able to (i) compute all information required for a client analysis
on a function level (except the type hierarchy, which is always computed on a module level)
and summarize them, (ii) merge the information and (iii) perform an update if a merge
reveals new information that affect the current results. The merge operation combines static
analysis summaries computed on two individual modules into a novel summary such that it
reflects the information that would have been obtained by linking those modules first and
then computing the static analysis information afterwards. In such an MWA-style analysis
library modules would be analyzed separately. Their computed summaries would be merged
whenever necessary while analyzing a program which uses those library modules.

As mentioned in Section 1, the compositional approaches to static data-flow analysis
presented by Rountev et al. [62] and Reviser [20] only apply to Java. In that regard,
ModAlyzer can take advantage of C’s and C++’s language characteristics, which are quite
different from Java. The ModAlyzer approach merges summaries for each function per
compilation unit. The intuition is that related source code often resides within the same
compilation unit. Because C and C++ are often used to implement performance-critical
applications [1, 11], developers have a great interest in making as much information available
to the compiler as possible within an individual compilation unit. Otherwise, the compiler
would not be able to perform inlining and other important optimizations in an ordinary
(i.e., non-WPA) compilation setup [49,50]. Additionally, whereas all function members (or
methods) in Java are virtual, function members are non-virtual by default in C++. It

P. D. Schubert, B. Hermann, and E. Bodden 2:7

τSanitizer 0 : •Sanitizer ::∼ Sanitizer()

1 : •Sanitizer :: sanitize()

Figure 4 Type hierarchy and respective virtual function table(s) of the Sanitizer module.

generally seems that C++ programs make use of dynamic dispatch less frequently to avoid
performance penalties [17,29,32], a property that ModAlyzer, again, uses to our advantage.
Summaries computed for C/C++ code are thus more expressive and less likely to contain
gaps due to missing information. While ModAlyzer, in general, is applicable to other
languages as well it might work better for C and C++ programs than for programs written
in Java or C#, for instance, which use virtual calls all over the place. For those languages,
the portion of partial summaries will increase and the overall performance of ModAlyzer
will degrade as more gaps need to be closed while analyzing the “main application”. Previous
works by Rountev show that summarization techniques nonetheless can greatly improve
running times for large Java applications, even when restricted to data-flow analysis only.
We elaborate on that in detail in Section 5.

In the following, we show that merge operations on analysis information can be modelled in
a common way through merge operations performed on their respective graph representations.
However, special care must be taken to update the dependent information accordingly if
new information becomes available due to merging two module summaries. This makes it
crucial to keep particularly the callgraph up to date, as all other information except the type
hierarchy depend on it.

3.2 Summary Generation

In the following, we will explain the steps of our analysis based on the example presented in
Section 2. The assumption is that Main changes frequently, and libsan only once in a while.
For presentation here we start our library pre-analysis by analyzing the Sanitizer module,
although the analysis algorithm does not make any assumptions about module order.

3.2.1 Type Hierarchies

Our approach first computes the type hierarchy as it is the most robust structure in the
sense that the amount of information can only grow monotonically. We use τt to denote
the type of a class or struct t and we use TC to denote the type hierarchy for a module C.
In addition, the type hierarchy maintains information on the virtual function tables (call
targets) for C++’s struct or class types that declare virtual functions.

▶ Example 1. The analysis will find that the type hierarchy for the Sanitizer module
consists of a graph containing a single node representing the type τSanitizer. The call target
for τSanitizer contains two entries, {Sanitizer ::∼ Sanitizer(), Sanitizer :: sanitize()}.1 The
(partial) type hierarchy for the Sanitizer module is shown in Figure 4

1 If a C++ type is meant to be used polymorphically, its destructor has to be declared virtual. Otherwise,
if the static type of an object to be deleted differs from its dynamic type, the behavior is undefined.

ECOOP 2021

2:8 Lossless, Persisted Summarization for Static Analysis

∅
(a) πSanitizer :: ∼Sanitizer.

∅
(b) πSanitizer :: isMalicious

in f0

⟨ret⟩

(c) πSanitizer :: sanitize ; f0 denotes the first
formal parameter and ⟨ret⟩ the return value
of the isMalicious () function.

in f0

s ⟨ret⟩

(d) πSanitizer :: applySanitizer; f0 denotes the
first formal parameter and ⟨ret⟩ the return value
of the getGlobalSan() function.

Figure 5 ΠSanitizer containing all pointer-assignment graphs of Sanitizer.

3.2.2 Intra-Procedural Points-To Information
In the next step, the analysis computes function-wise, intra-procedural, never-invalidating2

points-to information using an Andersen [19] or Steensgaard [73]-style algorithm. The points-
to information computed is flow-insensitive, and we store it as graphs. These function-wise
pointer-assignment graphs (PAGs) are used to resolve potential call targets at dynamic
call sites. We merge those intra-procedural PAGs later to obtain inter-procedural pointer
information while constructing the callgraph. We use πC::f to denote a pointer-assignment
graph for function f in module C. We use ΠC to denote a pointer-assignment graph containing
all pointer-assignment graphs for module C.

▶ Example 2. For each function definition contained in the Sanitizer module a
PAG is computed and added to the graph ΠSanitizer. The ΠSanitizer graph containing
πSanitizer :: ∼Sanitizer, πSanitizer :: sanitize , πSanitizer :: isMalicious , and πSanitizer :: applySanitizer
is shown in Figure 5. Inter-procedural points-to relations are not followed and thus, formal
pointer-typed parameters and calls to functions that return a pointer value remain unre-
solved and represent boundaries to the respective PAG. For instance, the pointer s in the
applySanitizer() function points to the return value of getGlobalSan() which is indicated by a
special node in the respective PAG (cf. Figure 5d).

3.2.3 Callgraphs and Inter-Procedural Points-To Information
After having computed the function-wise pointer assignment graphs, the callgraph is construc-
ted according to Algorithm 1, Algorithm 2 and its resolver routine shown in Algorithm 3. The
same algorithm also computes points-to information across procedure boundaries. Since one
cannot know upfront what library functions a user is going to call, the callgraph algorithm
has to consider every externally visible function definition as a possible entry point [54] (cf.
line 58 of Algorithm 1). We use CGC to denote a (partial) callgraph of a module C. The
algorithm starts at an arbitrary externally visible function f of module C. It then iterates
through all call sites cs of f (cf. line 44). We denote a call site as csi where i represents the
line number at which the call site is found. In the following, we write csi for a static call site
and c̃si for a dynamic call site at which a function pointer or virtual function member is
called. In case a static call site has been detected, the algorithm adds a new callgraph edge
(line 46). In addition, for the pointer analysis, the algorithm connects the caller’s actual

2 Intra-procedural points-to information is, by definition, never invalidated by additional program inform-
ation from other procedures.

P. D. Schubert, B. Hermann, and E. Bodden 2:9

pointer parameters and pointer return value with their corresponding formal parameters
and return value of the callee target using a stitch operation (line 69), thus promoting
(intra-procedural) pointer information to inter-procedural information. We formally define
the stitch operation in Definition 3 and then discuss its use. In the latter case (line 48), the
algorithm uses points-to information provided by ΠC to resolve potential call targets of c̃si

according to Algorithm 3. Starting from the function pointer that is invoked or the pointer
variable of the receiver that the virtual member function is being called on at c̃si, we search
in ΠC for reachable functions in case of function pointer calls (line 83) or allocation sites in
case of virtual member function calls (line 96), respectively.

In this process, two situation may occur along with different levels of completeness of
points-to information which dictate what (missing) dependencies must be tracked: Incomplete
or partially complete information: If no functions or allocation sites are reachable yet, the
reachable pointers at the function boundaries (i.e., formal pointer parameters or pointer
return value of a function whose definition is missing) are marked as dependencies of c̃si (line
86 and 94). The dependencies are maintained in a bidirectional map from dependent pointer
parameters to the respective unresolved call site and vice versa. If only some functions
or allocation sites are reachable but also there are some reachable pointers at function
boundaries as well, then pointers at function boundaries are added to the dependencies of
c̃si and reachable functions are added as potential call targets to the callgraph (line 109 and
50). The edges of the callgraph are annotated with c̃si. For virtual member function calls,
the call targets of the allocated types at reachable allocation sites are inspected to find the
potential targets (line 104) which are then added to the callgraph. Complete information: If
no boundary pointers but only functions or allocation sites are reachable starting from the
pointer at c̃si, then no dependencies must be tracked.

During the construction of the callgraph we can have situations where a pointer-assignment
graph will be amended with new information. To this end, we define a first graph operation
which we call stitch and which we use to combine pointer information at call sites.

▶ Definition 3. Stitch: Let G = (V,E) be a (directed) graph containing vertices {u, v} ⊆ V

with u ̸= v and e = (u, v) /∈ E. The stitch of u and v is a new graph G′ = (V ′, E′), where
V ′ = V and E′ = E ∪ (u, v). For convenience, we additionally define the function stitch :
G×G′ ×P → G′′ that maps the (directed) graphs G = (V,E) and G′ = (V ′, E′), and P a set
of pairs of vertices (u, v) with u ∈ G and v ∈ G′ that shall be stitched together to a new graph
G′′. The stitch function stitch(G,G′, P) produces G′′ such that G′′ = (V ∪ V ′, E ∪ E′ ∪ P).

For each target function C::g that could be successfully resolved, the algorithm stitches c̃si

to πC::g (cf. line 69): Actual pointer parameters are connected with the corresponding formal
parameters of the callee function C::g. If C::g returns a pointer parameter, it is connected as
well. All edges are annotated with the corresponding call site.

If this graph stitch affects a pointer that is listed in the dependency map, the algorithm
recursively continues resolving the affected call sites. Otherwise, the algorithm recursively
continues resolving call sites in the resolved target functions. The algorithms for the
interwoven points-to, callgraph computation are shown in Algorithm 1, Algorithm 2, and
Algorithm 3. We use the symbol cs in a call to the function stitch(G,G′, cs) as shorthand
for {(ai, fi)}, the set of pairs of left-hand-site pointer variable/actual pointer parameters and
pointer return value/formal pointer parameters of the callee at cs that are stitched together.

▶ Example 4. The callgraph algorithm starts analyzing the function Sanitizer :: sanitize ().
At the call site cs16, the actual parameter is stitched to the formal parameter of Sanitizer ::
isMalicious () and the algorithm proceeds in Sanitizer :: isMalicious (). Since
Sanitizer :: isMalicious () has now already been visited, the next function to be analyzed is
applySanitizer().

ECOOP 2021

2:10 Lossless, Persisted Summarization for Static Analysis

Algorithm 1 Callgraph construction algorithm.
38 directed graph: CGC = ∅, T = computeTypeHierarchy(); undirected graph: ΠC = ∅;

bidirectional map: D = ∅; set: V = ∅;
39 Function constructionWalk(f):
40 if f ∈ V || isDeclaration(f) then
41 return;
42 end
43 V ∪ = f ;
44 foreach callsite cs ∈ f do
45 if cs is static then
46 CGC∪ =< cs,getCallee(cs)>;
47 updatePointerInfo(f, getCallee(cs));
48 else
49 callees = resolveIndirectCallSite(cs);
50 foreach callee ∈ callees do
51 CGC∪ =< cs, callee >;
52 updatePointerInfo(f, callee);
53 end
54 end
55 end
56 return;
57 Function constructCallGraph():
58 foreach f ∈ C do
59 if !isDeclaration(f) then
60 ΠC∪ = computePointsToGraph(f);
61 end
62 foreach f ∈ C \ {internalfunctions} do
63 if f /∈ V ∧ !isDeclaration(f) then
64 CGC∪ = f ;
65 constructionWalk (f);
66 end
67 return;

Algorithm 2 Procedure for updating the pointer information.
68 Function updatePointerInfo(f, callee):
69 ΠC = stitch(ΠC [f], ΠC [callee], cs);
70 modptrs = getVerticesInvolvedInGraphOp(stitch, ΠC [f], ΠC [callee], cs);
71 foreach ptr ∈ modptrs do
72 if ptr ∈ D then
73 fmod =getFunctionContaining(D[ptr]);
74 V = V \ fmod;
75 constructionWalk(fmod);
76 end
77 constructionWalk(callee);
78 return;

applySanitizer() contains two interesting call sites. cs22 is a static call to getGlobalSan().
However, its definition is currently not available and thus, a callgraph node which is marked
as a declaration is added to the callgraph. Note that the function causes incomplete points-to
information as it returns a pointer value that is stored in variable s (cf. Figure 5d).

Furthermore, a virtual function member is called at c̃s23 on the receiver pointer variable s
of type Sanitizer∗. Due to dynamic dispatch we have incomplete information on the possibly
called functions and are not able to resolve this call, because we cannot yet determine the
allocation sites that are reachable through s. The algorithm marks this call site as incomplete
and keeps track of the dependent pointer variable s. The call site has to be updated as further
information might be discovered later on. For instance, if the definition of getGlobalSan()
becomes available that provides the required additional points-to information. The partial
callgraph that can be computed individually on the Sanitizer module is shown in Figure 6.

P. D. Schubert, B. Hermann, and E. Bodden 2:11

Algorithm 3 Procedure for resolving dynamic call sites.
79 Function resolveIndirectCallSite(cs):
80 callees = ∅;
81 if isFunctionPtrCall(cs) then
82 fptr = getCalledPtr(cs);
83 rfptrs = getReachablePtrs(fptr);
84 foreach fptr′ ∈ rfptrs do
85 if isBoundaryPtr(fptr′) then
86 D[cs] ∪ = fptr′;
87 end
88 callees ∪ = getReachableFunctions(fptr);
89 else
90 aptr = getAllocationPtr(cs);
91 raptrs = getReachablePtrs(aptrs);
92 foreach aptr′ ∈ raptrs do
93 if isBoundary(aptr′) then
94 D[cs] ∪ = aptr′;
95 end
96 allocs = getReachableAllocSites(aptr);
97 foreach alloc ∈ allocs do
98 τ = getAllocatedType(alloc);
99 vτ = getVTable(T , τ);

100 if ! vτ then
101 D[τ] ∪ = cs;
102 else
103 i = getVCallIndex(cs);
104 callee = getVTableEntry(vτ , i);
105 callees ∪ = callee;
106 end
107 end
108 end
109 return callees;

Sanitizer :: sanitize()

Sanitizer :: isMalicious()

applySanitizer()

getGlobalSan()d

Sanitizer ::∼ Sanitize()

∗ :: sanitize()d

Figure 6 Callgraph for Sanitizer: CGSanitizer. fd denotes the declaration of a function f .

3.2.4 Background on IFDS/IDE

To illustrate how ModAlyzer summarizes data-flow information, as foundational background
we first present the inherently compositional Interprocedural Finite Distributive Subset
(IFDS) [55] and Interprocedural Distributive Environments (IDE) [63] frameworks that
ModAlyzer utilizes to solve data-flow problems.

The IFDS and IDE frameworks both follow the functional approach [66] to inter-procedural
data-flow analysis. We use IFDS/IDE to encode our data-flow analyses as they allow the
generation of graph-based, precise, reusable data-flow summaries of regions of code, even for
incomplete code. Additionally, IFDS/IDE allow for the composition of data-flow summaries.
This is required when implementing a compositional approach throughout all pieces of
information where parts of the program are missing while the data-flow analysis is performed.

Reps et al. showed that distributive data-flow problems can be solved elegantly and
efficiently by transforming them into graph reachability problems. The IFDS framework
and its generalization IDE construct an exploded super-graph (ESG) in which each node
represents a data-flow fact. If a data-flow fact d holds at a statement s the node (s, d) is

ECOOP 2021

2:12 Lossless, Persisted Summarization for Static Analysis

reachable in the ESG from a special tautological fact Λ (that always holds) and vice versa.
The ESG is constructed by replacing each node in the inter-procedural control-flow graph
(ICFG) with a bipartite graph that represents the equivalent flow function and thus, describes
the effects of the statement on the data-flow facts. Standard functions for generating (Gen)
or removing (Kill) data-flow facts can be encoded in bipartite graphs. Therefore, all Gen/Kill
problems such as live variables, available expressions, etc. can be encoded within IFDS/IDE.

The runtime complexity of IFDS is O(|N | · |D|3), where |N | is the number of nodes in
the ICFG and |D| is the size of the data-flow domain D. Thus, the efficiency highly depends
on the size of the underlying data-flow domain.

In IDE, however, the data-flow domain D is decomposed into the data-flow domain D

and a separate value domain V . The value domain V can be infinite. Because IDE has the
same complexity as IFDS, the size of V does not affect the complexity of the algorithm. IDE
annotates the edges of the ESG with lambda-functions that describe a value computation
over the domain of V . When a reachability check is performed in IDE to decide whether
an ESG node (s, n) is reachable and, therefore, the fact d holds at statement s, the value
computation problem that is specified along those edges leading to (s, d) is solved. Figure 7
shows some exploded super-graphs for a taint analysis conducted on the code in Listing 2.

IFDS and IDE follow the functional, summary-based approach to achieve fully context-
sensitive, inter-procedural analysis. The effect of statements of sections of code can be
summarized by composing the flow functions of subsequent statements. The composition
h = g ◦ f of two flow functions f and g, called jump function, can be obtained by combining
their bipartite graph representations. The graph of h can be produced by merging the nodes
of g with the corresponding nodes of the domain of f . Once a summary ψ for a complete
procedure p has been constructed, it can be (re)applied in each subsequent context the
procedure p is called. Importantly, because the flow functions are assumed to distribute over
the merge operator, this summarization is known to be lossless [55]. IFDS/IDE problems
can thus be solved with full precision, without the need for approximation.

3.2.5 Data-Flow Information
In the next step, the analysis computes the possibly partial data-flow information using
IFDS/IDE [51, 55, 63] according to the description of the data-flow problem to be solved
for the available function definitions. In contrast to the information computed before, the
data-flow information depends on the configuration of the client analysis because data-flow
information is never general and always depending on a specific definition.

We use the flow and edge functions of the client analysis to construct the partial exploded
super-graph of the library to be summarized. The partial callgraph is traversed in a depth-first
bottom-up manner to maximize the number of functions that can be summarized completely.
For a library function f that does not make any calls, the summary information is computed
by applying the client’s flow and edge functions to each node n of the control-flow graph.
The resulting exploded super-graph edges are then combined using composition and meet to
construct the jump functions ψ(f) that summarize the complete function. For each incoming
data-flow fact di, its respective jump function ϕi(f) describes the effect of the analyzed
function on di.

In case a function f contains call sites csi, the IFDS/IDE algorithm computes a partial
data-flow summary from f ’s entry node to the first call-site node cs1, ψentry

cs1
(f). It then

computes the summary of the called function f ′, ψ(f ′), (if not already computed) and
composes it with the partial summary ψentry

cs1
(f) to obtain ψentry

rs1
(f). The algorithm proceeds

successively until the complete summary ψ(f) = ψentry
exit (f) has been constructed.

P. D. Schubert, B. Hermann, and E. Bodden 2:13

Λ•
⊤��

��

ϕ16
17

��

in•

��

ret•
16: if (isMalicious(in))

Λ•

��

in• ret•
16a: in = /∗ sanitization ∗/;

Λ•

��

in• ret•
17: return in;

Λ• in• ret•

(a) Exploded super-graph for
Sanitizer :: sanitize ().

Λ•
⊤��

��
ϕ19

19 ��

in•

��
ϕ19

19

19: return /∗ if malicious ∗/;

Λ• in•

(b) Exploded super-graph for
Sanitizer :: isMalicious ().

Λ•
⊤��

��

��

ϕ22
22

in•

��
ϕ22

22
vv

out• ret•
22: Sanitizer ∗s = getGlobalSan();

Λ•

�� ��

in•

�� ��

out• ret•
23: string out = s−>sanitize(in);

Λ•

��
ϕ24

24

in•

��

out•

�� ��
ϕ24

24 ��

ϕ24
24

��

ret•
24: return out;

Λ• in• out• ret•

(c) Exploded super-graph for applySanitizer().

Figure 7 Exploded super-graphs for the Sanitizer module.

However, in case a library function f contains call sites that are depending on user
code, for instance, because of callbacks or incomplete points-to information, a complete
summary ψ(f) cannot be computed. In this case, ModAlyzer computes a set of partial
summary functions ψn

m, where n is a function’s entry point or some return site (rs) and m is
a function’s exit statement or some call site (cs) whose call targets are not or only partially
known. This results in gaps in the exploded super-graph that represent the unresolved effects
of the missing call targets.

▶ Example 5. The data-flow information computed for the Sanitizer module is shown in
Figure 7. Individual flow/edge functions are denoted by solid (→) and jump functions by
dashed (99K) arrows. Analyzing applySanitizer() leads to an incomplete ESG, because the
callgraph for the Sanitizer module is only partially complete. The definition of getGlobalSan()
is not yet available and the dynamic call site at line 23 cannot be resolved with the information
available within the Sanitizer module.

The call to the unresolved function getGlobalSan() does not interact directly with the
data-flow information as it receives no arguments, its return type differs from the type of
the data-flow domain (strings), and the string which the variable in refers to is not global as
no global declarations are present. Therefore it cannot be modified by the call and one can
safely use the identity function here. We will further elaborate on that in Subsection 3.4.

The call to ∗:: sanitize () results in a gap in the ESG. In Figure 7c gaps in the ESG are
indicated with squiggled arrows (⇝). We pass in and out as identity after the gap and also
generate other variables, such as the implicit return variable, that depend on out. Later

ECOOP 2021

2:14 Lossless, Persisted Summarization for Static Analysis

on, after the merging process, the missing targets of the call site at line 23 will have been
determined and their data-flow summaries can be inserted. Then, the analysis will check
whether in, out, and ret are reachable from Λ, and determine if those variables are tainted.

The ESGs for the Sanitizer :: sanitize () and Sanitizer :: isMalicious () functions are shown
in Figure 7a and 7b, respectively. For our example analysis we assume that
Sanitizer :: isMalicious () checks whether the variable in contains malicious data and the function
does not modify the data-flow facts. Sanitizer :: sanitize () checks if the string referred to by
variable in contains malicious data – is tainted – and, if so, replaces it with a sanitized version.
Again, to keep our example analysis simple, we assume that the analysis is aware of the
special semantics of Sanitizer :: isMalicious () and thus, kills the variable in in both branches.

After having computed the data-flow summaries for the Sanitizer module, we have
determined any information we need on Sanitizer as an individual module. We denote
the combination of the partial type-hierarchy graph (and call targets) in Figure 4, partial
points-to in Figure 5 and callgraph in Figure 6 and the partial data-flow summaries for
Sanitizer in Figure 7 as ΞSanitizer.

3.3 Merging Analysis Summaries

To complete the picture, we next combine the information obtained by analyzing Sanitizer
and DbgSanitizer with an analysis of the client application Main.

For this we need to define a new operation on graphs which we call contraction. We use
the contraction operation when new information becomes available during a merge, to replace
placeholder nodes (that indicate missing information) of a graph by their counterparts that
represent the actual information. We apply this operation to combine partial type hierarchy-
and callgraphs. For instance, we combine callgraphs by contracting away function declaration
nodes with their respective definition counterpart nodes: the nodes representing function
declarations are removed and all former incoming edges now lead to the corresponding
definition nodes. We formally define the contraction operation as follows:

▶ Definition 6. Contraction: Let G = (V,E) be a (directed) graph containing vertices
{u, v} ⊆ V with u ̸= v. Let f be a function that maps every vertex in V \ {u, v} to itself,
and otherwise, maps it to a new vertex w. The contraction of u and v is a new graph
G′ = (V ′, E′), where V ′ = (V \ {u, v}) ∪ {w}, E′ = E \ {e = (u, v)}, and for every x ∈ V ,
the vertex x′ = f(x) ∈ V ′ is incident to an edge e′ ∈ E′, iff the corresponding edge e ∈ E is
incident to x in G (reproduced from [53]). For convenience, we additionally define the function
contract : G×G′×P → G′′ that maps the (directed) graphs G = (V,E) and G′ = (V ′, E′), and
P a set of pairs of vertices u ∈ V and v ∈ V ′ that shall be contracted to a new graph G′′. The
contraction function contract(G,G′, P) contracts the pairs of vertices ui and vi and produces
a new (directed) graph G′′ = ((V ∪ V ′) \ {ui}, (((E ∪E′) \ {(tj , ui)}) \ {(ui, vi)}) ∪ {(tj , vi)}),
where all edges incident to ui with their origin in some vertex tj are replaced by edges from
tj to vi contracting away ui. We use f in contract(G,G′, f) as shorthand for {(fdecl, f)},
the set of function declaration/definition pairs and τ in contract(G,G′, τ) as shorthand for
{(τdecl, τ)}, the set of type declaration/definition pairs.

Our merge procedure for two module summaries Ξi and Ξj is shown in Algorithm 4. In
the following, we present all involved steps for each piece of analysis information.

P. D. Schubert, B. Hermann, and E. Bodden 2:15

3.3.1 Type Hierarchies
The analysis first merges the type-hierarchy graphs using vertex contraction (cf. line 114),
to remove redundant definitions of the same type. The redundancy is caused by including a
type’s definition (which usually resides in a corresponding header file) in multiple modules
that require a type’s exact data layout (e.g. for allocation or subtyping).

▶ Example 7. While performing the contraction, the analysis finds that Sanitizer’s type
τSanitizer is sub-typed by τDbgSanitizer. The contraction has no immediate effect on the
callgraph analysis: As the callgraph uses points-to information to resolve indirect calls, no
immediate update is required at this point, because the new type-hierarchy information is
not used before new pointer information becomes available. The type hierarchy needs to be
queried if a new allocation site has been found. For each newly discovered allocation site,
the type hierarchy is used to retrieve the entry of the allocated type’s virtual function table.

3.3.2 Callgraphs and Points-To Information
The analysis merges the callgraphs by using the vertex contraction operation introduced
before (line 122). A contraction is used to remove function-declaration nodes and replace
them with their corresponding definition nodes, now linking calls to callees. While performing
the contraction on the callgraphs, the corresponding partial pointer-assignment graphs are
not contracted but stitched together (cf. Definition 3); through the stitch (line 126) no nodes
of the pointer-assignment graph are replaced to keep information on the parameter mapping.
Actual pointer parameters at a call site as well as pointer return values at the respective
return site are connected with the corresponding formal parameters of the called function
and the left-hand side variables, respectively. The information on the contracted callgraph
nodes is used in the next step when repropagating data-flows.

Algorithm 4 Merge procedure for callgraphs.
110 Function merge(CGC , TC , ΠC , DC , VC , CGC′ , TC′ , ΠC′ , DC′ , VC′ ,):
111 DC∪ = DC′ ;
112 VC∪ = VC′ ;
113 ΠC∪ = ΠC′ ;
114 TC = contract(TC , TC′ , τ);
115 modtypes = getVerticesInvolvedInGraphOp(contract, TC , TC′ , τ);
116 foreach τ ∈ modtypes do
117 if τ ∈ D then
118 f =getFunctionContaining(D[τ]);
119 V = V \ f ;
120 constructionWalk(f);
121 end
122 CGC = contract(CGC , CGC′ , f);
123 {⟨cs, f⟩} = getVertexPairsInvolvedInGraphOp(contract, CGC , CGC′ , f);
124 foreach ⟨cs, f⟩ do
125 f ′ =getFunctionContaining(cs);
126 ΠC = stitch(ΠC [f ′], ΠC [f], cs);
127 modptrs = getVerticesInvolvedInGraphOp(stitch, ΠC [f ′], ΠC [f], cs);
128 foreach ptr ∈ modptrs do
129 if ptr ∈ D then
130 f =getFunctionContaining(D[ptr]);
131 V = V \ f ;
132 constructionWalk(f);
133 end
134 end

ECOOP 2021

2:16 Lossless, Persisted Summarization for Static Analysis

Sanitizer DbgSanitizer contracting contracted

applySanitizer

getGlobalSand

*::sanitized

cs22

c̃s23

getGlobalSan

DbgSanitizer::sanitize

applySanitizer

getGlobalSand

*::sanitized

getGlobalSan

DbgSanitizer::sanitize

=

=
applySanitizer

getGlobalSan

DbgSanitizer::sanitize
c̃s23

cs22

Figure 8 Excerpt of the vertex contraction for callgraphs of Sanitizer and DbgSanitizer. fd

denotes the declaration of a function f .

applySanitizer() getGlobalSan() stitch(applySanitizer(), getGlobalSan(), cs22)

in f0

s ⟨ret⟩ ⟨objDbgSanitizer⟩

s ⟨ret⟩

in f0⟨objDbgSanitizer⟩

s ⟨ret⟩ s
cs22

Figure 9 Excerpt of the vertex stitch of the PAG’s for applySanitizer() and getGlobalSan().

▶ Example 8. The callgraph contraction of the modules Sanitizer and DbgSanitizer
is indicated in Figure 8. The callgraph contraction triggers the corresponding stitching
of PAGs. For instance, the points-to graphs πSanitizer::applySanitizer and πgetGlobalSan are
stitched together at cs22 as indicated in Figure 9. Through the stitch, the analysis recognizes
that the previously marked pointer variable s gets new inputs from the resolved callee
function getGlobalSan(). As s is now able to reach getGlobalSan()’s variable s of allocated type
τDbgSanitizer and the receiver object s in applySanitizer() has no other unresolved dependencies,
the possible call targets are updated in the callgraph such that DbgSanitizer:: sanitize () is now
the only possible target for the dynamic call site at line 23. The pointer-assignment graph of
the newly discovered callee at line 23 is stitched to the call site c̃s23.

3.3.3 Fixed-Point Iteration for Callgraph and Points-To Graph
Note that there are cases in which the stitch (of two PAGs) of a resolved callee function

changes the points-to information in such a way that previously partially resolved indirect
call sites must be revised again (cf. line 69 for summarization, and line 126 for merges). In
these cases, the analysis loops in updating callgraph and points-to information until the
callgraph and points-to information stabilize. A constructed yet expressive example of the

131void (∗ f) () ;
132void bar () {}
133void f oo () { f = &bar ; }
134void i n i t (void (∗ f) ()) { f = &foo ; }
135int main () { i n i t (f) ; f () ; /∗ <−− i n d i r e c t c a l l s i t e ∗/ return 0 ; }

Listing 4 Example in which the update of points-to- invalidates callgraph information.

P. D. Schubert, B. Hermann, and E. Bodden 2:17

aforementioned for function pointers is shown in Listing 4. When the callgraph algorithm
resolves the indirect call to the function pointer f using points-to information, it determines
foo() as the callee target. However, foo() manipulates the points-to information such that
bar() becomes a feasible target as well. Thus, the indirect call site has to be revisited and
bar() has to be added as a possible target as well. When analyzing bar() the callgraph and
points-to information stabilize and the algorithm terminates.

3.3.4 Data-Flow Information
Once a callgraph has been updated by a merge, the data-flow information has to be repopu-
lated in order to reflect the changes. Whenever two callgraphs are merged, new function
definitions and their respective data-flow summaries become available which have been
previously unknown to the other module’s data-flow information. The merge procedure for
the callgraphs shown in Algorithm 4 issues the contracted nodes (function declarations) and
their respective call sites. This information and the newly available function definitions and
accompanying data-flow summaries are used to close potential gaps in the ESG. The analysis
visits all sub-graphs that have undergone the callgraph contraction procedure in a depth-first
bottom-up manner, filling in the newly available data-flow summaries.

Suppose a function f contains a previously unresolved or only partially resolved call site cs
and therefore, a pair of partial summaries ψentry

cs (f) and ψrs
exit(f). If the callgraph contraction

reveals the call target f ′ and its respective data-flow summary, ψentry
cs (f) and ψrs

exit(f) are
composed with ψ(f ′) to produce a complete summary of f , ψentry

exit (f) = ψrs
exit(f) ◦ ψ(f ′) ◦

ψentry
cs (f). The summary ψentry

exit (f) may need to be merged with any existing jump functions
that have been obtained along other paths, for instance, call-free-paths (cf. flows for Λ in
Figure 7c) or paths for other call targets of cs that have been available for analysis already.
The complete summary ψ(f) is used to successively fill in potential other gaps in the ESG.

In case a target library to be summarized is depending on code of its user(s) because it
uses features such as callbacks, for instance, the static analysis summaries Ξ even for the
complete library code will contain gaps. Those gaps are eventually closed once the main
application is available, analyzed and merged with the precomputed library summaries to
produce the final analysis results.

▶ Example 9. As the function definition of DbgSanitizer:: sanitize () becomes now accessible
to applySanitizer(), its respective data-flow summary can now be plugged into the current
gap of applySanitizer() to obtain a complete IFDS/IDE summary for it. The sub-graphs that
undergo the contraction procedure are visited in a depth-first, bottom-up manner and the
data-flow summary for DbgSanitizer:: sanitize () is inserted into applySanitizer(). The analysis
therefore finds that the values passed as a reference parameter into DbgSanitizer:: sanitize ()
and the value returned by it are indeed tainted. Therefore, the return value of applySanitizer()
is tainted as well. The pre-analysis of the library is now complete and the obtained results
can be used by any potential client to the library.

3.3.5 Analyzing the Main Application
When analyzing the application program Main the analysis first constructs Main’s type
hierarchy, function-wise pointer-assignment and callgraph (cf. Algorithm 1). The type
hierarchy-, call- and pointer-assignment graphs for Main are merged with the library’s
respective graphs (cf. Algorithm 4). The data-flow analysis can then start at the entry point

ECOOP 2021

2:18 Lossless, Persisted Summarization for Static Analysis

main(). As the data-flow analysis recognizes the call to applySanitizer() it can directly use the
(complete) pre-computed summary and thus keeps the return value as well as the actual
reference parameter input marked as tainted. Finally, the client analysis is able to query the
results and finds that the tainted variable sanin leaks at the call to Statement::executeQuery().

3.4 Removing Dependencies Ahead of Time
While computing the data-flow information for an individual module, information at dynamic
call sites or static call sites, where the callee definitions are not available, will be incomplete.
However, by using the following shortcuts, ModAlyzer is able to compute a complete
and precise data-flow summary nonetheless. We already observed such a situation while
computing the data-flow information for applySanitizer() in the Sanitizer module. Because
the call to getGlobalSan() at line 22 does not have a direct impact on the data-flow information
(as described in Example 5), we can model it using the identity flow function. Note, however,
that the call still has an indirect impact since the function is able to change what function
is being called in the next line. When our analysis recognizes a function f that misses
information on potential callees, but where we can ensure that the missing information has
no direct or indirect impact on the data-flow information, we can nevertheless compute a
complete and precise summary for f using the identity shortcut denoted as id

↪→ and thus fully
remove any dependencies on the missing callees. To determine if id

↪→ can be applied, different
predicates may be applied, depending on the client analysis, e.g. pass and return by value.
For instance, if a function receives its arguments by value they are copied into the callee.
Thus, we can be sure that it cannot modify its arguments even if information on the callee’s
definition is missing.

s t r i n g foo (bool p){ s t r i n g in = user Input () ; return p ? s a n i t i z e (in) : in ; }

Listing 5 Code allowing the
⊤
↪→ shortcut.

Another example of a situation in which a data-flow analysis can perform such an
optimization is shown in Listing 5. Such a treatment for summarization of incomplete
data-flow analysis has also been presented in [43]. While analyzing foo() we assume the
information ⊤ for the variable in, i.e., in is tainted. foo() sanitizes in only in one of the
branches (depending on an unknown predicate). Hence, if we assume that we are conducting
a may-taint analysis, then it holds that in may be tainted at the end of foo() no matter what
the call to sanitize () does. It follows that ⊤ will always be associated with in. In this case, we
can compute a complete summary even with incomplete information by using the ⊤ shortcut

⊤
↪→. This is always true for may-analyses that use set union as the merge operator, which for
instance in IFDS is always the case.

In the presence of global variables, ModAlyzer applies shortcuts only if they can be
proven sound, which ModAlyzer manages easily if only module-internal global variables
are involved. Global variables are often declared as static (in case of C) or within anonymous
namespaces (in case of C++) making them internal to the module that declares them.
ModAlyzer’s shortcuts are not applied if externally visible global variables are involved in
the situation, i.e., variables that are used across multiple modules.

Due to C/C++’s modular compilation model, an analysis frequently encounters situations
as presented above, in which it can use these shortcuts to compute data-flow information.
Functions where these shortcut summaries are used do not need to be revisited, thus, the
analysis is able to work more efficiently. Therefore, when summarizing a module, it is desirable
to remove as many data-flow dependencies as possible using the id

↪→ and ⊤
↪→ shortcuts.

P. D. Schubert, B. Hermann, and E. Bodden 2:19

4 Implementation

We have implemented the strategy described in Section 3 in a tool called ModAlyzer, as an
extension to PhASAR [64], a static-analysis framework that has been implemented on top of
LLVM [45]. PhASAR allows to solve arbitrary monotone data-flow problems on the LLVM
intermediate representation (LLVM IR) and also provides IFDS/IDE solver implementations.

We extended the existing IDE solver as well as the other infrastructure for type hierarchy,
points-to, and callgraph computation and added the necessary summarize, merge, and update
functionalities respectively.

ModAlyzer persists the summary results by using a document-oriented store in which
it saves the graphs along with the code the analysis is conducted on with help of LLVM’s
metadata capabilities. LLVM allows for a key-based introduction of custom metadata. Each
function that is defined in a module is annotated with its function-wise summaries for the
different pieces of static analysis information, i.e., its points-to and exploded super-graph. A
module carries the module-wise information that is obtained by merging all information of its
enclosed functions as well as type hierarchy and callgraph information. Those module-wise
summaries are referred to using the module flags section of the LLVM IR.

For the persistence, we created a bidirectional mapping from LLVM’s in-memory rep-
resentation to a textual representation allowing us to store the graphs comprising pointer
values to LLVM IR records as graphs that use the text-encoded version. Additionally, we
implemented import and export functionalities for each graph type that enable us to manage
loads and stores of encoded graphs along with the LLVM IR.

LLVM’s metadata mechanism does not restrict the type of data for annotations. Thus,
arbitrary data structures and encodings may be used to persist the analysis information.
We use the capabilities of the Boost Graph Library (BGL) [67] to manage type hierarchy,
points-to, and callgraph information. The BGL offers of-the-shelf textual import and export
functionalities and allows for implementing custom reader/writer concepts. We use the default
Graphivz [15] format to store the graphs in metadata records. As PhASAR’s IFDS/IDE
solver implementation works by incrementally constructing two tables to represent flow func-
tions/jump functions of ever longer sequences of code (c.f. [51,64]), we use the following sets of
quintuples for the data-flow summary representation of a function ψ(f) := {⟨ni, dx, nj , dy, l⟩},
where a quintuple represents a jump function (or an edge in the ESG) from data-flow
fact dx to dy with the corresponding edge function l that summarizes parts of the
effects of the region of code that is enclosed by the statements ni and nj . The concrete
(partial) data-flow summary for the applySanitizer() function (cf. Figure 7c) looks as follows:
{⟨22,Λ, 24,Λ,⊤⟩, ⟨22, in, 22, in,⊤⟩, ⟨24, in, 24, in,⊤⟩, ⟨24, out, 24, out,⊤⟩, ⟨24, out, 24, ret,⊤⟩}.
Note that for IFDS we can use the simple encoding of the binary lattice and the edge
functions. We handle the persistence of the difficult-to-handle, general IDE edge functions
by creating a record to keep track which edge functions are composed and meet for each
jump function while constructing them. We finally persist the record using the extensive
Boost Serialization library [14]. On load, the record can be replayed to (re)construct the
actual jump functions.

5 Experiments

Our empirical evaluation aims to answer the following research questions:
RQ1: Does the use of a module-wise static analysis incur a precision loss when compared
to a whole program analysis? If so, what causes this loss in precision?

ECOOP 2021

2:20 Lossless, Persisted Summarization for Static Analysis

RQ2: Compared to conducting a whole-program analysis, what speed-up can one achieve
when applying MWA using pre-computed summaries for type-hierarchy, callgraph, points-
to and data-flow information?
RQ3: How frequently can the data-flow shortcuts id

↪→ and ⊤
↪→ be applied in MWA?

To address RQ1, we compare the analysis results of a whole program analysis with the
results obtained by a module-wise analysis. Ideally, the results of both analyses should be
identical. To address RQ2, we measure and compare the runtimes of a client analysis using
pre-computed summaries and a version that computes everything on-the-fly. To address
RQ3, we extend PhASAR’s IFDS/IDE solver implementation and measure how frequently
it makes use of both shortcuts for different client analyses.

5.1 Experimental Setup

We have evaluated ModAlyzer using as benchmark subjects the C coreutils (version 8.28) [3]
and the PhASAR framework itself.

The GNU core utilities are a collection of C programs that share a common core, providing
a library that consists of 251 files. Each coreutil program itself only consists of a small
number of C source files that provides the program’s entry point, manages the command-line,
and makes suitable calls into the common core in order to achieve the desired task. For our
evaluation we prepared and analyzed 97 of the coreutils and chose 10 of them at random
which to present in this paper in more detail. (However, the figures for the remaining 87
coreutils can be found online [16].)

PhASAR is written in C++ and is similarly structured. To provide flexible, reusable
software components, the main functionalities of the different components are implemented
as libraries. The front-ends (or drivers) themselves represent only a relatively small amount
of “glue code” and large amounts of their runtime is spent in library code. Using PhASAR
we defined two benchmark subjects: First PhASAR’s own command-line client and the
PhASAR-based tool MPT, a exemplary client that uses PhASAR as a library, both of which
can be found alongside PhASAR’s examples [10].

We chose those subjects because they have a relatively high amount of virtual calls.
This stresses ModAlyzer’s points-to based callgraph algorithm. We observed that C++
developers generally try to minimize the amount of indirect calls to avoid indirect jumps,
which degrade performance, especially when implementing performance critical software
systems [17]. The chosen subjects hence set a relatively high bar when it comes to evaluating
analysis performance. The raw as well as the processed data produced in our evaluation is
available online [16].

All programs and their characteristics are shown in Table 1. We prepared all programs
presented for analysis with the PhASAR framework by compiling them into LLVM IR with
production flags using the Clang compiler. The numbers in Table 1 are based on LLVM IR.

We used an uninitialized-variables analysis U and a taint analysis T as two concrete client
analyses that both impose the information dependencies as shown in Figure 3. U and T are
both implemented in IFDS within PhASAR.

Uninitialized-variables analysis U: U is an analysis that finds potentially uninitialized
variables and tracks them through the program. If the analysis finds an uninitialized variable
to be read from, it reports an illegal use of that variable. Uninitialized variables propagate
through computations and thus, the analysis tracks those as well. U also tracks the variables
across function boundaries making it an inter-procedural analysis.

P. D. Schubert, B. Hermann, and E. Bodden 2:21

Table 1 Number of compilation units, library/application code ratio, number of statements,
pointer variables and allocation sites of the analyzed (completely linked) programs.

Program Compilation Units IR LOC lib
IR LOC app

Statements Pointers Allocation Sites
wc 252 41.2 63,166 10,644 396
ls 253 5.9 71,712 13,200 438
cat 252 66.3 62,588 10,584 391
cp 256 10.5 67,097 11,722 443
whoami 252 335.7 61,860 10,433 389
dd 252 16.8 65,287 11,150 408
fold 252 105.8 62,201 10,509 390
join 252 24.9 64,196 11,042 402
kill 253 88.2 62,304 10,527 394
uniq 252 60.1 62,663 10,650 396
MPT 156 13.8 1,351,735 755,567 176,540
PhASAR (driver) 156 56.4 1,368,297 763,796 178,486

Taint analysis T: T is a parameterizable taint analysis that tracks tainted values through
the program and reports potential leaks whenever it finds a tainted value that may flows into
a sink function (or operation). Sources and sinks are parameterizable. We used PhASAR’s
default parametrization that treats the command-line arguments passed into main as tainted.
All standard input functions (e.g., fread(), fgets ()) are treated as sources as well. All output
functions (e.g., fwrite (), printf ()) are treated as sinks.

For each target program shown in Table 1 we computed the library and application code
ratio based on lines of LLVM IR code. If a module is used by more than one application, we
consider it to be part of the library, whereas modules that are only used by one application are
considered as application code. We also measured runtimes and number of leaks/uninitialized
variables that each of the analyses reported in a WPA setup as well as an MWA setup. The
measurements for MWA are split into a summarization and an actual analysis step. The
PhASAR framework implements a reporting system which we use to compare the actual
reports to make sure that the findings are identical. We also recorded the number of callgraph
updates #CG ⟳ that had to be performed in the MWA setup, i.e., we counted the number of
callgraph edges that have been introduced during the merge process. This is a good indicator
of the expense of a merge, as the introduction of a new callgraph edge causes the points-to
and data-flow information to be updated as well. In addition, we measured the number of
shortcuts that a data-flow analysis was able to use. We measured the runtimes by performing
5 runs for each analysis in each setup on a virtual machine running on an Intel(R) Xeon(R)
CPU E5-2695 v3 @ 2.30GHz machine with 128GB memory. We removed the minimum and
maximum values and computed the average of the remaining 3 values. Table 2 shows the
results. The first column comprises the programs under analysis, the second column contains
the WPA runtimes, column three contains the required runtime for summarization, column
four the actual analysis time of MWA. The differences of the runtimes and reports of WPA
and MWA are shown in column five. Column six, seven, and eight contain the respective
number of callgraph updates, identity shortcuts, and ⊤ shortcuts, respectively. The number
of callgraph updates are equal for both analysis as the callgraph information is not affected
by the concrete client analyses.

ECOOP 2021

2:22 Lossless, Persisted Summarization for Static Analysis

Table 2 Runtimes and findings WPA vs. MWA for the taint analysis T (first half) and uninitialized
variables U (second half).

T: Program WPA [s] Σm∈lib [s] MWA [s] ∆ runtimes / (∆ reports) #
CG
⟳ #

id
↪→ #

⊤
↪→

wc 2.3 5.7 0.5 -1.8 / (0) 47 8,052 78
ls 4.8 5.7 1.3 -3.5 / (0) 166 13,470 11
cat 1.9 5.7 0.2 -1.7 / (0) 21 2,117 269
cp 4.4 5.7 1.8 -2.6 / (0) 197 19,712 1077
whoami 2.0 5.7 0.4 -1.6 / (0) 4 6,065 11
dd 8.1 5.7 5.5 -2.6 / (-3) 58 48,747 90
fold 2.1 5.8 0.4 -1.7 / (0) 12 6,695 11
join 2.4 5.7 0.6 -1.8 / (0) 58 8,979 11
kill 1.9 5.7 0.2 -1.7 / (0) 14 2,079 11
uniq 2.2 5.7 0.4 -1.8 / (0) 29 7,281 11
MPT 2,306 42,847 1,516 -809 / (0) 41 29,061 0
PhASAR 7,176 42,876 598 -6578 / (0) 3 47,736 0

U: Program WPA [s] Σm∈lib [s] MWA [s] ∆ runtimes / (∆ reports) #
CG
⟳ #

id
↪→ #

⊤
↪→

wc 2.6 5.9 0.6 -2.0 / (0) 47 2,413 162
ls 8.4 6.0 3.3 -5.1 / (0) 166 7,173 184
cat 2.0 6.0 0.3 -1.7 / (0) 21 845 12
cp 5.2 5.9 2.2 -3.0 / (0) 197 6,684 1122
whoami 2.0 5.9 0.3 -1.7 / (0) 4 535 0
dd 3.1 5.9 0.9 -2.2 / (0) 58 2,522 16
fold 2.1 6.0 0.4 -1.7 / (0) 12 895 0
join 2.8 6.0 0.5 -2.3 / (0) 58 2,582 171
kill 2.2 6.0 0.4 -1.8 / (0) 14 793 12
uniq 2.5 5.9 0.5 -2.0 / (0) 29 1,433 17
MPT 3,811 53,703 2,958 -826 / (0) 41 137,722 8,136
PhASAR 10,160 53,348 968 -9,192 / (0) 3 210,032 24,446

5.2 RQ1: Precision
As the points-to and therefore, call- and control-flow graphs guide an analysis through a
program, they may heavily influence the reported results. Therefore, we compared the
callgraph obtained in an MWA setting with the one obtained in a WPA setting. We found
that the callgraphs only differ at call-sites at which a static function pointer is called. In
those cases, our MWA callgraph implementation turns out to be more precise as it does not
consider every function of the complete program that matches the pointer’s signature as a
possible target, but only the ones reachable within the module whose address can actually
be taken.3 This reduces the number of infeasible call targets while retaining soundness.

We compared the client analyses precision and recall of WPA and MWA using PhASAR’s
reporting capabilities. Column ∆ in Table 2 shows how many result entries differ from a
WPA to an MWA setup for each client analysis. We only observed a difference in the reports
for the “dd” program while performing the taint analysis. In this case, the analysis in WPA
mode reports three leaks in a library function fL, whereas the analysis in MWA reports none.
We investigated the cause of this difference and found that this is actually a false positive in
the WPA. The leaking function fL is not called within the “dd” program. However, “dd”
defines a static global function pointer p in the application code and the WPA analysis safely

3 Reducing the set of feasible function pointer targets in WPA mode can be easily implemented.

P. D. Schubert, B. Hermann, and E. Bodden 2:23

assumes that fL, which matches the function pointers signature, might be called. When
the application code that defines the static function pointer is analyzed in MWA mode, the
analysis does not find a declaration of fL within the application code and therefore, its
address cannot possibly be taken, preventing it to be a callee target of p. While one could
adapt the WPA to be equally precise, the MWA obtains this precision automatically.

Since ModAlyzer does not need to overapproximate information it does indeed also
preserve recall. The ModAlyzer approach has been designed to obtain this property by
construction. Besides the differing result entries that are caused by the differences in the
callgraph, both the results of ModAlyzer and WPA coincide.

The module-wise analysis generally yields the same precision as the whole-program analysis,
in some cases even exceeds it.

5.3 RQ2: Performance

Table 1 shows that the library/application ratio ranges from 5.9 to 5675.6 and therefore,
that the actual application code only comprises a small fraction of the complete program.
One expects the MWA runtime to pay off better with increasing code ratios, since more
pre-computed summaries can be (re)used for a program’s library parts. The runtimes of both
analyses measured in the WPA and MWA setup live up to that expectation. Looking at the
programs with an especially advantageous library/application ratio such as whoami, fold, kill,
cat, PhASAR, the use of pre-computed summaries saves between 81% and 91% of the analysis
time. On average, MWA saves 72% of analysis time compared to WPA while MWA’s initial
one-time summarization step is, on average, 3.67 times as expensive than the corresponding
run in a WPA setup. Thus, computing the initial summarization of the library (or infrequently
changing) parts of a program is more expensive that performing a whole program analysis.
Computing summaries will always be more expensive compared to computing plain WPA
due to the additional overhead required for organizing and maintaining the summaries. In
addition, many of PhASAR’s critical analysis parts have undergone tremendous amounts of
manual optimization while ModAlyzer’s implementation for summary generation has not
yet been optimized manually. As a concrete example, analyzing PhASAR in an MWA setup
outperforms WPA with the seventh run using the taint analysis and after the sixth run for
the uninitialized variables analysis – assuming an initial summary must be computed and no
changes in PhASAR’s library occur after summarization. For the MPT program, that has a
larger number of callgraph updates to be performed, MWA pays off with the 54th run for
the taint analysis and 64th run for the uninitialized variables analysis, respectively.

In case of PhASAR, runtime savings of 92% can be achieved as the application merely
consists of few calls into the library code. This is underlined by the three callgraph updates
that are necessary. We manually inspected the program and confirmed that, although
the amount of front-end code is certainly large, it performs only very few calls into the
corresponding library. A controller class, which is part of the library, is used to dispatch the
different tasks to solve into calls to the adequate library functionalities. This shifts large
parts of the computation to the offline MWA summarization phase.

The size of the persisted summaries that are stored along with the library code increase a
library, on average, by a factor of five in size. The code and summaries for PhASAR require
approx. 2.8 GB of memory for persistence and 30 MB for the core utils.

Summaries for static callgraph, points-to and data-flow analysis can be used to capture the
analysis effects of libraries. After a one-time pre-computation effort, this allows a runtime
reduction of 72%, on average, compared to the runtimes in whole-program mode.

ECOOP 2021

2:24 Lossless, Persisted Summarization for Static Analysis

5.4 RQ3: Shortcuts

The number of id
↪→ shortcuts taken by an analysis is parameterized by a predicate as described

in Subsection 3.4. For the analyses U and T we used the predicate return type is void
and uses pass-by-value. However, different predicates might be useful for other analyses,
depending on the specific assumptions that can be made on an analysis’s domain. The
results in Table 2 show that both shortcuts can be frequently applied during analysis. The

id
↪→ shortcut can be applied between 535 and 210,032 times depending on the client data-flow
analysis that is performed. The ⊤

↪→ shortcut can be applied between 0 and 24,446 times.
We are confident that the number of ⊤

↪→ shortcuts could be further increased, if one adjusts
PhASAR’s data-flow solvers to favour analyzing branches first that contains fewer (or no)
function calls.

Shortcuts can be frequently applied. Hence, to decrease the number of data-flow dependen-
cies and to increase the amount of complete summaries that can be pre-computed offline, it
is advisable to make use of shortcuts whenever possible.

6 Limitations of the Approach

In this section, we briefly discuss the limitations of ModAlyzer. ModAlyzer needs to
summarize the different pieces of information presented in Figure 3 to be able to construct
effective module-wise summaries for a given concrete client analysis. Hence, ModAlyzer
requires analysis algorithms that produce summarizable results such as IFDS [55], IDE [63]
or Weighted Pushdown Systems (WPDS) [56].

For problems that are distributive, hence fit into these frameworks, the summarization
is lossless. It is generally also possible to use ModAlyzer to solve non-distributive client
analysis problems. As mentioned in Section 1, one cannot generally compute summaries for
non-distributive data-flow problems. In that case, the approach can only make use of the
summaries for type-hierarchy, points-to, and callgraph information, which may still lead to
large performance increases as we present in Section 5.

We use never-invalidating points-to information computed using an Andersen [19] or
Steensgaard-style [73] algorithm to be able to produce effective summaries. Again, computing
more precise inter-procedural, context-, and flow-sensitive points-to information is a non-
distributive problem for which no effective summaries can be computed. However, Späth et
al. showed how flow- and context-sensitive pointer analysis can be decomposed into multiple
analysis problems each of which, in turn, can be expressed within a distributive framework [72]
– making the overall problem distributive. ModAlyzer’s current points-to algorithm could
therefore also be replaced by an adjusted version the distributive Bommerang approach
proposed by Späth et al. The Boomerang approach – as is – operates in an on-demand
manner and does not compute reusable summaries nor does it persist results. It is interesting
to see the performance of ModAlyzer with an improved Boomerang-style points-to
algorithm, that reuses summaries, presented in [72], but we consider it as future work.

As described in Section 5, ModAlyzer’s overall effectiveness degrades with the number
of updates that must be performed while merging summaries with the application code.
Therefore, ModAlyzer’s performance increase may not apply to programs that make
excessive use of callbacks.

P. D. Schubert, B. Hermann, and E. Bodden 2:25

7 Related Work

Several previous approaches address, in part, the difficult problem of compositional static
analysis [30,31,33,36,38,52,59–61,78,83]. However, existing techniques for compositional
static analysis typically focus on data-flow or points-to analysis only. As advocated in
this paper, a concrete compositional data-flow analysis client requires at the very least a
combination of compositional callgraph, points-to and data-flow analysis.

Compositional data-flow techniques rely on the functional approach [66] allowing to
solve distributive data-flow problems by using summary-based, inherently compositional
frameworks such as IFDS [55], IDE [63], or WPDS [56]. Rountev et al. used IDE data-flow
summaries to summarize large object-oriented libraries [62] and showed that a significant
amount of time can be saved when using pre-computed summaries. The approach presented
by Rountev et al., however, omits to tackle the challenging task of persisting general IDE
summaries but rather discards the summaries at analysis shutdown. StubDroid [21] is a
fully automated approach to generate precise library models for taint-analysis problems for
the Android Framework, effectively preventing the re-analysis of the Android Framework for
the analysis of different Android apps. Both Rountev’s approach and StubDroid assume the
existence of whole-program points-to and callgraph information.

Several works use partial points-to information in from of function-local summaries
computed using context-free language (CFL-)reachability [48, 65, 81]. The summaries can
be used in various scenarios allowing, among others, for on-demand points-to analysis,
pre-analysis, and pointer analysis of partial programs using different sensitivities. These
works present individual solutions to individual problems, while this paper presents the first
integrated approach and shows its effectiveness on real-world C/C++ applications.

The IDEal [71] approach developed by Späth et al. is an alias-aware extension to the
framework IDE [63] framework. IDEal embeds the alias analysis Boomerang [72] into the
IDE solver implementation HEROS [25] to automatically resolve alias queries on-demand
at analysis time while solving a given distributive data-flow analysis problem. However,
it does not compute (persisted,) reusable summaries but rather computes analysis queries
on-demand and still requires external callgraph graph information.

AVERROES [18] uses the separate compilation assumption and Java’s constant pool [9]
to generate sound and precise callgraphs without actually analyzing library code in order to
generate a placeholder library. Existing whole-program callgraph construction algorithms
can use the replacement to obtain a sound and precise application callgraph. AVERROES
supports callgraph construction only. Its summaries cannot be used for precise pointer
analysis, nor for precise data-flow analysis.

Other techniques try to improve the scalability of inter-procedural static analysis by using
sparse propagation of data-flow facts along def-use chains [77] or demand-driven analysis
that only analyze parts of a program that a user is currently interested in [72,76]. Sparseness
is a concept orthogonal to the ones proposed here. Both could be used in combination.

Some tools, including clang-tidy [2] and CppCheck [5], trade off scalability for reduced
complexity. Thus, they only apply syntactic analysis to retrieve information on the property
of interest. Precise, fully-fledged static analysis is replaced by much simpler checks that are
capable of analyzing even million lines of code in minutes. However, these checks are often
too imprecise to check for interesting properties.

Klohs et al. described the situation for may-analysis in which ⊤, representing all informa-
tion, is obtained along one path in the control-flow graph, and thus, the other path does not
have to be analyzed. This allows to remove data-flow dependencies ahead of time [43]. The
approach presented here adopts this insight.

ECOOP 2021

2:26 Lossless, Persisted Summarization for Static Analysis

ModAlyzer computes the module-level summaries in a completely unrestricted way and
does not make any assumptions about missing code. Yet, it may be advisable to compute
summaries based on various sensible assumptions in scenarios where the summarization step
can be performed ahead of time, e.g. for library pre-analysis. Tree-adjoining languages [79]
and Dyck context-free language reachability [30, 78] can be used to increase the effective
library summarization by computing reasonable conditional summaries that enable greater
summary reuse under certain premises checked at analysis time of the application code. Such
a strategy allows for more computations to be performed on a module-level. During the
merge, the analysis can check whether an assumption that has been made holds and, if so,
directly use the corresponding summary that may be much more expressive than one that
has been computed without any assumptions about missing code, effectively reducing the
amount of work that needs to be done while merging summaries with the application code.
ModAlyzer currently does not use such a conditional summarization, however, it provides
all required infrastructure to easily integrate the approach. Unfortunately, one cannot rely
on programmers specifying pointer or reference parameters as constants using the const
keyword because C/C++’s typesystem provides several mechanisms to circumvent constant
declarations (e.g. const_cast and mutable in case of C++). Although writes through const are
possible, they are used sparingly in real-world software as shown by Eyolfson and Lam [35].
Therefore, one reasonable assumption may be const means const. Especially const-qualified
pointer parameters then represent hard inter-procedural boundaries and a data-flow analysis
is not concerned with those parameters.

Early versions of Facebook’s Infer [27] used separation logic to allow for the compositional
analysis of heap-based programs. The approach computed bottom-up summaries using
bi-abductive inference [24, 28], which could then be used in different calling contexts. Using
Infer, one could thus formulate compositional static analyses that are evaluated using
abstract interpretation. These analyses, however, were largely restricted to finding cases of
memory corruption. Since about 2019 – reportedly due to a lack of general applicability and
extensibility – Infer thus does not use abductive inference for most of its analyses any longer,
and now instead bases its implementation on data-flow analysis using abstract interpretation.
This analysis is no longer compositional.

8 Conclusion

In this paper, we presented ModAlyzer, a compositional approach to speeding up static
analysis using persisted summaries for callgraph, points-to and data-flow information. We
have presented an integrated strategy based on the dependencies as shown in Figure 3 that
manages all those information and their dependencies, which many useful, concrete client
analyses impose to provide precise results. ModAlyzer allows one to compute static analysis
summaries on individual parts of a program without the need to make any assumptions on
the missing code. These pre-computed summaries can then be (re)used later on, effectively
shifting large parts of the computational effort to an offline phase.

Our experiments confirm the finding by previous works that actual application code
often only constitutes only a small fraction of the complete program. Thus, ModAlyzer
outperforms traditional whole program analysis in both runtime and flexibility.

References
1 C++ applications, December 2018. URL: http://www.stroustrup.com/applications.html/.
2 clang-tidy, August 2018. URL: http://clang.llvm.org/extra/clang-tidy/.

http://www.stroustrup.com/applications.html/
http://clang.llvm.org/extra/clang-tidy/

P. D. Schubert, B. Hermann, and E. Bodden 2:27

3 coreutils, July 2018. URL: https://www.gnu.org/software/coreutils/coreutils.html.
4 Coverity static application security testing (sast), December 2018. URL: https://www.

synopsys.com/software-integrity/security-testing/static-analysis-sast.html.
5 Cppcheck, August 2018. URL: http://cppcheck.sourceforge.net/.
6 Gcc optimize options, December 2018. URL: https://gcc.gnu.org/onlinedocs/gcc/

Optimize-Options.html.
7 Grammatech codesonar, 2018. URL: https://www.grammatech.com/products/codesonar.
8 Intel® c++ compiler 19.0 developer guide and reference: Interprocedural op-

timization (ipo), December 2018. URL: https://software.intel.com/en-us/
cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo.

9 Java virtual machine specification: The constant pool, December 2018. URL: https://docs.
oracle.com/javase/specs/jvms/se10/html/jvms-4.html#jvms-4.4.

10 Phasar, July 2018. URL: https://phasar.org.
11 The programming languages beacon, December 2018. URL: http://www.lextrait.com/

vincent/implementations.html/.
12 The state of open source security, December 2018. URL: https://snyk.io/

stateofossecurity/.
13 Thinlto: Scalable and incremental lto, July 2018. URL: http://blog.llvm.org/2016/06/

thinlto-scalable-and-incremental-lto.html.
14 Boost.serialization, August 2019. URL: https://www.boost.org/doc/libs/1_70_0/libs/

serialization/doc/.
15 Graphviz, August 2019. URL: https://www.graphviz.org/.
16 Supplementary material, 2019. URL: https://drive.google.com/drive/folders/

1uLHDkmdWdjQ-aeZjyRizhy9zwrX4VWVo?usp=sharing.
17 Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in c++ programs. In

Pierre Cointe, editor, ECOOP ’96 — Object-Oriented Programming, pages 142–166, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

18 Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without the whole program.
In Proceedings of the 27th European Conference on Object-Oriented Programming, ECOOP’13,
pages 378–400, Berlin, Heidelberg, 2013. Springer-Verlag. doi:10.1007/978-3-642-39038-8_
16.

19 Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language.
Datalogisk Institut, Københavns Universitet, 1994.

20 Steven Arzt and Eric Bodden. Reviser: Efficiently updating ide-/ifds-based data-flow analyses
in response to incremental program changes. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 288–298, New York, NY, USA, 2014. ACM.
doi:10.1145/2568225.2568243.

21 Steven Arzt and Eric Bodden. Stubdroid: Automatic inference of precise data-flow summaries
for the android framework. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 725–735, New York, NY, USA, 2016. ACM. doi:10.1145/
2884781.2884816.

22 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, pages 259–269, New York, NY, USA, 2014. ACM. doi:10.1145/2594291.2594299.

23 Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later:
Using static analysis to find bugs in the real world. Commun. ACM, 53(2):66–75, 2010.
doi:10.1145/1646353.1646374.

24 Dirk Beyer, Sumit Gulwani, and David A Schmidt. Combining model checking and data-flow
analysis. In Handbook of Model Checking, pages 493–540. Springer, 2018.

ECOOP 2021

https://www.gnu.org/software/coreutils/coreutils.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
http://cppcheck.sourceforge.net/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.grammatech.com/products/codesonar
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-4.html#jvms-4.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-4.html#jvms-4.4
https://phasar.org
http://www.lextrait.com/vincent/implementations.html/
http://www.lextrait.com/vincent/implementations.html/
https://snyk.io/stateofossecurity/
https://snyk.io/stateofossecurity/
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/
https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/
https://www.graphviz.org/
https://drive.google.com/drive/folders/1uLHDkmdWdjQ-aeZjyRizhy9zwrX4VWVo?usp=sharing
https://drive.google.com/drive/folders/1uLHDkmdWdjQ-aeZjyRizhy9zwrX4VWVo?usp=sharing
https://doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1646353.1646374

2:28 Lossless, Persisted Summarization for Static Analysis

25 Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In Proceedings of the
ACM SIGPLAN International Workshop on State of the Art in Java Program Analysis, SOAP
’12, pages 3–8, New York, NY, USA, 2012. ACM. doi:10.1145/2259051.2259052.

26 Eric Bodden. The secret sauce in efficient and precise static analysis. In Proceedings of the
7th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis, SOAP
2018, 2018. To appear.

27 Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory
safety of c programs. In NASA Formal Methods Symposium, pages 459–465. Springer, 2011.

28 Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional shape
analysis by means of bi-abduction. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’09, pages 289–300, New York,
NY, USA, 2009. ACM. doi:10.1145/1480881.1480917.

29 Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in c++ programs.
In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’94, page 397–408, New York, NY, USA, 1994. Association for Computing
Machinery. doi:10.1145/174675.177973.

30 Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Optimal dyck reachab-
ility for data-dependence and alias analysis. Proc. ACM Program. Lang., 2(POPL):30:1–30:30,
2017. doi:10.1145/3158118.

31 Michael Codish, Saumya K. Debray, and Roberto Giacobazzi. Compositional analysis of
modular logic programs. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’93, pages 451–464, New York, NY, USA, 1993.
ACM. doi:10.1145/158511.158703.

32 Karel Driesen and Urs Hölzle. The direct cost of virtual function calls in c++. In Proceedings
of the 11th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’96, page 306–323, New York, NY, USA, 1996. Association for
Computing Machinery. doi:10.1145/236337.236369.

33 M. B. Dwyer. Modular flow analysis for concurrent software. In Proceedings of the 12th
International Conference on Automated Software Engineering (Formerly: KBSE), ASE ’97,
pages 264–, Washington, DC, USA, 1997. IEEE Computer Society. URL: http://dl.acm.
org/citation.cfm?id=786767.786816.

34 Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid Glanz. Hidden truths in dead
software paths. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 474–484, New York, NY, USA, 2015. ACM. doi:
10.1145/2786805.2786865.

35 Jon Eyolfson and Patrick Lam. C++ const and Immutability: An Empirical Study of
Writes-Through-const. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 8:1–8:25, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.8.

36 Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. Field analysis: Getting useful and
low-cost interprocedural information. In Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, PLDI ’00, pages 334–344, New York,
NY, USA, 2000. ACM. doi:10.1145/349299.349343.

37 Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Opportunities and open
problems for static and dynamic program analysis. In 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 1–23. IEEE, 2018.

38 Mary Jean Harrold and Gregg Rothermel. Separate computation of alias information for reuse.
IEEE Trans. Softw. Eng., 22(7):442–460, July 1996. doi:10.1109/32.538603.

39 Ben Hermann, Michael Reif, Michael Eichberg, and Mira Mezini. Getting to know you:
Towards a capability model for java. In Proceedings of the 2015 10th Joint Meeting on

https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1145/174675.177973
https://doi.org/10.1145/3158118
https://doi.org/10.1145/158511.158703
https://doi.org/10.1145/236337.236369
http://dl.acm.org/citation.cfm?id=786767.786816
http://dl.acm.org/citation.cfm?id=786767.786816
https://doi.org/10.1145/2786805.2786865
https://doi.org/10.1145/2786805.2786865
https://doi.org/10.4230/LIPIcs.ECOOP.2016.8
https://doi.org/10.1145/349299.349343
https://doi.org/10.1109/32.538603

P. D. Schubert, B. Hermann, and E. Bodden 2:29

Foundations of Software Engineering, ESEC/FSE 2015, pages 758–769, New York, NY, USA,
2015. ACM. doi:10.1145/2786805.2786829.

40 P. Holzinger, B. Hermann, J. Lerch, E. Bodden, and M. Mezini. Hardening java’s access
control by abolishing implicit privilege elevation. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 1027–1040, May 2017. doi:10.1109/SP.2017.16.

41 John B Kam and Jeffrey D Ullman. Monotone data flow analysis frameworks. Acta Informatica,
7(3):305–317, 1977.

42 Gary A. Kildall. A unified approach to global program optimization. In Proceedings of the
1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM. doi:10.1145/512927.512945.

43 Karsten Klohs. A summary function model for the validation of interprocedural analysis
results. In Proceedings of the 7th International Workshop on Compiler Optimization meets
Compiler Verification, COCV’08, 2008.

44 Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian Göpfert,
Felix Günther, Christian Weinert, Daniel Demmler, and Ram Kamath. Cognicrypt: Supporting
developers in using cryptography. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, pages 931–936, Piscataway, NJ,
USA, 2017. IEEE Press. URL: http://dl.acm.org/citation.cfm?id=3155562.3155681.

45 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–, Washington,
DC, USA, 2004. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=
977395.977673.

46 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Scalability-first pointer analysis
with self-tuning context-sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pages 129–140, New York, NY, USA, 2018. ACM. doi:
10.1145/3236024.3236041.

47 V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java applications
with static analysis. In Proceedings of the 14th Conference on USENIX Security Symposium -
Volume 14, SSYM’05, pages 18–18, Berkeley, CA, USA, 2005. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1251398.1251416.

48 Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An incremental points-to analysis with
cfl-reachability. In Proceedings of the 22Nd International Conference on Compiler Con-
struction, CC’13, pages 61–81, Berlin, Heidelberg, 2013. Springer-Verlag. doi:10.1007/
978-3-642-37051-9_4.

49 Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd
Edition). Addison-Wesley Professional, 2005.

50 Scott Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and
C++14. O’Reilly Media, Inc., 1st edition, 2014.

51 Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical extensions to the ifds
algorithm. In Proceedings of the 19th Joint European Conference on Theory and Practice
of Software, International Conference on Compiler Construction, CC’10/ETAPS’10, pages
124–144, Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/978-3-642-11970-5_8.

52 Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. Making type inference practical.
In Ole Lehrmann Madsen, editor, ECOOP ’92 European Conference on Object-Oriented
Programming, pages 329–349, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

53 Santanu Saha Ray. Graph Theory with Algorithms and Its Applications: In Applied Science
and Technology. Springer Publishing Company, Incorporated, 2014.

54 Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini. Call graph
construction for java libraries. In Proceedings of the 2016 24th ACM SIGSOFT International

ECOOP 2021

https://doi.org/10.1145/2786805.2786829
https://doi.org/10.1109/SP.2017.16
https://doi.org/10.1145/512927.512945
http://dl.acm.org/citation.cfm?id=3155562.3155681
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3236024.3236041
http://dl.acm.org/citation.cfm?id=1251398.1251416
https://doi.org/10.1007/978-3-642-37051-9_4
https://doi.org/10.1007/978-3-642-37051-9_4
https://doi.org/10.1007/978-3-642-11970-5_8

2:30 Lossless, Persisted Summarization for Static Analysis

Symposium on Foundations of Software Engineering, FSE 2016, pages 474–486, New York,
NY, USA, 2016. ACM. doi:10.1145/2950290.2950312.

55 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’95, pages 49–61, New York, NY, USA, 1995.
ACM. doi:10.1145/199448.199462.

56 Thomas Reps, Stefan Schwoon, and Somesh Jha. Weighted pushdown systems and their
application to interprocedural dataflow analysis. In Proceedings of the 10th International
Conference on Static Analysis, SAS’03, pages 189–213, Berlin, Heidelberg, 2003. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=1760267.1760283.

57 H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 1953, 74, 2, 358, 1953.

58 Personal communication with atanas (nasko) rountev, 2014.
59 A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing of polymorphism

in java software. IEEE Transactions on Software Engineering, 30(6):372–387, June 2004.
doi:10.1109/TSE.2004.20.

60 Atanas Rountev and Barbara G. Ryder. Points-to and side-effect analyses for programs built
with precompiled libraries. In Reinhard Wilhelm, editor, Compiler Construction, pages 20–36,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

61 Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis of program frag-
ments. In Oscar Nierstrasz and Michel Lemoine, editors, Software Engineering — ESEC/FSE
’99, pages 235–252, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

62 Atanas Rountev, Mariana Sharp, and Guoqing Xu. Ide dataflow analysis in the presence
of large object-oriented libraries. In Proceedings of the Joint European Conferences on
Theory and Practice of Software 17th International Conference on Compiler Construction,
CC’08/ETAPS’08, pages 53–68, Berlin, Heidelberg, 2008. Springer-Verlag. URL: http://dl.
acm.org/citation.cfm?id=1788374.1788380.

63 Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. Theor. Comput. Sci., 167(1-2):131–170, 1996.
doi:10.1016/0304-3975(96)00072-2.

64 Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Phasar: An inter-procedural
static analysis framework for c/c++. In Tomáš Vojnar and Lijun Zhang, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 393–410, Cham, 2019. Springer
International Publishing.

65 Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-to
analysis. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, CGO ’12, pages 264–274, New York, NY, USA, 2012. ACM. doi:10.1145/
2259016.2259050.

66 M Sharir and A Pnueli. Two approaches to interprocedural data flow analysis. New York Univ.
Comput. Sci. Dept., New York, NY, 1978. URL: https://cds.cern.ch/record/120118.

67 Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library - User
Guide and Reference Manual. C++ in-depth series. Pearson / Prentice Hall, 2002.

68 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
Understanding object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, pages 17–30, New York, NY,
USA, 2011. ACM. doi:10.1145/1926385.1926390.

69 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
Context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 485–495, New York,
NY, USA, 2014. ACM. doi:10.1145/2594291.2594320.

70 Black Duck Software. 2018 open source security and risk analysis. https://www.synopsys.
com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf, 2018.

https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/199448.199462
http://dl.acm.org/citation.cfm?id=1760267.1760283
https://doi.org/10.1109/TSE.2004.20
http://dl.acm.org/citation.cfm?id=1788374.1788380
http://dl.acm.org/citation.cfm?id=1788374.1788380
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1145/2259016.2259050
https://doi.org/10.1145/2259016.2259050
https://cds.cern.ch/record/120118
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf

P. D. Schubert, B. Hermann, and E. Bodden 2:31

71 Johannes Späth, Karim Ali, and Eric Bodden. Ideal: Efficient and precise alias-aware dataflow
analysis. Proc. ACM Program. Lang., 1(OOPSLA), October 2017. doi:10.1145/3133923.

72 Johannes Späth, Lisa Nguyen, Karim Ali, and Eric Bodden. Boomerang: Demand-driven flow-
and context-sensitive pointer analysis for java. In European Conference on Object-Oriented
Programming (ECOOP), 17 - 22 July 2016.

73 Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages
32–41, New York, NY, USA, 1996. ACM. doi:10.1145/237721.237727.

74 R E Strom and S Yemini. Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986. doi:10.1109/TSE.1986.6312929.

75 Robert E. Strom. Mechanisms for compile-time enforcement of security. In Proceedings of the
10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
’83, pages 276–284, New York, NY, USA, 1983. ACM. doi:10.1145/567067.567093.

76 Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow refinement.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 460–473, New York, NY, USA, 2016. ACM. doi:
10.1145/2950290.2950296.

77 Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow analysis in llvm. In
Proceedings of the 25th International Conference on Compiler Construction, CC 2016, pages
265–266, New York, NY, USA, 2016. ACM. doi:10.1145/2892208.2892235.

78 Hao Tang, Di Wang, Yingfei Xiong, Lingming Zhang, Xiaoyin Wang, and Lu Zhang. Con-
ditional dyck-cfl reachability analysis for complete and efficient library summarization. In
Hongseok Yang, editor, Programming Languages and Systems, pages 880–908, Berlin, Heidel-
berg, 2017. Springer Berlin Heidelberg.

79 Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. Summary-
based context-sensitive data-dependence analysis in presence of callbacks. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, pages 83–95, New York, NY, USA, 2015. ACM. doi:10.1145/2676726.2676997.

80 John Toman and Dan Grossman. Taming the Static Analysis Beast. In Benjamin S. Lerner,
Rastislav Bodík, and Shriram Krishnamurthi, editors, 2nd Summit on Advances in Program-
ming Languages (SNAPL 2017), volume 71 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 18:1–18:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.SNAPL.2017.18.

81 John Whaley and Martin Rinard. Compositional pointer and escape analysis for java programs.
In Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’99, page 187–206, New York, NY, USA,
1999. Association for Computing Machinery. doi:10.1145/320384.320400.

82 Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape analysis. In Proceedings of
the 9th International Conference on Compiler Construction, CC ’00, pages 1–17, London, UK,
UK, 2000. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=647476.760384.

83 Jingling Xue and Phung Hua Nguyen. Completeness analysis for incomplete object-oriented
programs. In International Conference on Compiler Construction, volume 3443, pages 271–286,
April 2005. doi:10.1007/978-3-540-31985-6_21.

ECOOP 2021

https://doi.org/10.1145/3133923
https://doi.org/10.1145/237721.237727
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/567067.567093
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.1145/320384.320400
http://dl.acm.org/citation.cfm?id=647476.760384
https://doi.org/10.1007/978-3-540-31985-6_21

Gradual Program Analysis for Null Pointers
Sam Estep
Carnegie Mellon University, Pittsburgh, PA, USA

Jenna Wise
Carnegie Mellon University, Pittsburgh, PA, USA

Jonathan Aldrich
Carnegie Mellon University, Pittsburgh, PA, USA

Éric Tanter
Computer Science Department (DCC), University of Chile, Santiago, Chile

Johannes Bader
Jane Street, New York, NY, USA

Joshua Sunshine
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Static analysis tools typically address the problem of excessive false positives by requiring program-
mers to explicitly annotate their code. However, when faced with incomplete annotations, many
analysis tools are either too conservative, yielding false positives, or too optimistic, resulting in
unsound analysis results. In order to flexibly and soundly deal with partially-annotated programs,
we propose to build upon and adapt the gradual typing approach to abstract-interpretation-based
program analyses. Specifically, we focus on null-pointer analysis and demonstrate that a gradual
null-pointer analysis hits a sweet spot, by gracefully applying static analysis where possible and
relying on dynamic checks where necessary for soundness. In addition to formalizing a gradual
null-pointer analysis for a core imperative language, we build a prototype using the Infer static
analysis framework, and present preliminary evidence that the gradual null-pointer analysis reduces
false positives compared to two existing null-pointer checkers for Infer. Further, we discuss ways in
which the gradualization approach used to derive the gradual analysis from its static counterpart
can be extended to support more domains. This work thus provides a basis for future analysis tools
that can smoothly navigate the tradeoff between human effort and run-time overhead to reduce the
number of reported false positives.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Software verification

Keywords and phrases gradual typing, gradual verification, dataflow analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.3

Related Version Full Version: https://arxiv.org/abs/2105.06081 [10]

Supplementary Material Software: https://github.com/orgs/gradual-verification/packages/
container/package/ecoop21

Funding National Science Foundation under Grant No. CCF-1901033 and Grant No. CCF-1852260
Éric Tanter : FONDECYT Regular project 1190058

1 Introduction

Static analysis is useful [1], but underused in practice because of false positives [15]. A
commonly-used way to reduce false positives is through programmer-provided annotations [4]
that make programmers intent manifest. For example, Facebook’s Infer Eradicate [11], Uber’s
NullAway [3], and the Java Nullness Checker from the Checker Framework [21] all rely
on @NonNull and @Nullable annotations to statically find and report potential null-pointer

© Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader, and Joshua Sunshine;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 3; pp. 3:1–3:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://arxiv.org/abs/2105.06081
https://github.com/orgs/gradual-verification/packages/container/package/ecoop21
https://github.com/orgs/gradual-verification/packages/container/package/ecoop21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Gradual Program Analysis for Null Pointers

exceptions in Java code. However, in practice, annotating code completely can be very
costly [6] – or even impossible, for instance, when relying on third-party libraries and APIs.
As a result, since non-null reference variables are used extensively in software [6], many tools
assume missing annotations are @NonNull. But, the huge number of false positives produced
by such an approach in practice is a serious burden. To address this pitfall, NullAway
assumes that sinks (i.e. targets of assignments and bindings) are @Nullable and sources are
@NonNull. Unfortunately, both strategies are unsound, and therefore programs deemed valid
may still raise null pointer exceptions at run time.

This paper explores a novel approach to these issues by drawing on research in gradual
typing [22, 23, 14] and its recent adaptation to gradual verification [2, 24]. We propose gradual
program analysis as a principled, sound, and practical way to handle missing annotations.
As a first step in the research agenda of gradual program analysis, this article studies the
case of a simple null-pointer analysis. We present a general formal framework to derive
gradual program analyses by transforming static analyses based on abstract interpretation [8].
Specifically, we study analyses that operate over first-order procedural imperative languages
and support user-provided annotations. This setting matches the core language used by many
tools, such as Infer. In essence, a gradual analysis treats missing annotations optimistically,
but injects run-time checks to preserve soundness. Crucially, the static portion of a gradual
analysis uses the same algorithmic architecture as the underlying static analysis.1

Additionally, we ensure that any gradual analysis produced from our framework satisfies
the gradual guarantees, adapted from Siek et al. [23] formulation for gradual typing. Any
gradual analysis is also a conservative extension of the base static analysis: when all
annotations are provided, the gradual analysis is equivalent to the base static analysis, and
no run-time checks are inserted. Therefore, the gradual analysis smoothly trades off between
static and dynamic checking, driven by the annotation effort developers are willing to invest.

To provide initial evidence of the applicability of gradual null-pointer analysis, we
implement a gradual null-pointer analysis (GNPA) using Facebook’s Infer analysis framework
and report on preliminary experiments using the prototype.2 The experiments show that a
gradual null-pointer analysis can be effectively implemented, and used at scale to produce
a small number of false positives in practice – fewer than Infer Eradicate as well as a
more recent Infer checker, NullSafe. They also show that GNPA eliminates on average
more than half of the null-pointer checks Java automatically inserts at run time. As a result,
unlike other null-pointer analyses, GNPA can both prove the redundancy of run-time checks
and reduce reported false positives.

The rest of the paper is organized as follows. In Section 2, we motivate gradual program
analysis in the setting of null pointers by looking at how Eradicate, NullSafe, NullAway,
and the Java Nullness Checker operate on example code with missing annotations, showcasing
the concrete advantages of GNPA. Section 3 formalizes PICL, a core imperative language
similar to that of Infer. Section 4 then presents the static null-pointer analysis (NPA) for
PICL, which is then used as the starting point for the derivation of the gradual analysis.
We describe our approach to gradualizing a static program analysis in Section 5, using
GNPA as the running case study. Additionally, Section 5 includes a discussion of important
gradual properties our analysis adheres to: soundness, conservative extension, and the gradual
guarantee. All proofs can be found in the appendix of the full version of this paper [10]. We

1 Note that an alternative is phrasing nullness as a type system, which can also be gradualized [5, 19].
We focus on approaches based on static analysis, which have very different technical foundations and
user experience. We compare to type-based approaches in Section 7.

2 https://github.com/orgs/gradual-verification/packages/container/package/ecoop21

https://github.com/orgs/gradual-verification/packages/container/package/ecoop21

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:3

report on the preliminary empirical evaluation of an Infer GNPA checker called Graduator
in Section 6. Section 7 discusses related work and Section 8 concludes. In the conclusion, we
sketch ways in which the approach presented here could be applied to other analysis domains,
highlight open venues for future work in the area of gradual program analysis.

2 Gradual Null-Pointer Analysis in Action

This section informally introduces gradual null-pointer analysis and its potential compared to
existing approaches through a simple example. We first briefly recall the basics of null-pointer
analyses, and then discuss how current tools deal with missing annotations in problematic
ways.

2.1 Null-Pointer Analysis in a Nutshell
With programming languages that allow any type to be inhabited by a null value, programmers
end up facing runtime errors (or worse if the language is unsafe) related to dereferencing
null pointers. A null-pointer analysis is a static analysis that detects potential null pointer
dereferences and reports them as warnings, so that programmers can understand where
explicit nullness checks should be added in order to avoid runtime errors. Examples of
null-pointer analyses are Infer Eradicate [12] and the Java Null Checker [21]. Typically, a
null-pointer analysis allows programmers to add annotations in the code to denote which
variables (as well as fields, return values, etc.) are, or should be, non-null–e.g. @NonNull–and
which are potentially null–e.g. @Nullable. A simple flow analysis is then able to detect and
report conflicts, such as when a nullable variable is assigned to a non-null variable.

While a static null pointer analysis brings guarantees of robustness to a codebase, its
adoption is not necessarily seamless. If a static analysis aims to be sound, it must not
suffer from false negatives, i.e. miss any actual null pointer dereference that can happen at
runtime. While desirable, this means the analysis necessarily has to be conservative and
therefore reports false positives – locations that are thought to potentially trigger null pointer
dereferences, but actually do not.

This standard static analysis conundrum is exacerbated when considering programs where
not all variables are annotated. Of course, in practice, a codebase is rarely fully annotated.
Existing null-pointer analyses assign missing annotations a concrete annotation, such as
Nullable or NonNull. In doing so, they either report additional false positives, suffer from
false negatives (and hence are unsound), or both. The rest of this section illustrates these
issues with a simple example, and discusses how a gradual null-pointer analysis (GNPA)
alleviates them. GNPA treats missing annotations in a special manner, following the gradual
typing motto of being optimistic statically and relying on runtime checks for soundness [22].
Doing so allows the analysis to leverage both static and dynamic information to reduce false
positives while maintaining soundness.

2.2 Avoiding False Positives
GNPA can reduce the number of false positives reported by static tools by leveraging provided
annotations and run-time checks. We demonstrate this with the unannotated program in
Figure 1. The program appends the reverse of a non-null string to the reverse of a null string
and prints the result. The reverse method (lines 3–8) returns the reverse of an input string
when it is non-null and an empty string when the input is null. Additionally, reverse is
unannotated, as highlighted for reference.

ECOOP 2021

3:4 Gradual Program Analysis for Null Pointers

1 class Main {
2

3 static String reverse (String str) {
4 if (str == null) return new String ();
5 StringBuilder builder = new StringBuilder (str);
6 builder . reverse ();
7 return builder . toString ();
8 }
9

10 public static void main(String [] args) {
11 String reversed = reverse (null);
12 String frown = reverse (":)");
13 String both = reversed . concat (frown);
14 System .out. println (both);
15 }
16 }

Figure 1 Unannotated Java code safely reversing nullable strings.

The most straightforward approach to handling the missing annotations is to replace
them with a fixed annotation. Infer Eradicate and the Java Nullness Checker both choose
@NonNull as the default, since that is the most frequent annotation used in practice [6].
Thus, in this example, they would treat reverse’s argument and return value as annotated
with @NonNull. This correctly assigns reversed and frown as non-null on lines 11 and 12;
and consequently, no false positive is reported when reversed is dereferenced on line 13.
However, both tools will report a false positive each time reverse is called with null, as in
line 11.

Other uniform defaults are possible, but likewise lead to false positive warnings. For
example, choosing @Nullable by default would result in a false positive when reversed is
dereferenced. A more sophisticated choice would be the Java Nullness Checker’s @PolyNull an-
notation, which supports type qualifier polymorphism for methods annotated with @PolyNull.
If reverse’s method signature is annotated with @PolyNull, then reverse would have two
conceptual versions:

static @Nullable String reverse(@Nullable String str)
static @NonNull String reverse(@NonNull String str)

At a call site, the most precise applicable signature would be chosen; so, calling reverse with
null (line 11) would result in the @Nullable signature, and calling reverse with ":)" (line
12) would result in the @NonNull signature. Unfortunately, this strategy marks reversed
on line 11 as @Nullable even though it is @NonNull, and a false positive is reported when
reversed is dereferenced on line 13. So while @PolyNull increases the expressiveness of the
annotation system, it does not solve the problem of avoiding false positives from uniform
annotation defaults.

In contrast, GNPA optimistically assumes both calls to reverse in main (lines 11–12)
are valid without assigning fixed annotations to reverse’s argument or return value. Then,
the analysis can continue relying on contextual optimism when reasoning about the rest
of main: reversed is assumed @NonNull to satisfy its dereference on line 13. Of course
this is generally an unsound assumption, so a run-time check is inserted to ascertain the

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:5

non-nullness of reversed and preserve soundness. Alternatively, a developer could annotate
the return value of reverse with @NonNull. GNPA will operate as before except it will
leverage this new information during static reasoning. Therefore, reversed will be marked
@NonNull on line 11 and the dereference of reversed on line 13 will be statically proven safe
without any run-time check.

It turns out that a non-uniform choice of defaults can be optimistic in the same sense as
GNPA. For example, NullAway assumes sinks are @Nullable and sources are @NonNull
when annotations are missing. In fact, this strategy correctly annotates reverse, and so no
false positives are reported by the tool for the program in Figure 1. However, in contrast to
the gradual approach, the NullAway approach is in fact unsound, as illustrated next.

2.3 Avoiding False Negatives

When Eradicate, NullAway, and the Java Nullness Checker handle missing annotations,
they all give up soundness in an attempt to limit the number of false positives produced.

To illustrate, consider the same program from Figure 1, with one single change: the
reverse method now returns null instead of an empty string (line 4).

if (str == null) return null;

All of the tools mentioned earlier, including NullAway, erroneously assume that the return
value of reverse is @NonNull. On line 11, reversed is assigned reverse(null)’s return
value of null; so, it is an error to dereference reversed on line 13. Unfortunately, all of the
tools assume reversed is assigned a non-null value and do not report an error on line 13.
This is a false negative, which means that at runtime the program will fail with a null-pointer
exception.

GNPA is similarly optimistic about reversed being non-null on line 13. However, GNPA
safeguards its optimistic static assumptions with run-time checks. Therefore, the analysis
will correctly report an error on line 13. Alternatively, a developer could annotate the return
value of reverse with @Nullable. By doing so, the gradual analysis will be able to exploit
this information statically to report a static error, instead of a dynamic error.

To sum up, a gradual null-pointer analysis can reduce false positives by optimistically
treating missing annotations, and preserve soundness by detecting errors at runtime. Of
course, one may wonder why it is better to fail at runtime when passing a null value as a
non-null annotated argument, instead of just relying on the upcoming null-pointer exception.
There are two answers to this question. First, in unsafe languages like C, a null-pointer
dereference results in a crash. Second, in a safe language like Java where a null-pointer
dereference is anyway detected and reported, it can be preferable to fail as soon as possible,
in order to avoid performing computation (and side effects) under an incorrect assumption.
This is similar to how the eager reporting of gradual typing can be seen as an improvement
over simply relying on the underlying safety checks of a dynamically-typed language.

Next, we formally develop GNPA, prove that it is sound, and prove that it smoothly
trades-off between static and dynamic checking following the gradual guarantee criterion
from gradual typing [23]. We finally report on an actual implementation of GNPA and
compare its effectiveness with existing tools.

ECOOP 2021

3:6 Gradual Program Analysis for Null Pointers

x, y ∈ Var
e ∈ Expr

a ∈ Ann = {Nullable, NonNull, ?}
P ::= procedure field s

field ::= T f ;
procedure ::= T@a m (T@a x) { s }

T ::= ref
⊕ ::= ∧ | ∨

m ∈ Proc
f ∈ Field
s ∈ Stmt
e ::= null | x | e⊕ e | e.f | new(f)

| m(x)
c ::= e = null | e ̸= null
s ::= skip | s ; s | T x | x := e

| x.f := y | if (c) { s } else { s }
| while (c) { s } | return y

Figure 2 Abstract syntax of PICL.

3 PICL: A Procedural Imperative Core Language

Following the Abstract Gradual Typing methodology introduced by Garcia et al. [14], we
build GNPA on top of a static null-pointer analysis, NPA. Thus, we first formally present
a procedural imperative core language (PICL), used for both analyses to operate on; we
present NPA in Section 4, and GNPA in Section 5. PICL is akin to the intermediate
language of the Infer framework, and therefore the formal development around PICL drove
the implementation of the Infer GNPA checker we evaluate in Section 6.

3.1 Syntax & Static Semantics
The syntax of PICL can be found in Figure 2. Programs consist of procedures3, fields,
and statements. Statements include the empty statement, sequences, variable declarations,
variable and field assignments, conditionals, while loops, and returns. Expressions consist of
null literals, variables, comparisons, conjunctions, disjunctions, field accesses, object alloca-
tions, and procedure calls. Finally, procedures may have Nullable or NonNull annotations
on their arguments and return values. Missing annotations are represented by ?.

As the focus of this work is not on typing, we only consider well-formed and well-typed
programs, which is standard and not formalized here. In particular, variables are declared
and initialized before use, and field and procedure names are unique.

3.2 Control Flow Graph Representation
Well-formed programs written in the abstract syntax given in Fig. 2 are translated into control
flow graphs – one graph for each procedure body and one for the main s. A finite control
flow graph (CFG) for program p has vertices Vertp and edges Edgep ⊆ Vertp ×Vertp.
For v1, v2 ∈ Vertp, we write v1

p−→ v2 to denote (v1, v2) ∈ Edgep. Each vertex holds a
single instruction, which we can access using the function instp : Vertp → Inst. We write
[ι]v to denote a vertex v ∈ Vertp such that instp(v) = ι, or just [ι] (omitting the v) when
the vertex itself is not important. By construction, these translated CFGs satisfy certain
well-formedness properties, listed in the appendix of the full version of this paper [10].

The set of possible instructions is defined in Figure 3. In general, the CFG instructions are
atomic variants of program statements designed to simplify the analysis presentations. Figure
4 gives the CFG of a simple procedure foo, which calls bar repeatedly until x becomes non-null

3 Procedures accept only one parameter to simplify later formalisms.

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:7

x, y, z ∈ Var
a, b ∈ Ann = {Nullable, NonNull, ?}

m ∈ Proc
f ∈ Field

I ::= x := y | x := null | x := m@a(y@b) | x := new(f) | x := y ∧ z | x := y ∨ z

| x := y.f | x.f := y | branch x | if x | else x | return y@a | main
| proc m@a(y@b)

Figure 3 Abstract syntax of a CFG instruction.

1 ref@NonNull foo(ref@Nullable x)
2 {
3 while (x == null)
4 {
5 x := bar(x);
6 }
7 return x;
8 }

proc foo@NonNull(x@Nullable)

branch x

if xelse x

x := bar@?(x@?) return x@NonNull

Figure 4 Example CFG.

and then returns x. The CFG starts with foo’s entry node proc foo@NonNull(x@Nullable)
(similarly, main is always the entry node of the main program’s CFG). Then, the while loop
on lines 3–6 results in the branch x sub-graph, which leads to if x when x is non-null and
else x when x is null. The call to bar follows from else x and loops back to branch x as
expected. Finally, return x@NonNull follows from if x ending the CFG. Precise semantics
for instructions is given in Section 3.3.

3.3 Dynamic Semantics
We define the set of possible object locations as the set of natural numbers and 0, Val =
N ∪ {0}. The null pointer is location 0.

Now, a program state (Statep ⊆ Stackp ×Memp) consists of a stack and a heap. A
heap µ ∈ Memp = (Val \ {0}) ⇀ (Field ⇀ Val) maps object locations and field names
to program values – other (possibly null) pointers. A stack is made of stack frames each
containing a local variable environment and CFG node:

S ∈ Stackp ::= E · S | nil where E ∈ Framep = Env×Vertp

and Env = Var ⇀ Val.

Further, we restrict the set of states ξ = ⟨⟨ρ1, v1⟩ · ⟨ρ2, v2⟩ · · · ⟨ρn, vn⟩ · nil ∥ µ⟩ ∈ Statep

to include only those satisfying the following conditions:
1. Bottom stack frame is in main: Let descend : Vertp → P+(Vertp) give the descend-

ants of each node in the control flow graph. Then vi ∈ descend(v0) if and only if
i = n.

2. Every variable defaults to null (except on main and proc nodes): If instp(vi) ̸= main
and instp(vi) ̸= proc m@a(y@b) then ρi is a total function.

3. Follow the “true” branch when non-null: If instp(vi) = if y then ρi(y) ̸= 0.
4. Follow the “false” branch when null: If instp(vi) = else y then ρi(y) = 0.

ECOOP 2021

3:8 Gradual Program Analysis for Null Pointers

⟨⟨ρ, [x := y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ ρ(y)], v⟩ · S ∥ µ⟩
⟨⟨ρ, [branch y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, [branch(ρ(y), y)]v⟩ · S ∥ µ⟩
⟨⟨ρ, [if y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, v⟩ · S ∥ µ⟩
⟨⟨ρ, [else y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, v⟩ · S ∥ µ⟩
⟨⟨ρ, [x := m@a(y@b)]u⟩ · S ∥ µ⟩ −→p ⟨⟨∅, [proc m@a(y′@b)]⟩ · ⟨ρ, u⟩ · S ∥ µ⟩
⟨⟨ρ1, [proc m@a(y@b)]u⟩ · ⟨ρ2, [x := m@a(y′@b)]w⟩ · S ∥ µ⟩ −→p ⟨⟨ρ0[y 7→ ρ2(y′)], v⟩ · ⟨ρ2, w⟩ · S ∥ µ⟩
⟨⟨ρ1, [return y@a]⟩ · ⟨ρ2, [x := m@a(y′@b)]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ2[x 7→ ρ1(y)], v⟩ · S ∥ µ⟩ †
⟨⟨ρ, [x := null]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ 0], v⟩ · S ∥ µ⟩

⟨⟨ρ, [x := new(f)]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ new(µ)], v⟩ · S ∥ µ[new(µ) 7→ [fi 7→ null]]⟩
⟨⟨ρ, [x := y ∧ z]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ and(ρ(y), ρ(z))], v⟩ · S ∥ µ⟩
⟨⟨ρ, [x := y ∨ z]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ or(ρ(y), ρ(z))], v⟩ · S ∥ µ⟩
⟨⟨ρ, [x := y.f]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ µ(ρ(y))(f)], v⟩ · S ∥ µ⟩
⟨⟨ρ, [x.f := y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, v⟩ · S ∥ µ[ρ(x) 7→ [f 7→ ρ(y)]]⟩
⟨⟨ρ, [main]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ0, v⟩ · S ∥ µ⟩

Figure 5 Small-step semantics rules that hold when u
p−→ v. † This particular rule only applies

if either a = ? or ρ1(y) ∈ conc(a) (see Section 4).

5. Every frame except the top is a procedure call: If vi ∈ descend(proc m@a(y@b)) then
instp(vi+1) = x := m@a(y′@b), and either b = ? or ρi+1(y′) ∈ conc(b) (see section 4.

Now, the small-step semantics of PICL is given in Figure 5, where ρ0 = {x 7→ 0 : x ∈ Var}.
The rules rely on the following helper functions:

new : Memp → Val \ {0} new(µ) = 1 + max({0} ∪ dom(µ))
branch : Val×Var→ Inst branch(n, x) = if x if n > 0; else x otherwise

and : Val×Val→ Val and(n1, n2) = n2 if n1 > 0; n1 otherwise
or : Val×Val→ Val or(n1, n2) = n1 if n1 > 0; n2 otherwise

Notably, branch y steps to the if y node when y is non-null and else y when y is null.
Additionally, if a procedure call’s argument disagrees with its parameter annotation, then
it will get stuck (rule 5 for states); otherwise, the call statement will safely step to the
procedure’s body. In contrast, the semantics will get stuck if a return value does not agree
with the procedure’s return annotation.

4 A Static Null-Pointer Analysis for PICL

In this section, we formalize a static null-pointer analysis, called NPA, for PICL on which
we will build GNPA. Here, we will only consider completely annotated programs, Ann =
{Nullable, NonNull}. Therefore, we use a “prime” symbol for sets like Inst′ ⊆ Inst to
indicate that this is not the whole story. We present NPA’s semilattice of abstract values,
flow function, fixpoint algorithm, and how the analysis uses the results from the fixpoint
algorithm to report warnings to the user.

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:9

Nullable

Null NonNull

Figure 6 The Abst semilattice.

4.1 Semilattice of Abstract Values
The set of abstract values Abst = {Nullable, Null, NonNull} make up the finite semilattice
defined in Figure 6. The partial order ⊑ ⊆ Abst×Abst given is

Null ⊑ Nullable NonNull ⊑ Nullable ∀. l ∈ Abst . l ⊑ l.

The join function ⊔ : Abst×Abst→ Abst induced by the partial order is:

Null ⊔ NonNull = Nullable ∀. l ∈ Abst . l ⊔ Nullable = Nullable

∀. l ∈ Abst . l ⊔ l = l

Clearly, Nullable is the top element ⊤. Next, we relate this semilattice to Val via a
concretization function conc : Abst→ P+(Val):

conc(Nullable) = Val, conc(Null) = {0}, conc(NonNull) = Val \ {0},

which satisfies the property ∀. l1, l2 ∈ Abst . l1 ⊑ l2 ⇐⇒ conc(l1) ⊆ conc(l2).

4.2 Flow Function
Similar to how we use Env to represent mappings from variables to concrete values, we
will use σ ∈Map = Var ⇀ Abst to represent mappings from variables to abstract values –
abstract states. Then, we extend the semilattice’s partial order relation to abstract states
σ1, σ2 ∈Map:

σ1 ⊑ σ2 ⇐⇒ ∀. x ∈ Var . σ1(x) ⊑ σ2(x)

We also extend the join operation to abstract states σ1, σ2 ∈Map:

(σ1 ⊔ σ2)(x) =

a ⊔ b if σ1(x) = a and σ2(x) = b

a if σ1(x) = a and σ2(x) is undefined
b if σ1(x) is undefined and σ2(x) = b

undefined otherwise.

The NPA’s flow function flow : Inst′ ×Map → Map is defined in Figure 7. Note,
σ0 = {x 7→ Null : x ∈ Var}. Also, we omit the return y@a case because it does not have
CFG successors in a well-formed program.

4.2.1 Properties
It can be shown that this flow function is monotonic: for any ι ∈ Inst′ and abstract states
σ1, σ2 ∈ Map, if σ1 ⊑ σ2 then flowJιK(σ1) ⊑ flowJιK(σ2). It can also be shown that the
flow function is locally sound, i.e. the flow function models the concrete semantics at each

ECOOP 2021

3:10 Gradual Program Analysis for Null Pointers

flow(x := y, σ) = σ[x 7→ σ(y)]
flow(branch x, σ) = σ

flow(if x, σ) = σ[x 7→ NonNull]
flow(else x, σ) = σ[x 7→ Null]

flow(x := m@a(y@b), σ) = σ[x 7→ a]
flow(proc m@a(y@b), σ) = σ0[y 7→ b]

flow(x := null, σ) = σ[x 7→ Null]
flow(x := new(f), σ) = σ[x 7→ NonNull]

flow(x := y ∧ z, σ) =

σ[x 7→ Null] if Null ∈ {σ(y), σ(z)}
σ[x 7→ Nullable] if Nullable ∈ {σ(y), σ(z)}
σ[x 7→ NonNull] otherwise

flow(x := y ∨ z, σ) =

σ[x 7→ NonNull] if NonNull ∈ {σ(y), σ(z)}
σ[x 7→ Nullable] if Nullable ∈ {σ(y), σ(z)}
σ[x 7→ Null] otherwise

flow(x := y.f, σ) = σ[x 7→ Nullable][y 7→ NonNull]
flow(x.f := y, σ) = σ[x 7→ NonNull]

flow(main, σ) = σ0

Figure 7 All consequential cases of the flow function used by NPA.

step. To express this property formally, we define the predicate desc(ρ, σ) on Env×Map,
which says that the abstract state σ “describes” the concrete environment ρ:

desc(ρ, σ) ⇐⇒ for all x ∈ Var . ρ(x) ∈ conc(σ(x)).

Then, if ⟨S′ · ⟨ρ, [ι]v⟩ · S ∥ µ⟩ −→p ⟨⟨ρ′, v′⟩ · S ∥ µ′⟩, it must be the case that

desc(ρ, σ) =⇒ desc(ρ′, flowJιK(σ)) for all σ ∈Map.

4.3 Fixpoint Algorithm
This brings us to Algorithm 1 [16], which is used to analyze a program and compute whether
each program variable is Nullable, NonNull, or Null at each program point (the program
results π). More specifically, the algorithm applies the flow function to each program
instruction recording or updating the results until a fixpoint is reached – i.e. until the results
stop changing (becoming more approximate). The algorithm will always reach a fixpoint
(terminate), because flow is monotone and the height of the semilattice (Sec. 4.1) is finite.
Note, the algorithm does not specify the order in which instructions are analyzed, because
the order does not affect the results when flow is monotonic. An implementation may
choose to analyze instructions in CFG order – following the directed edges of the CFG.

4.4 Safety Function & Static Warnings
Next, we present a way to use analysis results π produced by the fixpoint algorithm to
determine whether to accept or reject a given program. Our goal is to ensure that when

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:11

Algorithm 1 Kildall’s worklist algorithm.

1: function Kildall(flow,⊔, p)
2: π ← {v 7→ ∅ : v ∈ Vertp}
3: V ← Vertp ▷ V ⊆ Vertp

4: while V ̸= ∅ do
5: [ι]v ← an element of V ▷ v ∈ V and ι = instp(v)
6: V ← V \ {v} ▷ v /∈ V

7: σ ← π(v)
8: σ′ ← flowJιK(σ)
9: for v

p−→ u do ▷ u ∈ Vertp

10: if σ′ ⊔ π(u) ̸= π(u) then ▷ think of as σ′ ̸⊑ π(u)
11: π(u)← π(u) ⊔ σ′

12: V ← V ∪ {u}
13: end if
14: end for
15: end while
16: return π

17: end function

safe(x := m@a(y@b), y) = b

safe(return y@a, y) = a

safe(x := y.f, y) = NonNull

safe(x.f := y, x) = NonNull

Figure 8 All nontrivial cases of the safety function.

we run the program, it will not get stuck; that is, for any state ξ that the program reaches,
we want to ensure that either ξ is a final state ⟨E · nil ∥ µ⟩ or there is another state ξ′ such
that ξ −→p ξ′. To do this, we define the safety function safeJιK(x) : Inst′ ×Var→ Abst,
which returns the abstract value representing the set of “safe” values x can take on before
ι is executed. Figure 8 gives a few representative cases for safe, and in all the cases not
shown safe returns Nullable. In particular, a procedure call’s argument must adhere to the
procedure’s parameter annotation, a return value must adhere to its corresponding return
annotation, and all field accesses must have non-null receivers. Therefore, the safety function
guards against all undefined behavior.

4.4.1 Static Warnings
Now, we can state the meaning of a valid program p ∈ Prog′:

for all [ι]v ∈ Vertp and x ∈ Var . π(v) = σ =⇒ σ(x) ⊑ safeJιK(x)

where π = Kildall(flow,⊔, p).

That is, NPA emits static warnings when the fixpoint results disagree, according to the
partial order ⊑, with the safety function. Also, we prove in Section 4.5 that a valid program
does not get stuck.

ECOOP 2021

3:12 Gradual Program Analysis for Null Pointers

4.5 Soundness of NPA

As discussed above, PICL’s semantics are designed to get stuck when procedure annotations
are violated or when null objects are dereferenced. Therefore, informally soundness says that
a valid program does not get stuck during execution. Formally, soundness is defined with
progress and preservation statements. Before their statement we must first define the notion
of valid states to complement our definition of valid programs:

Let p ∈ Prog′. A state ξ = ⟨⟨ρ1, v1⟩ · ⟨ρ2, v2⟩ · · · ⟨ρn, vn⟩ · nil ∥ µ⟩ ∈ Statep is valid if

for all 1 ≤ i ≤ n . desc(ρi, π(vi)) where π = Kildall(flow,⊔, p).

A state is valid if it is described by the static analysis results π.

▶ Proposition 1 (static progress). Let p ∈ Prog′ be valid. If ξ = ⟨E1 · E2 · S ∥ µ⟩ ∈ Statep

is valid then ξ −→p ξ′ for some ξ′ ∈ Statep.

▶ Proposition 2 (static preservation). Let p ∈ Prog′ be valid. If ξ ∈ Statep is valid and
ξ −→p ξ′ then ξ′ is valid.

5 Gradual Null-Pointer Analysis

In this section, we derive GNPA from NPA, presented previously (Sec. 4). We proceed
following the Abstracting Gradual Typing methodology introduced by Garcia et al. [14] in
the context of gradual type systems, adapting it to fit the concepts of static analysis.

We present the GNPA’s lifted semilattice (Sec. 5.1), flow and safety functions (Sec.
5.2), and fixpoint algorithm (Sec. 5.3). We also discuss how static (Sec. 5.4) and run-time
warnings (Sec. 5.5) are generated by the analysis. Finally, Section 5.6 establishes the main
properties of GNPA.

Note, here, annotations may be missing, so we extend our set of annotations with ?:
Ann = {NonNull, Nullable} ∪ {?}.

5.1 Lifting the Semilattice

In this section, we lift the semilattice (Abst, ⊑, ⊔) (Sec. 4.1) by following the Abstracting
Gradual Typing (AGT) framework [14]. First, we extend the set of semilattice elements
Abst to the new set flAbst ⊇ Abst:flAbst = Abst ∪ {?} ∪ {a? : a ∈ Abst} =

{Nullable, NonNull, Null, ?, NonNull?, Null?}.

Note that we equate the elements Nullable? and Nullable in flAbst. In Section 5.1.1,
we give the semantics of the new lattice elements resulting in ⊤ = Nullable? = Nullable.
If Abst had a bottom element ⊥, then ⊥ = ⊥? similarly.

The join ⊔ and partial order ⊑ are also lifted to their respective counterparts ⊔̃ (Sec.
5.1.2) and ‹⊑ (Sec. 5.1.3). The resulting lifted semilattice (flAbst, ⊔̃) with lifted relation ‹⊑
underpins the optimism in GNPA.

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:13

5.1.1 Giving Meaning to Missing Annotations

A straightforward way to handle ? would be to make it the top element ? = ⊤ or the bottom
element ? = ⊥ of NPA’s semilattice. However, neither choice is sufficient for our goal:

If ? = ⊥, then ? ⊑ a for all a ∈ Abst and conc(⊥) = ∅. As a result, if the return
annotation of a procedure was ?, then we could use the return value in any context
without the analysis giving a warning. But, anytime an initialized variable is checked
against the ? annotation, such as checking the non-null return value y against the ?
return annotation NonNull ⊑ ?, the check will fail as a ̸⊑ ? for all a ∈ Abst . a ̸= ⊥.
If we let ? = ⊤ then we have a ⊑ ? for all a ∈ Abst. Therefore, we can pass any argument
to a parameter annotated as ? without the static part of GNPA giving a warning. But, if
the return annotation of that procedure is ?, then the analysis will produce false positives
in caller contexts wherever the return value is dereferenced. In other words, our analysis
would operate exactly as PolyNull for the example in Fig. 1, which is not ideal.

Our goal is to construct an analysis system that does not produce false positive static
warnings when a developer omits an annotation. To achieve this, we draw on work in gradual
typing [14]. We define the injective concretization function γ : flAbst → P+(Abst) whereflAbst ⊇ Abst is the lifted semilattice element set (Sec. 5.1):

γ(a) = {a} for a ∈ Abst, γ(?) = Abst, and γ(a?) = {b ∈ Abst : a ⊑ b}.

An element in Abst is mapped to itself as it can only represent itself. In contrast, ? may
represent any element in Abst at all times to support optimism in all possible contexts.
Further, a? means “a or anything more general than it,” in contrast to a gradual formula
ϕ ∧ ? that means “ϕ or anything more specific than it” [2]. As a result, a? does not play the
intuitive role of “supplying missing information,” as it would in gradual verification. Instead,
a? is simply an artifact of our construction, which is why the only element of Ann \Abst is
?.

Then, if γ(ã) ⊆ γ(̃b) for some ã, b̃ ∈ flAbst, we write ã ≲ b̃ and say that ã is more
precise than b̃. Further, ι1 ≲ ι2 means that 1) the two instructions are equal except for
their annotations, and 2) the annotations in ι1 are more precise than the corresponding
annotations in ι2.

5.1.2 Lifted Join ⊔̃

We begin by introducing a semilattice definition [9], which states that a semilattice is an
algebraic structure (S,⊔) where for all x, y, z ∈ S the following hold:

x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z (associativity)
x ⊔ y = y ⊔ x (commutativity)
x ⊔ x = x (idempotency)

Then, we write x ⊑ y when x ⊔ y = y and it can be shown this ⊑ is a partial order. Recall
that NPA uses ⊔ in Algorithm 1 to compute a fixpoint that describes the behavior of a
program p. The fixpoint can only be reached when ⊔ is idempotent. Similarly, ⊔ must be
commutative and associative so that program instructions can be analyzed in any order. Thus,
our extended join operation ⊔̃ : flAbst×flAbst→flAbst must be associative, commutative,
and idempotent making (flAbst, ⊔̃) a join-semilattice.

ECOOP 2021

3:14 Gradual Program Analysis for Null Pointers

To define such a function we turn to insights from gradual typing [14]. We define an
abstraction function α : P+(Abst)→flAbst, which forms a Galois connection with γ:

α(Ûa) = γ−1

á
⋂

b̃∈flAbst
γ(b̃)⊇Ûa γ(̃b)

ë
where, for a ∈ Abst, γ−1 is:

γ−1({a}) = a γ−1(Abst) = ? γ−1({b ∈ Abst : a ⊑ b}) = a?.

Then we define the join of ã, b̃ ∈flAbst as follows:

ã ⊔̃ b̃ = α({a ⊔ b : a ∈ γ(ã) and b ∈ γ(̃b)})

For example,

NonNull ⊔̃ ? = α({a ⊔ b : a ∈ {NonNull} and b ∈ Abst}) (1)
= α({NonNull, Nullable}) (2)
= γ−1 (γ(NonNull?) ∩ γ(?)) (3)
= γ−1 ({NonNull, Nullable} ∩Abst) (4)
= γ−1 ({NonNull, Nullable}) (5)
= NonNull? (6)

That is, the join of all the Abst elements represented by NonNull and ? results in the
set {NonNull, Nullable} (1, 2). Applying α to this set is equivalent to applying γ−1 to
γ(NonNull?) ∩ γ(?) (3); because, the only flAbst elements that represent both NonNull and
Nullable are NonNull? and ?. The intersection of γ(NonNull?) and γ(?) is {NonNull,

Nullable} (4, 5), so we are really applying γ−1 to {NonNull, Nullable} (5). Therefore,
NonNull ⊔̃ ? = NonNull? (6). Notice, the intersection of the representative sets γ(NonNull?)
and γ(?) of {NonNull, Nullable} = Ûa is used to find the most precise element in flAbst that
can represent Ûa.

Now we return to the properties of ⊔̃. Since ⊔ is commutative, we have that ⊔̃ is
commutative. Idempotency is also not too onerous: it is equivalent to the condition that
every element of flAbst represents a subsemilattice of Abst. That is, for every ã ∈flAbst and
a1, a2 ∈ γ(ã), we must have a1 ⊔ a2 ∈ γ(ã). This is true by construction. Associativity is
tricky and motivates our complex definition of flAbst. Ideally, flAbst would be defined simply
as Abst ∪ {?}, however in this case ⊔̃ is not associative:

Null ⊔̃ (NonNull ⊔̃ ?) = Null ⊔̃ ?

= ?

̸= Nullable

= Nullable ⊔̃ ?

= (Null ⊔̃ NonNull) ⊔̃ ?.

Fortunately, our definition of flAbst which also includes the intermediate optimistic elements
NonNull? and Null? results in an associative ⊔̃ function and a finite-height semilattice
(flAbst, ⊔̃). Figure 9 shows the semilattice structure induced by ⊔̃.

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:15

Nullable

Null? NonNull?

?Null NonNull

Figure 9 The semilattice structure induced by the lifted join ⊔̃. Specifically, this is the Hasse
diagram of the partial order {(ã, b̃) : ã ⊔̃ b̃ = b̃}.

⊤
A?

A

?
B

B?

Figure 10 The lifted partial order, where each directed edge ã → b̃ means ã ‹⊑ b̃. (Self-loops
are omitted). Here, Nullable is abbreviated ⊤, and Null and NonNull are abbreviated A and B

respectively.

5.1.3 Lifted Order ‹⊑
Now it is fairly straightforward to construct ‹⊑. Recall, NPA emits static warnings when
the fixpoint results disagree with the safety function, according to the partial order ⊑.
The fixpoint results and the safety function now return elements in flAbst, so we lift ⊑ to‹⊑ ⊆flAbst×flAbst using the concretization function γ:

ã ‹⊑ b̃ ⇐⇒ ∃ . a ∈ γ(ã) and b ∈ γ(̃b) such that a ⊑ b for ã, b̃ ∈flAbst.

Figure 10 gives the lifted order relation ‹⊑ in graphical form.
The ‹⊑ predicate is a maximally permissive version of the ⊑ predicate for NonNull?,

Null?, and ?. For example, ? ‹⊑ NonNull since γ(?) = {NonNull, Null, Nullable},
γ(NonNull) = {NonNull}, and NonNull ⊑ NonNull. By similar reasoning, NonNull ‹⊑ ?.
In fact, ? ‹⊑ a ‹⊑ ?, NonNull? ‹⊑ a ‹⊑ NonNull?, and Null? ‹⊑ a ‹⊑ Null? for a ∈ Abst.
So, clearly ‹⊑ is not a partial order. The ‹⊑ predicate must be maximally permissive to
support the optimism used in the safeReverse example from Figure 1 (Sec. 2.2): calls
to safeReverse with null and non-null arguments are valid and dereferences of its return
values are also valid. However, ‹⊑ is the same as ⊑ when both of its arguments come from
Abst, e.g. NonNull ‹⊑ Nullable and Nullable ̸‹⊑ NonNull. This allows our gradual analysis
to apply NPA where annotations are complete enough to support it.

5.1.4 Properties
We previously mentioned some of the properties which (flAbst, ⊔̃) satisfy. Here, we formally
state them, and their proofs can be found in the appendix of the full version of this paper
[10].

▶ Proposition 3. (flAbst, ⊔̃) is a semilattice; in other words, ⊔̃ is associative, idempotent,
and commutative.

▶ Proposition 4. If the height of (Abst, ⊔) is n > 0, then the height of (flAbst, ⊔̃) is n + 1
(in particular, (flAbst, ⊔̃) has finite height).

ECOOP 2021

3:16 Gradual Program Analysis for Null Pointers

5.2 Lifting the Flow & Safety Functions
Now both instructions and abstract states (σ̃ ∈flMap = Var ⇀ flAbst) may contain optimistic
abstract values. Therefore, similar to lifting the join ⊔̃, we follow the AGT consistent function
lifting approach [14] when defining GNPA’s flow function flflow : Inst×flMap→flMap for
this new domain.

Specifically, for ι ∈ Inst and σ̃ = {x 7→ ãx : x ∈ Var} ∈flMap, we defineflflowJz := m@a(y@b)K(σ̃) = {x 7→ α({(flowJz := m@a′(y@b′)K(σ′))(x)
: a′ ∈ γ(a) ∧ b′ ∈ γ(b) ∧ σ′ ∈ Σ}) : x ∈ Var}flflowJproc m@a(y@b)K(σ̃) = {x 7→ α({(flowJproc m@a′(y@b′)K(σ′))(x)
: a′ ∈ γ(a) ∧ b′ ∈ γ(b) ∧ σ′ ∈ Σ}) : x ∈ Var}flflowJιK(σ̃) = {x 7→ α({(flowJιK(σ′))(x) : σ′ ∈ Σ}) : x ∈ Var} otherwise

where Σ = {{x 7→ ax : x ∈ Var} : ax ∈ γ(ãx) for all x ∈ Var}.

Note that the procedure call and procedure entry instructions are the only instructions in
flow’s domain that may contain ? annotations, so the corresponding flow rules are lifted
with respect to those annotations. Similarly, all rules are lifted with respect to their abstract
states.

Recall that we defined the predicate desc on Env×Map to express the local soundness of
flow. For flflow, we lift desc to fldesc on Env×flMap such that it is maximally permissive
like the ‹⊑ predicate:fldesc(ρ, σ̃) ⇐⇒ desc(ρ, σ) for some σ ∈ Σ

where Σ is constructed in the same way as for flflow.

Finally, we again follow the consistent function lifting methodology to construct flsafe :
Inst×Var→flAbst from safe : Inst′ ×Var→ Abst:flsafeJz := m@a(y@b)K(x) = α({safeJz := m@a′(y@b′)K(x) : a′ ∈ γ(a) ∧ b′ ∈ γ(b)})flsafeJproc m@a(y@b)K(x) = α({safeJproc m@a′(y@b′)K(x) : a′ ∈ γ(a) ∧ b′ ∈ γ(b)})flsafeJreturn y@aK(x) = α({safeJreturn y@a′K(x) : a′ ∈ γ(a)})flsafeJιK(x) = α(safeJιK(x)) otherwise

Other than the casewise-defined flow rules for ∧ and ∨, the lifted flflow and flsafe
functions simplify down to the same computation rules as flow and safe as shown in
Figure 7 and Figure 8 respectively, replacing flow with flflow and safe with flsafe.

5.3 Lifting the Fixpoint Algorithm
To lift the fixpoint algorithm, we simply plug flflow and ⊔̃ into Algorithm 1 to compute
π̃ = Kildall(flflow, ⊔̃, p) : Vertp →flMap for any p ∈ Prog.

5.4 Static Warnings
Using the lifted safety function, we say that a partially-annotated program p ∈ Prog is
statically valid if

for all [ι]v ∈ Vertp and x ∈ Var, π̃(v) = σ̃ =⇒ σ̃(x) ‹⊑flsafeJιK(x)

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:17

where π̃ = Kildall(flflow, ⊔̃, p).

Each piece of GNPA’s static system ((flAbst, ⊔̃), ‹⊑, flflow, flsafe, and the fixpoint algorithm)
is designed to be maximally optimistic for missing annotations. Therefore, the resulting
system will not produce false positive warnings due to missing annotations. The system is
also designed to apply NPA where annotations are available to support it, so it will still warn
about violations of procedure annotations or null object dereferences where possible. See
Section 2.2 for more information.

5.5 Dynamic Checking
GNPA’s static system reduces false positive warnings at the cost of soundness. For example,
as in Section 2.3, the analysis may assume a variable with a ? annotation is non-null to satisfy
an object dereference when the variable is actually null. In order to avoid false negatives
and ensure that our gradual analysis is sound, we modify the semantics of PICL to insert
run-time checks where the analysis may be unsound. That is, if p is statically valid and there
are program points [ι]v such that

a ̸⊑
⊔

γ(flsafeJιK(x)) for some x ∈ Var and a ∈ γ((π̃(v))(x)),

then a run-time check must be inserted at those points to ensure the value of x is in
conc(

⊔
γ(flsafeJιK(x))).

More precisely, we define a dedicated error state error and expand the set of run-time
states to be ‡Statep = Statep ∪ {error}. Then we define a restricted semantics −̃→p on‡Statep ×‡Statep as follows. Let ξ ∈ Statep. If

ξ = ⟨⟨ρ, [ι]⟩ · S ∥ µ⟩ and ¬fldesc(ρ, {x 7→flsafeJιK(x) : x ∈ Var})

then ξ −̃→p error. If there is some ξ′ ∈ Statep such that ξ −→p ξ′, then ξ −̃→p ξ′.
Otherwise, there is no ξ̃′ ∈‡Statep such that ξ −̃→p ξ′.

5.6 Gradual Properties
GNPA is sound, conservative extension of NPA – the static system is applied in full to
programs with complete annotations, and adheres to the gradual guarantees inspired by Siek
et al. [23]. The gradual guarantees ensure losing precision is harmless, i.e. increasing the
number of missing annotations in a program does not break its validity or reducibility.

To formally present each property, we first extend the notion of a valid state. Let
p ∈ Prog. A state ξ = ⟨⟨ρ1, v1⟩ · ⟨ρ2, v2⟩ · · · ⟨ρn, vn⟩ · nil ∥ µ⟩ ∈ Statep is valid if

for all 1 ≤ i ≤ n, fldesc(ρi, π̃(vi)) where π̃ = Kildall(flflow, ⊔̃, p).

Then, for fully-annotated programs, GNPA and the modified semantics are conservative
extensions of NPA and PICL’s semantics, respectively.

▶ Proposition 5 (conservative static extension).
If p ∈ Prog′ then Kildall(flow,⊔, p) = Kildall(flflow, ⊔̃, p).

▶ Proposition 6 (conservative dynamic extension). Let p ∈ Prog′ be valid, and let ξ1, ξ2 ∈
Statep. If ξ1 is valid then ξ1 −→p ξ2 if and only if ξ1 −̃→p ξ2.

GNPA is sound, i.e. valid programs will not get stuck during execution. However,
programs may step to a dedicated error state when run-time checks fail. Soundness is stated
with a progress and preservation argument.

ECOOP 2021

3:18 Gradual Program Analysis for Null Pointers

▶ Proposition 7 (gradual progress). Let p ∈ Prog be valid. If ξ = ⟨E1 ·E2 ·S ∥ µ⟩ ∈ Statep

is valid then ξ −̃→p ξ̃′ for some ξ̃′ ∈‡Statep.

▶ Proposition 8 (gradual preservation). Let p ∈ Prog be valid. If ξ ∈ Statep is valid and
ξ −̃→p ξ′ for some ξ′ ∈ Statep, then ξ′ is valid.

Finally, GNPA satisfies both the static and dynamic gradual guarantees. Both of the
guarantees rely on a definition of program precision. Specifically, if programs p1 and p2 are
identical except perhaps that some annotations in p2 are ? where they are not ? in p1, then
we say that p1 is more precise than p2, and write p1 ≲ p2.

Then, the static gradual guarantee states that increasing the number of missing annotations
in a valid program does not introduce static warnings (i.e. break program validity).

▶ Proposition 9 (static gradual guarantee). Let p1, p2 ∈ Prog such that p1 ≲ p2. If p1 is
statically valid then p2 is statically valid.

The dynamic gradual guarantee ensures that increasing the number of missing annotations
in a program does not change the observable behavior of the program (i.e. break program
reducibility for valid programs).

▶ Proposition 10 (dynamic gradual guarantee). Let p1, p2 ∈ Prog be statically valid, where
p1 ≲ p2. Let ξ1, ξ2 ∈ Statep2 . If ξ1 −̃→p1 ξ2 then ξ1 −̃→p2 ξ2.

Note, the small-step semantics −̃→ are designed to make the proofs of the aforementioned
properties easier at the cost of easily implementable run-time checks. Therefore, we give
the following proposition that connects a more implementable design to −̃→. That is, we
can use the contrapositive of this proposition to implement more optimal run-time checks.
Specifically, the naïve implementation would check each variable at each program point
to make sure it satisfies the safety function for the instruction about to be executed. But
Proposition 1 tells us that we only need to check variables at runtime when our analysis
results don’t already guarantee (statically) that they will satisfy the safety function.

▶ Proposition 11 (run-time checks). Let p ∈ Prog be valid according to π̃ =
Kildall(flflow, ⊔̃, p), and let ξ = ⟨⟨ρ, [ι]v⟩ · S ∥ µ⟩ ∈ Statep be valid. If ξ −̃→p error then
there is some x ∈ Var and a ∈ γ((π̃(v))(x)) such that a ̸⊑

⊔
γ(flsafeJιK(x)).

6 Preliminary Empirical Evaluation

In this section, we discuss the implementation of GNPA and two studies designed to evaluate
its usefulness in practice. Preliminary evidence suggests that our analysis can be used at
scale, produces fewer false positives than state-of-the-art tools, and eliminates on average
more than half of the null-pointer checks Java automatically inserts at run time. These
results illustrate an important practical difference between GNPA and other null-pointer
analyses. While a sound static analysis can be used to prove the redundancy of run-time
checks, and an unsound static analysis can be used to reduce the number of false positives,
neither of those can do both at the same time. On the other hand, GNPA can both prove
the redundancy of run-time checks and reduce reported false positives

6.1 Research Questions
We seek answers to the following questions:
1. Can a gradual null-pointer analysis be effectively implemented and used at scale?

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:19

Nullable

NonNull

Nullable

?

NonNull

Nullable

?

NonNull

Figure 11 Left: The starting null-pointer semilattice for Graduator. Middle: The lifted partial
ordering, where each directed edge ã → b̃ means ã ‹⊑ b̃. (Self-loops are omitted.) Right: The
semilattice structure induced by the lifted join ⊔̃.

2. Does such a null-pointer analysis produce fewer false positives than industry-grade
analyses?

3. Does the gradual null-pointer analysis perform significantly fewer null-pointer checks than
the naïve approach of checking every dereference?

6.2 Prototype
Facebook Infer provides a framework to construct static analyses that use abstract interpret-
ation. We built a prototype of GNPA, called Graduator, in this framework. Our prototype
uses Infer’s HIL intermediate language representation (IR). As a result, Graduator can be
used to analyze code written in C, C++, Objective-C, and Java.

The preceding case study (Secs. 3–5) uses a base semilattice with three elements, Null,
NonNull, and Nullable, in order to demonstrate that a semilattice lifting may contain
additional intermediate optimistic elements, Null? and NonNull?. For simplicity, we
implemented the semilattice from Figure 11, along with its lifted variant, order relation and
join function, in our prototype. This semilattice is the same as the base one in the case
study except it does not contain Null: the initial static semilattice has only NonNull and
Nullable, and the gradual semilattice only adds one additional ? element. There are a
couple other differences between our formalism and our Graduator prototype, one of which
is that Graduator allows field annotations while our formalism does not.

Infer does not support modifying Java source code, so Graduator simply reports the
locations where it should insert run-time checks rather than inserting them directly. In fact,
Graduator may output any of the following:

GRADUAL_STATIC – a static warning.
GRADUAL_CHECK – a location to check a possibly-null dereference.
GRADUAL_BOUNDARY – another location to insert a check, such as passing an argument to
a method, returning from a method, or assigning a value to a field.

Since Java checks for null-pointer dereferences automatically, soundness is preserved. A more
complete implementation of GNPA would insert run-time checks as part of the build process.
As a result, some bugs may be caught earlier when the gradual analysis inserts checks at
method boundaries and field assignments.

By implementing Graduator with Infer’s framework, Graduator is guaranteed to operate
at scale. We also evaluate Graduator on a number of open source repositories as discussed in
Sections 6.3 and 6.4. Thus, the answer to RQ1 is yes.

6.3 Static Warnings
To evaluate Graduator, we ran it on 15 of the 18 open-source Java repositories used to
evaluate NullAway [3] (we excluded 3 of the 18 repositories because we were unable to

ECOOP 2021

3:20 Gradual Program Analysis for Null Pointers

Eradicate

Graduator NullSafe

NullAway0
1229

126 4741

159
81 20

Figure 12 The total number of static warnings reported by the three Infer null checkers, for all
15 repositories.

successfully run Infer on them). We also ran NullAway, and Infer’s existing null-pointer
checkers Eradicate and NullSafe, on the repositories. Figure 12 shows the number of static
warnings produced by each of these three checkers: 1489 for Eradicate, 654 for NullSafe, 228
for Graduator, and 0 for NullAway, for a total of 2371.

Based on the NullAway paper (in which Uber states that in practice they have found no
instances of null-pointer dereferences caused by their tool’s unsoundness), it seems reasonable
to assume that these repositories do not have null-pointer bugs, since NullAway itself
reports no static warnings for these repositories. After examining all 2371 warnings ourselves,
we found that all but 57 (50 from Eradicate only, 2 from Graduator only, and 5 from Eradicate
and Graduator but not NullSafe) were false positives due to systematic imprecision in the
analysis tools. We were unable to determine whether the remaining 57 warnings represent
actual bugs or not.

Under this assumption, Graduator reports significantly fewer false positives than Infer’s
existing null-pointer checkers (although in this respect, it is of course outperformed by
NullAway) (RQ2). An interesting aspect of Figure 12 is how many warnings are produced
by only one of the checkers: 1229 for Eradicate, 474 for NullSafe, and 126 for Graduator.
Many of these warnings arose from generated and test case code.

6.3.1 Generated Code
Several of the 15 repositories generate code as part of their build process, and in some cases,
the analysis tools gave warnings about the generated code. This accounts for

380 of the warnings given by NullSafe alone,
356 of the warnings given by Eradicate alone,
130 of the warnings given by both Eradicate and NullSafe but not Graduator, and
8 of the warnings given by Graduator alone.

Graduator reports significantly fewer static warnings for generated code, because such code
is typically unannotated and Graduator is designed to be optimistic when annotations are
missing.

6.3.2 Test Code
It is reasonable to assume that test code does not contain null dereference bugs, because if it
did, then those bugs would show up when the tests are run. Static warnings about test code
account for

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:21

Table 1 Percentage of null-dereference checks which Graduator found to be redundant.

repository dereference sites eliminated checks percent eliminated
keyvaluestore 419 156 37%
uLeak 620 241 39%
butterknife 2773 1129 41%
jib 5896 2499 42%
skaffold-tools-for-java 366 185 51%
picasso 2719 1458 54%
meal-planner 858 475 55%
caffeine 9455 5701 60%
AutoDispose 3218 1993 62%
ColdSnap 6360 4325 68%
ReactiveNetwork 2097 1626 78%
okbuck 19089 15130 79%
FloatingActionButtonSpeedDial 3049 2581 85%
QRContact 1272 1171 92%
OANDAFX 2216 2056 93%
overall 60407 40726 67%

384 of the warnings given by Eradicate alone, and
73 of the warnings given by both Eradicate and Graduator, but not NullSafe.

That is, Graduator reports fewer warnings for test code than Eradicate, but more than
NullSafe. The NullSafe checker does not appear to treat test code specially, so it is unclear
why NullSafe is performing better than Graduator for such code.

6.3.3 Remaining False Positives
The reader may wonder why Graduator reports any false positives on this codebase, since
it intuitively seems that the static portion of a gradual analysis ought to be optimistic.
Examining the warnings given by Graduator, we see that none of the warnings are due
to treating missing annotations pessimistically; instead, they are due to places where the
analysis has whatever annotations it needs, but the analysis is imprecise in other respects. For
example, one common source of false positives is when a field is checked for null, then is read
again. Our original static analysis is limited in that it does not treat fields flow-sensitively,
causing false positives that are independent of the choice to be gradual or not with respect
to annotations.

NullAway avoids giving false positives on this same codebase, due to a combination of
some unsound assumptions and a more precise analysis approach. While our approach for
deriving gradual program analyses focuses on retaining soundness through a combination
of static and dynamic checks, incorporating more precise analysis techniques (e.g. a flow-
sensitive treatment of fields, perhaps in combination with a gradual alias analysis) could
eliminate more of these false positives. In the meantime, our comparison to Eradicate and
NullSafe is appropriate as these are the static analysis tools taking the most similar approach.

6.4 Run-time Checks
For the same set of 15 repositories analyzed by NullAway, we performed another experiment
using our prototype. We configured Graduator to ignore all annotations, so in effect, every
field, argument, and return value was annotated as ?. For each repository, we counted all the
locations where Graduator gave a GRADUAL_STATIC, GRADUAL_CHECK, or GRADUAL_BOUNDARY

ECOOP 2021

3:22 Gradual Program Analysis for Null Pointers

warning, and compared that number to the total number of pointer dereferences in the code.
By ignoring annotations, we ensured that each of these warnings appeared on dereferences,
rather than allowing early checks at, e.g., method boundaries. We also ran analogous
experiments with annotations enabled, but the number of run-time check warnings found
were very similar to the numbers found with annotations disabled.

Table 1 shows what percentage of these dereference sites received no static warnings or
run-time checks. Recall that Java automatically checks all dereferences to ensure that they
are not null. Because GNPA is sound, this figure shows the percentage of null checks that
are provably redundant, and could be safely removed by an ahead-of-time compiler.

Since we were able to eliminate an average of 67% of the null checks which Java automat-
ically inserts, this experiment suggests the answer to RQ3 is yes. Note that these numbers
only discuss the number of dereferences that appear in the code, and do not take into account
which of these dereferences are executed more or less frequently at run-time.

This also illustrates an important practical difference between GNPA and other null-
pointer analyses. While a sound static analysis can be used to prove the redundancy of
run-time checks, and an unsound static analysis can be used to reduce the number of false
positives, neither of those can do both at the same time. On the other hand, a gradual
analysis can both prove the redundancy of run-time checks and reduce reported false positives.

7 Related Work

As discussed previously, our work builds on prior research in gradual typing: the criteria
for gradual type systems [23] and the Abstracting Gradual Typing methodology, which
develops a gradual type system from a purely static one [14]. In contrast to prior work in
gradual typing, we address the challenges of tracking transitive dataflow relationships, rather
than the local checks of typical type systems. In doing so, we gradualize, for the first time,
the abstract interpretation of a program [8], and the canonical dataflow analysis fix-point
algorithm [16].

The most closely related work in program analysis consists of hybrid analyses, which
combine static and dynamic analysis techniques to counteract the weaknesses inherent to
each approach. For example, Choi et al. [7] used a static analysis to substantially lower
the run-time overhead of a dynamic data race analysis. Prior work on hybrid program
analyses combines static and dynamic techniques in ad-hoc ways. Instead, we propose a
principled methodology for deriving a hybrid (gradual) analysis from a static one, and show
that the resulting analysis adheres to desirable properties such as soundness and the gradual
guarantee.

There is a large body of literature on static program analysis, including multiple specialized
conferences. Our work opens the door to gradual versions of them. Previously, we discussed
existing null-pointer analysis tools [11], [3] and frameworks [21], and how GNPA is an
improvement over them. Notably, our prototype is implemented in Infer’s framework [11].

The Granullar type system [5] and the Blame for Null calculus[19] are gradual type
systems for nullness, and thus solve a related problem to GNPA. The main difference in
our work is that we use dataflow analysis instead of typing. This results in a significantly
different user experience, as a full static specification within a gradual type system typically
requires many more types to be specified (e.g. on all local variables) compared to a dataflow
analysis, where for example we do not require (or even allow) nullity annotations on local
variables. Basing our work on dataflow analysis also has a major impact on the technical
development, requiring the novel lattice-based gradualization framework described in this

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:23

paper rather than the well-known type-based gradualization approaches used in Granullar
and Blame for Null. Blame for Null also investigates the notion of blame, which we leave for
future work in the program analysis setting.

Contract checking [18, 13] can be used to check properties like nullness. Building on the
idea of hybrid type checking [17], Xu et al. [25] explored how to check contracts using a
hybrid of static and dynamic analysis. Their work was specialized to the context of logical
assertions, whereas we are in the area of lattice-based program analyses. It is also unclear
whether their approach conforms to the gradual guarantee.

O’Hearn et al. [20] proposed Incorrectness Logic as a means of proving that a program
has a bug, rather than proving it correct. This is consistent with our goal of reducing false
positives, but it stays in the realm of static reasoning, and therefore gives up soundness. In
contrast, we reduce false positives without giving up soundness by adding run-time checks.

8 Conclusion

This paper is the first work on gradual program analysis. We introduced a framework
which transforms abstract interpretation based static analyses relying on annotations into
gradual ones. Gradual analyses handle missing annotations specially, allowing them to
smoothly leverage both static and dynamic techniques. Static information is used where
possible and dynamic information where necessary to reduce false positives while preserving
soundness. Such analyses are also conservative extensions of their underlying static analyses
and adhere to gradual guarantees, which state that losing precision is harmless. When
presenting our framework, we developed a gradual null-pointer analysis, GNPA, with the
previously mentioned properties that reduces false positives compared to some popular
existing tools.

Importantly, the gradual framework can be applied as described to any abstract inter-
pretation based static analysis under the following restrictions. The analysis should support
annotations, have a finite-height semilattice, a monotonic, locally-sound flow function, a
safety function, and operate on a first-order, procedural, imperative programming language.
Additionally, checking membership in the semilattice should be decidable. Thus, initial
followup work could include gradual taint analysis, to which our framework immediately
applies. Finally, we do not support widening, but we do support context-sensitivity. In the
future, we plan to explore extensions of our framework for infinite-height semilattices and
widening; this would allow gradualization of other analyses, such as interval analysis. Still
further work could include, for instance, pointer analyses, which do not have analogues in
the field of gradual typing.

On the empirical side, there are further research questions to be answered: How often
does a gradual analysis catch bugs statically versus how often does it catch them at run time?
Is performance lost or gained when run time checks are inserted earlier via annotations rather
than just-in-time? Finally, a gradual analysis will still report false positives anywhere its
base static analysis is utilized and reports false positives. As a result, we plan to explore the
aforementioned research questions, including the trade-off between gradual analyses reducing
false positives and being conservative extensions of underlying static analyses.

References

1 Nathaniel Ayewah and William Pugh. The google findbugs fixit. In Proceedings of the 19th
international symposium on Software testing and analysis, pages 241–252, 2010.

ECOOP 2021

3:24 Gradual Program Analysis for Null Pointers

2 Johannes Bader, Jonathan Aldrich, and Éric Tanter. Gradual program verification. In
International Conference on Verification, Model Checking, and Abstract Interpretation, pages
25–46. Springer, 2018.

3 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical type-based null
safety for java. arXiv preprint arXiv:1907.02127, 2019.

4 Mike Barnett, Manuel Fahndrich, Francesco Logozzo, and Diego Garbervet-
sky. Annotations for (more) precise points-to analysis. In IWACO 2007, Janu-
ary 2007. URL: https://www.microsoft.com/en-us/research/publication/
annotations-for-more-precise-points-to-analysis/.

5 Dan Brotherston, Werner Dietl, and Ondřej Lhoták. Granullar: Gradual nullable types for
java. In Proceedings of the 26th International Conference on Compiler Construction, CC 2017,
pages 87–97, New York, NY, USA, 2017. ACM. doi:10.1145/3033019.3033032.

6 Patrice Chalin and Perry R James. Non-null references by default in java: Alleviating the
nullity annotation burden. In European Conference on Object-Oriented Programming, pages
227–247. Springer, 2007.

7 Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu
Sridharan. Efficient and precise datarace detection for multithreaded object-oriented programs.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, PLDI ’02, page 258–269, New York, NY, USA, 2002. Association for
Computing Machinery. doi:10.1145/512529.512560.

8 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the 4th ACM Symposium on Principles of Programming Languages (POPL 77), pages 238–252,
Los Angeles, CA, USA, January 1977. ACM.

9 Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge university
press, 2002.

10 Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader, and Joshua Sunshine.
Gradual program analysis for null pointers, 2021. arXiv:2105.06081.

11 Facebook. Infer: A tool to detect bugs in java and c/c++/objective-c code before it ships.
https://fbinfer.com/, 2019. Accessed: 2019-10-28.

12 Facebook. Eradicate. https://fbinfer.com/docs/checker-eradicate, 2020. Accessed:
2021-1-10.

13 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Proceedings of the 7th ACM SIGPLAN Conference on Functional Programming (ICFP 2002),
pages 48–59, Pittsburgh, PA, USA, 2002. ACM.

14 Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, pages 429–442, New York, NY, USA, 2016. ACM. doi:10.1145/
2837614.2837670.

15 Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In Proceedings of the 2013
International Conference on Software Engineering, pages 672–681. IEEE Press, 2013.

16 Gary A Kildall. A unified approach to global program optimization. In Proceedings of the 1st
annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
194–206. ACM, 1973.

17 Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Transactions on
Programming Languages and Systems (TOPLAS), 32(2):1–34, 2010.

18 Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.
19 Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták. Blame for null. In

European Conference on Object-Oriented Programming, 2020.
20 Peter W O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages,

4(POPL):1–32, 2019.

https://www.microsoft.com/en-us/research/publication/annotations-for-more-precise-points-to-analysis/
https://www.microsoft.com/en-us/research/publication/annotations-for-more-precise-points-to-analysis/
https://doi.org/10.1145/3033019.3033032
https://doi.org/10.1145/512529.512560
http://arxiv.org/abs/2105.06081
https://fbinfer.com/
https://fbinfer.com/docs/checker-eradicate
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670

S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 3:25

21 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for java. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 201–212, 2008.

22 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

23 Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. Refined criteria
for gradual typing. In LIPIcs-Leibniz International Proceedings in Informatics, volume 32.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

24 Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua
Sunshine. Gradual verification of recursive heap data structures. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–28, 2020.

25 Dana N Xu. Hybrid contract checking via symbolic simplification. In Proceedings of the ACM
SIGPLAN 2012 workshop on Partial evaluation and program manipulation, pages 107–116,
2012.

ECOOP 2021

Covariant Conversions (CoCo): A Design Pattern
for Type-Safe Modular Software Evolution in
Object-Oriented Systems
Jan Bessai # Ñ

Technische Universität Dortmund, Germany

George T. Heineman # Ñ

Worcester Polytechnic Institute, MA, USA

Boris Düdder #

University of Copenhagen, Denmark

Abstract

Software evolution is an essential challenge for all software engineers, typically addressed solely using
code versioning systems and language-specific code analysis tools. Most versioning systems view the
evolution of a system as a directed acyclic graph of steps, with independent branches that could be
merged. What these systems fail to provide is the ability to ensure stable APIs or that each subsequent
evolution represents a cohesive extension yielding a valid system. Modular software evolution ensures
that APIs remain stable, which is achieved by ensuring that only additional methods, fields, and
data types are added, while treating existing modules through blackbox interfaces. Even with
these restrictions, it must be possible to add new variations, fields, and methods without extensive
duplication of prior module code. In contrast to most literature, our focus is on ensuring modular
software evolution using mainstream object-oriented programming languages, instead of resorting
to novel language extensions. We present a novel CoCo design pattern that supports type-safe
covariantly overridden convert methods to transform earlier data type instances into their newest
evolutionary representation to access operations that had been added later. CoCo supports both
binary methods and producer methods. We validate and contrast our approach using a well-known
compiler construction case study that other researchers have also investigated for modular evolution.
Our resulting implementation relies on less boilerplate code, is completely type-safe, and allows
clients to use normal object-oriented calling conventions. We also compare CoCo with existing
approaches to the Expression Problem. We conclude by discussing how CoCo could change the
direction of currently proposed Java language extensions to support closed-world assumptions about
data types, as borrowed from functional programming.

2012 ACM Subject Classification Software and its engineering → Software evolution; Software
and its engineering → Design patterns; Software and its engineering → Abstraction, modeling and
modularity

Keywords and phrases Expression problem, software evolution, type safety, producer method, binary
method

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.4

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.4
Software: http://doi.org/10.5281/zenodo.4756838 [2]

Acknowledgements We would like to thank the reviewers of earlier versions of this paper for their
carefully thought out, detailed reviews, as well as the many constructive remarks. They helped
to improve our presentation, the artifacts, and the pattern drastically. Special thanks go to the
reviewer who suggested to mitigate “parameterization boilerplate” with type members.

Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Jan Bessai, George T. Heineman, and Boris Düdder;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jan.Bessai@tu-dortmund.de
https://ls14-www.cs.tu-dortmund.de/cms/de/mitarbeiter/wimis/Bessai.html
mailto:heineman@wpi.edu
https://www.wpi.edu/people/faculty/heineman
mailto:boris.d@di.ku.dk
https://orcid.org/0000-0002-0241-7729
https://doi.org/10.4230/LIPIcs.ECOOP.2021.4
https://doi.org/10.4230/DARTS.7.2.4
https://doi.org/10.4230/DARTS.7.2.4
http://doi.org/10.5281/zenodo.4756838
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

1 Introduction

This paper presents a novel solution to the well-known Expression Problem (EP) [29], a
research problem common to the fields of programming language design, multi-dimensional
product line design, and software engineering. EP offers a concise representation of the
challenge in implementing a system that evolves over time. The goal is to enable additive
modular software evolution for data types and their methods.
The research community has identified a number of mandatory qualities that any approach
must satisfy [27, 31]:

It must be possible to add new variations, attributes, and methods to data types without
changing existing software modules.
Evolved modules must not duplicate the code of prior modules, so potential errors can be
found and fixed locally.
Hierarchical grouping of data types is an important feature of object-oriented programming
that must remain intact. When a method implementation is the same for a subset of the
hierarchy, it must not be necessary to repeat its definition.
Modules must be able to evolve concurrently in branches to reflect the fact that indepen-
dent features can be developed independently, possibly by different developers. It must
be possible to merge these branches later so that work does not need to be duplicated.

Large systems must be able to deal with evolving dependencies without the need to rewrite
existing code. This justifies the initial requirement of additive evolution, where data types
and methods are considered incrementally without breaking APIs by refactoring, for example,
by removing or renaming their components. Even as the software system evolves, developers
must still be able to rely on compile-time checks to ensure completeness of evolutionary steps;
in particular, static type-safety shall guarantee that methods are declared for all data type
variants of their domain. Missing implementations shall be reported in a human-readable
way at compile-time.

Solutions that apply to existing programming languages are preferable because they may
provide immediate benefit to existing systems. Language extensions and new programming
languages typically require years to manifest themselves in practice. They also often require
rewrites of entire projects, which risk the well-known second-system effect [15]. This is also
true of solutions which require code that diverges from the idiomatic use of its programming
language, for example, by creating an embedded domain-specific language. There must be
no restriction on the form of methods which can be added. There must be no exclusion of
binary methods (methods that take data types of the evolving domain as input) or producer
methods (methods which produce instances of data types in the evolving domain).

As presented in Section 2, the CoCo design pattern:
Enables method signatures (the API) of domain logic to be stable, even when the
types used in them evolve. This is facilitated by a conversion method that grants
access to evolved APIs of types. It is covariantly overridden (hence the name Covariant
Conversions) during the evolution process and integrated into a pattern of factories and
delayed instantiation that allows implementing it safely.
Operates fully within the constraints described above, as validated in several case studies
in Section 3.
Supports hierarchical grouping with method-deduplication [33].
Relies only on inheritance, interfaces with default methods, and parametric polymor-
phism (without type bounds), which are common features of mainstream object-oriented
languages [33], such as Java, Scala, and C#.
Allows programmers to write idiomatic code in object-oriented languages to construct
objects and invoke operations with method calls [30].

J. Bessai, G. T. Heineman, and B. Düdder 4:3

Figure 1 Example modeling XML components with multiple hierarchical classes, binary methods
addChild, setChildren, sameRootElements and producer methods deepClone, getChildren, and getRoot-
Tag.

Enables mergeable evolutionary branches [31], where developer teams can independently
work on extensions that can be merged without changing or recompiling any existing
code. This capability is a notable extension to EP [29] and guarantees future reusability
within the code base.

Section 4 discusses how the CoCo design pattern takes a unique position in the known
design space of possible solutions, where related approaches do not provide a solution to all
extended constraints of EP as described above. Section 5 concludes with some remarks on
pathways to broader adoption of CoCo.

2 Design Pattern

Let us consider a basic class hierarchy shown in Figure 1 to see why the CoCo design pattern
is useful and how it would be applied. Assume that we want to design some classes to
model XML data. We restrict ourselves to a subset of the possibilities of XML, which is
interesting for demonstrating the various EP aspects discussed earlier. Figure 2 illustrates the
intended use of the classes in Figure 1 with a simple XML document and its representation
by a newly constructed object tree. An abstract base class XML is extended by classes
Tag and Text as well as another abstract subdomain base class Document, which has a
single subclass SingleRoot. The XML base class defines operations that all XML elements
support. Method hasElem searches for a desired text in an XML element and its children.
Calling hasElem on the example document from Figure 2 would return true for arguments
“CoCo”, and “relatedPattern”, but false for “Visitor” or “related”. As a convenience,
the default-implemented method notHasElem confirms that the desired text is not present.

Method deepClone recursively copies an entire XML element into a new object structure.
The addChild method tries to add a given element to become a child node of an XML
element. This might not always work and so addChild returns a boolean to indicate success.
The simplest element, represented by class Text, represents plain text in a document.
Therefore its addChild implementation does nothing and returns false. Objects of class Tag
have a name and an array of children. Their addChild method appends the given element
to that array and returns true. In contrast to Text, where operations work locally, the

ECOOP 2021

4:4 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

<des ignPattern>
<name>CoCo</name>
<re l a t edPat t e rn>Factory</ re l a t edPat t e rn>

</des ignPattern>

new SingleRoot (
new Tag(

" des ignPattern " ,
new XML[] {

new Tag("name" , new XML[] { new Text ("CoCo") }) ,
new Tag(" r e l a t edPat t e rn " , new XML[] { new Text (" Factory ") })

}
)

) ;

Figure 2 Example XML document (top) and Java code for its construction (bottom) based on
the classes shown in Figure 1.

hasElem and deepClone methods of Tag recursively call the appropriate methods of the XML
elements known via the children array. Class SingleRoot is a special case of abstract class
Document, where the topmost element is a single object of class Tag. Operations from
XML are implemented performing recursive calls to the child root. Method getRootTag
of SingleRoot returns the single root tag injected into an Optional wrapper class. The
intended semantics of the parent method signature in Document is that getRootTag can be
a partial method returning an empty Optional value for some possible implementations.
Finally, sameRootElements in SingleRoot checks if the name of the current root tag matches
the name of the root tag from the other document. This check uses getRootTag on the
argument, checking if the partial result is present before comparing with the getName result.

Note that classes XML, Tag, and Document occur as types of parameters in addChild,
setChildren, and sameRootElements. These methods are binary methods [4] because they
involve the object on which they are called (this) and their parameter is also an object of a
type present in the inheritance hierarchy. Methods deepClone, getChildren, and getRootTag
are producer methods because their result is an instance produced from a type present in
the inheritance hierarchy. Constructors are producer methods, and sometimes (in Tag
and SingleRoot) binary methods. The return type of deepClone is covariantly overridden
(i.e., safely replaced by a compatible subclass) in Tag and Document to enable recursive
implementations that can pass cloned elements to other binary methods.

Extending the class hierarchy at any point with a new class is easy and can be done
without recompiling or modifying existing code. This is, after all, the main modularity benefit
of class-oriented programming. However, inserting a new method is problematic because
it has to be inserted in a class, which needs to be recompiled and will cause a recursive
recompilation of all sub-classes. Even worse, if the method is abstract or requires different
implementations in some sub-classes, multiple classes have to change. In scenarios where the
hierarchy is part of a library developed and distributed by a third-party, this is problematic
and might even be impossible when the distribution is under a closed-source license.

A flawed but informative attempt to fix the issue is shown in Figure 3. Here, new classes
(prefixed with E) are naively inserted to contain a new binary method validate and a new
producer method asTag. Method validate is intended to use the current element as a schema
to validate the given XML tag, while asTag checks if the current XML element is a tag
and returns it as such, if possible. The new classes mirror the old ones, extending each of
them together with their new parent. First of all, this is impossible in languages without
multi-inheritance (e.g., Java). Additionally, the interplay between the new binary method
validate and the old producer methods is fundamentally broken: method validate requires an

J. Bessai, G. T. Heineman, and B. Düdder 4:5

Figure 3 Flawed attempt to extend class hierarchy with a new binary method validate and a new
producer method asTag provided in the extended interfaces EXML, EDocument, ETag, EText,
and ESingleRoot (shaded background).

object of type ETag, while the producer methods provide objects of the old types (without
an E-prefix) that were present before the extension. Wang and Oliveira [30] propose to
solve the problem of multi-inheritance by turning the classes into a hierarchy of interfaces,
which are implemented by some final classes that provide the code for getters, setters, and
constructors. Their solution covariantly overrides all producer methods (including getters)
whenever an evolution needs to add a method to the class hierarchy. In Figure 3, for example,
EXML would become an interface with an abstract override of method deepClone(): XML to
deepClone(): EXML. This trivial solution (at first glance) to the expression problem results
in more problems upon closer inspection. One problem is that mutable attributes no longer
work. Setters, as a special case of binary methods, cannot override their parameter type to
evolved versions because method parameters are contravariant, that is, they need to be less
specialized or remain the same with each inheritance step. In the example, the setChildren
setter in class Tag would require an array of EXML which is more specialized than XML.
Wang and Oliveira [30] propose to fix this by adding generic parameters with type bounds
that abstract over any domain type reference. Their example remains incomplete because it
does not show an extension with binary and producer methods after these type bounds have
been introduced. In practice, the type bounds break inheritance because they covariantly
modify the contravariant type of parameters of binary methods. They also break producer
methods (such as deepClone) that need to construct instances of the evolved types, but invoke
earlier constructors in their implementations. This forces producer code to be duplicated
and modified with each evolution, violating the requirement not to duplicate code.

The CoCo design pattern eliminates the aforementioned issues by allowing references to
the most generic (earliest) class type everywhere, providing abstract factory methods for
constructors and conversion methods to convert earlier instances to later versions. Figure 4
shows the base class hierarchy implemented using the CoCo design pattern. Java and

ECOOP 2021

4:6 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Figure 4 Hierarchy of Figure 1 implemented using the CoCo design pattern. Extension with a
new data type Schema and factory shown in the tinted box. Methods are abstract in interfaces
unless they have default implementations which are stereotyped by «default».

Scala code for Figure 4 and the following figures throughout this section is available in
the accompanying artifacts. As with the solution by Wang and Oliveira [30], all classes
become interfaces to avoid issues with multi-inheritance. Methods are placed, as before,
with implementations provided as default implementations (a feature available in Java, C#,
and other mainstream OO languages). An additional Factory interface is introduced with
abstract methods corresponding to each of the constructors of the naive object-oriented
solution from Figure 1. Note that all interfaces are parameterized for domain types mentioned
in the signature of methods. This parameterization allows delaying specifying which types
will be finally used. A convert method is added to the factory for each parameterized type.
Once an evolution is added, these convert methods will be covariantly overridden to refine
their results to the latest evolutions of the converted classes. We choose to use inheritance
from the Factory interface to make conversions and factory methods available in all parts of
the type hierarchy. Conversions can be implemented in the next step, which will use the
additional getSelf methods in each of the convertible interfaces. These methods are only
necessary if a type is convertible (i.e., mentioned in a signature) and so the interfaces XML,
Document, and Tag require new getSelf methods, while Text and SingleRoot can inherit
them. Figure 4 also shows that the basic object-oriented feature to add new data types is not
affected. The tinted box in the upper right contains a new data type Schema, which can
be added independently of any code that was present before. Instances are instantiated by
a newly-added extended Factory, SFactory. These additions appear in a new compilation
unit without changing existing code. Unlike the Visitor pattern, CoCo does not compromise
the advantage of object-oriented programming, namely, being able to freely add data types.

Figure 5 shows how the interfaces from Figure 4 are implemented by classes to allow
instantiation. The implementation is fairly trivial, adding a finalized component (prefixed with
F) for every component of the original class diagram. All getSelf methods are implemented
by returning the current object (this). The convert methods of the final factories simply

J. Bessai, G. T. Heineman, and B. Düdder 4:7

Figure 5 Final layers to instantiate the interfaces from Figure 4. The tinted upper box contains
the final layer of the initial diagram, while the lower tinted box contains the separate finalized layer
for the extension with Schema. Data types of the extension are filled in gray color. Comments in
the center column show that only trivial getter, setter, constructor, and conversion code is added,
which does not contain business logic or unsafe casts.

ECOOP 2021

4:8 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

dispatch to the getSelf method of their argument. None of these methods need any casts,
because in the final layer, generics parameters for the return type of getSelf are instantiated
to the finalized types which inherit from the domain types at the most recent level. Delaying
the implementation of convert and instantiation of generics until this moment enables convert
methods (and thereby the pattern) to ensure stability of the domain logic methods, while
their implementations can convert to the latest known evolution. Instantiation in factory
methods is forwarded to constructor calls. Final classes (FTag, FText, FSingleRoot,
FSchema) add constructors, getters, and setters with a field for each attribute reachable
via the get-set-protocol prescribed by their interface. Note how the newly created layer
contains no additional domain logic. In principle, a compiler extension or code generator
could automatically produce it, and modern languages, such as Scala, allow to implement
this layer with very few lines of code. Figure 5 already includes a (separate) final layer for
the addition of the data type Schema.

Figure 6 shows a modular evolution that adds the binary method, validate, and the
producer method, asTag, which previously failed in the naive approach. The method is
added into a new extended domain interface EXML. Its parameter is typed by the earliest
version of the domain interface Tag and does not need to evolve any further. This is possible
because the implementation of validate has access to convert inherited from the extended
factory interface EFactory, which allows to safely transform the parameter into an ETag
instance. The convert methods are covariantly overridden with a refined result type (e.g.,
EXML instead of XML), which gives the CoCo design pattern its name.

Method validate is placed in the EXML interface and returns an optional error message if
validation fails. If an element is not suitable to validate the given tag, it can return an error
message. This behavior serves as a default implementation in EXML and is inherited in
ETag, EText, EDocument, and ESingleRoot. Sharing default behavior for the general
case in base classes is crucial for real world usability, which is discussed at length in [33].
Alternatively, we could have opened up Schema for extension by introducing it with a
generic parameter, a getSelfSchema method, and a convert in SFactory, or we could do the
same for the new type ESchema. In both cases validate would be available in ESchema,
which in the first case could be obtained from any Schema and in the second case would
serve as its own subdomain base class1.

Implementing validate in ESchema is possible by recursively constructing new sub-
schemata for the children of the document represented by the current schema. This is
possible with the producer methods of the classes (for accessing children) and the factory
methods from EFactory. Factory-produced instances are usable at the current level, because
they can again be converted. The new producer method toTag is there to check if elements of
the document are tags to recursively validate. It is defined in EXML and only overridden by
the class ETag. Though not required in the example, extended interfaces could also choose
to override an existing method introduced by an earlier extension, or require new getters
and setters from their implementing final classes. Developers can remedy bad design choices
(e.g., because new methods and data types can implement operations more efficiently) or add
more fields to the domain data types. Since all extensions are provided in interfaces, even
mainstream object-oriented languages such as Java and C# allow merging multiple domain
evolutions by using multi-inheritance. In the example, this would result in E-prefixed classes,
each extending multiple prior versions. Extended domain data types can then supply any

1 The interested reader may find such domain extensions in the accompanying code for the TAPL case
study discussed later

J. Bessai, G. T. Heineman, and B. Düdder 4:9

Figure 6 Extension with a new binary method toValidate and a producer method asTag. New
components are placed in the tinted box. With convert, binary methods can refer to the old (less
general) domain types instead of the new E-prefixed types, while avoiding contravariance issues
from overriding parameters.

ECOOP 2021

4:10 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

missing implementations for pairs of types and methods, where the type is present in one
branch, while the method is required in interfaces from a different branch. The next section
presents a case study on the traditional Expression Problem domain, illustrating why such a
merge may be useful.

The class hierarchy for implementations of the extended layer from Figure 6 is shown
in Figure 7. This time the extended interfaces need to be instantiated. Since extended
interfaces are derived from the earlier versions, their final instantiations in FEFactory,
FEXML, FEDocument, FETag, FEText, FESingleRoot, and FESchema remain
compatible with any code that is written to work with their respective earlier versions (such
as Factory<FX,FT,FD> or XML<FX,FT,FD> as long as the parameters FX, FT,
FD remain abstract by the client. In any case, whether fixing a final version or abstractly
working with its interfaces, clients can directly call methods without using visitors or object
algebras. Clients also have access to convert methods via factories to ensure that objects
created from producer methods provide the latest API required by the client. The final
implementations are similar to those in Figure 5, but they do not contain non-trivial or
domain-specific replicated code because all they do is add trivial getter, setter, constructor,
and conversion methods.
public c lass Cl i en t {

s t a t i c c lass ClientM0<FX,FT,FD> {
private f i n a l Factory<FX,FT,FD> fac t o ry ;
f i n a l Document<FX,FT,FD> demoDoc ;
public ClientM0 (Factory<FX,FT,FD> fac t o ry) {

this . f a c t o ry = fa c t o ry ;
this . demoDoc =
fa c t o ry . s ing l eRoot (
f a c t o ry . tag (" des ignPattern " ,
f a c t o ry . tag ("name" , f a c t o ry . t ext ("CoCo")) ,
f a c t o ry . tag (" r e l a t edPat t e rn " , f a c t o ry . t ext (" Factory ")))) ;

}
public void run () {
System . out . p r i n t l n ("Has␣CoCo : ␣ " + demoDoc . hasElem ("CoCo")) ;
System . out . p r i n t l n ("Has␣ r e l a t edPat t e rn : ␣ " + demoDoc . hasElem (" r e l a t edPat t e rn ")) ;
System . out . p r i n t l n ("Has␣ V i s i t o r : ␣ " + demoDoc . hasElem (" V i s i t o r ")) ;
System . out . p r i n t l n ("Has␣ r e l a t e d : ␣ " + demoDoc . hasElem (" r e l a t e d ")) ;

}
}
s t a t i c c lass ClientM2<FX,FT,FD> {

private f i n a l EFactory<FX,FT,FD> fac t o ry ;
private f i n a l ClientM0<FX,FT,FD> co l l a b o r a t o r ;
f i n a l XML<FX,FT,FD> schema ;
public ClientM2 (EFactory<FX,FT,FD> factory , ClientM0<FX,FT,FD> co l l a b o r a t o r) {

this . f a c t o ry = fa c t o ry ;
this . c o l l a b o r a t o r = co l l a b o r a t o r ;
this . schema =
fa c t o ry . schema (f a c t o ry . s ing l eRoot (
f a c t o ry . tag (" des ignPattern " ,
f a c t o ry . tag ("name") ,
f a c t o ry . tag (" r e l a t edPat t e rn ")))) ;

}
public void run () {
c o l l a b o r a t o r . run () ;
Optional<Tag<FX,FT,FD>> root = co l l a b o r a t o r . demoDoc . getRootTag () ;
i f (root . isEmpty ()) { return ; }
Optional<Str ing> i sVa l i d = fa c t o ry . convert (schema) . v a l i d a t e (root . get ()) ;
System . out . p r i n t l n (" Errors : ␣ " + i sVa l i d . t oS t r i ng ()) ;

}
}
public s t a t i c void main (St r ing [] a rgs) {
EFactory<FEXML, FETag , FEDocument> fa c t o ry = new FEFactory () {} ;
ClientM0<FEXML, FETag , FEDocument> c l i e n t = new ClientM0<>(f a c t o ry) ;
ClientM2<FEXML, FETag , FEDocument> evolved = new ClientM2<>(factory , c l i e n t) ;
evolved . run () ;

}
}

Listing 1 Stand alone example for evolving client code using Factories

J. Bessai, G. T. Heineman, and B. Düdder 4:11

Figure 7 Final layer to instantiate the interfaces from Figure 6. New components are placed in
the tinted box on the left. The finalized classes are similar to those from Figure 5, but implement
the extended interfaces and instantiate generics to the newest finalized versions.

ECOOP 2021

4:12 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Listing 1 contains evolving client code using the pattern: the two client classes are ClientM0
and ClientM2 (while wrapped using a single class Client for this paper, this is not
essential). The clients both have factories at their intended level, received as arguments via
their constructor (which is just dependency injection, popular in object-oriented programming
[8]). Finalized types in the clients are kept as generic parameters. The first client, ClientM0,
operates at the first level and initializes the document from Listing 2 in its constructor. Its run
method performs the previously described calls to hasElem. The second client, ClientM2, is
passed a reference to the first, and then constructs a schema for the example XML document.
Its run method interacts with the first client by calling its run method and also by using
its document, and validating its root tag (if present). Only in the very last stage of the
program, does the main method instantiate the generic parameters with the finalized types of
the latest required level, and an FEFactory is passed to construct all required objects. This
final construction step could also be automated by a dependency injection framework such
as Guice [11]. The client code is idiomatic Java and the pattern is visible only in the passing
of generic parameters and the occasional call to convert (here used to convert Schema to
ESchema to gain access to its validate method). More advanced languages, such as Scala,
can turn convert into an implicit conversion, automatically inserting it whenever the compiler
expects a more advanced type (we will see this in the next section). In Scala we can also
bundle together all generic parameters into one and use type members of path dependent
types to access them2. This mitigates accumulation of generic parameters (sometimes called
“parameterization boilerplate”). Readers with advanced Scala skills will find a demonstration
of parameter bundling with path-dependent types in the artifacts for the XML example.

As we have seen in the previous example, CoCo is a design pattern rather than a
framework-based approach. It is, therefore, appropriate to conclude this section using the
traditional classification of design patterns established in [9].

Pattern Name and Classification
Covariant Conversions (CoCo), Creational and Behavioral Class Pattern.

Intent
CoCo structures data type classes to be extended in the future with new classes, new
operations, and new fields without modifying earlier code. Type-safe convert methods
transform earlier data type instances into their newest evolutionary representation to
access operations added later.

Motivation
Traditional inheritance-based object-oriented programming languages do not allow meth-
ods to be added to a class hierarchy without modifying previously written code. This is
known as the Expression Problem [29] and imposes particular difficulties when producer
or binary methods are involved.

Applicability
Use the CoCo design pattern when

you intend to deploy your classes in compiled form and still allow future evolutions to
add new operations
you want to merge two or more independent evolutions
you want to introduce new hierarchy levels to an existing subtype structure
you want to override an existing operation of an existing data type

2 This is an idea suggested by a reviewer of this paper.

J. Bessai, G. T. Heineman, and B. Düdder 4:13

Structure
There are two families of interfaces in the pattern. A domain interface undergoes evolutions
over time, as new data types and operations are added, and even new subdomains are
identified. A factory interface provides the API for creating objects from the growing
family of data types in the domain and a parameterized convert method that is covariantly
overridden to ensure access for data types to all operations defined for the current evolution
stage. Each evolution defines an extension-factory interface to instantiate objects of that
evolution and specify the signature of the conversion method, and extension-domain
interfaces that specify operations available for the data types in that evolution, as well
as their hierarchy. Each of the inheritance relationships exists to share a signature or
provide a default implementation.

Collaborations
The actual instantiation of a data type object is deferred to the finalized classes. Objects
can ensure API compatibility with convert methods that invoke getSelf to return an
instance of the current object at its latest evolution stage. The client code simply invokes
operations on the returned objects using regular object-oriented method invocations.

Consequences
This approach minimizes code duplication by ensuring the designer can place the imple-
mentation of an operation in either an extension-domain interface or the relevant logic
interfaces. An important implication of this pattern is that the compiler can statically
detect missing operations in the finalized classes (i.e., a logic-interface is missing a method
definition). Also, because there never is a need to dynamically cast objects, there can be
no run-time exception during convert. If an evolution only adds new data types (tinted
box in Figure 4), there is no need to introduce data type extension interfaces for earlier
data types. Each evolution can support a hierarchy to structure the data types as needed.
Domain data types need to be exposed via type variable abstractions if they are ever to
be used in method signatures.

Implementation All objects are accessed through a hierarchy of domain interfaces, which
has a factory interface as its base, and is refined via inheritance in subsequent evolutions,
as shown in Figures 4 and 6. Instantiation occurs in a thin layer of finalized interfaces
and classes. The top-level domain and factory interfaces have type parameters for every
domain type that is mentioned in a signature and needs conversion. Arguments for these
parameters ultimately refer to some finalized interface. Subdomain extensions are useful
when parts of your subdomain have methods meant only for those subdomains. Not
just a matter of having uniform access to the subdomain type hierarchy, methods could
be implemented in the intermediate stages of the hierarchy to be shared throughout.
Producer and binary methods may refer to the earliest points of definition of domain
types in their signatures and operate using factory conversion and construction methods.
This avoids any variance issues during inheritance. Client code invoking a producer
operation can call convert to ensure the object conforms to the latest evolution stage. It
can keep the type parameters for finalized classes abstract and only rely on non-finalized
domain factories and interfaces to remain compatible with future updates to the code.

Related Patterns
CoCo uses abstract factories [9] for uniform access to object construction; as discussed
in [27]; this allows for future extension by allowing instances of newer evolutions to be
supplied to existing code. Accessing APIs through interfaces provided by factories is
compatible with the principles of inversion of control, also known as dependency injection.
Covariant overrides and finalized classes are inspired by Wang and Oliveira [30].

ECOOP 2021

4:14 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Sub PrettyP

m0 m1 m2 m3

Divd
Mult
Neg

m4

Simplify
Collect

alt1
MultBy

Equals

m5

AsTree

m6

m7alt2

Add
Lit

Eval Id

PowBy

m7

Power

alt2

Eql

Truncate

Figure 8 Extension Graph history for mathematical expressions domain.

package exp
t r a i t Exp [T] extends Factory [T] { def g e t S e l f :T }
t r a i t Factory [T] {

implicit def convert (other : Exp [T]) : Exp [T]
}
//
package exp .m0
t r a i t Exp [T] extends exp . Exp [T] with Factory [T] { def eva l : Double }
t r a i t Factory [T] extends exp . Factory [T] {

def l i t (va lue : Double) : exp . Exp [T]
def add (l e f t : exp . Exp [T] , r i g h t : exp . Exp [T]) : exp . Exp [T]
implicit override def convert (e : exp . Exp [T]) : Exp [T]

}
t r a i t Lit [T] extends Exp [T] {

def value : Double
def eva l : Double = value

}
t r a i t Add [T] extends Exp [T] {

def l e f t : exp . Exp [T]
def r i g h t : exp . Exp [T]
def eva l : Double = l e f t . eva l + r i gh t . eva l

}

object f i n a l i z e d {
t r a i t Exp extends exp .m0. Exp [Exp] with Factory { def g e t S e l f : Exp = this }
t r a i t Factory extends exp .m0. Factory [Exp] {

override def l i t (va lue : Double) : Exp = new Lit (value)
override def add (l e f t : exp . Exp [Exp] , r i g h t : exp . Exp [Exp]) : Exp =

new Add(l e f t , r i g h t)
override implicit def convert (e : exp . Exp [Exp]) : Exp = e . g e t S e l f

}

class Lit (val value : Double) extends Exp with exp .m0. L i t [Exp]
class Add(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends Exp with exp .m0.Add [Exp]
}

Listing 2 Scala implementation of initial version of hierarchy

package exp .m1
t r a i t Factory [T] extends exp .m0. Factory [T] {

def sub (l e f t : exp . Exp [T] , r i g h t : exp . Exp [T]) : exp . Exp [T]
}
t r a i t Sub [T] extends exp .m0. Exp [T] with Factory [T] {

def l e f t : exp . Exp [T]
def r i g h t : exp . Exp [T]
def eva l : Double = l e f t . eva l − r i g h t . eva l

}
object f i n a l i z e d {

import exp .m0. f i n a l i z e d . Exp
t r a i t Factory extends exp .m1. Factory [Exp] with exp .m0. f i n a l i z e d . Factory {

override def sub (l e f t : exp . Exp [Exp] , r i g h t : exp . Exp [Exp]) : Exp =
new Sub(l e f t , r i g h t)

}
class Sub(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends exp .m1. Sub [Exp] with Exp with Factory
}

Listing 3 Modular extension adding Sub data type with minimal extensions required to factories

J. Bessai, G. T. Heineman, and B. Düdder 4:15

3 Case Studies

We have applied the CoCo design pattern to two standard case studies (evolving mathematical
expressions and an example from a course on compiler construction) to demonstrate its
effectiveness, with full implementations provided as artifacts with the paper.

The evolution history for the mathematical expression domain is captured in Figure 8
using an extension graph [27]. CoCo was the only pattern for which we achieved no violation
of any of the constraints imposed by the Expression Problem, as we discuss in Section 4. This
rich example offers a rigorous benchmark to validate any proposed EP solution. From an
initial system, m0, with Lit and Add, evolution m1 adds the Sub data type, while m2 adds
the prettyp operation that creates a string representation of an expression. An independent
branch, alt1, diverges and adds a new producer operation, multBy, and data type, Power
is added in alt2. The main branch continues development, each new evolution introducing
new data types and operations as specified, such as division, multiplication, negation, literal
collecting and expression simplification. Truncate is an example of an operation with a side
effect. The subsequent three evolutions – m5, m6, and m7 – introduce two binary operations
equals and eql for equality checks (with equals using equality on trees computed by astree and
eql dispatching to its argument instead), and a producer operation powBy for exponentiation.
package exp .m2
t r a i t Exp [T] extends exp .m0. Exp [T] with Factory [T] {

def prettyp : S t r ing
}
t r a i t Factory [T] extends exp .m1. Factory [T] {

implicit override def convert (e : exp . Exp [T]) : exp .m2. Exp [T]
}
t r a i t Lit [T] extends exp .m0. L i t [T] with Exp [T] {

def prettyp : S t r ing = value . t oS t r i ng
}
t r a i t Add [T] extends exp .m0.Add [T] with Exp [T] {

def prettyp : S t r ing = St r ing . format ("(%s+%s) " , l e f t . prettyp , r i g h t . prettyp)
// The compiler i m p l i c i t l y r e w r i t e s t h i s to :
// Str ing . format ("(% s+%s) " , convert (l e f t) . pret typ , convert (r i g h t) . p r e t t y p)

}
t r a i t Sub [T] extends exp .m1. Sub [T] with Exp [T] {

def prettyp : S t r ing = St r ing . format ("(%s−%s) " , l e f t . prettyp , r i g h t . prettyp)
}

object f i n a l i z e d {
t r a i t Exp extends exp .m2. Exp [Exp] with Factory {

def g e t S e l f : Exp = this
}
t r a i t Factory extends exp .m2. Factory [Exp] {

override def l i t (va lue : Double) : Exp = new Lit (value)
override def add (l e f t : exp . Exp [Exp] ,

r i g h t : exp . Exp [Exp]) : Exp = new Add(l e f t , r i g h t)
override def sub (l e f t : exp . Exp [Exp] ,

r i g h t : exp . Exp [Exp]) : Exp = new Sub(l e f t , r i g h t)

implicit override def convert (e : exp . Exp [Exp]) : Exp = e . g e t S e l f
}

class Lit (val value : Double) extends Exp with exp .m2. L i t [Exp]
class Add(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends exp .m2.Add [Exp] with Exp
class Sub(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends exp .m2. Sub [Exp] with Exp
}

Listing 4 Modular extension that adds prettyp operation, requiring extensions for existing data
types to contain domain logic, and extended factories to contain implicit conversion methods

A final combined branch, m7alt2, merges together two independent branches, alt2 and
m7, leading to optimizations where powBy from the main branch is reimplemented to return
newly constructed elements of type Power from alt2 (and similarly for multBy and Mult).

ECOOP 2021

4:16 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

This case study is fully implemented in Java, Scala, and C# 8.0 with small variations, as
provided in the accompanying artifacts. The C# implementation using .NET Core 3.1
illustrating applicability to languages not based on the Java virtual machine. Aside from the
language-specific syntax of C#, it completely conforms to the solution we described above.

The Scala implementation of CoCo reveals that only a small amount of boilerplate code
is required. Within the space limitations of this paper, we can actually show the full code for
extensions up to m2. Listing 2 contains the initial exp.Exp[T] domain interface and factory
meant for a future family of data types in the domain of mathematical expressions. In Scala,
interfaces with default methods are represented by traits. The exp.Exp[T] trait contains
the signature of the getSelf method that returns an instance of the parameterized type, T.
The exp.Factory[T] trait specifies the signature of the convert method that converts an
other instance into the most recent realization of the Exp[T] type in the domain.

The initial definition of the system, exp.m0, provides the exp.m0.Exp trait that extends
the domain with a new eval method computing the numerical value of a data type instance.
Two new data types are defined – Lit and Add – which implement eval in the context of
values that might (in a future evolution) be further specialized. The finalized object acts
as a namespace to group the final trait implementations. In accordance with the pattern,
they are comprised of a concrete finalized.Factory that offers methods to instantiate and
convert the known data types, as well as trivial implementations for the domain interfaces.
No domain logic of the eval method leaks into this finalized area.

package exp .m4
t r a i t Exp [T] extends exp .m2. Exp [T] with Factory [T] {

def s imp l i f y : exp . Exp [T]
def t runcate (l e v e l : Int) : Unit
def c o l l e c t : L i s t [Double]

}
t r a i t Factory [T] extends exp .m3. Factory [T] {

implicit override def convert (toConvert : exp . Exp [T]) : exp .m4. Exp [T]
}

t r a i t BinaryExp [T] extends Exp [T] {
var _le f t : exp . Exp [T]
var _right : exp . Exp [T]
def l e f t : Exp [T] = _le f t
def r i g h t : Exp [T] = _right

def t runcate (l e v e l : Int) : Unit = {
i f (l e v e l > 1) {

l e f t . t runcate (l e v e l −1)
r i gh t . t runcate (l e v e l −1)

} else {
_ l e f t = l i t (l e f t . eva l)
_right = l i t (r i g h t . eva l)

}
}

}

t r a i t Add [T] extends exp .m2.Add [T] with BinaryExp [T] {
def s imp l i f y : exp . Exp [T] = {

i f (l e f t . eva l + r i gh t . eva l == 0) {
this . l i t (0)

} else i f (l e f t . eva l == 0) {
r i gh t . s imp l i f y

} else i f (r i gh t . eva l == 0) {
l e f t . s imp l i f y

} else {
this . add (l e f t . s imp l i f y , r i g h t . s imp l i f y)

}
}
def c o l l e c t : L i s t [Double] = l e f t . c o l l e c t ++ r i gh t . c o l l e c t

}

Listing 5 Partial listing from exp.m4 containing BinaryExp generic implementation

J. Bessai, G. T. Heineman, and B. Düdder 4:17

Listing 3 encapsulates the first modular evolution, exp.m1, adding the Sub data type to
the system. With minimal new code (analogous to the tinted part in Figures 4 and 5), the
new Factory classes extend existing factories to provide methods to instantiate Sub objects.

Listing 4 encapsulates the second modular evolution, exp.m2, that adds a new prettyp
operation to the system. The existing Exp and Factory traits are refined from the prior
evolution without any code duplication. The new operation must be applicable to all existing
data types, so new refined types are created for Lit, Add, and Sub. The finalized Factory
again instantiates and converts these refined data types. In the prettyp implementation for
types exp.m2.Add and exp.m2.Sub we see a feature of Scala at work, which declares convert
as an implicit method inserted by the compiler when necessary. This reduces the boilerplate
code but is not strictly necessary; other languages would manually invoke convert.
package exp . m7alt2
import exp .m5.{Node , Tree}
t r a i t Exp [T] extends exp .m7. Exp [T] with exp . a l t 1 . Exp [T] with Factory [T] {

override def powby(other : exp . Exp [T]) : exp . Exp [T] = power (this , o ther)
override def multby (other : exp . Exp [T]) : exp . Exp [T] = mult (this , o ther)

def isPower (base : exp . Exp [T] , exponent : exp . Exp [T]) : Boolean = f a l s e
}
t r a i t Power [T] extends exp . a l t 2 . Power [T] with Factory [T] with Exp [T]

with exp .m5. BinaryExp [T] {
def base : exp . Exp [T] = _le f t
def exponent : exp . Exp [T] = _right
def s imp l i f y : exp . Exp [T] = {

i f (exponent . eva l == 0) { l i t (1) }
else i f (exponent . eva l == 1) { base . s imp l i f y }
else i f (base . eva l == 0) { l i t (0) }
else i f (base . eva l == 1) { l i t (1) }
else { power (base . s imp l i f y , exponent . s imp l i f y) }

}
def c o l l e c t : L i s t [Double] = base . c o l l e c t ++ exponent . c o l l e c t
def id : Int = 80440
def eq l (that : exp . Exp [T]) : Boolean = that . isPower (base , exponent)
override def isPower (base : exp . Exp [T] , exponent : exp . Exp [T]) : Boolean =

base . eq l (this . base) && exponent . eq l (this . exponent)
}
t r a i t Factory [T] extends exp . a l t 2 . Factory [T] with exp .m7. Factory [T] {

implicit override def convert (toConvert : exp . Exp [T]) : exp . m7alt2 . Exp [T]
}

object f i n a l i z e d {
t r a i t Exp extends exp . m7alt2 . Exp [Exp] with Factory {

def g e t S e l f : Exp = this
}

t r a i t Factory extends exp . m7alt2 . Factory [Exp] {
override def l i t (va lue : Double) : Exp = new Lit (value)
override def add (l e f t : exp . Exp [Exp] , r i g h t : exp . Exp [Exp]) : Exp =

new Add(l e f t , r i g h t)
/∗ . . . s i m i l a r methods omitted . . . ∗/
override def power (base : exp . Exp [Exp] , exponent : exp . Exp [Exp]) : Exp =

new Power (base , exponent)

implicit override def convert (e : exp . Exp [Exp]) : Exp = e . g e t S e l f
}

class Lit (val value : Double) extends exp .m7. L i t [Exp] with Exp
class Add(var _le f t : exp . Exp [Exp] , var _right : exp . Exp [Exp])

extends exp .m7.Add [Exp] with Exp

/∗ . . . s i m i l a r c l a s s d e f i n i t i o n s omitted . . . ∗/

class Power (var _le f t : exp . Exp [Exp] , var _right : exp . Exp [Exp])
extends exp . m7alt2 . Power [Exp] with Exp

}

Listing 6 Merging branches exp.m7 and exp.alt2

In evolution exp.m4, the truncate operation can be generically implemented for any
expression with two recursively-defined child attributes. This is accomplished with an
intermediate trait, exp.m4.BinaryExp shown in Listing 5, that is inherited by data types,
such as Add, and can also be further extended by subsequent evolutions.

ECOOP 2021

4:18 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Listing 6 for exp.m7alt2 shows how to merge different evolved branches. Here, multby
and powby are overridden at the Exp level of the hierarchy to always instantiate appropriate
domain data types, which become available after the merge. Traits can inherit from their
predecessors in the two branches using the Scala’s with keyword. A refinement of the trait for
the exponentiation data type exp.alt2.Power is required to supply method implementations
for the operations added in the main branch after divergence. For the new main branch data
types, this would have also been possible but is not necessary in the example because the
only new method in the alternative branch is multby, which is specified in exp.m7alt2.Exp.
The finalized classes work exactly as expected, which is why some of their code is omitted in
the listing (but available in the accompanying code repository).

Binary methods [4] are challenging because they involve the object on which they are
called (i.e., this) and their parameter is also an object of a type present in the inheritance
hierarchy. Listing 6 combines two independent branches, bringing together for the first time
the Power data type (for exponentiation) and the eql operation that checks whether two
mathematical expressions are equal. Our solution (coded in the Power trait) conforms to the
strong binary method equality proposed by Zenger and Odersky [31] which dispatches on
the arguments.

Listing 7 shows client code for a unit test of exp.m2.Add. The test is structured in a
reusable version TestTemplate that keeps the final class parameter T abstract and works
with the factory from exp.m2, as well as a concrete executable version ActualTest which
refines the abstract class to use the implementations from exp.m2.finalized. This way
tests are able to fully reuse the abstract part and instantiate it to use evolved finalized
interfaces instead.
package exp .m2
import org . s c a l a t e s t . FunSuite

t r a i t TestTemplate [T] extends Factory [T] with exp .m1. TestTemplate [FT] {
val s u i t e : FunSuite
import s u i t e ._

override def t e s t () : Unit = {
super . t e s t ()

val expr1 = this . add (this . l i t (1 . 0) , this . l i t (2 . 0))
a s s e r t (" (1 .0+2 .0) " === expr1 . prettyp)

val expr2 = this . l i t (2 . 0)
a s s e r t (" 2 .0 " === expr2 . prettyp)

a s s e r t (" (1 .0 −2.0) " === this . sub (this . l i t (1 . 0) , this . l i t (2 . 0)) . prettyp)
a s s e r t (" ((1 .0 −2 .0)+(5 .0+6.0)) " === this . add (this . sub (this . l i t (1 . 0) ,
this . l i t (2 . 0)) , this . add (this . l i t (5 . 0) , this . l i t (6 . 0))) . prettyp)

}
}

class M2Test extends FunSuite { s e l f =>

object ActualTest extends TestTemplate [exp .m2. f i n a l i z e d . Exp] with
f i n a l i z e d . Factory {

val s u i t e : FunSuite = s e l f
}

t e s t ("M2") { ActualTest . t e s t () }
}

Listing 7 Test for exp.m2.Add in abstract and concrete version

J. Bessai, G. T. Heineman, and B. Düdder 4:19

Table 1 Observations for the TAPL case study.

EVF Castor CoCo
Duplication free domain code no no yes
Fully modular no no yes
Feasible w/o code generator no no yes
Statically typesafe no yes yes
Boilerplate free client code no yes yes
Code Structuring Principle functions functions classes
Human written LOC 763 768 825 (+ 862a)
Generated LOC 1892 N/Ab 0
aboilerplate for finalized class layer
bcode generated by compiler internal macros

In our second case study, we implemented, in Java, parts of the Types and Programming
Languages (TAPL) textbook by Pierce [22]. The example was also chosen to show the
features of the Extended Visitor Framework (EVF) [33] and Castor [34]. Our solution
implements typed and untyped compiler modules for natural numbers, Booleans, floats and
strings, let-bindings, function application, and lambda-calculus. Compared to EVF and
Castor, there are immediate differences in the way code and files are structured: CoCo
encourages object oriented-design, placing all functionality of one domain data type evolution
into one compilation unit (i.e., class or interface), while the other frameworks are inherently
functional with one function definition for all domain data types corresponding to one
compilation unit. This switch of perspective enabled us to find multiple modularity violations
in the solutions provided for the other frameworks. These can be traced back to the original
OCaml implementation available with the textbook. A prominent example is the pretty
print function, which converts abstract syntax trees of the compiler into human-readable
strings. In the CoCo solution, it is a method print() which returns a String and belongs
to the generic interface Element for syntax tree nodes. In EVF (and similarly in Castor),
pretty-printing is implemented as an object algebra returning instances of the interface
IPrint, which provides a functional closure over a context to keep track of variable names
for binders. This violates modularity because most compiler modules are not concerned
with – and do not even supply – syntax for variables. In CoCo, we were able to completely
avoid this issue by attaching the necessary name information to the tree upon traversal – the
object-oriented view lets us cleanly encapsulate state where it is needed instead of passing it
around in a map. Another modularity violation in EVF and Castor is that domain code for
lambda terms is duplicated to add type annotations to binders. In CoCo, we simply added
new fields for the evolutions that require types. Tests in EVF seem to require substantial
boilerplate for algebra initialization, similar to the layer of finalized classes in CoCo, but
with the crucial difference that finalized classes are not replicated by library clients. In both
frameworks, EVF and Castor, users have to interact with and understand generated code,
which we found mentally challenging when trying to re-engineer the case study. For EVF,
this was especially problematic because of its calling convention through algebraic interfaces
and a lack of type-safety where classes accept visitors of previous evolutions. In Table 1 we
summarize our findings, where lines of code are counted by cloc [6] on the parts implemented
in all three case studies.

ECOOP 2021

4:20 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

4 Related Work

The CoCo Design pattern is most directly related to the approach by Wang and Oliveira [30],
which also uses interfaces with covariant overrides to provide multiple inheritance as well
as future refinement of data type references. In contrast, there are no issues with binary
or producer methods in CoCo, and we are able to support side effects with formal setter
methods. In CoCo, one only covariantly overrides the convert method, but in [30], one has
to covariantly override every single reference to domain data types.

Harrison et al. describe an approach that generically abstracts over the final implementa-
tion type to improve type-safety in interface-based programming and client-side APIs [12].
From the client perspective, the APIs are similar enough to project the positive results from
their case study to clients using CoCo.

From the earliest investigations into the Expression Problem, the Visitor design pattern [9]
was essential, whether described by Krishnamurthi et al. [17] or Wadler’s original email [29].
It only seems natural to turn to Visitor to support newly defined operations in subsequent
evolutions.

A formal type-theoretic analysis, conducted by Oliveira [5], reveals that Visitors are
related to Church encodings in functional programming languages, showing that advanced
type system features, such as F-bounded polymorphism (also used in [27]), are required for
type-safe Visitors that remain extensible and satisfy all constraints of EP.

Further investigations on different styles of Visitor encodings [33] reveal how to externalize
Visitors and combine them with ideas from Object algebras [32]. Solutions of this form have
the drawback of breaking the traditional way to design and invoke object-oriented APIs,
and lead to non-standard, idiosyncratic code as discussed earlier in Section 3. External
Visitors [33] provide type safety not present in normal visitors but cannot be further extended
without substantial code duplication of domain logic.

EP often occurs in frameworks for designing DSLs. MontiCore [13], as well as the Revisitor
implementation pattern [18], rely on Visitors. They both hide runtime typechecks behind a
layer of code generated from domain-specific languages that extend Java with the explicit
purpose of building DSL frameworks. Chapter 2 of [25] provides an overview of modular
DSL Frameworks, which could also have been used to implement the compiler case study in
Section 3.

Verna [28] provides a detailed account of the practical issues that arise from implementing
the Visitor design pattern. In consensus with our observations, the problems with Visitor
include non-idiomatic calling conventions and lack of extensibility, without losing type-safety
or forcing code duplication. CoCo eliminates all these issues by avoiding Visitors, relying on
the idiomatic placement of methods in domain data type interfaces, and providing type-safe
conversion methods.

The Castor framework [34], which is a follow-up to EVF [33], requires self-type an-
notations, path-dependent types, and traits. This combination is (to our knowledge) only
available in Scala. Despite its heavy requirements, Castor does not provide a complete
EP solution, because (as the authors acknowledge) nested pattern-matching is not checked
for exhaustiveness. In CoCo, no similar problem occurs because dispatching on children is
always safe, and default implementations are properly placed in domain data type interfaces.
Zhang and Oliveira [34] observe that avoiding exhaustiveness issues is possible by either
adding new language features to Scala or duplicating default logic for new data types, in
violation of requirements for EP. The more pressing issue, however, is forcing programmers
to rewrite existing systems in Scala to realize the benefits from Castor. Additionally, the

J. Bessai, G. T. Heineman, and B. Düdder 4:21

Scala sub-dialect used by Castor relies on advanced language features, such as macros,
which are inaccessible to novice programmers and introduce difficult to understand compiler
error messages.

The CoCo design pattern is immediately applicable to numerous mainstream programming
languages, such as Java, C#, and C++. However, it cannot be used in Rust or a multi-
paradigm language such as Go because both programming languages have discarded class-
based inheritance hierarchies in favor of constructs akin to type classes from functional
programming languages, such as Haskell. This switch was motivated because of prominent
solutions to the EP in functional programming languages, including tagless final [16] and
trees that grow [19].

Language extensions are routinely proposed, such as extensible pattern matching with
extractors [26], but this introduces compatibility issues with existing code; it additionally
requires code generators for substantial boilerplate. Many proposed language extensions
deal with the problem of self-types, which was studied in the context of family polymor-
phism [7]. In essence, the idea is to existentially quantify over the domain type and bound
the existential quantification by the domain type at the current evolution level. Evidence for
this quantification is then associated with each instantiated object and a way to return the
current object as an instance of the existentially quantified type is given. This is in sharp
contrast to CoCo, where we universally qualify over the domain type and avoid any type
bounds. Instead, all conversion is centralized in a convert-method and delayed until the last
possible point in a finalized getSelf-method, which is no longer generic and thereby does not
have to deal with type-bounds. Listing 8 shows a short snippet of Scala, which allows both
encodings, to illustrate the essential difference.

t r a i t Exp [T] {
def g e t S e l f : T // No bound on T

}
t r a i t FExp extends Exp [FExp] { // Bound ensured in f i n a l i z e d instance

def g e t S e l f : FExp = this
}
t r a i t ExpFamily {

type S e l f <: ExpFamily // Bound to ensure c o m p a t i b i l i t y
def g e t S e l f : S e l f // Returned as a compatib le type

}

Listing 8 Scala code illustrating CoCo vs existentially encoded family polymorphism

Saito et al. [24] show how to extend a minimal Java core calculus with the features
necessary for family polymorphism. The idea can also be rephrased with path types [14],
which is why the more powerful dependent object types [1] of Scala are so suitable to illustrate
it. Still, practical integration into programming languages poses serious challenges, which
are beyond the scope of this work, but are addressed with solution proposals in [23, 35]. The
latter proposal [35] might be interesting for future work to reconcile CoCo with languages
such as Rust because it combines family polymorphism with type classes.

The program languages research community has extensively studied EP since its initial
formulation by Wadler in 1998 [29]. Wadler proposed an experimental language, GJ, based
on Visitor using a language mechanism to allow a type variable to be indexed by any inner
class defined in that variable’s bound (similar to the bound on the inner type presented in
Listing 8). This requires projections out of generic types [21] which encounters soundness
issues and was not added to Java, and even partially dropped from Scala 3.0. The Extensible
Visitor [17] requires a runtime check in a Java solution. The Interpreter design pattern [9] has
also been suggested to solve EP, but its Factory classes would have to be modified whenever
new data types are added. Object Algebras [20] similarly use interfaces to define the evolving
interface of the system while factory objects provide concrete implementations. However,

ECOOP 2021

4:22 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Table 2 Language features necessary for the CoCo design pattern, EP approaches, and related
work.

Approach Data type/
operation extension

Producer
methods

Binary
methods

Merging
independent
evolutions

Hierarchical
ordering of
subdomains

CoCo

interfaces with default
methods; covariant
overriding of convert
method return type;
parametric polymorphism
for getSelf

multi-inheritance
from interfaces

convert
method

multi-inheritance
from interfaces inheritance

Trivially
[30]

inheritance and interfaces
with covariant overriding
of return types

not available
without
violates EP

not available
without
violates EP

multi-trait-
inheritance
in trait-based
languages

not discussed

Extensible
Visitor
[17]

inheritance and dynamic
cast (violates EP);
parametric polymorphism;
single-class inheritance

inheritance method overriding multi-inheritance
from interfaces not discussed

Interpreter
[3]

inheritance and dynamic
cast (violates EP)

duplicate methods
(violates EP)

dynamic cast
(violates EP)

multi-inheritance
from interfaces not discussed

Torgersen
[27]

inheritance and
dynamic cast (violates EP);
final methods;
parametric F-bounded
polymorphism

not discussed not discussed multi-class
inheritance not discussed

EVF
[33]

inheritance; parametric
polymorphism; interfaces
with default methods;
multi-inheritance from
interfaces; annotation-
based macros; lack of
type-safety for earlier
visitors (violates EP)

parametric
polymorphism

parametric
polymorphism

multi-inheritance
from interfaces inheritance

Castor
[34]

path-dependent types;
self-type annotations;
multi-trait-inheritance
in trait-based languages;
partial pattern
matching on types
(violates EP)

not discussed not discussed

multi-trait-
inheritance
in trait-based
languages

inheritance

supporting producer methods is only possible when the factory object algebras have access to
“the latest” object algebra in the evolution history, which can be accomplished by modifying a
special “combined” object algebra that composes together all known factories. This modifies
existing code and, in addition, working with object algebras involves considerable boilerplate
code for clients, to the point that researchers recommend using code generators [32]. Table 2
summarizes the language features required by various EP solutions.

5 Conclusion and Future Work

The CoCo design pattern combines a number of programming idioms commonly used in
object-oriented design (abstract factories, access to and sharing of implementations through
interfaces, dependency inversion) with the novel addition of covariantly overridden conversion
methods. This allows the modular future extensibility of class hierarchies with new data
types, methods, and fields without code duplication.

We have illustrated how this solves the Expression Problem within the constraints of
mainstream object oriented languages, improves modularity, and reduces the amount of
boilerplate when compared to other EP approaches. It satisfies the constraints for a “full and

J. Bessai, G. T. Heineman, and B. Düdder 4:23

final” solution as summarized by Torgersen [27]. While feasible without tool support, a path
for widescale adoption of the pattern should consider compiler assistance for generating the
boilerplate code required for the finalized class layer. Scala’s implicit conversions are among
useful compiler features to make CoCo more straightforward. However, relying on compiler
extensions would require fixing a particular language and semantics which we intentionally
avoided here, to leave the pattern applicable to a broad range of languages. In this line of
future work, a precise formal definition and proofs about it become meaningful and should
be provided. A further question for future work will be if the additional structure exposed
by the pattern can be exploited in code analysis tools to provide better insights into the
evolution and code quality of projects. One of the main contributions of the CoCo design
pattern is to illustrate that the current trend toward integrating functional programming
and specifically pattern matching into object oriented languages (e.g., JEP 394 [10]) is not
necessarily the only way forward.

CoCo avoids unsafe instance-of pattern matching and the alternative closed-world as-
sumption (i.e., data types can no longer be extended) to make it safe, without adding new
features to the type system and remaining compatible with the object-oriented paradigm
of programming. We also hope that CoCo solves some of the prevailing issues around the
overuse of the visitor pattern [28].

References
1 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence

of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

2 Jan Bessai, George Heineman, and Boris Düdder. JanBessai/ecoop2021artifacts: State
published with paper, 2021. doi:10.5281/zenodo.4756838.

3 Kim B. Bruce. Some challenging typing issues in object-oriented languages. Electron. Notes
Theor. Comput. Sci., 82(7):1–29, 2003. doi:10.1016/S1571-0661(04)80799-0.

4 William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In
Frances E. Allen, editor, Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, California, USA, January 1990, pages
125–135. ACM Press, 1990. doi:10.1145/96709.96721.

5 Bruno C. d. S. Oliveira. Modular visitor components. In Sophia Drossopoulou, editor, ECOOP
2009 - Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10,
2009. Proceedings, volume 5653 of Lecture Notes in Computer Science, pages 269–293. Springer,
2009. doi:10.1007/978-3-642-03013-0_13.

6 Al Danial. Cloc code analysis tool, September 2020. URL: https://github.com/AlDanial/
cloc.

7 Erik Ernst. Family polymorphism. In Jørgen Lindskov Knudsen, editor, ECOOP 2001 -
Object-Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22,
2001, Proceedings, volume 2072 of Lecture Notes in Computer Science, pages 303–326. Springer,
2001. doi:10.1007/3-540-45337-7_17.

8 M. Fowler. Inversion of Control Containers and the Dependency Injection pattern, 2004. URL:
http://martinfowler.com/articles/injection.html.

9 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., 1995.

10 Brian Goetz and Gavin Bierman. JEP 394: Pattern matching for instanceof. Technical report,
Open JDK, Oracle Corporation, 2021. URL: http://openjdk.java.net/jeps/394.

11 Guice Framework for Java, 2021. URL: https://github.com/google/guice.

ECOOP 2021

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.5281/zenodo.4756838
https://doi.org/10.1016/S1571-0661(04)80799-0
https://doi.org/10.1145/96709.96721
https://doi.org/10.1007/978-3-642-03013-0_13
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1007/3-540-45337-7_17
http://martinfowler.com/articles/injection.html
http://openjdk.java.net/jeps/394
https://github.com/google/guice

4:24 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

12 William Harrison, David Lievens, and Fabio Simeoni. Safer typing of complex API usage
through Java generics. In Proceedings of the 7th International Conference on Principles
and Practice of Programming in Java, PPPJ ’09, page 67–75, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1596655.1596666.

13 Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wortmann. Com-
positional language engineering using generated, extensible, static type-safe visitors. In
Andrzej Wasowski and Henrik Lönn, editors, Modelling Foundations and Applications -
12th European Conference, ECMFA@STAF 2016, Vienna, Austria, July 6-7, 2016, Pro-
ceedings, volume 9764 of Lecture Notes in Computer Science, pages 67–82. Springer, 2016.
doi:10.1007/978-3-319-42061-5_5.

14 Atsushi Igarashi and Mirko Viroli. Variant path types for scalable extensibility. In Richard P.
Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors, Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
pages 113–132. ACM, 2007. doi:10.1145/1297027.1297037.

15 Frederick P. Brooks Jr. The mythical man-month (Anniversary Ed.). Addison-Wesley Longman
Publishing Co., Inc., 1995.

16 Oleg Kiselyov. Typed tagless final interpreters. In Jeremy Gibbons, editor, Generic and
Indexed Programming - International Spring School, SSGIP 2010, Oxford, UK, March 22-26,
2010, Revised Lectures, volume 7470 of Lecture Notes in Computer Science, pages 130–174.
Springer, 2010. doi:10.1007/978-3-642-32202-0_3.

17 Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman. Synthesizing object-
oriented and functional design to promote re-use. In Eric Jul, editor, ECOOP’98 - Object-
Oriented Programming, 12th European Conference, Brussels, Belgium, July 20-24, 1998,
Proceedings, volume 1445 of Lecture Notes in Computer Science, pages 91–113. Springer, 1998.
doi:10.1007/BFb0054088.

18 Manuel Leduc, Thomas Degueule, Benoît Combemale, Tijs van der Storm, and Olivier
Barais. Revisiting visitors for modular extension of executable DSMLs. In 20th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, MODELS
2017, Austin, TX, USA, September 17-22, 2017, pages 112–122. IEEE Computer Society, 2017.
doi:10.1109/MODELS.2017.23.

19 Shayan Najd and Simon Peyton Jones. Trees that grow. J. Univers. Comput. Sci., 23(1):42–62,
2017. URL: http://www.jucs.org/jucs_23_1/trees_that_grow.

20 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses. In James Noble,
editor, ECOOP 2012 – Object-Oriented Programming, pages 2–27, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

21 Lionel Parreaux. What is type projection in Scala, and why is it unsound?, 2019. Blog Entry.
URL: https://lptk.github.io/programming/2019/09/13/type-projection.html.

22 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002. URL: https:
//www.cis.upenn.edu/~bcpierce/tapl/.

23 Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. ACM Trans.
Program. Lang. Syst., 38(3):8:1–8:66, 2016. doi:10.1145/2888392.

24 Chieri Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight family polymorphism. J. Funct.
Program., 18(3):285–331, 2008. doi:10.1017/S0956796807006405.

25 Stefan Sobernig. Variable Domain-specific Software Languages with DjDSL - Design and
Implementation. Springer, 2020. doi:10.1007/978-3-030-42152-6.

26 Nicolas Stucki, Paolo G. Giarrusso, and Martin Odersky. Truly abstract interfaces for
algebraic data types: the extractor typing problem. In Sebastian Erdweg and Bruno C.
d. S. Oliveira, editors, Proceedings of the 9th ACM SIGPLAN International Symposium on
Scala, SCALA@ICFP 2018, St. Louis, MO, USA, September 28, 2018, pages 56–60. ACM,
2018. doi:10.1145/3241653.3241658.

https://doi.org/10.1145/1596655.1596666
https://doi.org/10.1007/978-3-319-42061-5_5
https://doi.org/10.1145/1297027.1297037
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/BFb0054088
https://doi.org/10.1109/MODELS.2017.23
http://www.jucs.org/jucs_23_1/trees_that_grow
https://lptk.github.io/programming/2019/09/13/type-projection.html
https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.cis.upenn.edu/~bcpierce/tapl/
https://doi.org/10.1145/2888392
https://doi.org/10.1017/S0956796807006405
https://doi.org/10.1007/978-3-030-42152-6
https://doi.org/10.1145/3241653.3241658

J. Bessai, G. T. Heineman, and B. Düdder 4:25

27 Mads Torgersen. The Expression Problem Revisited. In Martin Odersky, editor, Proceedings
of the 18th European Conference on Object-Oriented Programming, volume 3086 of Lecture
Notes in Computer Science, pages 123–143. Springer International Publishing, 2004. doi:
10.1007/978-3-540-24851-4_6.

28 Didier Verna. Revisiting the visitor: the "just do it" pattern. J. Univers. Comput. Sci.,
16(2):246–270, 2010. doi:10.3217/jucs-016-02-0246.

29 Philip Wadler. The expression problem, 1998. E-Mail to the Java Genericity Mailing List.
URL: http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

30 Yanlin Wang and Bruno C. d. S. Oliveira. The expression problem, trivially! In Lidia Fuentes,
Don S. Batory, and Krzysztof Czarnecki, editors, Proceedings of the 15th International
Conference on Modularity, MODULARITY 2016, Málaga, Spain, March 14 - 18, 2016, pages
37–41. ACM, 2016. doi:10.1145/2889443.2889448.

31 Matthias Zenger and Martin Odersky. Independently extensible solutions to the expression
problem, 2004. URL: http://infoscience.epfl.ch/record/52625.

32 Haoyuan Zhang, Zewei Chu, Bruno C. d. S. Oliveira, and Tijs van der Storm. Scrap your
boilerplate with object algebras. In Jonathan Aldrich and Patrick Eugster, editors, Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, pages 127–146. ACM, 2015. doi:10.1145/2814270.2814279.

33 Weixin Zhang and Bruno C. d. S. Oliveira. EVF: an extensible and expressive visitor framework
for programming language reuse. In Peter Müller, editor, 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of
LIPIcs, pages 29:1–29:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.ECOOP.2017.29.

34 Weixin Zhang and Bruno C. d. S. Oliveira. CASTOR: Programming with extensible generative
visitors. Sci. Comput. Program., 193:102449, 2020. doi:10.1016/j.scico.2020.102449.

35 Yizhou Zhang and Andrew C. Myers. Familia: unifying interfaces, type classes, and family
polymorphism. Proc. ACM Program. Lang., 1(OOPSLA):70:1–70:31, 2017. doi:10.1145/
3133894.

ECOOP 2021

https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.3217/jucs-016-02-0246
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1145/2889443.2889448
http://infoscience.epfl.ch/record/52625
https://doi.org/10.1145/2814270.2814279
https://doi.org/10.4230/LIPIcs.ECOOP.2017.29
https://doi.org/10.4230/LIPIcs.ECOOP.2017.29
https://doi.org/10.1016/j.scico.2020.102449
https://doi.org/10.1145/3133894
https://doi.org/10.1145/3133894

ALPACAS: A Language for Parametric Assessment
of Critical Architecture Safety
Maxime Buyse #

Uber Elevate, Paris, France

Rémi Delmas #

Uber Elevate, Paris, France

Youssef Hamadi #

Uber Elevate, Paris, France

Abstract
This paper introduces Alpacas, a domain-specific language and algorithms aimed at architecture
modeling and safety assessment for critical systems. It allows to study the effects of random and
systematic faults on complex critical systems and their reliability. The underlying semantic framework
of the language is Stochastic Guarded Transition Systems, for which Alpacas provides a feature-rich
declarative modeling language and algorithms for symbolic analysis and Monte-Carlo simulation,
allowing to compute safety indicators such as minimal cutsets and reliability. Built as a domain-
specific language deeply embedded in Scala 3, Alpacas offers generic modeling capabilities and
type-safety unparalleled in other existing safety assessment frameworks. This improved expressive
power allows to address complex system modeling tasks, such as formalizing the architectural design
space of a critical function, and exploring it to identify the most reliable variant. The features and
algorithms of Alpacas are illustrated on a case study of a thrust allocation and power dispatch
system for an electric vertical takeoff and landing aircraft.

2012 ACM Subject Classification Software and its engineering → Domain specific languages;
Computer systems organization → Embedded and cyber-physical systems

Keywords and phrases Domain-Specific Language, Deep Embedding, Scala 3, Architecture Modelling,
Safety Assessment, Static Analysis, Monte-Carlo Methods

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.5

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.14

1 Introduction

The work presented in this paper is motivated by the emergence of Urban Air Mobility
(UAM) which will move people and cargo by air, exploiting the third dimension to escape
ground congestion. UAM will be powered by new electric Vertical Take-Off and Landing
(eVTOL) aircraft. They will use highly redundant fully electric propulsion systems for
reduced noise and safe operation in urban areas. The Aerospace Recommended Practices
(ARP-4754A1/47612) guide the design and certification process of these aircraft. According to
[18], safety assessment is very challenging for eVTOL development with large costs associated
to safety modeling, and difficulties to assess and optimize multiple architecture variants.

New eVTOL companies propose very different system architectures (lift-only config-
urations, lift+cruise configurations with tilt-wing, tilt-rotor, etc.) for a wide variety of
applications (air taxi, deliveries, freight, etc.) and safety aspects play a decisive role in the

1 https://www.sae.org/standards/content/arp4754a/
2 https://www.sae.org/standards/content/arp4761/

Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Maxime Buyse, Rémi Delmas, and Youssef Hamadi;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 5; pp. 5:1–5:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maxime.buyse@polytechnique.org
mailto:remi.delmas.3000@gmail.com
mailto:Youssefh@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://doi.org/10.4230/DARTS.7.2.14
https://doi.org/10.4230/DARTS.7.2.14
https://www.sae.org/standards/content/arp4754a/
https://www.sae.org/standards/content/arp4761/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 ALPACAS

competition of designs. Moreover, exploring the underlying design-space from a safety and
certification perspective can help define meaningful mandatory safety targets, which are still
being actively discussed by regulators in the US and the EU.

A system is called critical when the failure to perform its function is likely to result in
loss of life or extreme environment damage. Examples of critical systems are embedded
aircraft control systems, railway control systems, nuclear plant control systems, radiotherapy
equipment control systems, etc. The acceptable risk levels for critical systems are defined
by competent regulatory bodies, collaboratively with stakeholders such as system providers,
system users, the state, etc. The severity of identified risks determines fault tolerance and
reliability requirements for the system, as well as design and verification process requirements.
System safety assessment consists in characterizing the risk for a particular system, identifying
applicable safety requirements and demonstrating that the planned system architecture meets
safety requirements.

All phases of the safety process are backed by modeling and analysis tasks in some
adapted formalism. The modeling artifacts are used as evidence in the certification process.
Implementation requirements [11] are derived from the safety analysis to feed the implemen-
tation phase following DO-178C and DO-254A recommendations. Similar concepts apply in
other domains such as automotive and railway [39] [46].

The safety, verification and validation activities of critical embedded systems account for a
large part of the total development cost. Identifying the optimal system architecture according
to safety metrics and implementation cost criteria before starting its implementation and
certification is hence essential, in particular in the UAM domain where designs are created
from a blank slate without preexisting reference or safety record. A lack of agility in these
early design phases can result in suboptimal system designs and limit programmatic agility
in the long run, i.e. the ability to update an existing system with new functions or safety
enhancing features that would require substantial modifications of the safety models and
analysis.

As will be seen in the related works section, current safety formalisms lack features which
could make safety modeling more efficient. These features are commonly found in modern
functional and object-oriented programming languages: encapsulation, generic parameters,
higher-order parameters, polymorphism, etc. Better support for incremental and generic
modeling can allow to go beyond safety assessment and support genuine safety-driven design-
space exploration, where optimal design decisions are made by comparing automatically several
candidate system architectures. For this we propose the Alpacas safety formalism, built
as an embedded domain-specific language in the Scala 3 functional programming language.
Alpacas offers first-class generic and parametric modeling capabilities allowing to formalize
higher-order design spaces. The embedding allows to fuse declarative safety modeling and
programming in a coherent framework, to compute safety indicators for system variants more
easily, effectively unlocking architectural design-space exploration and optimization.

The rest of the paper is structured as follows: Section 2 reviews existing safety model-
ing formalisms and their limitations, as well as domain-specific language implementation
techniques; Section 3 presents the design goals and requirements that shaped Alpacas,
together with a running example; Section 4 introduces the Alpacas syntax and implemen-
tation using the running example; Section 5 describes the formal semantics of Alpacas;
Section 6 discusses safety analysis algorithms provided by Alpacas; Section 7 describes a
design-space exploration study performed with Alpacas for a thrust reallocation function
of an electric vertical takeoff and landing aircraft; Last, Section 8 concludes the paper and
outlines perspectives to this work.

M. Buyse, R. Delmas, and Y. Hamadi 5:3

2 Related works

We present core safety modeling concepts in Section 2.1, related works on safety modeling
and analysis in Section 2.2, as well as relevant literature on domain-specific language
implementation techniques in Section 2.3.

2.1 Core safety concepts
We now review fundamental concepts in system safety modeling as originally presented in
[47]. A System is an assembly of Components, operating together to perform a Function.
Basic Failure Events cause changes of the internal State of components. At the very least,
a component has two states: working and failed, but it can have more, such as multiple
functional or degraded modes. Failure Modes are the external manifestations of the internal
failure state of a component. For instance, a valve component could be in three states:
working, stuck-open, stuck-closed, with corresponding failure modes nominal pressure, over-
pressure or under-pressure, respectively. Failure modes propagate and combine through the
system, affecting its ability to perform its function. A Failure Condition is a failure mode of
the function performed by the system, and it is the consequence of one or more basic failure
events. The Structure Function of the system specifies how basic failure event combinations
or sequences produce different failure conditions at the system level.

Failure events occur randomly following certain delay distributions, failure behaviour
can be non-monotonic and sensitive to event ordering, propagations can exhibit some level
of randomness and time dependency, which makes safety modeling and analysis a complex
problem. Many formalisms have been proposed, depending on the class of system to analyze.
In all cases, safety models are built in order to compute safety indicators of a system and
predict its performance. Qualitative indicators describe the logical relationship between
basic failure events and system failure conditions. Minimal cutsets or sequences (MCS)
are minimal event combinations or sequences triggering a failure condition. Quantitative
indicators capture the probabilistic aspects of system failure. For instance, Unreliability, the
probability that the system fails in the interval [0, T], depends in a non-trivial way on basic
event probabilities and on system architecture.

2.2 Safety formalisms
Safety formalisms are distinguished by their semantics, which delimits the class of real-
world systems they can faithfully model. Semantics also influences the tractability of safety
indicators. The other major aspect for use in real-world applications is the level of support
for design-space exploration, i.e. the ease with which models can be parameterized, updated,
extended, reused, etc. Each new system design iteration alters the system architecture and its
dysfunctional behaviour, which must be reflected in the safety model. Design modifications
are also largely guided by the safety analysis of different design options which orient the
choice of fault-tolerance patterns, redundancy levels, basic event occurrence rates, etc.

The most widely used safety formalism in industrial domains are Fault Trees [30] and Bow-
Tie Diagrams [22]. These graphical formalisms address static systems where the order of event
occurrences does not matter, and allow a direct representation of combinatorial structure
functions as Boolean functions over basic events interpreted as propositions. Dynamic fault
trees [24] extend fault trees to handle dynamic systems where event ordering matters, by
adding logic gates where subtree ordering encodes temporal sequencing constraints. Dynamic
systems are also traditionally modeled using Markov chains. In non-repairable systems, new

ECOOP 2021

5:4 ALPACAS

events can only degrade the health of the system, which translates to monotony properties of
structure functions. In repairable systems, a new event can improve the health of the system
by prompting a repair action. Boolean logic-driven Markov Processes [13, 16, 32, 33] allow
to address dynamic repairable systems.

Model-checking tools such as PRISM [35, 36] or UPPAAL-SMC [19, 17], supporting
formalisms like Continuous-time Markov chains (CTMC) or Probabilistic Timed Automata
(PTA), can be used for reliability analysis. Generalized Semi-Markov Processes (GSMP),
which are strictly more expressive than CTMC and PTA, have also been quite successful for
reliability analysis using Monte-Carlo [37, 23, 48] or bounded model-checking approaches
[2]. Works such as [25] propose a superset of both GSMPs and PTAs and leverage either
Monte-Carlo simulation or PRISM as back-end depending on the particular subset the model
falls in.

In all of the above formalisms, system architecture, components, failure modes and failure
propagation are not first class concepts, the concept of failure condition is implicit and
cannot be disentangled from models and models are not composable. Moreover, design-space
formalization is impossible with these formalisms, for their lack of generic modeling features
and inability to express parametric system families.

The more recent Model-Based Safety Analysis (MBSA) approach [38] addresses these issues
by adopting hierarchical modeling, failure modes, propagation rules and failure conditions
as first-class concepts. A first collection of works proposes to annotate a functional design
model with failure mode propagation rules: [20] proposes a safety extension for the well
known AADL system design language; [31] extends a Simulink model with Boolean formulas
modeling failure mode propagation conditions; in xSAP [12] a reference functional model is
annotated with timed failure propagation information.

Extending a functional model with safety information is debatable, due to the fact that
fault propagation can occur through non-functional paths in real systems, and that external
non-functional factors also need to be modeled to conduct safety assessment. The computation
of safety indicators requires to abstract away safety-irrelevant aspects of system behaviour
to become tractable, and results in models that are qualitatively different from engineering
models. Another line of works in MBSA addresses these issues by proposing languages
dedicated to safety modeling. In particular, the Altarica family of languages [4, 42, 9] proposes
a hierarchical modeling approach based on components and data-flow with a semantics based
on Stochastic Guarded Transition Systems (SGTS). This framework is at least as expressive as
GSMP and allows to model dynamic and repairable systems, with concurrency and real-time
aspects, with deterministic or stochastic failure mode propagation rules, common-cause
failure modeling with event synchronizations. The recent S2ML framework [8] uses concepts
borrowed from object-oriented programming to improve model reuse and allow the creation
of component libraries, and only offers a restricted form of parametricity.

Alpacas is a new incarnation of SGTS with hierarchical modeling and expressivity
comparable to Altarica. However, Alpacas is tailored for design-space exploration by adding
first-class support for generic modeling based on functional programming concepts such as
higher-order parameters, typeclass polymorphism, etc. Design-space formalization, was only
handled externally and informally in all previous approaches. In addition, Alpacas removes
the strict boundary between safety models and analysis algorithms, opening the way to
better design-space exploration methods.

M. Buyse, R. Delmas, and Y. Hamadi 5:5

2.3 Domain-specific languages
Domain-Specific Languages (DSL) are dedicated to the modeling and solving of particular
classes of problems, and are generally not complete programming languages. Standalone
DSLs are implemented by writing a standalone front-end (lexer, parser, type-checker, . . .)
and back-end (interpreter, compiler, solver, optimizer, . . .). Embedded DSLs on the other
hand are implemented within a host language [28], and exposed to the user through functional
combinators or syntax extensions. Language embedding allows to reuse the host language
syntax, type system, semantics, libraries, compilers and tools at the cost of slightly less
freedom in the syntax definition of the DSL, and has become a very popular approach. A
DSL embedding is shallow when DSL constructs are directly interpreted in the host language
without any further analysis or code generation stages. The Tagless Final approach [34] is
very popular for shallow DSL implementation: DSL operations are represented as a purely
functional interface parameterized by a monadic higher-kinded effect type, which defines its
semantics. In deep embedding approaches, evaluating the domain-specific program yields a
term data structure representing the DSL program that is then analyzed and processed in
multiple stages [44]. Deep embedding approaches based on free monads have been proposed,
however both shallow and deeply embedded monadic approaches are hard to scale to large
DSLs, are syntactically constrained by the monadic programming style, and require deep
understanding of monads and higher-kinded types from the end user.

To implement Alpacas, we opted for a non-monadic deep embedding technique, because
the language is relatively rich and requires advanced static checks and preprocessing on
the models before running simulations and analyses. The Scala language is known to offer
very good support for deep embedding and staging, as demonstrated in multiple domains
like hardware description with the Chisel language [5], Lightweight Multi-Stage numerical
code optimization [44], full language virtualization [43], GPU acceleration of numerical code
[49], event monitoring with automata [26], polymorphic linear algebra [45], etc. The newly
released Scala 3 based on the Dependent Object Type calculus [3] offers even better support
for deep embedding, with generalized algebraic data types, extension methods, infix methods,
contextual abstraction mechanisms such as type-classes and automatic type-class derivation,
and more importantly implicit function types [40], etc. Support for Multi-stage programming
is also improved with the new inline-def macro system which, together with a new quoting
and splicing system, provides efficient compile-time as well as run-time code generation.

3 Generic modeling needs and running example

In this section we illustrate MBSA concepts on a simple powertrain model, consisting of
two batteries providing power to two electric engines. The failure condition is the loss of
both engines. A battery component, shown in Figure 1, has two internal states Ok and Fail,
an exponential failure delay distribution of parameter lamB. It produces a data-flow power
representing the power failure mode, Ok in the Ok state and Fail in the Fail state. An engine
component has two states Ok and Fail, an exponential failure delay distribution of parameter
lamE. It produces a data-flow thrust representing the thrust failure mode, equal to its input
power in the Ok state, and to Fail in the Fail state.

Components encapsulate states and guarded transitions behind a data-flow interface.
Data-flow connections shown in Figure 2 model how failure modes propagate from batteries,
to engines, to the failure condition observer through the system. Each engine’s power input
is connected to both batteries using an OR operator (produces Ok if one of the inputs is Ok,
Fail otherwise). The engines’ thrust outputs are connected to a failure condition observer

ECOOP 2021

5:6 ALPACAS

Battery

no_thrust

FC Observer

no_thrust :=

(thrust0 == Fail
&&

 thrust1 == Fail)
failure ~ Exp(lamE)

Engine

state := Ok

power := Ok

state := Fail

power := Fail

failure ~ Exp(lamB)

state := Ok

thrust := power

state := Fail

thrust := Fail

power power thrust

thrust1

thrust0

Figure 1 Powertrain example: battery, engine, failure condition observer components.

monitoring the loss of thrust on both engines. In the initial state shown in Figure 2(a), all
components are in the Ok state and all power and thrust data-flows are Ok. The state in
Figure 2(b) is reached after the failure of the first battery. Since the second battery is still
Ok, engines still receive power and produce thrust and the failure condition is not triggered.
The state in Figure 2(c) is reached after the failure of the second battery, which causes a loss
of power for both engines and loss of thrust, despite the engines being in the Ok state. The
failure condition is triggered as a result.

Figure 2 Powertrain example: state and flow updates after Battery0 and Battery1 failure events.

With Alpacas our goal is to formalize such a model in a generic way, where the number
of engines and batteries are parameters, and where the topology of the power delivery
connections between them is also a parameter of the model. This form of genericity affects
the model’s hierarchy as well as the topology of the data-flow network. We also want the
concrete representation of failure states and failure modes of the engines and batteries to be
parameters, as well as the delay distribution parameters of the corresponding events. By
combining concepts from stochastic guarded transition systems and generic types, typeclass
polymorphism and higher-order concepts from functional programming we can achieve this
genericity. This genericity is the basis needed for genuine design-space formalization and
exploration.

4 The Alpacas domain-specific language

This section presents the Alpacas DSL, the modeling workflow and the embedding techniques
allowing the Scala syntax to be adapted to safety modeling needs. Section 4.1 to Section 4.5
introduce Alpacas constructs using the running example. Section 4.6 details the expressions
language of Alpacas. Section 4.7 shows how we extended the Scala syntax for Alpacas.

Code examples with a green background show Alpacas code written by the end-user,
and code examples with a red background show internal Alpacas implementation code.
These examples are simplified compared to the actual library code, omitting the source
mapping code which allows to track filenames, line numbers and Scala variable identifiers,
handled using the sourcecode library. This implementation of Alpacas is written in Scala
3.0. Listing 1 presents the Alpacas encoding of the powertrain running example of section
3, which is later detailed in sections 4.1 to 4.5.

M. Buyse, R. Delmas, and Y. Hamadi 5:7

1 enum Failure derives Lifted {
2 case Ok
3 case Fail
4 }
5

6 import Failure .*
7

8 given Ord[Failure] with {
9 def lt(x: Failure , y: Failure): Boolean = x == Ok && y == Fail

10 }
11

12 class Battery extends Component {
13 val state = State[Failure](init = Ok)
14 val power = OutFlow [Failure]
15 val failure = Event(Exponential (1E -5))
16 val repair = Event(Dirac (5) , weight = 1.0)
17 assertions { power := state }
18 transitions {
19 When(failure) If state === Ok Then {state := Fail}
20 When(repair) If state === Fail Then { state := Ok}
21 }
22 }
23

24 class Engine extends Component {
25 val state = State[Failure](init = Ok)
26 val thrust = OutFlow [Failure]
27 val power = InFlow [Failure]
28 val failure = Event(Exponential (1E -5) , policy = Policy . Memory)
29 val repair = Event(Dirac (1))
30 assertions {
31 thrust := If (power === Ok && state === Ok) Then Ok Else Fail
32 }
33 transitions {
34 When(failure) If(state === Ok && power === Ok) Then { state := Fail}
35 When(repair) If(state === Fail) Then { state := Ok}
36 }
37 }
38

39 type Batteries = Vector [Battery]; type Engines = Vector [Engine]
40 type Wiring = (Batteries , Engines) => Assertions
41

42 class Powertrain (wiring : Wiring , n: Int) extends Component {
43 val batteries = Subs(n)(Battery ())
44 val engines = Subs(n)(Engine ())
45 val observer = OutFlow [Boolean]
46 val ccf = Event(Exponential (1E -7))
47 assertions {
48 wiring (batteries , engines)
49 observer := engines .map(_. thrust === Ok). reduce (_&&_)
50 }
51 transitions {
52 Sync(ccf) With { batteries .map(_. failure .hard). reduce (_&_) }
53 }
54 }
55

56 def one2one (b: Batteries , e: Engines): Assertions =
57 e.map(_.power) := b.map(_. power)
58

59 def one2all (b: Batteries , e: Engines): Assertions =
60 for (eng <- e) eng. power := b.map(_.power). reduce (_ min _)
61

62 val powertain121 = Powertrain (one2one , 2)
63 val powertrain12all = Powertrain (one2all , 2)

Listing 1 Alpacas modeling of the powertrain example (cf Figure 1 for graphical view).

ECOOP 2021

5:8 ALPACAS

4.1 Lifting types, declaring components, state and flow variables
Alpacas supports Scala’s built-in Boolean, Int and Double types. Any Scala enumerated
type can be lifted in the DSL and used to model component states and failure modes. Lines
1-4 of Listing 1 define a Failure enum with two values Ok and Fail, and lift it in Alpacas
space using the derives Lifted clause. The mechanism allowing this syntax will be detailed
in Section 4.7.

It is possible to define ordering relations on user-defined types in order to use the DSL’s
relational operators <, ≤, ≥, >, min, max in guards and data-flow expressions. Orderings
facilitate the definition of generic failure conditions or failure mode consolidation logic that
only require to know if a failure mode is worse or better than another, without knowing
exactly the individual failure modes. Lines 8-10 of Listing 1 define failure mode Ok to be
strictly lesser than failure mode Fail.

Alpacas allows to specify SGTS in a modular and composable way, and to derive a flat
SGTS automatically. All user-defined safety components are represented as Scala classes
extending an abstract Component class provided by the Alpacas library. Components
encapsulate state and flow variable declarations, event declarations, groups of transitions
and flow assertions and have a strongly typed defined data-flow interface.

The model structure is captured using object-orientation (classes) and composition.
Components can be instantiated inside other components using their constructors and the
Sub statement. Vectors of sub-components are declared with the Subs statement where the
size of the vector is provided as first argument (See lines 43-44 in Listing 1). The hierarchy
of an Alpacas model represents the system’s static architecture.

Components contain either state variables declared by specifying their type and initial
value with State[Type](initial), or oriented flow variables declared by specifying their
type and interface orientation with OutFlow[Type] or InFlow[Type]. In lines 25-27 of
Listing 1, we define the variables for the Engine component: the state variable of type
Failure and initial value Ok represents the intrinsic failure state of the component, the
power input flow of type Failure represents the status of the power supply, and the thrust
output flow represents the status of the thrust provided by the engine. Listing 2 shows how
to declare vectors of variables with the keywords States, InFlows and OutFlows, which
take the vector size as parameter.

1 class VectorExample extends Component {
2 val state = States [Failure](init = Ok)(4)
3 val inputs = InFlows [Failure](4)
4 val outputs = OutFlows [Failure](4)
5 }

Listing 2 Vectors of variables.

4.2 Declaring flow assertions
Flow assertions define the flow variables in function of the state variables. Each component
must define all its locally declared output flow variables, as well as all input flow variables of
its sub-components. Line 31 of Listing 1 defines the thrust output of the Engine component
to be Ok if the engine doesn’t have an internal failure and receives nominal power supply.
Alpacas offers an overloaded flow definition operator := which works with equally sized
vectors as left and right hand sides, as shown in line 57 of Listing 1. Functional iterators or
for comprehensions can also be used to define vectors of flows point-wise, as shown in line 60
of Listing 1. A flow variable can be defined using any expression over flow or state variables
as long as no cyclic flow dependency is introduced. Cyclic definitions are checked by the tool
and reported to the user as hard errors (see Section 6.1).

M. Buyse, R. Delmas, and Y. Hamadi 5:9

4.3 Declaring transitions and synchronizations

Guarded transitions specify how the system state evolves over time. They are labeled by an
event, and composed of a guard (a Boolean expression that must be true for the transition
to be fired), and a set of state assertions (specifying how state variables are modified when
the transition is fired).

Events represent random faults or deterministic system reactions and carry their delay
distribution. Random faults are usually modeled using Exponential distributions, Weibull
distributions, etc. Deterministic failure propagation or functional reactions of the system
are modeled as events with Dirac distributions. When a transition is fireable, its firing
delay is sampled from the distribution associated to its event (Dirac distributions produce a
deterministic value). The default behaviour is to sample a new delay every time the transition
becomes fireable, but it is also possible to store the delay when the transition stops being
fireable and to use the stored delay value the next time it becomes fireable. This is called the
Memory policy, it is useful to model components that wear out during their use. In line 28
of Listing 1, the failure event for engines is declared with a Memory policy, to model that if
the engine is shut down because of a battery failure, when the battery is repaired the engine
has the same remaining life as when it stopped being powered.

In order to support common cause modeling, Alpacas offers event synchronization
constructs, which express that two or more events can occur simultaneously as a consequence
of another event named the common cause. The synchronized events can be either:

hard-synchronized : all guards have to be true for the synchronized transition to be fired,
soft-synchronized: at least one of the guards has to be satisfied for the synchronized
transition to be fired. The state variables of soft-synchronized transitions are updated
only if their guard was satisfied.

Line 52 of Listing 1 shows the hard-synchronization of the failures of two different
batteries under a common cause failure event ccf (declared on line 46) that models a failure
event affecting both engines at the same time (for instance a fire event, a lightning strike
event, etc.). The repair event of the Battery component is declared with Dirac(5) delay
distribution and weight parameter of 1.0 on line 16. The weight parameter is used to
handle tie breaks between concurrent events. Here, following a ccf event, both batteries’
repair events will be in concurrency. Tie breaks are achieved by selecting sampling a
categorical distribution built from the from the weights of the concurrent events, here such
that p(batteries(0).repair) = p(batteries(1).repair) = 1.0

1.0+1.0 = 0.5.
Line 28 of Listing 1 shows how to declare an Exponential distribution for the failure

event of an engine, and line 29 a Dirac distribution for the functional repair event.

4.4 Specifying failure conditions

Any Boolean-valued data-flow of the model can be used as failure condition. For instance,
the observer flow defined on line 49 of Listing 1 becomes false when the thrust of at least
one engine is not Ok. Such definitions are usually placed in observer components, which
are instantiated alongside the other components in the system. Several observers can exist
in the system, however analyses take a single failure condition as parameter. Minimal
sequences generation searches for event scenarios falsifying the condition. Unreliability
analysis estimates the probability of this data-flow becoming false over some mission time T .

ECOOP 2021

5:10 ALPACAS

4.5 Parameters, type parameters, higher-order parameters
Component constructors can take parameters, allowing for instance to parameterize the
number of sub-components or the number of state or flow variables of the component.
Functional iterators (map, fold, reduce, . . .) and vector assertions allow to define size-
agnostic expressions, guards, assertions sets, etc.

Line 42 of Listing 1 declares the Powertrain Component, parameterized by the number
of engines and batteries. Batteries and engines are declared as vectors of identical size on
lines 43-44. Their data-flow connections are defined by a higher-order wiring parameter of
type Wiring. The Wiring type, declared on line 40, is a function type taking Batteries
and Engines vector inputs and producing an implicit function type Assertions (provided by
the Alpacas library) as output. The observer expression is defined as the conjunction of all
engines providing thrust using the reduce iterator. Wiring schemes 1-to-1 and 1-to-all are
defined respectively on lines 56-57 and 59-60. Two system variants with two engines and
batteries and different wiring schemes are created using the Powertrain constructor on lines
62 and 63.

Type-class polymorphism allows to abstract over failure modes and to define generic flow
aggregation logic, as shown in the voter example of Listing 3.

1 class Voter[A: Lifted :Ord](n: Int) extends Component {
2 val inputs = InFlows [A](n)
3 val output = OutFlow [A]
4 assertions { output := inputs . reduce (_ max _) }
5 }

Listing 3 A generic voter component.

The example in Listing 4 shows how to use a trait and self-type annotation to define
a reusable unit of behaviour. Using this trait we could for instance factor the failure logic
between Engine and Battery components.

1 trait CanFail (lambda : Double) { self: Component =>
2 val state = State[Failure](init = Ok)
3 val fail = Event(Exponential (lambda))
4 transitions { When (fail) If (state === Ok) Then { state := Fail } }
5 }
6 class Engine extends Component with CanFail (lambda = 1E -7) { /* ... */ }
7 class Battery extends Component with CanFail (lambda = 1E -5) { /* ... */ }

Listing 4 Using traits to encapsulate reusable behaviour.

4.6 Abstract syntax for expressions
We use the initial algebra encoding approach for Alpacas. Expressions are represented by
abstract syntax trees defined inductively by a number of variants. Variants include flow
variables, state variables, literal constants and constructors for all supported operations. The
full abstract syntax is given below:

Expr ::= Const(value) | Svar(ident) | Fvar(ident) | Eq(Expr, Expr) |
Ite(Expr, Expr, Expr) | Lt(Expr, Expr) | Un(Unop, Expr) |
NumBin(NumBinop, Expr, Expr) | LogBin(LogBinop, Expr, Expr);

LogBinop ::= And | Or; NumBinop ::= Add | Sub | Mult | Div; Unop ::= Neg;

M. Buyse, R. Delmas, and Y. Hamadi 5:11

The following rules define well-typed expressions, where T is a generic type variable:

v of type T

Const(v) : T

s state variable of type T

Svar(s) : T

f flow variable of type T

Fvar(f) : T

e1 : T e2 : T

Eq(e1, e2) : Boolean

c : Boolean e1 : T e2 : T

Ite(c, e1, e2) : T

The other constructs of the abstract syntax are defined only for some type-classes. We
now present these type-classes and the corresponding typing rules.

Numeric is the type-class for numeric operations (addition, subtraction, multiplication
and division), with typing rule:

e1 : T e2 : T NumBinop ∈ Add|Sub|Mult|Div Numeric[T]
NumBin(NumBinop, e1, e2) : T

Logic is the type-class for Boolean operations (conjunction, disjunction and negation),
with typing rules:

e1 : T e2 : T LogBinop ∈ And|Or Logic[T]
LogBin(LogBinop, e1, e2) : T

e : T Logic[T]
Un(Neg, e) : T

Ord is the type-class of ordered types, with typing rule:
e1 : T e2 : T Ord[T]

Lt(e1, e2) : Boolean
The expression language and typing constraints are implemented in Scala 3 using the

generalized algebraic datatype (GADT) shown in Listing 5. An implicit conversion for lifting
Scala constants to expressions is also provided. Alpacas expressions requiring a given
type-class can only be constructed if an implicit type-class instance can be derived by the
compiler for this type. This ensures that only well-typed expressions can be represented in
the DSL. The type-checking of Alpacas expressions is performed by the Scala compiler and
type errors are highlighted in the IDE used for editing the models.

1 enum Expr[T] {
2 case Const(value : T) extends Expr[T]
3

4 case Svar(uid: StateId , init: T) extends Expr[T]
5

6 case Fvar(uid: FlowId) extends Expr[T]
7

8 case Eq(l: Expr[T], r: Expr[T]) extends Expr[Boolean]
9

10 case Ite(c: Expr[Boolean], t: Expr[T], e: Expr[T]) extends Expr[T]
11

12 case Lt(l: Expr[T], r: Expr[T])(using Ord[T]) extends Expr[Boolean]
13

14 case NumBin (b: NumBinop , l: Expr[T], r: Expr[T])(using Numeric [T])
15 extends Expr[T]
16

17 case LogBin (b: LogBinop , l: Expr[T], r: Expr[T])(using Logic[T])
18 extends Expr[T]
19

20 case Un(u: LogUnop , e: Expr[T])(using Logic[T]) extends Expr[T]
21 }
22

23 given [T]: Conversion [T, Expr[T]] with {
24 def apply(t:T): Expr[T] = Expr.Const(t)
25 }

Listing 5 Scala GADT for Alpacas expressions.

ECOOP 2021

5:12 ALPACAS

4.7 Syntax extensions
As seen in the code examples of sections 4.1 to 4.3, Alpacas provides constructs allowing
to declare variables, assertions, transitions and expressions with a natural syntax. We use
Scala 3’s context abstraction capabilities to perform the required book-keeping of state and
flow variables, events, assertions and transition declarations without adding clutter for the
end-user. The code of Listing 6 presents the State variable constructor (InFlow and OutFlow
variable constructors definitions are similar). This constructor takes an implicit argument of
type StateVarSet from the surrounding Component instance, and creates a new Expr.Svar
instance representing a state variable, adds it to the set of variables of the component, and
returns it.

1 object State {
2 def apply[T](init: T)(using svar: StateVarSet): Expr.Svar[T] =
3 val res = new Expr.Svar[T](StateId () , init)
4 svar += res
5 res
6 }

Listing 6 State variable constructor.

To group assertions declarations in an assertions block, we use context functions and
Odersky’s builder pattern [40]. The builder pattern allows to build data structures with
a declarative syntax, hiding side effects performed by builder methods. Multiple builder
patterns can be nested by introducing intermediary builder methods.

Listing 7 shows the assertions builder method. It takes an implicit ComponentBuilder
argument, used to perform all book-keeping declarations and definitions found inside
a component, that is only available when in a surrounding Component instance. The
field flowAssertionBuilder of the builder object is placed in the implicit scope of the
assertions method to make it available to the := assertion definition operator (itself de-
fined as an extension method in the derived Lifted instance, see Listing 9). The init
argument of the assertions method, with implicit function type FlowAssertionBuilder
?=> Unit, is provided by the user as a block containing flow assertions. Nesting the
FlowAssertionBuilder inside the ComponentBuilder ensures that a compile-time error
occurs when attempting to define flow assertions outside of an assertions builder method.

1 def assertions (init: FlowAssertionBuilder ?=> Unit)
2 (using builder : ComponentBuilder) =
3 given FlowAssertionBuilder = builder . flowAssertionBuilder
4 init

Listing 7 assertions function for the builder pattern defining flow assertions.

The transitions builder uses three levels of nesting: the transitions builder method
takes an implicit ComponentBuilder, which contains a TransitionBuilder object pro-
vided to the When(e) If(g) Then { v := expr } builder construct, which itself contains
a StateAssertionsBuilder object provided to the := state assertion definition operator.

Lifted, shown in Listing 8, is the type-class for types that can be lifted to Alpacas
expressions. It allows to compare expressions using the equality === operator. The :=
overloaded operator allows to define state variables in transitions (cf. Section 4.3) and to
define flow variables in assertions (cf. Section 4.2).

M. Buyse, R. Delmas, and Y. Hamadi 5:13

1 trait Lifted [T] {
2 extension (x: Expr[T])
3 def === (y: Expr[T]): Expr[Boolean]
4

5 extension (x: Expr.Svar[T])
6 def := (y: Expr[T]) (using a: StateAssertionBuilder): Unit
7

8 extension (x: Expr.Fvar[T])
9 def := (y: Expr[T]) (using a: FlowAssertionBuilder): Unit

10 }

Listing 8 Lifted type-class.

Automatic type-class derivation is used to relieve the user from manually defining the
type-class instance (as shown in Section 4.1). For equality, the operator === lifts the
comparison to an expression. The polymorphic variable assignment operators := takes
implicit FlowAssertionBuilder and StateAssertionBuilder and adds the corresponding
assertion to it.

1 object Lifted {
2 def derived [T]: Lifted [T] = new Lifted [T] {
3 extension (x: Expr[T])
4 def === (y: Expr[T]): Expr[Boolean] = Expr.Eq(x, y)
5

6 extension (x: Expr.Svar[T])
7 def := (y: Expr[T]) (using a: StateAssertionBuilder): Unit =
8 a += StateAssertion (x, y)
9

10 extension (x: Expr.Fvar[T])
11 def := (y: Expr[T]) (using a: FlowAssertionBuilder): Unit =
12 a += FlowAssertion (x, y)
13 }
14 }

Listing 9 Derived instance of type-class Lifted.

Type-classes Numeric, Logic and Ord are implemented using generic traits defining
the necessary operations on an abstract type. We have other type-classes defining the
corresponding operations on Alpacas Expressions as extension methods, and we use type-
parametric givens to automatically derive instances of these type-classes.

Listing 10 shows the Ord syntax extensions for expressions. The user provides an instance
of type-class Ord for lifted type T (see Section 4.1). The type-class DSLord provides syntax
extensions for expressions of the Ord type, and the corresponding type-parametric given
ensures DSLord instances can be derived from Ord instances.

1 trait Ord[T: Lifted] {
2 def lt(x: T, y: T): Boolean
3 }
4

5 trait DSLord [T: Lifted] {
6 extension (x: Expr[T])
7 def < (y: Expr[T]): Expr[Boolean]
8 def > (y: Expr[T]): Expr[Boolean] = !(x < y) && !(x === y)
9 def <= (y: Expr[T]): Expr[Boolean] = x < y || x === y

10 def >= (y: Expr[T]): Expr[Boolean] = !(x < y)
11 def min (y: Expr[T]): Expr[T] = If (x < y) Then x Else y
12 def max (y: Expr[T]): Expr[T] = If (x < y) Then y Else x
13 }
14

15 given [T: Lifted :Ord]: DSLord [T] with {
16 extension (x: Expr[T])
17 def < (y: Expr[T]): Expr[Boolean] = Expr.Lt(x, y)
18 }

Listing 10 Type-class mechanism for ordered types.

ECOOP 2021

5:14 ALPACAS

For conditional flow selection, we use functions and infix methods to produce IfThenElse
expressions as presented in Listing 11. Due to Scala parsing rules, the parenthesis are
mandatory around the conditional but optional around the branches

1 def If(c: Expr[Boolean]): Ift = Ift(c)
2

3 case class Ift(c: Expr[Boolean]){
4 def Then[T] (t: Expr[T]): IfThent [T] = IfThent (c, t)
5 }
6

7 case class IfThent [T](c: Expr[Boolean], t: Expr[T]){
8 def Else (e: Expr[T]): Expr[T] = Expr.Ite(c, t, e)
9 }

Listing 11 Implementation of conditional statements.

5 Stochastic guarded transition systems

The semantics of an Alpacas model is given by a Stochastic Guarded Transition System
(SGTS). Our version of SGTS is largely inspired from [42, 9]. This formalism allows to
model dynamic, repairable and re-configurable systems. From [42, 9], we reuse the notions
of state and flow variables, Restart and Memory transitions, event concurrency resolution
mechanisms and event synchronization mechanisms. However, we only accept causal systems
and we add the notion of Urgent events. Urgent events have priority over all other events.

5.1 Definitions
▶ Definition 1 (Stochastic Guarded Transition System). A Stochastic Guarded Transition
System is a tuple:

SGTS = ⟨S , F , AF , T , E⟩ (1)

Where:
S is a vector of typed state variables. Each state variable has an initial value vinit;
F is a vector of typed flow variables propagating failure modes through the system;
AF is a set of flow assertions of the form v := expr , with v ∈ F and expr an expression
over state and flow variables defining v at all times;
T is a set of guarded transitions of the form g

e−→ AS where:
e is an event, the trigger of the transition;
g is a Boolean expression over state and flow variables, the guard of the transition;
AS is a set of state assertions of the form v := expr with v ∈ S and expr an
expression over sate and flow variables, describing updates applied to state variables
when the transition is fired.

Transitions are of three different types, which condition the way they are scheduled in the
system’s behaviour:

Urgent transitions have priority over all other transitions and are fired immediately
after their guard becomes true, without delay.
Restart transitions have an associated firing delay distribution dist(e) and an optional
real-valued weight parameter W (e). The firing delay is sampled from the distribution
each time a state where the guard is true is reached.

M. Buyse, R. Delmas, and Y. Hamadi 5:15

Memory transitions have an associated firing delay distribution dist(e) and an optional
real-valued weight parameter W (e). The firing delay is sampled the first time the guard
becomes true, and sampled again only after the transition is fired, when the guard
becomes true again. When the guard becomes false, the current delay value is saved
and restored the next time the guard becomes true.

The different transition types entail a partition of the set of transitions T = TU ∪TR ∪TM ;
E = EU ∪ ER ∪ EM is the set of events, partitioned by event type.

Example 2 shows the flat SGTS encoding of the powertrain running example presented
in Listing 1. The If-Then-Else expressions appearing in flow definitions are the result of
rewriting the min operator in terms of core operators. The common cause ccf transition
was rewritten using the rules presented in Section 5.3.

▶ Example 2 (Powertrain SGTS, one2all wiring).

S = { b0 .state(init := Ok), b1 .state(init := Ok), e0 .state(init := Ok), e1 .state(init := Ok) }
F = { observer , b0 .power , b1 .power , e0 .power , e0 .thrust, e1 .power , e1 .thrust }
Af = { b0 .power := b0 .state, b1 .power := b1 .state,

e0 .power := Ite(b0 .power < b1 .power , b0 .power , b1 .power),
e1 .power := Ite(b0 .power < b1 .power , b0 .power , b1 .power),
e0 .thrust := Ite(e0 .power = Ok ∧ e0 .state = Ok, Ok, Fail),
e1 .thrust := Ite(e1 .power = Ok ∧ e1 .state = Ok, Ok, Fail),
observer := e0 .thrust = Ok ∧ e1 .thrust = Ok }

TR = { b0 .state = Ok ∧ b1 .state = Ok ccf ∼Exp(1e−7)−−−−−−−−−→ {b0 .state := Fail, b1 .state := Fail},

b0 .state = Ok b0 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {b0 .state := Fail},

b0 .state = Fail b0 .repair∼Dirac(5),W =1−−−−−−−−−−−−−−−→ {b0 .state := Ok},

b1 .state = Ok b1 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {b1 .state := Fail},

b1 .state = Fail b1 .repair∼Dirac(5),W =1−−−−−−−−−−−−−−−→ {b1 .state := Ok},

e0 .state = Fail e0 .repair∼Dirac(1)−−−−−−−−−−−−→ {e0 .state := Ok},

e1 .state = Fail e1 .repair∼Dirac(1)−−−−−−−−−−−−→ {e1 .state := Ok} }
TM = { e0 .state = Ok ∧ e0 .power = Ok e0 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {e0 .state := Fail},

e1 .state = Ok ∧ e1 .power = Ok e1 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {e1 .state := Fail} }
TU = { }

The expression language used in assertions (already detailed in section 4.6) supports
Boolean expressions, integer and floating point numeric expressions as well as equality checks
over user-defined enumerations types. We only consider well typed expressions and assertions.
A total valuation α is a total function over S ∪ F assigning a value to each state variable and
flow variable, that can be decomposed into a state variable valuation αS and a flow variable
valuation αF . We assume a function eval which evaluates an expression in the context of
a valuation α. In a given state, the valuation αS is defined relative to the previous state’s
total valuation α, whereas the valuation αF is defined relative to the current αS .

We assume that AF contains a definition for each flow variable. A flow variable v depends
on a state or flow variable v′ if v′ occurs in the expression defining v in AF . We only consider
causal systems where flow dependency is acyclic, so that there exists a topological ordering of
flow variables allowing to evaluate all flow assertions in a single pass to obtain a flow valuation
αF = propagate(αS). A transition g

e−→ AS is fireable in the context of a total valuation α if
and only if eval(g, α) is true. We say that a valuation α is stable if no urgent transition is
fireable in α, and unstable otherwise. Urgent transitions allow to model immediate feedback
loops while preserving causality: a cycle in data-flow definitions is broken by introducing a

ECOOP 2021

5:16 ALPACAS

stateful element in the cycle and delaying flow propagation to the next logical step using
urgent transitions. Restart transitions allow to model random failure events for memoryless
components for which state history has no influence. Memory transitions allow to model
random failures of components for which the state history has an influence.

5.2 Stochastic timed trace semantics
▶ Definition 3 (Timed Trace). The semantics of stochastic guarded transition system is given
by timed traces of the form:

TimedTrace = S0
e0−→S1 · · · ei−1−−−→Si

ei−→Si+1 . . .
en−1−−−→Sn (2)

A trace is a sequence of states Si connected by Restart or Memory transitions where

S = ⟨α, α, Σ, Mem, t⟩

is such that:
α is a (possibly unstable) valuation,
α is a stable valuation,
Σ : ER ∪ EM → R+ ∪ {+∞} is an event schedule associating a firing delay to each restart
and memory event,
Mem : EM → R+ is an event delay memory associating a memorized delay to each
memory event,
t is a positive real value representing the timestamp of the state.

Firing a transition g
e−→ AS in the context of a stable or unstable valuation α (decomposed

in αS and αF) yields a new valuation α′ decomposed in α′
S and α′

F defined by:

α′
S(v) =

{
eval(expr , α) if {v := expr} ∈ AS

αS(v) otherwise
(3)

α′
F = propagate(α′

S) (4)

When in a state Si, the Restart or Memory transition to fire is the one with the smallest
delay in the event schedule, ei = argmin(Σi). If several events have the same minimum delay
value, the weight values of the concurrent events are used to break the tie. A categorical
distribution is created such that p(e) = W (e)∑

e∈argmin(Σi)
W (e)

, and the event ei is sampled from

this distribution.
The (possibly unstable) valuation αi+1 is the result of firing the transition associated to

event ei in the stable valuation αi.
The stable valuation αi+1 is determined by exploring all possible interleavings of fireable

urgent transitions starting from αi+1, transitively across unstable valuations. If all inter-
leavings lead to the same stable valuation αi+1, it is taken as the stable valuation for the
successor state Si+1, otherwise the trace is considered invalid.

M. Buyse, R. Delmas, and Y. Hamadi 5:17

For each Restart event e, the schedule at state i + 1 is defined depending on whether e is
the event ei that was fired in state i or not, and on its fireability in states i and i + 1:

e = ei fireable(e, αi) fireable(e, αi+1) Σi+1(e)
⊤ ⊤ ⊤ d ∼ dist(e)
⊤ ⊤ ⊥ +∞
⊥ ⊤ ⊤ Σi(e) − Σi(ei)
⊥ ⊤ ⊥ +∞
⊥ ⊥ ⊤ d ∼ dist(e)
⊥ ⊥ ⊥ +∞

For each Memory event e, the schedule and memory functions at state i + 1 are defined
depending on whether e is the event ei that was fired in state i or not, on its fireability
in states i and i + 1, and on the value of its delay memory in state i:

e = ei fireable(e, αi) fireable(e, αi+1) Memi+1(e) Σi+1(e)
⊤ ⊤ ⊤ d ∼ dist(e) Memi+1(e)
⊤ ⊤ ⊥ d ∼ dist(e) +∞
⊥ ⊤ ⊤ Σi(e) − Σi(ei) Memi+1(e)
⊥ ⊤ ⊥ Σi(e) − Σi(ei) +∞
⊥ ⊥ ⊤ Memi(e) Memi+1(e)
⊥ ⊥ ⊥ Memi(e) +∞

ti+1 = ti + Σi(ei) (the time progresses by the fired event’s delay value).

The initial state S0 of a timed trace is defined by:

αS0(v) = vinit for all state variables,
αF 0(v) = propagate(αS0(v)),
α0 is obtained by exploring all interleavings of Urgent events starting from α0 as described
above,
For each Restart event e:

Σ0(e) =
{

d ∼ dist(e) if fireable(e, α0)
+∞ otherwise

For each Memory event e:
Mem0(e) = d ∼ dist(e),

Σ0(e) =
{

Mem0(e) if fireable(e, α0)
+∞ otherwise

t0 = 0

5.3 Event synchronizations
It is possible to define synchronizations of several Restart and Memory events (but not
Urgent events) with another event called the common cause event. The common cause event
can have its own delay distribution and weight parameter.

▶ Definition 4 (Synchronization). A synchronization has the form:

(e : a1.hard & · · · & am.hard & b1.soft & · · · & bn.soft) g−→ AS

Where

ECOOP 2021

5:18 ALPACAS

e is the common cause event,
{ai.hard | 0 ≤ i ≤ m} are the mandatory events of the synchronization,
{bi.soft | 0 ≤ i ≤ n} are the optional events of the synchronization,
g is a (possibly true) guard,
AS is a (possibly empty) set of state assertions.

The semantics of a synchronization is defined by translation to the core formalism. We
assume that the transitions corresponding to synchronized events are already rewritten to
standard transitions if they were synchronized transitions, so that we have a set of mandatory
transitions of the form: M = {h1 −→ As1 , ..., hl −→ Asl

} and a set of optional transitions of
the form: O = {j1 −→ Bs1 , ..., jn −→ Bsn

}.
We denote by If g Then Bs the set of state assertions Bs where each assertion v := expr

is rewritten to v := If g Then e Else v. The translation is defined as follows:
Case l > 0: The synchronization rewrites to:

h1 && ... && hl
e−→ As1 ∪ ... ∪ Asl

∪ If j1 Then Bs1 ∪ .. ∪ If jn Then Bsn

Case l = 0 and n > 1: The synchronization rewrites to:

j1 || ... || jl
e−→ If j1 Then Bs1 ∪ .. ∪ If jn Then Bsn

Case l = 0 and n = 1: The synchronization rewrites to:

true
e−→ If j1 Then Bs1

5.4 Instability, Zeno phenomena and other issues
The definitions given in the previous sections do not prohibit ill-conditioned systems where
the following issues occur:

multiple distinct stable valuations are reachable from a given unstable valuations,
the system exhibits Zeno behaviour, i.e. can take an infinite number of transitions through
unstable valuations, or through stable states or a combination of both in a finite amount
of time,
event concurrency situations which cannot be solved because of a missing weight parameter
(which we handle as a modeling error from the user),
systems with unwanted deadlock states due to synchronizations of transitions with
incompatible guards, etc.
runtime errors in expression evaluation such as arithmetic underflow/overflow, division
by zero, etc.

Static analysis or model-checking algorithms allow to detect such issues ahead of time,
however in this first version of Alpacas we detect such problems at run-time when exploring
event sequences or simulating the system, leaving the more advanced method for future
work. Detection is performed by monitoring diverging interleavings of urgent transitions;
monitoring for cycles of unstable states; exiting in error if a threshold was exceeded on the
number of fired events (including urgent events) without having time progress; exiting in
error in case an event without weight parameter is involved in a concurrent race. We also
offer an interactive step simulator that allows the user to test the model against their own
expectations.

M. Buyse, R. Delmas, and Y. Hamadi 5:19

6 Alpacas algorithms

This section presents the main algorithms available in Alpacas allowing to process a model
and compute its safety indicators: flattening, basic evaluation and step simulation, minimal
cut sequence enumeration, stochastic simulation.

6.1 Translating a hierarchical model to a flat stochastic guarded
transition system

Hierarchical models need to be translated to the underlying SGTS representation to be
analyzed. Since the hierarchy is flattened in the process, this translation is called flattening.

The first part of the flattening is to traverse the structure recursively to collect all
variables, assertions and transitions of the model. We store them in adequate structures
referencing them by their unique identifiers. We also generate human-readable names for
variables and events reflecting to their full path in the component hierarchy.

Then several checks are performed. We use the cats library’s Validated type to
accumulate errors of several parallel validation tasks. The first check is for flow definitions:
we verify that each component actually defines exactly once all the flows it must define (its
output flows and its sub-components’ input flows). If it is not the case, we accumulate all
errors corresponding to missing or redundant definitions (with variables names and line of
declaration) and send back the errors to the user. The second check is for model causality: we
verify that the flow dependency is not cyclic. To do this, we generate the graph representing
the dependency relation between flow variables defined by flow definitions (we use the
scalagraph library). The absence of cyclic definitions is verified if and only if every strongly
connected component of the graph contains only one node and flow assertions do not create
direct self-dependencies. We check this using scalagraph, and in case of failure produce an
error describing all variables involved in every cyclic component of the dependency graph. If
no error is found, we compute a topological ordering on the graph that allows to compute
flow variable assignments in sequential order.

Finally, we rewrite synchronizations to standard transitions according to the definitions
presented in Section 5.3. This is done thanks to a recursive function that we call on every
transition. Every time a synchronization is found, we recursively flatten the synchronized
events (that can themselves correspond to synchronizations).

6.2 Transition firing and state updates

The basis of all analyses that can be made on an SGTS is the representation of αS and αF
valuations and how they are updated to reflect the firing of a transition, moving one step
forward in the trace of a valid run of the SGTS.

As described in Section 5.2, firing a transition consists in computing the new state
valuation according to the previous total valuation and to the state assertions of the fired
transition, followed by computing the flow valuation according to the new state valuation and
to all flow assertions in topological order, iterating this process as long as urgent transitions
are possible, to finally reach a stable valuation or exit in error if divergent urgent behaviour
is detected or Zeno behaviour is detected.

Another important basic function used in all algorithms is the computation of the list of
fireable transitions. This is straightforward from the evaluation of all transitions guards in a
given state.

ECOOP 2021

5:20 ALPACAS

These two building blocks allow us to provide an interactive step simulator. When in this
mode, the values of variables and fireable transitions in the current assignment are displayed
to the user who can manually choose the next transition to fire (instead of using the minimum
delay rule of the timed trace semantics). The next state is then displayed (with an option for
displaying only the state and flow variable delta with respect to the previous state), so on
and so forth until the user stops the simulation. Thanks to the functional immutable data
structures backing this simulation mode, the user can undo previous decisions at any point
and backtrack in the simulation in order to explore another branch.

6.3 Qualitative indicators
The enumeration of minimal sequences requires to produce traces that lead to a state
satisfying a failure condition. To avoid redundancies, only minimal failure scenarios according
to a given partial ordering over sequences are considered in safety analysis. We support the
most common ordering used in the safety literature, which is the subsequence relation. To
generate all possible minimal sequences, we explore the set of possible failure sequences using
a bounded breadth-first search algorithm, allowing to generate sequences that are minimal
by construction: sequences of size n are naturally explored only after all sequences of smaller
sizes are explored. We also avoid visiting extensions of sequences that are already known to
satisfy the failure condition.

1 val queue = Queue ((immutableInitialState (model), List[EventId]()))
2 var res: List[List[EventId]] = Nil
3 while (! queue. isEmpty)
4 val (state , seq) = queue. dequeue ()
5 if (eval(failureCondition , state) && !res. exists (subSequence (_, seq)))
6 res = seq :: res
7 else if (seq.size < maxSize)
8 val ftrans = fireable (model , state)
9 ftrans . foreach {t =>

10 val newSeq = t.id:: seq
11 if (! res. exists (subSequence (_, seq)))
12 val newstate = fire(state , t.id)
13 queue . enqueue ((newState , newSeq))
14 }
15 res

Listing 12 Breadth-first search with online minimization for minimal sequences enumeration.

From the minimal cut sequences we can deduce the minimal cutsets by forgetting the
order and eliminating redundancies. If the system is static, this operation doesn’t remove any
information (the minimal sequences correspond to all permutations of the minimal cutsets),
but if it is dynamic, we possibly lose information about the dysfunctional behaviour of the
system (the exact ordering of events required to trigger a failure condition), which however
translates to safe pessimism for the analysis. Due to the combinatorial explosion of the
exploration for large systems, very high order cutsets are often neglected in order to scale
the computations on large models. Low order cutsets (up to order 3) are the direct target
of regulations and hence have the strongest impact on design decisions, and are the largest
contributors to unreliability. Nevertheless, the probability of unexplored scenarios can be
soundly approximated by considering they all trigger the failure condition.

We give in Table 1 the output given by the tool for minimal cutsets of the example given
in Listing 1. The failure condition is the loss of thrust for one or more engine, the results
are as expected: the intrinsic failure of either one engine or the other trigger the failure
condition, as does the loss of both batteries, either by the combination of their failure events,

M. Buyse, R. Delmas, and Y. Hamadi 5:21

Table 1 MCS for powertrain12all.

Order Minimal cutset
1 ccf
1 engines(0).failure
1 engines(1).failure
2 batteries(0).failure, batteries(1).failure

or by a common cause failure triggering the simultaneous loss of both batteries (a single
battery loss is tolerated thanks to the one-to-all wiring). More efficient SAT or SMT-based
model-checking techniques can also be used for minimal cutset [21] or minimal sequence
enumeration [14], with an explicit time model [1] or without. Our initial focus being on
language expressivity, we leave this as future work.

6.4 Quantitative indicators
▶ Definition 5 (Reliability, Unreliability). Let tfail be the random variable describing the instant
at which system failure occurs. Reliability for a mission time T is defined as the probability
that the system failure does not occur in the interval [0, T], knowing that the system is in
perfect nominal condition at time 0. Unreliability is the complement of reliability.

R(T) = p(tfail > T), U(T) = 1 − R(T)

The reliability of the system can be computed from minimal cutsets using a BDD-based
algorithm [41]. We provide an implementation of this algorithm using the JavaBDD library.
It relies on the user-specified delay distributions for events (this analysis is offered only if all
distributions are specified), and is evaluated for a given mission time T . The computation
yields an exact result if it is based on all cutsets for a static system, and becomes a safe
under-approximation if the system is dynamic. The computation yields a possibly unsafe
approximation for both static and dynamic systems if cutsets of high order are neglected.
This BDD-based analysis cannot take dynamic repair or reconfiguration events into account.

Monte-Carlo simulation on the other hand allows to take into account the dynamic repair
and reconfiguration of a system without approximation. The Alpacas stochastic simulator
allows to sample finite traces of an SGTS and to compute safety indicators on the fly, by
directly folding traces using a statistics aggregation function, without storing the traces. We
provide aggregators for usual safety indicators such as (un)reliability, availability, mean time
between failures, etc. The Monte-Carlo estimates converge in 1√

#samples
and high-confidence

intervals can be computed based on the empirical sample mean and variance. The Alpacas
simulator supports multi-core parallelism thanks to Scala’s parallel collections library.

Table 2 gives a comparison of the runtimes and results of the Minimal Cutsets + BDD
method vs the Monte-Carlo method for unreliability estimation. Results were obtained on a
quad core MacBook Pro 13” 2019 with 16gigs of Ram. For mission times up to 103 time
units, Minimal Cutsets + BDD and Monte-Carlo results are equal up to the third decimal.
The difference on the remaining decimals can be attributed to the natural imprecision of
Monte-Carlo methods. For longer mission times, the Monte-Carlo unreliability is lower than
the MCS unreliability. This is due to the repairability of the system which is neglected by the
Minimal Cutsets + BDD technique. The computation cost for an estimation of the reliability
is significantly higher for the Monte-Carlo method, and it increases with the duration of
mission time, which is not the case for the Minimal Cutsets + BDD method. However,
the cost of preliminary computations needed for each analyzed architecture must be taken

ECOOP 2021

5:22 ALPACAS

into account. Flattening is necessary for both analyses while the computation of Minimal
Custsets and the structure function’s BDD are necessary only for the Minimal Custsets +
BDD algorithm. For large models, the BDD computation typically becomes the bottleneck.

Table 2 Runtimes (ms) per preprocessing phase, MCS+BDD vs Monte-Carlo (105 samples, 95%
confidence interval) and runtimes (ms) for Unreliability of powertrain12all.

Preprocessing CPU
Phase time

Flattening 377
MCS 13
BDD 18

T U(T) CPU U(T) CPU
MCS+BDD time Monte-Carlo time

102 0.0020 < 1 0.00213 ± 0.00003 271
103 0.0201 < 1 0.0209 ± 0.0003 266
104 0.189 < 1 0.181 ± 0.002 307
105 0.919 < 1 0.867 ± 0.001 456

Importance sampling or importance splitting algorithms [29, 15] are well known techniques
for rare event estimation that can scale better and converge faster than unbiased Monte-
Carlo. However, deriving meaningful importance functions (typically real-valued functions)
in our discrete setting requires further research. Recent property-directed algorithms for
probabilistic model checking [10] mixing symbolic and quantitative analysis for Markov
Processes look very promising, but would need to be generalized to be applicable to Alpacas
models (Alpacas models can be semi-Markov and even more general due to the Memory
transitions).

7 Design-space exploration for an eVTOL thrust reallocation function

The main objective of this case study is to demonstrate that the Alpacas feature set makes it
indeed well suited for safety modeling (including dysfunctional and functional behaviour) and
design-space exploration for system architectures involving varying numbers of components,
and alternative data-flow connections schemes. Another goal is to illustrate the kind of
system design tradeoffs that can be analyzed through design-space exploration.

For this purpose, we chose to model a thrust system for a multi-rotor eVTOL able to
tolerate any single fault while preserving safe hovering capability. It requires to compensate
thrust loss while preserving thrust symmetry. The approach used for thrust compensation
is described in [7]. It consists in shutting down the engine opposite to the failing engine to
maintain symmetry with respect to all rotational axes, and to reallocate the missing lift on
the remaining engines by increasing (trimming) their default thrust value.

The choice of architecture for this thrust function is not obvious, and requires automatic
exploration. We must take into account the failure modes of all components involved:
Batteries, Engines, Sensors, and CPUs executing the thrust reallocation logic. Thrust loss
can be due to a intrinsic engine failure, or to a failure of the batteries powering the engine.
It can also be due to a failure of a sensor triggering a spurious trim. The reallocation logic
itself can also be lost due to CPU malfunction, or due to a battery failure, etc. From a
cost/reliability trade-off perspective, a design using few engines requires high trim levels and
high nominal engine thrust, and hence larger and more powerful engines and batteries, which
comes at a cost. A design using more engines requires smaller nominal thrusts and trim
levels in single failure cases, possibly cheaper engines, and could tolerate double failures. It
has other downsides like wiring complexity and increased weight and it still requires high
trim values in double failure scenarios, possibly quickly degrading the health of small engines.

M. Buyse, R. Delmas, and Y. Hamadi 5:23

We propose a parametric family of architectures allowing to implement the reconfiguration
logic. In this study, we propose a parametric Alpacas model capturing the design-space,
and compute safety indicators for a number of configurations to identify design tradeoffs,
and select the safest architecture(s).

Figure 3 shows one of the many possible architectures for the system (engine positions
in the picture do not reflect their actual position in the aircraft): 6 batteries, 6 engines,
one sensor per engine, dual computing units, dual power redundancy for all components,
shared power sources for diagonally opposed engines and sensors, segregated power sources
for axially opposed engines.

The design-space to explore is parameterized by the number of batteries, engines and
sensors n ∈ {6, 8, 10}, by the battery failure rate λb, by the sensor failure rate λs ∈
{1E-5, 1E-10}, by the default sensor readout when it is not working properly (either optimistic
or pessimistic, Boolean parameter opt). The engine failure rate is a piecewise constant function
of the trim value: λ0 when in [0%,10%], λ1 when in [10%, 50%], λ2 when in [50%,100%]. We
model two computing units of failure rates λc = 1E-10. We model dual redundant power
source for engines, sensors and one-to-all wiring for computing units. We consider two power
source segregation cases (Boolean parameter seg): one where a sensor and its engine have the
same power source, another where they use different sources. For n = 6, the reconfiguration
logic doesn’t cover double engine failures as this could yield a situation with only 2 engines
functioning (2 are failed and 2 are shutdown) resulting in a loss of control and out of range
trim values. For n ∈ {8, 10}, the logic does trigger a reconfiguration in case of a double
engine failure.

The failure rates and mission time chosen for this study are not realistic. Their relative
orders of magnitude were simply chosen to illustrate their influence on reliability, and give
the reader an idea of the kind of design decisions that can be studied using Alpacas models
and algorithms.

Engine

Battery Battery

Sensor

Thrust control

Thrust state

Electrical power

Electrical power

Compute power

Engine

Battery Battery

Sensor Engine

Battery Battery

Sensor

Engine Sensor Engine Sensor Engine Sensor

Electrical power

Thrust
Reallocation

CPU

CPU

Figure 3 Conceptual diagram of the thrust reallocation system with 6 engines.

The design space exploration results are presented in Table 3. Results are obtained with
100 seconds of computation on a quad core MacBook Pro 13” 2019 with 16gigs of Ram. We
use depth-first search for minimal sequences enumeration. We use Monte-Carlo with 100k
simulations for unreliability estimation, to properly take the dynamic thrust reallocation
behaviour into account. All configurations are immune to single failures (no minimal cutset of

ECOOP 2021

5:24 ALPACAS

Table 3 Design-space exploration results (mission time 103 time units).

n λ0 λ1 λ2 λb λs opt seg # order 1 mcs # order 2 mcs # order 3 mcs U (T) 95% conf. int.

6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true false 0 57 6 0.0252 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true true 0 54 42 0.0253 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false false 0 120 54 0.0481 ± 0.0006
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false true 0 123 6 0.0480 ± 0.0006
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true false 0 57 6 0.0248 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true true 0 54 42 0.0234 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false false 0 120 54 0.0247 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false true 0 123 6 0.0251 ± 0.0003
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true false 0 12 320 0.0102 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true true 0 8 368 0.0106 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false false 0 0 1568 0.0157 ± 0.0002
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false true 0 4 1496 0.0153 ± 0.0002
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true false 0 12 320 0.0094 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true true 0 8 368 0.0094 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false false 0 0 1568 0.0093 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false true 0 4 1496 0.0102 ± 0.0001
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true false 0 15 690 0.0260 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true true 0 10 770 0.0264 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false false 0 0 3490 0.0383 ± 0.0005
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false true 0 5 3370 0.0381 ± 0.0005
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true false 0 15 690 0.0236 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true true 0 10 770 0.0247 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false false 0 0 3490 0.0238 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false true 0 5 3370 0.0253 ± 0.0003

order 1). Configurations with 8 and 10 engines can tolerate double failures using pessimistic
sensor defaults and non-segregated power wirings. Using pessimistic sensor defaults leads to
an explosion of the number of minimal cutsets of order 3, which can increase unreliability
if sensors are not sufficiently reliable. Indeed, a failing pessimistic sensor causes a spurious
thrust reallocation, which leads to a trimming regime where engines fail more often. This
results in a higher unreliability for the configurations that tolerate double failures. This
tradeoff can be solved by increasing sensor reliability but this is to balance with cost aspects.

Listing 13 shows the Alpacas code which generates the design-space of the system and
selects the configuration without MCS of order 1 and with the lowest unreliability. The
results can be further processed using the full Scala language, opening the door to design
optimization taking into account other aspects such as the cost of the components, etc.

1 case class EngParams (nEng: Int , lam0: Double , lam1: Double , lam2: Double)
2

3 class ThrustRealloc (
4 val engineParams : EngParams ,
5 val lambdaSensor : Double ,
6 val optimisticSensor : Boolean ,
7 val wiring : Wiring ,
8) extends Component { /* Model declaration */ }
9

10 val systems = for {
11 eps <- List(
12 EngParams (6, 1E-5, 1E-4, 2E -4) ,
13 EngParams (8, 2E-5, 1E-4, 2E -4) ,
14 EngParams (10, 2.5E-5, 1E-4, 2E -4)
15)
16 lamSens <- List (1E-5, 1E -10)
17 optSens <- List(true , false)
18 wiring <- List(stdWiring (eps.nEng), segWiring (eps.nEng))
19 } yield ThrustRealloc (eps , lamSens , optSens , wiring)
20

21 var minUR = Double . PositiveInfinity
22 var bestSystem : Option [GenericPowertrain] = None

M. Buyse, R. Delmas, and Y. Hamadi 5:25

23

24 for {
25 system <- systems
26 model <- stochasticCheck (system)
27 mcs <- minimalCutSetsBFS (model , system . observer .isOk , 3)
28 urRes <- unreliability (model , system . observer .isOk , 1E3 , nbSimus , 8)
29 (_, urmax) = urRes
30 } {
31 if (mcs. forall (_. events .size > 1) && urmax < minUR) then
32 bestSystem = Some(system)
33 minUR = urmax
34 }

Listing 13 Design-space exploration example.

This study confirms that Alpacas is adapted to safety modeling of parametric families
of architectures, and allows to compute safety indicators on the formalized design-space
allowing to identify design tradeoffs and possibly to determine the optimal architecture with
regard to a chosen metric (which might include other parameters than safety indicators, like
cost).

8 Conclusion and Future Work

In this paper we presented Alpacas, a domain-specific language for system safety modeling
and analysis. Using stochastic guarded transition systems as underlying formalism, it allows
to model a large class of dynamic and re-configurable systems. It extends the state of the art
in model-based safety assessment by bringing many cutting edge features from Scala 3 for
generic programming thanks to a deep embedding. Parametric polymorphism, type-class
polymorphism, higher-order parameters, higher-kinded types, etc. open the way to more
efficient modeling and design-space formalization and exploration for safety critical systems.
The Alpacas feature set was tested on a representative case study modeling a family of
architectures for a thrust reallocation function for electric Vertical Takeoff and Landing
aircraft. The scope of applications of Alpacas is not limited to aerospace systems and can
benefit other domains such as automotive, railway, etc. which have similar safety processes
[39, 46]. Alpacas is available under an academic open-source license on this repository
https://gitlab.com/maximebuyse/alpacas.

The future work planned for Alpacas is the following. First, we will study how Scala 3’s
new macro system can improve the Monte-Carlo simulation performance, by inlining and
specializing assertion, guards and transition evaluation functions, removing boxing as much
as possible and distributing simulations on several computing cores. Second, we would like
to connect this safety-oriented framework to existing Scala frameworks for temporal logic
property monitoring such as DejaVu [27] or TraceContract [6]. This would allow to validate
temporal logic properties on complex re-configurable system before deploying the temporal
logic monitors for runtime safety assurance, and to derive process and reliability requirements
for various autonomy functions. This would allow to monitor divergence between system
models and actual system behaviour, and to trigger model updates to bridge the modeling
gap. Third, we will study the connection of Alpacas to reinforcement learning frameworks,
in order to study the synthesis of optimal policies for reconfiguration, repair and maintenance
of complex critical systems.

ECOOP 2021

https://gitlab.com/maximebuyse/alpacas

5:26 ALPACAS

References
1 Alexandre Albore, Silvano Dal Zilio, Guillaume Infantes, Christel Seguin, and Pierre Virelizier.

A model-checking approach to analyse temporal failure propagation with altarica. In Marco
Bozzano and Yiannis Papadopoulos, editors, Model-Based Safety and Assessment, pages
147–162, Cham, 2017. Springer International Publishing.

2 R. Alur and M. Bernadsky. Bounded model checking for GSMP models of stochastic real-time
systems. In J.P. Hespanha and A. Tiwari, editors, Hybrid Systems: Computation and Control,
9th International Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006,
Proceedings, volume 3927 of Lecture Notes in Computer Science, pages 19–33. Springer, 2006.
doi:10.1007/11730637_5.

3 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence
of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

4 André Arnold, Gérald Point, Alain Griffault, and Antoine Rauzy. The altarica formalism for
describing concurrent systems. Fundam. Informaticae, 40(2-3):109–124, 1999. doi:10.3233/
FI-1999-402302.

5 Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Waterman, Rimas
Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: constructing hardware in a scala
embedded language. In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The
49th Annual Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June
3-7, 2012, pages 1216–1225. ACM, 2012. doi:10.1145/2228360.2228584.

6 Howard Barringer and Klaus Havelund. Tracecontract: A scala DSL for trace analysis. In
Michael J. Butler and Wolfram Schulte, editors, FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, volume
6664 of Lecture Notes in Computer Science, pages 57–72. Springer, 2011. doi:10.1007/
978-3-642-21437-0_7.

7 Pierre-Marie Basset, Binh Dang Vu, Philippe Beaumier, Gabriel Reboul, and Biel Ortun.
Models and methods at onera for the presizing of evtol hybrid aircraft including analysis of
failure scenarios. In AHS Forum 2018, May 2018, PHOENIX, United States, 2018.

8 Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. System Structure Modeling Lan-
guage (S2ML). preprint, 2015. URL: https://hal.archives-ouvertes.fr/hal-01234903.

9 Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy, and Leïla Kloul. The altarica 3.0 project
for model-based safety assessment. In 11th IEEE International Conference on Industrial
Informatics, INDIN 2013, Bochum, Germany, July 29-31, 2013, pages 741–746. IEEE, 2013.
doi:10.1109/INDIN.2013.6622976.

10 Kevin Batz, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Philipp Schröer. Pric3: Property directed reachability for mdps. In Shu-
vendu K. Lahiri and Chao Wang, editors, Computer Aided Verification - 32nd Interna-
tional Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II, volume 12225 of Lecture Notes in Computer Science, pages 512–538. Springer, 2020.
doi:10.1007/978-3-030-53291-8_27.

11 Pierre Bieber, Remi Delmas, and Christel Seguin. Dalculus - theory and tool for development
assurance level allocation. In Francesco Flammini, Sandro Bologna, and Valeria Vittorini,
editors, Computer Safety, Reliability, and Security - 30th International Conference, SAFE-
COMP 2011, Naples, Italy, September 19-22, 2011. Proceedings, volume 6894 of Lecture Notes
in Computer Science, pages 43–56. Springer, 2011. doi:10.1007/978-3-642-24270-0_4.

12 Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Marco Gario, Alberto
Griggio, Cristian Mattarei, Andrea Micheli, and Gianni Zampedri. The xsap safety analysis
platform. In Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as

https://doi.org/10.1007/11730637_5
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.3233/FI-1999-402302
https://doi.org/10.3233/FI-1999-402302
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-642-21437-0_7
https://hal.archives-ouvertes.fr/hal-01234903
https://doi.org/10.1109/INDIN.2013.6622976
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-642-24270-0_4

M. Buyse, R. Delmas, and Y. Hamadi 5:27

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in
Computer Science, pages 533–539. Springer, 2016. doi:10.1007/978-3-662-49674-9_31.

13 Marc Bouissou and Jean-Louis Bon. A new formalism that combines advantages of fault-
trees and markov models: Boolean logic driven markov processes. Reliab. Eng. Syst. Saf.,
82(2):149–163, 2003. doi:10.1016/S0951-8320(03)00143-1.

14 Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Cristian Mattarei. Efficient anytime
techniques for model-based safety analysis. In Daniel Kroening and Corina S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science,
pages 603–621. Springer, 2015. doi:10.1007/978-3-319-21690-4_41.

15 Carlos E. Budde, Pedro R. D’Argenio, and Arnd Hartmanns. Automated compositional
importance splitting. Sci. Comput. Program., 174:90–108, 2019. doi:10.1016/j.scico.2019.
01.006.

16 Pierre-Yves Chaux, Jean-Marc Roussel, Jean-Jacques Lesage, Gilles Deleuze, and Marc
Bouissou. Systematic extraction of minimal cut sequences from a BDMP model. In 21st
European Safety & Reliability Conference (ESREL 12), Jun 2012, Helsinki, Finland, 2012.

17 Shengxin Dai, Mei Hong, and Bing Guo. A comparative study of reliability-ignorant
and reliability-aware energy management schemes using UPPAAL-SMC. Sci. Program.,
2017:2621089:1–2621089:12, 2017. doi:10.1155/2017/2621089.

18 Patrick R. Darmstadt, Ralph Catanese, Allan Beiderman, Fernando Dones, Ephraim Chen,
Mihir P. Mistry, Brian Babie, Mary Beckman, , and Robin Preator. Hazards analysis
and failure modes and effects criticality analysis (fmeca) of four concept vehicle propulsion
systems. Technical report, NASA/Boeing, 2019. URL: https://hummingbird.arc.nasa.gov/
Publications/files/CR-2019-220217.pdf.

19 Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and Danny Bøgsted Poulsen.
Uppaal smc tutorial. International Journal on Software Tools for Technology Transfer,
17(4):397–415, 2015.

20 Julien Delange and Peter H. Feiler. Architecture fault modeling with the AADL error-model
annex. In 40th EUROMICRO Conference on Software Engineering and Advanced Applications,
EUROMICRO-SEAA 2014, Verona, Italy, August 27-29, 2014, pages 361–368. IEEE Computer
Society, 2014. doi:10.1109/SEAA.2014.20.

21 Kevin Delmas, Rémi Delmas, and Claire Pagetti. Smt-based architecture modelling for safety
assessment. In 2017 12th IEEE International Symposium on Industrial Embedded Systems
(SIES), pages 1–8. IEEE, 2017.

22 Ewen Denney, Ganesh Pai, and Josef Pohl. Advocate: An assurance case automation toolset.
In Frank Ortmeier and Peter Daniel, editors, Computer Safety, Reliability, and Security -
SAFECOMP 2012 Workshops: Sassur, ASCoMS, DESEC4LCCI, ERCIM/EWICS, IWDE,
Magdeburg, Germany, September 25-28, 2012. Proceedings, volume 7613 of Lecture Notes in
Computer Science, pages 8–21. Springer, 2012. doi:10.1007/978-3-642-33675-1_2.

23 T. English and R. Heydor. Monte carlo simulation of markov, semi-markov, and generalized
semi-markov processes in probabilistic risk assessment, final report. Nasa summer faculty
fellowship program 2004, NASA, August 2005.

24 Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias Kuntz, and Matthias Volk.
Safety analysis for vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf.,
186:37–50, 2019. doi:10.1016/j.ress.2019.02.005.

25 A. Hartmanns. MODEST - A unified language for quantitative models. In Proceeding of the
2012 Forum on Specification and Design Languages, Vienna, Austria, September 18-20, 2012,
pages 44–51. IEEE, 2012. URL: http://ieeexplore.ieee.org/document/6336982/.

26 Klaus Havelund and Rajeev Joshi. Modeling with scala. In International Symposium on
Leveraging Applications of Formal Methods, pages 184–205. Springer, 2018.

ECOOP 2021

https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1016/S0951-8320(03)00143-1
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1155/2017/2621089
https://hummingbird.arc.nasa.gov/Publications/files/CR-2019-220217.pdf
https://hummingbird.arc.nasa.gov/Publications/files/CR-2019-220217.pdf
https://doi.org/10.1109/SEAA.2014.20
https://doi.org/10.1007/978-3-642-33675-1_2
https://doi.org/10.1016/j.ress.2019.02.005
http://ieeexplore.ieee.org/document/6336982/

5:28 ALPACAS

27 Klaus Havelund, Doron Peled, and Dogan Ulus. Dejavu: A monitoring tool for first-order
temporal logic. In 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems,
MT@CPSWeek 2018, Porto, Portugal, April 10, 2018, pages 12–13. IEEE, 2018. doi:10.1109/
MT-CPS.2018.00013.

28 Paul Hudak. Building domain-specific embedded languages. Acm computing surveys (csur),
28(4es):196–es, 1996.

29 Cyrille Jégourel, Axel Legay, and Sean Sedwards. Importance splitting for statistical model
checking rare properties. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 576–591. Springer,
2013. doi:10.1007/978-3-642-39799-8_38.

30 Sohag Kabir. An overview of fault tree analysis and its application in model based dependability
analysis. Expert Systems with Applications, 77:114–135, 2017.

31 Sohag Kabir, Yiannis Papadopoulos, Martin Walker, David Parker, Jose Ignacio Aizpurua,
Jörg Lampe, and Erich Rüde. A model-based extension to hip-hops for dynamic fault
propagation studies. In Marco Bozzano and Yiannis Papadopoulos, editors, Model-Based
Safety and Assessment - 5th International Symposium, IMBSA 2017, Trento, Italy, September
11-13, 2017, Proceedings, volume 10437 of Lecture Notes in Computer Science, pages 163–178.
Springer, 2017. doi:10.1007/978-3-319-64119-5_11.

32 Shahid Khan, Joost-Pieter Katoen, and Marc Bouissou. A compositional semantics for re-
pairable bdmps. In António Casimiro, Frank Ortmeier, Friedemann Bitsch, and Pedro Ferreira,
editors, Computer Safety, Reliability, and Security - 39th International Conference, SAFE-
COMP 2020, Lisbon, Portugal, September 16-18, 2020, Proceedings, volume 12234 of Lecture
Notes in Computer Science, pages 82–98. Springer, 2020. doi:10.1007/978-3-030-54549-9_6.

33 Shahid Khan, Joost-Pieter Katoen, and Marc Bouissou. Explaining boolean-logic driven
markov processes using gspns. In 16th European Dependable Computing Conference, EDCC
2020, Munich, Germany, September 7-10, 2020, pages 119–126. IEEE, 2020. doi:10.1109/
EDCC51268.2020.00028.

34 Oleg Kiselyov. Typed tagless final interpreters. In Generic and Indexed Programming, pages
130–174. Springer, 2012.

35 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: probabilistic model
checking for performance and reliability analysis. SIGMETRICS Perform. Evaluation Rev.,
36(4):40–45, 2009. doi:10.1145/1530873.1530882.

36 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 585–591.
Springer, 2011. doi:10.1007/978-3-642-22110-1_47.

37 N. Limnios and G. Oprişan. Semi-Markov Processes and Reliability. Number 1 in Statistics for
Industry and Technology. Birkhäuser, Boston, MA, 2001. doi:10.1007/978-1-4612-0161-8.

38 O. Lisagor, T. Kelly, and R. Niu. Model-based safety assessment: Review of the discipline
and its challenges. In The Proceedings of 2011 9th International Conference on Reliability,
Maintainability and Safety, pages 625–632, 2011. doi:10.1109/ICRMS.2011.5979344.

39 Joseph Machrouh, Jean-Paul Blanquart, Philippe Baufreton, Jean-Louis Boulanger, Hervé
Delseny, Jean Gassino, Gerard Ladier, Emmanuel Ledinot, Michel Leeman, Jean-Marc Astruc,
Philippe Quéré, Bertrand Ricque, and Gilles Deleuze. Cross domain comparison of System
Assurance. In Embedded Real Time Software and Systems (ERTS2012), Toulouse, France,
2012. URL: https://hal.archives-ouvertes.fr/hal-02170444.

40 Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and
Sandro Stucki. Simplicitly: foundations and applications of implicit function types. Proc.
ACM Program. Lang., 2(POPL):42:1–42:29, 2018. doi:10.1145/3158130.

https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-319-64119-5_11
https://doi.org/10.1007/978-3-030-54549-9_6
https://doi.org/10.1109/EDCC51268.2020.00028
https://doi.org/10.1109/EDCC51268.2020.00028
https://doi.org/10.1145/1530873.1530882
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-1-4612-0161-8
https://doi.org/10.1109/ICRMS.2011.5979344
https://hal.archives-ouvertes.fr/hal-02170444
https://doi.org/10.1145/3158130

M. Buyse, R. Delmas, and Y. Hamadi 5:29

41 Antoine Rauzy. Binary decision diagrams for reliability studies. In Handbook of performability
engineering, pages 381–396. Springer, 2008.

42 Antoine B Rauzy. Guarded transition systems: a new states/events formalism for reliability
studies. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 222(4):495–505, 2008.

43 Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky. Scala-
virtualized: linguistic reuse for deep embeddings. High. Order Symb. Comput., 25(1):165–207,
2012. doi:10.1007/s10990-013-9096-9.

44 Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach
to runtime code generation and compiled dsls. Commun. ACM, 55(6):121–130, 2012. doi:
10.1145/2184319.2184345.

45 Amir Shaikhha and Lionel Parreaux. Finally, a polymorphic linear algebra language (pearl).
In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented Programming,
ECOOP 2019, July 15-19, 2019, London, United Kingdom, volume 134 of LIPIcs, pages
25:1–25:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ECOOP.2019.25.

46 Ioannis Sorokos, Luis P. Azevedo, Yiannis Papadopoulos, Martin Walker, and David J. Parker.
Comparing automatic allocation of safety integrity levels in the aerospace and automotive
domains. IFAC - PapersOnLine, 49(3):184–190, 2016. 14th IFAC Symposium on Control in
Transportation Systems 2016. doi:10.1016/j.ifacol.2016.07.031.

47 Alain Villemeur. Reliability, availability, maintainability and safety assessment, assessment,
hardware, software and human factors, volume 2. Wiley, 1992.

48 Håkan L. S. Younes and Reid G. Simmons. Solving generalized semi-markov decision processes
using continuous phase-type distributions. In Deborah L. McGuinness and George Ferguson,
editors, Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth
Conference on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose,
California, USA, pages 742–748. AAAI Press / The MIT Press, 2004. URL: http://www.aaai.
org/Library/AAAI/2004/aaai04-117.php.

49 Tian Zhao and Xiaobing Huang. Design and implementation of deepdsl: A DSL for deep
learning. Comput. Lang. Syst. Struct., 54:39–70, 2018. doi:10.1016/j.cl.2018.04.004.

ECOOP 2021

https://doi.org/10.1007/s10990-013-9096-9
https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1145/2184319.2184345
https://doi.org/10.4230/LIPIcs.ECOOP.2019.25
https://doi.org/10.4230/LIPIcs.ECOOP.2019.25
https://doi.org/10.1016/j.ifacol.2016.07.031
http://www.aaai.org/Library/AAAI/2004/aaai04-117.php
http://www.aaai.org/Library/AAAI/2004/aaai04-117.php
https://doi.org/10.1016/j.cl.2018.04.004

CodeDJ: Reproducible Queries over
Large-Scale Software Repositories
Petr Maj1 #

Czech Technical University in Prague, Czech Republic

Konrad Siek1 #

Czech Technical University in Prague, Czech Republic

Alexander Kovalenko #

Czech Technical University in Prague, Czech Republic

Jan Vitek #

Czech Technical University in Prague, Czech Republic
Northeastern University, Boston, MA, USA

Abstract
Analyzing massive code bases is a staple of modern software engineering research – a welcome
side-effect of the advent of large-scale software repositories such as GitHub. Selecting which projects
one should analyze is a labor-intensive process, and a process that can lead to biased results if
the selection is not representative of the population of interest. One issue faced by researchers is
that the interface exposed by software repositories only allows the most basic of queries. CodeDJ is
an infrastructure for querying repositories composed of a persistent datastore, constantly updated
with data acquired from GitHub, and an in-memory database with a Rust query interface. CodeDJ
supports reproducibility, historical queries are answered deterministically using past states of the
datastore; thus researchers can reproduce published results. To illustrate the benefits of CodeDJ, we
identify biases in the data of a published study and, by repeating the analysis with new data, we
demonstrate that the study’s conclusions were sensitive to the choice of projects.

2012 ACM Subject Classification Software and its engineering → Ultra-large-scale systems

Keywords and phrases Software, Mining Code Repositories, Source Code Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.6

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.13

Funding This work is supported by the Czech Ministry of Education, Youth and Sports from the
Czech Operational Programme Research, Development, and Education, under grant agreement
No.CZ.02.1.01/0.0/0.0/15_003/0000421 and the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 695412).

1 Introduction

With over 190 million public projects, GitHub is our largest source of empirical data about
how software is developed. It is a treasure trove that must be mined if we want to distill
insights from its contents. Manual inspection is limited to small-scale case studies; even
automated analysis tools struggle with the sheer amount of data available. The software
engineering community has taken up this challenge, researchers examine increasingly larger
numbers of projects in order to test hypotheses and derive knowledge about the software
development process. Examples of such studies include investigations of testing practices [12],
changes to licensing over time [18], popularity trends [4] and configuration settings [17].

1 These authors contributed equally.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Petr Maj, Konrad Siek, Alexander Kovalenko, and Jan Vitek;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 6; pp. 6:1–6:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:majpetr@fit.cvut.cz
https://orcid.org/0000-0002-7441-8069
mailto:siekkonr@fit.cvut.cz
https://orcid.org/0000-0002-3599-2164
mailto:kovalale@fit.cvut.cz
https://orcid.org/0000-0002-7194-1874
mailto:j.vitek@neu.edu
https://orcid.org/0000-0003-4052-3458
https://doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://doi.org/10.4230/DARTS.7.2.13
https://doi.org/10.4230/DARTS.7.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Reproducible Queries over Large-Scale Software Repositories

These works use samples of GitHub ranging from 15K to 100K projects filtered to exclude
projects considered as lacking in size, popularity, originality or importance.

For any scientific study of software, selecting the projects that make up the input of
that study is fraught with risks. Any given choice can introduce unwanted and sometimes
undetected bias. This bias may, in turn, taint the conclusions of the work. Much like the
task of polling voters before an election, choosing a subset of a larger population must be
done carefully. In polls, the goal is to ensure appropriate representation of likely voters. The
chosen subset excludes citizens who are either not eligible or unlikely to vote, and balances
the various population groups. At the same time, for reasons of cost and practicality, the
size of this subset is kept as small as possible. Even when pollsters are careful, the accuracy
of predictions varies. In software engineering, we often look for some properties of “real”
code – where our definition of the term is sensitive to context and research goals. One may
exclude course assignments because the errors made by beginners are not relevant to deployed
software; on the other hand, if our goal is to shine a light on acquisition of programming
skills, then that kind of code may be exactly what is needed. Picking the right set of inputs
is thus the first challenge any researcher in the field must address.

With software, Nagappan et al. warned us that more is not always better [14]. Their
observations hold now more so than back in 2013 as anyone can create a GitHub repository
at no cost and house almost anything there. Manual inspection found that 37% of hosted
projects are not used for software development [11]. Thus, the quality of data gathered from
software repositories should always be questioned. A stark illustration why skepticism is in
order comes from the finding that ten common source corpora have up to 68% of bit-for-bit
identical file duplicates [1]. Furthermore, the same paper showed that clones impacted
the accuracy of results obtained with these corpora. We argue that more is worse: as the
number of projects to scrutinize grows, it becomes harder to check whether their data is
clean, consistent and well-formed. Consider the case of text files accidentally misidentified
as code [15], an error that went unnoticed for three years and was “fixed” by partially
invalidating the original paper’s conclusions [2]. As a result of this state of affairs, researchers
spend significant effort collecting and curating meaningful suites of open source projects.
Unfortunately, manual curation cannot track the constantly changing software landscape.

In this paper, we aim to address a seemingly simple yet eminently practical question,
how does one find software projects in large-scale software repositories? The assumption
underlying our work, our hypothesis, is that it is possible to select thousands of projects
from millions by formulating queries on attributes found in the projects’ metadata and on
easily computed properties of their source code. To be concrete about the kinds of queries
we envision, consider looking for the one hundred most popular projects predominantly
written in Java, developed in the five years before the introduction of Lambdas by at least
two developers with five years of experience. Furthermore, let’s ensure that the selected
projects have no more than 5% duplicate files between each other. While the search interface
provided by software repositories may allow to query for projects by language, there is no
way to compute this query automatically without retrieving all projects.

This paper reports on the status of CodeDJ, an infrastructure for querying large-scale
software repositories. In its current incarnation our system is geared towards processing
data from any git-based software repository. For our experiments, we specifically target
GitHub. The three main engineering challenges we contend with are the sheer size of the
data source, the constant updates to its data, and the narrow, rate-limited, interface for
accessing projects. In addition, a key design requirement is reproducibility; not only should
queries execute deterministically, but the infrastructure should be able to replay a historical
query with identical results. Thus, researchers may take any query from the literature, even

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:3

years after it was originally run and its output was used in a publication, and match its
results. Furthermore, researchers should be able to modify a historical query and run it
based on the information available at any point in the past.

To address these challenges and requirements, CodeDJ is architected in two distinct
subsystems. Interaction with the data source is mediated by Parasite, a time-indexed
datastore that automatically and continuously queries GitHub for data about projects.
Parasite is responsible for data acquisition and keeping that data up-to-date over time. Every
datum is logically time-stamped to enable reproducibility. To ensure that CodeDJ can scale,
Parasite can be split up into multiple distinct substores based on the projects’ main language.
The second subsystem, an in-memory database named Djanco, handles user-written queries.
For each query, Djanco determines the portion of the datastore that is required, loads the
data, and executes the query. Queries evaluate with project metadata in memory while source
code remains on disk. The query syntax is based on data frame manipulation interfaces
popular in data science, such as dplyr [19], and is expressed in Rust. We claim the following
contributions:

The design of CodeDJ, a scalable infrastructure for querying large-scale software repositories
that supports reproducibility and continuously updated data sources.
A prototype implementation of Parasite and Djanco written in Rust that shows scalability
to millions of projects.
A dataset consisting of 3.6 million software projects written in 17 languages obtained
from GitHub.
A case study illustrating that the choice of projects can invalidate the conclusion of a
research project.

Equally important is what we don’t do. We do not provide guidance on how to use our
infrastructure. The determination of what is the right input for a given analysis is problem
specific and the choice remains something individual researchers must grapple with. We have
not shown scalability of our infrastructure to the whole of GitHub, we are comfortable with
datastores of up to 10 million projects. A larger size may require more work. We do not
support interactive queries, our infrastructure was designed with the understanding that
queries can take hours to run. We did not focus on optimizing query evaluation by, e.g.
parallelizing their execution. Lastly, we do not index any artifacts other than code. Adding
images, configuration files and documentation is possible but was not considered one of our
targets.

Availability. CodeDJ is an open source infrastructure. Readers interested in repeatability,
will find our reproduction package at:

https://github.com/PRL-PRG/codedj-ecoop-artifact

The source code of Parasite and Djanco are on GitHub at:

https://github.com/PRL-PRG/codedj-parasite
https://github.com/PRL-PRG/djanco

As our datastore is too large to easily share, Sec. 3.3.4 discusses how external users can run
queries on our servers. Another alternative is for users to set up their own CodeDJ instance
and gather their own data to execute queries. Our reproduction package contains a complete
walk-through of the set up procedure. Of course, users must publish their dataset to enable
reproducibility.

ECOOP 2021

https://github.com/PRL-PRG/codedj-ecoop-artifact
https://github.com/PRL-PRG/codedj-parasite
https://github.com/PRL-PRG/djanco

6:4 Reproducible Queries over Large-Scale Software Repositories

2 Related Work

Table 1 gives a high-level comparison with eight systems with aims similar to ours. The first
column (Active) indicates if the system is actively maintained. Some research projects have
fallen into disrepair and their web pages are unreachable. The second column (Updated)
indicates if continuous updates are supported. Given the rate of addition to GitHub, most
systems struggle to keep up. The third column (Reproducible) indicates if results are
reproducible. Reproducibility is only relevant when the data is updated, systems built on
a single static snapshot trivially support reproducibility. The fourth column (Consistent)
indicates that the data is consistent. Inconsistencies arise when some earlier data (such as
parent commits) are missed. The fifth column (Queries) describes the nature of the query
interface exposed to users. Some systems have a simple filtering mechanism for a fixed set of
attributes, such as the language of the project, others have their own query language. In
our case, we express queries in Rust. The sixth column (Sources) indicates where the data
comes from. Mostly this is GitHub, but the Apache Software Foundation and various other
sources have also been used in the past. The seventh column (Size) is an estimate of how
many projects are available. Finally the last column (Contents) indicates if source code can
be queried. Most systems only include metadata about projects due to the size of the code.

Table 1 Systems comparison.

A
ct

iv
e

U
pd

at
ed

R
ep

ro
du

ci
bl

e

C
on

si
st

en
t

Queries Sources Size C
on

te
nt

s
Stress [8] – – Y Y Filter Apache 211 –

Flossmetrics [9] – – Y Y Filter Many 2.8K –
Orion [3] – – Y Y Own Many 185K Y

Boa [7] Y – Y Y Own Java 380K Y
Black Duck Y Y – Y Filter Many 680K –

Sourcerer [16] – – Y Y Filter GitHub 4.5M –
GHTorrent [10] Y Y – Y SQL GitHub 157M –

GitHub Y Y – – Filter GitHub 190M Y
CodeDJ Y Y Y Y Rust GitHub 3.6M Y

Stress. This system aims to help choose projects in a reproducible manner [8]. Its corpus
consists of 211 projects which can be filtered on 100 pre-computed attributes such as bug
tickets or lifetime. The corpus can be sorted and sampled randomly. Queries can be exported
so they can be repeated later. Source code is not available for querying. Stress is inactive.
CodeDJ scales to larger corpora and allows to specify richer queries. In terms of reproducibility,
we support updates to the corpus.

Flossmetrics. This work analyzed 2800 open source projects and computed statistics about
various aspects of their development process, such as number of commits and developers [9].
Information from additional sources such as project mailing lists and issue trackers was
included. Queries could be formulated on metrics such as COCOMO effort, core team
members, evolution and dynamics of bugs. Filtering based on these criteria was supported.
The project is inactive and it did not support updates.

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:5

Orion. This system aimed to enable retrieving projects using complex search queries linking
different artifacts of software development, such as source code, version control metadata, bug
tracker tickets, developer activities and interactions extracted from the hosting platform [3].
The project is no longer maintained, it scaled to about 185K projects. CodeDJ is designed to
scale to larger corpora and offers a more flexible query interface.

Boa. This system focuses on semantics queries over Java programs [7]. A corpus of 380K
Java projects can be queried using a dedicated query language that supports automatic
parallelization and pluggable mining functions. Source code can be queried in sophisticated
ways as Boa is able to parse and analyze Java. A larger corpus of 7.5M projects can be queried
on project summaries. Boa provides reproducibility by ensuring its queries are deterministic
with respect to the dataset’s version, which are created and archived infrequently (i.e. 2013,
2015, 2019, 2020). CodeDJ differs from Boa in that it is language agnostic and geared
towards project selection, as opposed to project analysis. Furthermore, CodeDJ provides full
reproducibility in the presence of a continuously evolving dataset.

Black Duck Open Hub. A public directory of open source software2 that offers search
services for discovering, evaluating, tracking, and comparing projects. It analyzes both the
code’s history and ongoing updates to provide reports about the composition and activity of
code bases. CodeDJ allows researchers to write their own queries and supports reproducibility.

SourcererCC. The aim of this project is to detect code clones [16]. The tool scales to large
datasets and can detect near-identical code at various granularities. It has been used to
analyze cloning across large corpora of Java, JavaScript, Python, C and C++ projects on
GitHub [13]. It can be used by researchers to detect duplication in their samples which is a
source of bias. The project’s web page appears to be inactive.

GHTorrent. This database of metadata about GitHub projects offers an SQL interface
for queries [10]. It monitors GitHub events to constantly update the available data. The
limitation of the approach is that GitHub’s events do not have all commit details and file
contents, thus these are not stored by GHTorrent. In our experience, the database is not
always consistent, this may be due to missed events. We have attempted to upload queries
through the public SQL interface but the queries timed out.

GitHub. This service provides two ways to query metadata and contents. A REST API can
be used for requesting information about projects and listing them, its search queries provide
filtering capabilities across a small set of fixed attributes. A web API provides extended
filtering options such as searching within repositories written in a particular language. These
interfaces are rate-limited and thus return partial results. The results are non-deterministic
and non-reproducible as projects may be added and deleted at any time. CodeDJ provides a
view of a subset of GitHub on which we support reproducibility and our queries are richer
and deterministic.

We would be remiss if we failed to mention the Software Heritage Archive which aims
to preserve all publicly available source code; currently upwards of 9.5B source files, 2B
commits and 150M projects [6]. It only allows retrieval of single objects. The authors point
to the fragility of current arrangements and the dynamic nature of source code repositories

2 https://www.openhub.net

ECOOP 2021

https://www.openhub.net

6:6 Reproducible Queries over Large-Scale Software Repositories

makes it difficult to reproduce studies that use them. We have encountered this ourselves:
we see projects deleted from GitHub, changing names, or visibility. In the future, CodeDJ
can be extended to query the heritage corpus as well as other repositories.

3 An Infrastructure for Querying Large-Scale Repositories

The goal of CodeDJ is to allow researchers to formulate queries that evaluate attributes of
projects hosted on GitHub and return data about projects matching a specified predicate.

3.1 Design considerations and system architecture
The design of CodeDJ flows from four high-level principles that we motivate next:

Consistent, eventually: The sheer size and churn in data sources such as GitHub
means that obtaining a snapshot of the whole data source is not practical. But, it is often
the case that a slightly out-of-date view is sufficient for most investigations. We choose
to refresh entire projects atomically at irregular intervals. Thus, any individual project is
consistent, but for any group of projects, the lower bound on their refresh times is the
last consistent time point (git histories can be destructively updated, allowing for post
factum inconsistencies, we ignore these).
Code-centric, language agnostic: We aim to support queries on project metadata
and file contents written in any programming language. To reduce space requirements,
the only source artifacts we store is code, deduplication is used to remove redundancy,
and metadata is trimmed where possible.
Flexible query interface: Popular data science tools such as dplyr [19] or Spark [20]
offer a mix operations inspired by database query languages extended with general purpose
capabilities. Inspired by these, we propose an interface expressed in Rust as a library
with operations for selecting, grouping, filtering and sampling data. The benefits of our
approach over, say, SQL, is that queries are type-safe and benefit from the full generality
of the Rust language.
Reproducible by design: The importance of reproducibility cannot be overstated [5],
consider [15] which recorded the names of the most starred projects seven years ago,
without author names it is not possible uniquely to identify projects, and even with their
full names, reconstructing a historical star count is not possible. CodeDJ is designed so it
is possible to run any query with the information that the datastore had at an arbitrary
point in the past. For this purpose the datastore is time-indexed, strictly append-only.

DejaCode

Parasite Djancoinstance

GitHub
repos

GitHub
REST API

query.rs results
CSVs

incremental
extraction

project
metadata

query API export API

query
archiverepro

API

Figure 1 System overview.

Fig. 1 overviews the architecture of CodeDJ. The system is structured around two components,
Parasite, a datastore that tracks GitHub, and Djanco, an in-memory database with a Rust

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:7

interface. Parasite is set up to continuously extract information from GitHub using its REST
API for some data and cloning project repositories for other data. The information obtained
from the data source is deduplicated and stored in a dedicated format on disk. At irregular
intervals projects are refreshed, and the new information is appended to the datastore. When
an end-user query is submitted for execution, it comes as a Rust function calling the Djanco
query API, a database instance is created for that query. The database will load the data
needed for query execution from Parasite. The output of a query is some results, usually as a
text file and a record of that query in a reproducibility archive.

The remainder of this section describes our implementation, the design of the query
interface and our support for reproducibility.

3.2 The Parasite datastore
Parasite is a dedicated, perpetually running application whose task is to synchronize its
on-disk representation with GitHub. This task is complicated by these four constraints:

Scalable: We expect to grow to hundreds of millions of projects, the disk format must
be space efficient and its in memory format must be compact and fast to access.
Peaceful co-existence: We must abide by GitHub’s terms of service. Parasite must be
economical in both the number requests to the GitHub API calls and raw git operations.
Time-indexed: Every datum in the store must be associated with its acquisition date,
this feature must have a minimal overhead so as not to increase our footprint.
Robust: Backups are not possible due to limited resources, the datastore must thus be
resilient to corruption.

Our description focuses on three aspects, the data acquisition process, the data storage format
and the interface exposed to Djanco. We also explain how we meet the above constraints.

3.2.1 Acquisition
While, in theory, the GitHub API is sufficient to fulfill all our needs, the fact that GitHub
defends itself against denial of service attacks limiting users to 5,000 requests per hour causes
a practical problem. As every commit requires one request, the interface is too restrictive to
collect data within a reasonable amount of time. Therefore, instead of relying on the API
alone, Parasite combines a number of interfaces:

Git: we use the git clone command to retrieve source code files and commit histories
from repositories;
GitHub: we use the REST API for project metadata (stars, watchers, issues, etc.),
information that cannot be obtained through git alone;
GHTorrent: instead of querying GitHub for projects directly, we seeded Parasite with
the URLs of projects obtained from GHTorrent.3

Parasite continuously downloads data from its data sources on a per-project basis. The
projects known to Parasite are maintained in a priority queue. Projects are visited in inverse
order of last access time. Thus, given any group of projects, the lower bound on the time
they were last visited determines the last point when Parasite had a consistent view of those
projects modulo destructive git history rewrites.

3 While GHTorrent has over 100M URLs, they are not all valid. Out of 5.5M URLs we visited, only 3.6M
were usable, the remaining are either duplicates, have been deleted, or have become private.

ECOOP 2021

6:8 Reproducible Queries over Large-Scale Software Repositories

When a project is visited, the download procedure begins. First, the project’s metadata
is retrieved via a call to the REST API. This yields a JSON file with metadata and sundry
information. The metadata is stripped of non-essential information (such as URLs for various
REST API requests) and stored. The project’s current and last known URLs are compared
to detect renaming and the new URL is recorded if a change occurred. Next, the project’s
heads are checked against the heads in the datastore. Each head corresponds to a branch in
git. If any of the heads changed, the project is cloned and data about new commits and
the contents of changed files are extracted and stored. We clone projects because using the
REST API to get new commits is slow and rate limited. We clone repeatedly at each visit,
caching projects is not feasible due to space limitations (in the future, we plan to cache the
most active projects to reduce the amount of data unnecessarily transferred via full clones).

Once a local copy of a project exists, we determine which substore that project belongs to
and append new commits and files to it. Substores are partitions of the dataset that Parasite
uses to organize its disk structures around. Projects are matched to a single substore by
properties such as size (e.g. a substore for small projects) or dominant language (e.g. a
substore of Python projects).

When processing a chain of commits, a simple optimization is achieved by observing that
if we find a commit that is already in the datastore, then all of its parent commits must also
already be present. The final step is to record the time of the visit, and move to next project
in the queue. Any error during the processing, terminates the visit and the project is flagged
as potentially invalid.

Parasite is written in Rust using libgit2. It has been parallelized at project-level
granularity and scales up to 32 threads. With more threads, the bottleneck shifts from local
repository analysis to network bandwidth and ultimately to the GitHub rate limit. When
adding projects, Parasite processes 244 projects per thread per hour. As GitHub limits are
attached to users (identified by tokens), Parasite supports rotating multiple tokens which
allow us to sustain a download rate of 7821 projects per hour using 32 threads. Since Parasite
is still in accretion mode, we cannot report on the update rate alone, but we expect it to be
limited by GitHub to a rate of 120K active project updates per day per token.

Table 2 Current dataset composition.

Records Size Ratio
Users 4.8M 200M <0.01%

Projects 3.6M 4.9G 0.2%
Commits 167M 88G 3.2%

Paths 848M 80G 2.9%
Files 463M 2603G 93.7%

Parasite has visited 3.6M projects composed from all non-fork C++ and Python projects
available in GHTorrent and a random subset of 50K projects in 17 popular languages. In
total, the datastore has 3.6M projects and occupies 2.8TB on disk. Table 2 shows that the
majority of the datastore is taken by source code.

3.2.2 Storage

The storage format of Parasite is designed to ensure a low disk footprint, to scale to hundreds
of millions of projects. The store is append-only to allow reverting to historic states and
to simplify recovery from data corruption. Parasite can be thought of as storing records.

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:9

Records of same kind are backed by a single record file. Records compose together to form
entities. The following entities are stored by Parasite:

Projects: A project is identified by unique git clone URL, it has a set of heads (one per
branch) and other information from GitHub metadata.
Commits: A commit is identified by its SHA hash, it has a message, changes, parents,
an author, a committer, and a time.
Paths: A path is identified by the hash of its string value.
Users: A user is identified by their email.
Snapshots: A snapshot of a file containing source code is identified by its hash.

Records are the smallest unit of information in the datastore, the only way to update an
entity is to add a new record. The decomposition of entities to records has been designed
along the lines of what information can be updated in isolation. Entities are assigned unique
numeric identifiers based on their contents. One of the key internal data structures in Parasite
are the multiple mappings from entity hashes to identifiers. These mappings are used for
deduplication.

Deduplication is crucial as up to 94% of files can be duplicates [13]. Mappings are costly
as they must be kept in memory. For our corpus, the deduplication mappings for all entities
require 89GB. While not a concern at this time, as our dataset grows, mappings will become
a bottleneck. To decrease their size, we split Parasite into substores. Each substore manages
a disjoint partition of the projects. We perform deduplication only within substores. This
means that mappings are smaller at the price of some duplication across substores. Our
implementation assigns projects to substores based on their size and dominant language;
small projects (less than 10 commits) are kept distinct from projects written in targeted
languages. A drawback of this design is that identifiers are not unique, if multiple substores
must be accessed, extra care must be taken when merging their contents. On the other hand,
this compartmentalization has immediate benefits: In terms of robustness, different substores
can be stored in different locations and a loss of one does not impact the others. In terms
of performance, queries can trivially skip reading irrelevant substores. We measured the
duplication across substores at only 5.1%.

As source code (snapshots) dominate the datastore, Parasite internally splits snapshots
by language, storing each language separately. This improves reading times for queries that
filter by language.

Parasite avoids storing information that is expensive to update and that can be computed
readily. For instance, the relation between commits and their project is not stored; it can
be recovered from project heads and commit parents. To further reduce footprint, larger
records are compressed. For snapshots, the compression ratio is 70%.

To quickly find the latest records for a particular entity, Parasite computes indices, which
are stored in dedicated index files that provide, for each entity, the location of the latest
version of its constituent records. These index files are updated in place as new records are
added which exposes them to the risk of being inconsistent. If this occurs, they can always
be recomputed from scratch. As of this writing, all indices in the datastore comprised 0.6%
of our disk footprint.

To ensure that it is possible to associate a time with every datum on disk, Parasite
introduces the notion of a savepoint. Since the store is append-only, time-indexing in
Parasite boils down to simply associating a time to the current position of each substore.
For consistency, savepoints can only be created between visits of projects. They are thus
both a mechanism for reproducibility and robustness. Any query can be re-executed at any
savepoint and will see the same information. The datastore can be rolled back to a savepoint
in case of data corruption.

ECOOP 2021

6:10 Reproducible Queries over Large-Scale Software Repositories

3.2.3 Interfaces
Parasite has two interfaces, one for data acquisition and another for reading data.

For monitoring purposes data acquisition exposes a detailed breakdown of running tasks,
their progress and the usage of GitHub resources. Parasite has both an interactive text-based
interface and a command-line interface for automation via scripts. These interfaces allow to
create savepoints, verify integrity of the datastore and repair data corruption by reverting
to previous savepoints. Parasite monitors available memory to keep as many mappings in
memory as it can. Most of the datastore management can be done without reloading any
mappings; the initial load takes 26 minutes.

The read interface allows to access records. Iterators are created relative to a savepoint
and return records in the order they were added up to that savepoint. Many records are
never superseded, for these iterator return values can be used as such. For records that can
be overridden with newer values, iterators return updates in reverse chronological order. For
projects, Parasite assembles their information; this takes some time as URLs, heads, update
status, substore, and metadata must be loaded first, assembly discards all but the most
recent versions. Iterators are geared towards sequential access to all elements, but the index
files kept by Parasite can be used for random access as well.

3.3 The Djanco database
The Djanco database acts as an intermediary between Parasite and the end-user. It provides
a robust query engine that manages loading and pre-processing data and a domain-specific
language to express queries easily and concisely. Finally, it supports replaying historical
queries. Djanco is designed under the following simplifying assumptions:

Single-user: Djanco is used by a single user for a single query at a time; any parallelism
is internal and transparent.
Determinism: Queries are fully replayable on the basis of parameters explicitly provided
by the end-users such as random seeds, timestamps, and data source.
Read-only: Queries cannot update the datastore, changes are limited to local objects
and are not persisted.
Fixed-schema: Djanco only contains data and metadata pertaining to GitHub.

The need for Djanco comes from the structure of Parasite. The datastore is designed to allow
continuous updates and to decrease footprint. This complicates answering research questions.
For instance, Parasite elides the relation from a project to its commits. A simple question
such as how many commits there are in a project requires recomputing that relation by
looking up one the of project’s branches and its most recent commit. From that commit,
one can follow the parent commits and recursively enumerate them all. Then, repeat for all
branches. The database layer computes relations such as these and caches data persistently
to speed up queries.

The rationale for a dedicated database rather than an off-the-shelf one are threefold.
First, and most arguably, our experience using MySQL on a related project suggested that
scalability to large data size (2.8TB and growing) can lead to significant execution overheads.
Secondly, we can leverage the assumptions above to implement a domain-specific database as
many features of traditional databases (transactions, locks, a general schema) are superfluous.
Instead, we implement a solution specialized to our schema that lazily loads selected data
from the datastore. Finally, some of our queries are difficult to express in the relational
model. Queries can become lengthy and involve multiple joins, nesting and views, which
makes them difficult to debug and maintain.

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:11

3.3.1 Instances
A Djanco database instance is logically created for each end-user query. Each instance is
irrevocably tied to a specific slice of the datastore. This slice is defined by two parameters:
the substores that indicate which projects to load, and a timestamp indicating a savepoint
to be checked out from each substore. If multiple datastores are used, the database joins
and deduplicates them. The Djanco schema is shown in Fig. 2, it defines five different

Figure 2 Djanco schema (computed attributes marked ◦).

entities: projects, commits, paths, users and snapshots. Each with their own attributes and
convenience methods. Even though Djanco derives its schema from Parasite, there is not
a one-to-one correspondence between them. While Parasite tends towards generality and
frugality, Djanco instead tends towards expressivity and convenience. For instance, Parasite
stores project metadata in JSON, while Djanco parses the format, extracts useful information
at sensible types. The basic information about projects is their ID and URL. The metadata
includes:

the language as determined by GitHub;
the numbers of stars, watchers, subscribers, issues, and forks;
dates for creation, most recent update, and most recent push;
the license, description, and homepage URL;
which web services are active: issues, wiki, downloads, pages;
size in bytes;
name of the default branch (e.g. “master” or “main”);
whether the project is archived or a fork.

Djanco provides a method to calculate the age of a project as the span of the time between
its first and most recent commit. Finally, it provides methods to retrieve relations between a

ECOOP 2021

6:12 Reproducible Queries over Large-Scale Software Repositories

project and other entities: heads, commits, users, authors, committers, paths, and snapshots.
Except for heads, all the relations need to be computed.

Commits have IDs, hashes, messages, as well as timestamps at which they were authored
and pushed. Each commit is associated with users, having an author and a committer. A
commit also has a list of changes: a change is a modification to a file represented by a path
in the repository and the contents of the file after the change. Finally, commits reference a
list of zero or more parent commits in the commit tree.

Users have IDs and emails. In addition, experience is computed for authors and committers
as the timespan between their first and last commit. Users also have a method to acquire
the list of commits they authored or committed.

Paths represent file system locations within the project (e.g. “src/main.c”). They are
identified by a synthetic ID and contain a string representing the path. A method to guess
the language of a file from its extension is provided. Snapshots are the stream of bytes that
are contents of a file at some point in time. For instance, if a file is edited during a commit,
the contents of that file before and after the edit are two separate snapshots.

3.3.2 Queries

Queries can be expressed either through a low-level interface or via a DSL. The former
accesses the schema directly with Rust iterators and methods. The DSL is a more compact
way to implement common queries.

The first step for all queries is to construct a database instance. Since an instance wraps
around a specific view of the datastore, constructing it requires specifying a path, a savepoint
and substores. The following snippet constructs an instance for small projects available on
December 1st, 2016:

let db = Djanco::new(PATH, timestamp!(December 2016), substore!(SmallProjects))?;

Alternatively, an instance for C, C++, and Python programs is constructed like this:
let db = Djanco::new(PATH, timestamp!(December 2016), substores!(C, C++, Python))?;

Parameters can be skipped; an instance from all substores at their most recent savepoint is
constructed thus (values of defaults are recorded for reproducibility):

let db = Djanco::from(PATH)?;

Iterators offer access to entities. The snapshot iterator is lazy, the others eagerly load
information from the datastore. Iterators are entry points to queries; they return objects that
conform to the schema of Fig. 2. This snippet extracts a vector of all languages occurring in
projects:

let all_languages = db.projects()
.map(|project| project.language())
.unique()
.collect()::<Vec<Language>>;

While iterators suffice for just about any query, most queries can be expressed more concisely
in our DSL. The DSL uses a pipeline paradigm, where an initial data structure is transformed
by a series of methods (aka verbs) that do part of the processing in each step. We provide the
following verbs: group, filter, sort_by, sample, and map_into. We also provide access to
any attribute in the schema. In addition, objects and their attributes are composable into
complex statements expressing comparisons (e.g. AtLeast, AtMost, Matches, Contains),
basic statistical functions (Count, Max, Median), sampling methods (Top, Random), and many
others. The code below showcases a few of these:

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:13

let selection = db.projects()
.group_by(project::Language)
.filter_by(AtLeast(Count(project::Users), 5))
.sort_by(project::Stars)
.sample(Top(50));

Projects are grouped according to their language, then filtered so that only projects that
have at least 5 users are kept, these are sorted by the number of stars in each project and,
finally, a sample of top 50 projects is returned.

A useful feature is the ability to deduplicate projects while sampling them according to
specific criteria. For example, in the following snippet projects will not be added to the
result set unless 90% of their commits are unique with respect to any other project already
within the result set:

selection.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)))

The final step of a query is to output its results; here we show results written to a CSV file:
selection.into_csv(OUTPUT_PATH)?;

Each object serializes verbosely, including all information about itself. If only specific
information is required, an appropriate format may be imposed by using the map verb to
translate an object into its attributes. Here each project is translated into its ID and URL:

selection
.map_into(Select!(project::Id, project::URL))
.into_csv(OUTPUT_PATH)?;

We also provide a function that outputs all information related to a project, including
commits, users, paths and snapshots. This creates multiple CSV files.

selection.dump_all_info_to(OUTPUT_DIR_PATH)?;

Crucially, end-users can do their own use-case–specific formatting by resorting to Rust:
selection.for_each(|project| println!("{}:␣{}", project.url(), project.has_wiki()))

Further details about our query facilities can be found in the Djanco GitHub repository.

A friend in need. We had an opportunity to test our system when posed a question that
was difficult to answer with GitHub’s REST API. The query had to retrieve popular C++
repositories that use custom allocators. Finding out whether a project is using a custom
allocator requires checking if it imports a library called memory_resource. Therefore, we

1 let wanted: HashMap<SnapshotId> = db
2 .snapshots()
3 .filter(|snapshot|
4 snapshot.contains(
5 "#include␣<memory_resource>"))
6 .map(|snapshot| snapshot.id())
7 .collect();
8

9 let projects = db.projects()
10 .filter(|project| {
11 project.snapshots()
12 .map_or(false, |snapshots| {
13 snapshots.iter()
14 .map(|snapshot| snapshot.id())
15 .any(|snapshot_id| {
16 wanted.contains(snapshot_id)
17 })
18 })
19 .sorted_by_key(|project|
20 project.star_count());

1 let wanted: HashSet<SnapshotId> = db
2 .snapshots()
3 .filter_by(
4 Contains(snapshot::Contents,
5 "#include␣<memory_resource>"))
6 .map_into(snapshot::Id)
7 .collect();
8

9 let projects = db.projects()
10 .filter_by(
11 AnyIn(project::SnapshotIds, wanted))
12 .sort_by(project::Stars);
13

Figure 3 Emery query.

ECOOP 2021

6:14 Reproducible Queries over Large-Scale Software Repositories

grep through source code for the string "#include␣<memory_resource>". In a second step, we
iterate over projects and find those, which contain one of the selected snapshots. At that
point, we order them by popularity and retrieve some number of the most popular projects.
For comparison we wrote the query in pure Rust and then in the DSL. Both implementations
are in Fig. 3. As expected the DSL is more compact and more readable. We ran the query
on a store with 3M projects and 429M snapshots. The first part of the query found 1724
snapshots in 12 hours. The second part of the query retrieved 1197 projects and their
metadata in 24 hours. Then, an additional 6 hours was spent on preparing the project
metadata for CSV export.

3.3.3 Data management

Djanco transparently manages the loading and pre-processing of data from the datastore.
This involves two mechanisms: lazy loading and caching. Given the size of the data, loading
it all into memory is not desirable. Most queries are interested with a small slice of the data,
usually filtering out most projects and neglecting most attributes. Therefore, Djanco uses
lazy loading to tailor the in-memory data to the needs of each specific query. Snapshots
(source code files) are bulky and cannot be split into independent attributes. Only a single
snapshot is held in memory at once. The database retrieves them from the datastore only
when needed either by scanning the store sequentially or by using the datastore’s ability to
seek and access a specific snapshot. For the other objects (projects, commits, paths, and
users), their attributes are loaded independently on request. Attributes are cached in the
database as they can be needed several times.

Memory usage is not the only concern while loading data from the store. From our
experiences in querying GitHub, we find that many similar queries are executed on the same
datastore view, especially when a query is being developed. Loading attributes from the
datastore can be costly, especially in places where the Djanco schema requires the values to
be calculated, e.g. for mappings between entities. Therefore, we found it beneficial to avoid
recalculating some attributes across queries by implementing on-disk attribute caching, thus
improving performance of similar or repeated queries.

For each attribute occuring in a query, the database creates an in-memory map, mapping
an entity ID to that entity’s value for a given attribute. After an attribute has been loaded,
the caching extension serializes it onto disk using the CBOR serialization format. The on-disk
cache structure preserves information about which datastore, savepoint, and substore a
particular attribute map was read from. Subsequent queries requesting this attribute for this
particular datastore view then prefer loading data from the cache rather than the datastore.
This process is transparent to the end-user, and can be turned off to save disk space.

Table 3 Caching performance.

extracting writing reading size
from store to cache from cache on disk cached?

commit::Parents+commit::Users 1h 21m 28s 35m 16s 7m 25s 2.3GB Y
user::Experience 1h 10m 19s 1s 1s 5.7MB Y

user::CommitterExperience 1h 9m 52s 1s 1s 5.6MB Y
user::AuthoredCommits 1h 8m 47s 1m 1s 39s 213MB Y

project::Commits 1h 8m 33s 5m 29s 3m 25s 1.1GB Y
commit::Changes 52m 29s 2h 53m 53s 1h 21m 28s 20GB N

commit::CommitterTimestamp 41m 49s 1m 55s 1m 21s 418MB Y
commit::Message 41m 24s 3m 20s 1h 38m 3s 6GB N

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:15

However, while the cache uses up disk space, reading an attribute from CBOR is potentially
orders of magnitude faster than loading it from the store. On the other hand, when loading
from the store is simple and the data is difficult to serialize (e.g. it consists of large string
vectors) caching is not indicated. We have benchmarked and pre-tuned the database to cache
only when it is clearly advantageous. Table 3 shows the performance impact of caching while
extracting selected attributes on a dataset containing 130K projects and 44M commits. The
table lists a few representative attributes in the first column. Columns two and three present
what happens when the attribute is requested for the first time: how long it takes to extract
it from the datastore and how long it takes to subsequently serialize it onto disk. The fourth
and fifth columns show the impact of caching: how long it takes to read the argument from
cache (e.g. when the query is re-executed or when another query requires the same attribute
from the same datastore view) and how much disk space has to be devoted to the CBOR file.
The final column shows our decision whether to cache this attribute or not.

3.3.4 Availability
While users can download their own datasets and run queries on them locally, doing so
requires time and computational resources. Therefore, we also provide a procedure for running
queries on our hardware using our incrementally updated dataset. A durable, publically
available resource also fosters reproducibility.

The submission procedure plugs into the standard Rust toolkit. Queries are submitted as
cargo crates. These crates include functions marked as individual queries via annotations
which also specify the savepoint and subsets that the specific query expects. For convenience,
we provide a template for query crates that works with the cargo generate command.4
We also provide an accompanying cargo djanco command5 which generates an execution
harness around query functions. The harness is a small standalone Rust program that sets up
the datastore and runs each query according to the specifications found in their annotations.
The harness includes a commandline interface through which it can be executed with a
specific dataset paths, output directory, and other parameters. We generate the harness for
executing the query on our server, but it can be used to test queries locally as well.

As of this writing queries are scheduled manually by the authors. Users should contact
us by email with a link to the repository. The query will undergo a manual inspection and
will be executed on our hardware and dataset using the same generated harness as above.
After the query is executed, a snapshot of the crate is created and stored it in the query
archive. The snapshot contains the complete source code of all the queries, logs, the exact
generated harness used for execution, and the results of all the queries – files generated to the
designated output directory. Any result file exceeding 50MB is ignored (if a query produces
large files we contact the user to advise on compaction or to negotiate different means of
delivery).

In the future, we will extend our infrastructure to include a web API that will allow users
to execute queries themselves. These queries will be expressed in a limited query language
(to obviate security risks) and the volume of results will be limited. Queries and results will
also be archived and accessible publicly with a receipt. Another extension we foresee is to
extend the existing mechanism to allow automatic query execution. This would resemble our
current process but it would remove the need for a manual check and emailing the authors

4 https://github.com/PRL-PRG/djanco-query-template#template
5 https://github.com/PRL-PRG/cargo-djanco

ECOOP 2021

https://github.com/PRL-PRG/djanco-query-template#template
https://github.com/PRL-PRG/cargo-djanco

6:16 Reproducible Queries over Large-Scale Software Repositories

as submission could be automated. This option is contingent on our ability to create a static
checker for incoming crates and sufficiently isolating them during execution.

Finally, storing user emails has privacy issues. we are considering whether it is appropriate
to expose emails for external queries. If retaining emails becomes problematic, we may have
to obfuscate the emails and replace them with numeric identifiers.

3.3.5 Reproducibility

To further support reproducibility, above and beyond the ability to deterministically run
historical queries, every query executed by Djanco is stored in a public query archive. The
query archive is a git repository hosted on GitHub.6 Each query is hosted in a separate
branch in the repository. We expect queries to undergo revisions. Each revision and execution
results from that revision are archived as separate commits in a single branch. This produces
a development history of the query.

Each query execution produces a receipt – a hash representing a specific commit in the
archive repository representing the execution. The hash can be used to share queries (exactly
as executed) and their results (exactly as produced). It can be used to retrieve the cargo
crate and to re-execute the code (e.g. on a different dataset). Code re-execution is helped
by the fact that queries are deterministic and the snapshot of the crate contains a list of
all depedencies, a timestamp, a list of all subsets and all random seeds. The receipt for the
queries in this paper is da6ae7dd50565e84efbeac990f5788f383939014.7

4 A Case Study: Of Bugs and Languages

The work’s motivation is the claim that the selection of inputs matters in empirical studies
of software and that CodeDJ can assist researchers in that process. We illustrate these points
with a case study. We start from prior work, and show that input selection impacts scientific
claims, and that CodeDJ allows rapid exploration of the input space.

The starting point is a Foundation of Software Engineering (FSE) paper published in
2014 [15].8 One contribution of that work is to establish that some programming languages
have a greater association with defects than others (RQ1 in [15]). Their methodology can be
summarized as follows. For 17 popular languages, select 50 projects hosted on GitHub that
have at least 28 commits. For each commit touching a file that contains code in one of the
target languages, label the commit as bug-fixing if its message contains a bug-related keyword.
Fit a Negative Binomial Regression (NBR) against the labeled data and obtain, for each
language, a coefficient and a p-value. The coefficient indicates the strength of the association
(positive means more bugs), and the p-value tells us about statistical significance (less than
.05 means the coefficient is significant). The FSE paper concluded that TypeScript, Clojure,
Haskell, Ruby and Scala were associated with fewer bugs, while C, C++, Objective-C,
JavaScript, PHP and Python were associated with more bugs. The remaining languages did
not have statistically significant coefficients.9

6 https://github.com/PRL-PRG/codedj-query-archive
7 https://github.com/PRL-PRG/codedj-query-archive/tree/
da6ae7dd50565e84efbeac990f5788f383939014

8 A revised version of the work appeared in the Communications of the ACM in 2017 with some issues
fixed, notably the removal of TypeScript from the analyzed languages.

9 These results were questioned, but the issues raised in [2] are orthogonal to the selection of inputs.

https://github.com/PRL-PRG/codedj-query-archive
https://github.com/PRL-PRG/codedj-query-archive/tree/da6ae7dd50565e84efbeac990f5788f383939014
https://github.com/PRL-PRG/codedj-query-archive/tree/da6ae7dd50565e84efbeac990f5788f383939014

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:17

4.1 Corpus
For this experiment we created a datastore using stratified sampling of data available on
GHTorrent. We started with 11,000 projects with at least 28 commits written in each of the
17 languages. For each language, we added 6,000 projects randomly selected from GitHub
(including smaller projects). In total, our dataset had 172K projects with 28 or more commits
and 230K projects in total. Only 3.8K large Erlang projects were available. The dataset has
47M unique commits (and 66M commits in total, suggesting a commit-duplication of 30%,
high given forks were excluded). The datastore occupies 51GB on disk. Our goal was to
have enough variety to represent the richness of GitHub. Unlike the FSE paper, which was
written in 2013, our corpus goes all the way to 2020.

4.2 Random input selection
Our first experiment explores the distribution of possible analysis outcomes. For this, we
repeatedly pick a random subset of 50 projects of each of the 17 languages and fit them
with NBR. Fig. 4 shows the distribution of the coefficients obtained by 1000 such random
selections compared to the results obtained in [15] (shown as a tick to the right of the
distribution). Positive values indicate a higher association of the language with defects.
The spread of each distribution is a measure of the sensitivity of the analysis to its inputs.

C C#
C++

Cloj
ure

Coff
ee

sc
rip

t

Erla
ng Go

Has
ke

ll
Ja

va

Ja
va

sc
rip

t

Obje
cti

ve
-C Perl Php

Pyth
on

Rub
y

Sca
la

Typ
es

cri
pt

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
oe

ffi
ci

en
t

FSE 2014

Figure 4 Random subsets.

Intuitively, consider the distribution of coefficients for Objective-C, it is roughly centered
around 0. This means, that a random input is about equally likely to say that the language
has a positive association with defects as a negative one. One could argue that picking close
to the median of the distribution could give a representative answer. As we can see the FSE
paper often picks subsets that are outliers; see the cases of CoffeeScript, Go, Perl, Scala and
most strikingly TypeScript.

Discussion: As most distributions straddle the axis, random selection is likely to result in
noisy conclusions. But, GitHub is noisy itself – for instance there is much code duplication,
and the are many low quality projects. A random selection is not the appropriate choice for
making conclusions about software developed by professionals. One could choose to mitigate
selection bias by increasing the size of the sample; CodeDJ can be used to generate multiple
random inputs, if the inputs agree, then our confidence in the results increases.

ECOOP 2021

6:18 Reproducible Queries over Large-Scale Software Repositories

4.3 Observing change over time
As we have more data than was available in 2013, we can use CodeDJ to select inputs at
various times. Here we create eight datasets, each containing data up to one of the years
between 2013 and 2020. For simplicity, we only plot the distribution of coefficients for
TypeScript. The original paper’s coefficient was −.43 (shown as a red line). The graph
clearly shows that the value was an outlier. The association with bugs shifted over time,
increasing to a relatively stable position from 2016.

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
oe

ffi
ci

en
t

FSE 2014

Figure 5 TypeScript over time.

While it is reasonable to expect variations from year to year, TypeScript experienced a
rather large shift over a short period. The language was released in 2012, so there were few
projects on GitHub in 2013. Furthermore, a number of human language translation files
were misidentified as TypeScript; these files did not have bugs, biasing the result. The rising
popularity of TypeScript quickly caused real code to crowd out the translation files, and the
association with bugs settled to around 0.2.

Discussion: Using CodeDJ to prepare inputs at different time points can help researchers spot
trends in the data. For some properties of interest one expects changes over time, for others
changes may be an indication of bias that needs to be controlled for. For instance, one would
expect the association with bugs of an established, popular, language to be stable.

4.4 Introducing domain knowledge
Choosing any subset of a larger population introduces bias, but this may be intentional,
reflecting domain knowledge about the relative importance of observations. For instance,
small projects with few commits may be less interesting as they correlate with student
projects. These projects have fewer descriptive commit messages and their defects reflect
beginner mistakes. It stands to reason to exclude such projects from consideration. Justifying
the choice of any particular selection criterion is beyond the scope of our work. CodeDJ
allows researchers to explore the impact of various subsets. Our next experiment looks at 6
different criteria for selecting projects and compares them to the original paper’s criterion.
The Djanco code for those queries is in Fig. 8 in the appendix.

Stars: Pick projects with most stars. Rationale: starred projects are popular and thus
likely to be well written and maintained. [Used in FSE 2014]
Touched Files: compute #files changed by commits, pick projects that changed the
most files. Rationale: indicative of projects where commits represent larger units of work.

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:19

Experienced Author: experienced developers are those on GitHub for at least two
years; pick a sample of projects with at least one experienced contributor. Rationale: less
likely to be throw-away projects.
50% Experienced: projects with two or more developers, half of which experienced.
Rationale: focus on larger teams.
Message Size: Compute size in bytes of commit messages; pick projects with the largest
size. Rationale: empty or trivial commit messages indicate uninteresting projects.
Number of Commits: Compute the number of commits; pick projects with the most
commits. Rationale: larger projects are more mature.
Issues: Pick projects with the most issues. Rationale: issues indicate a more structured
development process.

C C#
C++

Cloj
ure

Coff
ee

sc
rip

t

Erla
ng Go

Has
ke

ll
Ja

va

Ja
va

sc
rip

t

Obje
cti

ve
-C Perl Php

Pyth
on

Rub
y

Sca
la

Typ
es

cri
pt

0.75

0.50

0.25

0.00

0.25

0.50

0.75

C
oe

ffi
ci

en
t

Stars
50% Experienced
Experienced Author
Number of Commits
Message Size
Issues
Touched Files

Figure 6 Domain knowledge.

Fig. 6 shows, for each language, the value of the coefficients (higher means more bugs);
the queries returned 50 projects in each of the 17 target languages: Coefficients that are
not statistically significant are shown in faded colors. If the input set did not matter for
the model, one could expect the different queries to give roughly the same coefficients with
the same significance. This is not the case. If we focus on how many languages have
statistically significant coefficients: The touched files query is highly predictive, 14 of the
languages are significant, but the coefficients are frequently opposite from those of other
queries. Specifically, C is associated with slightly fewer bugs, so are C#, CoffeeScript, Java,
JavaScript, Objective-C, Perl, PHP, Python, Ruby and TypeScript. On the other hand C++,
Erlang, Go and Haskell are associated with more defects. This is striking as it goes against
expectations. The stars query is the least informative. It only gives 7 statistically significant
coefficients with remarkably low values.

Discussion: While some queries yield broadly similar conclusions, this is not the case for all.
We stress the importance of understanding the selection criteria and its impact, as statistical
significance should not be confused with validity. To help, CodeDJ provides distributions of
various measures in the data, Fig. 7 visualizes the distribution of project sizes (left) and
project age (right) for the entire dataset and for the various queries.

Looking at these distributions makes it clear that the queries return quite different projects.
The experienced author and number of commits are remarkably similar and return projects
that meet our expectations. The issues distribution is similar, which should raise red flags
given that it frequently disagrees. The stars query returns many smaller projects. Finally,
message sizes and touched files show distributions opposite to those expected. They favor

ECOOP 2021

6:20 Reproducible Queries over Large-Scale Software Repositories

Full
 da

tas
et

Star
s

50
% E

xp
eri

en
ce

d

Exp
eri

en
ce

d A
uth

or

Num
be

r o
f C

om
mits

Mes
sa

ge
 S

ize
Iss

ue
s

Tou
ch

ed
 File

s
0

1

2

3

4

5

lo
g 1

0
(C

om
m

its
)

Commits
Age [days]

0

1

2

3

4

5

lo
g 1

0
(A

ge
 [d

ay
s]

)

Figure 7 Project Size and Age Distributions.

degenerate young projects with few commits that are either verbose, or disproportionately
large (touching over 100K files). This is reflected in the input sizes, ranging from 8M rows
for the experienced author query to mere 79K rows of the touched files query. It is likely
that these queries are “wrong” in the sense they do not return the population of interest.
The figure also suggest that stars is a bad choice.

5 Conclusions

Finding projects on GitHub is akin to looking for the proverbial needle in a haystack.
While having a wealth of data at our fingertips is an undeniable asset to empirical software
engineering research, the sheer size of the code being hosted is a challenge to any data
processing pipeline. Selecting manageable subsets of available projects can introduce subtle,
but significant biases that, in turn, can influence or even invalidate the conclusion of the
analysis being conducted. Our case study illustrates this problem – we demonstrate that
by choosing various, apparently sensible, subsets of the data at hand, we can significantly
change the observed association between programming languages and software defects.

This paper introduces CodeDJ, an infrastructure designed to support the reproducible
specification of selection criteria for projects hosted on large-scale software repositories. Our
implementation is geared towards GitHub. As GitHub is a living system undergoing constant
change, ensuring reproducibility requires extra work. The same project downloaded today
and last month may contain different code, different commit histories, or the project may
disappear entirely. Our infrastructure mitigates this problem by building on a time-indexed,
append-only datastore. Queries are expressed in a front-end database that can access a view
of the data at a specific point in the history of the datastore.

For future work, three directions stand out: Expanding the datastore, improving the
query evaluation performance, and extending accessibility of the our dataset. The dataset
provided contains only a fraction of the data we expect to eventually need. As the data
grows in volume, our downloading, storage, and processing capabilities will be put to the test
and adjusted accordingly to ensure they scale up. We will explore how to ensure backwards
compatibility and determinism of queries in the face of changes to the implementation, and
to the data format (e.g. adding new information, such as issues, or new file kinds). In terms

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:21

of performance, our implementation does not try any optimizations of the query evaluation.
We intend to parallelize queries and explore ideas from the database community regarding
query compilation strategies. Finally, we plan on extending our infrastructure. We will
create a web API and a limited query language to make our dataset more generally accessible.
We will also investigate an infrastructure for automatic security checking and execution
scheduling for query crates which would allow for their automated submission.

References

1 Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of
code. In Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!), 2019. doi:10.1145/3359591.3359735.

2 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. On the impact of
programming languages on code quality: A reproduction study. ACM Trans. Program. Lang.
Syst., 41(4):21:1–21:24, 2019. doi:10.1145/3340571.

3 T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere. Orion: A software project search
engine with integrated diverse software artifacts. In International Conference on Engineering
of Complex Computer Systems, 2013. doi:10.1109/ICECCS.2013.42.

4 Hudson Borges, André C. Hora, and Marco Tulio Valente. Understanding the factors that
impact the popularity of GitHub repositories. CoRR, 2016. URL: http://arxiv.org/abs/
1606.04984.

5 Andy Cockburn, Pierre Dragicevic, Lonni Besanc on, and Carl Gutwin. Threats of a replication
crisis in empirical computer science. Communications of the ACM, 2020. doi:10.1145/
3360311.

6 Roberto Di Cosmo and Stefano Zacchiroli. Software Heritage: Why and How to Preserve
Software Source Code. International Conference on Digital Preservation, 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01590958.

7 Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A language and
infrastructure for analyzing ultra-large-scale software repositories. In International Conference
on Software Engineering (ICSE), 2013. URL: http://dl.acm.org/citation.cfm?id=2486788.
2486844.

8 Davide Falessi, Wyatt Smith, and Alexander Serebrenik. Stress: A semi-automated, fully
replicable approach for project selection. In International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2017. doi:10.1109/ESEM.2017.22.

9 Jesus M. Gonzalez-Barahona, Gregorio Robles, and Santiago Dueñas. Collecting data about
FLOSS development: The FLOSSMetrics experience. In International Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development (FLOSS), 2010. doi:
10.1145/1833272.1833278.

10 Georgios Gousios and Diomidis Spinellis. GHTorrent: GitHub’s data from a firehose. In
Michael W. Godfrey and Jim Whitehead, editors, Working Conference on Mining Software
Repositories (MSR), 2012. doi:10.1109/MSR.2012.6224294.

11 Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and
Daniela Damian. The promises and perils of mining GitHub. In Working Conference on
Mining Software Repositories (MSR), 2014. doi:10.1145/2597073.2597074.

12 P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. Adoption of software testing in open
source projects–a preliminary study on 50,000 projects. In European Conference on Software
Maintenance and Reengineering, 2013. doi:10.1109/CSMR.2013.48.

13 Crista Lopes, Petr Maj, Pedro Martins, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek.
Déjà Vu: A map of code duplicates on GitHub. Proc. ACM Program. Lang., 1(OOPSLA),
2017. doi:10.1145/3133908.

ECOOP 2021

https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3340571
https://doi.org/10.1109/ICECCS.2013.42
http://arxiv.org/abs/1606.04984
http://arxiv.org/abs/1606.04984
https://doi.org/10.1145/3360311
https://doi.org/10.1145/3360311
https://hal.archives-ouvertes.fr/hal-01590958
https://hal.archives-ouvertes.fr/hal-01590958
http://dl.acm.org/citation.cfm?id=2486788.2486844
http://dl.acm.org/citation.cfm?id=2486788.2486844
https://doi.org/10.1109/ESEM.2017.22
https://doi.org/10.1145/1833272.1833278
https://doi.org/10.1145/1833272.1833278
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/CSMR.2013.48
https://doi.org/10.1145/3133908

6:22 Reproducible Queries over Large-Scale Software Repositories

14 Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in software
engineering research. In Foundations of Software Engineering (FSE), 2013. doi:10.1145/
2491411.2491415.

15 Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale
study of programming languages and code quality in github. In International Symposium on
Foundations of Software Engineering (FSE), 2014. doi:10.1145/2635868.2635922.

16 Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes.
Sourcerercc: scaling code clone detection to big-code. In International Conference on Software
Engineering (ICSE), 2016. doi:10.1145/2884781.2884877.

17 Gerald Schermann, Sali Zumberi, and Jürgen Cito. Structured information on state and
evolution of dockerfiles on github. In International Conference on Mining Software Repositories
(MSR), 2018. doi:10.1145/3196398.3196456.

18 Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-Vásquez, Daniel
German, and Denys Poshyvanyk. License usage and changes: a large-scale study on GitHub.
Empirical Software Engineering, 2016. doi:10.1007/s10664-016-9438-4.

19 Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan,
Romain Franc ois, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn,
Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache, Kirill Müller, Jeroen Ooms, David
Robinson, Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke,
Kara Woo, and Hiroaki Yutani. Welcome to the tidyverse. Journal of Open Source Software,
4(43):1686, 2019. doi:10.21105/joss.01686.

20 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Conference on Hot Topics in Cloud Computing
(HotCloud), 2010. doi:10.5555/1863103.1863113.

A Analysis with GitHub toolkits

Can users do without CodeDJ? Consider the case study queries: stars and touched files.
GitHub exposes a REST API that can return any object and its metadata. The API

is limited. It allows filtering by language and sorting by stars, but not by touched files.
Furthermore it only returns 1000 results. Therefore, we can’t get directly the 17K projects
of the case study. While repositories can be obtained by numeric IDs, given the rarity of
some of languages such as Erlang means that a random sample would, in the worst case, end
up sampling every project on GitHub.

Repository URLs can be retrieved with the /repositories query. Assuming 150M
repositories, 1.5M queries are needed to find them all. The rate limit is 5K queries/user/hr,
so this takes 12 days. We also need language and number of commits to perform stratified
sampling. Getting languages is another 12 days. This can be done by getting a list of
contributors and summing up their contributions. This only requires one query per repository,
so another 12 days. Stratified sampling thus requires approximately a month.

The GitHub data is in JSON, which is not easy to query. One can convert it into a more
useful format, such as a relational database. From there, one can retrieve top 50 most-starred
projects in each language within that dataset with a query like:

select id from (
select id, row_number() over(partition by language order by stars desc) as place
from projects

) ranks
where place <= 50;

The second use case query requires ordering projects by average number of changes per
commit. This requires information about all commits. The REST API can list commits,
but not changes. To get those, the detailed metadata of each commit is need. This requires

https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3196398.3196456
https://doi.org/10.1007/s10664-016-9438-4
https://doi.org/10.21105/joss.01686
https://doi.org/10.5555/1863103.1863113

P. Maj, K. Siek, A. Kovalenko, and J. Vitek 6:23

one query per commit. With 66M commits, that is 550 days. Deduplicating commits before
retrieval shaves this down to 391 days. Having retrieved the data, one can select projects:

select id from (
select id, row_number() over(partition by lang order by avg_touched desc) as place

from (
select id, language as lang, avg(touched) as avg_touched
from project_commits
join (
select commit_id, count(path_id) as touched
from commit_changes
group by commit_id

) touched on project_commits.commit_id = touched.commit_id
join projects on projects.id = project_commits.project_id
group by project_id, language

) projects
) ranks
where place <= 50;

The query is complex. An alternative is to update the data with precomputed attributes.
As the reader may have gathered using GitHub is impractical. An alternative is to use

multiple sources of information. Project URLSs, stars and commit counts can be obtained
from GHTorrent, commits can be obtained by cloning repositories and analyzing their logs
locally. However, these sources have their own shortcomings. GHTorrent does not contain
all information, and it can be out of date. For instance, we found commit and star counts off
by orders of magnitude. Cloning repositories requires significant bandwidth. In addition,
care must be taken with large projects as they can take weeks to analyze if approached
naïvely. Gathering data never goes smoothly. The code will likely run for weeks even if
massively parallel and then fail on some unexpected corner case. If one then continuously
and incrementally update the obtained dataset, then one has essentially reinvented CodeDJ.

B Domain queries

Fig. 8 gives the queries used to inject domain knowledge in the analysis discussed in Sec. 4.

ECOOP 2021

6:24 Reproducible Queries over Large-Scale Software Repositories

Stars:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(project::Stars)

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Touched Files:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(Median(FromEach(project::Commits, Count(commit::Paths))))

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Experienced Author:
Djanco::from(PATH).projects()

.group_by(project::Language)

.filter_by(AtLeast(Count(FromEachIf(project::Users,
AtLeast(user::Experience,

Duration::from_years(2)))), 1))
.sort_by(Count(project::Commits))
.sample(Distinct(Random(50, Seed(42)), MinRatio(project::Commits, 0.9)));

50% Experienced:
Djanco::from(PATH).projects()

.group_by(project::Language)

.filter_by(AtLeast(Count(project::Users), 2))

.filter_by(AtLeast(Ratio(FromEachIf(project::Users,
AtLeast(user::Experience,

Duration::from_years(2))),
project::Users),

Fraction::new(1,2)))
.sample(Distinct(Random(50, Seed(42)), MinRatio(project::Commits, 0.9)));

Message Size:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(Mean(FromEach(project::Commits, commit::MessageLength)))

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Number of Commits:
Djanco::from(PATH).projects()

.group_by(project::Language)

.sort_by(Count(project::Commits))

.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Figure 8 Domain queries.

Enabling Additional Parallelism in Asynchronous
JavaScript Applications
Ellen Arteca #

Northeastern University, Boston, MA, USA

Frank Tip #

Northeastern University, Boston, MA, USA

Max Schäfer #

GitHub, Oxford, UK

Abstract
JavaScript is a single-threaded programming language, so asynchronous programming is practiced
out of necessity to ensure that applications remain responsive in the presence of user input or
interactions with file systems and networks. However, many JavaScript applications execute in
environments that do exhibit concurrency by, e.g., interacting with multiple or concurrent servers, or
by using file systems managed by operating systems that support concurrent I/O. In this paper, we
demonstrate that JavaScript programmers often schedule asynchronous I/O operations suboptimally,
and that reordering such operations may yield significant performance benefits. Concretely, we
define a static side-effect analysis that can be used to determine how asynchronous I/O operations
can be refactored so that asynchronous I/O-related requests are made as early as possible, and
so that the results of these requests are awaited as late as possible. While our static analysis is
potentially unsound, we have not encountered any situations where it suggested reorderings that
change program behavior. We evaluate the refactoring on 20 applications that perform file- or
network-related I/O. For these applications, we observe average speedups ranging between 0.99%
and 53.6% for the tests that execute refactored code (8.1% on average).

2012 ACM Subject Classification Software and its engineering → Automated static analysis; Software
and its engineering → Concurrent programming structures; Software and its engineering → Software
performance

Keywords and phrases asynchronous programming, refactoring, side-effect analysis, performance
optimization, static analysis, JavaScript

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.7

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.5

Funding E. Arteca and F. Tip were supported in part by the National Science Foundation grants
CCF-1715153 and CCF-1907727. E. Arteca was also supported in part by the Natural Sciences and
Engineering Research Council of Canada.

1 Introduction

In JavaScript, asynchronous programming is practiced out of necessity: JavaScript is a
single-threaded language and relying on asynchronously invoked functions/callbacks is the
only way for applications to remain responsive in the presence of user input and file system
or network-related I/O. Originally, JavaScript accommodated asynchrony using event-driven
programming, by organizing the program as a collection of event handlers that are invoked
from a main event loop when their associated event is emitted. However, event-driven
programs suffer from event races [27] and other types of errors [21] and lack adequate support
for error handling.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Ellen Arteca, Frank Tip, and Max Schäfer;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 7; pp. 7:1–7:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arteca.e@northeastern.edu
mailto:f.tip@northeastern.edu
mailto:max-schaefer@github.com
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/DARTS.7.2.5
https://doi.org/10.4230/DARTS.7.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Enabling Additional Parallelism in Asynchronous JavaScript Applications

In response to these problems, the JavaScript community adopted promises [10, Sec-
tion 25.6], which enable programmers to create chains of asynchronous computations with
proper error handling. However, promises are burdened by a complex syntax where each
element in a promise chain requires a call to a higher-order function. To reduce this burden,
the async/await feature [10, Section 6.2.3.1] was introduced in the ECMAScript 8 version of
JavaScript, as syntactic sugar for common usage patterns of promises. A function designated
as async can await asynchronous computations (either calls to other async functions or
promises), enabling asynchronous programming with minimal syntactic overhead.

The async/await feature has quickly become widely adopted, and many libraries have
adopted promise-based APIs that enable the use of async/await in user code. However,
many programmers are still unfamiliar with promises and async/await and are insufficiently
aware of how careless use of these features may negatively impact performance. In particular,
programmers often do not think carefully enough about when to create promises that are
associated with initiating asynchronous I/O operations and when to await the resolution of
those promises and trigger subsequent computations.

As JavaScript is single-threaded, it does not support multi-threading/concurrency at the
language level. However, the placement of promise-creation operations and the awaiting of
results of asynchronous operations can have significant performance implications because
many JavaScript applications execute in environments that do feature concurrency. For
example, a JavaScript application can interact with servers, file systems, or databases that
can execute multiple operations concurrently. Therefore, in general, it is desirable to trigger
asynchronous activities as early as possible and await their results as late as possible, so
that a program can perform useful computations while asynchronous I/O requests are being
processed in the environment.

In this paper, we use static interprocedural side-effect analysis [4] to detect situations
where oversynchronization occurs in JavaScript applications. For a given statement s, our
analysis computes sets MOD(s) and REF(s) of access paths [22] that represent sets of memory
locations modified and referenced by s, respectively. We use this analysis to suggest how
await-expressions of the form await eio can be refactored, where eio is an expression that
creates a promise that is settled when an asynchronous I/O operation completes. Here, the
idea is to “split” such await-expressions so that: (i) the promise creation is moved to the
earliest possible location within the same scope and (ii) the awaiting of the result of the
promise is moved to the latest possible location within the same scope. Like most static
analyses for JavaScript, the side-effect analysis is unsound, so the programmer needs to
ensure that program behavior is preserved, by reviewing the suggested refactorings carefully
and running the application’s tests.

We implemented the static analysis in CodeQL [2, 12], and incorporated it into a tool
called ReSynchronizer1 that automatically refactors I/O-related await-expressions. In an
experimental evaluation, we applied ReSynchronizer to 20 open-source Node.js applications
that perform asynchronous file-system I/O and asynchronous network I/O. Our findings
indicate that, on these subject applications, our approach yields speedups ranging between
0.99% and 53.6% when running tests that execute refactored code (8.1% on average). We
detected no situations where unsoundness in the static analysis resulted in broken tests.

In summary, the contributions of this paper are as follows:
The design of a static side-effect analysis for determining MOD and REF sets of access
paths, and the use of this analysis to suggest how I/O-related await-expressions can be
refactored to improve performance,

1 The source code of the tool and all of our data is available on GitHub

https://github.com/emarteca/Resynchronizer

E. Arteca, F. Tip, and M. Schäfer 7:3

Implementation of this analysis in a tool called ReSynchronizer , and
An evaluation of ReSynchronizer on 20 open-source projects, demonstrating that our
approach can produce significant speedups and scales to real-world applications.

The remainder of this paper is organized as follows. Section 2 reviews JavaScript’s promises
and async/await features. In Section 3, a real-world example is presented that illustrates
how reordering await-expressions may yield performance benefits. Section 4 presents the
side-effect analysis that serves as the foundation for our approach. Section 5 presents an
evaluation of our approach on open-source JavaScript projects that use async/await. Related
work is discussed in Section 6. Section 8 concludes and provides directions for future work.

2 Review of promises and async/await

This section presents a brief review of JavaScript’s promises [10, Section 25.6] and the
async/await feature [10, Section 6.2.3.1] for asynchronous programming. Readers already
familiar with these concepts may skip this section.

A promise represents the result of an asynchronous computation, and is in one of three
states. Upon creation, a promise is in the pending state, from where it may transition to
the fulfilled state, if the asynchronous computation completes successfully, or to the rejected
state, if an error occurs. A promise is settled if it is in the fulfilled or rejected state. The
state of a promise can change only once, i.e., once a promise is settled, its state will never
change again.

Promises are created by invoking the Promise constructor, which expects as an argument
a function that itself expects two arguments, resolve and reject. Here, resolve and reject
are functions for fulfilling or rejecting a promise with a given value, respectively. For example,
the following code:

1 const p = new Promise (function (resolve , reject) {
2 setTimeout (function () { resolve (17); }, 1000);
3 });

creates a promise that is fulfilled with the value 17 after 1000 milliseconds.
Once a promise has been created, the then method can be used to register reactions on it,

i.e., functions that are invoked asynchronously from the main event loop when the promise is
fulfilled or rejected. Consider extending the previous example as follows:

4 p.then(function f(v) { console .log(v); return v+1; });

In this case, when the promise assigned to p is fulfilled, the value that it was fulfilled with
will be passed as an argument to the resolve-reaction f, causing it to print the value 17 and
return the value 18.

The then function creates a promise, which is resolved with the value returned by the
reaction. This enables the creation of a promise chain of asynchronous computations. For
instance, extending the previous example with:

5 p.then(function (x) { return x+1; })
6 .then(function (y) { return y+2; })
7 .then(function (z) { console .log(z); })

results in the value 20 being printed.
The examples given so far only specify fulfill-reactions, but in general, care must be taken

to handle failures. In particular, the promise implicitly created by calling then is rejected if
an exception occurs during the execution of the reaction. To this end, the catch method can

ECOOP 2021

7:4 Enabling Additional Parallelism in Asynchronous JavaScript Applications

be used to register reject-reactions that are to be executed when a promise is rejected. The
catch method is commonly used at the end of a promise chain. For example:

8 p.then(function (x) { return x+1; })
9 .then(function (y) { throw new Error (); })

10 .then(function (z) { console .log(z); })
11 . catch (function (err) { console .log(’error!’); })

results in ’error!’ being printed.
Recently, several popular libraries for performing I/O-related operations have adopted

promise-based APIs. For example, fs-extra is a popular library that provides various file
utilities, including a method copy for copying files. The copy function returns a promise that
is fulfilled when the file-copy operation completes successfully, and that is rejected if an I/O
error occurs, enabling programmers to write code such as:2

12 const fs = require (’fs - extra ’)
13 fs.copy(’/tmp/ myfile ’, ’/tmp/ mynewfile ’)
14 .then(function () { console .log(’success !’); })
15 . catch (function (err) { console .error(err); })

JavaScript’s async/await feature builds on promises. A function can be designated as
async to indicate that it performs an asynchronous computation. An async function f

returns a promise: if f returns a value, then its associated promise is fulfilled with that
value, and if an exception is thrown during execution of f , its associated promise is rejected
with the thrown value. The await keyword may be used inside the body of async functions,
to accommodate situations where the function relies on other asynchronous computations.
Given an expression e that evaluates to a promise, the execution of an expression await e

that occurs in the body of an async function f will cause execution of f to be suspended,
and control flow will revert to the main event loop. Later, when the promise is fulfilled with
a value v, execution of f will resume, and the await-expression will evaluate to v. In the
case where the promise that e evaluates to is rejected with a value w, execution will resume
and the evaluation of the await-expression will throw w as an exception that can be handled
using the standard try/catch mechanism. Below, we show a variant of the previous example
rewritten to use async/await.

16 async function copyFiles () {
17 try {
18 await fs.copy(’/tmp/ myfile ’, ’/tmp/ mynewfile ’)
19 console .log(’success !’)
20 } catch (err) {
21 console .error(err)
22 }
23 }

As is clear from this example, the use of async/await results in code that is more easily
readable. Here, execution of copyFiles will be suspended when the await-expression on
line 18 is encountered. Later, when the file-copy operation has completed, execution will
resume. If the operation completes successfully, line 19 will execute and a message ’success!’
is printed. Otherwise, an exception is thrown, causing the handler on line 20 to execute.

As a final comment, we remark on the fact that it is straightforward to convert an existing
event-based API into an equivalent promise-based API, by creating a promise that is settled
when an event arrives. Various utility libraries exist for such “promisification” of event-driven
APIs, e.g., util.promisify [14] and universalify [33].

2 Example adapted from https://www.npmjs.com/package/fs-extra.

https://www.npmjs.com/package/fs-extra

E. Arteca, F. Tip, and M. Schäfer 7:5

24 export async function getStatus (repository) {
25 const stdout = await gitMergeTree (repository)
26 const parsed = parsePorcelainStatus (stdout) A
27 const entries = parsed . filter (isStatusEntry) B
28
29 const hasMergeHead = await fs. pathExists (getMergeHead (repository))
30 const hasConflicts = entries .some(isConflict) C
31
32 const state = await getRebaseInternalState (repository)
33
34 const conflictDetails = await getConflictDetails (repository ,
35 hasMergeHead , hasConflicts , state)
36
37 buildStatusMap (conflictDetails) G
38 }

(a)

39 async function getRebaseInternalState (repository) {
40 let targetBranch = await fs. readFile (getHeadName (repository))
41 if (targetBranch . startsWith (’refs/heads/’))
42 targetBranch = targetBranch . substr (11). trim () D
43
44 let baseBranchTip = await fs. readFile (getOnto (repository))
45 baseBranchTip = baseBranchTip .trim () E
46
47 return { targetBranch , baseBranchTip } F
48 }

(b)

Figure 1 Example.

3 Motivating Example

We now present a motivating example that illustrates the performance benefits that may
result from reordering await-expressions. The example was taken from Kactus3, a git-based
version control tool for design sketches. Figure 1(a) shows a function getStatus that is
defined in the file status.ts4. As an async function, getStatus may depend on the values
computed by other async functions, by awaiting such values in await-expressions. The code
shown in Figure 1(a) contains four such await-expressions, on lines 25, 29, 32, and 34, which
we now consider in some detail:

The await-expression on line 25 invokes an async function gitMergeTree (omitted for
brevity) that relies on the dugite and child_process libraries to execute a git merge-tree
command in a separate process.
The await-expression on line 29 calls an async function pathExists from the fs-extra
package mentioned above, to check if a file MERGE_HEAD exists in the .git directory.
pathExists is implemented in terms of the function access from the built-in fs package
provided by the Node.js platform, which in turn triggers the execution of an OS-level
file-read operation.
The await-expression on line 32 calls an async function getRebaseInternalState, of which

3 See https://kactus.io/.
4 Some details not pertinent to the program transformation under consideration have been elided here.

The complete source code can be found at https://github.com/kactus-io/kactus.

ECOOP 2021

https://kactus.io/
https://github.com/kactus-io/kactus

7:6 Enabling Additional Parallelism in Asynchronous JavaScript Applications

fs.readFile()

await fs.readFile()

await getConflictDetails()

getConflictDetails()

fs.readFile()

await getRebaseInternalState()

getRebaseInternalState()

fs.pathExists()

await gitMergeTree()

gitMergeTree()

getStatus getRebaseInternalState

time

JS libraries and
runtime

A
B

G

asynchronous call

asynchronous return (callback)

1

1
2

2
3

3

C
await fs.pathExists()

D

await fs.readFile()
E
F

…

…

Figure 2 Visualization of the execution of getStatus.

we show some relevant fragments in Figure 1(b). Note in particular that two asynchronous
file-read operations are performed on lines 40 and 44, using the readFile function from
fs-extra. Each of these calls causes the execution of an OS-level file-read operation.
The await-expression on line 34 invokes an async utility function getConflictDetails
(omitted for brevity) to gather information about files that have merge conflicts.

Figure 2 shows a UML Sequence Diagram5 that visualizes the flow of control during the
execution of getStatus. In this diagram, labels A – G inside timelines indicate when code
fragments labeled similarly in Figure 1 execute. Furthermore, labels 1 – 3 indicate when
file I/O operations associated with the call to fs.pathExists on line 29 and with the two
calls to fs.readFile in function getRebaseInternalState execute.

The leftmost timeline in the diagram depicts the execution of code fragments in the
getStatus function itself. The middle timeline depicts the execution of function
getRebaseInternalState. The timeline on the right, labeled “JS libraries and runtime”
visualizes the execution of functions in JavaScript libraries such as fs-extra and other
libraries that the application relies on such as universalify [33], graceful-fs [30], and
libraries such as the fs file-system package that are included with the JS runtime.

Taking a closer look at the diagram, we can observe that the code fragments A and B

will run before I/O operation 1 is initiated. Then, after I/O operation 1 has completed,
code fragment C is evaluated. Next, when getRebaseInternalState is invoked, I/O operation
2 is initiated. After it has completed, code fragment D executes, which is followed in turn
by I/O operation 3 . When that operation completes, code fragments E and F execute,

5 To prevent clutter, the diagram only shows asynchronous calls and returns and elides details that are
not relevant to the example under consideration.

E. Arteca, F. Tip, and M. Schäfer 7:7

and finally code fragment G executes. Crucially, the use of await on lines 29, 32, 40, and
44 ensures that each file I/O operation must complete before execution can proceed. As
a result, the file I/O operations 1 – 3 execute in a strictly sequential order, where each
operation must complete before the next one is dispatched.

However, most JavaScript runtimes are capable of processing multiple asynchronous I/O
requests concurrently. In this paper, we demonstrate that it is often possible to refactor
JavaScript code in a way that enables for multiple I/O requests to be processed concurrently
with the main program. The refactoring that we envision targets expressions of the form await
eio, where eio is an expression that creates a promise that is settled when an asynchronous
I/O operation completes. The expressions await fs.pathExists(getMergeHead(repository))
on line 29 and await getRebaseInternalState (repository) on line 32 are examples of such
expressions, as are the await-expressions on lines 40 and 44 in Figure 1(b).

Conceptually, the refactoring involves splitting an expression await eio occurring in an
async function f into two parts:
1. a local variable declaration var t = eio that starts the asynchronous I/O operation and

that is placed as early as possible in the control-flow graph of f , and
2. an expression await t where the result of the asynchronous I/O operation is awaited and

that is placed as late as possible in the control-flow graph of f .
We will make the notions “as early as possible” and “as late as possible” more precise in
Section 4, but intuitively, the idea is that we want to move the expression eio before any
statement that precedes it – provided that this does not change the values computed or
side-effects created at any program point. Likewise, we want to move the expression await t

after any statement that follows it provided that this does not alter the values computed or
side-effects created at any program point. Section 4 will present a static data flow analysis
for determining when statements can be reordered.

Figure 3(a) shows how the getStatus function is refactored by our technique. As can be
seen in the figure, the await-expression that occurred on line 29 in Figure 1(a) is split into
the declaration of a variable T1 on line 53 and an await-expression on line 60 in Figure 3(a).
Likewise, the await-expression that occurred on line 32 in Figure 1(a) is split into the
declaration of a variable T2 on line 54 and an await-expression on line 59 in Figure 3(a).

The await-expression on line 25 cannot be split because it relies on process.spawn to
execute a git merge-tree command in a separate process, and our analysis conservatively
assumes that statements that spawn new processes have side-effects and thus cannot be
reordered (this is discussed in detail in Section 4.4). Furthermore, the await-expression on
line 34 was not reordered because it references the variable state defined on the previous
line, and it defines a variable conflictDetails that is referenced in the subsequent statement,
so any reordering might cause different values to be computed at those program points.

The two await-expressions in Figure 1(b) can also be split, and the resulting refactored
code is shown in Figure 3(b).

Figure 4 shows a UML Sequence diagram that visualizes the execution of the refactored
getStatus method. As can be seen in the figure, the I/O operation labeled 1 is now initiated
after code fragment A has been executed but before code fragment B executes. However,
since the result of this I/O operation is not needed until after code fragment C has executed,
this I/O operation can now execute concurrently with I/O operations 2 and 3 . Additional
potential for concurrency is enabled by starting I/O operation 3 before awaiting the result
of I/O operation 2 . Note that, as a result of splitting await-expressions and reordering
statements, the labeled code fragments now execute in a slightly different order: A , D , E ,
F , B , C , G . Our static analysis, defined in Section 4 inspects the MOD and REF sets of

ECOOP 2021

7:8 Enabling Additional Parallelism in Asynchronous JavaScript Applications

49 export async function getStatus (repository) {
50 const stdout = await gitMergeTree (repository)
51 const parsed = parsePorcelainStatus (stdout) A
52
53 let T1 = fs. pathExists (getMergeHead (repository))
54 let T2 = getRebaseInternalState (repository)
55
56 const entries = parsed . filter (isStatusEntry) B
57 const hasConflicts = entries .some(isConflict) C
58
59 const state = await T2
60 const hasMergeHead = await T1
61 const conflictDetails = await getConflictDetails (repository ,
62 hasMergeHead , hasConflicts , state)
63
64 buildStatusMap (conflictDetails) G
65 }

(a)

66 async function getRebaseInternalState (repository) {
67 let T3 = fs. readFile (getHeadName (repository))
68 let T4 = fs. readFile (getOnto (repository))
69 let targetBranch = await T3
70 if (targetBranch . startsWith (’refs/heads/’))
71 targetBranch = targetBranch . substr (11). trim () D
72
73 let baseBranchTip = await T4
74 baseBranchTip = baseBranchTip .trim () E
75
76 return { targetBranch , baseBranchTip } F
77 }

(b)

Figure 3 Example, reordered.

var T4 = fs.readFile()
await T3

await getConflictDetails()

getConflictDetails()

var T3 = fs.readFile()var T2 = getRebaseInternalState()

var T1 = fs.pathExists()

await gitMergeTree()

gitMergeTree()

getStatus getRebaseInternalState

time

JS libraries and
runtime

A

G

1

1

3

3

B
C

D

E
F

…

…

await T4

await T2

await T1

2

2

Figure 4 Visualization of the execution of getStatus after reordering.

E. Arteca, F. Tip, and M. Schäfer 7:9

memory locations modified and referenced by statements to determine when reordering is
safe. The analysis is unsound, and may potentially suggest reorderings that change program
behavior, so programmers need to review the suggested changes carefully and run their tests
to ensure that behavior is preserved. In practice, however, we have not encountered any
cases where invalid reorderings were suggested, as we will discuss in Section 5.3 .

At this point, the reader may wonder whether the additional concurrency enabled by the
suggested transformation results in performance improvements. For the Kactus project from
which the example was taken, a total of 72 I/O-related await-expressions were reordered by
our technique, including the ones discussed above. Of the 799 tests associated with Kactus,
172 execute at least one reordered await-expression. For these impacted tests, we observed
an average speedup of 7.2%. We discuss our experimental results in detail, in Section 5.

4 Approach

This section presents a static analysis for determining how await-expressions can be reordered
to reduce over-synchronization. The analysis determines whether reordering adjacent state-
ments may impact program behavior by determining the side-effects of each statement. Here,
the side-effects of statements are defined in terms of MOD and REF sets [4] of access paths
[22]. Below, we will define these concepts before introducing predicates that specify when
statements can be reordered.

4.1 Access paths
An access path represents a set of memory locations referred to by an expression in a program.
The access path representation that we use is based on the work by Mezzetti et al. [22]:
starting from a root, an access path records a sequence of property reads, method calls and
function parameters that need to be traversed to arrive at the designated locations. It is
often also useful to view access paths as representing a set of values, namely those values that
are stored in these locations at runtime. Access paths a conform to the following grammar:

a ::= root a root of an access path
| a.f a property f of an object represented by a

| a() values returned from a function represented by a

| a(i) the ith parameter of a function represented by a

| anew() instances of a class represented by a

Mezzetti et al. developed access paths to abstractly represent objects originating from a
particular API. As such, their root was always of the form require(m)6. We additionally
allow variables as roots, including both global variables and local variables, with the latter
also covering function parameters including the implicit receiver parameter this.

▶ Example 4.1. We give a few examples of access paths:
The local variable targetBranch declared on line 40 in Figure 1 is represented by the
access path targetBranch.
The argument’refs/heads/’ in the method call targetBranch.startsWith(’refs/heads/’)
on line 41 is represented by the access path targetBranch.startsWith(1).

6 This represents an import of package m. For simplicity, we use this same notation to represent packages
imported using require or import.

ECOOP 2021

7:10 Enabling Additional Parallelism in Asynchronous JavaScript Applications

The property-access expression fs.pathExists on line 29 is represented by the access path
require(fs-extra).pathExists.

Note that access paths are not canonical: due to aliasing, it is possible for multiple access
paths to represent the same memory locations. This may give rise to unsoundness in the
analysis, as will be discussed in Section 4.10.

4.2 MOD and REF
Intuitively, for a given statement or expression s, MOD(s) is a set of access paths representing
locations modified by s and REF(s) is a set of access paths representing locations referenced by
s. If s is a compound statement or expression such as a block, if-statement, or while-statement,
MOD(s) and REF(s) include all access paths modified/referenced in any component of s,
respectively. Furthermore, if s includes a function call e.f(· · ·), MOD(s) and REF(s) include
all access paths modified/referenced in any statement in any function transitively invoked
from this call site7.

When a statement s contains an assignment to an access path a, the set MOD(s) contains
a and all access paths that are rooted in a. However, note that we limit the set of access
paths in MOD(s) to those that are explicitly referenced in the program. To understand
why this must be the case, consider a scenario where a is a variable containing a string.
Such a variable has all properties that are defined on strings8. As one particular example,
consider the toString function defined on strings. Since a.toString() is rooted in a, MOD(s)
should include a.toString(). The result of a.toString() is also a string, which means that
a.toString().toString() is another valid access path rooted in a, and should be included in
MOD(s). This could be repeated ad infinitum, and is only one possible example of such an
infinite recursive process. So, to ensure that MOD(s) and REF(s) are always finite sets, they
only include access paths that actually occur in the program.

Note that, in JavaScript, it is also possible to access properties dynamically, with
expressions of the form e[p], where p is a value computed at run time. In such cases, our
analysis cannot statically determine which of e’s properties is specified by p, and so we
conservatively assume that all properties of e are accessed (i.e., all access paths rooted in e).

▶ Example 4.2. Consider the assignment statement on line 40 in Figure 1.

let targetBranch = await fs.readFile(getHeadName(repository))

Since we are assigning to targetBranch, this statement modifies targetBranch and all
access paths rooted in targetBranch. From a quick glance at the code, we can see that two
properties of targetBranch are accessed (startsWith and substr) and called as methods, and
the trim method is called on the result of calling substr (and none of these has any further
properties accessed). The assignment also contains a call to getHeadName – the function body
is elided for brevity, but suffice it to say that getHeadName does not modify its repository
argument or any global variables. Taking these considerations into account, the following
MOD set is computed for the statement on line 40:

{ targetBranch, targetBranch.startsWith, targetBranch.startsWith(), targetBranch.substr,

targetBranch.substr(), targetBranch.substr().trim, targetBranch.substr().trim() }

7 Note that for brevity, when describing modification/reference of the locations abstractly represented by
an access path, we refer to it as modification/reference of the access path itself.

8 See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

E. Arteca, F. Tip, and M. Schäfer 7:11

The REF set includes all access paths referenced in the assignment, which includes the
call to fs.readFile that is represented by the access path require(fs-extra).readFile(),
the function getHeadName, and the variable repository. In the implementation of function
getHeadName, there is a call to fs.pathExists, another to Path.join, and an access to the
path property of the repository object. Therefore, the REF set for the statement is:

{ require(fs-extra), require(Path), require(fs-extra).readFile, require(fs-extra).readFile(),
require(fs-extra).pathExists, require(fs-extra).pathExists(), require(Path).join,
require(Path).join(), repository, repository.path }

Note that, for a given statement s, MOD(s) and REF(s) do not include access paths
rooted in local variables, parameters or this parameters in scopes disjoint from the scope of s.
For example, for the statement on line 32 where we see a call to getRebaseInternalState, the
MOD set does not include an access path targetBranch for the local variable targetBranch
modified in that function because it has no effect on the calling statement.

4.3 Determining whether statements are independent
In order to determine whether two adjacent statements s1 and s2 can be reordered, we need
to determine whether doing so might change the values computed at either statement. We
consider statements s1 and s2 data-independent if all of the following criteria are satisfied:
1. MOD(s1) ∩ MOD(s2) = ∅
2. MOD(s1) ∩ REF(s2) = ∅
3. REF(s1) ∩ MOD(s2) = ∅
If s1 and s2 are not data-independent, then we will say that they are data-conflicting.

▶ Example 4.3. We discussed the MOD set for the statement at line 40 in Figure 1 in
Example 4.2. Similarly, the statement on line 44 is an assignment to variable baseBranchTip,
whose MOD set consists of {baseBranchTip, baseBranchTip.trim, baseBranchTip.trim()}. Since
neither of these statements is modifying data that the other is modifying or referencing, these
statements are data-independent. Note that they do have an overlap in the REF sets: both
statements include calls to fs.readFile, and access the variable repository. However, since
these accesses are read-only, the order in which they execute does not need to be preserved.
Indeed, in Figure 3, we see that, in the reordered code, the await for the targetBranch
assignment is moved after the baseBranchTip assignment.

Since the statement on line 44 has baseBranchTip in its MOD set, it data-conflicts with
the statement on line 45 which uses the value of variable baseBranchTip, indicating that
these statements cannot be reordered. Indeed, in Figure 3, we see that the await for the
assignment of baseBranchTip remains before the reference to baseBranchTip on line 74.

Note that, since access paths are not canonical, data independence is not, strictly speaking,
a sound criterion for reorderability: if two statements modify the same location under different
access paths, we will consider them to be data independent, but reordering them may be
unsafe. This issue and other factors that may impact soundness are discussed in Section 4.10.

4.4 Environmental side effects
So far, we have only considered side-effects consisting of referencing and modifying locations
through variables and object properties. However, statements may also have side-effects
beyond the state of the program itself, such as modifications to file systems, or the environment
in which the program is being executed. Our approach to handling such side-effects is to

ECOOP 2021

7:12 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Table 1 Functions with environment-specific MOD side-effects.

Environment Function names

__FILE_SYSTEM__ fs.write* (i.e. fs.write, fs.writeSync, writeFile, etc)
__FILE_SYSTEM__ fs.append* (i.e. fs.append, appendFile, etc)
__FILE_SYSTEM__ fs.unlink, fs.remove, fs.rename, fs.move, or fs.copy
__FILE_SYSTEM__ fs.mkdir or fs.rmdir or fs.rimraf
__FILE_SYSTEM__ fs.output* (i.e. fs.output, fs.outputFileSync, etc)
__FILE_SYSTEM__ process.chdir
__NETWORK__ network.start or network.stop or network.launch
__NETWORK__ network.write, or network.load (a write to the contents of a page)
__NETWORK__ network.goto (for changing pages in puppeteer; it is analagous to chdir for fs)

model them in terms of MOD and REF sets for (pseudo-)variables. We distinguish two types
of special side effects: global and environment-specific, which we discuss below.

Global environmental side-effects

We say that a statement s has a global side-effect if it could affect any of the data in the
program or its environment. In such cases, our analysis infers that MOD(s) = ⊤ and
REF(s) = ⊤, where ⊤ is the set containing all access paths computed for the program.
Currently, our analysis flags the following functions as having global side-effects: eval, exec,
spawn, fork, run, and setTimeout. All but the last of these functions may execute arbitrary
code and setTimeout is often used to explicitly force a specific execution order9.

Environment-specific side-effects

We say a statement has an environment-specific side-effect if it can affect a specific aspect
of the program’s run-time environment, such as the file system or network. Environment-
specific side-effects are modeled in terms of MOD and REF sets for pseudo-variables that
are introduced for the aspect of the environment under consideration.

The experiments reported on in this paper focus on applications that access the file system
or a network and we model these environments using pseudo-variables __FILE_SYSTEM__ and
__NETWORK__ respectively.

Our current implementation flags a statement as having an environment-specific MOD
side-effect if it consists of a call to any of the functions listed in Table 1. For each of these
operations, the MOD sets will include the corresponding environment pseudo-variable. For
example, the first row reads as follows: a statement including any function starting with
write (i.e. write, writeSync, writeFile, etc.) that originates from a file system-dependent
package will include the pseudo-variable __FILE_SYSTEM__ in its MOD set.

Any other operations that reference the environments will have their REF set include the
corresponding pseudo-variable (e.g., fs.readFile references __FILE_SYSTEM__, and express.get
references __NETWORK__)10. As a result, no statements that reference an environment can be
reordered around a call that may modify that environment. For example, no file read will
ever be reordered around a file write, since the file read statements have __FILE_SYSTEM__ in

9 While conducting our experiments, we ran into cases where reordering awaits around a call to setTimeout
caused changes in program behavior because the execution order was modified.

10 This full list is included in a table analogous to Table 1 in the supplementary materials.

E. Arteca, F. Tip, and M. Schäfer 7:13

the REF set and the file write statements have __FILE_SYSTEM__ in the MOD set11. However,
any two file reads can be reordered (as seen in our motivating example), since there will
never be a data conflict between read-only operations.

Algorithm 1 Predicate for determining if an access path a is modified by a statement s.
Input: s statement and a access path
Result: True if s modifies a, False otherwise

1: predicate MOD(s, a)
2: // (i) base case: direct modification of a
3: (s has environmental side-effect a ∨ s declares or assigns to a)
4: ∨ // recursive cases...
5: // (ii) check if there’s a statement nested in s (in the AST) that modifies a
6: ∃ sin, nestedIn(sin, s) ∧ MOD(sin, a)
7: // (iii) check if s modifies a base path of a
8: ∨ ∃ b, b.p == a ∧ MOD(s, b)
9: // (iv) check if s modifies a property of a using a dynamic property expression

10: ∨ s assigns to a[p]
11: // (v) check if s contains a call to a function that modifies a
12: ∨ ∃ f, calledIn(f, s) ∧ ∃ sf ∈ fbody,

13: // direct modification of a in the function
14: MOD(sf , a)
15: ∨ // parameter alias to a is modified in the function
16: a is f ’s ith argument ∧ ∃ api, MOD(sf , api) ∧ api is f ’s ith parameter
17: end predicate

4.5 Computing MOD and REF sets
Algorithm 1 shows our algorithm for computing MOD sets12, expressed as a predicate MOD.
The MOD predicate states that statement s modifies access path a if one of the following
conditions holds: (i) s modifies a directly in an assignment or in the initializer associated
with a declaration, or via an environment-specific side effect, (ii) there is a statement nested
inside s that modifies a, (iii) s modifies a base path of a (i.e., a == b.p, and s modifies b),
(iv) s modifies a property of a using a dynamic property expression p, or (v) s consists of a
call to a function f , the body of f contains a statement sf , and either sf modifies a or sf

modifies a parameter of f that is bound to a.

Algorithm 2 Predicate for determining if two statements have overlapping MOD/REF sets.
Input: s1 and s2 statements
Result: boolean indicating if s1 and s2 are data-independent

1: predicate dataIndependent(s1, s2)
2: ∀a, MOD(s1, a) =⇒ ¬MOD(s2, a)
3: ∧ ∀a, MOD(s1, a) =⇒ ¬REF(s2, a)
4: ∧ ∀a, REF(s1, a) =⇒ ¬MOD(s2, a)
5: end predicate

11 We have taken this conservative approach because, in many cases, it is not possible to determine
precisely which files are being accessed because names of accessed files are specified with string values
that may be computed at run time.

12 REF sets are computed analogously; pseudocode of the REF algorithm is in the supplementary material.

ECOOP 2021

7:14 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Algorithm 3 Predicate for determining if two statements can be swapped.
Input: s1 and s2 statements
Result: boolean indicating if the statements can be exchanged

1: predicate exchangeable(s1, s2)
2: dataIndependent(s1, s2)
3: ∧ ¬isControlFlowStmt(s1) ∧ ¬isControlFlowStmt(s2)
4: ∧ inSameBlock(s1, s2)
5: end predicate

4.6 Determining whether statements can be exchanged
As a first step towards determining reordering opportunities, Algorithm 2 defines a predicate
for determining if two statements are data-independent, by checking that they do not have
conflicting side-effects. This predicate operationalizes the condition that was specified in
Section 4.3. However, data-independence is by itself not a sufficient condition for statements
being exchangeable. Algorithm 3 shows a predicate exchangeable that checks if two statements
s1 and s2 are exchangeable by checking that: (i) they are data independent, (ii) neither is a
control-flow construct such as return or the test condition of an if or loop, and (iii) they
occur in the same block. Condition (iii) expresses that we do not move statements into a
different scope, to avoid problems that might arise due to name collisions. As part of future
work, we plan to incorporate strategies from existing refactorings [28] to relax this condition
so that statements can be moved into different scopes.

Algorithm 4 Predicate for determining if statement s can be reordered above another statement
sup.
Input: s and sup statements
Result: boolean indicating if s can be reordered above sup

1: predicate stmtCanSwapUpTo(s, sup)
2: s == sup // base case
3: ∨ // recursive case
4: ∃ smid, (stmtCanSwapUpTo(s, smid) ∧
5: sup.nextStmt == smid ∧
6: exchangeable(s, sup))
7: end predicate

Algorithm 5 Predicate for finding the earliest statement above which s can be placed.
Input: s and result statements
Result: boolean indicating if result is the earliest statement above which s can be swapped

1: predicate earliestStmtToSwapWith(s, result)
2: // find the earliest statement s can swap above (min by source code location)
3: result == min(all stmts si where inSameBlock(s, si) ∧ stmtCanSwapUpTo(s, si))
4: end predicate

4.7 Identifying reordering opportunities
We are now in a position to present our algorithm for identifying reordering opportunities. The
analysis for determining earliest point above which a statement can be placed is symmetric to

E. Arteca, F. Tip, and M. Schäfer 7:15

that for the latest point below which a statement can be placed, so without loss of generality
we will focus on the case of determining the earliest point. Our solution for this problem
takes the form of two predicates, stmtCanSwapUpTo and earliestStmtToSwapWith 13.

Algorithm 4 defines a predicate stmtCanSwapUpTo that associates a statement s with an
earlier statement sup above which it can be reordered. This predicate relies on the predicate
exchangeable to determine if it can be swapped with each statement in between s and sup. If
one of these intermediate statements data-conflicts with s then reordering is not possible.

The predicate earliestStmtToSwapWith defined in Algorithm 5 uses stmtCanSwapUpTo
to find the earliest statement above which a statement can be placed.

We apply this predicate to statements containing I/O-dependent await-expressions, to
identify reordering opportunities that can enable concurrent I/O. Here, an await-expression
is considered I/O-dependent if it (transitively) invokes functions originating from one of
the (many) npm packages that make use of the file system or work across a network. I/O
dependency is determined by analyzing the call graph, much like how we compute MOD and
REF sets. In particular, for statement s we look for calls to I/O-related package functions
explicitly in s, or in a function transitively called by s. In terms of access paths, these calls
correspond to function call access paths rooted in a require(m) for some I/O-dependent
package m. This algorithm is included in pseudocode in the supplementary materials.

4.8 Program transformation
As discussed in Section 3, the execution of an await-expression await eio involves two key
steps: the creation of a promise, and awaiting its resolution. The creation of the promise
kicks off an asynchronous computation, and our goal is to move it as early as possible, so as
to maximize the amount of time where it can run concurrently with the main program or
other concurrent I/O. On the other hand, we want to await the resolution of the promise
as late as possible, for the same reason. We achieve this objective by splitting the original
await-expression into two statements var t = eio and await t, and using our analysis to
move the former as early as possible, and the latter as late as possible. The example given
previously in Section 3 illustrates an application of this refactoring to a real code base.

4.9 Implementation
We implemented our approach in a tool named ReSynchronizer14. The static analysis
algorithm, as presented in Section 4, is implemented using approximately 1,600 lines of
QL [2], building on extensive libraries for writing static analyzers provided by CodeQL [13].
In particular, we rely on existing frameworks for dataflow analysis and call graphs, and on
an implementation of access paths that we extended to suit our analysis, as discussed. Note
that the CodeQL standard library caps access paths at a maximum length of 10; this could
lead to MOD/REF for very long paths not being accounted for, which is a source of potential
unsoundness (see Section 4.10). The CodeQL representation of local variables also relies on
single static assignment (SSA), enabling us to regain some precision that would be lost in a
purely flow-insensitive analysis.

Once ReSynchronizer has determined the await-expressions that are to be reordered and
where they should be moved to, the next stage of the tool is to create the transformed
program so that the programmer can review the changes and run the tests. The actual

13 Pseudocode for stmtCanDownUpTo and latestStmtToSwapWith included in the supplementary material.
14 ReSynchronizer will be made available as an artifact.

ECOOP 2021

7:16 Enabling Additional Parallelism in Asynchronous JavaScript Applications

reordering is done by splitting and moving nodes around in a parse tree representation of the
program. We implemented this in Python, and use the pandas library[25] to store our list of
statements to reorder in a dataframe over which we can efficiently apply transformations.

4.10 Soundness of the Analysis

As mentioned, it is possible for multiple access paths to represent the same memory locations
because our analysis only accounts for aliasing resulting from passing an argument to a
function (i.e., where an argument is referenced by the parameter name in the function’s
scope). As a result, our analysis may deem two statements to be data-independent when
they are accessing the same memory locations, which may result in invalid orderings being
suggested. Unsoundness may also arise because the underlying CodeQL infrastructure limits
the lengths of access paths to a maximum length of 10, and because of unsoundness in the
call graph that is used to compute MOD and REF sets. For example, the use of dynamic
features such as eval may give rise to missing edges in the call graph, causing the absence
of access paths in the MOD and REF sets, which in turn may result in invalid reordering
suggestions. Section 5.3 reports on how often unsoundness has been observed in practice in
our experimental evaluation.

5 Evaluation

In this section, we apply our technique to a collection of open-source JavaScript applications
to answer the following research questions:
RQ1 (Applicability). How many await-expressions are identified as candidates for reordering?
RQ2 (Soundness). How often does ReSynchronizer produce reordering suggestions that are

not behavior-preserving?
RQ3 (Performance Impact). What is the impact of reordering await-expressions on run-

time performance?
RQ4 (Analysis Time). How much time does ReSynchronizer take to analyze applications?

5.1 Experimental Methodology

To answer the above research questions, we applied ReSynchronizer to 20 open-source
JavaScript applications that are available from GitHub. We analyzed these applications,
applied the suggested refactorings, and measured the performance impact of the refactoring
by comparing the running times of the application’s tests before and after the refactoring.

Selecting subject applications

To be a suitable candidate for our technique, an application needs to apply the async/await
feature to promises that are associated with I/O. Furthermore, to conduct performance
measurements, we need to be able to observe executions in which the reordered await-
expressions are evaluated. To this end, we focus on applications that have a test suite that
we can execute, and monitor test coverage to observe whether await-expressions are executed.

To identify projects that satisfy these requirements, we wrote a CodeQL query that
identifies projects that contain await-expressions in files that import a file system I/O-related

E. Arteca, F. Tip, and M. Schäfer 7:17

Table 2 Summary of GitHub projects we’re using for experiments.

Project LOC #fun (async) #await (IO) #test IO Brief description

kactus 134k 12321 (335) 2430 (1201) 799 FS Version control for sketch
webdriverio 19k 1393 (81) 1815 (126) 1884 FS Node WebDriver automated testing

desktop 145k 12926 (284) 2450 (1232) 837 FS Github desktop app
fiddle 6.4k 346 (37) 479 (108) 609 FS Tool for small Electron experiments

nodemonorepo 4.3k 310 (31) 214 (160) 499 FS Management of nodejs env/packages
zapier-... 5.6k 320 (26) 136 (59) 36 FS CLI tool for zapier applications

wire-desktop 5.9k 294 (41) 553 (236) 37 FS Desktop app for wire messenger
cspell 9.8k 676 (70) 367 (226) 954 FS Spell checker for code

sourcecred 32k 2424 (186) 840 (191) 1824 FS Reputation networks for OSS
bit 50k 5738 (251) 2488 (2144) 405 FS Component collaboration platform

vscode-psl 8.7k 681 (87) 665 (406) 450 FS Profile Scripting Lang VSCode plugin
gatsby 81k 3047 (598) 4145 (821) 2708 FS Web framework built on React

jamserve 33k 5141 (4019) 10825 (1067) 3883 FS Audio library server
get 404 29 (6) 40 (29) 50 FS Download Electron release artifacts

cucumber-js 11k 655 (115) 532 (31) 445 FS Cucumber for JS
sapper 7.9k 675 (17) 155 (43) 151 NW Web app framework on svelte
svelte 56k 3652 (15) 151 (18) 3165 NW Declarative webapp construction
reflect 124 18 (7) 19 (6) 16 NW Reflect directory contents

m...-redux 76k 6664 (560) 1962 (719) 1331 NW Redux for mattermost
enquirer 5.8k 526 (54) 395 (15) 175 NW Stylish CLI prompts

package15 or a network I/O-related package16, and ran it over all 85k JavaScript projects
available on GitHub’s LGTM.com site. This resulted in a list of 42,378 candidate projects. To
further narrow the list, we filtered for projects that contain at least 50 await-expressions
in files that import a file system or network I/O-related package. This left us with 1,200
candidate projects.

From these candidates, we then randomly selected a project, cloned its repository, and
attempted to build the project by running the setup code. If the build was successful, we
ran the project’s tests and made sure they all passed. Projects with broken builds, with
failing tests, or with fewer than 15 passing tests were discarded. These steps were applied
repeatedly until we identified 20 projects, listed in Table 2. The columns in this table state
the following characteristics for these projects:

LOC: total lines of JavaScript/TypeScript in the source code of the project being analyzed
(not including packages imported by the project, or test/compiled code).
#fun (async): total number of functions in the project source code; the number between
the parentheses gives the number of async functions.
#await (IO): total number of await-expressions in the project source code; the number
between parentheses gives the number that are I/O-dependent (as described in Section
4.7).
#test: the number of tests associated with the project.
IO: the I/O environment on which the reordered await expressions depend. Here, FS is
the file system and NW is the network.
Brief description: of the project (summarized from the repository’s README file).

15 File system I/O-related packages our test projects use: fs, fs-admin, fs-extra, fs-tree-utils,
fs-exists-cached, mock-fs, cspell-io, path-env, and tmp.

16 Network I/O-related packages our test projects use: http, https, express, client, socks, puppeteer.

ECOOP 2021

https://github.com/kactus-io/kactus
https://github.com/webdriverio/webdriverio
https://github.com/desktop/desktop
https://github.com/electron/fiddle
https://github.com/ksxnodemodules/nodemonorepo
https://github.com/zapier/zapier-platform-cli
https://github.com/wireapp/wire-desktop
https://github.com/streetsidesoftware/cspell
https://github.com/sourcecred/sourcecred
https://github.com/teambit/bit
https://github.com/ing-bank/vscode-psl
https://github.com/gatsbyjs/gatsby
https://github.com/ffalt/jamserve
https://github.com/electron/get
https://github.com/cucumber/cucumber-js
https://github.com/sveltejs/sapper
https://github.com/sveltejs/svelte
https://github.com/alumna/reflect
https://github.com/mattermost/mattermost-redux
https://github.com/enquirer/enquirer
LGTM.com
https://nodejs.org/api/fs.html
https://www.npmjs.com/package/fs-admin
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-tree-utils
https://www.npmjs.com/package/fs-exists-cached
https://www.npmjs.com/package/mock-fs
https://www.npmjs.com/package/cspell-io
https://www.npmjs.com/package/path-env
https://www.npmjs.com/package/tmp
https://nodejs.org/api/http.html
https://nodejs.org/api/https.html
https://www.npmjs.com/package/express
https://www.npmjs.com/package/client
https://www.npmjs.com/package/socks
https://www.npmjs.com/package/puppeteer

7:18 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Measuring run-time performance

To determine the impact of reordering await-expressions, we measure the execution time of
those tests that execute at least one await-expression that was reordered. Tests that only
execute unmodified code are not affected by our transformation, so their execution time is
unaffected. We constructed a simple coverage tool that instruments the code to enable us to
determine which tests are affected by the reordering of await-expressions.

Performance improvements are measured by comparing runtimes of each affected test
before and after the reordering transformation. For our experiments, we ran the tests 50 times
and calculated the average running time for each test over those 50 runs. This procedure
was followed both for the original version of the project, and for the reordered version.

We took several steps to minimize potential bias or inconsistencies in our experimental
results. First, we minimized contention for resources by running all experiments on a “quiet”
machine where no other user programs are running. For our OS we chose Arch linux: as a
bare-bones linux distribution, this minimizes competing resource use between the tests and
the OS itself (since there are fewer processes running in the background than would be the
case with most other OSs). We also configured each project’s test runner so that tests are
executed sequentially17, removing the possibility for resource contention between tests.

During our initial experiments we observed that the first few runs of test suites for the
file system dependent projects were always slower, and determined this was due to some files
remaining in cache between test runs, reducing the time needed to read them as compared
to the first runs that read them directly from disk. To prevent such effects from skewing the
results of our experiments, we introduced a “warm-up” phase in which we ran the tests 5
times before taking performance measurements. We also decided to run the tests for the
version with reorderings applied before the original version. Hence, if there is any caching
bias resulting from the order of the experiments it would just make our results worse.

For network-dependent projects, we decided to focus on projects whose test suites can
be run locally (i.e., on localhost) rather than over some remote server. This way, we avoid
any bias from the random network latency present on real networks. This also has the effect
of minimizing the effect of our reorderings: in the presence of slow network requests, we
would expect the await reordering to have an enhanced positive effect on performance. In
answering RQ3, we perform an experiment to explore this conjecture.

All experiments were conducted on a Thinkpad P43s with an Intel Core i7 processor and
32GB RAM.

5.2 RQ1 (Applicability)
To answer RQ1, we ran ReSynchronizer on each of the projects described in Table 2. Table 3
displays some metrics on the results, namely:

Awaits Reordered (%): the absolute number of await-expressions reordered, with the
parenthetical giving what fraction this is of the project’s total I/O-dependent awaits
Tests Affected (%): the total number of affected tests (i.e., the number of tests
that execute at least one reordered await-expression), with the parenthetical giving the
percentage of the project’s total tests this represents. For example: for the Kactus project
there are 172 impacted tests, which is 21.5% of the 799 tests associated with the project.

17 Some of the projects we tested relied on jest for their testing, while others used mocha. By default,
jest runs tests concurrently, so we relied on its command-line argument runInBand to execute tests
sequentially. This issue does not arise in the case of mocha, which runs tests sequentially by default.

https://jestjs.io/
https://mochajs.org/

E. Arteca, F. Tip, and M. Schäfer 7:19

Table 3 Number and percentage of awaits reordered, per test project.

Project Awaits Reordered (%) Tests Affected (%) Resync Time (s)
kactus 72 (6.0%) 172 (21.5%) 121

webdriverio 9 (7.1%) 12 (0.6%) 19
desktop 67 (5.4%) 187 (22.3%) 177
fiddle 3 (2.8%) 2 (0.3%) 8

nodemonorepo 22 (13.8%) 15 (3.0%) 7
zapier-platform-cli 16 (27.1%) 2 (5.6%) 5

wire-desktop 31 (13.1%) 14 (37.8%) 6
cspell 22 (9.7%) 26 (2.7%) 8

sourcecred 22 (11.5%) 29 (1.6%) 14
bit 116 (5.4%) 8 (2.0%) 204

vscode-psl 19 (4.7%) 116 (25.8%) 8
gatsby 103 (12.5%) 43 (1.6%) 30

jamserve 59 (5.5%) 272 (7.0%) 62
get 6 (20.7%) 3 (6.0%) 5

cucumber-js 13 (41.9%) 17 (3.1%) 64
sapper 35 (81.4%) 4 (2.6%) 26
svelte 5 (27.8%) 1 (0.03%) 67
reflect 4 (66.7%) 3 (18.8%) 12

m...-redux 3 (0.42%) 6 (0.45%) 85
enquirer 1 (6.7%) 71 (40.6%) 27

From this table, it can be seen that our analysis reorders between 0.4% and 81.4% of
the I/O-dependent await-expressions (17.8% on average). While the number of reorderings
strongly depends on the nature of the project being analyzed, it is clear that a nontrivial
number of asynchronous computations has been scheduled suboptimally.

From the Tests Affected column in this table, it can be seen that between 0.03% and
40.6% of the projects’ tests execute code affected by reorderings (9.4% on average), which is
also a huge range. Note that the number of affected tests is not necessarily correlated with
the number of awaits reordered either: indeed, cucumber-js, the project with the highest
fraction of awaits reordered, has one of the lowest fractions of affected tests at only 3.1%.
Clearly, the number of affected tests depends strongly on the way the developers structured
their tests and on the distribution of the reorderings across the project. This underscores
how important it is to only consider the affected tests when measuring the impact of the
reorderings on performance, to avoid the results being skewed by unaffected tests.

5.3 RQ2 (Soundness)

The results in Table 3 demonstrated that ReSynchronizer was able to identify many await
expressions that are candidates for reordering. However, if the unsoundness of the analysis
would lead to many invalid reordering suggestions, the tool would not be very useful.

To determine if this unsoundness manifests itself in practice, we checked if the reorderings
suggested by ReSynchronizer caused any test failures. In practice, we have not observed
any situations where unsoundness manifests itself via invalid reorderings. In the 20 subject
applications, we did not observe a single case where reordering await-expressions caused a test
failure. While this is no guarantee that ReSynchronizer always proposes program behavior-
preserving reorderings, it does suggest that the refactorings suggested by ReSynchronizer
are not significantly less reliable than many state-of-the-art in refactoring tools.

ECOOP 2021

7:20 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Table 4 Results of performance experiments on github projects – Tests.

Project Avg Speedup (%) Max Speedup (%) % Sig Speedup (%)
kactus 7.2% 32.4% 80.2%

webdriverio 1.5% 5.4% 16.7%
desktop 8.3% 35.4% 90.9%
fiddle 9.4% 16.6% 50.0%

nodemonorepo 3.5% 10.5% 86.7%
zapier-platform-cli 8.0% 8.9% 100.%

wire-desktop 5.4 % 17.3% 50.0%
cspell 4.3% 14.1% 50.0%

sourcecred 5.2% 20.2% 48.3%
bit 4.6% 16.7% 15.4%

vscode-psl 8.6% 75.0% 8.6%
gatsby 8.7% 52.2% 44.2%

jamserve 0.99% 23.1% 12.9%
get 1.3% 3.4% 33.3%

cucumber-js 12.3% 62.5% 17.6%
sapper 53.6% 80.1% 25.0%
svelte 6.8% 6.8% 100.%
reflect 1.1% 7.3% 66.7%

m...-redux 7.8% 9.2% 50.0%
enquirer 4.2% 38.1% 14.1%

5.4 RQ3 (Performance Impact)
Table 4 shows the results of our performance experiments, with the following columns:

Avg Speedup (%): the average percentage speedup over all affected tests for the project.
This is computed as 1−harmean

(
ti average time with reordering

ti average time with original code

)
; the harmonic mean18 of

this timing ratio over all affected tests ti. If this value is negative it indicates a slowdown.
Max Speedup (%): the maximum percentage speedup (i.e., the speedup for the test
which was most improved by our reordering).
% Sig Speedup (%): the percentage of tests for which there was a statistically significant
speedup. We want to count how many of the tests were sped up by our reordering; but if
we just counted how many tests had an average speedup after reordering, this would not
account for the variance of our data. To address this, we performed a standard two-tailed
t-test with the timings for each test with and without the reorderings. The t-test indicates
a significant result only when the measured difference in timing is large with respect to
the variability of the data, with “how large” being controlled by the confidence level (here,
we chose 90% confidence). This is a measure of the proportion of the affected tests that
our technique actually improved (with 90% confidence).
Average run times (in seconds) for each individual affected test with and without reordering,
for all projects, are included in the supplementary materials.

From Table 4, we see that the average speedups for the affected tests ranges from 0.99%
to 53.6% for the projects under consideration, whereas maximum speedups range from
3.4% to 80.1%, suggesting that there is a large amount of variability in the performance
improvements. As a result, one might wonder what effect these tests with huge improvements

18 The harmonic mean is used since we are computing the average of ratios.

E. Arteca, F. Tip, and M. Schäfer 7:21

Figure 5 Average percentage speedups for all Kactus tests.

have on the average speedup, and whether a few outliers are significantly skewing the data.
We address this with our last column, which shows the proportion of the tests for which we
see a statistically significant speedup. Here too, we see a big range, with 8.6% to 100.% of
the affected tests seeing statistically significant speedups.

To better understand the variability in our experimental results, we decided to take a
closer look at the observed average speedups for all individual tests for the Kactus project19,
shown in Figure 5. This chart shows the percentage speedup as a result of reordering 72
await-expressions in Kactus, for each of Kactus’s 172 impacted tests. Here, results for tests
for which the reordering has a statistically significant effect on the runtime are depicted as
colored circles, and those where the effect is not significant are shown as empty circles.

From Table 4 we recall that 80.2% of Kactus’s affected tests are statistically significantly
sped up, and indeed on this graph the vast majority of the tests experience a significant effect.
From this graph we also get some information that is not available in the table: looking at
the distribution of test speedups, we see that the test with the maximum speedup of 32.4%
is indeed an outlier. We also see that most of the tests have speedups clustered fairly closely
around the average of 7.2% (indicated by the dashed line on the graph). This is encouraging,
as it means our reordering has a fairly consistent positive effect on the performance of Kactus.
Finally, we see that although there are a few tests that incur a slowdown, none of these
indicate a significant effect.

Prompted by these results, we decided to take an even closer look at the variability in
our results. To this end, we created Figure 6, which shows the individual runtimes for each
experiment run of one specific test of Kactus. For this, we chose as representative test #117,
which executes the code in the motivating example presented in Section 3, and for which we
observed an average speedup of 9.5%, which is fairly close to the mean of 7.2%. The figure
displays the runtimes for this test both with the original version of Kactus and with the
version with all reorderings applied. The mean of each of these runtimes is indicated using
dot-dashed and dashed lines respectively.

19 Supplemental materials include results from similar experiments with the other 19 subject applications.

ECOOP 2021

7:22 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Figure 6 Runtimes (in seconds) for all experiment runs of Kactus test 117.

From Figure 6, we observe that there is less variation in the running time of the test after
reordering. This same pattern is seen with other tests20. Our conjecture is that this reduction
in variability of running times occurs because, before reordering, a test will experience the
sum of the times needed to access multiple files, each of which may exhibit worst-case access
time behavior. However, after reordering, when files are being accessed concurrently, the
test execution experiences the maximum of these file-access times, i.e., experiencing the
sum of the worst-case file access behaviors no longer occurs. We see the same phenomenon
with network accesses21. This reduction in runtime variability is a positive side effect of the
transformation, as it makes application runtime more stable and predictable.

To determine the impact of network latency on the performance of network-dependent
reorderings, we conducted an experiment where we simulated different amounts of latency
by manually22 adding slowdowns of 50ms, 100ms, and 200ms to all the network calls that
reordered await-expressions depend on. In each case, we ran the tests suites 50 times with
and without the reordering, and report the average. Table 5 displays the results of this
experiment. Generally, as network latency increases so too does the speedup due to the
reordering. The only exception to this trend is seen as latency increases from 100ms to
200ms for the reflect project, where the average speedup goes from 2.9% to 2.8%. This
small decrease is easily explained: with a big enough latency the runtimes are increased so
that the relative difference from the speedup is smaller23.

This is what we expected, since with the reordering multiple slow requests can be running
at the same time and the execution does not need to wait for the total sum of all the
latent request times. We also see that the percentage of affected tests where the speedup
is significant either increases or is unchanged. From this experiment, we conclude that our
reordering transformation becomes even more helpful as network latency increases.

20 Supplementary materials include similar graphs for a few other tests, all of which follow the same trend.
21 Supplementary materials include some graphs analogous to Figure 6 for network-dependent projects.
22 To add the slowdowns, we follow the strategy used in the npm package connect-slow[3], which wraps

a network call in a call to setTimeout using the specified slowdown time.
23 E.g., for reflect test 1, we see average runtimes of 0.250s and 0.229s for 100ms latency (without/with

reordering resp.), which is a speedup of 7.7%. Then, for 200ms latency the same test sees runtimes of
0.451s and 0.417s (without/with reordering resp), which only corresponds to a 6.2% speedup.

E. Arteca, F. Tip, and M. Schäfer 7:23

Table 5 Effect of await reorderings with and without simulated network latency.

No Latency 50ms Latency 100ms Latency 200ms Latency
Project Avg % Sig Avg % Sig Avg % Sig Avg % Sig
sapper 53.6% 25.0% 53.9% 25.0% 55.2% 75.0% 59.4% 75.0%
svelte 6.8% 100.% 7.9% 100.% 10.8% 100.% 11.8% 100.%
reflect 1.1% 66.7% 2.3% 66.7% 2.9% 66.7% 2.8% 66.7%

m...-redux 7.8% 50.0% 20.2% 100.% 20.3% 100.0% 22.3% 100.%
enquirer 4.2% 14.1% 7.7% 97.2% 18.3% 97.2% 35.0% 97.2%

5.5 RQ4 (Analysis Time)
Table 3’s last column shows the time required by ReSynchronizer to process each of the
subject projects, which range from 10k-160k lines of code. As can be seen from the table,
the longest analysis time was 204 seconds. Applying the program transformation took less
than 5 seconds for each project tested. Hence, our analysis scales to large applications.

5.6 Threats to Validity
Beyond the risks caused by the unsoundness of the static analysis that we already discussed,
we consider the following threats to validity.

It is possible that the 20 projects used in our evaluation are not representative of JavaScript
projects using async/await, so our results might not generalize beyond them. However, these
projects were selected at random, and we observed the same trends among them.

In designing our performance evaluations, we were mindful of potential sources of bias to
our results. We described the reasoning behind our design and how we mitigated bias in
Section 5.1. In the case of caching bias, we ran our tests with reordered code before the tests
for the original code, so that any bias would be against us.

Finally, our results might not generalize to I/O other than the file system or the network,
such as database I/O. We conjecture that they will, as the logic of splitting an await-expression
to maximize concurrency is environment-agnostic.

6 Related Work

This section covers related work on side-effect analysis and on refactorings related to asyn-
chrony and concurrency.

Side-Effect Analysis

Our paper relies on interprocedural side-effect analysis to determine whether statements can
be reordered without changing program behavior. Work on side-effect analysis started in
the early 1970s, with the objective of computing dataflow facts that can be used to direct
compiler optimizations.

Spillman[31] presents a side-effect analysis for the PL/I programming language that
computes the expressions whose value may change as a result of assignments to variables.
Spillman’s analysis accounts for aliasing induced by pointers and parameter-passing, and is
specified operationally as a procedure that creates a matrix associating variables with all
expressions whose value would be impacted by an assignment to that variable. Procedure
invocations are represented by additional rows in the matrix and side-effects for such
invocations are computed in invocation order, using a fixpoint procedure to handle recursion.

ECOOP 2021

7:24 Enabling Additional Parallelism in Asynchronous JavaScript Applications

A few years later, Allen[1] presents an interprocedural data flow analysis in which a
simple intraprocedural analysis first identifies definitions that may affect uses outside a block,
and uses in a block that may be affected by definitions outside the block. An interprocedural
analysis then traverses a call graph in reverse invocation order to combine the facts computed
for the individual procedures. Allen’s algorithm does not handle recursive procedures.

Banning[4] presents an interprocedural side-effect analysis that accounts for parameter-
induced aliasing in a language with nested procedures, and defines notions MOD and REF
for flow-insensitive side-effects, and USE and DEF for flow-sensitive side-effects. Banning’s
flow-insensitive technique determines the set of variables immediately modified by a procedure
and assumes the availability of a call graph to map variables in a callee to variables in a
caller. The side-effect of a procedure call is then computed by way of a meet-over-all-paths
solution. Our analysis follows Banning’s approach but defines MOD and REF in terms of
access paths [22] instead of names of variables, and relies on SSA form for improved precision
(for access paths rooted in local variables).

Cooper and Kennedy[5] present a faster algorithm for solving the same problem of
alias-free flow-insensitive side-effect analysis as Banning[4]. To improve the performance
of the algorithm, they divide the problem into two distinct cases: side-effects to reference
parameters (i.e., interprocedural function parameter aliasing), and global variables. They
introduce a new data structure, the binding multigraph, for side-effect tracking through
reference parameters, and a new, linear algorithm for side-effect tracking through global
variables.

Later work by Landi et al. [17] focused on computing MOD sets for languages with
general-purpose pointers. Pointers introduced another type of aliases to the problem of
computing side effects, and Landi et al. extended previous work on computing MOD sets, by
adapting and incorporating an existing algorithm for approximating pointer-based aliases.

Since their introduction by Banning[4], MOD and REF algorithms have also been
adopted for use as parts of other dataflow analyses. Lapkowski and Hendren [18] present
an algorithm for computing SSA numbering for languages with pointer indirection, which
relies on MOD/REF side-effect analysis to track when the variable referred to by an SSA
representation is being reassigned (in order to signal the need for a new SSA number).

Cytron et al.[6] also present an algorithm for computing SSA form which makes use of the
MOD and REF side-effect analysis in order to determine when a variable could be modified
indirectly by a statement. This work does not consider aliasing through pointers, and just
uses the reference parameter and global variable aliasing as presented by Banning.

Refactorings related to Asynchrony and Concurrency

Gallaba et al.[11] present a refactoring for converting event-driven code into promise-based
code. They assume that event-driven APIs conform to the error-first protocol (i.e., the first
parameter of the callback functions is assumed to be a flag indicating whether an error
occurred) and consider two strategies: “direct modification” and “wrap-around”, where the
latter approach is similar to “promisification” performed by libraries such as universalify.
Their work predates the wide-spread adoption of async/await and does not show how to
introduce these features, though there is a brief discussion how some of the presented
mechanisms provide a first step towards refactorings for introducing async/await.

Dig[7] presented an overview of the challenges associated with refactorings related to the
introduction and use of asynchronous programming features for Android and C# applications.
Lin et al.[20] present Asynchronizer, a refactoring tool that enables developers to extract
long-running Android operations into an AsyncTask. Since Java is multi-threaded, Android

E. Arteca, F. Tip, and M. Schäfer 7:25

applications may exhibit real concurrency, so (unlike with the JavaScript applications
that we consider in our work) care must be taken to prevent data races that may cause
nondeterministic failures. To this end, Lin et al. extend a previously developed static
data race detector [26]. In later work, Lin and Dig[19] study the use of Android’s three
mechanisms for asynchronous programming: AsyncTask, IntentService, and AsyncTaskLoader
and the scenarios for which each of these mechanisms is well-suited. They observe that
developers commonly misuse AsyncTask for long-running tasks that it is not suitable for, and
present a refactoring tool, AsyncDroid, that assists with the migration to IntentService.

Okur et al.[24] studied the use of asynchronous programming in C#, soon after that
language added an async/await feature in 2012. At the time of this study, callback-based
asynchronous programming was still dominant, although async/await was starting to be
adopted widely. To facilitate the transition, Okur et al. created a refactoring tool, Asyncifier
for automatically converting C# applications to use async/await. Okur et al. also observed
several common anti-patterns involving the misuse of async/await, including unnecessary
use of async/await and using long-running synchronous operations inside of async methods,
and developed another tool, Corrector for detecting and fixing some of these issues.

Several other projects are concerned with refactorings for introducing and manipulating
concurrency. Dig et al.[9] presented Relooper, a refactoring tool for converting sequential
loops into parallel loops in Java programs. Wloka et al.[32] presented Reentrancer, a refact-
oring tool for making existing Java applications reentrant, so that they can be deployed
on parallel machines without concurrency control. Dig et al.[8] presented Concurrencer, a
refactoring tool that supports three refactorings for introducing AtomicInteger, Concur-
rentHashMap, and FJTask data structures from the java.util.concurrent library. Okur
et al.[23] presented two refactoring tools for C#, Taskifier and Simplifier, for transforming
Thread and ThreadPool abstractions into Task abstractions, and for transforming Task
abstractions into higher-level design patterns.

Schäfer et al.[29] present a framework of synchronization dependences that refactoring
engines must respect in order to maintain the correctness of a number of commonly used
refactorings in the presence of concurrency. Khatchadourian et al.[15] present a refactoring
for migrating between sequential and parallel streams in Java 8 programs.

Kloos et al.[16] present JSDefer, a refactoring tool aimed at improving webpage per-
formance by increasing concurrent loading of embedded scripts. This is done by deferring
independent webpage scripts; like ReSynchronizer , JSDefer reasons about the dependence of
their reordering targets in order to determine if the reordering will affect functionality. How-
ever, unlike our work, Kloos et al. make use of a dynamic analysis to determine dependence.
JSDefer is also reordering entire scripts instead of individual statements.

7 Future Work

The main limitation of ReSynchronizer is the unsoundness and precision of the static analysis.
Given the highly dynamic nature of JavaScript, this is hard to address, so one avenue of
future work involves incorporating a dynamic analysis in ReSynchronizer to track data
dependences between statements precisely. This would enable ReSynchronizer to perform
additional reorderings by disregarding statements that “blocked” reordering due to being
flagged as having global/environmental side effects by the static analysis. In particular, this
is likely to help with calls to functions that are conservatively assumed to have global side
effects such as eval and setTimeout. In our experience, these often do not actually have a
data dependence with awaits being reordered, but static analysis is unable to determine that.

ECOOP 2021

7:26 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Relatedly, we are considering implementing an interactive usage mode. Here, the idea
would be for ReSynchronizer to prompt the developer if it notices that it could do a better
reordering if only it could prove that some statement has no global effects, and proceed with
the reordering if the developer confirms that this is the case. In particular, this mode could
suggest reorderings determined by the dynamic analysis that the static analysis deemed
unsafe.

As the concept of splitting up and reordering components of an await-expression is
not specific to JavaScript, we also consider the possibility of extending this work to other
languages with the async/await construct. In particular, we conjecture that we could apply
a similar approach to C#. In that setting, the static analysis could likely be made more
effective by leveraging the static guarantees provided by the type system. However, C#’s
multi-threading would pose additional challenges.

8 Conclusions

The changing landscape of asynchronous programming in JavaScript makes it all too easy for
programmers to schedule asynchronous I/O operations suboptimally. In this paper, we show
that refactoring I/O-related await-expressions can yield significant performance benefits.
To identify situations where this refactoring can be applied, we rely on an interprocedural
side-effect analysis that computes, for a statement s, sets MOD(s) and REF(s) of access
paths that represent sets of memory locations modified and referenced by s, respectively. We
implemented the analysis using CodeQL, and incorporated it into a tool, ReSynchronizer ,
that automatically applies the suggested refactorings. In an experimental evaluation, we
applied ReSynchronizer to 20 open-source JavaScript applications that rely on file system or
network I/O, and observe average speedups of between 0.99% and 53.6% (8.1% on average)
when running tests that execute refactored code. While the analysis is potentially unsound,
we did not encounter any situations where applying the refactoring causes test failures.

References
1 Frances E. Allen. Interprocedural data flow analysis. In Jack L. Rosenfeld, editor, Information

Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974,
pages 398–402. North-Holland, 1974.

2 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented
queries on relational data. In 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, pages 2:1–2:25, 2016. doi:10.4230/LIPIcs.
ECOOP.2016.2.

3 Gleb Bahmutov. connect-slow. https://github.com/bahmutov/connect-slow, 2020. Ac-
cessed: 2020-12-13.

4 John Banning. An efficient way to find side effects of procedure calls and aliases of variables.
In Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference Record of the
Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas,
USA, January 1979, pages 29–41. ACM Press, 1979. doi:10.1145/567752.567756.

5 Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear time.
In Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 57–66, 1988.
doi:10.1145/53990.53996.

6 Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490, 1991.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://github.com/bahmutov/connect-slow
https://doi.org/10.1145/567752.567756
https://doi.org/10.1145/53990.53996

E. Arteca, F. Tip, and M. Schäfer 7:27

7 Danny Dig. Refactoring for asynchronous execution on mobile devices. IEEE Software,
32(6):52–61, 2015. doi:10.1109/MS.2015.133.

8 Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential Java code for
concurrency via concurrent libraries. In 31st International Conference on Software Engineering,
ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pages 397–407, 2009. doi:
10.1109/ICSE.2009.5070539.

9 Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea, and Ralph E. Johnson. Relooper:
refactoring for loop parallelism in Java. In Companion to the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2009, October 25-29, 2009, Orlando, Florida, USA, pages 793–794, 2009. doi:10.1145/
1639950.1640018.

10 ECMA. Ecmascript 2019 language specification, 2010. Available from http://www.
ecma-international.org/ecma-262/.

11 Keheliya Gallaba, Quinn Hanam, Ali Mesbah, and Ivan Beschastnikh. Refactoring asynchrony
in JavaScript. In 2017 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2017, Shanghai, China, September 17-22, 2017, pages 353–363. IEEE Computer
Society, 2017. doi:10.1109/ICSME.2017.83.

12 GitHub. CodeQL. https://github.com/codeql, 2021. Accessed: 2021-01-05.
13 GitHub. CodeQL standard libraries and queries. https://github.com/github/codeql, 2021.

Accessed: 2021-01-05.
14 Jordan Harband. util.promisify. https://github.com/ljharb/util.promisify, 2020. Ac-

cessed: 2020-05-14.
15 Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed Ahmed. Safe automated

refactoring for intelligent parallelization of java 8 streams. In Joanne M. Atlee, Tevfik
Bultan, and Jon Whittle, editors, Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 619–630. IEEE /
ACM, 2019. doi:10.1109/ICSE.2019.00072.

16 Johannes Kloos, Rupak Majumdar, and Frank McCabe. Deferrability analysis for JavaScript.
In Haifa Verification Conference, pages 35–50. Springer, 2017.

17 William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modification side
effect analysis with pointer aliasing. In In Proceedings of the SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages 56–67, 1993.

18 Christopher Lapkowski and Laurie J Hendren. Extended ssa numbering: Introducing SSA
properties to languages with multi-level pointers. In International Conference on Compiler
Construction, pages 128–143. Springer, 1998.

19 Yu Lin, Semih Okur, and Danny Dig. Study and refactoring of Android asynchronous
programming (T). In 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pages 224–235, 2015.
doi:10.1109/ASE.2015.50.

20 Yu Lin, Cosmin Radoi, and Danny Dig. Retrofitting concurrency for Android applications
through refactoring. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
pages 341–352, 2014. doi:10.1145/2635868.2635903.

21 Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static Analysis of Event-Driven Node.js
JavaScript Applications. In Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), 2015.

22 Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. Type Regression Testing to
Detect Breaking Changes in Node.js Libraries. In Todd D. Millstein, editor, 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, volume 109 of LIPIcs, pages 7:1–7:24. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

ECOOP 2021

https://doi.org/10.1109/MS.2015.133
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1145/1639950.1640018
https://doi.org/10.1145/1639950.1640018
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
https://doi.org/10.1109/ICSME.2017.83
https://github.com/codeql
https://github.com/github/codeql
https://github.com/ljharb/util.promisify
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1109/ASE.2015.50
https://doi.org/10.1145/2635868.2635903

7:28 Enabling Additional Parallelism in Asynchronous JavaScript Applications

23 Semih Okur, Cansu Erdogan, and Danny Dig. Converting parallel code from low-level
abstractions to higher-level abstractions. In ECOOP 2014 - Object-Oriented Programming -
28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, pages
515–540, 2014. doi:10.1007/978-3-662-44202-9_21.

24 Semih Okur, David L. Hartveld, Danny Dig, and Arie van Deursen. A study and toolkit for
asynchronous programming in C#. In 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 1117–1127, 2014. doi:10.1145/
2568225.2568309.

25 pandas. pandas. https://pandas.pydata.org, 2020. Accessed: 2020-12-13.
26 Cosmin Radoi and Danny Dig. Practical static race detection for Java parallel loops. In

International Symposium on Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland,
July 15-20, 2013, pages 178–190, 2013. doi:10.1145/2483760.2483765.

27 Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race detection for event-driven
programs. In ACM SIGPLAN Notices, volume 48, pages 151–166. ACM, 2013.

28 Max Schäfer and Oege de Moor. Specifying and implementing refactorings. In William R.
Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 286–301. ACM, 2010.
doi:10.1145/1869459.1869485.

29 Max Schäfer, Julian Dolby, Manu Sridharan, Emina Torlak, and Frank Tip. Correct refactoring
of concurrent Java code. In ECOOP 2010 - Object-Oriented Programming, 24th European
Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, pages 225–249, 2010. doi:
10.1007/978-3-642-14107-2_11.

30 Isaac Z. Schlueter. graceful-fs. https://www.npmjs.com/package/graceful-fs, 2020. Ac-
cessed: 2020-05-14.

31 Thomas C. Spillman. Exposing side-effects in a PL/I optimizing compiler. In Information
Processing, Proceedings of IFIP Congress 1971, Volume 1 - Foundations and Systems, Ljubljana,
Yugoslavia, August 23-28, 1971, pages 376–381, 1971.

32 Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for reentrancy. In Proceedings of the
7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2009, Amsterdam, The
Netherlands, August 24-28, 2009, pages 173–182, 2009. doi:10.1145/1595696.1595723.

33 Ryan Zim. universalify. https://github.com/RyanZim/universalify, 2020. Accessed: 2020-
05-14.

https://doi.org/10.1007/978-3-662-44202-9_21
https://doi.org/10.1145/2568225.2568309
https://doi.org/10.1145/2568225.2568309
https://pandas.pydata.org
https://doi.org/10.1145/2483760.2483765
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-642-14107-2_11
https://www.npmjs.com/package/graceful-fs
https://doi.org/10.1145/1595696.1595723
https://github.com/RyanZim/universalify

Differential Privacy for Coverage Analysis of
Software Traces
Yu Hao #

Ohio State University, Columbus, OH, USA

Sufian Latif #

Ohio State University, Columbus, OH, USA

Hailong Zhang #

Fordham University, New York, NY, USA

Raef Bassily #

Ohio State University, Columbus, OH, USA

Atanas Rountev #

Ohio State University, Columbus, OH, USA
Abstract

This work considers software execution traces, where a trace is a sequence of run-time events.
Each user of a software system collects the set of traces covered by her execution of the software,
and reports this set to an analysis server. Our goal is to report the local data of each user in a
privacy-preserving manner by employing local differential privacy, a powerful theoretical framework
for designing privacy-preserving data analysis. A significant advantage of such analysis is that it
offers principled “built-in” privacy with clearly-defined and quantifiable privacy protections. In local
differential privacy, the data of an individual user is modified using a local randomizer before being
sent to the untrusted analysis server. Based on the randomized information from all users, the
analysis server computes, for each trace, an estimate of how many users have covered it.

Such analysis requires that the domain of possible traces be defined ahead of time. Unlike in prior
related work, here the domain is either infinite or, at best, restricted to many billions of elements.
Further, the traces in this domain typically have structure defined by the static properties of the
software. To capture these novel aspects, we define the trace domain with the help of context-free
grammars. We illustrate this approach with two exemplars: a call chain analysis in which traces are
described through a regular language, and an enter/exit trace analysis in which traces are described
by a balanced-parentheses context-free language. Randomization over such domains is challenging
due to their large size, which makes it impossible to use prior randomization techniques. To solve
this problem, we propose to use count sketch, a fixed-size hashing data structure for summarizing
frequent items. We develop a version of count sketch for trace analysis and demonstrate its suitability
for software execution data. In addition, instead of randomizing separately each contribution to the
sketch, we develop a much-faster one-shot randomization of the accumulated sketch data.

One important client of the collected information is the identification of high-frequency (“hot”)
traces. We develop a novel approach to identify hot traces from the collected randomized sketches.
A key insight is that the very large domain of possible traces can be efficiently explored for hot traces
by using the frequency estimates of a visited trace and its prefixes and suffixes. Our experimental
study of both call chain analysis and enter/exit trace analysis indicates that the frequency estimates,
as well as the identification of hot traces, achieve high accuracy and high privacy.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis; Security and
privacy → Privacy-preserving protocols

Keywords and phrases Trace Profiling, Differential Privacy, Program Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.8

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.7

Funding This material is based upon work supported by the National Science Foundation under
Grant No. CCF-1907715.

Acknowledgements We thank the ECOOP reviewers for their valuable feedback.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Yu Hao, Sufian Latif, Hailong Zhang, Raef Bassily, and
Atanas Rountev;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 8; pp. 8:1–8:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hao.298@osu.edu
mailto:latif.28@osu.edu
mailto:hzhang285@fordham.edu
mailto:bassily.1@osu.edu
mailto:rountev.1@osu.ed
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://doi.org/10.4230/DARTS.7.2.7
https://doi.org/10.4230/DARTS.7.2.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Differential Privacy for Coverage Analysis of Software Traces

1 Introduction

In this work we consider privacy-preserving coverage analysis for software traces. A trace is
an event sequence t ∈ E+ over some pre-defined set of possible run-time events E . Consider
a software system deployed over a set of software users u1, . . . , un. Each user ui executes
her own copy of the software and that execution records a local set Ti of traces that were
observed at run time. This data is collected locally and then sent to an analysis server.
We consider the following problem: for each t ∈ E+, estimate the frequency of t over the
population of users, that is, f(t) = |{i : t ∈ Ti}|, while collecting the local data of each user
in a privacy-preserving manner and sending it to an untrusted analysis server.

Trace information has a wide range of uses in software analysis and transformation.
For example, high-frequency traces can focus software optimization, testing, and static
checking on important user behaviors. Similarly, behavior flow analysis in mobile/web
analytics [21, 19, 22, 37] allows developers to optimize the functionality and performance of
common paths taken by app users through the app code.

1.1 The Need for Privacy-Preserving Analysis

Our goal is to design an analysis that obtains accurate trace coverage statistics across a
population of software users, while controlling carefully the “privacy loss” of each user.
This is motivated by the increased importance of reducing the amount of user information
collected by business entities. Both societal and legislative pressures have highlighted the
need for such reduction. For software-generated event information – for example, collected
with the help of popular analysis infrastructures for mobile/web analytics (e.g., provided by
Google and Facebook) – typically there are no “built-in” privacy protection mechanisms. The
infrastructures themselves collect a wealth of information, including user IP addresses and
GUI events. App-specific data collection can provide even more fine-grained knowledge about
user’s behavior and interaction with the software. For example, trace coverage information can
provide details about what paths through the code a user has taken, and what functionality
(possibly sensitive) she has executed. This data could potentially be used to infer user-specific
habits, interests, and characteristics.

From the point of view of software users, the release of data collected from software
executions is often undeclared or obscured. Even if the user is aware of the data collection,
they are unlikely to have true appreciation of its implications. What is particularly troubling
is that the collected data could be linked with other sources of information about this
user (which cannot be prevented even with anonymization [34, 35]) and could be used as
part of future larger-scale data mining and machine learning attempts to infer user-specific
information. At data collection time, it is impossible to predict what extra data sources will
be linked and what future inferences will be possible using that data.

Privacy-preserving data analysis aims to develop systematic mechanisms for addressing
this problem. Such analysis benefits two categories of stakeholders. First, the privacy of
individual users is protected in a well-defined manner. Further, entities performing data
collection (e.g., Google and app developers using Google’s analytics infrastructure) benefit
as well: they are responsive to privacy expectations and do not have access to raw data that
can compromised by unexpected data leaks or unethical business practices. In this work we
focus on one particular privacy-preserving mechanism: local differential privacy. Our goal is
to use local differential privacy to design a privacy-preserving trace coverage analysis.

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:3

1.2 Local Differential Privacy
Differential privacy [16] is a powerful theoretical framework for privacy-preserving data
analyses. This approach has been recognized by the theoretical computer science com-
munity [1] and has been employed by high-profile companies such as Google, Apple, and
Microsoft [18, 4, 33, 51] and by the U.S. government [14]. More widespread use of this
technology is becoming possible via recent open-source tools [40].

A significant advantage of differentially-private data analyses is that they offer principled
“built-in” privacy with clearly-defined and quantifiable privacy protections. Broadly, privacy
is achieved by randomizing the collected data in a way that ensures the impossibility of high-
confidence inferences from the randomized data. There is increasing interest in using such
techniques in the context of software. For example, the programming languages community
has considered techniques for verification of differentially-private algorithms [56, 53, 36, 61].
Others have considered uses of differential privacy for event frequency analysis of deployed
software [58, 60, 57], with natural applications to mobile app analytics [59].

In local differential privacy, the data of an individual user is modified using a local
randomizer before being sent to an untrusted analysis server. Thus, the raw local information
never leaves the user’s environment. In our setting the analysis server computes, for each
trace, an estimate of how many users have covered it.

A major advantage of this approach is that it is resilient to other known and unknown
categories of knowledge that may become available about this user in the future. Thus, a
differentially-private analysis is designed to be robust even under the current trend of fast-
growing data collection and linking from various sources, used by businesses and governments
to create user behavior profiles and to mine them for user-specific patterns [55, 16]. Such user
protection is also important under the threat of unexpected data releases caused by obscure
changes to privacy agreements, information requests by law enforcement, or security breaches
in which user data is compromised. The quantifiable privacy-preserving machinery of local
differential privacy is appealing not only to software users, but also to software developers
and analysis infrastructure providers. Both the developers and the infrastructure providers
can claim, with confidence, that they deploy privacy-by-design in their data collection. As a
result, the data they collect and store is protected, in the statistical differentially-private
sense, against data breaches, rogue employees/subcontractors, and scrutiny from government
agencies and law enforcement. Section 2 further discusses the assumptions behind this
analysis model and the nature of privacy protection achieved under it.

1.3 Challenges and Contributions
Various differentially-private approaches have been considered for similar styles of problems.
Some have considered data analysis with single data item per user [18, 52, 8]. Others
have studied data collection for a pre-defined small set of items from software executions
[58, 57, 60, 59]. However, the analysis of software traces presents unique challenges. Our
contributions in solving these challenges are summarized below.

Contribution 1: Analysis for structured large domains

Differentially-private analyses require that the domain of possible data items be defined
ahead of time, as part of algorithm design. Unlike prior related work where software
executions generate data over a small unstructured domain containing a few thousand
elements [58, 57, 60], here the domain is either infinite or, at best, restricted to many billions
of elements. Further, the traces in this domain typically have structure defined by the static
properties of the software. To capture these novel aspects, we propose to define the trace

ECOOP 2021

8:4 Differential Privacy for Coverage Analysis of Software Traces

domain with the help of context-free grammars. This approach has the key advantage that
both the domain definition and the exploration of its elements are formulated using popular
programming language machinery. We illustrate this approach with two exemplar analyses: a
call chain analysis in which traces are described through a regular language, and an enter/exit
trace analysis in which traces are described by a balanced-parentheses context-free language.
Both kinds of structures are widely used in program analysis and are applicable to a range
of techniques beyond these two exemplars. This formulation plays a key role in our approach
for identification of high-frequency domain elements, as described later.

Contribution 2: Count sketch

The domain of possible traces is very large. For example, in a realistic setting for our
benchmarks, this set has billions of elements. One of the key features of a differentially-
private approach is that it produces per-user randomized data that could contain an arbitrarily
large subset of this extremely large domain. This is essential for achieving the differential
privacy guarantee, but is clearly impractical for our purposes, in terms of both space and
generation time. We address this exponential explosion by using count sketch [10], a fixed-
size hashing data structure originally designed to collect data about frequent items in data
streams. While prior work [8] has considered the theoretical applications of count sketch for
a simple single-item differentially-private data analysis, we develop a version of count sketch
that is applicable to the more complex analysis we consider, and demonstrate its suitability
for real software execution data.

Contribution 3: Efficient randomization

The standard approach for designing the local randomizer is to randomize individual contri-
butions (i.e., observations of covered traces) as they are observed. However, our experience
shows that the cost of such randomization is high and not suitable for real-world software
analysis. Instead, we develop a technique to accumulate the effects of unrandomized count
sketch updates, and only perform the local randomization as a one-shot step on this accumu-
lated data. This reduces the cost of the randomization by orders of magnitude and makes it
practical to use for realistic data gathering from deployed software.

Contribution 4: Analysis of hot traces

After the randomized local data is collected by the analysis server, a resulting global count
sketch captures the population-wide information about observed traces. From this global
sketch, a frequency estimate can be obtained for any given trace t from the domain of
possible traces. However, this alone is not enough for many forms of data analyses, since the
number of possible traces is exponential or even infinite, and obtaining an estimate for each
t (and then analyzing all these estimates) is not possible. We focus on one particular data
analysis of significant importance: identifying the hot traces and estimating their frequencies.
A hot trace has a frequency that exceeds some threshold. Knowledge of such traces is
useful to identify common user behaviors, leading to focused performance optimization,
testing/checking, and application-flow optimization. We develop a novel approach to identify
likely-hot traces from the randomized data in the global sketch. The key insight of our
approach is that the explosively-large domain of possible traces can be efficiently explored
for hot traces by using the frequency estimates of a visited trace and its prefixes and suffixes.
We illustrate this approach with the help of the two exemplar analyses mentioned earlier,
and demonstrate how the exploration of the domain can be performed by exploring the states
of the automaton corresponding to the underlying context-free language.

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:5

Contribution 5: Study of privacy/accuracy trade-offs

The trade-offs between accuracy and privacy are central in the design of privacy-preserving
algorithms. Our experimental study characterizes these trade-offs in several dimensions for
both call chain analysis and enter/exit trace analysis. The conclusions from this study can be
summarized as follows: (1) frequency estimates for software traces can be obtained with both
high accuracy and high privacy, as long as the data collection includes a sufficiently-large
number of software users, (2) the set of hot traces can be discovered with high recall and
precision by reasoning about a trace’s prefixes and suffixes, (3) the frequency estimates for
hot traces are accurate and better than the estimates for the remaining traces, (4) after a
certain point in the accuracy/privacy trade-off spectrum, reduced privacy does not result in
significantly better accuracy; this point provides a natural choice for selecting such trade-offs.

2 Background and Problem Statement

2.1 Software Traces
We consider software traces, collected over a set of software users ui for i ∈ [1, n]. Each user
ui executes her own copy of the software. During execution, run-time events are observed
and recorded. Let E be the finite set of possible run-time events. This set is defined before
software deployment, as part of the design of the trace analysis. For convenience of definitions,
we assume that E contains an artificial “start” event s denoting the start of a trace. A trace
t is a string t ∈ E+, starting with s. We will use the notation t = ⟨s, e1, . . . , ek⟩ to denote a
trace t of length k. (Note that we exclude s when defining trace length.)

Let T be a domain describing conservatively (i.e., over-approximating) the set of all
possible traces that could be observed at run time. We expect this domain to be statically
described as part of the design of the trace analysis. In the simplest case, T = E+. More
precise definitions of T may be possible via static analysis. Regardless of the means to
derive T , we expect it to be very large (e.g., exponential in the static size of the program).
In addition, traces typically have structure that is constrained by the static properties of
the software. In particular, one important special case we investigate is when T is defined
inductively through a family of “extension” functions extk: Ek × E → P(Ek+1). Here P(X)
denotes the power set of X and k ranges over the natural numbers. For any t ∈ T of length
k, extk(t) is the set of all traces t′ ∈ T of length k + 1 such that t is a prefix of t′. That is,
extk(t) shows all ways in which t could be extended with one more event to form a valid
trace. For simplicity, we will omit the subscript k in extk when it is clear from the context.
As discussed later, this definition of T enables incremental search for “hot” traces. While our
definitions of privacy-preserving analysis are conceptually applicable to broader categories of
T , the application of this approach for identification of traces that appear frequently in the
user population requires such incremental definition of T (Section 4).

Below we discuss two examples of such trace domains T , both with direct connections to
popular categories of analyses. These exemplars illustrate how common properties of such
analyses can be mapped to the problem definition and solution described in this work. In
particular, we define these two domains via well-understood formal languages – a regular
language and a balanced-parentheses context-free language – which provides a natural
definition for the domain and its extension function. This choice is also motivated by the
fact that such languages are widely used in various existing software analysis techniques.
Our approach is directly applicable to other trace analyses where the trace domain has a
similar structure. This machinery is likely to be generalizable to broader domains (e.g.,
ones that correspond to more general context-free languages) but we do not explore these
generalizations in this work.

ECOOP 2021

8:6 Differential Privacy for Coverage Analysis of Software Traces

Both domains are based on a set of events corresponding to entering or exiting a software
component (e.g., method, module, or GUI window). We simplify the definition by assuming
that each component is uniquely identified by an integer id from [1, c]. In addition, we
introduce an artificial component with id 0 which corresponds to the external environment –
e.g., the caller of the main method, or the framework code that invokes Android app entry
points. The set of events is then E = Enter ∪ Exit where Enter = {enter(i) : i ∈ [0, c]} and
Exit = {exit(i) : i ∈ [0, c]}. The artificial start event s is enter(0).

2.1.1 Exemplar 1: Call Chains
We first describe an exemplar analysis in which the static domain T of possible traces is
defined by a simple regular language. Suppose that we are given a set of static call edges
i → j showing that, at run time, the execution of component i may trigger the execution
of component j. A finite sequence i→ j → k → . . . of such call edges is a static call chain.
A call chain denotes a trace of events “i calls j which in turn calls k which in turn calls
. . .”. Equivalently, we can define the domain T through a regular language containing strings
t = ⟨enter(0), enter(i1), . . . , enter(ik)⟩ over the alphabet Enter . The static call graph can be
thought of as the finite-state automaton that defines this language, and the trace extension
function ext is the transition function of that automaton.

2.1.2 Exemplar 2: Enter/Exit Traces
Next we define an exemplar analysis in which T is based on a balanced-parentheses context-
free language. This language captures the standard notion of interprocedurally valid paths [46]
and is defined by the following grammar:

Valid → enter(i) Valid | Balanced Valid | λ

Balanced → enter(i) Balanced exit(i) | Balanced Balanced | λ

where λ is the empty string. Non-terminal Balanced defines a sequence of matching enter
and exit events. Starting non-terminal Valid describes a sequence with some not-yet-matched
enter events. Grammars of similar structure have been used extensively in a wide variety of
static analyses (e.g., [46, 48]). For our exemplar analysis we consider the domain of enter/exit
traces T to be strings derived from Valid and starting with enter(0). We further restrict
the strings to respect a given set of static call edges i → j. This can be easily encoded
in the definition of the corresponding pushdown automaton, as follows. We can define a
deterministic pushdown automaton with a single state. The input alphabet is Enter ∪ Exit
and the stack alphabet is Enter , with initial stack symbol enter(0). The transitions upon
observing input event enter(j) when the top of the stack is enter(i) is defined only if there is
a static call edge i→ j. This transition pushes enter(j) onto the stack. If the input symbol is
exit(i), the transition is defined only if the top of the stack is enter(i), in which case the stack
top is popped. The trace extension function ext, which captures all ways in which a given
trace is extended with one more event, is easily derivable from this pushdown automaton.

There are two reasons we use these formalisms to describe our exemplar analyses. First,
the underlying structure, defined by a finite-state automaton or a balanced-parentheses
pushdown automaton, is commonly observed in a variety other of dynamic analyses. Our
machinery can be directly employed for such analyses. Second, the automata naturally
provide the definition of incremental algorithms to explore the domain of possible traces
via the extension functions ext. As described later, such incremental algorithms play an
important role in our identification of frequently-occurring domain elements. It may be

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:7

possible to generalize such machinery to more general pushdown automata, but the definition
of the extension functions (derived from the automata) would be more complex than the
simple extension functions described above.

2.2 Trace Coverage Analysis for Deployed Software

When the program is executed by a software user, some subset of T is actually observed
(i.e., covered) at run time. A variety of run-time techniques can be used to determine this
coverage (e.g., [7, 3, 62, 49]). We consider such coverage across a large number of software
users, each running her copy of the program. Let there be n software users denoted by
u1, . . . , un and let Ti ⊆ T be the set of traces covered when user ui executes the program.
We consider the following trace coverage analysis: for each t ∈ T , estimate the frequency of t

over the population of users, that is, f(t) = |{i : t ∈ Ti}|, while collecting the local data of
each user with differential privacy.

Trace information has been used extensively to analyze and optimize software perform-
ance [7, 3, 5, 62, 26, 2]. The frequency information defined above can be used to focus such
efforts on important user behaviors. Similarly, testing and static checking can be focused
on traces that are commonly observed in the user population. Another example is behavior
flow analysis in mobile and web analytics frameworks [21, 37], which allows developers to
see different paths that users take through the app. The paths can be thought of as a form
of traces across GUI components, and the analysis annotates each edge with the number
of users who have performed the corresponding transition. A similar example is funnel
analysis [21, 19, 22, 37], which visualizes the completion rate of a task in terms of a series
of specific events and helps developers find optimizations in their software design. Traces
collected for funnel analysis may contain sensitive information. For example, events in trace
“launch the app, open the news page, navigate to sports news, perform sports merchandise
purchase” can be used for targeted advertising. Our approach allows developers to conduct
frequency analysis while ensuring worst-case privacy guarantees even when users are unaware
of the data being collected and the unexpected/unpredictable future uses of this data.

2.3 Differential Privacy

Differential privacy is applicable to data analyses where data is being collected from many
participants, and some processing of this data produces results that are then made available
to untrusted parties. Such untrusted parties could be, for example, government agencies
and business entities. Two main models of differential privacy have been considered [16].
In the centralized model, a trusted “data curator” collects the raw data from participants,
performs the data analysis, and releases the results to untrusted entities. As part of the data
analysis, some form of randomization is applied to ensure the differential privacy guarantee
(this guarantee will be described shortly). In the local model, the randomization is performed
by each participant, and the resulting modified data is then released to untrusted entities,
which perform data analysis on this data. Again, the randomization ensures the differential
privacy guarantee. Our work focuses on the second scenario, which is well suited for analysis
of deployed software. In the specific problem we consider, the raw data for software user ui

is the set Ti of locally-covered traces. The user applies a local randomizer R to this data
and then reports R(Ti). We assume a typical setting where the reported data is collected
by an untrusted analysis server. This server analyzes the data from all users and computes
estimates f̂(t) of the true frequencies f(t).

ECOOP 2021

8:8 Differential Privacy for Coverage Analysis of Software Traces

Differential privacy guarantee

Suppose R(Ti) is released publicly by a software user. We aim to design a randomizer R

that ensures the following differential privacy property: for every possible t ∈ T , an external
observer of R(Ti) cannot have high confidence that the hidden raw data contains that t. In
other words, whether t is in Ti cannot be ascertained with high probability based only on
the observation of R(Ti). In essence, the presence of t in the private local data is hidden in a
probabilistic sense.

More precisely, let P [R(X) = Z] be the probability that given input X, the randomizer
produces output Z. For any Z and any two X ⊆ T and Y ⊆ T that differ by a single element
t, the ratio of P [R(X) = Z] and P [R(Y) = Z] should be bounded by eϵ. Here X and Y are
considered to be “neighbors” in the space of inputs to the randomization algorithm. Because
the two probabilities are close to each other, when someone observes any output Z, she
cannot have much higher confidence in the statement “the raw data contained t”, compared
to the confidence she can have in the statement “the raw data did not contain t”. Here ϵ

is the privacy loss parameter, which is used to tune accuracy/privacy trade-offs. A typical
value used in related work is ln(9) [18, 52, 58]; for example, this value is used in the “basic
one-time” version of a popular randomization technique [18]. Larger values of ϵ improve the
accuracy of analysis results, but weaken the privacy guarantee.

A key assumption is that the adversarial observer of R(Ti) knows fully all details of how
randomizer R works, for example, because this observer designed the randomizer in the first
place, or because she reverse-engineered it from the program code. As part of this assumption,
the observer also knows the value ϵ which was embedded in the randomizer design. Even
under such strong assumptions, the differential privacy guarantee makes it impossible to
distinguish, in a probabilistic sense, neighbor inputs to the randomizer after the randomizer
output is publicly released. Such principled and quantifiable protection is one of the reasons
differential privacy has been employed by companies such as Google [18], Microsoft [33],
Apple [4], and Uber [51], as well as by the U.S. Census Bureau [14]. More widespread use of
such protection has become possible via recent open-source tools for differentially-private
analysis [40].

Randomized response

To illustrate this key indistinguishability property, we present a classic simplified example.
For illustration, suppose that the raw data for user ui is a single trace ti ∈ T . A well-know
randomization technique is derived from randomized response, an approach used in social
sciences to handle evasive answers to sensitive questions [54]. The randomizer R : T → P(T)
takes as input a single trace t and produces a set of traces, based on the following rules: (1)
the input t is included in the output with some probability p, and (2) for every other t′ ∈ T ,
t′ is included in the output with probability 1 − p. Thus, the real trace could be missing
from the output, and any other trace could be part of the output. Note that this approach is
applicable only when T is finite and, practically, the size of T is relatively small.

By selecting p = e
ϵ
2 /(1 + e

ϵ
2), this approach provably achieves ϵ-indistinguishability: for

any set Z ⊆ T and any two traces t′ ∈ T and t′′ ∈ T , the probabilities P [R(t′) = Z] and
P [R(t′′) = Z] can differ by at most a factor of eϵ. In other words, observing Z means that
(1) the raw data that produced Z could have been any trace from T , and (2) no trace from
T is much more likely to have been the input, compared to the remaining elements of T .

In this simplified problem, each user ui reports R(ti) to the analysis server; here 1 ≤ i ≤ n.
The server produces estimates f̂(t) by computing h(t) = |{i : t ∈ R(ti)}| and then calibrating
it in order to create an unbiased f(t) estimate: f̂(t) = ((1 + e

ϵ
2)h(t)− n)/(e ϵ

2 − 1).

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:9

2.4 Assumptions
Several assumptions need to be explicitly stated before we describe our differentially-private
analysis (Section 3). As usual in this type of work, it is assumed that the design and
implementation of the approach are fixed before any data collection and are publicly known
by all stakeholders, including untrustred parties. Another assumption is that the software
code correctly implements the design; in particular, it does implement the randomization as
publicly announced, and does not try to circumvent it by sending the raw data (or some
version of it) to a malicious party. Although this is a strong assumption, it is no different
than what is currently used in remote analysis of deployed software, where the design is
typically undocumented and/or obfuscated, and there is no checking of the implementation
of the data collection for correctness or presence of malicious code.

If a software developer commits to using the correct design and implementing it as
expected, this raises the confidence of software users and watchdog agencies that indeed
privacy is protected. Further, several techniques can be used to increase this confidence,
including (1) open-source implementations, (2) use of certified and trusted third-party
libraries, (3) scrutiny by privacy experts, and (4) code analysis via automated tools. Note
that there are no assumptions about the analysis server to which the randomized data is
sent. This server could be part of a privacy attack, possibly involving additional external
sources of information about the targeted software user. Even with this assumption, the
differential privacy guarantee holds [55].

3 Randomized Count Sketch for Software Traces

Even if a user’s local information contains a single trace, the approach outlined in the previous
section is not possible when T is infinite, since every elements of T must be visited when
randomization is applied. Even if T is made finite – for example, by using a pre-defined limit
on trace length – the approach is still not practical. For illustration, consider call chains for
the localtv Android app used in our experiments. The alphabet size |Enter | = 2974 in this
app is close to the median for our set of benchmarks. Even if we only consider chains of
at most three methods and count the strings recognized by the corresponding finite-state
automaton (as described in Section 2.1.1), we have |T | = 3, 272, 137. Increasing this length
by one, the size of T becomes more than 163 million. A further length increase by one
results in |T | of over 8 billion. Our implementation of the finite-state automaton is based on
a call graph constructed through class hierarchy analysis. Using a more precise call graph
analysis (e.g., based on context-sensitive analysis) may reduce |T |. However, it is likely that
T will still be very large, since conditional behaviors (e.g., calls guarded by conditionals) are
common and easily produce exponential growth in the number of statically-possible traces.
The cost of the randomizer described earlier is proportional to the size of T , as each element
t ∈ T must be visited and a random value must be generated for that t (independently
of the processing of the remaining elements of T) in order to decide whether t is included
in the randomizer output. Further, the randomizer output, which needs to be sent to the
analysis server, has size dependent on the exponentially-large size of T . Clearly, these costs
are infeasible.

3.1 Count Sketch
To address this problem we employ count sketch [10], a data structure originally designed to
find frequent items in data streams. Prior work [8] has considered the theoretical analysis
of using count sketch for a restricted form of differentially-private data analysis, where

ECOOP 2021

8:10 Differential Privacy for Coverage Analysis of Software Traces

Chain h1(t), g1(t) h2(t), g2(t) h3(t), g3(t)
t1 = ⟨0, 473⟩ 3, −1 6, −1 8, 1
t2 = ⟨0, 93⟩ 1, 1 7, 1 3, −1
t3 = ⟨0, 473, 83⟩ 5, −1 1, −1 4, −1
t4 = ⟨0, 473, 472⟩ 5, −1 4, 1 4, −1
t5 = ⟨0, 473, 83, 1605⟩ 5, 1 5, −1 2, 1
t6 = ⟨0, 473, 472, 971⟩ 8, 1 1, −1 7, 1
t7 = ⟨0, 473, 472, 973⟩ 7, −1 3, −1 4, 1

Local Sketch
1 0 -1 0 -1 0 -1 1

-2 0 -1 1 -1 -1 1 0
0 1 -1 -1 0 0 1 1

Figure 1 Count sketch illustration, with m = 8 and s = 3.

each user has a single data item. However, there is no clarity on the practical use of this
data structure for analysis of real-world software execution data and for the more general
problem we consider, where each user has a set of local traces. Using insights from this
prior work, we develop a version of count sketch for our trace analysis and demonstrate its
effectiveness on data from actual software executions. We first describe count sketch without
any privacy-related randomization. The next subsection shows how randomization can be
applied to achieve the differential privacy guarantee.

Counts sketch in our setting is based on s pairs of independent hash functions (hk, gk),
for 1 ≤ k ≤ s, such that hk : T → {1, . . . , m} and gk : T → {+1,−1}. Here parameters s

and m are chosen ahead of time; this choice will be discussed later. To perform analysis
without differential privacy, each user would create a local sketch and then send it to the
analysis server, where a global sketch is constructed and used to produce frequency estimates.
The local sketch for user ui is a s × m matrix Si initialized with 0 elements. For every
locally-covered trace t ∈ Ti, and for every 1 ≤ k ≤ s, matrix element Si[k, hk(t)] is updated
by adding to it the value of gk(t). In essence, for every row k in the matrix, we use hash
function hk to hash t into a value from {1, . . . , m}, and then update a counter for that value
with +1 or −1 depending on hash function gk. The local sketches Si for all users are then
sent to the analysis server, where a global sketch Sg is constructed by element-wise addition
of all Si. Finally, for any t ∈ T , a frequency estimate can be obtained by reporting the
median value of Sg[k, hk(t)]× gk(t) over all 1 ≤ k ≤ s.

Example

Figure 1 illustrates the local sketch for one user, based on data obtained from our implementa-
tion on one of our benchmarks (Android app drumpads). We use integer method ids to denote
app methods. For example, id 473 corresponds to method MainActivity.initOnboarding
and id 971 corresponds to OnboardingView.createImageScene. For brevity, the example
uses the method id to signify an enter event for the corresponding method; id 0 corresponds
to the start event.

Suppose that the locally-covered chains for some user are t1, . . . , t7. We illustrate count
sketch with m = 8 and s = 3. Thus, each chain t is hashed into a value hk(t) ∈ {1, . . . , m}
using three different hash functions (i.e., 1 ≤ k ≤ 3). An additional hash gk(t) produces a
+1/ − 1 value. Accumulating these values, as described above, results in the local sketch
shown at the bottom of the figure. For example, the first cell in the second row has a value of
−2 because h2(t3) = h2(t6) = 1 (i.e., both chains map to this cell), and g2(t3) = g2(t6) = −1
(i.e, both contribute −1 to the value of the cell). This also illustrates that hashing does
produce collisions. Using s pairs of hash functions helps ameliorate this problem.

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:11

In this particular example the sketch accurately preserves the original information.
Consider, for example, chain t3. The cells for this chain, as determined by hashes hk, are
[1, 5], [2, 1], and [3, 4] in [row,column] format. The corresponding cell values are −1, −2, and
−1. The median value of −1× g1(t3), −2× g2(t3), and −1× g3(t3) is 1, which accurately
reflects the raw local data.

The advantage of using this approach is that a local sketch Si for user ui provides a
fixed-sized representation of the arbitrary subset Ti of the set T of possible traces. Further,
randomization of the local sketch, as described shortly, can be performed in time proportional
to this s×m sketch size. Thus, instead of recording the raw data Ti and randomizing it with
randomized response to achieve the differential privacy guarantee over T , we will record the
sketch Si and randomize it to achieve the differential privacy guarantee over local sketches.
Finally, the count sketch technique is theoretically proven to produce accurate estimates
for high-frequency items, which aligns well with our goal to produce information about
frequently-occurring traces, as discussed further in Section 4.

3.2 Sketch Randomization
Trace-level randomization

To introduce privacy-achieving randomization, for each locally-covered trace t ∈ Ti the
following actions are performed. First, for each row k in the local sketch Si, the contribution
of t to this row is expressed as a vector of length m (which is the number of columns in the
sketch). The vector has the value of gk(t) ∈ {+1,−1} in position hk(t), and 0 values in all
other positions. Then, the following randomization is applied to this vector:

for each position with a 0 value, independently of any other positions in the vector, with
equal probability the 0 value is replaced by +1 or −1
for the position with the single −1/ + 1 value, the sign of this value is inverted with
probability 1/(eϵ + 1)

The resulting randomized vector contains only +1 and −1 values. We can think of this
process as applying a randomizer Rk : T → {+1,−1}m. It can be proven that this approach
achieves indistinguishability between t and any t′ ∈ T . The outline of this proof is as
follows. First, consider the case when t and t′ are hashed to the same position in count
sketch row – that is, hk(t) = hk(t′). For any Z ∈ {+1,−1}m, it is easy to see that the
ratio of P [Rk(t) = Z] and P [Rk(t′) = Z] can be bounded by the ratio of eϵ/(eϵ + 1) (i.e.,
the probability that the sign at the non-zero position is preserved) and 1/(eϵ + 1) (i.e., the
probability that the sign at the non-zero position is inverted). The second case is when t

and t′ are hashed to different positions. Then the ratio of P [Rk(t) = Z] and P [Rk(t′) = Z]
is bounded by the ratio of 1

2 eϵ/(eϵ + 1) and 1
2 /(eϵ + 1); here 1

2 is the probability associated
with the randomization of the zero positions. In either case, for any vector Z containing m

values +1/− 1, the probabilities P [Rk(t) = Z] and P [Rk(t′) = Z] differ by at most a factor
of eϵ. By observing Z, a malicious observer cannot conclude with high confidence that the
underlying trace was t as opposed to any other t′ ∈ T .

Set-level randomization

Next we define the complete randomizer: given the local set of traces Ti, Rk(Ti) =
∑

t∈Ti
Rk(t)

where the addition is element-wise. This definition satisfies the indistinguishability property
in the following sense. Consider any t ∈ Ti and any t′ ∈ T \ Ti. Let T ′

i = (Ti \ {t}) ∪ {t′}.
Thus, T ′

i is obtained by replacing t with t′. For any output Z of Rk, the probabilities
P [Rk(Ti) = Z] and P [Rk(T ′

i) = Z] differ by at most a factor of eϵ. Thus, an observer of

ECOOP 2021

8:12 Differential Privacy for Coverage Analysis of Software Traces

Z cannot determine with high confidence that a particular trace t was present in Ti, as
opposed to any other trace t′ /∈ Ti. The complete randomized local sketch is constructed as a
s×m matrix in which row k is Rk(Ti); we will denote this matrix by R(Si) where Si is the
non-randomized local sketch. This randomized local sketch is reported to the analysis server.

3.3 Efficient Randomization
The approach described above is impractically expensive. Specifically, for any t ∈ Ti we need
to compute s randomized vectors of length m, where each vector element requires drawing
a random value. In our experience the cost of such processing could be high for data from
actual software executions. Instead, we use an approach that first records the contributions of
each t without randomization, and then draws random values from the binomial distribution
to implement “one-shot” randomization.

Algorithm 1 describes the details of this approach. Consider a cell [k, j] in the sketch.
Let N+1[k, j] be the number of traces that contribute +1 to the value in this cell, without
randomization. Similarly, let N−1[k, j] be the number of traces that contribute −1 to the cell.
Our approach first records these counts (function add) without randomization. After data
collection is completed, finalize computes the randomized sketch. With randomization, each
of the N+1[k, j] occurrences of +1 contributes +1 with probability p and −1 with probability
1− p. Binomial distribution gives us the probability of y successes in x independent trials,
where each trial succeeds with probability p. Let binomial(x, p) denote a random value drawn
from this distribution. The randomization will contribute binomial(N+1[k, j], p) values of +1
to the cell value; the remaining N+1[k, j]− binomial(N+1[k, j], p) contributions will be −1.
Thus, at line 19 of the algorithm we compute the cumulative contribution of the “raw” +1
values as the difference between these two quantities – that is, as 2× binomial(N+1[k, j], p)−
N+1[k, j]. A similar computation is performed at line 20 for the −1 values. Finally, we also
have to account for the randomization of 0 values, which is done at line 21. The combined
effect of these three cases is computed at line 22 as the cell value in the randomized sketch.
This approach has cost in the order of s×m, while a naive implementation with separate
randomization for each observed trace will have cost in the order of |Ti| × s×m.

3.4 Server-Side Processing
The randomized local sketches R(Si) from all users are collected by the analysis server and
their element-wise sum is computed. To obtain unbiased estimates, all elements of the sum
need to be scaled by (eϵ + 1)/(eϵ − 1). The resulting s×m matrix Sg is the global sketch
produced by the analysis. For any t ∈ T , an estimate f̂(t) of the true frequency f(t) can be
obtained as the median value of Sg[k, hk(t)]× gk(t) over all sketch rows k. This processing is
described in Algorithm 2. It is important to note that summing up of the local sketches is
essential in order for the randomized noises to “cancel out” across the population of users.

3.5 Selecting Sketch Size
The selection of sketch size is important for achieving high accuracy of estimates. In our
implementation, both the number of rows s and the number of columns m are powers of 2.
Parameter s is set to 256, which is similar to values used in prior work [8]. When selecting
the number m of sketch columns, we aim to use a value that would produce a small number
of hash collisions. One simple choice is to select m to be similar to the total number of
unique traces that would be represented in the global sketch – that is, similar to the size

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:13

Algorithm 1 Randomized count sketch.
output : Si: randomized local sketch

1 Function init():
2 Si ← {0}s×m

3 N+1 ← {0}s×m

4 N−1 ← {0}s×m

5 Function add(t):
6 Ti ← Ti ∪ {t}
7 for k ← 1 to s do
8 if gk(t) = +1 then
9 N+1[k, hk(t)]← N+1[k, hk(t)] + 1

10 else
11 N−1[k, hk(t)]← N−1[k, hk(t)] + 1
12 end
13 end
14 Function finalize():
15 p← eϵ

1+eϵ

16 for k ← 1 to s do
17 for j ← 1 to m do
18 z ← |Ti| −N+1[k, j]−N−1[k, j]
19 n+1 ← 2× binomial(N+1[k, j], p)−N+1[k, j]
20 n−1 ← 2× binomial(N−1[k, j], p)−N−1[k, j]
21 n0 ← 2× binomial(z, 1

2)− z

22 Si[k, j]← n+1 − n−1 + n0

23 end
24 end

of the union of all local sets Ti. The value of m has to be selected ahead of time, before
deployment, so that the randomization machinery is included in the distributed code. To
make this selection, we use an approach similar in spirit to existing techniques [6, 57]. First,
a group of opt-in users is used to obtain detailed information in a non-differentially-private
manner. Specifically, the set of local traces Ti from each opt-in user ui is collected and
reported to the analysis server. Then, the union of these sets is determined. The value of m

is defined as the smallest power of 2 greater than or equal to the size of this union. This
value of m is then used by the regular software users, whose copy of the software embeds
this m value and only reports the randomized sketch of their local information.

In practice, there are several options for obtaining this opt-in data. First, some users may
be willing to share their raw data. Even in this case, instead of the raw data the approach
could collect some hashed version of it, which provides some degree of privacy protection
(although weaker than differential privacy). Alternatively, such data could also be provided
from in-house testing or beta testing. In our experiments, each run of the approach randomly
picks 10% of the users as opt-in users, computes m based on their data, and then performs
the rest of the experiment on the remaining 90% users.

The size of the sketch produced by this approach depends on the underlying volume of
collected data. Suppose, for example, that there are a total of 15 thousand unique traces
across all software users, which corresponds to m = 214. Assuming each sketch element is
represented as a 2-byte integer, the total sketch size is 8MB, which is a practical amount of

ECOOP 2021

8:14 Differential Privacy for Coverage Analysis of Software Traces

Algorithm 2 Server-side processing.

1 Function global_sketch(R(S1), . . . , R(Sn)):
2 Sg ← {0}s×m

3 for i← 1 to n do
4 Sg ← Sg + R(Si)
5 end
6 Sg ← eϵ+1

eϵ−1 × Sg

7 Function estimate(t):
8 E ← ∅
9 for k ← 1 to s do

10 E ← E ∪ {Sg[k, hk(t)]× gk(t) }
11 end
12 return median(E)

data to transfer. However, if the number of unique traces across the population of software
users is many hundreds of thousands, sketch size becomes impractical. If the goal is to achieve
high accuracy of estimates while having a reasonably small amount of data communication
with the analysis server, our approach would be most suitable for scenarios where the total
number of unique traces reported from the user population is in the order of a few thousands
to a few tens of thousands. Depending on the intended use of the analysis information, this
could be a reasonable constraint. For example, if the analysis data is used to identify common
user behaviors for the purposes of manual performance optimization or user interface redesign,
it is unlikely that frequency estimates for hundreds of thousands of traces would be of value
to software developers. To achieve such data sizes, a simple approach is to use pre-defined
limits on the sizes of local sets or the lengths of collected traces. Our implementation limits
the length of collected call chains to 10 events and the length of collected enter/exit traces to
20 events. This also bounds the depth of exploration for hot traces, which is described next.

4 Identification of Hot Traces

From the global sketch, the analysis server can estimate the frequency of any particular trace
t ∈ T . However, this is not enough for many forms of data analyses, since the size of T is
very large (or even infinite) and obtaining an estimate for each t is not possible. Next we
focus on one particular data analysis of significant practical importance: identifying the hot
traces and estimating their frequencies. Hot traces are useful in identifying common user
behavior, which themselves can be used for performance optimization, focused testing and
static checking, and application-flow optimization. We consider a trace t to be hot if its
true frequency f(t) ≥ h, where h = α× n is a “hotness threshold” defined by a parameter α

and the number of software users n. The question is, given the global sketch, how can we
efficiently and accurately construct an estimate of the set of hot traces? Next, we develop an
approach to answer this question.

Exploration of estimated hot traces

Our approach takes as input the global sketch Sg, together with the set E of possible run-time
events, the start event s ∈ E , and the family of extension functions ext. We perform a pruned
exploration of the elements of T defined by E and ext. The key observation is that if a trace

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:15

t is not hot, any t′ that has t as a prefix cannot be hot, since the number of users that
covered t′ cannot exceed the number of users that covered t. This leads to the following
approach: starting with the length-0 trace ⟨s⟩, explore the space of possible trace extensions
defined by ext. For each explored trace t, estimate its frequency using sketch Sg and stop
the exploration if the frequency estimate f̂(t) is below the hotness threshold h. Otherwise,
continue the exploration with all traces in ext(t).

A key assumption of this approach is that for any given trace t, the set of extended
traces ext(t) can be computed efficiently. We chose the two exemplar analyses presented in
Section 2 – call chains and enter/exit traces – to illustrate two common cases where this
computation is naturally derived from the definition of the underlying formal language. Such
trace structure is not specific to these two examples; other dynamic analyses (e.g., paths
in control-flow graphs) have similar properties. For call chains, the traces are strings in a
regular language. Thus, the exploration is equivalent to exploring paths in the corresponding
finite-state automaton. The extension function is defined by the set of possible transitions
from the current state of the automaton. For enter/exit traces, defined by a Dyck context-free
language (i.e., a language of balanced parentheses), the corresponding pushdown automaton
can be maintained during the exploration of strings, and the extension function is again
defined by the possible transitions from the current automaton state. Our implementation of
these exemplar analyses uses exactly this approach. In both cases, the transitions are efficient:
the cost of computing ext(t) is linear in the size of this set. Note that this approach is also
applicable in the more general case where T is defined by an arbitrary context-free grammar,
as the corresponding pushdown automaton can be maintained during trace exploration and
consulted to decide how to extend the current trace.

Relaxed hotness criterion

Our experience indicates that the approach described above has the following disadvantage:
sometimes entire groups of hot traces with a common prefix are not discovered because this
prefix is misclassified as not being hot due to an inaccuracy of its frequency estimate. As a
result, the exploration stops too early. To address this problem, we designed a more robust
“relaxed” check for hot traces. If for some explored trace t we have h/2 ≤ f̂(t) < h, we
consider this trace a potentially-misclassified hot trace due to an inaccurate estimate. In
such cases, we check whether at least one t′ ∈ ext(t) has an estimate above the threshold h.
If such a t′ exists, we take it as strong indication that t itself is hot and treat it as such. The
details of the entire approach are presented in Algorithm 3.

For illustration, consider an enter/exit trace derived from actual data for the equibase app,
which is one of our experimental subjects. The trace is t = ⟨enter(0), enter(1685), enter(1678),
enter(910), enter(805), enter(10), exit(10), exit(805), exit(910), enter(1677)⟩. The true frequency
is f(t) = 818. For the hotness cut-off h = 810 which was used in that experiment, the trace
is hot. However, because of estimate f̂(t) = 763, the exploration will stop at this trace if the
relaxed criterion is not employed. As a result, 15 hot traces that have t as a prefix would be
missed. Using the relaxed criterion, all 15 traces are correctly discovered by Algorithm 3.

5 Evaluation

For evaluation, we used 15 Android applications that were used by prior related work [59, 58].
We simulated 1000 users interacting with each app using the Monkey tool [23]. Specifically,
we performed 1000 independent Monkey runs and considered each Monkey execution as
triggered by one simulated user. During this process, for each run, we collected the sequence

ECOOP 2021

8:16 Differential Privacy for Coverage Analysis of Software Traces

Algorithm 3 Identification of hot traces.
output : H: set of estimated hot traces

1 Function hot_traces():
2 H ← ∅
3 for t ∈ ext(s) do explore(t)
4 Function explore(t):
5 if hot(t) then
6 H ← H ∪ {t}
7 for t′ ∈ ext(t) do explore(t′)
8 Function hot(t):
9 e← f̂(t)

10 if e ≥ h then return true
11 if e < h/2 then return false
12 for t′ ∈ ext(s) do
13 if f̂(t′) ≥ h then return true
14 end
15 return false

of method enter/exit events until the total number of enter events reaches 10× the number
of methods defined in the static app code (excluding libraries). If the app crashed or Monkey
triggered events very slowly, we restarted Monkey and continued collecting the trace for
this simulated user until the total number of enter events reached this targeted value. From
this sequence of enter/exit events we constructed the set of observed call chains for that
simulated user ui – that is, set Ti for call chain analysis. In addition, we also considered the
entry methods of the app and collect the subsequences that start at the enter events of those
methods; these subsequences form set Ti for enter/exit trace analysis. Thus, for each of the
two analyses we gathered sets T1, T2, . . . , T1000. We also wanted to study the effects of the
number of users, but since execution of a large number of Monkey runs in device emulators
takes a very long time, we employed an approach used by others [59]: each of the 1000 sets
was replicated 10 times to generate Ti for n = 10000.

Our trace collection approach creates a threat to validity: it is well known that the app
coverage achieved via tools such as Monkey can be limited [11]. In general, data generated
by automated GUI crawling may not be representative of the behavior of real-world app
users. One indication of coverage for our experiments is the size of ∪iTi, shown in columns
“Total” in Table 1. For most apps, more than a thousand different traces were observed.

The instrumentation is based on the Soot code rewriting tool [47]. Only application
code is instrumented, as this is the most likely focus of interest for app developers. We
treat the following methods as app entry methods: methods that implement/override any
Android framework methods (e.g., callbacks such as onClick); <clinit> methods; and
<init> methods of application subclasses of Android framework classes.

Given the data collected by the instrumentation, we ran all randomization separately
from the executions that gather the traces. This allowed us to conduct each experiment
30 times, in order to report rigorous statistical results that account for the randomness
introduced by local randomizers [20]. Experiments were performed for several values of ϵ

used in prior work [18, 52, 59, 58]. For brevity, most results are presented for ϵ = ln(9), but
the effects of other values are also discussed. To implement count sketch, we used SHA-256

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:17

Table 1 Experimental subjects and analyzed traces.

App Classes Call Chains Enter/Exit Traces

Total Lenavg Timeu Times Total Lenavg Timeu Times

barometer 379 2765 4.3 0.3 25 2717 10.2 0.4 6.4
bible 1107 1604 3.3 0.2 64 2427 8.8 0.2 21
dpm 272 1272 4.0 0.1 4.3 2475 10.6 0.2 3.7
drumpads 447 926 3.4 0.1 6 1289 8.8 0.1 4.1
equibase 252 773 3.0 0.1 3.2 1602 9.1 0.3 4.9
localtv 716 4037 4.6 0.3 42 5285 10.4 0.3 12
loctracker 198 480 1.8 0.1 0.8 1098 6.2 0.1 8.9
mitula 973 24757 7.0 2.8 1784 5614 10.2 0.8 27
moonphases 166 1755 6.4 0.2 3.3 947 9.9 0.1 0.6
parking 379 1477 3.1 0.1 10 2875 8.8 0.2 4.6
parrot 1099 7575 4.7 0.8 427 6499 10.0 0.9 63
post 1107 2358 3.8 0.4 92 3564 9.9 0.5 45
quicknews 1107 3668 3.4 0.4 51 6062 8.9 0.7 57
speedlogic 86 244 3.0 0.0 0.1 304 8.1 0.0 0.3
vidanta 1608 7811 4.9 0.8 833 6687 9.7 0.9 124

hashing. In particular, hash functions hk and gk used in count sketch were implemented by
prepending k to the string representation of the trace (which itself is based on the methods
ids), computing SHA-256, and taking the appropriate number of bits from the result.

Table 1 shows the details of the subjects used in our experiments. Column “Classes”
lists the number of application classes, excluding several well-known third-party Android
libraries, e.g., dagger and okio. The group of columns labeled “Call Chains” describes
measurements for the call chain analysis, and the group labeled “Enter/Exit Traces” shows
the same measurements for the analysis of enter/exit traces. Column “Total” and “Lenavg”
show the total number of unique traces across the 1000 local sets Ti and their average length
respectively. Column “Timeu” shows the average time (in seconds) to process the local data
of a user, as described in Algorithm 1. Column “Times” contains the time (in seconds)
to identify hot traces from the global sketch at the analysis server, using the approach
from Algorithm 2 for n = 1000. For both analyses, the costs are practical and suitable for
real-world use.

As mentioned in Section 3.3, we initially attempted to perform randomization separately
for each covered trace, but incurred high running times for the local randomizer. This led to
the development of the optimized approach in Algorithm 1. For example, for the parrot
app, the naive randomization of call chains and enter/exit traces took 264 seconds per user
on average, while the optimized one took 1.7 seconds. We typically observed two orders of
magnitude improvement in the running time of the local randomizer.

5.1 Accuracy for All Covered Traces

The first research question we consider is this: What is the accuracy of estimates for traces
that are covered by at least one user? Note that, from the data in the global sketch, the
analytics server cannot directly determine this set of traces. (We address this issue in the
next subsection.) However, the knowledge of this accuracy provides a useful baseline. To
answer this question, we use a normalized L1 distance between the vector of true frequencies

ECOOP 2021

8:18 Differential Privacy for Coverage Analysis of Software Traces

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Er

ro
r A

ll
1000 users 10000 users

(a) Call chains.

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r A
ll

1000 users 10000 users

(b) Enter/exit traces.

Figure 2 Error of estimates for all covered traces.

and the vector of their estimates. Specifically, for all t that appear in at least one Ti, we
compute the error as

∑
t |f(t)− f̂(t)|/

∑
t f(t). Values close to 0 mean that the estimates are

overall close to the real frequencies. Figure 2 shows these measurements for the two values
of n. As described in Section 3.5, each run of this experiment (and all later experiments)
used a randomly-selected set of size n/10 as opt-in users, and then performed the analysis
and computed all reported error measurements for the remaining users. For these and all
other experiments reported later, we followed a popular approach for statistically-rigorous
performance measurements [20]: 30 independent runs of the experiment were performed, and
the mean together with the 95% confidence interval are reported. The confidence interval
characterizes the variance due to the randomization. In the bar charts, the confidence interval
is shown at the top of the corresponding bar. In many cases, the interval is so small (i.e., the
variance is so low), that it is hard to see in the figures.

From this data, we reach the following answer to the above question: with sufficiently
large number of users participating in the data collection, the estimates are close to the real
frequencies. For example, for the call chain analysis with n = 10000, the cumulative error
over all t is under 20% in all cases, and its average value across the 15 apps is 7.4%. Similarly,
for the enter/exit trace analysis with n = 10000, the cumulative error over all covered traces
is always under 15% and, averaged across the apps, is 8.4%. It is fairly common for Android
apps to have many thousands of users, and popular apps usually have hundreds of thousands
of users. Thus, obtaining data from a sufficient number of app users should be feasible.

5.2 Precision and Recall for Hot Traces
As discussed earlier, the set of all covered traces is not directly known to the analysis server.
Section 4 discussed an approach to identify hot traces. Our next research question is: How
accurately are the hot traces identified? The metrics we use to answer this question are
recall (what portion of the true hot traces are discovered) and precision (what portion of
the reported hot traces are actually hot). We executed Algorithm 3 on the global sketch
to identify likely hot traces, with hotness threshold h = 0.9 × n. This was done in 30
independent repetitions of the experiment. The mean values from these experiments and
their 95% confidence intervals are shown in Figure 3.

Overall, the results of this experiment provide strong indication that hot traces can indeed
be identified accurately with a sufficient number of users. For n = 1000, the average recall
across the 15 apps is 92.1% and the average precision is 92.5% for call chains, and 90.4% and

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:19

0.0

0.5

1.0

Re
ca

ll

1000 users 10000 users
ba

ro
m

et
er

bi
bl

e
dp

m
dr

um
pa

ds
eq

ui
ba

se
lo

ca
ltv

lo
ct

ra
ck

er
m

itu
la

m
oo

np
ha

se
s

pa
rk

in
g

pa
rro

t
po

st
qu

ick
ne

ws
sp

ee
dl

og
ic

vid
an

ta

0.0

0.5

1.0

Pr
ec

isi
on

(a) Call chains.

0.0

0.5

1.0

Re
ca

ll

1000 users 10000 users

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0

Pr
ec

isi
on

(b) Entry/exit traces.

Figure 3 Recall and precision for hot traces.

0.0

0.5

1.0

Re
ca

ll

Strict Relaxed

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0

Pr
ec

isi
on

(a) Call chains.

0.0

0.5

1.0

Re
ca

ll
Strict Relaxed

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0

Pr
ec

isi
on

(b) Enter/exit traces.

Figure 4 Recall and precision for hot traces: strict vs relaxed hotness criterion.

94.5% for enter/exit traces respectively. For n = 10000, the recall for call chains increases to
99.3% and the precision to 95.0%; for enter/exit traces, the recall increases to 99.7% and
precision decreases slightly to 94.1%. We investigated the apps with the lowest precision and
determined that they have a large number of traces whose true frequencies are slightly below
the threshold h; some of these almost-hot traces are misclassified as being hot, leading to the
lower precision.

One related question is how the design choices for Algorithm 3 affect its precision and
recall. In Section 4, we discussed two possible criteria for deciding whether a trace should
be considered hot. The “strict” criterion is that a trace’s estimate f̂(t) should exceed the
hotness threshold h. However, if this estimate is inaccurate and too small, the chain and
all other hot chains that have it as prefix will be missed. Thus, in the algorithm we use a
“relaxed” criterion which also considers traces t with estimates h/2 ≤ f̂(t) < h such that t

has at least one extended trace with an estimate that exceeds h. This relaxed criterion was
employed when collecting the data in Figure 3.

To understand the effects of this choice, we also measured precision and recall using the
strict criterion. Figure 4 shows a comparison between the two criteria for n = 1000; the other
value for n leads to similar conclusions. As can be seen from these measurements, using the
strict criterion results in lower recall. For example, for call chain analysis, three apps have

ECOOP 2021

8:20 Differential Privacy for Coverage Analysis of Software Traces

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Er

ro
r H

ot
1000 users 10000 users

(a) Call chains.

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r H
ot

1000 users 10000 users

(b) Enter/exit traces.

Figure 5 Error of estimates for reported hot traces.

recall less than 50%. Similarly, for enter/exit trace analysis there are six apps with recall
below 50%. As expected, the strict criterion does improve precision, but this effect is not
very pronounced. Depending on the intended uses of the analysis, the app developers may
prefer higher recall or higher precision. Using these two criteria, or variations of them, allows
this trade-off to be adjusted as desired.

5.3 Accuracy of Estimates for Reported Hot Traces
For the set of traces reported by Algorithm 3 as likely-hot, we ask following question: What
is the accuracy of estimates for reported hot traces? Figure 5 shows the error of estimates,
using a metric similar to the one used in Figure 2: the sum of |f̂(t)− f(t)| for all reported
hot traces t, normalized by the sum of f(t) for those t. Based on these results, the answer
to the question is that high accuracy is achieved for the frequency estimates of hot traces.
Combined with the high recall demonstrated earlier, our conclusion is that hot traces and
their frequencies can be successfully estimated via our differentially-private analysis.

Compared to other apps, in Figure 5a the error for app mitula is significantly larger for
1000 users. The underlying reasons are indicated in Figure 2a, where the estimates for this
app have large cumulative error for 1000 users. This produces a large number of false positive
hot chains (Figure 3a); further, those false positives have significant cumulative error. If we
remove the false-positive hot chains from Figure 5a, the cumulative error becomes similar to
that for the other apps. The reason for the error in Figure 2a is that there are many more
chains in this app compared to the other apps. Further, the distribution of the frequency of
these chains is not uniform: there is a large number of low-frequency chains, and the DP
approaches produce inaccurate estimates for such chains. This can be solved by increasing
the number of users (as can be seen in all figures for 10000 users): even the low-frequency
chains now have enough instances to benefit from “random noise cancellation” across a larger
number of instances.

It is instructive to compare Figure 5 with Figure 2. Overall, the estimate error for hot
traces is smaller than the estimate error for all traces. For example, for n = 10000, the
average error value in Figure 5a is 1.6%, compared to 7.4% in Figure 2a, and 1.7% vs 8.4%
for Figure 5b vs Figure 2b. Theoretically, both count sketch and randomized response tend
to favor higher-frequency items. The higher accuracy for hot traces demonstrates that this
also holds in practice.

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:21

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Er
ro

r A
ll

 = ln(3) = ln(9) = ln(49)

(a) Call chains.

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Er
ro

r A
ll

 = ln(3) = ln(9) = ln(49)

(b) Enter/exit traces.

Figure 6 Error of estimates for all covered traces for three values of ϵ.

5.4 Privacy Loss Parameter

As discussed earlier, the privacy loss parameter ϵ can be used to tune accuracy/privacy
trade-offs. We considered the following question: To what degree does accuracy change with
changes in this parameter? In existing work, ϵ ranges from 0.01 to 10 [28]. Related work
that employs randomized response has used, for example, ln(3), ln(9), and ln(49) [18, 59, 58].
We computed the error for all covered traces for these three values; the results for ln(9) were
already presented in Figure 2 and are repeated here. Figure 6 shows these measurements
for n = 1000; similar trends are seen for the other n value. Overall, with increasing ϵ, the
expected accuracy gains are observed but seem to level off. For call chains and enter/exit
traces, respectively, the average error across all apps decreases from 25.3% and 28.7% for the
smallest value of ϵ to 16.6% and 19.0% for ln(9), and then further to 14.5% and 16.5% for
the largest value of the parameter. Based on these results, we consider ln(9) to provide a
reasonable trade-off and have used it to present the majority of data in our evaluation. In
practical scenarios, the developers can select a small fixed value of ϵ (before deployment),
based on data from in-house testing or from real opt-in users, as well as the desired accuracy.
Once selected, ϵ provides an upper bound on the privacy loss: for any data, and any two
data items, they are guaranteed to be ϵ-indistinguishable. The real workload will affect only
the accuracy, not the privacy.

5.5 Summary of Results

Our experimental results can be summarized as follows. First, as illustrated in Figure 2,
the frequency estimates have high accuracy, for practical values of ϵ. This results indicates
that with good privacy and sufficient number of software users, one can obtain accurate
frequency estimates for software traces. Second, based on the results in Figure 3, the set of
hot traces can be determined with high precision and recall. The relaxed identification of
hot traces is important for achieving this result (Figure 4). Third, the frequency estimates
for hot traces are accurate and better than those for the remaining covered traces (Figure 5).
Finally, consider the accuracy/privacy trade-off spectrum: from smaller values of ϵ (i.e.,
stronger privacy) and lower accuracy, to larger values of ϵ and high accuracy. As indicated by
Figure 6, after a certain point in this spectrum there do not seem to be significant additional
improvements in accuracy.

ECOOP 2021

8:22 Differential Privacy for Coverage Analysis of Software Traces

6 Related Work

Differential privacy

There is a large body of work on both the theory and practice of differential privacy. As
already discussed, several approaches based on randomized response consider a single data
item per user [18, 52, 8], while we are interested in a set of data items (i.e., a set of locally-
covered traces). Differentially-private analysis of software executions has also been studied
in prior work [58, 57, 60]. In those efforts the domain of possible items is small, enumerated
ahead of time before software deployment, and the randomizer output is straightforward to
generate and store. A key distinguishing feature of our work is that the domain of possible
traces is either infinite or very large, which requires different randomization techniques. We
address this problem by using a count sketch representation. This allows tunable trade-offs
between accuracy and representation size, as well as higher accuracy for high-frequency traces.
Efficient randomization of simple bitvectors has also been considered [58]. Our efficient
randomization (Section 3.3) requires more general reasoning. Because of the small number
of possible data items, these prior efforts do not need to explore a large domain in order to
identify hot items. In contrast, we need to develop effective search in a domain containing
billions of possible traces. We demonstrate how to achieve this using considerations of
chain prefixes and suffixes, and illustrate the approach for context-free-language domains by
exploring the states of the corresponding automaton (Section 4).

Privacy-preserving techniques in programming languages and software engineering

The programming languages community has investigated techniques for testing and veri-
fication of differentially-private algorithms and implementations [56, 53, 36, 61]. Privacy
issues are also important for many areas in software engineering, including design [25],
testing [24, 9, 50, 32], and defect prediction [44, 45, 31]. Other than the work described
earlier, we are not aware of attempts to employ differential privacy techniques in this area.
Given the strong theoretical properties of such techniques, and their increasing adoption in
industry and government [33, 4, 18, 51, 14], it is a worthwhile research goal to reconsider a
range of software engineering techniques using differential privacy machinery.

Analysis of deployed software

Remote analysis of deployed software is an area with a significant body of prior work. As
one example, residual coverage monitoring [43] uses coverage information from software users
for testing purposes. GAMMA [42] collects data from software users and orchestrates the
data collection across program instances. Placement of profiling probes has been considered
by several projects [15, 39]. Failure reproduction and debugging are aided by collected data
from deployed software [12]. Similarly, researchers have proposed analysis of post-deployment
failure reports [38].

Privacy in remote software analysis has been targeted by prior efforts. Anonymization
of collected data has taken several forms [17, 13]. As shown by privacy researchers [34, 35],
anonymization is not enough to provide strong privacy guarantees. Instead, we consider the
principled protection provided by local differential privacy. Remote software analyses from
prior work could potentially benefit from developing differentially-private versions for them.
Examples of such analyses include impact analysis and regression testing [41], as well as
failure analysis [27, 29, 30].

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:23

7 Conclusions and Future Work

Differential privacy is a promising approach for developing new privacy-preserving software
analyses. The growing adoption of differential privacy for practical use, together with its
rigorous foundations, provide further motivation to study such analyses. We develop the
design of a differentially-private trace coverage analysis, based on an incremental definition of
the trace domain. We employ local count sketches, randomize them efficiently, and analyze
them at the server side to obtain frequency estimates and to search for hot traces. The
approach is illustrated with a call chain analysis and an enter/exit trace analysis. Our
experimental studies present promising findings: with realistic numbers of software users,
one can use these privacy-preserving techniques to obtain accurate frequency estimates for
trace coverage and to effectively identify hot traces.

There is a large body of prior work on software analysis that could be revisited with
increased emphasis on privacy in general, and differential privacy in particular [42, 41, 27, 12,
13, 29, 30, 38]. Such studies will contribute to broader efforts to integrate privacy-preserving
techniques in the analysis of deployed software, in response to growing needs for better
privacy of data collection.

References
1 ACM SIGACT/EATCS. Gödel Prize. https://sigact.org/prizes/g%C3%B6del/

citation2017.pdf, 2017.
2 L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tal-

lent. HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurrency
and Computation: Practice and Experience, 22(6):685–701, 2010.

3 G. Ammons, T. Ball, and J. Larus. Exploiting hardware performance counters with flow and
context sensitive profiling. In PLDI, page 85–96, 1997.

4 Apple. Learning with privacy at scale. https://machinelearning.apple.com/2017/12/06/
learning-with-privacy-at-scale.html, 2017.

5 M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. A survey of adaptive optimization
in virtual machines. Proceedings of the IEEE, 93(2):449–466, 2005.

6 B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits. BLENDER: Enabling local
search with a hybrid differential privacy model. In USENIX Security, pages 747–764, 2017.

7 T. Ball and J. Larus. Optimally profiling and tracing programs. TOPLAS, 16(4):1319–1360,
1994.

8 R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta. Practical locally private heavy hitters.
In NIPS, pages 2285–2293, 2017.

9 A. Budi, D. Lo, L. Jiang, and Lucia. kb-anonymity: A model for anonymized behaviour-
preserving test and debugging data. In PLDI, pages 447–457, 2011.

10 M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
ICALP, pages 693–703, 2002.

11 S.R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for android: Are
we there yet? In ASE, pages 429–440. IEEE, 2015.

12 J. Clause and A. Orso. A technique for enabling and supporting debugging of field failures. In
ICSE, pages 261–270, 2007.

13 J. Clause and A. Orso. Camouflage: Automated anonymization of field data. In ICSE, pages
21–30, 2011.

14 A. Dajan, A. Lauger, P. Singer, D. Kifer, J. Reiter, A. Machanavajjhala, S. Garfinkel, S. Dahl,
M. Graham, V. Karwa, H. Kim, P. Leclerc, I. Schmutte, W. Sexton, L. Vilhuber, and J. Abowd.
The modernization of statistical disclosure limitation at the U.S. Census Bureau. https://www2.
census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf, 2017.

ECOOP 2021

https://sigact.org/prizes/g%C3%B6del/citation2017.pdf
https://sigact.org/prizes/g%C3%B6del/citation2017.pdf
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf

8:24 Differential Privacy for Coverage Analysis of Software Traces

15 M. Diep, M. Cohen, and S. Elbaum. Probe distribution techniques to profile events in deployed
software. In ISSRE, pages 331–342, 2006.

16 C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

17 S. Elbaum and M. Hardojo. An empirical study of profiling strategies for released software
and their impact on testing activities. In ISSTA, pages 65–75, 2004.

18 Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable privacy-
preserving ordinal response. In CCS, pages 1054–1067, 2014.

19 Facebook. Facebook analytics. https://analytics.facebook.com, 2020.
20 A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java performance evaluation.

In OOPSLA, page 57–76, 2007.
21 Google. Google Analytics. https://analytics.google.com.
22 Google. Firebase Analytics. https://firebase.google.com, 2020.
23 Google. Monkey: UI/Application exerciser for Android. https://developer.android.com/

studio/test/monkey, 2020.
24 M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data privacy always good for software testing?

In ISSRE, pages 368–377, 2010.
25 I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and A. Balissa. Privacy by

designers: Software developers’ privacy mindset. Empirical Software Engineering, 23(1):259–
289, 2018.

26 S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the large via mining
millions of stack traces. In ICSE, pages 145–155, 2012.

27 M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil. Applying classification techniques to
remotely-collected program execution data. In ESEC/FSE, pages 146–155, 2005.

28 J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce, and A. Roth.
Differential privacy: An economic method for choosing epsilon. In CSF, pages 398–410, 2014.

29 W. Jin and A. Orso. BugRedux: Reproducing field failures for in-house debugging. In ICSE,
pages 474–484, 2012.

30 W. Jin and A. Orso. F3: Fault localization for field failures. In ISSTA, pages 213–223, 2013.
31 Z. Li, X. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying. On the multiple sources and pri-

vacy preservation issues for heterogeneous defect prediction. IEEE Transaction on Software
Engineering, pages 1–21, 2017.

32 Lucia, D. Lo, L. Jiang, and A. Budi. kbe-anonymity: Test data anonymization for evolving
programs. In ASE, pages 262–265, 2012.

33 Microsoft. New differential privacy platform co-developed with Harvard’s OpenDP unlocks
data while safeguarding privacy. https://blogs.microsoft.com/on-the-issues/2020/06/
24/differential-privacy-harvard-opendp, 2020.

34 A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In S&P,
pages 111–125, 2008.

35 A. Narayanan and V. Shmatikov. De-anonymizing social networks. In S&P, pages 173–187,
2009.

36 J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang, N. Somani, M. Zhang,
N. Sharma, A. Shan, and D. Song. Duet: An expressive higher-order language and linear type
system for statically enforcing differential privacy. Proceedings of the ACM on Programming
Languages, 3(OOPSLA), 2019.

37 Oath. Flurry. http://flurry.com.
38 P. Ohmann, A. Brooks, L. D’Antoni, and B. Liblit. Control-flow recovery from partial failure

reports. In PLDI, pages 390–405, 2017.
39 P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit. Optimizing customized

program coverage. In ASE, pages 27–38, 2016.
40 OpenDP. https://projects.iq.harvard.edu/opendp, 2020.

https://analytics.facebook.com
https://analytics.google.com
https://firebase.google.com
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp
https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp
http://flurry.com
https://projects.iq.harvard.edu/opendp

Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:25

41 A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data for impact analysis
and regression testing. In ESEC/FSE, pages 128–137, 2003.

42 A. Orso, D. Liang, M. J. Harrold, and R. Lipton. GAMMA system: Continuous evolution of
software after deployment. In ISSTA, pages 65–69, 2002.

43 C. Pavlopoulou and M. Young. Residual test coverage monitoring. In ICSE, pages 277–284,
1999.

44 F. Peters and T. Menzies. Privacy and utility for defect prediction: Experiments with MORPH.
In ICSE, pages 189–199, 2012.

45 F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing privacy and utility in cross-company
defect prediction. IEEE Transaction on Software Engineering, 39(8):1054–1068, 2013.

46 T. Reps. Program analysis via graph reachability. IST, 40(11-12):701–726, 1998.
47 Soot. Soot analysis framework. https://soot-oss.github.io/soot, 2020.
48 M. Sridharan and R. Bodik. Refinement-based context-sensitive points-to analysis for Java.

In PLDI, pages 387–400, 2006.
49 W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling context encoding.

IEEE Transaction on Software Engineering, 38(5):1160–1177, 2012.
50 K. Taneja, M. Grechanik, R. Ghani, and T. Xie. Testing software in age of data privacy: A

balancing act. In ESEC/FSE, pages 201–211, 2011.
51 Uber. Uber releases project for differential privacy. https://medium.com/

uber-security-privacy/differential-privacy-open-source-7892c82c42b6, July 2017.
52 T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for frequency

estimation. In USENIX Security, pages 729–745, 2017.
53 Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang. Proving differential privacy with shadow

execution. In PLDI, pages 655–669, 2019.
54 S. Warner. Randomized response: A survey technique for eliminating evasive answer bias.

Journal of the American Statistical Association, 309(60):63–69, 1965.
55 A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker, K. Nissim, D. O’Brien,

T. Steinke, and S. Vadhan. Differential privacy: A primer for a non-technical audience.
Vanderbilt Journal of Entertainment and Technology Law, 21(1):209–276, 2018.

56 D. Zhang and D. Kifer. LightDP: Towards automating differential privacy proofs. In PLDI,
pages 888–901, 2017.

57 H. Zhang, Y. Hao, S. Latif, R. Bassily, and A. Rountev. Differentially-private software frequency
profiling under linear constraints. Proceedings of the ACM on Programming Languages,
4(OOPSLA), 2020.

58 H. Zhang, Y. Hao, S. Latif, R. Bassily, and A. Rountev. A study of event frequency profiling
with differential privacy. In CC, page 51–62, 2020.

59 H. Zhang, S. Latif, R. Bassily, and A. Rountev. Introducing privacy in screen event frequency
analysis for Android apps. In SCAM, pages 268–279, 2019.

60 H. Zhang, S. Latif, R. Bassily, and A. Rountev. Differentially-private control-flow node
coverage for software usage analysis. In USENIX Security, pages 1021–1038, 2020.

61 H. Zhang, E. Roth, A. Haeberlen, B. Pierce, and A. Roth. Testing differential privacy with dual
interpreters. Proceedings of the ACM on Programming Languages, 4(OOPSLA), November
2020.

62 X. Zhuang, M. Serrano, H. W Cain, and J.-D. Choi. Accurate, efficient, and adaptive calling
context profiling. In PLDI, pages 263–271, 2006.

ECOOP 2021

https://soot-oss.github.io/soot
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6

Idris 2: Quantitative Type Theory in Practice
Edwin Brady # Ñ

School of Computer Science, University of St Andrews, Scotland, UK
Abstract

Dependent types allow us to express precisely what a function is intended to do. Recent work on
Quantitative Type Theory (QTT) extends dependent type systems with linearity, also allowing
precision in expressing when a function can run. This is promising, because it suggests the ability
to design and reason about resource usage protocols, such as we might find in distributed and
concurrent programming, where the state of a communication channel changes throughout program
execution. As yet, however, there has not been a full-scale programming language with which to
experiment with these ideas. Idris 2 is a new version of the dependently typed language Idris, with
a new core language based on QTT, supporting linear and dependent types. In this paper, we
introduce Idris 2, and describe how QTT has influenced its design. We give examples of the benefits
of QTT in practice including: expressing which data is erased at run time, at the type level; and,
resource tracking in the type system leading to type-safe concurrent programming with session types.

2012 ACM Subject Classification Software and its engineering → Functional languages

Keywords and phrases Dependent types, linear types, concurrency

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.9

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.10

Funding This work was funded by EPSRC grant EP/T007265/1.

Acknowledgements This work has benefitted from the many contributions to the Idris 2 project
from the community. I am also grateful to the anonymous referees for their helpful feedback.

1 Introduction

Dependently typed programming languages, such as Idris [8], Agda [35], and Haskell with
the appropriate extensions enabled [47], allow us to give precise types which can describe
assumptions about and relationships between inputs and outputs. This is valuable for
reasoning about functional properties, such as correctness of algorithms on collections [28],
termination of parsing [14] and scope safety of programs [2]. However, reasoning about
non-functional properties in this setting, such as memory safety, protocol correctness, or
resource safety in general, is more difficult though it can be achieved with techniques such as
embedded domain specific languages [9] or indexed monads [3, 27]. These are, nevertheless,
heavyweight techniques which can be hard to compose.

Substructural type systems, such as linear type systems [45, 33, 6], allow us to express
when an operation can be executed, by requiring that a linear resource be accessed exactly
once. Being able to combine linear and dependent types would give us the ability to
express an ordering on operations, as required by a protocol, with precision on exactly what
operations are allowed, at what time. Historically, however, a difficulty in combining linear
and dependent types has been in deciding how to treat occurrences of variables in types.
This can be avoided [26] by never allowing types to depend on a linear term, but more
recent work on Quantitative Type Theory (QTT) [4, 29] solves the problem by assigning a
quantity to each binder, and checking terms at a specific multiplicity. Informally, in QTT,
variables and function arguments have a multiplicity: 0, 1 or unrestricted (ω). We can freely
use any variable in an argument with multiplicity 0 – e.g., in types – but we can not use a
variable with multiplicity 0 in an argument with any other multiplicity. A variable bound
with multiplicity 1 must be used exactly once. In this way, we can describe linear resource
usage protocols, and furthermore clearly express erasure properties in types.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Edwin Brady;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 9; pp. 9:1–9:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ecb10@st-andrews.ac.uk
http://www.type-driven.org.uk/edwinb
https://orcid.org/0000-0002-9734-367X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/DARTS.7.2.10
https://doi.org/10.4230/DARTS.7.2.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Idris 2: Quantitative Type Theory in Practice

Idris 2 is a new implementation of Idris, which uses QTT as its core type theory. In
this paper, we explore the possibilities of programming with a full-scale language built on
QTT. By full-scale, we mean a language with high level features such as inference, interfaces,
local function definitions and other syntactic sugar. As an example, we will show how to
implement a library for concurrent programming with session types [21]. We choose this
example because, as demonstrated by the extensive literature on the topic, correct concurrent
programming is both hard to achieve, and vital to the success of modern software engineering.
Our aim is to show that a language based on QTT is an ideal environment in which to
implement accessible tools for software developers, based on decades of theoretical results.

1.1 Contributions
This paper is about exploring what is possible in a language based on Quantitative Type
Theory (QTT), and introduces a new implementation of Idris. We make the following
research contributions:

We describe Idris 2 (Section 2), the first implementation of quantitative type theory in a
full programming language, and the first language with full first-class dependent types
implemented in itself.
We show how Idris 2 supports two important applications of quantities: erasure (Sec-
tion 3.2) which gives type-level guarantees as to which values are required at run-time,
and linearity (Section 3.3) which gives type-level guarantees of resource usage. We also
describe a general approach to implementing linear resource usage protocols (Section 4).
We give an example of QTT in practice, encoding bidirectional session types (Section 5)
for safe concurrent programming.

We do not discuss the metatheory of QTT, nor the trade-offs in its design in any
detail. Instead, our interest is in discussing how it has affected the design of Idris 2, and in
investigating the new kinds of programming and reasoning it enables. Where appropriate,
we will discuss the intuition behind how argument multiplicities work in practice.

2 An Overview of Idris

Idris is a purely functional programming language, with first-class dependent types. That is,
types can be computed, passed to and returned from functions, and stored in variables, just
like any other value. In this section, we give a brief overview of the fundamental features
which we use in this paper. A full tutorial is available online1. Readers who are already
familiar with Idris may skip to Section 2.4 which introduces the new implementation.

2.1 Functions and Data Types
The syntax of Idris is heavily influenced by the syntax of Haskell. Function application is by
juxtaposition and, like Haskell and ML and other related languages, functions are defined by
recursive pattern matching equations. For example, to append two lists:

append : List a -> List a -> List a
append [] ys = ys
append (x :: xs) ys = x :: append xs ys

1 https://idris2.readthedocs.io/en/latest/tutorial/index.html

https://idris2.readthedocs.io/en/latest/tutorial/index.html

E. Brady 9:3

The first line is a type declaration, which is required in Idris2. Names in the type
declaration which begin with a lower case letter are type-level variables, therefore append is
parameterised by an element type. Data types, like List, are defined in terms of their type
constructor and data constructors:

data List : Type -> Type where
Nil : List elem
(::) : elem -> List elem -> List elem

The type of types is Type. Therefore, this declaration states that List is parameterised
by a Type, and can be constructed using either Nil (an empty list) or :: (“cons”, a list
consisting of a head element and and tail). As we’ll see in more detail shortly, types in Idris
are first-class, thus the type of List (Type -> Type) is an ordinary function type. Syntax
sugar allows us to write [] for Nil, and comma separated values in brackets expand to
applications of ::, e.g. [1, 2] expands to 1 :: 2 :: Nil.

2.2 Interactive Programs
Idris is a pure language, therefore functions have no side effects. Like Haskell [37], we write
interactive programs by describing interactions using a parameterised type IO. For example,
we have primitives for console I/O, including:

putStrLn : String -> IO ()
getLine : IO String

IO t is the type of an interactive action which produces a result of type t. So, getLine
is an interactive action which, when executed, produces a String read from the console.
Idris the language evaluates expressions to produce a description of an interactive action as
an IO t. It is the job of the run time system to execute the resulting action. Actions can be
chained using the >>= operator:

(>>=) : IO a -> (a -> IO b) -> IO b

For example, to read a line from the console then echo the input:

echo : IO ()
echo = getLine >>= \x => putStrLn x

For readability, again like Haskell, Idris provides do-notation which translates an im-
perative style syntax to applications of >>=. The following definition is equivalent to the
definition of echo above.

echo : IO ()
echo = do x <- getLine

putStrLn x

The translation from do-notation to applications of >>= is purely syntactic. In practice
therefore we can use do-notation in other contexts: for example, there is a Monad imple-
mentation for IO, and we will define an alternative >>= when implementing linear resource
protocols.

2 Note that unlike Haskell, we use a single colon for the type declaration.

ECOOP 2021

9:4 Idris 2: Quantitative Type Theory in Practice

2.3 First-Class Types
The main distinguishing feature of Idris compared to other languages, even some other
languages with dependent types, is that types are first-class. For example we can pass them
as arguments to functions, return them from functions, or store them in variables. This
enables us to define type synonyms, to compute types from data, and express relationships
between and properties of data. As an initial example, we can define a type synonym:

Point : Type
Point = (Int , Int)

Wherever the type checker sees Point it will evaluate it, and treat it as (Int, Int):

moveRight : Point -> Point
moveRight (x, y) = (x + 1, y)

Languages often include type synonyms as a special feature (e.g. typedef in C or type
declarations in Haskell). In Idris, no special feature is needed.

2.3.1 Computing Types
First-class types allow us to compute types from data. A well-known example is printf
in C, where a format string determines the types of arguments to be printed. C compilers
typically use extensions to check the validity of the format string; first-class types allow us
to implement a printf-style variadic function, with compile time checking of the format.
We begin by defining valid formats (limited to numbers, strings, and literals here):

data Format : Type where
Num : Format -> Format
Str : Format -> Format
Lit : String -> Format -> Format
End : Format

This describes the expected input types. We can calculate a corresponding function type:

PrintfType : Format -> Type
PrintfType (Num f) = (i : Int) -> PrintfType f
PrintfType (Str f) = (str : String) -> PrintfType f
PrintfType (Lit str f) = PrintfType f
PrintfType End = String

A function which computes a type can be used anywhere that Idris expects a value of type
Type. So, for the type of printf, we name the first argument fmt, and use it to compute
the rest of the type of printf:

printf : (fmt : Format) -> PrintfType fmt

We can check the type of an expression, even using an as yet undefined function, at the
Idris REPL. For example, a format corresponding to “%d %s”:

Main > :t printf (Num (Lit " " (Str End)))
printf (Num (Lit " " (Str End))) : Int -> String -> String

We will implement this via a helper function which accumulates a string:

printfFmt : (fmt : Format) -> (acc : String) -> PrintfType fmt

E. Brady 9:5

Idris has support for interactive development, via editor plugins and REPL commands, and
we use holes extensively. An expression of the form ?hole stands for an as yet unimplemented
part of a program. This defines a top level function hole, with a type but no definition,
which we can inspect at the REPL. So, we can write a partial definition of printfFmt:

printfFmt : (fmt : Format) -> (acc : String) -> PrintfType fmt
printfFmt (Num f) acc = ? printfFmt_rhs_1
printfFmt (Str f) acc = ? printfFmt_rhs_2
printfFmt (Lit str f) acc = ? printfFmt_rhs_3
printfFmt End acc = ? printfFmt_rhs_4

Then, if we inspect the type of printfFmt_rhs_1 at the REPL, we can see the types of
the variables in scope, and the expected type of the right hand side:

Example > :t printfFmt_rhs_1
f : Format
acc : String

-- ----------------------------
printfFmt_rhs_1 : Int -> PrintfType f

So, a format specifier of Num means we need to write a function that expects an Int. For
reference, the complete definition is given in Listing 1. As a final step (omitted here) we can
write a C-style printf by converting a String to a Format specifier. Here we use compile
time data – the format specifier – to calculate the rest of the type. In Section 4, we will see
a similar idea used to calculate a type from data which is not known until run time.

Listing 1 The complete definition of printf

printfFmt : (fmt : Format) -> (acc : String) -> PrintfType fmt
printfFmt (Num f) acc = \i => printfFmt f (acc ++ show i)
printfFmt (Str f) acc = \str => printfFmt f (acc ++ str)
printfFmt (Lit str f) acc = printfFmt f (acc ++ str)
printfFmt End acc = acc

printf : (fmt : Format) -> PrintfType fmt
printf fmt = printfFmt fmt ""

2.3.2 Dependent Data Types
We define data types (such as List a and Format earlier) by giving explicit types for the
type constructor and the data constructors. We are not limited to parameterising by types;
type constructors can be parameterised by any value. The canonical example is a vector,
Vect, a list with its length encoded in the type:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Nat is the type of natural numbers, where Z stands for “zero” and S stands for “successor”.
It is represented by a machine integer at run time. As we noted in Section 2.1, lower case
names in type definitions are type-level variables. So, when we define append on vectors. . .

append : Vect n a -> Vect m a -> Vect (n + m) a

ECOOP 2021

9:6 Idris 2: Quantitative Type Theory in Practice

. . . n, a and m are type-level variables. Note that we do not say “type variable” since
they are not necessarily of type Type! Type-level variables are bound as implicit arguments.
Written out in full, the type of append is:

append : {n : Nat} -> {m : Nat} -> {a : Type} ->
Vect n a -> Vect m a -> Vect (n + m) a

Note: We will refine this when introducing multiplicities in Section 3.
The implicit arguments are concrete arguments to append, like the Vect arguments. Their

values are solved by unification [30, 20]. Typically implicit arguments are only necessary
at compile time, and unused at run time. However, we can use an implicit argument in a
definition, since the names of the arguments are in scope in the right hand side:

length : {n : Nat} -> Vect n a -> Nat
length xs = n

One challenge with first-class types is in distinguishing those parts of programs which are
required at run time, and those which can be erased. Tradtionally, this phase distinction
has been clear: types are erased at run time, values preserved. But this correspondence
is merely a coincidence, arising from the special (non first-class) status of types! As we
see with length and append, sometimes an argument might be required (in length) and
sometimes it might be erasable (in append). Idris 1 uses a constraint solving algorithm [41],
which has been effective in practice, but has a weakness that it is not possible to tell from a
definition’s type alone which arguments are required at run time. In Section 3.2 we will see
how quantitative type theory allows us to make a precise distinction between the run time
relevant parts of a program and the compile time only parts.

2.4 Idris 2
Idris 2 is a new version of Idris, implemented in itself, and based on Quantitative Type Theory
(QTT) as defined in recent work by Atkey [4] following initial ideas by McBride [29]. In QTT,
each variable binding is associated with a quantity (or multiplicity) which denotes the number
of times a variable can be used in its scope: either zero, exactly once, or unrestricted. We
will describe these further shortly. Several factors have motivated the new implementation:

In implementing Idris in itself, we have necessarily done the engineering required on Idris
to implement a system of this scale. Furthermore, although it is outside the scope of
the present paper, we can explore the benefits of dependently typed programming in
implementing a full-scale programming language.
A limitation of Idris 1 is that it is not always clear which arguments to functions and
constructors are required at run time, and which are erased, even despite previous
work [7, 41, 42]. QTT allows us to state clearly, in a type, which arguments are erased.
Erased arguments are still relevant at compile time.
There has, up to now, been no full-scale implementation of a language based on QTT
which allows exploration of the possibilities of linear and dependent types.
Purely pragmatically, Idris 1 has outgrown the requirements of its initial experimental
implementation, and since significant re-engineering has been required, it was felt that it
was time to re-implement it in Idris itself.

In the following sections, we will discuss the new features in Idris 2 which arise as a result
of using QTT as the core: firstly, how to express erasure in the type system; and secondly,
how to encode resource usage protocols using linearity.

E. Brady 9:7

3 Quantities in Types

The biggest distinction between Idris 2 and its predecessor is that it is built on Quantitative
Type Theory (QTT) [29, 4]. In QTT, each variable binding (including function arguments)
has a multiplicity. QTT itself takes a general approach to multiplicities, allowing any semiring.
For Idris 2, we make a concrete choice of semiring, where a multiplicity can be one of:

0: the variable is not used at run time
1: the variable is used exactly once at run time
ω: no restrictions on the variable’s usage at run time

In this section, we describe the syntax and informal semantics of multiplicities, and discuss
the most important practical applications: erasure, and linearity. The formal semantics are
presented elsewhere [4]; here, we aim to describe the intuition. In summary:

Variable bindings have multiplicities which describe how often the variable must be used
within the scope of its binding.
A variable is “used” when it appears in the body of a definition (that is, not a type
declaration), in an argument position with multiplicity 1 or ω.
A function’s type gives the multiplicities the arguments have in the function’s body.

Variables with multiplicity ω are truly unrestricted, meaning that they can be passed
in argument positions with multiplicity 0, 1 or ω. A function which takes an argument
with multiplicity 1 promises that it will not share the argument in the future; there is no
requirement that it has not been shared in the past.

3.1 Syntax
When declaring a funcion type we can, optionally, give an explicit multiplicity of 0 or 1. If
an argument has no multiplicity given, it defaults to ω. For example, we can declare the
type of an identity function which takes its polymorpic type explicitly, and mark it erased:

id_explicit : (0 a : Type) -> a -> a

If we give a partial definition of id_explicit, then inspect the type of the hole in the
right hand side, we can see the multiplicities of the variables in scope:

id_explicit a x = ? id_explicit_rhs

Main > :t id_explicit_rhs
0 a : Type

x : a
-- ----------------------------
id_explicit_rhs : a

This means that a is not available at run time, and x is unrestricted at run time. If there
is no explicit multiplicity shown, it is ω. A variable which is not available at run time can
only be used in argument positions with multiplicity 0. Implicitly bound arguments are also
given multiplicity 0. So, in the following declaration of append. . .

append : Vect n a -> Vect m a -> Vect (n + m) a

. . . n, a and m have multiplicity 0. In Idris 2, therefore, unlike Idris 1, the declaration is
equivalent to writing:

ECOOP 2021

9:8 Idris 2: Quantitative Type Theory in Practice

append : {0 n : Nat} -> {0 m : Nat} -> {0 a : Type} ->
Vect n a -> Vect m a -> Vect (n + m) a

The default multiplicities for arguments are, therefore:
If you explicitly write the binding, the default is ω.
If you omit the binding (e.g. in a type-level variable), the default is 0.

This design choice, that type-level variables are by default erased, is primarily influenced
by the common usage in Idris 1, that implicit type-level variables are typically compile-time
only. As a result, the most common use cases involve the most lightweight syntax.

3.2 Erasure
The multiplicity 0 gives us control over whether a function argument – Type or otherwise
– is used at run time. This is important in a language with first-class types since we often
parameterise types by values in order to make relationships between data explicit, or to
make assumptions explicit. In this section, we will consider two examples of this, and see
how multiplicity 0 allows us to control which data is available at run time.

3.2.1 Example 1: Vector length
We have seen how a vector’s type includes its length; we can use this length at run time,
even though it is part of the type, provided that it has non-zero multiplicity:

length : {n : Nat} -> Vect n a -> Nat
length xs = n

With this definition, the length n is available at run time, since {n : Nat} is an explicitly
written binding so has default multiplicity ω. This has a run time cost, in that n is passed to
the function at run time, as well as potentially the cost of computing the length elsewhere.
If we want the length to be erased, we would need to recompute it in the length function:

length : Vect n a -> Nat
length [] = Z
length (_ :: xs) = S (length xs)

The type of length in each case makes it explicit whether or not the length of the Vect
is available. Let us now consider a more realistic example, using the type system to ensure
soundness of a compressed encoding of a list.

3.2.2 Example 2: Run-length Encoding of Lists
Run-length encoding is a compression scheme which collapses sequences (runs) of the same
element in a list. It was originally developed for reducing the bandwidth required for television
pictures [39], and later used in image compression and fax formats, among other things.

We will define a data type for storing run-length encoded lists, and use the type system
to ensure that the encoding is sound with respect to the original list. To begin, we define a
function which constructs a list by repeating an element a given number of times. We will
need this for explaining the relationship between compressed and uncompressed data.

rep : Nat -> a -> List a
rep Z x = []
rep (S k) x = x :: rep k x

E. Brady 9:9

Using this, and the concatenation operator for List (++, which is defined like append),
we can describe what it means to be a run-length encoded list:

data RunLength : List ty -> Type where
Empty : RunLength []
Run : (n : Nat) -> (x : ty) -> (rle : RunLength more) ->

RunLength (rep (S n) x ++ more)

Empty is the run-length encoding of the empty list []
Given a length n, an element x, and an encoding rle of the list more, Run n x rle is the
encoding of the list rep (S n) x ++ more. That is, n + 1 copies of x followed by more.

We use S n to ensure that Run always increases the length of the list, but otherwise we
make no attempt (in the type) to ensure that the encoding is optimal; we merely ensure that
the encoding is sound with respect to the encoded list. Let us try to write a function which
uncompresses a run-length encoded list, beginning with a partial definition:

uncompress : RunLength {ty} xs -> List ty
uncompress rle = ? uncompress_rhs

Note: The {ty} syntax gives an explicit value for the implicit argument to RunLength.
This means that the ty argument to RunLength, and hence the element type of xs, is the
same type as the element type of the list returned by uncompress.

Like our initial implementation of length on Vect, we might be tempted to return xs
directly, since the index of the encoded list gives us the original uncompressed list. However,
if we check the type of uncompress_rhs, we see that xs has multiplicity 0 because it is not
an explicit argument, so isn’t available at run time:

0 xs : List ty
rle : RunLength xs

-- ----------------------------
uncompress_rhs : List ty

This is a good thing: if the uncompressed list were available at run-time, there would have
been no point in compressing it! We can still take advantage of having the uncompressed list
available as part of the type, though, by refining the type of uncompress:

data Singleton : a -> Type where
Val : (x : a) -> Singleton x

uncompress : RunLength xs -> Singleton xs

A value of type Singleton x has exactly one value, Val x. The type of uncompress
expresses that the uncompressed list is guaranteed to have the same value as the original list,
although it must still be reconstructed at run-time. We can implement it as follows:

uncompress : RunLength xs -> Singleton xs
uncompress Empty = Val []
uncompress (Run n x y) = let Val ys = uncompress y in

Val (x :: (rep n x ++ ys))

Aside: This implementation was generated by type-directed program synthesis [38],
rather than written by hand, taking advantage of the explicit relationship given in the type
between the input and the output. The definition of RunLength more or less directly gives
the uncompression algorithm, so we should not need to write it again!

ECOOP 2021

9:10 Idris 2: Quantitative Type Theory in Practice

The 0 multiplicity, therefore, allows us to reason about values at compile time, without
requiring them to be present at run time. Furthermore, QTT gives us a guarantee of erasure,
as well as an explicit type-level choice as to whether an index is erased or not.

3.3 Linearity
An argument with multiplicity 0 is guaranteed to be erased at run time. Correspondingly, an
argument with multiplicity 1 is guaranteed to be used exactly once. The intuition, similar to
that of Linear Haskell [6], is that, given a function type of the form. . .

f : (1 x : a) -> b

. . . then, if an expression f x is evaluated exactly once, x is evaluated exactly once in the
process. QTT is a new core language, and the combination of linearity with dependent types
has not yet been extensively explored. Thus, we consider the multiplicity 1 to be experimental,
and in general Idris 2 programmers can get by without it – nothing in the Prelude exposes
an interface which requires it. Nevertheless, we have found that an important application of
linearity is in controlling resource usage. In the rest of this section, we describe two examples
of this. First, we show in general how linearity can prevent us duplicating an argument,
which can be important if the argument represents an external resource; then, we give a
more concrete example showing how the IO type described in Section 2.2 is implemented.

3.3.1 Example 1: Preventing Duplication
To illustrate multiplicity 1 in practice, we can try (and fail!) to write a function which
duplicates a value declared as “use once”, interactively, where LPair is a linear pair type:

dup : (1 x : a) -> LPair a a
dup x = ? dup_rhs

Inspecting the dup_rhs hole shows that we have:

0 a : Type
1 x : a

-- -----------------------------------
dup_rhs : LPair a a

So, a is not available at run-time, and x must be used exactly once in the definition of
dup_rhs. We can write a partial definition, where # is the constructor of LPair:

dup x = x # ? second_x

However, if we check the hole second_x we see that x is not available, because there was
only 1 and it has already been consumed:

0 a : Type
0 x : a

-- -----------------------------------
second_x : a

We see the same result if we try dup x = (?second_x, x). If we persist, and try. . .

dup x = x # x

. . . then Idris reports “There are 2 uses of linear name x”.

E. Brady 9:11

▶ Remark. As we noted earlier, only usages in the body of a definition count. This means we
can still parameterise data by linear variables. For example, if we have an Ordered predicate
on lists, we can write an insert function on ordered linear lists:

insert : a -> (1 xs: List a) -> (0 _ : Ordered xs) -> List a

The use in Ordered does not count, and since Ordered has multiplicity 0 it is erased at
run time, so any occurrence of xs when building the Ordered proof also does not count.

3.3.2 Example 2: I/O in Idris 2
Like Idris 1 and Haskell, Idris 2 uses a parameterised type IO to describe interactive actions.
Unlike the previous implementation, this is implemented via a function which takes an
abstract representation of the outside world, of primitive type %World:

PrimIO : Type -> Type
PrimIO a = (1 x : % World) -> IORes a

The %World is consumed exactly once, so it is not possible to use previous worlds (after
all, you can’t unplay a sound, or unsend a network message). It returns an IORes:

data IORes : Type -> Type where
MkIORes : (result : a) -> (1 w : %World) -> IORes a

This is a pair of a result (with usage ω), and an updated world state. The intuition for
multiplicities in data constructors is the same as in functions: here, if MkIORes result w is
evaluated exactly once, then the world w is evaluated exactly once. We can now define IO:

data IO : Type -> Type where
MkIO : (1 fn : PrimIO a) -> IO a

There is a primitive io_bind operator (which we can use to implement >>=), which
guarantees that an action and its continuation are executed exactly once:

io_bind : (1 act : IO a) -> (1 k : a -> IO b) -> IO b
io_bind (MkIO fn) = \k => MkIO (\w => let MkIORes x’ w’ = fn w

MkIO res = k x’ in res w ’)

The multiplicities of the let bindings are inferred from the values being bound. Since fn
w uses w, which is required to be linear from the type of MkIO, MkIORes x’ w’ must itself
be linear, meaning that w’ must also be linear. This implementation of IO is similar to the
Haskell approach [37], with two differences:
1. The %World token is guaranteed to be consumed exactly once, so there is a type-level

guarantee that the outside world is never duplicated or thrown away.
2. There is no built-in mechanism for exception handling, because the type of io_bind

requires that the continuation is executed exactly once. So, in IO primitives, we must
be explicit about where errors can occur. One can, however, implement higher level
abstractions which allow exceptions if required.

Linearity is, therefore, fundamental to the implementation of IO in Idris 2. Fortunately,
none of the implementation details need to be exposed to application programmers who are
using IO. However, once a programmer has an understanding of the combination of linear
and dependent types, they can use it to encode and verify more sophisticated APIs.

ECOOP 2021

9:12 Idris 2: Quantitative Type Theory in Practice

4 Linear Resource Usage Protocols

The IO type uses a linear resource representing the current state of the outside world. But,
often, we need to work with other resources, such as files, network sockets, or communication
channels. In this section, we introduce an extension of IO which allows creating and updating
linear resources, and show how to use it to implement a resource usage protocol for an
automated teller machine (ATM).

4.1 Initialising Linear Values
In QTT, multiplicities are associated with binders, not with return values or types. This is a
design decision of QTT, rather than of Idris, and has the advantage that we can use a type
linearly or not, depending on context. We can write functions that create values to be used
linearly by using continuations, for example, to create a new linear array:

newArray : (size : Int) -> (1 k : (1 arr : Array t) -> a) -> a

The array must be used exactly once in the scope of k, and if this is the only way of
constructing an Array, then all arrays are guaranteed to be used linearly, so we can have
in-place update. As a matter of taste, however, we may not want to write programs with
explicit continuations. Fortunately, do notation can help; recall the bind operator for IO:

(>>=) : IO a -> (a -> IO b) -> IO b

This allows us to chain an IO action and its continuation, and do notation gives syntactic
sugar for translating into applications of >>=. Therefore, we can define an alternative >>=
operator for chaining actions which return linear values. We will achieve this by defining a
new type for capturing interactive actions, extending IO, and defining its bind operator.

4.2 Linear Interactive Programs
First, we define how many times the result of an operation can be used. These correspond to
the multiplicities 0, 1 and ω:

data Usage = None | Linear | Unrestricted

We declare a data type L, which describes interactive programs that produce a result
with a specific multiplicity. We choose a short name L since we expect this to be used often:

data L : { default Unrestricted use : Usage } ->
Type -> Type where

In Section 2.3.2 we described implicit arguments, which are solved by unification. Here,
use is a default implicit argument, and the default Unrestricted annotation means that
if its value is not given explicitly, it will take a default value of Unrestricted.

Like IO, L provides the operators pure and >>=. However, unlike IO, they need to
account for variable usage. One limitation of QTT is that it does not yet support quantity
polymorphism, so we must provide separate pure operators for each quantity:

pure : (x : a) -> L a
pure0 : (0 x : a) -> L {use =0} a
pure1 : (1 x : a) -> L {use =1} a

E. Brady 9:13

Idris translates integer literals using the fromInteger function. We have defined a
fromInteger function that maps 0 to None and 1 to Linear which allows us to use integer
literals as the values for the use argument.

The type of >>= is more challenging. In order to take advantage of do-notation, we
need a single >>= operator for chaining an action and a continuation, but there are several
possible combinators of variable usage. Consider:

The action might return an erased, linear or unrestricted value.
Correspondingly, the continuation must bind its argument at multiplicity 0, 1 or ω.

In other words, the type of the continuation to >>= depends on the usage of the result of
the action. We can therefore take advantage of first-class types and calculate the continuation
type. Given the usage of the action (u_a), the usage of the continuation (u_k) and the return
types of each, a and b, we calculate:

ContType : (u_a : Usage) -> (u_k : Usage) -> Type -> Type -> Type
ContType None u_k a b = (0 _ : a) -> L {use=u_k} b
ContType Linear u_k a b = (1 _ : a) -> L {use=u_k} b
ContType Unrestricted u_k a b = a -> L {use=u_k} b

Then, we can write a type for >>= as follows:

(>>=) : {u_a : _} ->
(1 _ : L {use=u_a} a) ->
(1 _ : ContType u_act u_k a b) -> L {use=u_k} b

The continuation type is calculated from the usage of the first action, and is correspond-
ingly needed in the implementation, so u_a is run time relevant. However, in practice it is
removed by inlining. Fortunately, the user of L need not worry about these details. They
can freely use do-notation and let the type checker take care of variable usage for them.

Finally, for developing linear wrappers for IO libraries, we allow lifting IO actions:

action : IO a -> L a

We use action for constructing primitives. Note that we will not be able to bypass
any linearity checks this way, since it does not promise to use the IO action linearly, so we
cannot pass any linear resources to an action. The implementation of L is via a well-typed
interpreter [5], a standard pattern in dependently typed programming.

Note: L is defined in a library Control.Linear.LIO, distributed with Idris 2. In the
library, its type is more general; L : (io : Type -> Type) -> {use : Usage} -> Type
-> Type. This allows us to extend any monad with linearity, not just IO, but this generality
is not necessary for the examples in this paper.

4.3 Example: An ATM State Machine
We can use linear types to encode the state of a resource, and implement operations in L
to ensure that they are only executed when the resource is in the appropriate state. For
example, an ATM should only dispense cash when a user has inserted their card and entered
a correct PIN. This is a typical sequence of operations on an ATM:

A user inserts their bank card.
The machine prompts the user for their PIN, to check the user is entitled to use the card.
If PIN entry is successful, the machine prompts the user for an amount of money, and
then dispenses cash.

ECOOP 2021

9:14 Idris 2: Quantitative Type Theory in Practice

Figure 1 A state machine describing the states and operations on an ATM.

Figure 1 defines, at a high level, the states and operations on an ATM, showing when
each operation is valid. We will define these operations as functions in the L type, using a
linear reference to a representation of an ATM. We define the valid states of the ATM as a
data type, then an ATM type which is parameterised by its current state, which is one of:

Ready: the ATM is ready and waiting for a card to be inserted.
CardInserted: there is a card inside the ATM but the PIN entry is not yet verified.
Session: there is a card inside the ATM and the PIN has been verified.

data ATMState = Ready | CardInserted | Session
data ATM : ATMState -> Type

We leave the definition of ATM abstract. In practice, this is where we would need to handle
implementation details such as how to access and update a user’s bank account. For the
purposes of this example, we are only interested in encoding the high level state transitions
in types. We will need functions to initialise and shut down the reference:

initATM : L {use =1} (ATM Ready)
shutDown : (1 _ : ATM Ready) -> L ()

initATM creates a linear reference to an ATM in the initial state, Ready, which must be
used exactly once. Correspondingly, shutDown deletes the linear reference. Listing 2 presents
the types of the remaining operations, implementing the transitions from Figure 1.

We have: user-directed state transitions, where the programmer is in control over whether
an operation succeeds; general purpose operations, which do not change the state, and are
part of the machine’s user interface; and, machine-directed state transitions, where the
machine is in control over whether an operation succeeds, for example the machine decides if
PIN entry was correct.

User-directed state transitions

The insertCard card function takes a machine in the Ready state, and returns a new machine
in the CardInserted state. The type ensures that we can only run the function with the
machine in the appropriate state. For dispense, we need to satisfy the security property
that the machine can only dispense money in a validated session. Thus, it has an input state
of Session, and the session remains valid afterwards.

E. Brady 9:15

Listing 2 Operations on an ATM
data HasCard : ATMState -> Type where

HasCardPINNotChecked : HasCard CardInserted
HasCardPINChecked : HasCard Session

data PINCheck = CorrectPIN | IncorrectPIN

insertCard : (1 _ : ATM Ready) -> L {use =1} (ATM CardInserted)
checkPIN : (1 _ : ATM CardInserted) -> (pin : Int) ->

L {use =1}
(Res PINCheck

(\ res => ATM (case res of
CorrectPIN => Session
IncorrectPIN => CardInserted)))

dispense : (1 _ : ATM Session) -> L {use =1} (ATM Session)
getInput : HasCard st => (1 _ : ATM st) ->

L {use =1} (Res String (const (ATM st)))
ejectCard : HasCard st => (1 _ : ATM st) -> L {use =1} (ATM Ready)
message : (1 _ : ATM st) -> String -> L {use =1} (ATM st)

For ejectCard, it is only valid to eject the card if there is already a card in the machine.
This is true in two states: CardInserted and Session. Therefore, we define a predicate on
states which holds for states where there is a card in the machine:

data HasCard : ATMState -> Type where
HasCardPINNotChecked : HasCard CardInserted
HasCardPINChecked : HasCard Session

The type of ejectCard then takes an input of type HasCard st, which is a proof that
the predicate holds for the machine’s input state st.

ejectCard : HasCard st => (1 _ : ATM st) -> L {use =1} (ATM Ready)

The notation HasCard st => ..., with the => operator, means that this is an auto
implicit argument. Like implicits, and default implicits, these can be omitted. The type
checker will attempt to fill in a value by searching the possible constructors. In this case, if
st is CardInserted, the value will be HasCardPINNotCheck, and if it is Session, the value
will be HasCardPINChecked. Otherwise, Idris will not be able to find a value, and will report
an error. Auto implicits are also used for interfaces, corresponding to type classes in Haskell,
although we do not use interfaces elsewhere in this paper.

General purpose operations

The message function displays a message to the user. Its type means that we can display a
message no matter the machine’s state. Nevertheless, since an ATM is linear, we must return a
new reference. The getInput function reads input from the user, using the machine’s keypad,
provided that there is a card in the machine. Again, this needs to return a new reference,
along with the input. Res is a dependent pair type, where the first item is unrestricted, and
the second item is linear with a type computed from the value of the first element. We
describe this below in the context of checkPIN.

ECOOP 2021

9:16 Idris 2: Quantitative Type Theory in Practice

Machine-directed state transitions

The most interesting case is checkPIN. In the other functions, the programmer is in control
of when state transitions happen, but in this case, the transition may or may not succeed,
depending on whether the PIN is correct. To capture this possibility, we return the result in
a dependent pair type, Res, defined as follows in the Idris Prelude:
data Res : (a : Type) -> (a -> Type) -> Type where

(#) : (val : a) -> (1 r : t val) -> Res a t

This pairs a value, val, with a linear resource whose type is computed from the value.
This can be illustrated with a partial ATM program:
runATM : L ()
runATM = do m <- initATM

m <- insertCard m
ok # m <- checkPIN m 1234
? whatnow

This program initialises an ATM, inserts a card, then checks whether the card has the
PIN 1234. Checking the PIN returns a Res, which we deconstruct, then we can inspect the
hole ?whatnow to see where to go from here:

ok : PINCheck
1 m : ATM (case ok of { CorrectPIN => Session

IncorrectPIN => CardInserted })
-- ----------------------------
whatnow : L ()

So, we have the result of the PINCheck, and an updated ATM, but we will only know the
state of the ATM, and hence be able to make progress in the protocol, if we actually check the
returned result! We cannot know statically what the next state of the machine is going to
be, but using first class types, we can statically check that the necessary dynamic check is
made. We could also use a sum type, such as Either, for the result of the PIN check, e.g.
checkPIN : (1 _ : ATM CardInserted) -> (pin : Int) ->

L {use =1} (Either (ATM CardInserted) (ATM Session))

This would arguably be simpler. On the other hand, by returning an ATM with an as yet
unknown state, we can still run operations on the ATM such as message even before resolving
the state. This might be useful for diagnostics, or for user feedback, for example. Listing 3
shows one possible ATM protocol implementation, displaying a message before checking the
PIN, then dispensing cash if the PIN was valid. Note that the protocol also requires the card
to have been ejected before the machine is shut down.

Aside: Linearity and exceptions do not mix well, since when we catch an exception, we
need to know what state the machine was in at the point it was thrown in order to clean up
effectively. On the other hand, if we have to check every result as in Listing 3, we will end
up with a lot of nested case blocks, which are hard to read. As a compromise, Idris provides
a pattern matching bind notation [10], which allows us to code to a “happy path” and deal
with alternatives as they arise. For example:
runATM : L ()
runATM = do m <- initATM

m <- insertCard m
CorrectPIN # m <- checkPIN m 1234

| IncorrectPIN # m => ? failure
? success

E. Brady 9:17

Listing 3 Example ATM protocol implementation
runATM : L ()
runATM = do m <- initATM

m <- insertCard m
ok # m <- checkPIN m 1234
m <- message m " Checking PIN"
case ok of

CorrectPIN => do m <- dispense m
m <- ejectCard m
shutDown m

IncorrectPIN => do m <- ejectCard m
shutDown m

The “happy path” is that the PIN was entered correctly. The alternative we need to
handle is the IncorrectPIN case, which we can handle in a similar manner to Listing 3.

5 Session Types via QTT

To illustrate how we can use quantities on a more substantial example, let us consider how
to use them to implement session types. Session types [21, 22] give types to communication
channels, allowing us to express exactly when a message can be sent on a channel, ensuring
that communication protocols are implemented completely and correctly. There has been
extensive previous work on defining calculi for session types3. In Idris 2, the combination of
linear and dependent types means that we can implement session types directly:

Linearity means that a channel can only be accessed once, and once a message has been
sent or received on a channel, the channel is in a new state.
Dependent Types give us a way of describing protocols at the type level, where progress
on a channel can change according to values sent on the channel.

A complete implementation of session types would be a paper in itself, so we limit
ourselves to dyadic session types in concurrent communicating processes. We assume that
functions are total, so processes will not terminate early and communication will always
succeed. In a full library, dealing with distributed as well as concurrent processes, we would
also need to consider failures such as timeouts and badly formed messages [18].

The key idea is to parameterise channels by the actions which will be executed on the
channel – that is, the messages which will be sent and received – and to use channels linearly.
We declare a Channel type as follows:

data Actions : Type where
Send : (a : Type) -> (a -> Actions) -> Actions
Recv : (a : Type) -> (a -> Actions) -> Actions
Close : Actions

data Channel : Actions -> Type

3 A collection of implementations is available at http://groups.inf.ed.ac.uk/abcd/
session-implementations.html

ECOOP 2021

http://groups.inf.ed.ac.uk/abcd/session-implementations.html
http://groups.inf.ed.ac.uk/abcd/session-implementations.html

9:18 Idris 2: Quantitative Type Theory in Practice

Internally, Channel contains a message queue for bidirectional communication. Listing 4
shows the types of functions for initiating sessions, and sending and receiving messages. In
the type of send, we see that to send a value of type ty we must have a channel in the state
Send ty next, where next is a function that computes the rest of the protocol. The type of
recv shows that we compute the rest of the protocol by inspecting the value received. We
initiate concurrent sessions with fork, and will discuss the details of this shortly.

Listing 4 Initiating and executing concurrent sessions
send : (1 chan : Channel (Send ty next)) -> (val : ty) ->

L {use =1} (Channel (next val))
recv : (1 chan : Channel (Recv ty next)) ->

L {use =1} (Res ty (\ val => Channel (next val)))
close : (1 chan : Channel Close) -> L ()
fork : ((1 chan : Server p) -> L ()) -> L {use =1} (Client p)

First, let us see how to describe dyadic protocols such that a client and server are
guaranteed to be synchronised. We describe protocols via a global session type:

data Protocol : Type -> Type where
Request : (a : Type) -> Protocol a
Respond : (a : Type) -> Protocol a
(>>=) : Protocol a -> (a -> Protocol b) -> Protocol b
Done : Protocol ()

A protocol involves a sequence of Requests from a client to a server, and Responses from
the server back to the client. For example, we could define a protocol (Listing 5) in which a
client sends a Command to either Add a pair of Ints or Reverse a String.

Listing 5 A global session type describing a protocol where a client can request either adding
two Ints or reversing a String

data Command = Add | Reverse

Utils : Protocol ()
Utils = do cmd <- Request Command

case cmd of
Add => do Request (Int , Int)

Respond Int
Done

Reverse => do Request String
Respond String
Done

Protocol is a DSL for describing communication patterns. Embedding it in a dependently
typed host language gives us dependent session types for free, as we will see in more detail
at the end of this section. We use the embedding to our advantage in a small way, by having
the protocol depend on cmd, the command sent by the client. We can write functions to
calculate the protocol for the client and the server:

AsClient , AsServer : Protocol a -> Actions

E. Brady 9:19

We omit the definitions, but each translates Request and Response directly to the
appropriate Send or Receive action. We can see how Utils translates into a type for the
client side by running AsClient Utils:

Send Command (\ res => (ClientK
(case res of

Add => Request (Int , Int) >>= _ =>
Respond Int >>= _ Done

Reverse => Request String >>= _ =>
Respond String >>= _ Done)

Most importantly, this shows us that the first client side operation must be to send a
Command. The rest of the type is calculated from the command which is sent; ClientK is
internal to AsClient and calculates the continuation of the type. Using these, we can define
the type for fork.

Client , Server : Protocol a -> Type
Client p = Channel (AsClient p)
Server p = Channel (AsServer p)

fork : ((1 chan : Server p) -> L ()) -> L {use =1} (Client p)

The type of fork ensures that the client and the server are working to the same protocol,
by calculating the channel type of each from the same global protocol. Since each channel is
linear, both ends of the protocol must be run to completion.

Listing 6 An implementation of a server for the Utils protocol
utilServer : (1 chan : Server Utils) -> L ()
utilServer chan

= do cmd # chan <- recv chan
case cmd of

Add => do (x, y) # chan <- recv chan
chan <- send chan (x + y)
close chan

Reverse => do str # chan <- recv chan
chan <- send chan (reverse str)
close chan

Listing 6 shows a complete implementation of a server for the Utils protocol. However,
we do not typically write a complete implementation in one go. Idris 2’s support for holes
means that it is more convenient to write the server incrementally, in a type-driven way. We
begin with just a skeleton definition, and look at the hole for the right hand side:

utilServer : (1 chan : Server Utils) -> L ()
utilServer chan = ? utilServer_rhs

1 chan : Channel (Recv Command (\ res => ...))
-- -----------------------------------
utilServer_rhs : L ()

ECOOP 2021

9:20 Idris 2: Quantitative Type Theory in Practice

Therefore, the first action on chan must be to receive a Command:

utilServer : (1 chan : Server Utils) -> L ()
utilServer chan

= do cmd # chan <- recv chan
? utilServer_rhs

cmd : Command
1 chan : Channel (ServerK (case cmd of ...) ...)

-- ----------------------------
utilServer_rhs : L ()

We elide the full details of the type of chan at this stage, but at the top level it suggests
that we can make progress by a case split on cmd:

utilServer : (1 chan : Server Utils) -> L ()
utilServer chan

= do cmd # chan <- recv chan
case cmd of

Add => ? process_add
Reverse => ? process_reverse

We make essential use of dependent case here, in that both branches have a different
type which is computed from the value of the scrutinee cmd, similarly to PrintfType in
Section 2.3.1. Now, for each of the holes process_add and process_reverse we see more
concretely how the protocol should proceed. e.g. for process_add:

1 chan : Channel (Recv (Int , Int) (\ res =>
(Send Int (\ res => Close))))

cmd : Command
-- -----------------------------------
process_add : L ()

This shows we have to receive a pair of Ints, then send an Int. Programming is thus a
dialogue with the type checker. Rather than trying to work out the complete program, with
increasing frustration as the type checker rejects our attempts, we write the program step
by step, and ask the type checker for more information on the variables in scope and the
required result.

Dependent Session Types
We have the full language available at the type level, and we have already used this to our
advantage in the definition of Utils, by using a case expression to choose how the protocol
proceeds based on a sent value. This is a dependent session type, in that the protocol depends
on run time information, although we have only used this to encode a form of choice. More
interestingly, we can write functions which dynamically construct protocol descriptions. For
example, the following function describes a server which sends back n values of type a:

GetN : (n : Nat) -> (a : Type) -> Protocol ()
GetN Z a = Done
GetN (S l) a = do Respond a

GetN l a

We can use this, for example, in a protocol in which a client sends a Nat, and the server
responds with that many Strings:

E. Brady 9:21

DepProto : Protocol ()
DepProto = do num <- Request Nat

GetN num String

Listing 7 shows one possible implementation of a client for this session type, which sends
a value, then receives exactly that many Strings on the channel.

Listing 7 An implementation of a client using a dependent session type
depClient : (1 chan : Client DepProto) -> Nat -> L IO ()
depClient chan k

= do chan2 <- send chan k
getN k chan2

where
getN : (x : Nat) -> (1 chan : Client (GetN x String)) -> L IO ()
getN 0 chan = close chan
getN (S k) chan = do str # chan <- recv chan

putStrLn str
getN k chan

By embedding our session types implementation in a language with linear and dependent
types, we need no extensions for dependent session types: the same machinery works for
both standard and dependent sessions, thanks to the features of the host language.

Extension: Sending Channels over Channels
A useful extension is to allow a server to start up more worker processes to handle client
requests. This would require sending the server’s Channel endpoint to the worker process.
However, we cannot do this with send as it stands, because the value sent must be of
multiplicity ω, and the Channel is linear. One way to support this would be to refine
Protocol to allow flagging messages as linear, then add:

send1 : (1 chan : Channel (Send1 ty next)) -> (1 val : ty) ->
L {use =1} (Channel (next val))

This takes advantage of QTT’s ability to parameterise types by linear variables like val
here. A worker protocol, using the Utils protocol above, could then be described as follows,
where a server forks a new worker process and immediately sends it the communication
Channel for the client:

MakeWorker : Protocol ()
MakeWorker = do Request1 (Server Utils); Done

We leave full details of this implementation for future work. It is, nevertheless, a minor
adaptation of the session types library.

6 Related Work

Substructural Types

Linear types [45] and other substructural type systems have several applications, e.g. verifying
unique access to external resources [17] and as a basis for session types [21]. These applications
typically use domain specific type systems, rather than the generality which would be given by

ECOOP 2021

9:22 Idris 2: Quantitative Type Theory in Practice

full dependent types. There are also several implementations of linear or other substructural
type systems in functional languages [44, 36, 16, 33]. While these languages do not have
full dependent types, Granule [36] allows many of the same properties to be expressed with
a sophisticated notion of graded types which allows quantitative reasoning about resource
usage, and work is in progress to add dependent types to Granule [32, 13]. ATS [40] is
a functional language with linear types with support for theorem proving, which allows
reasoning about resource usage and low level programming. An important mainstream
example of the benefit of substructural type systems is Rust4 [24] which guarantees memory
safety of imperative programs without garbage collection or any run time overhead, and is
expressive enough to implement session types [23].

Historically, combining linear types and dependent types in a fully general way – with
first-class types, and the full language available at the type level – has been a difficult
problem, primarily because it is not clear whether to count variable usages in types. The
problem can be avoided [26] by disallowing dependent linear functions or by limiting the
form of dependency [19], but these approaches limit expressivity. For example, we may still
want to reason about linear variables which have been consumed. Or, as we saw at the
end of Section 5, we may want to use a linear value as part of the computation of another
type. Quantitative Type Theory [4, 29], allows full dependent types with no restrictions on
whether variables are used in types or terms, by checking terms at a specific multiplicity.

Erasure

While linearity has benefits in allowing reasoning about effects and resource usage, one of
the main motivations for using QTT is to give a clear semantics for erasure in the type
system. We distinguish erasure from relevance, meaning that erased arguments are still
relevant during type-checking, but erased at run time. Early approaches in Idris include the
notion of “forced arguments” and “collapsible data types” [7], which give a predictable, if not
fully general, method for determining which arguments can be erased. Idris 1 uses a whole
program analysis [42], partly inspired by earlier work on Erasure Pure Type Systems [31] to
determine which arguments can be erased, which works well in practice but doesn’t allow a
programmer to require specific arguments to be erased, and means that separate compilation
is difficult. The problem of what to erase also exists in Haskell to some extent, even without
full dependent types, when implementing zero cost coercions [46]. Our experience of the 0
multiplicity of QTT so far is that it provides the cleanest solution to the erasure problem,
although we no longer infer which other arguments can be erased.

Reasoning about Effects

One of the motivations for using QTT beyond expressing erasure in types is that it provides
a core language which allows reasoning about external resource usage. Previous work on
reasoning about effects and resources with dependent types has relied on indexed monads [3,
27] or embedded DSLs for describing effects [9]. These are effective, but generally difficult to
compose; even if we can compose effects in a single EDSL, it is hard to compose multiple
EDSLs, especially when parameterised with type information. Other successful approaches
such as Hoare Type Theory [34] are sufficiently expressive, but difficult to apply in everyday
programming. Having linear types in the core language means that tracking state changes,
which we have previously had to encode in a state-tracking monad, is now possible directly
in the language. We can compose multiple resources by using multiple linear arguments.

4 https://rust-lang.org/

https://rust-lang.org/

E. Brady 9:23

Combining dependent and linear types, along with protocol descriptions in L, gives us similar
power to Typestate [1, 48], in that we can use dependency to capture the state of a value
in its type, and linearity to ensure that it is always used in a valid state. First-class types
gives us additional flexibility: we can reason about state changes which are only known at
run-time, such as checking a PIN in an ATM.

Session Types

In Section 5 we gave an example of using QTT to implement Dyadic Session Types [21]. In
previous work [11] Idris has been experimentally extended with uniqueness types, to support
verification of concurrent protocols. However, this earlier system did not support erasure, and
as implemented it was hard to combine unique and non-unique references. Our experience
with QTT is that its approach to linearity, with multiplicities on the binders rather than on
the types, is much easier to combine with other non-linear programs.

Given linearity and dependent types, we can already have dependent session types, where,
for example, the progress of a session depends on a message sent earlier. Thus, the embedding
gives us label-dependent session types [43] with no additional cost. Previous work in exploring
value-dependent sessions in a dependently typed language [15] is directly expressible using
linearity in Idris 2. We have not yet explored further extensions to session types, however,
such as multiparty session types [22], dealing with exceptions during protocol execution [18]
or dealing with errors in transmission in distributed systems.

7 Conclusions and Further Work

Implementing Idris 2 with Quantitative Type Theory in the core has immediately given
us a lot more expressivity in types than Idris 1. For most day to day programming tasks,
expressing erasure at the type level is the most valuable user-visible new feature enabled by
QTT, in that it is unambiguous which function and data arguments will be erased at run
time. Erasure has been a difficulty for dependently typed languages for decades and until
recently has been handled in partial and unsatisfying ways (e.g. [12]). Quantitative Types,
and related recent work [42], are the most satisfying so far, in that they give the programmer
complete control over what is erased at run time. In future, we may consider combining
QTT with inference for additional erasure [42].

The 1 multiplicity enables programming with full linear dependent types. Therefore
reasoning about resources, which previously required heavyweight library implementations,
is now possible directly, in pure functions. We have also seen, briefly, that quantities give
more information when inspecting the types of holes. More expressive types, with interactive
editing tools. make programming a dialogue with the machine, rather than an exercise in
frustration when submitting complete (but wrong!) programs to the type checker.

We have often found full dependent types, where a type is a first class language construct,
to be extremely valuable in developing libraries with expressive interfaces, even if the programs
which use those libraries do not use dependent types much. The L type for embedding linear
protocols is an example of this, in that it allows a programmer to express precisely not
only what a function does, but also when it is allowed to do it. It is important that the
type system remains accessible to programmers, however. Dependent and linear types are
powerful concepts, and without care in library design, can be hard to use. However, they
don’t have to be: they are based on concepts that programmers routinely understand and
use, such as using a variable once and making assumptions about the relationships between
data. A challenge for language and tool designers is to find the right syntax and feedback
mechanisms, so that powerful verification tools are within reach of all software developers.

ECOOP 2021

9:24 Idris 2: Quantitative Type Theory in Practice

While we have already found many benefits of being able to express quantities in types, we
have only just begun exploring, and have encountered some limitations in the theory which
we hope to address, perhaps adapting ideas from related work [13]. Most importantly, we
would like to express polymorphic quantities. This may, for example, help give an appropriate
type to >>= taking into account that some monads guarantee to execute the continuation
exactly once, but others need more flexibility. Similarly, like Granule [36], we may find it
useful to use quantities other than 0 and 1, and the theory behind QTT supports this.

We have not discussed performance in this paper, but for an interactive system it is
vital, and will be a primary concern in the near future. Following [25], Idris 2 minimises
substitution of unification solutions. Initial results are promising: Idris 2 is now self-hosting,
and builds itself in around 90 seconds5. We are using the interactive development tools,
especially holes, in developing Idris itself.

Finally, an important application of reasoning about linear resource usage is in implement-
ing communication and security protocols correctly. The Protocol type in Section 5 provides
a preliminary example which demonstrates the possibilities, but realistically it will need to
handle timeouts, exceptions and more sophisticated protocols. Implementing these protocols
correctly is difficult and error prone, and errors lead to damaging security problems6. But in
describing a session type, we have explained a protocol in detail, and the machine calculates
a lot of information about how the protocol proceeds. We should not let the type checker
keep this information to itself! Thus, interactive programming of protocols based on linear
resource usage gives a foundation for secure programming.

References
1 J Aldrich, J Sunshine, D Saini, and Z Sparks. Typestate-oriented programming. In Proceedings

of the 24th ACM SIGPLAN conference companion on Object oriented programming systems
languages and applications, pages 1015–1012, 2009. URL: http://dl.acm.org/citation.cfm?
id=1640073.

2 Guillaume Allais, James Chapman, Conor McBride, and James McKinna. Type-and-Scope
Safe Programs and their Proofs. In CPP, pages 195–207, 2017.

3 Robert Atkey. Parameterised notions of computation. Journal of Functional Programming,
19(3-4):335, 2009. doi:10.1017/S095679680900728X.

4 Robert Atkey. The syntax and semantics of quantitative type theory. In LICS 2018, 2018.
doi:10.1145/3209108.3209189.

5 L. Augustsson and M. Carlsson. An exercise in dependent types: A well-typed interpreter.
In In Workshop on Dependent Types in Programming, Gothenburg. Citeseer, 1999. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.2895.

6 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear Haskell: Practical linearity in a higher-order polymorphic language.
Proc. ACM Program. Lang., 2(POPL):5:1–5:29, December 2017. doi:10.1145/3158093.

7 Edwin Brady. Practical Implementation of a Dependently Typed Functional Programming
Language. PhD thesis, University of Durham, 2005.

8 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 23:552–593, September 2013.

9 Edwin Brady. Resource-dependent algebraic effects. In Jurriaan Hage and Jay McCarthy,
editors, Trends in Functional Programming (TFP ’14), volume 8843 of LNCS. Springer, 2014.

5 Dell XPS 13 Laptop, running Ubuntu 18.03 LTS
6 e.g. https://www.imperialviolet.org/2014/02/22/applebug.html

http://dl.acm.org/citation.cfm?id=1640073
http://dl.acm.org/citation.cfm?id=1640073
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/3209108.3209189
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.2895
https://doi.org/10.1145/3158093
https://www.imperialviolet.org/2014/02/22/applebug.html

E. Brady 9:25

10 Edwin Brady. Resource-dependent algebraic effects. In Jurriaan Hage and Jay McCarthy,
editors, Trends in Functional Programming - 15th International Symposium, TFP 2014,
Soesterberg, The Netherlands, May 26-28, 2014. Revised Selected Papers, volume 8843 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2014. doi:10.1007/978-3-319-14675-1_2.

11 Edwin Brady. Type-driven development of concurrent communicating systems. Computer
Science, 18(3), 2017.

12 Edwin Brady, Conor McBride, and James McKinna. Inductive families need not store their
indices. In Types for Proofs and Programs (TYPES 2003), volume 3085 of Lecture Notes in
Computer Science, pages 115–129. Springer, 2003.

13 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C. Weirich. A graded
dependent type system with a usage-aware semantics (extended version). In arXiv:2011.04070
[cs], January 2021. arXiv: 2011.04070. URL: http://arxiv.org/abs/2011.04070.

14 Nils Anders Danielsson. Total parser combinators. In International Conference on Functional
Programming (ICFP 2010), 2010. doi:10.1145/1932681.1863585.

15 Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede. Value-dependent session
design in a dependently typed language. In Francisco Martins and Dominic Orchard, editors,
Proceedings Programming Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April 2019, volume 291 of
EPTCS, pages 47–59, 2019. doi:10.4204/EPTCS.291.5.

16 Edsko de Vries, Rinus Plasmeijer, and David M Abrahamson. Uniqueness Typing Simplified.
In Implementation and Application of Functional Languages, pages 201—-218, 2008.

17 Robert Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet processing. In David
Schmidt, editor, Programming Languages and Systems, pages 204–218, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

18 Simon Fowler, Sam Lindley, J Garrett Morris, and Sara Decova. Exceptional Asynchronous
Session Types: Session Types without Tiers. In Principles of Programming Languages (POPL
2019), 2019.

19 Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.
Linear dependent types for differential privacy. In Proceedings of the 40th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’13, page
357, 2013. doi:10.1145/2429069.2429113.

20 Adam Gundry. Type Inference, Haskell and Dependent Types. PhD Thesis, University
of Strathclyde, 2013. URL: https://personal.cis.strath.ac.uk/adam.gundry/thesis/
thesis-2013-07-24.pdf.

21 Kohei Honda. Types for dyadic interaction. In CONCUR 1993 (International Conference on
Concurrency Theory). Springer, 1993.

22 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Principles of Programming Languages (POPL 2008), 2008.

23 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session Types
for Rust. In WGP 2015 (Workshop on Generic Programming). ACM, 2015.

24 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: Securing
the foundations of the rust programming language. Proc. ACM Program. Lang., 2(POPL),
2017. doi:10.1145/3158154.

25 András Kovács. Fast elaboration for dependent type theories, 2019. Talk at EU Types WG
Meeting.

26 Neelakantan R Krishnaswami, Pierre Pradic, and Nick Benton. Integrating Dependent and
Linear Types. In Principles of Programming Languages (POPL 2015), 2015.

27 Conor McBride. Kleisli arrows of outrageous fortune, 2011.
28 Conor McBride. How to Keep Your Neighbours in Order. In International Conference on

Functional Programming (ICFP 2014), 2014.
29 Conor McBride. I got plenty o’ nuttin’. In A List of Successes that Can Change the World,

2016.

ECOOP 2021

https://doi.org/10.1007/978-3-319-14675-1_2
http://arxiv.org/abs/2011.04070
https://doi.org/10.1145/1932681.1863585
https://doi.org/10.4204/EPTCS.291.5
https://doi.org/10.1145/2429069.2429113
https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-07-24.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-07-24.pdf
https://doi.org/10.1145/3158154

9:26 Idris 2: Quantitative Type Theory in Practice

30 Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 1992. URL:
http://www.sciencedirect.com/science/article/pii/074771719290011R.

31 Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In
Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6,
2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages 350–364. Springer,
2008. doi:10.1007/978-3-540-78499-9_25.

32 Benjamin Moon, Harley Eades III, and Dominic Orchard. Graded Modal Dependent Type
Theory. In ESOP 2021, 2020. arXiv: 2010.13163. URL: http://arxiv.org/abs/2010.13163.

33 J Garrett Morris. The Best of Both Worlds: Linear Functional Programming Without Com-
promise. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming - ICFP 2016, pages 448–461, 2016. doi:10.1145/2951913.2951925.

34 Aleksander Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: Dependent types for imperative programs. In International Conference on Functional
Programming (ICFP 2008), pages 229—-240, 2008. doi:10.1145/1411204.1411237.

35 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.65.7934&rep=rep1&type=pdf.

36 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proc. ACM Program. Lang., 3(ICFP), 2019. doi:
10.1145/3341714.

37 Simon Peyton Jones. Tackling the Awkward Squad: monadic input/output, concurrency, ex-
ceptions, and foreign-language calls in Haskell. In Engineering theories of software construction,
Marktoberdorf Summer School, pages 47—-96, 2001.

38 Nadia Polikarpova, Ivan Kuraj, and Armando Solar-lezama. Program Synthesis from Poly-
morphic Refinement Types. PLDI, 2016. ISBN: 9781450342612.

39 A. H. Robinson and C. Cherry. Results of a prototype television bandwidth compression
scheme. Proceedings of the IEEE, 55(3):356–364, 1967. doi:10.1109/PROC.1967.5493.

40 Rui Shi and Hongwei Xi. A linear type system for multicore programming in ATS. Science of
Computer Programming, 78(8):1176–1192, 2013. doi:10.1016/j.scico.2012.09.005.

41 Matúš Tejiščák. A dependently typed calculus with pattern matching and erasure inference.
Proc. ACM Program. Lang., 4(ICFP):91:1–91:29, 2020. doi:10.1145/3408973.

42 Matúš Tejiščák. Erasure in Dependently Typed Programming. PhD thesis, University of St
Andrews, 2020.

43 Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proc. ACM
Program. Lang., 4(POPL), December 2019. doi:10.1145/3371135.

44 Jesse a. Tov and Riccardo Pucella. Practical affine types. In Principles of Programming
Languages, pages 447—-458, 2011. doi:10.1145/1925844.1926436.

45 Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, IFIP TC
2 Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, pages
347–359. North Holland, 1990.

46 Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A. Eisenberg. A role
for dependent types in Haskell. Proc. ACM Program. Lang., 3(ICFP):101:1–101:29, 2019.
doi:10.1145/3341705.

47 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
Eisenberg. A specification for dependent types in Haskell. Proc. ACM Program. Lang.,
1(ICFP):31:1–31:29, 2017. doi:10.1145/3110275.

48 Roger Wolff, Jonathan Aldrich, Ronald Garcia, Roger Wolff, and Jonathan Aldrich. Found-
ations of Typestate-Oriented Programming. Transactions on Programming Languages and
Systems, 36(4):1–44, 2014.

http://www.sciencedirect.com/science/article/pii/074771719290011R
https://doi.org/10.1007/978-3-540-78499-9_25
http://arxiv.org/abs/2010.13163
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1145/1411204.1411237
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7934&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7934&rep=rep1&type=pdf
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1109/PROC.1967.5493
https://doi.org/10.1016/j.scico.2012.09.005
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3371135
https://doi.org/10.1145/1925844.1926436
https://doi.org/10.1145/3341705
https://doi.org/10.1145/3110275

Multiparty Session Types for Safe Runtime
Adaptation in an Actor Language
Paul Harvey #

Rakuten Mobile Innovation Studio, Tokyo, Japan

Simon Fowler #

School of Computing Science, University of Glasgow, Scotland, UK

Ornela Dardha #

School of Computing Science, University of Glasgow, Scotland, UK

Simon J. Gay #

School of Computing Science, University of Glasgow, Scotland, UK

Abstract
Human fallibility, unpredictable operating environments, and the heterogeneity of hardware devices
are driving the need for software to be able to adapt as seen in the Internet of Things or telecom-
munication networks. Unfortunately, mainstream programming languages do not readily allow a
software component to sense and respond to its operating environment, by discovering, replacing, and
communicating with components that are not part of the original system design, while maintaining
static correctness guarantees. In particular, if a new component is discovered at runtime, there is no
guarantee that its communication behaviour is compatible with existing components.

We address this problem by using multiparty session types with explicit connection actions, a type
formalism used to model distributed communication protocols. By associating session types with
software components, the discovery process can check protocol compatibility and, when required,
correctly replace components without jeopardising safety.

We present the design and implementation of EnsembleS, the first actor-based language with
adaptive features and a static session type system, and apply it to a case study based on an adaptive
DNS server. We formalise the type system of EnsembleS and prove the safety of well-typed programs,
making essential use of recent advances in non-classical multiparty session types.

2012 ACM Subject Classification Software and its engineering → Concurrent programming languages

Keywords and phrases Concurrency, session types, adaptation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.10

Related Version Full Version: https://arxiv.org/abs/2105.06973

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.8

Funding Supported by EPSRC grants EP/T014628/1 (STARDUST), EP/K034413/1 (ABCD),
EP/L01503X/1 (CDT in Pervasive Parallelism), ERC Consolidator Grant Skye (682315), and by
the EU HORIZON 2020 MSCA RISE project 778233 (BehAPI).

Acknowledgements Thanks to Phil Trinder for helpful comments and discussions, and to the
anonymous reviewers for exceptionally detailed reviews.

1 Introduction

The era of single monolithic stand-alone computers has long been replaced by a landscape of
heterogeneous and distributed computers and software applications. Technologies such as
the IoT [56], self-driving cars [55], or autonomous networks [7] bring the new challenge of
needing to successfully operate in face of ever-changing environments, technologies, devices,
and human errors, necessitating the need to adapt.

Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 10; pp. 10:1–10:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul@paul-harvey.org
https://orcid.org/0000-0003-1243-938X
mailto:Simon.Fowler@glasgow.ac.uk
https://orcid.org/0000-0001-5143-5475
mailto:Ornela.Dardha@glasgow.ac.uk
https://orcid.org/0000-0001-9927-7875
mailto:Simon.Gay@glasgow.ac.uk
https://orcid.org/0000-0003-3033-9091
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://arxiv.org/abs/2105.06973
https://doi.org/10.4230/DARTS.7.2.8
https://doi.org/10.4230/DARTS.7.2.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Here, we define dynamic self-adaptation – hereafter referred to as adaptation – as the ability
of a software component to sense and respond to its operating environment, by discovering,
replacing, and communicating with other software components at runtime that are not part
of the original system design [6, 52]. There are many examples of adaptive systems, as well
as the mechanisms of adaptation they leverage, such as discovery [37], modularisation [27],
dynamic code loading and migration [12, 24]. Commercially, Steam’s in-home streaming
system1 enables video games to dynamically transfer their input/output across a range of
devices. Academically, REX [50] enables software to self-assemble predefined components,
using machine learning to reconfigure the software in response to environmental changes.

Despite strong interest in adaption and substantial work on the mechanisms of adaptation,
current programming languages either lack the capabilities to ensure that adaptation can be
achieved safely and correctly, or they check correctness dynamically, resulting in runtime
overheads which may not be acceptable for resource-constrained devices.

Specifically, if an adaptive system discovers new software components at runtime, these
components must interact with the system in a purposeful manner. In concurrent and
distributed systems, such interaction goes beyond a simple function call / return expressed
with standard types and type systems: interaction involves complex communication protocols
that constrain the sequence and type of data exchanged. For example, knowing that two
components communicate integers and strings does not describe if or when they will be sent
or received. In spite of growing interest in the topic, for example, the recent formation of the
United Nations group considering creative adaptation2, mainstream programming languages
do not support the specification and verification of communication protocols in concurrent
and distributed systems. In turn, errors are discovered late in the development process and
potentially after deployment.

Even where all components are known statically, communication safety cannot be guar-
anteed: as an example, the REX system’s programming language specifies sequential call /
return interfaces for components, but not communication protocols for concurrent compon-
ents. The adaptation in the Steam in-home streaming system is even more limited, being
restricted to detection of input/output devices from a set of compatible possibilities. In both
cases, the adaptive aspects of the software have been defined and designed ahead of time,
as opposed to being composed on-demand at runtime, leaving no scope for extending the
system via runtime discovery and replacement.

This situation brings us to a key research question:

RQ: Can a programming language support static (compile-time) verification of safe runtime
dynamic self-adaptation, i.e., discovery, replacement and communication?

The problem of static verification of safe communication is addressed by multiparty session
types [29, 30, 31]. Multiparty session types (MPSTs) are a type formalism used to specify
the type, direction and sequence of communication actions between two or more participants.
Session types guarantee that software conforms to predefined communication protocols,
rather than risking errors manifesting themselves at runtime.

There is already some work in the literature on adaptation and session types, but it does not
answer our research question. We discuss related work in §6, but in brief, the state-of-the-art
has some combination of the following limitations: theory for a formal model such as the
π-calculus [13, 11, 19, 18], rather than a real-world programming language; omission of some
aspects of adaptation, such as runtime discovery [32]; or verification by runtime monitoring
[47, 49, 21], as opposed to static checking.

1 http://store.steampowered.com/streaming/
2 https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

http://store.steampowered.com/streaming/
https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:3

Global protocol
1 global protocol Bookstore
2 (role Sell, role Buy1, role Buy2) {
3 book(string) from Buy1 to Sell;
4 book(int) from Sell to Buy1;
5 quote(int) from Buy1 to Buy2;
6 choice at Buy2 {
7 agree(string) from Buy2 to Buy1, Sell;
8 transfer(int) from Buy1 to Sell;
9 transfer(int) from Buy2 to Sell;

10 } or {
11 quit(string) from Buy2 to Buy1, Sell;
12 } }

Local protocol for Sell
1 local protocol Bookstore_Sell
2 (self Sell,role Buy1,role Buy2) {
3 book(string) from Buy1;
4 book(int) to Buy1;
5 choice at Buy2{
6 agree(string) from Buy2;
7 transfer(int) from Buy1;
8 transfer(int) from Buy2;
9 } or {

10 quit(string) from Buy2;
11 } }

Figure 1 Global and local protocols for Bookstore.

To answer our research question, we implement EnsembleS, the first actor language
leveraging MPSTs to provide compile-time verification of safe dynamic runtime adaptation:
we can statically guarantee that a discovered actor will comply with a communication protocol,
and guarantee that replacing an actor’s behaviour (e.g., to fix a bug) will not jeopardise
communication safety. Key to our approach is the combination of the actor paradigm [28], for
its process addressability and explicit message passing, with explicit connection actions [32]
in multiparty session types, which allow discovered actors to be invited into a session.

Contributions. The overarching contribution of this work is the design, implementation,
and formalisation of a language which supports dynamic self-adaptation while guaranteeing
communication safety. We achieve this through a novel integration of an actor-based language
and multiparty session types with explicit connection actions. Specifically, we introduce:

1. EnsembleS and its compiler (§ 3): we present an actor language, EnsembleS, which
supports safe adaptable applications using MPSTs. Our framework supports:

MPST specifications, both standard and using explicit connection actions (§ 3.3);
MPSTs to provide guarantees of protocol compliance in runtime discovery (§ 3.4);
automatic generation of application code from MPSTs (§ 3.2)

2. An adaptive DNS case study (§ 4): using MPSTs and runtime discovery to show safe
dynamic self-adaptation can be achieved in a non-trivial software service

3. A core calculus for EnsembleS (§ 5): we formalise EnsembleS and prove type safety
and progress.

The formalism makes several technical contributions: it is the first actor-based calculus
with statically-checked MPSTs; and it is the first calculus to provide a language design and
semantics for explicit connection actions, which had previously only been explored at the
type level. Our design requires exception handling in the style of Mostrous & Vasconcelos [45]
and Fowler et al. [22], and the metatheory makes essential (and novel) use of non-classical
multiparty session types [54].

The implementation and examples are available in the paper’s companion artifact.

2 Multiparty Session Types

Multiparty session types [31] are a type formalism used to describe communication protocols
in concurrent and distributed systems. An MPST describes communication among multiple
software components or participants, by specifying the type and the direction of data
exchanged, which is given as a sequence of send and receive actions.

ECOOP 2021

10:4 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

1 explicit global protocol OnlineStore
2 (role Customer, role Store, role Courier) {
3 login(string) connect Customer to Store;
4 do Browse(Customer, Store, Courier);
5 }
6
7 aux global protocol Deliver
8 (role Customer, role Store, role Courier) {
9 address(string) from Customer to Store;

10 deliver(string) connect Store to Courier;
11 ref(int) from Courier to Store;
12 disconnect Courier and Store;
13 ref(int) from Store to Customer;
14 disconnect Store and Customer;
15 }

1 aux global protocol Browse
2 (role Customer, role Store, role Courier) {
3 item(string) from Customer to Store;
4 price(int) from Store to Customer;
5 choice at Customer {
6 do Browse(Customer, Store, Courier);
7 } or {
8 do Deliver(Customer, Store, Courier);
9 } or {

10 quit() from Customer to Store;
11 disconnect Store and Customer;
12 }
13 }

Figure 2 Global protocol for OnlineStore.

We first introduce MPSTs (formalised in § 5) via Scribble [57], a specification language for
communicating protocols based on the theory of multiparty session types. We start with a
global type, which describes the interactions among all communicating participants. Using
the Scribble tool, a global protocol can be validated, guaranteeing its correctness, and then
projected for each participant. Projection returns a local type, which describes communication
actions from the viewpoint of that participant.

Bookstore example. Fig. 1 shows the classic Bookstore (also known as Two-Buyer) ex-
ample, written in Scribble. We have three communicating participants (roles): two buyers
Buy1 and Buy2, and one seller Sell, where the buyers wish to buy a book from the seller.
Buy1 sends the title of the book of type string to Sell (line 3). Next, Sell sends the
price of the book of type int to Buy1 (line 4). At this stage, Buy1 invites Buy2 to share the
cost of the book, by sending them a quote of type int that Buy2 should pay (line 5). It is
Buy2’s internal choice (line 6) to either agree (line 7), or quit the protocol (line 11). After
agreement, both Buy1 and Buy2 transfer their quote to Sell (lines 8 and 9, respectively).

Projecting the Bookstore global protocol into each of the communicating participants
returns their local protocols. Fig. 1 shows the local protocol for Sell; we omit Buy1 and
Buy2 as they are similar. Note that the local protocol only includes actions relevant to Sell.

Explicit connection actions. The Bookstore protocol assumes that all roles are connected
at the start of the session. This is undesirable when a participant is only needed for part of
a session, or the identity of a participant depends on data exchanged in the protocol.

Consider Figure 2, which details the protocol for an online shopping service, inspired by
the travel agency protocol detailed by Hu & Yoshida [32]. The protocol is organised as
three subprotocols: OnlineStore, the entry-point; Browse, where the customer repeatedly
requests quotes for items; and Deliver, where the store requests delivery from a courier. In
contrast to Bookstore, each connection must be established explicitly (note that connect
replaces from when initiating a connection).

Note in particular that Courier is only involved in the Deliver subprotocol. The store
can therefore choose which courier to use based on, for example, the weight of the item or the
customer’s location. Furthermore, it is not necessary to involve the courier if the customer
does not choose to make a purchase.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:5

1 type Isnd is interface(out integer output)
2 type Ircv is interface(in integer input)
3
4 stage home {
5 actor sender presents Isnd {
6 value = 1;
7 constructor() {}
8 behaviour {
9 send value on output;

10 value := value + 1;
11 } }
12 actor receiver presents Ircv {

13 constructor() {}
14 behaviour{
15 receive data from input;
16 printString("\nreceived: ");
17 printInt(data);
18 } }
19 boot {
20 s = new sender();
21 r = new receiver();
22 establish topology(s, r);
23 }
24 }

Figure 3 A simple EnsembleS program.

3 EnsembleS: An Actor Language for Runtime Adaptation

In this section, we present EnsembleS, a new session-typed actor-based language based on
Ensemble [25, 26]. EnsembleS actors are addressable, single-threaded entities with share-
nothing semantics, and communicate via message passing. However, differently from the
classic definition of the actor model [28, 1], the communication model in EnsembleS is
channel-based. EnsembleS supports both static and dynamic topologies:
Static Topologies All participants are present at the start of the session and remain involved

for the duration of the session. This is based on traditional MPSTs [31].
Dynamic Topologies Participants can connect and disconnect during a session. This builds

on the more recent idea of explicit connection actions [32].

3.1 EnsembleS: basic language features
An EnsembleS actor has its own private state and a single thread of control expressed as

a behaviour clause, which is repeated until explicitly told to stop. Every actor executes
within a stage, which represents a memory space. Actors do not share state, but instead
communicate via message passing along half-duplex, simply-typed channels.

Fig. 3 shows a simple EnsembleS program which defines, instantiates and connects two
actors, one of which sends increasing values to the other. The program defines two interfaces
Isnd and Ircv, declaring an output and input channel respectively. The boot clause (lines 19–
23) is executed first and creates an instance of each actor (lines 20–21), using the appropriate
constructor (lines 7 and 13, respectively). This creates and begins executing new threads for
each actor, which follow the logic of the relevant behaviour clause. Next, the boot clause
binds the actor’s channels together (line 22, discussed in §3.3). Once bound, the sender actor
sends the contents of value on its channel, increments it, and goes back to the beginning of
its behaviour loop (lines 8–11). The receiver actor waits for a message, binds the message
to data, displays it, and returns to the top of its behaviour loop (lines 14–18). EnsembleS
inherits Ensemble’s support for runtime software adaptation actions [26]:

Discover The ability to locate an arbitrary actor or stage reference at runtime, given an
interface and query.

Install Given an actor type, the ability to spawn it at a specified stage.
Migrate The ability for an executing actor to move to another stage.
Replace The ability to replace an executing actor A by a new instantiation of actor B, the

latter continuing at the same stage as A, if A and B have the same interface.
Interact : Given an actor reference (either spawned, discovered, or communicated), the

ability to connect to its channels at runtime and then communicate.

ECOOP 2021

10:6 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Scribble
Global Protocol

Scribble
Local Protocol

EnsembleS
Template Executable

Scribble Tool StMungo EnsembleS Compiler

Figure 4 Automatic Actor Skeleton Generation Process.

We focus on the underlined actions and apply session types to guarantee communication
safety. The reason for this choice is that discover, replace and interact are actions that
modify how actors operate, whereas the other actions, install and migrate, affect where actors
operate, but not their behaviour.

3.2 Session types in EnsembleS
A session type in EnsembleS represents a communication protocol for an actor, i.e., a local
protocol (or local session type) validated and projected from a global session type.

We extend the StMungo [40] tool to generate EnsembleS template code that supports
session types. Fig. 4 shows an overview of the actor template code generation from a global
session type, and Fig. 5 shows an example of the generated code.

First, a developer defines a global session type in Scribble [57] (Fig. 4, first stage). The
Scribble tool checks that the protocol is well-formed and valid according to MPST theory
and projects the global protocol into local protocols for each participant (Fig.4, second stage).
For each local protocol, the StMungo tool produces (Fig. 4, third stage) i) the session type,
ii) the interface and type definitions, and iii) the actor template. The generated code is
parsed by the EnsembleS compiler, producing executable code (Fig. 4, fourth stage).

Let us now look at the Buy1 local protocol, given in Fig. 1. Following the code generation
process in Fig.4, the EnsembleS template items i), ii) and iii) for Buy1 correspond respectively
to the code blocks starting in lines 3, 14, and 24 in Fig. 5.

The Buy1 local protocol is translated as an EnsembleS session type in Fig. 5 (lines 3–12).
It shows a sequence of send and receive actions (lines 4–6), followed by a choice at Buy2
(lines 7–12), which determines the next set of communication actions.

Following session type specifications, EnsembleS channels define both the payload type and
the session that this channel expects to interact with (lines 14–21, Fig. 5). The EnsembleS
compiler uses this information to ensure that the session of each channel matches the
session associated with the actor it is connected to.

An actor may follow a session type (line 24, Fig. 5). This tells the EnsembleS compiler
that the logic within the behaviour clause of that actor must follow the communication
protocol defined in the session.

It is important to note that the code generation in Fig. 4 is optional and the EnsembleS
typechecker is independent of this process.

3.3 Channel connections: static and dynamic
If an actor follows a session type, then its channel connections must be 1-1. This is the
standard linearity requirement for session types: if there are multiple senders on one channel,
then their messages can interfere and it is not possible to statically check that the session
is followed correctly. EnsembleS avoids this problem by using a single channel for each
message type between each pair of participants. For example, in Fig. 1, each of the three
actors communicates strings and integers with both of the other actors. Because channels are
unidirectional, each actor therefore has 8 channels: 2 to send strings and 2 to send integers
to both other actors, and similarly 4 channels for receiving.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:7

1 // FILE AUTOMATICALLY GENERATED
2 //************SESSIONS**************
3 type Buy1 is session(
4 book(string) to Sell;
5 book(int) from Sell;
6 quote(int) to Buy2;
7 choice at Buy2{
8 Choice0_agree(string) from Buy2;
9 transfer(int) to Sell;

10 } or {
11 Choice0_quit(string) from Buy2;
12 })
13 //***********INTERFACES*************
14 type Buy1I is interface(
15 out {Seller, string} toSell_string,
16 in {Seller, integer} fromSell_integer,
17 out {Buy2, integer} toBuy2_integer,
18 in {Buy2, Choice0} fromBuy2_agreequit,
19 in {Buy2, string} fromBuy2_string,
20 out {Sell, integer} toSell_integer,
21)
22 //*************ACTORS***************
23 stage home{
24 actor Buy1A presents Buy1I follows Buy1 {
25 constructor() {}
26 behaviour {

27 payload1 = "";
28 send payload1 on toSell_string;
29 receive payload2 from fromSell_integer;
30 payload3 = 42;
31 send payload3 on toBuy2_integer;
32 // Receive choice from other actor
33 receive payload4 from fromBuy2_agreequit;
34 switch(payload4) {
35 case Choice0_agree:
36 receive payload5 from fromBuy2_string;
37 payload6 = 42;
38 send payload6 on toSell_integer;
39 break;
40 case Choice0_quit:
41 receive payload7 from fromBuy2_string;
42 break;
43 }
44 } }
45 // Omitted: Buy2A and SellA actors
46 boot {
47 buyer1 = new Buy1A();
48 buyer2 = new Buy2A();
49 seller = new SellA();
50 // other actors...
51 establish topology(buyer1,buyer2,seller);
52 } }

Figure 5 EnsembleS static session template.

Static connections. When using session types with static topologies, and all actors in the
session are known from the beginning of the application, EnsembleS provides the establish
topology statement to create the connections between the specified session actors (line 22,
Fig. 3; line 51, Fig. 5). A compile-time error is generated if the topology is ill-defined (e.g., if
the sessions do not compose or if the channels do not match).

Dynamic connections. EnsembleS supports reconfigurable channels and dynamic connec-
tions, via link and unlink statements. The link statement takes two references to actors
which follow sessions (line 5, top of Fig. 6), and connects all of the channels of the two
specified actors such that the actors’ sessions match. A compile-time error is raised if the
sessions are incompatible. Conversely, the unlink statement disconnects (line 8).

3.4 Adaptation via discovery and replacement
EnsembleS supports runtime discovery of local or remote actor instances. As an example,
in a sensor network, it may be desirable to connect to a sensor which has a battery level
above a certain threshold. The EnsembleS query language allows us to define a query on
non-functional properties (such as battery level or signal strength), as well as the channels
exposed by an actor’s interface. This ensures that any discovered actor has the correct
number and type of channels, and satisfies user’s preferences. To ensure that the discovered
actor also obeys a declared protocol, EnsembleS uses session types in the discovery process.
The green box in Fig. 6 shows how a session is used in the actor discovery process, and
the yellow box shows how such actors are connected together. Runtime discovery does not
appear in the session because it does not affect the communication behaviour of an actor.

EnsembleS also supports the replacement of executing actors, much like the hot-code
swapping in Erlang [12]. The new actor must present the same interface as it takes over the
channels of the actor being replaced at the location it was executing. Replacement happens at
the beginning of an actor’s behaviour loop. Replacement has many uses, such as updating,

ECOOP 2021

10:8 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Discovery and explicit connections

1 query alpha() { $serial==823 && $version<4; }
2 actor_s = discover(

3 Buyer1_interface, Buyer1_session , alpha());

4 if (actor_s[0].length > 1){

5 link me with actor_s[0];

6 msg = "book";
7 send msg on toB_string;

8 unlink Buyer1_session;

9 }

Replacement

1 // session and interface definitions
2 actor fastA presents accountingI
3 follows accountingSession{
4 constructor() {}
5 behaviour{
6 receive data on input;
7 quicksort(data);
8 send data on output;
9 }

10 }
11
12 actor slowA presents accountingI
13 follows accountingSession{
14 pS= new property[2] of property("",0);
15 constructor() {
16 pS[0]:= new property("serial",823);
17 pS[1]:= new property("version",2);
18 publish pS;

19 }
20 behaviour{
21 receive data on input;
22 bubblesort(data);
23 send data on output;
24 } }
25
26 actor main presents mainI {
27 constructor() { }
28 behaviour {
29 // Find the slow actors matching query
30 actor_s = discover(accountingI,
31 accountingSession, alpha());
32 // Replace them with efficient versions
33 if(actor_s[0].length > 1) {
34 replace actor_s[0] with fastA();
35 }
36 } }

Figure 6 Session type-based adaptation.

changing, or extending some of the functionalities of existing software, and is particularly
useful in embedded systems [33, 34]. The existing and new actors must follow the same
session type, guaranteeing that replacement will not break existing actor interactions.

Fig. 6 (bottom) shows an example of a main actor searching for actors of type slowA (line
30), and replacing them with new actors of type fastA (line 34). The slowA actors are
located by defining a query (line 1, top) over user-defined properties, which are published
(lines 16–18). The discovery process is the same as above, but now the discovered actors are
used for replacement rather than just communication.

3.5 Implementation

EnsembleS is implemented in C, and supports reference-counted garbage collection and
exceptions. Applications are compiled to Java source code, and then to custom Java class
files for use with a custom VM [10]. These applications can be executed on the desktop,
parallel accelerators (e.g. GPUs), Raspberry Pi, Lego NXT, and Tmote Sky hardware
platforms, and use a range of networking technologies.

Compact representations of session types are retained at runtime in order to support
discovery. EnsembleS skeleton generation code is based on the StMungo tool [40], which is
implemented as an ANTLR listener, and session typechecking is supported by modifying the
original Ensemble typechecker to ensure that each communication action is permitted by the
actor’s declared session type.

Since EnsembleS builds directly on top of the original Ensemble implementation, it inherits
Ensemble’s runtime system. Performance results can be found in [26].

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:9

1 type Client is session(
2 connect RootServer;
3 RootRequest(DomainName) to RootServer;
4 choice at RootServer{
5 TLDResponse(ZoneServerAddress)
6 from RootServer;
7 disconnect RootServer;
8 rec Lookup {
9 connect ZoneServer;

10 ResolutionRequest(DomainName) to ZoneServer;
11 choice at ZoneServer {
12 PartialResolution(ZoneServerAddress)
13 from ZoneServer;
14 disconnect ZoneServer;

15 continue Lookup;
16 } or {
17 InvalidDomain(String) from ZoneServer;
18 disconnect ZoneServer;
19 } or {
20 ResolutionComplete(IPAddress)
21 from ZoneServer;
22 disconnect ZoneServer;
23 }
24 }
25 } or {
26 InvalidTLD(String) from RootServer;
27 disconnect RootServer;
28 }
29)

Figure 7 EnsembleS DNS client session type.

4 Case study: DNS

To illustrate the use of session types for adaptive programming, we consider a real-world
case study: the domain name system (DNS). DNS is a hierarchical, globally distributed
translation system that converts an internet host name (domain name) into its corresponding
numerical Internet Protocol (IP) address [43].

The process begins by transmitting a domain name to one of many well-known root servers.
This server either rejects bad requests, or provides the information to contact a zone server.
The zone server may know the IP address of the domain name; if not it refers the request to
another zone server. This process continues until either the IP address is returned, or the
name cannot be found.

To develop an adaptive DNS example, we assume no a priori information about server
location, and instead use explicit discovery to find root and zone servers based on session
types and server properties. We use an existing Scribble description of DNS as a starting
point [21]. To illustrate adaptation we focus on the client who is querying DNS.

Fig. 7 shows the session type for the client actor which asks DNS to resolve a domain
name. The client first asks for a root server (lines 2–3), and then either is informed that the
request is invalid (lines 26–27) or recursively queries zone servers (lines 7–23) until the IP
address is found (lines 20–22), or an error is reported (lines 17–18). Based on this session,
StMungo generates EnsembleS types and interface definitions and a skeleton actor. Minimally
completing the generated skeleton produces the code in Fig. 8.

In this example, discovery is used to locate the root server (lines 21–25, in Fig. 8) and the
zone server (line 37). In each case, the session for the relevant server is provided to ensure
that the discovered actor follows the expected protocol. When either server is located, the
client links with it (lines 26 and 39), enabling communication. When communication with
the server is no longer required, the client unlinks explicitly (lines 33, 47, 51, 55, 62).

Although explicit discovery is used at the language level, there is nothing to prevent the
implementation of discovery from caching the addresses of the root and zone servers. This
does not affect the use of sessions in discovery or the safety they provide, as the type-based
guarantees are still enforced. However, this would potentially improve performance of the
system. Additionally, if a cached entry becomes stale, the full discovery process can again be
used without code modification or degradation in trust.

A version of DNS which uses discovery allows the system to become more flexible and
resilient to changing operational conditions, such as topology changes in the servers and their
data. Session types ensure compatibility with the discovered actors.

ECOOP 2021

10:10 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

1 type Iclient is interface(
2 out{RootServer,string} RootServer_stringOut,
3 in {RootServer,string} RootServer_stringIn,
4 out{ZoneServer,string} ZoneServer_stringOut,
5 in {ZoneServer,string} ZoneServer_stringIn,
6 in {ZoneServer,choice_enum} ZoneServer_choiceIn,
7 in {RootServer,choice_enum} RootServer_choiceIn)
8
9 type choice_enum is

10 enum(TLDResponse,PartialResolution,
11 InvalidDomain,ResolutionComplete,
12 InvalidTLD)
13
14 query find_name(string n){ $name == n; }
15
16 actor c presents Iclient
17 follows Client {
18 dom_name = "nii.ac.jp";
19 constructor() { }
20 behaviour{
21 rootQuery = find_name("jp");
22 // Find Root Server
23 root_s =
24 discover(IServer, RootServer, rootQuery);
25 // search until root_s non−empty
26 link me with root_s[0];
27 send domain_name on RootServer_stringOut;
28 receive c_msg from RootServer_choiceIn;
29 switch(c_msg){
30 case TLDResponse:
31 receive ZoneServerAddr_msg

32 from RootServer_stringIn;
33 unlink RootServer;
34 while(true) Lookup : {
35 // Find ZoneServer
36 zone_s =
37 discover(IServer, ZoneServer,
38 find_name(ZoneServerAddr_msg));
39 link me with zone_s[0];
40 // Ask ZoneServer
41 send dom_name on ZoneServer_stringOut;
42 receive c_msg2 from ZoneServer_choiceIn;
43 switch(c_msg2){
44 case PartialResolution:
45 receive str_msg from ZoneServer_stringIn;
46 ZoneServerAddr_msg := str_msg;
47 unlink ZoneServer;
48 continue Lookup;
49 case InvalidDomain:
50 receive str_msg from ZoneServer_stringIn;
51 unlink ZoneServer;
52 break;
53 case ResolutionComplete:
54 receive str_msg from ZoneServer_stringIn;
55 unlink ZoneServer;
56 break Lookup;
57 }
58 // keep looking
59 }
60 case InvalidTLD:
61 receive str_msg from RootServer_stringIn;
62 unlink RootServer;
63 } } }

Figure 8 EnsembleS DNS client.

5 A Core Calculus for EnsembleS

In this section, we provide a formal characterisation of EnsembleS. In doing so, we show
that our integration of adaptation with multiparty session types is safe, allowing adaptation
while ruling out communication mismatches.

Relationship to implementation. Our core calculus aims to distil the essence of the
interplay between adaptation and session-typed communication with explicit connection
actions. Therefore, we concentrate on a functional core calculus rather than an imperative
one: imperative variable binding serves only to clutter the formalism, and our fine-grain
call-by-value representation can be thought of as an intermediate language.

Interfaces and unidirectional, simply-typed channels in EnsembleS are an implementation
artifact: sending on a channel whose type changes is equivalent to sending on multiple
channels with different types. Moreover, following theoretical accounts of multiparty session
types [31, 14, 32], instead of having send and receive (resp. connect and accept) operations
followed by branching (as done in Mungo and StMungo), we have unified send and receive
constructs which communicate a label along with the message payload.

Since session typing is the interesting part of discovery, we omit properties and queries
from the formalism; their inclusion is routine. Finally, we concentrate on dynamic topologies
with explicit connection actions rather than static topologies since they are important for
adaptation and more interesting technically.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:11

Syntax of Types and Terms

Actor class names u
Actor definitions D ::= actor u follows S {M}
Roles p, q, s, t
Recursion Labels l
Behaviours κ ::= M | stop
Types A, B ::= Pid(S) | 1
Values V, W ::= x | ()
Actions L ::= return V | continue l | raise

| new u | self | replace V with κ | discover S
| connect ℓ(V) to W as p | accept from p {ℓi(xi) 7→ Mi}i

| send ℓ(V) to p | receive from p {ℓi(xi) 7→ Mi}i

| wait p | disconnect from p
Computations M, N ::= let x ⇐ M in N | try L catch M | l :: M | L

Syntax of Session Types

Session Actions α, β ::= p!ℓ(A) | p!!ℓ(A) | p?ℓ(A) | p??ℓ(A) | #↑p
Session Types S, T, U ::= Σi∈I(αi . Si) | µX.S | X | #↓p | end
Communication Actions † ::= ! | ?
Disconnection Actions ‡ ::= #↑ | #↓

Figure 9 Syntax.

5.1 Syntax
Definitions. Figure 9 shows the syntax of Core EnsembleS terms and types. We let u range
over actor class names and D range over definitions; each definition actor u follows S {M}
specifies the actor’s class name, session type, and behaviour. Like class tables in Featherweight
Java [36], we assume a fixed mapping from class names to definitions.

Values. Since our calculus is inherently effectful, we work in the setting of fine-grain call-
by-value [41], where we have an explicit static stratification of values and computations and
an explicit evaluation order similar to A-normal form [20]. Values V, W describe data that
has been computed, and for the sake of simplicity, consist of variables and the unit value.
Other base values (such as integers or booleans) can be encoded or added straightforwardly.

Computations. The let x ⇐ M in N construct evaluates M , binding its result to x in N .
The calculus supports exception handling over a single action L using try L catch M , where
M is evaluated if L raises an exception, and labelled recursion using l :: M , stating that
inside term M , a process can recurse to label l using continue l. Actions L denote the basic
steps of a computation. The return V construct denotes a value.

Concurrency and adaptation constructs. The new u construct spawns a new actor of class
u and returns its PID. The self construct returns the current actor’s PID. An actor can
replace the behaviour of itself or another actor V using replace V with κ. An actor can
discover other actors following a session type S using the discover S construct, which returns
the PID of the discovered actor.

Session communication constructs. An actor can connect to an actor W playing role p using
connect ℓ(V) to W as p, sending a message with label ℓ and payload V . An actor can accept
a connection from another actor playing role p using accept from p {ℓi(xi) 7→ Mi}i, which
allows an actor to receive a choice of messages; given a message with label ℓj , the payload is

ECOOP 2021

10:12 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

bound to xj in the continuation Nj . Once connected, an actor can communicate using the
send and receive constructs. An actor can disconnect from p using disconnect from p, and
await the disconnection of p using wait p.

Types. Types, ranged over by A, B, include the unit type 1 and process IDs Pid(S); the
parameter S refers to the statically-known initial session type of the actor (i.e., the session
type declared in the follows clause of a definition). Unlike in channel-based session-typed
systems, process IDs themselves need not be linear: any number of actors can have a reference
to another actor, but each actor may only be in a single session at a time. PIDs can be
passed as payloads in session communications.

Session types. Session types are ranged over by S, T, U and follow the formulation of Hu
& Yoshida [32]. A session type can be a choice of actions, written Σi∈I(α . S), a recursive
session type µX.S binding recursion variable X in continuation S, a recursion variable X, a
disconnection action #↓p, or the finished session end. The syntax of session types is more
liberal than traditional “directed” presentations in order to allow output-directed choices to
send or connect to different roles.

Session actions α involve sending (!), receiving (?), connecting (!!), or accepting (??) a
message ℓ(A) with label ℓ and type A; or awaiting another participant’s disconnection (#↑).
As well as disallowing self-communication, following Hu & Yoshida [32], we require the
following syntactic restrictions on session types:

▶ Definition 1 (Syntactic validity). A choice type S = Σi∈I(αi . Si) is syntactically valid if:
1. it is an output choice, i.e., each αi is a send or connection action; or
2. it is a directed input choice, i.e., S = Σi∈I(p?ℓi(Ai).Si) or S = Σi∈I(p??ℓi(Ai).Si); or
3. the choice consists of single wait action #↑p . S.
In the remainder of the paper, we assume that all session types are syntactically valid.

Session correlation. The most general form of explicit connection actions allows a participant
to leave and re-join a session, or accept connections from multiple different participants.
Such generality comes at a cost, since care must be taken to ensure that the same participant
plays the role throughout the session.

To address this session correlation issue, Hu & Yoshida [32] propose two solutions: either
augment global types with type-level assertions and check conformance dynamically, or
adopt a lightweight syntactic restriction which requires that each local type must contain at
most a single accept action as its top-level construct. We opt for the latter, enforcing the
constraint as part of our safety property (§5.4.2), and by requiring that #↓p does not have a
continuation. (Note that the behaviour will repeat, so p will be able to accept again after
disconnecting). As Hu & Yoshida [32] show, this design still supports the most common use
cases of explicit connection actions.

Global types. Traditional MPST works [31, 14] use global types to describe the interactions
between participants at a global level, which are then projected into local types; projectability
ensures safety and deadlock-freedom.

Since we are using explicit connection actions, traditional approaches are insufficiently
flexible as they do not account for certain roles being present in certain branches but not
others. Following [53] and subsequently non-classical MPSTs [54], we instead formulate our
typing rules and safety properties using collections of local types.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:13

It is, however, still convenient to write a global type and have local types computed
programatically. Global types are defined as follows:

Global Actions π ::= p → q : ℓ(A) | p ↠ q : ℓ(A) | p#q
Global Types G ::= Σi∈I(πi . Gi) | µX.G | X | end

Global actions π describe interactions between participants: p → q : ℓ(A) states that role p
sends a message with label ℓ and payload type A to q. Similarly, p ↠ q : ℓ(A) states that
p connects to q by sending a message with label ℓ and payload type A. The disconnection
action p#q states that role p disconnects from role q.

We can write the OnlineStore example from § 2 as follows:

Customer ↠ Store : login(String) . µBrowse .
Customer → Store : item(String) . Store → Customer : price(Int) . Browse

+
Customer → Store : address(String) . Store ↠ Courier : deliver(String) .
Courier → Store : ref(Int) . Courier#Store . Store → Customer : ref(Int) .
Store#Customer . end

+
Customer → Store : quit(1) . Store#Customer . end

Although projectability in our setting does not necessarily guarantee safety and deadlock-
freedom, we show a projection algorithm, adapted from that of Hu & Yoshida [32], in the
extended version. The resulting local types can then be checked for safety (§5.4.2).

Protocols and Programs. Terms do not live in isolation; they refer to a set of protocols,
and evaluate in the context of an actor. A protocol maps role names to local session types.

▶ Definition 2 (Protocol). A protocol is a set {pi : Si}i mapping role names to session types.

As an example, consider the protocol for the online shop example:

Customer : Store!!login(String) . µBrowse .
Store!item(String) . Store?price(Int) . Browse

+ Store!address(String) . Store?ref(Int) . #↑Store . end
+ Store!quit(1) . #↑Store . end,

Store : Customer??login(String) . µBrowse .
Customer?item(String) . Customer!price(Int) . Browse

+ Customer?address(String) . Courier!!deliver(String) . Courier?ref(Int) .
#↑Courier . Customer!ref(Int) . #↓Customer

+ Customer?quit(1) . #↓Customer,

Courier : Store??deliver(String) . Store!ref(Int) . #↓Store

We can now consider an implementation of a Store actor, which uses discovery to find a

courier. We write receive ℓ(x) from p; M and accept ℓ(x) from p; M as syntactic sugar for
receive from p {ℓ(x) 7→ M} and accept from p {ℓ(x) 7→ M} respectively, and write M ; N as
syntactic sugar for letx ⇐ M inN for a fresh variable x. We assume the existence of a function
lookupPrice, and define CourierType as Store??deliver(String) . Store!ref(Int) . #↓Store.

ECOOP 2021

10:14 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

actor Store follows ty(Store) {
accept login(credentials) from Customer;
Browse ::

receive from Customer {
item(name) 7→

send price(lookupPrice(name)) to Customer;
continue Browse

address(addr) 7→
let pid ⇐ discover CourierType in
connect deliver(addr) to pid as Courier;
receive ref(r) from Courier;
wait Courier;
send ref(r) to Customer;
disconnect from Customer

quit(()) 7→ disconnect from Customer
}

}
A program consists of actor definitions, protocol definitions, and the “boot” clause to be

run in order to set up initial actor communication.

▶ Definition 3 (Program). An EnsembleS program is a 3-tuple (−→D,
−→
P , M) of a set of

definitions, protocols, and an initial term to be evaluated.

In the context of a program, we write ty(p) to refer to the session type associated with
role p as defined by the set of protocols. Given an actor definition actor u follows S {M},
we define sessionType(u) = S and behaviour(u) = M .

5.2 Typing rules
Figures 10 and 11 show the typing rules for EnsembleS. Value typing, with judgement
Γ ⊢ V :A, states that under environment Γ, value V has type A. Judgement ⊢ D states that
an actor definition actor u follows S {M} is well-typed if its body is typable under, and fully
consumes, its statically-defined session type S. The behaviour typing judgement {S} Γ ⊢ κ

states that given static session type S, behaviour κ is well-typed under Γ. Specifically, stop
is always well-typed, and M is well-typed if it is typable under and fully consumes S.

5.2.1 Term typing
The typing judgement for terms {T} Γ | S ▷ M :A ◁ S′ reads “in an actor following T , under
typing environment Γ and with current session type S, term M has type A and updates
the session type to S′”. Note that the term typing judgement, reminiscent of parameterised
monads [3], contains a session precondition S and may perform some session communication
actions to arrive at postcondition S′.

Functional rules. Rule T-Let is a sequencing operation: given a construct let x ⇐ M in N

where M has pre-condition S and post-condition S′, and where N has pre-condition S′ and
post-condition S′′, the overall construct has pre-condition S and post-condition S′′.

Following Kouzapas et al. [40], we formalise recursion through annotated expressions:
term l :: M states that M is an expression which can loop to l by evaluating continue l.
We take an equi-recursive view of session types, identifying recursive sessions with their
unfolding (µX.S = S{µX.S/X}), and assume that recursion is guarded. Rule T-Rec extends
the typing environment with a recursion label defined at the current session type. Rule
T-Continue ensures that the pre-condition must match the label stored in the environment,
but has arbitrary type and any post-condition since the return type and post-condition
depend on the enclosing loop’s base case.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:15

Definition typing ⊢ D

T-Def
{S} · | S ▷ M :A ◁ end

⊢ actor u follows S {M}

Value typing Γ ⊢ V :A

T-Var
x : A ∈ Γ
Γ ⊢ x:A

T-Unit
Γ ⊢ ():1

Behaviour typing {S} Γ ⊢ κ

T-Stop
{S} Γ ⊢ stop

T-Body
{S} Γ | S ▷ M :A ◁ end

{S} Γ ⊢ M

Typing rules for computations {T } Γ | S ▷ M :A ◁ S′

Functional Rules

T-Let
{T } Γ | S ▷ M :A ◁ S′ {T } Γ, x : A | S′ ▷ N :B ◁ S′′

{T } Γ | S ▷ let x ⇐ M in N :B ◁ S′′

T-Return
Γ ⊢ V :A

{T } Γ | S ▷ return V :A ◁ S

T-Rec
{T } Γ, l : S | S ▷ M :A ◁ S′

{T } Γ | S ▷ l :: M :A ◁ S′

T-Continue

{T } Γ, l : S | S ▷ continue l:A ◁ S′

Actor / Adaptation Rules

T-New
sessionType(u) = U

{T } Γ | S ▷ new u:Pid(U) ◁ S

T-Self
{T } Γ | S ▷ self:Pid(T) ◁ S

T-Discover
{T } Γ | S ▷ discover U :Pid(U) ◁ S

T-Replace
Γ ⊢ V :Pid(U) {U} Γ ⊢ κ

{T } Γ | S ▷ replace V with κ:1 ◁ S

Figure 10 Typing rules (1).

Actor and adaptation rules. Rule T-New states that creating an actor of class u returns
a PID parameterised by the session type declared in the class of u. Rule T-Self retrieves
a PID for the current actor, parameterised by the statically-defined session type of the
local actor (i.e., the T in the judgement {T} Γ | S ▷ M :A ◁ S′). Rule T-Discover states
discover U returns a PID of type Pid(U). Finally, given a behaviour κ typable under a static
session type U , and a process ID with the matching static type Pid(U), T-Replace allows
replacement, and returns the unit type.

Exception handling rules. Figure 11 shows the rules for exception handling and session
communication. T-Raise denotes raising an exception; since it does not return, it can
have an arbitrary return type and postcondition. Rule T-Try types an exception handler
tryLcatchM which acts over a single action L. If L raises an exception, then M is evaluated
instead. Since L only scopes over a single action, the try and catch clauses have the same
pre- and post-conditions to allow the action to be retried if necessary.
▶ Remark 4. Following Mostrous & Vasconcelos [45], our try L catch M construct scopes
over a single action and is discarded afterwards. We opt for this simple approach since in our
setting exceptions are a means to an end, but (at the cost of a more involved type system)
we could potentially scope over multiple actions as long as the handler is compatible with all
potential exit conditions [23]. We leave a thorough exploration to future work.

Session communication rules. Rule T-Conn types a term connect ℓj(V) to W as pj .
Given the precondition is a choice type containing a branch p!!ℓj(Aj) . S′

j , and the remote
actor reference is W of type Pid(S), the rule ensures that S is compatible with the type of
pj , and ensures that the label and payload are compatible with the session type. The session
type is then advanced to S′

j . Rule T-Send follows the same pattern.

ECOOP 2021

10:16 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Exception handling rules

T-Raise

{T } Γ | S ▷ raise:A ◁ S′

T-Try
{T } Γ | S ▷ L:A ◁ S′ {T } Γ | S ▷ M :A ◁ S′

{T } Γ | S ▷ try L catch M :A ◁ S′

Session communication rules

T-Conn
pj !!ℓj(Aj) ∈ {αi}i∈I Γ ⊢ V :Aj Γ ⊢ W :Pid(T) T = ty(pj)

{T } Γ | Σi∈I(αi . Si) ▷ connect ℓj(V) to W as pj :1 ◁ S′
j

T-Send
pj !ℓj(Aj) ∈ {αi}i∈I Γ ⊢ V :Aj

{T } Γ | Σi∈I(αi . Si) ▷ send ℓj(V) to pj :1 ◁ S′
j

T-Accept
({T } Γ, xi : Bi | Si ▷ Mi:A ◁ S)i∈I

{T } Γ | Σi∈I(q??ℓi(Bi) . Si) ▷ accept from q {ℓi(xi) 7→ Mi}i∈I :A ◁ S

T-Recv
({T } Γ, xi : Bi | Si ▷ Mi:A ◁ S)i∈I

{T } Γ | Σi∈I(q?ℓi(Bi) . Si) ▷ receive from q {ℓi(xi) 7→ Mi}i∈I :A ◁ S

T-Wait
{T } Γ | #↑q . S ▷ wait q:1 ◁ S

T-Disconn
{T } Γ | #↓q ▷ disconnect from q:1 ◁ end

Figure 11 Typing rules (2).

Given a session type Σi∈I(p??xi(Ai)) . Si, rule T-Accept types term
accept from p {ℓi(xi) 7→ Mi}i∈I , enabling an actor to accept connections with mes-
sages ℓi, binding the payload xi in each continuation Mi. Like case expressions in functional
languages, each continuation must be typable under an environment extended with xi : Ai,
under session type Si, and each branch must have same result type and postcondition. Rule
T-Recv is similar.

Rule T-Wait handles waiting for a participant p to disconnect from a session, requiring a
pre-condition of #↑p . S, returning the unit type and advancing the session type to S. Rule
T-Disconnect is similar and advances the session type to end.

5.3 Operational semantics
We describe the semantics of EnsembleS via a deterministic reduction relation on terms, and
a nondeterministic reduction relation on configurations.

5.3.1 Runtime syntax
Figure 12 shows the runtime syntax and the first part of the reduction rules for EnsembleS.

Whereas static syntax and typing rules describe code that a user would write, runtime
syntax arises during evaluation. We introduce two types of runtime name: s ranges over
session names, which are created when a process initiates a session, and a ranges over actor
names, which uniquely identify each actor once it has been spawned by new.

Configurations. Configurations, ranged over by C, D, E , represent the concurrent fragment
of the language. Like in the π-calculus [42], name restrictions (νn)C bind name n in C, C ∥ D
denotes C and D running in parallel, and the 0 configuration denotes the inactive process.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:17

Runtime syntax

Names n ::= a | s

Configurations C, D, E ::= (νn)C | C ∥ D | ⟨a, M, σ, κ⟩ | s[p] | 0
Connection state σ ::= ⊥ | s[p]⟨q̃⟩

Runtime environments ∆ ::= · | ∆, a : S | ∆, s[p]⟨q̃⟩:S

Evaluation contexts E ::= F | let x ⇐ E in M
Top-level contexts F ::= [] | try [] catch M
Pure contexts EP ::= [] | let x ⇐ EP in M

Term reduction M −→M N

E-Let let x ⇐ return V in M −→M M{V/x}
E-TryReturn try return V catch M −→M return V
E-TryRaise try raise catch M −→M M
E-Rec l :: M −→M M{l :: M/continue l}
E-LiftM E[M] −→M E[N] if M −→M N

Configuration reduction (1) C −→ D

Actor / adaptation rules

E-Loop
⟨a, return V, ⊥, M⟩ −→ ⟨a, M, ⊥, M⟩

E-New
b is fresh behaviour(u) = M

⟨a, E[new u], σ, κ⟩ −→
(νb)(⟨a, E[return b], σ, κ⟩ ∥ ⟨b, M, ⊥, M⟩)

E-Replace

⟨a, E[replace b with κ′], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ2⟩ −→
⟨a, E[return ()], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ′⟩

E-ReplaceSelf

⟨a, E[replace a with κ′], σ, κ⟩ −→
⟨a, E[return ()], σ, κ′⟩

E-Discover
sessionType(b) = S

¬((N = return V ∨ N = raise) ∧ κ2 = stop)
⟨a, E[discover S], σ1, κ1⟩ ∥ ⟨b, E′[N], σ2, κ2⟩ −→

⟨a, E[return b], σ1, κ1⟩ ∥ ⟨b, E′[N], σ2, κ2⟩

E-Self
⟨a, E[self], σ, κ⟩ −→ ⟨a, E[return a], σ, κ⟩

Figure 12 Operational semantics (1).

Actors are represented at runtime as a 4-tuple ⟨a, M, σ, κ⟩, where a is the actor’s runtime
name; M is the term currently evaluating; σ is the connection state; and κ is the actor’s
current behaviour. A connection state is either disconnected, written ⊥, or playing role p in
session s and connected to roles q̃, written s[p]⟨q̃⟩.

Inspired by Mostrous & Vasconcelos [45] and Fowler et al. [22], a zapper thread s[p]
indicates that participant p in session s cannot be used for future communications, for
example due to the actor playing the role crashing due to an unhandled exception.

To run a program, we place it in an initial configuration. of the form (νa)(⟨a, M, ⊥, stop⟩).

Runtime typing environments. Whereas Γ is an unrestricted typing environment used for
typing values and configurations, we introduce ∆ as a linear runtime environment. Runtime
environments can contain entries of type a : S, stating that actor a has statically-defined
session type S, and entries of type s[p]⟨q̃⟩:S, stating that in session s, role p is connected to
roles q̃ and currently has session type S.

ECOOP 2021

10:18 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Configuration reduction (2) C −→ D

Session reduction rules

E-ConnInit
j ∈ I

⟨a, E[F [connect ℓj(V) to b as q]], ⊥, κ1⟩ ∥ ⟨b, E′[F ′[accept from p {ℓi(xi) 7→ Mi}i∈I]], ⊥, κ2⟩ −→
(νs)(⟨a, E[return ()], s[p]⟨q⟩, κ1⟩ ∥ ⟨b, E′[Mj{V/xj}], s[q]⟨p⟩, κ2⟩)

E-Conn
q ̸∈ r̃

⟨a, E[F [connect ℓj(V) to b as q]], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[F ′[accept from p {ℓi(xi) 7→ Ni}i∈I]], ⊥, κ2⟩ −→
⟨a, E[return ()], s[p]⟨r̃, q⟩, κ1⟩ ∥ ⟨b, E′[Nj{V/xj}], s[q]⟨p⟩, κ2⟩

E-ConnFail
((N = return V ∨ N = EP[raise]) ∧ κ2 = stop) ∨ σ2 ̸= ⊥

⟨a, E[connect ℓj(V) to b as q], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ2⟩ −→ ⟨a, E[raise], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ2⟩

E-Disconn

⟨a, E[F [wait q]], s[p]⟨r̃, q⟩, κ1⟩ ∥ ⟨b, E′[F ′[disconnect from p]], s[q]⟨p⟩, κ2⟩ −→
⟨a, E[return ()], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[return ()], ⊥, κ2⟩

E-Comm
j ∈ I q ∈ r̃ p ∈ s̃

⟨a, E[F [send ℓj(V) to q]], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[F ′[receive from p {ℓi(xi) 7→ Mi}i∈I]], s[q]⟨s̃⟩, κ2⟩ −→
⟨a, E[return ()], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[Mj{V/xj}], s[q]⟨s̃⟩, κ2⟩

E-Complete
(νs)(⟨a, return V, s[p]⟨∅⟩, κ⟩) −→ ⟨a, return V, ⊥, κ⟩

Figure 13 Operational semantics (2).

Evaluation contexts. Due to our fine-grain call-by-value presentation, evaluation contexts
E allow nesting only in the immediate subterm of a let expression. The top-level frame
F can either be a hole, or a single, top-level exception handler. Pure contexts EP do not
include exception handling frames.

5.3.2 Reduction rules
Term reduction −→M is standard β-reduction, save for E-TryRaise which evaluates the
failure continuation in the case of an exception. We consider four subcategories of configur-
ation reduction rules: actor and adaptation rules; session communication rules; exception
handling rules; and administrative rules.

Actor / adaptation rules. Given a fully-evaluated actor, E-Loop runs the term specified
by the actor’s behaviour. Rule E-New allows actor a to spawn a new actor of class u by
creating a fresh runtime actor name b and a new actor process of the form ⟨b, M, ⊥, M⟩
where M is the behaviour specified by u, returning the process ID b. Rules E-Replace and
E-ReplaceSelf handle replacement by changing the behaviour of an actor, returning the
unit value to the caller. Rule E-Discover returns the process ID of an actor b if it has the
desired static session type S. Rule E-Self returns the PID of the local actor.

Session communication rules. An actor begins a session by connecting to another actor
while disconnected; such a case is handled by rule E-ConnInit. Suppose we have a
disconnected actor a evaluating a connection statement connect ℓj(V) to b as p, evaluating in

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:19

Configuration reduction (3) C −→ D
Exception handling rules

E-CommRaise
subj(M) = q

⟨a, E[M], s[p]⟨r̃⟩, κ⟩ ∥ s[q] −→
⟨a, E[raise], s[p]⟨r̃⟩, κ⟩ ∥ s[q]

E-FailS
⟨a, EP[raise], s[p]⟨r̃⟩, κ⟩ −→

⟨a, raise, ⊥, κ⟩ ∥ s[p]

E-FailLoop
⟨a, EP[raise], ⊥, M⟩ −→

⟨a, M, ⊥, M⟩

Administrative rules

E-LiftM
M −→M M ′

⟨a, E[M], σ, κ⟩ −→ ⟨a, E[M ′], σ, κ⟩

E-Equiv
C ≡ C′ C′ −→ D′

D′ ≡ D
C −→ D

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Nu
C −→ D

(νn)C −→ (νn)D

Configuration equivalence C ≡ D

C ∥ D ≡ D ∥ C C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E (νn1)(νn2)C ≡ (νn2)(νn1)C

C ∥ (νn)D ≡ (νn)(C ∥ D) if n ̸∈ fn(C) (νs)(s[p1] ∥ · · · ∥ s[pn]) ∥ C ≡ C C ∥ 0 ≡ C

Figure 14 Operational semantics (3).

parallel with a disconnected actor b evaluating an accept statement accept from p {ℓi(xi) 7→
Mi}i∈I . Rule E-ConnInit returns the unit value to actor a; creates a fresh session name
restriction s, sets the connection state of a to s[p]⟨q⟩ and of b to s[q]⟨p⟩; accepting actor b then
evaluates continuation Mj with V substituted for xj . Since exception handlers only scope
over a single communication action, the top-level frames F, F ′ in each actor are discarded if
the communication succeeds. Rule E-Conn handles the case where the connecting actor
is already part of a session and behaves similarly to E-ConnInit, without creating a new
session name restriction. A connection can fail if an actor attempts to connect to another
actor which is terminated or is already involved in a session; in these cases, E-ConnFail
raises an exception in the connecting actor.

Rule E-Disconn handles the case where an actor b leaves a session, synchronising with an
actor a. In this case, the unit value is returned to both callers, and the connection state of b

is set to ⊥. Rule E-Comm handles session communication when two participants are already
connected to the same session, and is similar to E-Conn. Rule E-Complete garbage collects
a session after it has completed and sets the initiator’s connection state to ⊥.

Exception handling rules. Exception handling rules allow safe session communication in
the presence of exceptions. Rule E-CommRaise states that if an actor is attempting to
communicate with a role no longer present due to an exception, then an exception should
be raised. We write subj(E[M]) = p if M ∈ {send ℓ(V) to p, receive from p {ℓi(xi) 7→
Ni}i, wait p, disconnect from p}. Rule E-FailS states that if a connected actor encounters
an unhandled exception, then a zapper thread will be generated for the current role, the
actor will become disconnected, and the current evaluation context will be discarded. Rule
E-FailLoop restarts an actor encountering an unhandled exception.

Administrative rules. The remaining rules are administrative: E-LiftM allows term
reduction inside an actor; E-Equiv allows reduction modulo structural congruence; E-
Par allows reduction under parallel composition; and E-Nu allows reduction under name
restrictions.

ECOOP 2021

10:20 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Runtime Typing Rules Γ ⊢ V :A Γ; ∆ ⊢ C

T-Pid
Γ, a : Pid(S); ∆, a : S ⊢ C

Γ; ∆ ⊢ (νa)C

T-Session
∆′ = {s[pi]⟨q̃i⟩:Spi }i∈I φ(∆′) s ̸∈ ∆ Γ; ∆, ∆′ ⊢ C

φ is a safety property
Γ; ∆ ⊢ (νs)C

T-Par
Γ; ∆1 ⊢ C Γ; ∆2 ⊢ D

Γ; ∆1, ∆2 ⊢ C ∥ D

T-Zap
Γ; s[p]⟨q̃⟩:S ⊢ s[p]

T-Zero
Γ; · ⊢ 0

T-DisconnectedActor
T = S ∨ T = end a : Pid(S) ∈ Γ

{S} Γ | T ▷ M :A ◁ end {S} Γ ⊢ κ

Γ; a : S ⊢ ⟨a, M, ⊥, κ⟩

T-ConnectedActor
a : Pid(T) ∈ Γ

{T } Γ | S ▷ M :A ◁ end {T } Γ ⊢ κ

Γ; a : T, s[p]⟨q̃⟩:S ⊢ ⟨a, M, s[p]⟨q̃⟩, κ⟩

Figure 15 Runtime typing rules.

Configuration equivalence. Reduction includes configuration equivalence ≡, defined as the
smallest congruence relation satisfying the axioms in Figure 14. The equivalence rules extend
the usual π-calculus structural congruence rules with a “garbage collection” equivalence,
which allows us to discard a session where all participants have exited due to an error.

5.4 Metatheory
We now turn our attention to showing that session typing allows runtime adaptation and
discovery while precluding communication mismatches and deadlocks.

5.4.1 Runtime typing
To reason about the metatheory, we introduce typing rules for configurations (Fig. 15): the
judgement Γ; ∆ ⊢ C states that configuration C is well-typed under term typing environment
Γ and runtime typing environment ∆.

Rule T-Pid types actor name restriction (νa)C by adding a PID into the term environment,
and extending the runtime typing environment a : S; the linearity of the runtime typing
environment therefore means that the system must contain precisely one actor with name a.

Session name restrictions (νs)C are typed by T-Session. We follow the formulation of
Scalas & Yoshida [54] which types multiparty sessions using a parametric safety property
φ; we discuss safety properties in more depth in Section 5.4.2. Let ∆′ be a runtime typing
environment containing only mappings of the form s[pi]⟨q̃i⟩:Si. Assuming ∆ does not contain
any mappings involving session s and ∆′ satisfies φ, the rule states that C is typable under
typing environment Γ and runtime typing environment ∆, ∆′. It is sometimes convenient to
annotate session ν-binders with their environment, e.g., (νs : ∆′)C.

Rule T-Par types each subconfiguration of a parallel composition by splitting the linear
runtime environment. Rule T-Zap types a zapper thread s[p], assuming the runtime
environment contains an entry s[p]⟨q̃⟩:S for any session type S.

Finally, rules T-DisconnectedActor and T-ConnectedActor type disconnected and
connected actor configurations respectively. Given an actor with name a and static session
type T , both rules require that the typing environment contains a : Pid(T) and runtime
environment contains a : T . Both rules require that the current session type is fully consumed
by the currently-evaluating term and that the actor’s behaviour should be typable under T .
Rule T-DisconnectedActor requires that the currently-evaluating term must be typable
under either T or end, whereas to type a connection state of s[p]⟨q̃⟩ and current session type
S, T-ConnectedActor requires an entry s[p]⟨q̃⟩:S in the runtime environment.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:21

Labels

Labels γ ::= s:p†q::ℓ(A) | s:p ↠ q::ℓ | s:p‡q
Synchronisation labels ρ ::= s:p, q::ℓ | s:p ↠ q::ℓ | s:p#q

Reduction on runtime typing environments

Local Reduction ∆ γ−→ ∆′

ET-Conn
∃j ∈ I.αj = q!!ℓj(Aj)

ty(q) = Σk∈K(p??ℓk(Bk) . Tk) j ∈ K Aj = Bj

s[p]⟨r̃⟩:Σi∈I(αi . Si)
s:p↠q::ℓj−−−−−−→ s[p]⟨r̃, q⟩:Sj , s[q]⟨p⟩:Tj

ET-Act
∃j ∈ I.αj = q†ℓj(Aj) q ∈ r̃

s[p]⟨r̃⟩:Σi∈I(αi . Si)
s:p†q::ℓj (Aj)
−−−−−−−−→ s[p]⟨r̃⟩:Sj

ET-Wait

s[p]⟨r̃, q⟩:#↑q . S
s:p#↑q−−−−→ s[p]⟨r̃⟩:S

ET-Disconn

s[p]⟨q⟩:#↓q s:p#↓q−−−−→ ·

ET-Rec
∆, s[p]⟨q̃⟩:S{µX.S/X} γ−→ ∆′

∆, s[p]⟨q̃⟩:µX.S
γ−→ ∆′

ET-Cong1
∆ γ−→ ∆′

∆, s[p]⟨q̃⟩:S γ−→ ∆′, s[p]⟨q̃⟩:S

ET-Cong2
∆ γ−→ ∆′

∆, a:S γ−→ ∆′, a:S

Synchronisation ∆ ρ=⇒ ∆′

ET-ConnSync
∆ s:p↠q::ℓ−−−−−−→ ∆′

∆ s:p↠q::ℓ======⇒ ∆′

ET-Comm
∆1

s:p!q::ℓ(A)−−−−−−−→ ∆′
1 ∆2

s:q?p::ℓ(A)−−−−−−−→ ∆′
2

∆1, ∆2
s:p,q::ℓ=====⇒ ∆′

1, ∆′
2

ET-Disconn
∆1

s:p#↑q−−−−→ ∆′
1 ∆2

s:q#↓p−−−−→ ∆′
2

∆1, ∆2
s:p#q====⇒ ∆′

1, ∆′
2

Figure 16 Labelled transition system for runtime typing environments.

5.4.2 Preservation
We now prove that reduction preserves typability and thus that actors only perform commu-
nication actions specified in their session types. Due to our use of explicit connection actions,
classical MPST approaches are too limited for our purposes. Our approach, following that of
Scalas & Yoshida [54], is to introduce a labelled transition system (LTS) on local types, and
specify a generic safety property based around local type reduction. The property can then
refined; in our case, we will later specialise the property in order to prove progress.

Reduction on runtime typing environments. Figure 16 shows the LTS on runtime typing
environments. There are two judgements: ∆ γ−→ ∆′, which handles reduction of individual
local types, and a synchronisation judgement ∆ ρ=⇒ ∆′.

Rule ET-Conn handles the reduction of role p, where the choice session type contains a
connection action q!!ℓj(Aj) . S′

j . If q has a statically-defined session type Σk∈K(p??ℓk(Bk) . Tk)
which can accept ℓj from from p, and the payload types match, reduction advances p’s session
type, adds q to p’s connected role set, and introduces an entry for q into the environment.
The reduction emits a label s:p ↠ q::ℓj .

Given a role p connected to q with a session choice containing a send or receive action
q†ℓj(A) . S′

j , rule ET-Act will emit a label s:p†q::ℓj(Aj) and advance the session type of p.
Rule ET-Wait handles the reduction of #↑q . S actions, s[p]⟨r̃, q⟩:#↑q . S, where p waits

for q to disconnect: the reduction emits label p:q#↑ and removes q from p’s connected roles.

ECOOP 2021

10:22 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Similarly, rule ET-Disconn handles disconnection, by emitting label p:q#↓ and removing
the entry from the environment. ET-Rec handles recursive types, and the ET-Cong rules
handle reduction of sub-environments.

Rule ET-ConnSync states that connection is a synchronisation action, and rules ET-
Comm and ET-Disconn handle synchronisation between dual actions in sub-environments,
emitting synchronisation labels s:p, q::ℓ and s:p#q respectively. We omit the congruence
rules for synchronisation actions. We say that a runtime environment reduces, written ∆ =⇒,
if there exists some ∆′ such that ∆ =⇒ ∆′.

Safety. A safety property describes a set of invariants on typing environments which allow
us to prove preservation. Since the type system is parametric in the given safety property,
we can tweak the property to permit or rule out different typing environments satisfying
particular behavioural properties; however, we need only prove type preservation once, using
the weakest safety property. Our safety property is different to the safety property described
by Scalas & Yoshida [54] in order to account for explicit connection actions.

▶ Definition 5 (Safety Property). φ is a safety property of runtime typing contexts ∆ if:
1. φ(∆, s[p]⟨r̃⟩:Σi∈I(αi . Si), s[q]⟨s̃⟩:Σj∈J (p?ℓj(Bj) . Tj)) implies that if q!ℓk(Ak) ∈ {αi}i∈I ,

then k ∈ J , q ∈ r̃, p ∈ s̃, and Ak = Bk.
2. φ(∆, s[p]⟨r̃⟩:Σi∈I(αi . Si)) implies that if αi = q!!ℓj(Aj) ∈ {αi}i∈I , then q ̸∈ r̃,

s[q]⟨s̃⟩ ̸∈ dom(∆), and ty(q) = Σk∈K(p??ℓk(Bk) . Tk) with j ∈ K and Aj = Bj.
3. φ(∆, s[p]⟨q̃⟩:µX.S) implies φ(∆, s[p]⟨q̃⟩:S{µX.S/X})
4. φ(∆) and ∆ =⇒ ∆′ implies φ(∆′)

A runtime typing environment is safe, written safe(∆), if φ(∆) for a safety property φ.

Clause (1) ensures that communication actions between participants are compatible: if p
is sending a message with label ℓ and payload type A to q, and q is receiving from p, then
the two roles must be connected, and q must be able to receive ℓ with a matching payload.

Clause (2) states that if p is connecting to a role q with label ℓ, then q should not already
be involved in the session, and should be able to accept from p on message label ℓ with a
compatible payload type. The requirement that q is not already involved in the session rules
out the correlation errors described in Section 5.2.1. Clause (3) handles recursion, and clause
(4) requires that safety is preserved under environment reduction.

Concretising the safety property. In order to deduce that a runtime typing environment
∆ is safe, we define φ(∆) = {∆′ | ∆ =⇒∗ ∆′} and verify that φ is a safety property by
ensuring that it satisfies all clauses in Definition 5.

Properties on protocols and programs. It is useful to distinguish active and inactive session
types, depending on whether their associated role is currently involved in a session, and
identify the initiator of a session.

▶ Definition 6 (Active and Inactive Session Types). A session type S is inactive, written
inactive(S), if S = end or S = Σi∈I(p??ℓi(Ai) . Si). Otherwise, S is active, written active(S).

▶ Definition 7 (Initiator, unique initiator). Given a protocol P , a role p : Sp ∈ P is an
initiator if Sp = Σi∈I(αi . Si), and each αi is a connection action q!!ℓi(Ai). Role p is a
unique initiator of P if inactive(Sq) for all q ∈ P \ {p : Sp}.

A protocol is well-formed if it is safe and has a unique initiator.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:23

▶ Definition 8 (Well-formed protocol). A protocol P = {pi : Si}i∈I is well-formed if it has a
unique initiator q of type S and safe(s[q]⟨∅⟩:S) for any s.

By way of example, the online shopping protocol is well-formed: Customer is the protocol’s
unique initiator, and it is straightforward to verify that safe(s[Customer]⟨∅⟩: ty(Customer)).

▶ Definition 9 (Well-formed program). A program (−→D,
−→
P , M) is well-formed if:

1. For each actor definition D = actor u follows S {N} ∈
−→
D , there exists some role p ∈

−→
P

such that ty(p) = S, and {S} · | S ▷ N :A ◁ end
2. Each protocol P ∈

−→
P is well-formed and has a distinct set of roles

3. The “boot clause” M is typable under the empty typing environment and does not perform
any communication actions: {end} · | end ▷ M :A ◁ end

When discussing the metatheory, we only consider configurations defined with respect to a
well-formed program. Specifically, we henceforth assume that each actor definition in the
system follows a session type matched by a role in a given protocol, assume each role belongs
to a single protocol, and assume that all protocols are well-formed.

Given a safe runtime environment, configuration reduction preserves typability; details
can be found in the extended version. We write R? for the reflexive closure of a relation R.

▶ Theorem 10 (Preservation (Configurations)). Suppose Γ; ∆ ⊢ C with safe(∆) and where
C is defined wrt. a well-formed program. If C −→ C′, then there exists some ∆′ such that
∆ =⇒? ∆′ and Γ; ∆′ ⊢ C′.

Preservation shows that each actor conforms to its session type, and that communication
never introduces unsoundness due to mismatching payload types.

5.4.3 Progress
We now show a progress property, which shows that given protocols which satisfy a progress
property, EnsembleS configurations do not get stuck due to deadlocks.

A final runtime typing environment contains a single, disconnected role of type end,
reflecting the intuition that all roles will eventually disconnect from a protocol initiator.

▶ Definition 11 (Final environment). An environment ∆ is final, written end(∆), ∆ =
{s[p]⟨∅⟩:end} for some s and p.

So far, we have considered safe protocols, which ensure the absence of communication
mismatches. We say that an environment satisfies progress if each active role can eventually
perform an action, each potential send is eventually matched by a receive, and non-reducing
environments are final. Let roles(ρ) denote the roles referenced in a synchronisation label
(i.e., roles(ρ) = {p, q} for ρ ∈ {s:p ↠ q::ℓ, s:p, q::ℓ, s:p#q}).

▶ Definition 12 (Progress (Runtime typing environments)). A runtime typing environment ∆
satisfies progress, written prog(∆), if:

(Role progress) for each s[pi]⟨q̃i⟩:Si ∈ ∆ s.t. active(Si), ∆ =⇒∗ ∆′ ρ=⇒ with p ∈ roles(ρ)

(Eventual comm.) if ∆=⇒∗ ∆′ s:p!q::ℓ(A)−−−−−−→, then ∆′
−→ρ==⇒ ∆′′ s:q?p::ℓ(A)−−−−−−−→, with p ̸∈ roles(−→ρ)

(Correct termination) ∆ =⇒∗ ∆′ ̸=⇒ implies end(∆)

The online shopping example satisfies progress, since all roles will always eventually be
able to fire an action once connected, and since all roles disconnect, the non-reducing final
environment will be of the form s[Customer]⟨∅⟩:end.

ECOOP 2021

10:24 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

▶ Definition 13 (Progress (Programs)). A well-formed program (−→D,
−→
P , M) satisfies progress

if each P ∈
−→
P has a unique initiator q of type S and prog(s[q]⟨∅⟩:S) for any s.

A configuration context G is the context G ::= [] | (νs)G | G ∥ C. A session consists
of a session name restriction and all connected actors and zapper threads. A well-typed
configuration can be written as a sequence of sessions, followed by all disconnected actors.

▶ Definition 14 (Session). A configuration is a session S if it can be written:
(νs)(⟨a1, M1, s[p1]⟨q̃1⟩, κ1⟩ ∥ · · · ∥ ⟨am, Mm, s[pm]⟨q̃m⟩, κm⟩ ∥ s[pm+1] ∥ · · · ∥ s[pn])

An actor is terminated if it has reduced to a value or has an unhandled exception, and
has the behaviour stop. An unmatched discover occurs when no other actors match a given
session type. An actor is accepting if it is ready to accept a connection.

▶ Definition 15 (Terminated actor, unmatched discover, accepting actor).
An actor ⟨a, M, σ, κ⟩ is terminated if M = return V or M = EP[raise], and κ = stop.
An actor ⟨a, E[discover S], σ, κ⟩ which is a subconfiguration of C has an unmatched
discover if no other non-terminated actor in C has session type S.
An actor ⟨a, M, σ, κ⟩ is accepting if M = E[accept from p {ℓj(xj) 7→ Nj}j] for some
evaluation context E and role p.

Unhandled exceptions will propagate through a session, progressively cancelling all roles.
A failed session consists of only zapper threads.

▶ Definition 16 (Failed session). We say that a session S is a failed session, written failed(S),
if S ≡ (νs)(s[p1] ∥ · · · ∥ s[pn]).

The key session progress lemma establishes the reducibility of each session which does not
contain an unmatched discover and is typable under a reducible runtime typing environment.

▶ Lemma 17 (Session Progress). If ·; · ⊢ C where C does not contain an unmatched discover,
C ≡ G[S] and S = (νs : ∆)D with prog(∆), and S is not a failed session, then C −→.

There are several steps to proving Lemma 17 (see the extended version). First, we introduce
exception-aware reduction on runtime typing environments, which explicitly accounts for
zapper threads at the type level, and show that exception-aware environments threads retain
safety and progress. Second, we introduce flattenings, which show that runtime typing
environments containing only unary output choices can type configurations blocked on
communication actions, and that flattenings preserve environment reducibility. Finally, we
show that configurations typable under flat, reducible typing environments can reduce.

We can now show our second main result: in the absence of unmatched discovers, a
configuration can either reduce, or it consists only of accepting and terminating actors.

▶ Theorem 18 (Progress). Suppose ·; · ⊢ C where C is defined wrt. a well-formed program which
satisfies progress, and prog(∆) for each (νs : ∆)C′ in C. If C does not contain an unmatched
discover, either ∃D such that C −→ D, or C ≡ 0, or C ≡ (νb1 · · · νbn)(⟨b1, N1, ⊥, κ1⟩ ∥ · · · ∥
⟨bn, Nn, ⊥, κn⟩) where each bi is terminated or accepting.

The proof eliminates all failed sessions by the structural congruence rules; shows that the
presence of sessions implies reducibility (Lem. 17); and reasons about disconnected actors.

In addition to each actor conforming to its session type (Thm. 10), Theorem 18 guarantees
that the system does not deadlock. It follows that session types ensure safe communication.

Theorem 18 assumes the absence of unmatched discovers. This is not a significant limitation
in practice, however, as unmatched discovers can be mitigated with timeouts, where a timeout
would trigger an exception.

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:25

6 Related Work

Behavioural typing for actors. Mostrous & Vasconcelos [46] present the first theoretical
account of session types in an actor language; their work effectively overlays a channel-based
session typing discipline on mailboxes using Erlang’s reference generation capabilities.

Neykova & Yoshida [49] use MPSTs to specify communication in an actor system, imple-
mented in Python. Fowler [21] implements similar ideas in Erlang, with extensions to allow
subsessions [17] and failure handling. Neykova & Yoshida [48] later improve the recovery
mechanism of Erlang by using MPSTs to calculate a minimal set of affected roles. The
above works check multiparty session typing dynamically. We are first to both formalise and
implement static multiparty session type checking for an actor language.

Active objects (AOs) [15] are actor-like concurrent objects where results of asynchronous
method invocations are returned through futures. Bagherzadeh & Rajan [4] study order
types for an AO calculus, which characterise causality and statically rule out data races.
In contrast to MPSTs, order types work bottom-up through type inference. Kamburjan et
al. [39] apply an MPST-like system to Core ABS [38], a core AO calculus; they establish
soundness via a translation to register automata rather than via an operational semantics.

de’Liguoro & Padovani [16] introduce mailbox types, a type system for first-class, unordered
mailboxes. Their calculus generalises the actor model, since each process can be associated
with more than one mailbox. Their type discipline allows multiple writers and a single
reader for each mailbox, and ensures conformance, deadlock-freedom, and for many programs,
junk-freedom. Our approach is based on MPSTs and is more process-centric.

Non-classical multiparty session types. MPSTs were introduced by Honda et al. [31].
Classical MPST theories are grounded in binary duality: safety follows as a consequence of
consistency (pointwise binary duality of interactions between participants), and deadlock-
freedom follows from projectability from a global type.

Unfortunately, classical MPSTs are restrictive: there are many protocols which are in-
tuitively safe but not consistent. Scalas & Yoshda [54] introduced the first non-classical
multiparty session calculus. Instead of ensuring safety using binary duality, they define an
LTS on local types and safety property suitable for proving type preservation; since the type
system is parametric in the safety property (inspired by Igarashi & Kobayashi [35] in the
π-calculus), the property can be customised in order to guarantee different properties such as
deadlock-freedom or liveness. Hu & Yoshida [32] formalise MPSTs with explicit connection
actions via an LTS on types rather than providing a concrete language design or calculus; in
our setting, a calculus is vital in order to account for the impact of adaptation constructs. A
key contribution of our work is the use of non-classical MPSTs to prove preservation and
progress properties for a calculus incorporating MPSTs with explicit connection actions.

Adaptation. None of the above work considers adaptation. The literature on formal studies
of adaptation is mainly based on process calculi, without programming language design or
implementation. Bravetti et al. [9] develop a process calculus that allows parts of a process
to be dynamically replaced with new definitions. Their later work [8] uses temporal logic
rather than types to verify adaptive processes. Di Giusto and Pérez [19] define a session
type system for the same process calculus, and prove that adaptation does not disrupt active
sessions. Later, Di Giusto and Pérez [18] use an event-based approach so that adaptation can
depend on the state of a session protocol. Anderson and Rathke [2] develop an MPST-like
calculus and study dynamic software update providing guarantees of communication safety
and liveness. Differently from our work, they do not consider runtime discovery of software
components and do not provide an implementation.

ECOOP 2021

10:26 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Coppo et al. [13] consider self-adaptation, in which a system reconfigures itself rather
than receiving external updates. They define an MPST calculus with self-adaptation and
prove type safety. Castellani et al. [11] extend [13] to also guarantee properties of secure
information flow, but neither of these works have been implemented. Dalla Preda et al. [51]
develop the AIOCJ system based on choreographic programming for runtime updates. Their
work is implemented in the Jolie language [44], but they do not consider runtime discovery.

In this work we focus on correct communication in the absence of adversaries, and do not
consider security. The literature on security and behavioural types is surveyed by Bartoletti
et al. [5] and could provide a basis for future work on security properties.

7 Conclusion and Future Work

Modern computing increasingly requires software components to adapt to their environment,
by discovering, replacing, and communicating with other components which may not be part
of the system’s original design. Unfortunately, up until now, existing programming languages
have lacked the ability to support adaptation both safely and statically. We therefore asked:

Can a programming language support static (compile-time) verification of safe runtime
dynamic self-adaptation, i.e., discovery, replacement and communication?

We have answered this question in the affirmative by introducing EnsembleS, an actor-
based language supporting adaptation, which uses multiparty session types to guarantee
communication safety, using explicit connection actions to invite discovered actors into a
session. We have demonstrated the safety of our system by proving type soundness theorems
which state that each actor follows its session type, and that communication does not
introduce deadlocks. Our formalism makes essential use of non-classical MPSTs.

Future work. Each actor only takes part in a single session. Unlike dynamically-checked
implementations of session typing for actors [47, 21], this means that a message received by
an actor in one session cannot trigger an interaction in another (e.g., the Warehouse example
in [47]). A key focus for future work will be to allow actors to partake in multiple sessions.

EnsembleS discovery and replacement requires type equality. We expect we could relax this
constraint to subtyping [53] or perhaps bisimilarity on local types to increase expressiveness.

In order to avoid session correlation errors, we require that each role includes at most a
single top-level accept construct (c.f. [32]). It would be interesting to investigate the more
general setting, which would likely require dependent types.

References
1 Gul A. Agha. ACTORS - a model of concurrent computation in distributed systems. MIT

Press series in artificial intelligence. MIT Press, 1990.
2 Gabrielle Anderson and Julian Rathke. Dynamic software update for message passing programs.

In Ranjit Jhala and Atsushi Igarashi, editors, Programming Languages and Systems - 10th
Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13, 2012. Proceedings, volume
7705 of Lecture Notes in Computer Science, pages 207–222. Springer, 2012. doi:10.1007/
978-3-642-35182-2_15.

3 Robert Atkey. Parameterised notions of computation. Journal of Functional Programming,
19(3-4):335–376, 2009.

4 Mehdi Bagherzadeh and Hridesh Rajan. Order types: static reasoning about message races in
asynchronous message passing concurrency. In AGERE!@SPLASH, pages 21–30. ACM, 2017.

https://doi.org/10.1007/978-3-642-35182-2_15
https://doi.org/10.1007/978-3-642-35182-2_15

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:27

5 Massimo Bartoletti, Ilaria Castellani, Pierre-Malo Deniélou, Mariangiola Dezani-Ciancaglini,
Silvia Ghilezan, Jovanka Pantovic, Jorge A. Pérez, Peter Thiemann, Bernardo Toninho, and
Hugo Torres Vieira. Combining behavioural types with security analysis. Journal of Logical and
Algebraic Methods in Programming, 84(6):763–780, 2015. doi:10.1016/j.jlamp.2015.09.003.

6 J. Baumann, F. Hohl, K. Rothermel, and M. Straßer. MOLE — Concepts of Mobile Agent
System, page 535–554. ACM Press/Addison-Wesley Publishing Co., USA, 1999.

7 G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and M. May. The autonomic
network architecture (ANA). IEEE Journal on Selected Areas in Communications, 28(1):4–14,
2010. doi:10.1109/JSAC.2010.100102.

8 Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro. Adaptable processes.
Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/LMCS-8(4:13)2012.

9 Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro. Towards the
verification of adaptable processes. In Proceedings (Part I) of the 5th International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), volume
7609 of Lecture Notes in Computer Science, pages 269–283. Springer, 2012. doi:10.1007/
978-3-642-34026-0_20.

10 Callum Cameron, Paul Harvey, and Joseph Sventek. A virtual machine for the Insense language.
In Proceedings of the International Conference on Mobile Wireless Middleware, Operating
Systems and Applications (Mobilware), pages 1–10. IEEE, 2013. doi:10.1109/Mobilware.
2013.17.

11 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Aspects of Computing, 28(4):669–
696, 2016. doi:10.1007/s00165-016-0381-3.

12 Francesco Cesarini and Steve Vinoski. Designing for Scalability with Erlang/OTP: Implement
Robust, Fault-Tolerant Systems. O’Reilly Media, Inc., 1st edition, 2016.

13 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Self-adaptive multiparty
sessions. Service Oriented Computing and Applications, 9(3-4):249–268, 2015. doi:10.1007/
s11761-014-0171-9.

14 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016.

15 Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In
ESOP, volume 4421 of Lecture Notes in Computer Science, pages 316–330. Springer, 2007.

16 Ugo de’Liguoro and Luca Padovani. Mailbox types for unordered interactions. In ECOOP,
volume 109 of LIPIcs, pages 15:1–15:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

17 Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR,
volume 7454 of Lecture Notes in Computer Science, pages 272–286. Springer, 2012.

18 Cinzia Di Giusto and Jorge A. Pérez. Disciplined structured communications with disciplined
runtime adaptation. Science of Computer Programming, 97:235–265, 2015. doi:10.1016/j.
scico.2014.04.017.

19 Cinzia Di Giusto and Jorge A. Pérez. An event-based approach to runtime adaptation in
communication-centric systems. In Proceedings of the 11th and 12th International Workshops
on Web Services, Formal Methods and Behavioural Types (WS-FM 2014, WS-FM/BEAT
2015), Lecture Notes in Computer Science, pages 67–85. Springer, 2015. doi:10.1007/
978-3-319-33612-1_5.

20 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In PLDI, pages 237–247. ACM, 1993.

21 Simon Fowler. An Erlang implementation of multiparty session actors. In Proceedings of
the 9th Interaction and Concurrency Experience (ICE), volume 223 of Electronic Proceedings
in Theoretical Computer Science, pages 36–50. Open Publishing Association, 2016. doi:
10.4204/EPTCS.223.3.

ECOOP 2021

https://doi.org/10.1016/j.jlamp.2015.09.003
https://doi.org/10.1109/JSAC.2010.100102
https://doi.org/10.2168/LMCS-8(4:13)2012
https://doi.org/10.1007/978-3-642-34026-0_20
https://doi.org/10.1007/978-3-642-34026-0_20
https://doi.org/10.1109/Mobilware.2013.17
https://doi.org/10.1109/Mobilware.2013.17
https://doi.org/10.1007/s00165-016-0381-3
https://doi.org/10.1007/s11761-014-0171-9
https://doi.org/10.1007/s11761-014-0171-9
https://doi.org/10.1016/j.scico.2014.04.017
https://doi.org/10.1016/j.scico.2014.04.017
https://doi.org/10.1007/978-3-319-33612-1_5
https://doi.org/10.1007/978-3-319-33612-1_5
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3

10:28 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

22 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
2019.

23 Colin S. Gordon. Lifting sequential effects to control operators. In ECOOP, volume 166 of
LIPIcs, pages 23:1–23:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

24 T. Gu, H. K. Pung, and D. Q. Zhang. Toward an OSGi-based infrastructure for context-aware
applications. IEEE Pervasive Computing, 3(4):66–74, 2004. doi:10.1109/MPRV.2004.19.

25 Paul Harvey. A linguistic approach to concurrent, distributed, and adaptive programming across
heterogeneous platforms. PhD thesis, School of Computing Science, University of Glasgow,
2015. URL: http://theses.gla.ac.uk/6749/.

26 Paul Harvey and Joseph Sventek. Adaptable actors: just what the world needs. In Proceedings
of the 9th Workshop on Programming Languages and Operating Systems (PLOS), pages 22–28.
ACM, 2017. doi:10.1145/3144555.3144559.

27 Richard Hayton, Michael Bursell, Douglas I. Donaldson, W. Harwood, and Andrew Herbert.
Mobile Java objects. Distributed Syst. Eng., 6(1):51, 1999. doi:10.1088/0967-1846/6/1/306.

28 Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular ACTOR
formalism for artificial intelligence. In Proceedings of the 3rd international joint conference
on Artificial intelligence, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc. URL: http://dl.acm.org/citation.cfm?id=1624775.1624804.

29 Kohei Honda. Types for dyadic interaction. In CONCUR ’93, 4th International Conference
on Concurrency Theory, volume 715 of Lecture Notes in Computer Science, pages 509–523.
Springer, 1993. doi:10.1007/3-540-57208-2_35.

30 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Programming Languages
and Systems - ESOP’98, 7th European Symposium on Programming, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

31 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), volume 43, pages 273–284. ACM, 2008. doi:10.1145/
1328897.1328472.

32 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In Proceedings of the 20th International Conference on Fundamental Approaches to Software
Engineering (FASE), Lecture Notes in Computer Science, pages 116–133. Springer, 2017.
doi:10.1007/978-3-662-54494-5_7.

33 Danny Hughes, Klaas Thoelen, Wouter Horré, Nelson Matthys, Javier Del Cid, Sam Michiels,
Christophe Huygens, and Wouter Joosen. LooCI: a loosely-coupled component infrastructure
for networked embedded systems. In Proceedings of the 7th International Conference on
Advances in Mobile Computing and Multimedia (MoMM), pages 195–203. ACM, 2009. doi:
10.1145/1821748.1821787.

34 Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination protocol
for network programming at scale. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys), pages 81–94. ACM, 2004. doi:10.1145/
1031495.1031506.

35 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theor.
Comput. Sci., 311(1-3):121–163, 2004.

36 Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001.

37 Antonio J Jara, Pedro Martinez-Julia, and Antonio Skarmeta. Light-weight multicast DNS
and DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the web of things.
In 2012 Sixth international conference on innovative mobile and internet services in ubiquitous
computing, pages 731–738. IEEE, 2012.

https://doi.org/10.1109/MPRV.2004.19
http://theses.gla.ac.uk/6749/
https://doi.org/10.1145/3144555.3144559
https://doi.org/10.1088/0967-1846/6/1/306
http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1145/1821748.1821787
https://doi.org/10.1145/1821748.1821787
https://doi.org/10.1145/1031495.1031506
https://doi.org/10.1145/1031495.1031506

P. Harvey, S. Fowler, O. Dardha, and S. J. Gay 10:29

38 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS:
A core language for abstract behavioral specification. In FMCO, volume 6957 of Lecture Notes
in Computer Science, pages 142–164. Springer, 2010.

39 Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. Session-based compositional
analysis for actor-based languages using futures. In ICFEM, volume 10009 of Lecture Notes in
Computer Science, pages 296–312, 2016.

40 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with Mungo and StMungo: a session type toolchain for Java. Science of Computer Programming,
155:52–75, 2018. doi:10.1016/j.scico.2017.10.006.

41 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Information and Computation, 185(2):182–210, 2003.

42 Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

43 Paul V Mockapetris. RFC 1035: Domain names - implementation and specification, 1987.
44 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Composing services with JOLIE.

In ECOWS, pages 13–22. IEEE Computer Society, 2007.
45 Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. Log. Methods Comput. Sci.,

14(4), 2018.
46 Dimitris Mostrous and Vasco Thudichum Vasconcelos. Session typing for a featherweight

Erlang. In Proceedings of the 13th International Conference on Coordination Models and
Languages (COORDINATION), volume 6721 of Lecture Notes in Computer Science, pages
95–109. Springer, 2011. doi:10.1007/978-3-642-21464-6_7.

47 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In Proceedings of the
16th IFIP WG 6.1 Conference on Coordination Models and Languages (COORDINATION),
volume 8459 of Lecture Notes in Computer Science, pages 131–146. Springer, 2014. doi:
10.1007/978-3-662-43376-8_9.

48 Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In Proceedings of the 26th International Conference on Compiler Construction (CC), pages
98–108. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3033031.

49 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. Logical Methods in
Computer Science, 13(1:17):1–30, 2017. doi:10.23638/LMCS-13(1:17)2017.

50 Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. REX: A devel-
opment platform and online learning approach for runtime emergent software systems. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages
333–348. USENIX Association, 2016. URL: https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/porter.

51 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies: Theory and implementation. Logical Methods in Computer Science,
13(2), 2017. doi:10.23638/LMCS-13(2:1)2017.

52 Jan S Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: distributed applica-
tions through software modularization. In ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing, pages 1–20. Springer, 2007.

53 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In Proceedings of the 31st European
Conference on Object-Oriented Programming (ECOOP), volume 74 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 24:1–24:31, 2017. doi:10.4230/LIPIcs.ECOOP.
2017.24.

54 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019.

55 Filippo Visintainer, Leandro D’Orazio, Marco Darin, and Luciano Altomare. Cooperative
systems in motorway environment: The example of Trento test site in Italy. In Jan Fischer-

ECOOP 2021

https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-3-662-43376-8_9
https://doi.org/10.1007/978-3-662-43376-8_9
http://dl.acm.org/citation.cfm?id=3033031
https://doi.org/10.23638/LMCS-13(1:17)2017
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/porter
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/porter
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

10:30 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Wolfarth and Gereon Meyer, editors, Advanced Microsystems for Automotive Applications
2013, pages 147–158, Heidelberg, 2013. Springer International Publishing.

56 Feng Xia, Laurence T. Yang, Lizhe Wang, and Alexey V. Vinel. Internet of things. International
Journal of Communication Systems, 25(9):1101–1102, 2012. doi:10.1002/dac.2417.

57 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble protocol
language. In Proceedings of the 8th International Symposium on Trustworthy Global Computing
(TGC), volume 8358, pages 22–41. Springer, 2014. doi:10.1007/978-3-319-05119-2_3.

https://doi.org/10.1002/dac.2417
https://doi.org/10.1007/978-3-319-05119-2_3

Do Bugs Propagate? An Empirical Analysis of
Temporal Correlations Among Software Bugs
Xiaodong Gu #

School of Software, Shanghai Jiao Tong University, China

Yo-Sub Han #

Department of Computer Science, Yonsei University, Seoul, South Korea

Sunghun Kim #

Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Hong Kong

Hongyu Zhang #

The University of New Castle, Australia

Abstract
The occurrences of bugs are not isolated events, rather they may interact, affect each other, and
trigger other latent bugs. Identifying and understanding bug correlations could help developers
localize bug origins, predict potential bugs, and design better architectures of software artifacts to
prevent bug affection. Many studies in the defect prediction and fault localization literature implied
the dependence and interactions between multiple bugs, but few of them explicitly investigate the
correlations of bugs across time steps and how bugs affect each other. In this paper, we perform
social network analysis on the temporal correlations between bugs across time steps on software
artifact ties, i.e., software graphs. Adopted from the correlation analysis methodology in social
networks, we construct software graphs of three artifact ties such as function calls and type hierarchy
and then perform longitudinal logistic regressions of time-lag bug correlations on these graphs. Our
experiments on four open-source projects suggest that bugs can propagate as observed on certain
artifact tie graphs. Based on our findings, we propose a hybrid artifact tie graph, a synthesis of a
few well-known software graphs, that exhibits a higher degree of bug propagation. Our findings shed
light on research for better bug prediction and localization models and help developers to perform
maintenance actions to prevent consequential bugs.

2012 ACM Subject Classification Software and its engineering → Maintaining software

Keywords and phrases empirical software engineering, bug propagation, software graph, bug correl-
ation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.11

Acknowledgements The authors would like to thank anonymous reviewers for their very insightful
comments and constructive suggestions in greatly improving the quality of this paper.

1 Introduction

Software bugs are not isolated [30, 62], rather they may interact, affect each other, and trigger
consequential bugs over certain software artifacts [38, 54, 56]. Identifying and understanding
bug correlations could help developers localize bug origins, predict future bugs, and design
better architectures to prevent bug propagation. Therefore, the study of bug propagation is
of tremendous importance from both analysis and design points of view.

There has been much work on bug co-occurrence and localities, indirectly implying the
propagation of bugs [24, 30, 48]. For example, Kim et al. [30] found that bugs do not occur in
isolation, but rather in bursts of several related bugs. Zimmermann et al. [62, 63] investigate
bug correlations over software dependency graphs and utilize the correlation effect for defect
prediction. While these studies have shown the evidence of spatial correlation among bugs,

© Xiaodong Gu, Yo-Sub Han, Sunghun Kim, and Hongyu Zhang;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xiaodong.gu@sjtu.edu.cn
https://orcid.org/0000-0002-0529-6408
mailto:emmous@cs.yonsei.ac.kr
https://orcid.org/0000-0002-7211-6657
mailto:hunkim@cse.ust.hk
mailto:hongyu.zhang@newcastle.edu.au
https://doi.org/10.4230/LIPIcs.ECOOP.2021.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Do Bugs Propagate?

they do not investigate the existence of bug correlation across time steps. There are many
unanswered questions about temporal correlations among the bugs. More specifically: 1) Do
software bugs propagate over time? 2) How do they propagate? and 3) Why do
they propagate?

In this paper, we investigate the temporal (a.k.a., time-lag) correlations among software
bugs along with software evolution. We adopt the correlation analysis methodology from
social science, which has shown effectiveness in identifying propagation of social phenomena
(such as obesity and suicide) [12, 19]. Like in social network analysis [12], we define temporal
correlation as the correlation between bugs across time steps.

In social science, corrections of social phenomena depends on social ties such as parents,
relatives and friends. These social ties are usually represented as graphs (i.e., friend graph,
neighbor graph, and sibling graph) [12, 50, 51]. Researchers then perform correlation analysis
on these graphs [19, 12] to analyze the temporal correlation phenomenon. Choosing different
graphs may lead to different findings. For example, obesity propagates more significantly on
friend graphs than on sibling graphs [12]. Similar to social ties, there are also a various kinds
of ties among software modules such as dependencies [41, 62, 63], collaborations [25, 45], and
interactions [45]. We call such ties software ties which can be modeled by software graphs.
For example, Zimmermann [62, 63] has built the dependency graph which characterizes data
and call dependence between software artifacts and shows effectiveness in defect prediction.
Pinzger et al. [45] proposed the developer-module network which models the relationships
between developers and their contributions.

To explore the temporal correlation of software bugs on different software ties, we build
graphs of three known artifact ties from the literature such as function calls [7], module
inheritance [22], and file co-change [14, 24]. Nodes in each graph stand for source code
files, while edges refer to software ties such as calling, inheritance, and co-change (CC)
relationships. We build software tie graphs for four open-source projects (HTTPClient,
Jackrabbit, Lucene, and Rhino) and then perform the longitudinal logistic regression [12] on
the bug and metric statistics on these graphs. We measure the temporal correlation among
bugs using the coefficients of the longitudinal logistic regression (LRC) and compare the
results with well-recognized propagation phenomena such as obesity [12] and happiness [19].

Our experimental results show that there are significant temporal correlations among
bugs through the three basic software ties. The logistic regression coefficients (LRC) of the
three basic graphs are 0.19, 0.32 and 0.39, respectively, showing far more compelling results
than the random graph (LRC=0) and are generally more significant than social events such
as happiness (LRC=0.12) and obesity (LRC=0.28) [12, 19]. This answers our questions
raised in the beginning: bugs can propagate along with software evolution, through
common software ties, and the propagation can be significant. Having had more
buggy neighbors among these ties in the past increases the likelihood of being buggy in the
near future.

Based on the experimental results, we propose a hybrid graph (tie) which synthesizes
basic graphs by merging and selecting their edges according to their temporal correlation.
The proposed hybrid graph exhibits a higher degree of temporal correlation than basic graphs,
with an average LRC of 0.66, which is greater than the values of basic graphs. That means,
the hybrid graph provides a more efficient way for identifying temporal correlations among
bugs.

The properties of temporal bug correlation have many benefits for developers. For
example, using the correlation property, developers can link related bug reports, predict
potential consequential bugs, and perform maintenance actions to prevent bug propagation.

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:3

Developers can also improve the quality of software by designing better artifact structures
which have less bug correlation. The software ties between temporal correlated bugs can
facilitate the localizing of correlated bugs and the understanding of their root causes.

Overall, our study makes the following contributions:
We evaluate the temporal correlation of software bugs on three software ties (graphs),
and show that software bugs are indeed temporally correlated over the ties. To our best
knowledge, it is the first work that investigates the phenomenon of temporal correlation
among software bugs.
We design a hybrid graph and show that the graph highlights the bug correlation effects
more significantly.
We discuss reasons to the temporal bug correlations and suggest possible applications of
our findings.

The rest of this paper is organized as follows. Section 2 discusses the background.
Section 4 presents the common setup for bug correlation analysis. Section 5 presents the
results for basic graphs, hybrid graph as well as the reasons of temporal bug correlation,
followed by discussions in Section 6. Section 7 presents the related work, and Section 8
concludes the paper.

2 Background

This section introduces the background of temporal correlation analysis including the concepts,
measures, and applications.

2.1 Temporal Correlation Analysis in Social Science
The temporal correlation analysis aims at identifying the consequential occurrence of a
phenomenon in social science [12, 4]. For example, Christakis and Fowler [12] found that
obesity can be “contagious” among various social ties such as friends and siblings. They
evaluated the spread of the body-mass index in a densely interconnected social network of
12,067 people throughout a 32 year period and found weight gain in one person was associated
with weight gain in his or her friends, siblings, spouses, and neighbors. Being overweight is
also identified to be correlated among friends in schools [53]. Researchers estimated peer
effects for adolescent weight using data from the National Longitudinal Study of Adolescent
Health, and found that mean peer weight is correlated with adolescent weight especially
among females.

Correlation analysis has also shown to be effective in studying online social networks such
as Facebook, MySpace and Flickr [51]. For example, Anagnostopoulos et al. [4] identified
social influence by investigating correlations between individuals in an online social network,
and proposed measures to assess the correlations. Chenhao [50] measured the individual
influence among online friends. They designed a social action tracking algorithm to assess
the quantitative values of influence and utilized them to help predict users’ future actions.
Kempe [29] considered temporal correlation as a way to choose the most influential sets that
can maximize the spread of information.

2.2 Modeling Ties Using Graphs
Graphs, as desirable models to capture ties, are widely used for temporal correlation ana-
lysis [12, 50, 51]. We list several graphs used in different research areas in Table 1. In online
social networks such as Flickr, users are denoted as nodes while ties such as friendships and

ECOOP 2021

11:4 Do Bugs Propagate?

Table 1 Graphs models for correlation studies in other areas.

Area Graph Node Edge Weight
social science [12] obesity individual friend –
social science [19] happiness individual friend –
data mining [4] Flickr user friend influence

corporations are represented as edges [4]. In the social science literature, subject persons are
denoted as nodes (egos and alters), while social ties such as friends, spouses, and siblings are
represented as edges.

Identifying appropriate ties is critical in temporal correlation analysis. Different social
ties correspond to different graphs and show different degrees of correlation, affecting the
results of correlation analysis. For example, obesity exists in friend graphs but not in
neighbor graphs [12]. Happiness is temporally correlated among neighbors but not among
co-workers [19].

2.3 Measuring Propagation
Most propagation studies identify the propagation of a behavior by measuring temporal
correlations between neighbors and egos in the tie graph. Intuitively, if a behavior propagates
from one node to another, then the neighbor (the affected node) can also influence the ego
(the source node). In that sense, the behavior occurrence between the neighbor and the
ego can have a high correlation [4, 6]. In other words, propagation exists only if there exist
correlations among egos and neighbors.

Such temporal correlation can be identified using the longitudinal logistic regression
(LLR) [9, 12]. The LLR is a logistic regression model for longitudinal data (i.e., data that
tracks the same subjects at multiple points in time). It assumes that the ego’s behavior
status at any given time t is a function of various attributes, including intrinsic features of
the ego (e.g., age, sex and education level), any previous behavior of the ego at time t−1 and
neighbors’ disease status at times t−1 and t. Let nt−1 denote the number of neighbors that
are affected at time t−1, yt denote the ego’s affection status (1=affected, 0=otherwise) at
current time t, and xt

i (i=1...N) denote the ego’s intrinsic metrics at time t. The probability
that the ego is affected at present p(yt) can be estimated as:

ln(p(yt)
1 − p(yt)) = αnt−1 + β0 + β1xt

1 + ... + βN xt
N (1)

where yt stands for the dependent variable; nt−1 and all xt’s are independent variables. α

and β represent the regression coefficients for each independent variable [4].
The longitudinal regression model is commonly solved by the generalized estimating

equation (GEE) [34, 46] which accounts for multiple observations of the same ego across
examinations and across ego-neighbor pairs. By running GEE on the LLR model, we obtain
the coefficients (e.g., α, β) for Equation 1. The temporal correlation is usually measured
by the first coefficient α which indicates the correlation between yt and nt−1 in Equation 1.
We denote α as LRC (logistic regression coefficient) [9, 12]. The higher the LRC, the more
significant correlation between the two variables. LRC is a widely used measure for temporal
correlations between social behaviors [19]. For example, happiness is shown to propagate
among social ties with an LRC of 0.12 [19], while obesity among social ties shows an LRC of
0.28 [12]. In a random network where behaviors are independently generated, the average
LRC is expected to be 0.

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:5

Table 2 Overview of software tie graphs.

Graph Node Edge Weight
function call graph source files function call # call sites
type hierarchy graph source files inheritance –
co-change graph source files co-change # co-changes

It is worth noting that in some areas, having correlations between behaviors does not
necessarily indicate the existence of propagation [12]. The correlations could come from
homophily or confounding factors (i.e., two nodes share the same characteristics) [4, 6, 12].
For example, in the obesity studies, people may tend to make friends with others who have
the similar weights. This suggests the need to distinguish the homophily and confounding
factors from correlations according to different scenarios. One commonly used method to
address this issue is the edge-reversal test [4, 12]. This test first reverses the direction of all
edges and then run the longitudinal regression on the reversed graph. Since the homophily
and confounding factors are only based on the fact that two nodes often share the same
characteristics. These factors must be independent of the two individuals’ identification of the
other as a neighbor. Therefore reversing the edges will not change the behavior correlation
estimate significantly [4]. In other words, if correlations change significantly by reversing the
graph, we can exclude the homophily and confounding factors.

3 Study Methodologies

This section presents our study methodologies for identifying the temporal correlations among
bugs. We first introduce the software tie graphs where temporal correlations are dependent
on, followed by the measurement of temporal correlations.

3.1 Software Tie Graphs
Similar to common social ties such as friends, siblings, and spouses (Section 2.2), software
artifacts also have a various kinds of ties such as dependencies [41, 62, 63], collaborations [25,
45], and interactions [45]. Graphs, as effective models of social ties, are also widely used
to represent software artifacts’ ties. For example, Zimmermann et al. [62, 63] represented
dependencies between software binaries by introducing the dependency graph. They further
observed a substantial correlation between central binaries and defects on the graph. Pinzger
et al. [45] leveraged graphs to model developer-modules and found correlations between
centrality measures of developer-module networks and failure-prone modules.

We define a tie graph as a directed graph G = (V, E, w) where V denotes the set of
nodes (source files), E ⊆ V × V is the set of edges (artifact ties), and w : E → R represent
the weighting function for each edge. We select three software artifact ties according to
well-known defect factors in the software engineering literature [15, 21, 32, 36, 45, 62, 63], and
build three corresponding graphs: function call graph, type hierarchy graph, and co-change
graph. An overview of all software artifact tie graphs is presented in Table 2.

3.1.1 Function Call Graph
The function call graph models the caller-callee relationship between artifacts. Intuitively,
bugs from the callee could affect the caller since the caller reuse its codes directly. If a
function in file A calls another function in file B, A and B are represented as two nodes in

ECOOP 2021

11:6 Do Bugs Propagate?

the graph, and a directed edge from node A to node B is added. The weight of each edge is
the number of call sites between nodes.

Figure 1 (a) and (c) illustrate an example of call graph. The class Signature has a function
sampleMethod which calls a function in object of another class JavaTextLabelProvider. Then,
there are two nodes Signature.java and JavaTextLabelProvider.java in the call graph and
an edge from node Signature.java to the node JavaTextLabelProvider.java. The weights
(numbers in the edges) indicate the total numbers of call sites from a file to another file.

3.1.2 Type Hierarchy Graph
The type hierarchy graph captures the inherit relationships among entities. Type hierarchy
indicates the inheritances and implementations among classes. It is not only an important
representation of software design, but also reveals substantial dependencies among artifacts.
Nodes in type hierarchy graphs also stand for files. If a class in file A extends a class in
file B, a directed edge from A to B is added. The weight of each edge is 1 since there is no
multiple inheritances between nodes. Figure 1 (a) and (d) show an example of type hierarchy
graph. The class Signature extends another class AbstractSignature. Then, there are two
nodes Signature.java and AbstractSignature.java in the hierarchy graph and an edge from
node Signature.java to the node AbstractSignature.java.

3.1.3 Co-Change Graph
We also use co-change graphs to capture the co-change relationships among files. Files that
were changed together have implicit couplings [14, 24]. Co-changed files could have relevant
functionality, or be maintained by the same developer. In a co-change graph, nodes stand for
source files. If two files were changed at the same time, an edge weighted with co-changed
times will be connected to both files.

Figure 1 (b) and (e) illustrate an example of co-change graph. The file Signature.java
was changed together with the file SourceMapper.java, therefore, there is an undirected edge
from node Signature.java to node SourceMapper.java. The weights (numbers in the edges)
indicate the total numbers of changes that two files were changed together.

3.2 Measuring Temporal Bug Correlations
We follow the longitudinal logistic regression methodology introduced in Section 3, and
measure bug propagation by estimating the time-lag bug correlations between neighbors and
egos across each consecutive pair of examination points (i.e., time t-1 and t). Specifically, we
perform longitudinal logistic regressions (LLR) (Section 3) on the bug occurrence data and
measure the time-lag bug correlations using the regression coefficient (LRC) (Section 2.3).
Let yt = {yt

l }N
l=1 denote the status of bug for N data instances at examination point t where

yt
l ∈{1, 0} (1=buggy, 0=clean). Let xt = {xt

l}N
l=1 denote the corresponding independent

variables, where xt
l = {xt

1l, xt
2l, ..., xt

Ml} ∈ RM is a collection of common metrics that affect
the presence of bugs such as lines of codes (LOC) and cyclomatic complexity (CYC) for
instance l at examination point t. Let nt = {nt

l}N
l=1 denote the number of buggy neighbors

for each instance l at examination point t. The LLR model fits a logistic regression form [4]:

p(yt
l = 1) = eαnt−1

l
+β0+β1xt

1l+...+βM xt
Ml

1 + eαnt−1
l

+β0+β1xt
1l

+...+βM xt
Ml

(2)

where yt
l represents the dependent variable, nt−1

l and all xt
l ’s denote independent variables,

and M stands for the number of independent variables for controlling. All independent

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:7

public class Signature extends AbstractSignature{
void sampleMethod(String args[]) {

••••••

JavaTextLabelProvider JLP =
new JavaTextLableProvider();

JLP.invoke();
••••••

}
}

(a) sample source code

<logentry revision=“13807”>
<author>oliviert</author>
<date>2016-06-27T17:21:41.000000Z</date>
<paths>

<path action=“M”>org/…/Signature.java</path>
<path action=“M”>org/…/SourceMapper.java</path>

</paths>
<msg> HEAD – Fix for 148010 </msg>

</logentry>

(b) An elephant

Signature.java

JavaTextLableProvider.java

1
3

5

2

(c) call graph

Signature.java

AbstractSignature.java

(d) hierarchy graph

Signature.java

SourceMapper.java

1
3

5

4

2

(e) co-change graph

Figure 1 Examples of source files and artifact tie graphs.

variables we select are shown in Table 3. We collect source code metrics (i.e., LOC, CYS,
and ESS) using the Understand tool [1] and changing metrics (i.e., NOA and NOC) from the
SVN commit logs.

4 Experimental Setup

This section describes the experimental setup. We first present our research questions. Then,
we introduce the data sets, implementations, as well as baseline graphs.

4.1 Research Questions

We design our experiments to address the following research questions:

RQ1: (Temporal bug correlations on known software ties) Do software bugs
propagate through the known software ties? We build graph models for known
software artifact ties such as call, inheritance, and co-changing. They are commonly used
graphs to capture artifact dependencies [41, 62, 63] and collaborations [25, 45]. We perform
longitudinal logistic regressions to measure the time-lag correlations (Section 2.3) between
artifact ties. Then, we compare the results (LRC) with well-recognized conrrelation
results in other research areas.

RQ2: (Temporal correlations on proposed graph) Do software bugs propagate
across the proposed hybrid graph? Based on the observation of basic graphs, we
propose a hybrid graph which synthesizes basic graphs according to their correlation
properties. We measure bug propagation across the proposed hybrid graph.

RQ3:(Casual mechanisms) What are the reasons of the temporal bug correla-
tion phenomenon? To explain the causal mechanism of such temporal correlations, we
conduct a qualitative analysis in real software development and show a few reasons.

ECOOP 2021

11:8 Do Bugs Propagate?

Table 3 A taxonomy of the independent variables.

metric description rationale

controls

LOC [32] Lines of code Large components are more likely to be
defect-prone [32].

CYC [36] Sum of cyclomatic complex-
ity of all nested functions or
methods

More complex components are likely
more defect-prone [36].

ESS [36] Sum of essential complexity
for all nested functions or
methods

NOA [21] Number of authors Components with many unique authors
likely lack strong ownership, which in
turn may lead to more defects [21].

NOC [21] Number of changes The number of changes to code in
the past was a successful predictor of
faults [21].

yt−1
l Number of defects in prior

examination for instance l.
Defects may linger in components that
were recently defective [21].

test nt−1
l Number of neighbor bugs

previously for instance l

Our hypothesis

Table 4 Summary of subject projects.

dataset HTTPClient JCR Lucene Rhino
time span 2007.4–2011.12 2006.12–2011.12 2010.3–2011.12 1999.4–2012.6
unique files 281 1134 511 388
total bugs 576 938 696 302

exam. points
(selected releases) 4.0, 4.0.1, 4.1α2,

4.0.2, 4.1.1, 4.1.2,
4.2α1

1.1.1, 1.2.1, 1.3,
1.3.3, 1.4, 1.4.3,
1.4.6, 1.5, 1.5.5,
1.6, 2.0, 2.1, 2.2,
2.2.5, 2.2.7, 2.3,
2.3.3

3.0.1, 3.0.2, 3.0.3,
3.1, 3.2, 3.3, 3.4,
3.5

1_4r3, 1_5r1,
1_5r2, 1_5r4,
1_5r5, 1_6r1,
1_6r6, 1_7r2,
1_7r3, 1_7r4

4.2 Subjects and Data Collection
We collect bug repositories based on Herzig et al.’s manually verified bug database [23]. We
select four projects1 from their data sets: HTTPClient, Jackrabbit (JCR), Lucene, and
Rhino. They are widely used in the software engineering literature, and more importantly
the data sets have been manually verified [27]. Table 4 shows an overview of these data sets.
They have various project periods (from 2 to 13 years) and different scales and bug densities.
The HTTPClient contains only 281 distinct files with 576 bugs in total while Jackrabbit
contains 1134 files with less than 1000 bugs.

Inspired by the study of obesity propagation [12], we separate the whole evolution of
a project (i.e., all revisions) into different time periods by selecting several revisions as
examination points (t = 1, 2, ..., T , where T is the total number of examination points) (see
Figure 2).

1 For one of the five bug datasets, i.e., Tomcat, the source code of corresponding releases is not available.

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:9

time

bugs of t bugs of t+1

changes t changes t+1

examination
point t

examination
point t+1

Figure 2 Illustration of examination points.

To make the examination points more reasonable, we select revisions when a release was
published and includes bug fixes according to the release history. Different releases may have
different purposes. For example, HTTPClient 4.2 is just released for enhancement while
HTTPClient 4.1.3 is for bug fix. We cannot identify bugs during periods that contains no
bug fix assignments. Therefore, in this example, we select as examination point the revision
when release 4.1.3 was published. In order to balance the intervals between examination
points, we also remove examination points that are too close to another (i.e., less than one
month). We list all the selected examination points in Table 4.

At each examination point t, we collect JAR files of the corresponding release and capture
a snapshot call graph and a hierarchy graph based on the JAR files. We generate all call and
hierarchy graphs using the WALA tool (1.4.3) [2] with the default options.

We collect co-change information by parsing the commit history. For each examination
revision t, we collect co-changed files in the previous examination periods (t-1 to t). If two
files were committed at the same time during that period, we connect them with an edge in
the corresponding co-change graphs.

Then, we label files at an examination point t by collecting bugs fixed at interval (t to
t+1). For each bug in a data set, we compare the bug id against the messages in SVN
commit logs to get the link between the bug and its fix revision. Then, we link the bug to
files committed at that revision. For each file at each examination point (at time t) we count
the numbers of fixed bugs during the examination period (t to t+1). If the number is more
than zero, we label the file as buggy.

4.3 Implementation Details
We extract artifact metrics such as LOC and CYC using the Understand code analysis
toolkit [1]. We implemented the LLR model using Matlab. The LLR Model is then estimated
by solving a general estimating equation (GEE) with an equicorrelated working covariance
structure [34]. We perform GEE using the GEEBOX tool [46] in Matlab.

4.4 Comparison
We compare the temporal correlation of software bugs in software ties with widely-accepted
results in other research areas. We first compare the correlation value (LRC) to a randomly
constructed graph where bugs are evenly distributed to the nodes. By mathematical defini-
tion [10], the LRC in a random graph is 0.0. LRC= c (c > 0) means that the log odds of
being buggy at time t increase by c times of the number of buggy neighbors increases at
time t-1. For more references, we also compare bug correlation with correlation results from
the social science literature such as obesity and happiness. Obesity is temporally correlated
with the numbers of opposite sex siblings who are obese (LRC=0.28) [12] and happiness is
temporally correlated with the numbers of neighbors who are happy (LRC=0.12) [19].

ECOOP 2021

11:10 Do Bugs Propagate?

Table 5 Results of time-lag bug correlation (‘.’ stands for results with p-values≥0.05).

graphs dataset independent variables
nt−1

(LRC) yt−1 loc cyc ess noa noc

function
call

HTTP 0.38
JCR 0.13 0.01 0.01 -0.01 0.01 -0.07 0.20
Lucene 0.10 . 0.00 . 0.01 0.26 .
Rhino 0.16 . 0.01 -0.02 . . 0.08
Avg 0.19 0.01 0.01 -0.02 0.01 0.09 0.14

type
hierarchy

HTTP
JCR 0.23 0.004 0.01 -0.01 . -0.05 0.17
Lucene 0.41 . . . 0.01 0.27 0.06
Rhino . . 0.004 -0.01 . . 0.07
Avg 0.32 0.004 0.01 -0.01 0.01 0.11 0.1

co-change

HTTP 0.51
JCR . . 0.004 . . . 0.19
Lucene 0.30 . . . 0.01 0.44 -0.19
Rhino 0.36 -1.56
Avg 0.39 -1.56 0.004 . 0.01 0.44 0

5 Results

This section presents our experimental results addressing the research questions (Section 4.1).

5.1 Bug Correlation on Known Software Ties (RQ1)
Table 5 shows the results of the logistic regression coefficients on known software artifact
ties. Values in each row are the coefficients for different independent variables. We note ‘.’
for the values without statistical significance (p≥0.05), since they are meaningless [13]. The
first column of these coefficients is the LRCs. The bold values indicate LRCs that are higher
than that of the baselines. For example, the LRC for Rhino in the co-change graph is 0.36.
That means, having one more buggy neighbor at time t-1, the ego’s risk (i.e., log odds) of
being buggy at time t is 0.36 much higher.

As the results indicate, the call, hierarchy and co-change graphs have high positive LRCs
in most subjects. The average LRCs for them are 0.19, 0.32, and 0.39, respectively. These
values are much greater than the random graph (0.0) and are comparable to typical social
correlations (obesity 0.28 and happiness 0.12). That means that temporal bug correlation is
present on these graphs.

In summary, our results show that on some known ties (calling, extending and co-changing),
software bugs show evidence of temporal correlation. There are correlations between a bug
in one time period and bugs in the neighbors in the next time period.✓

✒
✏
✑

Software bugs are temporally correlated in some known ties such
as call, type hierarchy and co-changes.

5.2 Bug Correlation on Hybrid Tie (RQ2)
As the results in Section 5.1 indicate, different graphs may have different degree of bug
correlation. We were wondering it is possible to synthesize a hybrid graph (software tie)
that exhibits higher degree of correlation. Then, with the proposed hybrid graph, developers
could identify subsequent bugs more efficiently. We propose to build a hybrid graph based

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:11

Table 6 Results for the edge-reversal test (‘-’ stands for results with p-values≥0.05; ‘*’ means
that the result shows a significant change after reversing edges.).

graphs dataset independent variables
nt−1

(LRC) yt−1 loc noc noa ess cyc

function
call

HTTP 0.38 - - - - - -
JCR 0.06(*) 0.01 0.01 0.21 -0.06 0.01 -0.01
Lucene 0.16 0.02 - - 0.26 0.01 -
Rhino -(*) - 0.01 0.08 - - -0.02

type
hierarchy

HTTP - - - - - - -
JCR -(*) 0.004 0.01 0.19 - 0.01 -0.01
Lucene -(*) - - 0.08 0.27 0.01 -
Rhino - - 0.004 0.07 - - -0.01

hybrid

HTTP 0.61(*) - - - - - -
JCR -(*) 0.004 0.01 0.19 - 0.01 -0.01
Lucene -(*) - - - 0.29 0.01 -
Rhino 0.44 -0.5 0.01 0.08 - - -

on bug correlation on basic graphs and evaluate temporal bug correlations on the proposed
graph using approaches in Section 3.2.

5.2.1 Synthesizing Hybrid Correlation Graphs

Similar to the process of machine learning, we split all releases of a project into a training
and a test set. We estimate LRCs for basic graphs in the training set. Then, in the test
set, we synthesize a hybrid graph for each release based on the new basic graphs and their
historical LRCs (i.e., LRCs in the training set).

We use a “greedy expansion” strategy when synthesizing the hybrid graph. We initially
select the “best” graph (with the highest LRC) from basic graphs. Then, we “optimize”
edges in the selected graph as follows: for edges in the “best” graph, if an edge appears in
more than one basic graphs, we keep it in the hybrid graph. For edges in other basic graphs,
if an edge appears in more than one basic graph, and the total LRC of other basic graphs is
greater than that of the selected “best” graph, we add this edge in the hybrid graph as well.

Algorithm 1 illustrates the pipeline of constructing the hybrid graph. In the training
stage, we compute LRCs for basic graphs as described in Section 3. In the test phase, we
initially assign weights to edges in the new basic graphs using their historical LRCs (i.e.,
LRCs in the training set). Then, we merge their edges and add up the corresponding edge
weights. Finally, we remove edges whose weights are no more than the maximum LRC in the
merged graph. The remaining merged graph is then returned as the hybrid graph.

Figure 3 shows an example of the synthesis of hybrid graph. The top three graphs are
basic graphs constructed from a project with historical LRCs of 0.6, 0.1, and 0.3, respectively.
We also assign edge weights as 0.6, 0.1, and 0.3. To synthesize the hybrid graph, we first
merge the edges together and add up the corresponding edge weights. Then, we select edges
from the merged graph (bottom left) whose weights are greater than 0.6 (i.e., 0.7 and 0.9).
Finally, these selected edges as well as the original nodes constitute the hybrid graph (bottom
right).

2 The c, h, and cc are short for call graph, hierarchy graph, and co-change graph, respectively

ECOOP 2021

11:12 Do Bugs Propagate?

Algorithm 1 Constructing hybrid bug correlation graph.

Input:
Basic Graphs, Gi = (Ei, V, wi), (i ∈ {c, h, cc})2

Historical LRCs for basic graphs, LRC(Gi)
Output: Hybrid Graph, G∗ = (E∗, V, w∗)

1: Choose the maximum LRC from all Gi

LRCmax = max
Gi∈{Gc,Gh,Gcc}

LRC(Gi); (3)

2: E∗ = Ec ∪ Eh ∪ Ecc

3: for all (u, v) ∈ E∗ do
4: w∗(u, v) = wc(u, v) + wh(u, v) + wcc(u, v)
5: if w∗(u, v) ≤ LRCmax then
6: E∗ = E∗ \ (u, v)
7: end if
8: end for
9: G∗ = (E∗, V, w∗);

10: return G∗

5.2.2 LRC on The Hybrid Graph

After constructing the hybrid graph for each release, we estimate temporal bug correlations
on the proposed graphs using the same methodology (Section 3.2).

Table 7 shows LRCs for hybrid graphs. For each project, we set the first third of releases
for training and the remaining releases for test. Each row shows LRCs of a specific graph for
different datasets. The last column shows the average LRCs (excluding LRCs with p > 0.05)
for each graph.

As shown in the results, the hybrid graph exhibits much higher LRCs in most subjects
(1.09 in HTTPClient, 0.65 in Lucene, and 0.52 in Rhino). The average LRC for the hybrid
graph is 0.66, much higher than those of call, hierarchy, and co-change graphs (0.18, 0.38
and 0.35, respectively). Table 6 shows the results for edge-reversal test. We reverse all the
edges and present the coefficients again. Each line represents coefficients in terms of different
independent variables. The first column shows the new LRCs for hybrid graph. The results
show that after reversing all the edges, the LRCs change significantly in three out of four
subjects.

The hybrid graph in Jackrabbit shows a maximized yet not improved LRC. We find it
is constituted by the call graph and the hierarchy graph since the co-change graph in this
subject shows no significant bug correlation. Then, since hierarchy graphs are relatively
sparse and may have fewer intersections with call graphs. The resulting hybrid graph can
be very sparse. On the other hand, both the call and the hierarchy graphs represent source
code based dependencies. Their small intersections may have no information gain without
combining other category of graphs such as co-change graphs. These could be the main
reasons for such an outlier.

In summary, the degree of temporal bug correlation is much higher in the proposed hybrid
graph than that in other basic software ties. The results indicate that the proposed hybrid
graph can exhibit bug propagation more effectively.

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:13

call
graph

LRC=0.1 LRC=0.3

hierarchy
graph

co-change
graph

hybrid
graph

LRC=0.6

0.6

0.6

0.6

0.6
0.6

0.1

0.1
0.1

0.1

0.3

0.3

0.3

0.3

0.3

0.3

0.4
0.3

0.4

0.9

0.6

0.1
0.7

0.7

0.6

select edges

Figure 3 Hybrid graph construction.

Table 7 Results of temporal bug correlation in the proposed hybrid graph. The bold numbers
mean higher degree of correlation than basic graphs.

Graph HttpClient JCR Lucene Rhino Avg
call . 0.15 0.13 0.27 0.18
hierarchy . 0.36 0.39 . 0.38
co-change 0.45 . 0.30 0.29 0.35
hybrid 1.09 0.36 0.65 0.52 0.66

✗
✖

✔
✕

The proposed hybrid graph provides a synthesized software tie
that exhibits a higher degree of temporal bug correlation.

5.3 Casual Mechanisms behind the Temporal Bug Correlation (RQ3)
In this section, we explain the casual mechanisms behind temporal bug correlation through
case studies.

The most fundamental and challenging question here is why bugs propagate. Bugs seem
to be statically created at different times. How do they correlated between different artifacts?

To explain the causal mechanism of such time-lag correlations, we conduct a qualitative
analysis in real software development. Specifically, we select some real bugs from our data
set and analyze how bugs of one code can “propagate” to another piece of code. According
to the bug reports and issue discussions, we identified three mechanisms for bug correlations.

1) Code Reuse: A possible causal mechanism for the temporal correlation could be the
code reuse [47] (e.g., clone, inheritance, components, template, framework) on dependent
artifacts. Dependent artifacts such as method calling and inheritance have high couplings [17].
They may reuse the codes or logics directly. Therefore, bugs can propagate when an artifact
invokes or extends another piece of code directly. For example, the bug LUCENE-3026
was caused by declaring a variable as short in SegGraph.java. This bug spread to its
offspring BiSegGraph.java which reuses the same code, resulting in bug LUCENE-3049. If
the correlated bug could be detected earlier, there would be no need to report the second
bug again.

ECOOP 2021

11:14 Do Bugs Propagate?

2) Bugfix: Bugfix can be another way to propagate bugs on dependent artifacts [43]. A
bugfix for one piece of code may affect a dependent piece of code which has the same
function and appears to invoke or co-change frequently with the ego [40]. For example,
LUCENE-3505 was caused by BooleanScorer2.freq(). But the fix affected a dependent file
DisjunctionSumScorer.java, leading to LUCENE-4401. In the discussion of LUCENE-4401,
the developer mentioned such causality:

“I committed (also backported to 3.x branch, the bug does not affect any
releases but would have affected unreleased 3.6.2 code, as it was caused by
my previous bugfix: LUCENE-3505).”

The same causality happened in LUCENE-3631 and LUCENE-3855. As the developer
mentioned in their discussion of LUCENE-3855:

“I (accidentally!!) caused this with LUCENE-3631, where we moved writable
deletes from SegmentReader into IndexWriter.”

3) Human Factors: Another explanation of temporal bug correlations could be the developer
interactions among artifacts [55, 18]. Bugs might propagate because the same careless
developer makes the same mistake or clones buggy codes to elsewhere [48, 24]. For example,
both LUCENE-2478 and LUCENE-3446 are bugs of missing NullPointerException checking.
The LUCENE-2478 was found on May, 2010. The developer forgot to check null return of
Filter.getDocIdSet() in the CachingWrapperFilter.java. Later, a similar mistake (LUCENE-
3446) by the same developer was found on Sept, 2011. He did not check null return in the
BooleanFilter.java again. We found both files had been changed together in revision 722174
in 2008. If we could predict the correlated bug and carefully test it in the BooleanFilter.java,
the second bug would not happen.

A more sophisticated empirical study on the percentage of each mechanism could be
added in future work.✓

✒
✏
✑

The temporal correlation among software bugs can be caused by
code reuse, bugfix, and human factors.

6 Discussion

6.1 Application of Findings
In this section, we discuss potential applications of temporal bug correlations for practitioners.
Our study and findings can inspire several research directions in the future.

Defect Prediction: Traditional defect prediction techniques usually train a machine
learning classifier with artifact metrics and make predictions by classifying new buggy
instances. As Figure 4 summarizes, traditional defect factors include artifact metrics such
as source code metrics (i.e.,size, complexity), churn, authors [15, 32, 36]. These factors
are related to individual artifacts and are time independent. Besides these traditional
factors, researchers also found that bugs can be time-dependent. In other words, defects
may linger in components that were recently defective [21]. We refer to the latter category
of factor as “dependence”. In this paper, we have identified the third factor – temporal
correlation. This means that neighbor bugs at previous time step may influence ego’s
bug status. The temporal bug correlation and hybrid graph suggest a new factor to

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:15

b
c

time 1

a

b
c

time 2

a

b
c

time 3

a

metrics
(loc, nos, …)

Temporal
Correlation

dependence

Figure 4 An illustration of factors to software defects. The three graphs from time 1 to time 3
represent three hybrid graphs in consecutive stages. Each circle stands for an artifact. The bold
arrows represent different defect factors.

Artifacts

Classifier

Test
Instance

Buggy or Clean

Training Instances

Graphs

Code &
Changes

issues

LOC CYC Change … Label

101 12.6 011010 Y

25 7.8 110011 N

218 15 110110 N

void foo ()
{

a = map();
a.put(‘’”);

}

GNN Correlation-Aware
Representations

Figure 5 An example of the propagation based defect prediction.

software defect prediction. We can enhance existing defect prediction model by combining
temporal correlation with traditional defect metrics (i.e., LOC, Complexity). Besides
simply adding temporal correlation as a new metric, we can apply the graph neural
network (GNN) [31] to the proposed hybrid graph. GNN is a popular deep learning
model for learning graph representations. As our hybrid graph incorporates significant
information about bug correlations, it can be utilized to help the learning of defect
prediction models. For example, a defect prediction model (Figure 5) could be developed,
which runs the graph neural network on the hybrid graph to learn a correlation-aware
representation for each artifact. The learnt representation, together with traditional
metrics, are taken as input to the classifier for the prediction.
Linking Correlated Bug Reports: Another possible application is to link correlated bug
reports. Identifying related bug reports have been a key issue in software maintenance [20,
49, 42, 42]. Researchers have developed a variety of approaches to retrieve semantically
related bug reports [49, 42]. With the property of temporal bug correlation, developers
can link several inter-related bug reports based on both temporal and semantic correlation
of bugs for efficient and effective fault diagnosis. For example, a series of bugs could be
reported due to temporal correlations, where fixing one can help resolve others. Moreover,
the links may represent other types of relevance such as re-occurrence or co-occurrence

ECOOP 2021

11:16 Do Bugs Propagate?

between two bugs. Recently, researchers have developed methods to predict semantically
linkable Stack Overflow posts [57] and identify linked incident reports for online service
systems [11], which have all confirmed the usefulness of linked knowledge.
Bug Localization. Bug localization is one of the core tasks for software maintenance.
Existing bug localization approaches often consider individual bug reports and identify
buggy modules based on text similarities [33]. Some work also consider the historical
similar bug reports [60], co-change histories [52], and the number of previous bugs [16]. The
results of this research can provide more information, especially the temporal correlation
information, to the existing bug localization work. Such information can help track the
causal paths of bug and pinpoint their root cause, thus facilitating bug localization and
triage.
Architecture Refactoring. The proposed hybrid graph provides a new perspective on
software design and quality management. Developers can avoid temporal bug correlation
in architectural design in order to improve the quality and reliability of software. For
example, they can estimate the temporal correlations and then construct the hybrid
correlation graph using our LLR-based analysis tool. Then, they can adjust design
paradigms (e.g., UML graphs) by removing unnecessary artifact connections that have
edges in the hybrid graph.

6.2 Threats to Validity
As a proof of concept, all projects investigated in our experiments are developed as JAVA
open source projects. Although Java is one of the most popular programming languages, it
might not be representative of commercial projects and projects written in other languages.
However, our study is not limited to a certain language as it is conducted on software graphs
which can be extracted from most languages. Investigating temporal bug correlations in
other languages remains our future work.

Another threat lies in the selection of examination points. We selected examination
points according to the selected releases. In fact, in some data sets, the intervals between
releases vary a lot, leading to graphs that are either too dense or too sparse. We mitigated
the threat by removing releases that are too close to others. Yet the intervals are still not
equal. The selection of releases might affect our experimental results, however although the
examination points are not selected with equal intervals, our results are still valid. This
is because examination intervals for different subjects vary a lot but most of the results
show the same trends. This means that altering the examination points does not change the
results significantly.

7 Related Work

7.1 Bug Distribution and Dependence
Besides our work, there have been other studies that investigate bug distributions and
find similar phenomena of this sort. For instance, Zimmerman et al. [61] analyzed the
relationships between failures and dependent neighborhoods on dependence graphs. They
found that depending on a component that has failures does not have an effect on failures of
the dependent component in VISTA. Andersson [5] investigated how faults in large software
systems are distributed over modules and discovered that the distribution of faults over
modules follows the Pareto principle [28]. Zhang [59] found a Weibull distribution of bugs
across packages in Eclipse system. Murgia et al. [40] represented Java software as artifact tie
graphs and analyze the relationship between graph properties, statistic of software metrics,

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:17

and the distribution of bugs in such graphs. They found that the distribution of bugs across
compliant units exhibits a power-law behavior in their tails, suggesting the spread of bugs in
the software system. Mondal et al. [39] investigated bug propagation through code cloning.
They define clone evolution patterns that reasonably indicate bug propagation through code
cloning and found that up to 33% of the clone fragments that experience bug-fix changes can
contain propagated bugs. Ai et al. [3] proposes a new software network model and analyzes
the relationship between nodes or defects distribution and software network parameters, as
well as high-risk module excavation through a defect density analysis.

Different from these studies, we conduct a deeper investigation on the dynamic view of
software bugs across a wider range of software ties. In particular, we investigate time-lag
bug correlations between software ties, design new ties (graph) exhibiting more severe bug
correlation, and discuss the casual mechanisms behind this phenomenon.

7.2 Software Graphs
Besides our work, graph models have been widely used in empirical software engineering [7,
26, 58] especially for defect prediction [62, 63]. A typical use of graph models is in the
analysis of developers’ social networks [25, 55, 35]. Meneely et al. [37] leverage graphs to
model collaborations among developers. They examine the graph metrics in a developers’
collaboration network to predict failures. Pinzger et al. [45] modeled developer-modules as
graphs. They found correlations between centrality measures of developer-module networks
and failure-prone modules, and used such correlations to predict failures.

Dependency in graphs is also an active research topic. Zimmermann [62, 63] focused on
the software dependency graph which considers interactions between software artifacts. They
introduced both ego networks and global networks, using graphical metrics to enhance the
performance of defect prediction. While most graph-based analysis studied social factors
and program dependency information separately, Bird et al. [8] found that task assignment
and dependency structure interact to influence the quality of the resulting software. Their
prediction method combining social networks with dependency structures was able to predict
failure proneness with better accuracy.

In addition to defect prediction, graphs are also widely used in other domains in Software
Engineering such as the research of software evolution. To better observe the evolution of
very large software systems, Pinzger et al. [44] proposed a visualization approach that can
provide condensed graphical views on source codes and release history data for multiple
releases. Bhattacharya [7] analyze the evolution of software using social network and graph
metrics in several prediction tasks. Both these works made use of the dependence between
software artifacts and leveraged the dependence as one of the metrics for defect prediction.

Despite the successful application of graph models in software engineering, these ap-
proaches often use macro-level graph metrics (e.g., degrees, centralities) directly without
analyzing the defect correlations between graph nodes. Our study differs from these works
by providing a deeper insight into micro-level bug correlation and propagation.

8 Conclusion

In this paper we applied correlation analysis from the social science literature to identify
and measure the propagation of software bugs as a source of temporal correlations between
software artifacts. We first investigated temporal bug correlation on known software ties
such as calls, inheritance and co-changes. We performed longitudinal logistic regressions on
the time-lag correlations between neighboring bugs on different artifact ties. Our empirical
study with data from four open source projects showed that software bugs can be temporally

ECOOP 2021

11:18 Do Bugs Propagate?

correlated among some known software ties. Based on our findings, we synthesize a hybrid
graph (tie) which exhibits a higher degree of bug correlation.

All these findings shed light on new insights to software maintenance. In addition to
metrics of individual artifacts, researchers can consider the factor of temporal bug correlation
when designing the bug localization and prediction models.

In the future, we will investigate temporal bug correlations on more graphs. We will also
apply the temporal bug correlation properties to improve related software engineering tasks
such as defect prediction, correlated bug report linking, and bug localization. In particular,
we will use the graph neural network (GNN) [31] on the proposed hybrid graph to learn the
representation of bug correlations.

Our tool and experimental data described in this paper are available at http://github.
com/bugcorrelation/bugcorrelation.

References
1 Understand,http://www.scitools.com/. URL: http://www.scitools.com/.
2 Wala project. http://wala.sourceforge.net/. URL: http://wala.sourceforge.net/.
3 Jun Ai, Wenzhu Su, Shaoxiong Zhang, and Yiwen Yang. A software network model for software

structure and faults distribution analysis. IEEE Transactions on Reliability, 68(3):844–858,
2019.

4 Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influence and correlation
in social networks. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08, pages 7–15, New York, NY, USA, 2008.
ACM. doi:10.1145/1401890.1401897.

5 Carina Andersson and Per Runeson. A replicated quantitative analysis of fault distributions in
complex software systems. Software Engineering, IEEE Transactions on, 33(5):273–286, 2007.

6 Sinan Aral, Lev Muchnik, and Arun Sundararajan. Distinguishing influence-based contagion
from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy
of Sciences, 106(51):21544–21549, 2009. doi:10.1073/pnas.0908800106.

7 Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Faloutsos. Graph-based
analysis and prediction for software evolution. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 419–429, Piscataway, NJ, USA, 2012.
IEEE Press. URL: http://dl.acm.org/citation.cfm?id=2337223.2337273.

8 C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. Putting it all together: Using
socio-technical networks to predict failures. In Software Reliability Engineering, 2009. ISSRE
’09. 20th International Symposium on, pages 109–119, November 2009. doi:10.1109/ISSRE.
2009.17.

9 John T Cacioppo, James H Fowler, and Nicholas A Christakis. Alone in the crowd: the
structure and spread of loneliness in a large social network. Journal of personality and social
psychology, 97(6):977, 2009.

10 Peter J Carrington, John Scott, and Stanley Wasserman. Models and methods in social network
analysis. Cambridge university press, 2005.

11 Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin, Junjie Chen,
Pu Zhao, Yu Kang, Feng Gao, Zhangwei Xu, and Dongmei Zhang. Identifying linked incidents
in large-scale online service systems. In Proceedings of the 2020 ESEC/FSE. ACM, 2020.

12 Nicholas A Christakis and James H Fowler. The spread of obesity in a large social network
over 32 years. New England journal of medicine, 357(4):370–379, 2007.

13 Nicholas A Christakis and James H Fowler. Social contagion theory: examining dynamic
social networks and human behavior. Statistics in medicine, 32(4):556–577, 2013.

14 M. D’Ambros, M. Lanza, and R. Robbes. On the relationship between change coupling and
software defects. In Reverse Engineering, 2009. WCRE ’09. 16th Working Conference on,
pages 135–144, October 2009. doi:10.1109/WCRE.2009.19.

http://github.com/bugcorrelation/bugcorrelation
http://github.com/bugcorrelation/bugcorrelation
http://www.scitools.com/
http://wala.sourceforge.net/
https://doi.org/10.1145/1401890.1401897
https://doi.org/10.1073/pnas.0908800106
http://dl.acm.org/citation.cfm?id=2337223.2337273
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1109/WCRE.2009.19

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:19

15 Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison of bug
prediction approaches. In Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 31–41. IEEE, 2010.

16 S. Davies and M. Roper. Bug localisation through diverse sources of information. In 2013
IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW),
pages 126–131, 2013.

17 Harpal Dhama. Quantitative models of cohesion and coupling in software. Journal of Systems
and Software, 29(1):65–74, 1995.

18 Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto, and
Andrea De Lucia. A developer centered bug prediction model. IEEE Transactions on Software
Engineering, 44(1):5–24, 2017.

19 James H. Fowler, Nicholas A. Christakis, Steptoe, and Diez Roux. Dynamic spread of
happiness in a large social network: Longitudinal analysis of the framingham heart study
social network. BMJ: British Medical Journal, 338(7685):pp. 23–27, 2009. URL: http:
//www.jstor.org/stable/20511686.

20 Katerina Goseva-Popstojanova and Jacob Tyo. Identification of security related bug reports
via text mining using supervised and unsupervised classification. In 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pages 344–355. IEEE, 2018.

21 Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. Predicting fault incidence
using software change history. Software Engineering, IEEE Transactions on, 26(7):653–661,
2000.

22 Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence Duchien.
Tracking the software quality of android applications along their evolution (t). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
236–247. IEEE, 2015.

23 Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature: How misclassification
impacts bug prediction. In Proceedings of the 2013 International Conference on Software
Engineering, pages 392–401. IEEE Press, 2013.

24 Kim Herzig and Andreas Zeller. The impact of tangled code changes. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages 121–130. IEEE Press, 2013.

25 Qiaona Hong, Sunghun Kim, SC Cheung, and Christian Bird. Understanding a developer social
network and its evolution. In Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, pages 323–332. IEEE, 2011.

26 Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage with bug tossing
graphs. In Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 111–120. ACM, 2009.

27 Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect prediction. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages
279–289, November 2013. doi:10.1109/ASE.2013.6693087.

28 JM Juran and FM Gryna. Juranís quality control handbook. NY: McGraw-Hill, 1988.
29 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through

a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03, pages 137–146, New York, NY, USA, 2003.
ACM. doi:10.1145/956750.956769.

30 Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller. Predicting
faults from cached history. In Proceedings of the 29th international conference on Software
Engineering, pages 489–498. IEEE Computer Society, 2007.

31 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

ECOOP 2021

http://www.jstor.org/stable/20511686
http://www.jstor.org/stable/20511686
https://doi.org/10.1109/ASE.2013.6693087
https://doi.org/10.1145/956750.956769

11:20 Do Bugs Propagate?

32 Akif Günes Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. An investigation into
the functional form of the size-defect relationship for software modules. Software Engineering,
IEEE Transactions on, 35(2):293–304, 2009.

33 An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. Combining
deep learning with information retrieval to localize buggy files for bug reports (n). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
476–481. IEEE, 2015.

34 Kung-Yee Liang and Scott L Zeger. Longitudinal data analysis using generalized linear models.
Biometrika, 73(1):13–22, 1986.

35 Wanwangying Ma, Lin Chen, Yibiao Yang, Yuming Zhou, and Baowen Xu. Empirical analysis
of network measures for effort-aware fault-proneness prediction. Information and Software
Technology, 69:50–70, 2016.

36 Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, pages
308–320, 1976.

37 Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. Predicting failures with
developer networks and social network analysis. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16,
pages 13–23, New York, NY, USA, 2008. ACM. doi:10.1145/1453101.1453106.

38 Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. Architecture anti-patterns:
Automatically detectable violations of design principles. IEEE Transactions on Software
Engineering, 2019.

39 Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. Bug propagation through code
cloning: An empirical study. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 227–237. IEEE, 2017.

40 Alessandro Murgia, Giulio Concas, Michele Marchesi, Roberto Tonelli, and Ivana Turnu. An
analysis of bug distribution in object oriented systems. arXiv preprint arXiv:0905.3296, 2009.

41 N. Nagappan and T. Ball. Using software dependencies and churn metrics to predict field
failures: An empirical case study. In Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on, pages 364–373, September 2007. doi:
10.1109/ESEM.2007.13.

42 Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Chengnian Sun.
Duplicate bug report detection with a combination of information retrieval and topic modeling.
In 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, pages 70–79. IEEE, 2012.

43 Zhen Ni, Bin Li, Xiaobing Sun, Tianhao Chen, Ben Tang, and Xinchen Shi. Analyzing bug fix
for automatic bug cause classification. Journal of Systems and Software, 163:110538, 2020.

44 Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing multiple
evolution metrics. In Proceedings of the 2005 ACM symposium on Software visualization, pages
67–75. ACM, 2005.

45 Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. Can developer-module networks
predict failures? In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pages 2–12, New York, NY, USA,
2008. ACM. doi:10.1145/1453101.1453105.

46 Sarah J. Ratcliffe and Justine Shults. GEEQBOX: A matlab toolbox for generalized estimating
equations and quasi-least squares. Journal of Statistical Software, 25(14):1–14, May 2008.
URL: http://www.jstatsoft.org/v25/i14.

47 H. Sajnani, V. Saini, and C. V. Lopes. A comparative study of bug patterns in java cloned
and non-cloned code. In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation, pages 21–30, 2014.

48 Gehan MK Selim, Liliane Barbour, Weiyi Shang, Bram Adams, Ahmed E Hassan, and Ying
Zou. Studying the impact of clones on software defects. In 2010 17th Working Conference on
Reverse Engineering, pages 13–21. IEEE, 2010.

https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1109/ESEM.2007.13
https://doi.org/10.1109/ESEM.2007.13
https://doi.org/10.1145/1453101.1453105
http://www.jstatsoft.org/v25/i14

X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:21

49 Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more accurate retrieval
of duplicate bug reports. In 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 253–262. IEEE, 2011.

50 Chenhao Tan, Jie Tang, Jimeng Sun, Quan Lin, and Fengjiao Wang. Social action tracking
via noise tolerant time-varying factor graphs. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 1049–
1058, New York, NY, USA, 2010. ACM. doi:10.1145/1835804.1835936.

51 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale
networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’09, pages 807–816, New York, NY, USA, 2009. ACM.
doi:10.1145/1557019.1557108.

52 C. Tantithamthavorn, A. Ihara, and K. Matsumoto. Using co-change histories to improve
bug localization performance. In 2013 14th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pages
543–548, 2013.

53 Justin G Trogdon, James Nonnemaker, and Joanne Pais. Peer effects in adolescent overweight.
Journal of health economics, 27(5):1388–1399, 2008.

54 Ye Wang, Na Meng, and Hao Zhong. An empirical study of multi-entity changes in real
bug fixes. In 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 287–298. IEEE, 2018.

55 Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. Predicting build fail-
ures using social network analysis on developer communication. In Proceedings of the 31st
International Conference on Software Engineering, pages 1–11. IEEE Computer Society, 2009.

56 Lu Xiao, Yuanfang Cai, and Rick Kazman. Design rule spaces: A new form of architecture
insight. In Proceedings of the 36th International Conference on Software Engineering, pages
967–977, 2014.

57 Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li. Predicting
semantically linkable knowledge in developer online forums via convolutional neural network.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 51–62. IEEE, 2016.

58 Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank Schweitzer. Cat-
egorizing bugs with social networks: A case study on four open source software com-
munities. In Proceedings of the 2013 International Conference on Software Engineer-
ing, ICSE ’13, pages 1032–1041, Piscataway, NJ, USA, 2013. IEEE Press. URL: http:
//dl.acm.org/citation.cfm?id=2486788.2486930.

59 Hongyu Zhang. On the distribution of software faults. IEEE Transactions on Software
Engineering, pages 301–302, 2007.

60 J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate information
retrieval-based bug localization based on bug reports. In 2012 34th International Conference
on Software Engineering (ICSE), pages 14–24, 2012.

61 Tom Zimmerman, Nachiappan Nagappan, Kim Herzig, Rahul Premraj, and Laurie Williams.
An empirical study on the relation between dependency neighborhoods and failures. In Software
Testing, Verification and Validation (ICST), 2011 IEEE Fourth International Conference on,
pages 347–356. IEEE, 2011.

62 Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using network analysis
on dependency graphs. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 531–540, New York, NY, USA, 2008. ACM. doi:10.1145/
1368088.1368161.

63 Thomas Zimmermann and Nachiappan Nagappan. Predicting defects with program de-
pendencies. In Proceedings of the 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ESEM ’09, pages 435–438, Washington, DC, USA, 2009. IEEE
Computer Society. doi:10.1109/ESEM.2009.5316024.

ECOOP 2021

https://doi.org/10.1145/1835804.1835936
https://doi.org/10.1145/1557019.1557108
http://dl.acm.org/citation.cfm?id=2486788.2486930
http://dl.acm.org/citation.cfm?id=2486788.2486930
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1109/ESEM.2009.5316024

Type-Directed Operational Semantics for Gradual
Typing
Wenjia Ye #

The University of Hong Kong, Hong Kong

Bruno C. d. S. Oliveira #

The University of Hong Kong, Hong Kong

Xuejing Huang #

The University of Hong Kong, Hong Kong

Abstract
The semantics of gradually typed languages is typically given indirectly via an elaboration into a cast
calculus. This contrasts with more conventional formulations of programming language semantics,
where the semantics of a language is given directly using, for instance, an operational semantics.

This paper presents a new approach to give the semantics of gradually typed languages directly.
We use a recently proposed variant of small-step operational semantics called type-directed operational
semantics (TDOS). In TDOS type annotations become operationally relevant and can affect the
result of a program. In the context of a gradually typed language, such type annotations are used to
trigger type-based conversions on values. We illustrate how to employ TDOS on gradually typed
languages using two calculi. The first calculus, called λBg, is inspired by the semantics of the blame
calculus, but it has implicit type conversions, enabling it to be used as a gradually typed language.
The second calculus, called λBr, explores a different design space in the semantics of gradually
typed languages. It uses a so-called blame recovery semantics, which enables eliminating some false
positives where blame is raised but normal computation could succeed. For both calculi, type safety
is proved. Furthermore we show that the semantics of λBg is sound with respect to the semantics
of the blame calculus, and that λBr comes with a gradual guarantee. All the results have been
mechanically formalized in the Coq theorem prover.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engin-
eering → Object oriented languages; Software and its engineering → Polymorphism

Keywords and phrases Gradual Typing, Type Systems, Operational Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.12

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.9

Funding This work has been sponsored by Hong Kong Research Grant Council projects number
17209519 and 17209520.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Gradual typing aims to provide a smooth integration between the static and dynamic
typing disciplines. In gradual typing a program with no type annotations behaves as a
dynamically typed program, whereas a fully annotated program behaves as a statically typed
program. The interesting aspect of gradual typing is that programs can be partially typed
in a spectrum ranging from fully dynamically typed into fully statically typed. Several
mainstream languages, including TypeScript [6], Flow [11] or Dart [8] enable forms of gradual
typing to various degrees. Much research on gradual typing has focused on the pursuit of
sound gradual typing, where certain type safety properties, and other properties about the
transition between dynamic and static typing, are preserved.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Wenjia Ye, Bruno C. d. S. Oliveira, and Xuejing Huang;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 12; pp. 12:1–12:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wjye@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/DARTS.7.2.9
https://doi.org/10.4230/DARTS.7.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Type-Directed Operational Semantics for Gradual Typing

The semantics of gradually typed languages is typically given indirectly via an elaboration
into a cast calculus. For instance the blame calculus [39,52], the threesome calculus [42] or
other cast calculi [15,20,23,37,39,49] are often used to give the semantics of gradually typed
languages. Since a gradual type system can accept programs with unknown types, run-time
checks are necessary to ensure type safety. Thus the job of the (type-directed) elaboration is
to insert casts that bridge the gap between known and unknown types. Then the semantics
of a cast calculus can be given in a conventional manner.

While elaboration is the most common approach to give the semantics for gradually
typed languages, it is also possible to have a direct semantics. In fact, a direct semantics
is more conventionally used to provide the meaning to more traditional forms of calculi or
programming languages. A direct semantics avoids the extra indirection of a target language
and can simplify the understanding of the language. Garcia et al. [17], as part of their
Abstracting Gradual Typing (AGT) approach, advocated and proposed an approach for giving
a direct semantics to gradually typed languages. They showed that the cast insertion step
provided by elaboration, which was until then seen as essential to gradual typing, could be
omitted. Instead, in their approach, they develop the dynamic semantics as proof reductions
over source language typing derivations.

This paper presents a different approach to give the semantics of gradually typed languages
directly. We use a recently proposed variant of small-step operational semantics [54] called
type-directed operational semantics (TDOS) [25]. For the most part developing a TDOS is
similar to developing a standard small step-semantics as advocated by Wright and Felleisen.
However, in TDOS type annotations become operationally relevant and can affect the result
of a program. While there have been past formulations of small-step semantics where type
annotations are also relevant [5, 14,18], the distinctive feature of TDOS is a so-called typed
reduction relation. Typed reduction further reduces values based on their types. While
typically values are the final result of a program, in TDOS typed reduction can further
transform them based on their run-time type. Thus typed reduction provides an operational
interpretation to type conversions in the language, similarly to coercions in coercion-based
calculi [23].

We illustrate how to employ TDOS on gradually typed languages using two calculi. The
first calculus, called λBg, is inspired by the semantics of a variant of the blame calculus
(λB) [52] by Siek et al. [39]. However, unlike the blame calculus, λBg allows implicit type
conversions, enabling it to be used as a gradually typed language. Gradually typed languages
can be built on top of λB using an elaboration from a source language into λB. In contrast
λBg can already act as a gradual language, without the need for an elaboration process.

The second calculus, called λBr, explores a different design space in the semantics of
gradually typed languages. It uses a so-called blame recovery semantics, which enables
eliminating some false positives where blame is raised but normal computation could succeed.
In the λB calculus, a lambda expression annotated with a chain of types is taken as a value.
This means that it accumulates the type annotations, and checks if there are errors only when
the function is applied to a value. This has some drawbacks. Perhaps most notably, and
widely discussed in the literature [16,24, 37,38, 42], is that the accumulation of annotations
affects space efficiency. Moreover, sometimes blame is raised quite conservatively, when a
program could successfully return a value. Of course, the blame calculus semantics is justified
by its origins on contracts and traditional casts (such as those commonly used in mainstream
languages like Java). In such settings all casts/contracts must be valid, and any violations
should raise blame.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:3

In the λBr calculus, the design choice that we make is to only raise blame if the initial
source type of the value and final target types are not consistent. Otherwise, even if
intermediate annotations trigger type conversions which would not be consistent, the final
result can still be a value provided that the initial source and final target types are themselves
consistent. This semantics differs from the blame calculus where intermediate types can
cause blame. Technically speaking we introduce a new saved expression/value, that is used
as an intermediate result during reduction. A saved value is generated whenever a conversion
between two inconsistent types is triggered. However, if later another type conversion is
applied to the value, then a saved value can recover from the brink of blame and be restored
as a conventional value, provided that the new target type is consistent with the type of
the saved value. A nice aspect of this semantics is that it avoids the accumulation of type
annotations, being more space efficient.

For both calculi type safety is proved. Furthermore we show that the semantics of λBg

is sound with respect to the semantics of the blame calculus, and that λBr comes with a
gradual guarantee [41]. All the results have been mechanically formalized in the Coq theorem
prover.

In summary, the contributions of this work are:
TDOS for gradual typing: We show that TDOS can be employed in gradually typed
languages. This enables simple, and concise specifications of the semantics of gradually
typed languages, without resorting to an intermediate cast calculus. A nice aspect of
TDOS is that it remains close to the simple and familiar small-step semantics approach
by Wright and Felleisen.
The λBg calculus provides a first concrete illustration of TDOS for gradual typing. It
follows closely the semantics of the blame calculus, but it allows implicit type conversions.
We show type-safety, determinism, as well as a soundness theorem that relates the
semantics of λBg to that of the blame calculus (ignoring blame labels).
The λBr calculus and blame recovery semantics. λBr explores the design space of
the semantics of gradual typing by using a blame recovery semantics. The key idea is
to only raise blame if the initial source type of the value and final target types are not
consistent. Furthermore, λBr comes with a gradual guarantee [41].
Coq Formalization: Both λBg and λBr, and all associated lemmas and theorems, have
been formalized in the Coq theorem prover. The Coq formalization can be found in the
supplementary materials of this paper:

https://github.com/YeWenjia/TypedDirectedGradualTyping

2 Overview

This section provides background on gradual typing and the blame calculus, and then
illustrates the key ideas of our work and the λBg and λBr calculi.

2.1 Background: Gradual Typing and the λB calculus
Traditionally, programming languages can be divided into statically typed languages and
dynamically typed languages. For a statically typed language, the type of every term must
be known. The language may support type inference, but it usually requires some type
annotations by the programmer, which bears some extra work for a programmer. However,
the benefit of static typing is that type-unsafe programs are rejected before they are executed.
On the other hand, in dynamically typed languages terms do not have static types and no

ECOOP 2021

https://github.com/YeWenjia/TypedDirectedGradualTyping

12:4 Type-Directed Operational Semantics for Gradual Typing

type annotations are needed. This waives the burden of a strict type discipline, at the cost
of type-safety.

Gradual typing [43] is like a bridge connecting the two styles. Gradual typing extends the
type system of static languages by allowing terms to have a dynamic type ⋆, which stands
for the possibility of being any type. A term with the unknown type ⋆ is not rejected in any
context by the type checker. Therefore, it can be viewed as in a dynamically typed language.
In a gradually typed language, programs can be completely statically typed, or completely
dynamically typed, or anything in between.

To cooperate with the very flexible ⋆ type, the common practice in gradual type systems
is to define a binary relation called type consistency. A term of type A can be assigned
type B if A and B are consistent (A ∼ B). With ⋆ defined to be consistent with any other
type, dynamic snippets can be embedded into the whole program without breaking the type
soundness property. Of course, the type soundness theorem is relaxed and tolerates some
kinds of run-time type errors. Besides type soundness, there are some other criteria for
gradual typing systems. One well-recognized standard is the gradual guarantee proposed by
Siek et al. [41].

Elaboration semantics of Gradual Typing and the λB calculus. The semantics of gradually
typed languages is usually given by an elaboration into a cast calculus. This approach has
been widely used since the original work on gradual typing by both Siek and Taha [43] and
Tobin-Hochstadt and Felleisen [49].

One of the most widely used cast calculus for the elaboration of gradually typed languages
is the blame calculus [39,52]. Figure 1 shows the definition of the blame calculus. Here we
base ourselves in a variant of the blame calculus by Siek et al. [39], but ignoring blame labels.
The blame calculus is the simply-typed lambda calculus extended with the dynamic type
(⋆) and the cast expression (t : A ⇒ B). Meta-variables G and H range over ground types,
which include Int and ⋆ → ⋆. The definition of values in the blame calculus contains some
interesting forms. In particular, casts (V : A → B ⇒ A′ → B′) and V : G ⇒ ⋆ are included.
Run-time type errors are denoted as blame. Besides the standard typing rules of the simply
typed lambda calculus, there is an additional typing rule for casts: if term t has type A

and A is consistent with B, a cast on t from A to B has type B. The consistency relation
for types states that every type is consistent with itself, ⋆ is consistent with all types, and
function types are consistent only when input types and output types are consistent with
each other. In the premise of rule bstepp-dyna, there is a function ug which says that type
A should be a function type consistent with ⋆ → ⋆, but not ⋆ → ⋆ itself.

The bottom of Figure 1 shows the reduction rules that we use in this paper. The dynamic
semantics of the λB calculus is standard for most rules. The semantics of casts include the
noteworthy parts. For first-order values, reduction is straightforward: a cast either succeeds
or it fails and raises blame. For example:

1 : Int ⇒ ⋆ : ⋆ ⇒ Int 7−→∗ 1
1 : Int ⇒ ⋆ : ⋆ ⇒ Bool 7−→∗ blame

For higher-order values such as functions, the semantics is more complex, since the casted
result cannot be immediately obtained. For example, if we cast from ⋆ → ⋆ to Int → Int,
we cannot judge the cast result immediately. So the checking process is deferred until the
function is applied to an argument. Rule bstepp-abeta shows that process: a function with
the cast is a value which does not reduce until it has been applied to a value.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:5

Syntax

Types A, B ::= Int | ⋆ | A → B

Ground types G, H ::= Int | ⋆ → ⋆

constant c ::= i | ...

T erms t ::= c | x | t : A ⇒ B | t1 t2 | λx : A.t

Result r ::= t | blame

V alues V, W ::= c | V : A → B ⇒ A′ → B′ | λx : A.t | V : G ⇒ ⋆

Context Γ ::= · | Γ, x : A

Frame F ::= [] t | V [] | [] : A ⇒ B

Γ ⊢ t : A (Additional Typing Rules)

btyp-cast
Γ ⊢ t : A A ∼ B

Γ ⊢ t : A ⇒ B : B

A ∼ B (Consistency of types)

S-i

Int ∼ Int

S-arr
A ∼ C B ∼ D

A → B ∼ C → D

S-dynl

⋆ ∼ A

S-dynr

A ∼ ⋆

t 7−→ r (Reduction for the λB Calculus)

bStepp-eval
t 7−→ t′

F. t 7−→ F. t′

bStepp-blame
t 7−→ blame

F. t 7−→ blame

bStepp-beta

(λx : A. t) V 7−→ t[x 7→ V]

bStepp-vany

(V : G ⇒ ⋆) : ⋆ ⇒ G 7−→ V

bStepp-dd

V : ⋆ ⇒ ⋆ 7−→ V

bStepp-dyna
ug(A, ⋆ → ⋆)

V : ⋆ ⇒ A 7−→ (V : ⋆ ⇒ ⋆ → ⋆) : ⋆ → ⋆ ⇒ A

bStepp-blamep
G ≁ H

(V : G ⇒ ⋆) : ⋆ ⇒ H 7−→ blame

bStepp-abeta

(V : A → B ⇒ A′ → B′) V 7−→ (V (V : A′ ⇒ A)) : B ⇒ B′

bStepp-lit

i : Int ⇒ Int 7−→ i

bStepp-anyd
ug(A, ⋆ → ⋆)

V : A ⇒ ⋆ 7−→ (V : A ⇒ ⋆ → ⋆) : ⋆ → ⋆ ⇒ ⋆

Figure 1 The λB Calculus (selected rules).

ECOOP 2021

12:6 Type-Directed Operational Semantics for Gradual Typing

2.2 Motivation for a Direct Semantics for Gradual Typing

In this paper we propose not to use an elaboration semantics into a cast calculus, but to use a
direct semantics for gradual typing instead. We are not the first to propose such an approach.
For instance, the AGT framework for gradual typing [17] also employs a direct semantics. In
that work the authors state that “developing dynamic semantics for gradually typed languages
has typically involved the design of an independent cast calculus that is peripherally related
to the source language”. They further argue that there is a gap between source gradually
typed languages, and the cast calculi that they target. In particular cast calculi admit “far
more programs than those in the image of the translation procedure”. We agree with such
arguments. In addition, as argued by Huang and Oliveira [25], there are some other reasons
why a direct semantics is beneficial over an elaboration semantics.

A direct semantics enables simple ways for programmers and tools to reason about the
behaviour of programs. For instance, with languages like Haskell it is quite common for
programmers to use equational reasoning. Such reasoning steps are directly justifiable from
the operational semantics of call-by-name/need languages. With a TDOS, we can easily (and
justifiably) employ similar steps to reason about your source language (say GTLC or λBg).
With a semantics defined via elaboration, however, that is not an easy thing because of the
indirect semantics. We refer readers to Huang and Oliveira’s work, which has an extensive
discussion about this point. Additionally, some tools, especially some debuggers or tools for
demonstrating how programs are computed, require a direct semantics, since those tools
need to show transformations that happen after some evaluation of the source program.

Another potential benefit of a direct semantics is simpler and shorter metatheory/imple-
mentation. For instance, with a direct semantics we can often save quite a few definition-
s/proofs, including a second type system, various definitions on well-formedness of terms,
substitution operations and lemmas, pretty printers, etc. Though these are not arguably
difficult, they do add up. Perhaps more importantly, some proofs can be simpler with a
direct semantics. For example, proving the gradual guarantee is typically simpler, since some
lemmas that are required with an elaboration semantics (for example, Lemma 6 in original
work on the refined criteria for gradual typing [41]) are not needed with a direct operational
semantics. Moreover only the precision relation for the source language is necessary.

2.3 λBg: A Gradually Typed Lambda Calculus

Since λB requires explicit casts whenever a term’s type is converted, it cannot be considered
a gradually typed calculus. For comparison, the application rule for typing in the Gradually
Typed Lambda Calculus (GTLC) [38,41,43]

Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T3 T1 ∼ T3

Γ ⊢ e1 e2 : T2
GTLC-App

does not force the input term to have the same type as what the function expects. It just
checks the compatibility of the two terms’ types and can do implicit type conversions (casts)
automatically. In a cast calculus, similar flexibility only exists when the term is wrapped
with a cast, since the application rule strictly requires the argument type to be of the same
type of the input of the function type. In λB, for instance, the application rule is the same
as in the Simply Typed Lambda Calculus, requiring the argument type to be of the same
type of the input of the function type.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:7

Bi-directional type-checking for λBg. As a first step to adapt a λB-like calculus into a
source language for gradual typing, we turn to the bidirectional type checking [33]. Unlike in
GTLC or λB, a bidirectional typing judgement may be in one of the two modes: inference
or checking. In the former, a type is synthesized from the term. In the later, both the type
and the term are given as input, and the typing derivation examines whether the term can
be used under that type safely. In a typical bidirectional type system with subtyping, the
subsumption rule is only employed in the checking mode, allowing a term to be checked by a
supertype of its inferred type. That is to say, the checking mode is more relaxed than the
inference mode, which typically infers a unique type. With bidirectional type-checking the
application rule in such a system is not as strict as in the λB calculus, as the input term is
typed with a checking mode.

Implicit type conversion in function applications. By using bidirectional type checking,
we can type-check programs such as:

(λx.x) 1 Accepted!
(λx.not x) 1 Accepted!
(λx.not x : ⋆ → Bool) 1 Accepted!
(λx.x + 1 : Int → Int) 1 Accepted!

and also reject ill-typed programs:

(λx.not x : Bool → Bool) 1 Rejected!

Note that λBg supports annotation expressions of the form e : A. Thus, an expression
like λx.not x : Bool → Bool is a lambda expression (λx.not x) annotated with the type
Bool → Bool.

Explicit type conversion. Besides implicit conversions, programmers are able to trigger
type conversions in an explicit fashion by wrapping the term with a type annotation e : A,
where A denotes the target type. For instance, the two simple examples in λB in Section 2.1
can be encoded in λBg as:

1 : ⋆ : Int 7−→∗ 1
1 : ⋆ : Bool 7−→∗ blame

with similar results to the same programs in the λB calculus. Notice that, unlike λB, there
is no cast expression in λBg. Casts are triggered by type annotations. For instance, in the
first expression above (1 : ⋆ : Int), the first type annotation (⋆) triggers a cast from Int to ⋆.
The source type Int is the type of 1, whereas the target type ⋆ is specified by the annotation.
Then the second annotation Int will trigger a second cast, but now from ⋆ to Int.

Functions. One interesting change in the type system is that we handle lambdas by inference
mode rather than checking mode. Our rule for lambdas is:

Γ, x : A ⊢ e ⇐ B

Γ ⊢ λx . e : A → B ⇒ A → B
Typ-abs

If the programmer wants to have their function statically type checked, they can write down
the full annotations. Otherwise, the function can be left with no annotation, which will
be desugared into a lambda with type ⋆ → ⋆, similarly to what happens in the GTLC for
dynamically typed lambdas.

ECOOP 2021

12:8 Type-Directed Operational Semantics for Gradual Typing

2.4 Designing a TDOS for λBg

The most interesting aspect of λBg is its dynamic semantics. We discuss the key ideas next.

Background: Type-Directed Operational Semantics. A type-directed operational se-
mantics is helpful for language features whose semantics is type dependent. TDOS was
originally proposed for languages that have intersection types and a merge operator [25]. To
enable expressive forms of the merge operator the dynamic semantics has to account for the
types, just like the semantics of gradually typed languages. In many traditional operational
semantics type annotations are often ignored. In TDOS that is not the case, and the type
annotations are used at runtime to determine the result of reduction. A TDOS has two parts.
One part is similar to the traditional reduction rules, modulo some changes on type-related
rules, like beta reduction for application, and annotation elimination for values. The second
component of a TDOS is the typed reduction relation v 7−→A r. Typed reduction has a
value and a type as input and produces a value (when no run-time error is possible) as result.
The resulting value is transformed from the input value.

Typed Reduction for λBg. Due to consistency, run-time checking is needed in gradual
typing. The typed reduction relation v 7−→A r is used when run-time checks are needed.
Typed reduction compares the dynamic type of the input value with the target type. When
the type of the input value (v) is not consistent to the target type (A), blame is raised.
Otherwise, typed reduction adapts the value to suit the target type. Eventually, terms
become more and more precise. Two easy examples to show how typed reduction work are
shown next:

1 7−→Int 1
1 : ⋆ 7−→Bool blame

If we have an integer value 1 and we want to transform it with type Int, we simply return
the original value. In contrast, attempting to transform the value 1 : ⋆ under type Bool will
result in blame.

Typed reduction takes place in other reduction rules such as the beta reduction rule and
the annotation elimination rule for values:

Step-beta
v 7−→A v′

(λx . e : A → B) v 7−→ e[x 7→ v′] : B

Step-annov
not (value (v : A))

v 7−→A r

v : A 7−→ r

Take another example to illustrate the behavior of typed reduction in beta reduction:

(λx.x : Bool → Bool) (1 : ⋆)

If we would perform substitution directly, as conventionally done in beta-reduction, we would
not check if there are run-time errors, for which blame should be raised. Since the typing
rule for the argument of application is in checking mode, we need to check if the type of the
argument is consistent with the target type. Therefore the argument must be further reduced
with typed reduction under the expected type of the function input. When we check that
the type Int is not consistent with Bool, blame is raised. However, if we take the example:

(λx.x + 1 : Int → Int) (1 : ⋆)

then the value 1 is substituted in the function body and the result is 2. The details of
reduction and typed reduction in λBg will be discussed in Section 3.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:9

2.5 λBr: Gradual Typing with a Blame Recovery Semantics
An alternative semantics for Gradual Typing. In λBr we explore an alternative semantics
for gradual typing that we call blame recovery semantics. The main idea is to only raise
blame when the initial (source) type and the final target types in a chain of type annotations
are inconsistent. Intermediate inconsistent types will not lead to blame. Thus the blame
recovery semantics can be viewed as being more liberal with respect to raising blame. We
illustrate the difference next, with 2 programs that raise blame in λBg, but would successfully
compute a value in λBr:

(λx.x : Int → Int : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆) 1 7−→∗ blame {Examples in λBg }
(λx.x : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆ : Int → Int) 1 7−→∗ blame

(λx.x : Int → Int : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆) 1 7−→∗ 1 : Int {Same examples in λBr }
(λx.2 : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆ : Int → Int) 1 7−→∗ 2 : Int

For the above two examples, the function being applied is wrapped on a chain of annotations
that contain the inconsistent types Int → Int and Bool → Bool. Therefore, in λBg blame
is raised in both cases. However, in λBr, because ⋆ → ⋆ is consistent with Int → Int, the
annotation chain of functions is eliminated, then beta reduction applies, and it successfully
reduces to an integer value.

Space Efficiency. Besides the different semantics with respect to the λBg and λB calculi,
an interesting aspect of this alternative semantics is better space efficiency. Unlike the blame
calculus or λBg, where functions with an arbitrary number of annotations are values, that
is not the case in λBr. Because of the blame recovery semantics it is possible to discard
intermediate types when reducing expressions with chains of annotations. Instead of wrappers
for higher-order casts, function values have just 2 annotations. Some concrete examples for
higher-order casts (functions) are:

(λx . x : Int → Int) : ⋆ → ⋆ : Int → Int 7−→∗ (λx . x : Int → Int) : Int → Int
(λx . x : Int → Int) : ⋆ → ⋆ : Bool → Bool 7−→∗ [λx.x : Int → Int]Bool→Bool

(λx . x : Int → Int) : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆ 7−→∗ λx . x : Int → Int : ⋆ → ⋆

For the first example, because the source type Int → Int is consistent with the target type
Int → Int, the intermediate types are ignored and the resulting value is (λx . x : Int → Int) :
Int → Int. For the second example, because the source type Int → Int is not consistent
with the target type Bool → Bool, instead of raising blame immediately, the source type
will be stored in a saved value: [λx . x : Int → Int]Bool→Bool. Later, if the saved value is
applied to an argument, blame will be raised, since a saved value is denoting that the
function has inconsistent source and target types. The third example, is similar to the
second example except that there is an extra final target type ⋆ → ⋆. Thus, since the
initial source type Int → Int is consistent with the final target type ⋆ → ⋆ the final value is
(λx . x : Int → Int) : ⋆ → ⋆. The above examples illustrate that at most there will be 2 type
annotations in values. In contrast, for the blame calculus, the three examples are values
where all the annotations are accumulated.

Saved Expressions. To realize the blame recovery semantics we introduce saved expres-
sions/values, which are used to signal potential blame. A saved value is generated whenever

ECOOP 2021

12:10 Type-Directed Operational Semantics for Gradual Typing

some target type arising from an annotation is inconsistent with the current value. If further
annotations are processed after a saved value is generated, recovery from blame is possible.
Take the third example above again. The full reduction steps for that example are:

(λx . x : Int → Int) : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆

7−→ [λx.x : Int → Int]Bool→Bool : ⋆ → ⋆

7−→ λx . x : Int → Int : ⋆ → ⋆

An intermediate saved value is generated, but because there is still one more consistent
annotation (⋆ → ⋆), the value is recovered from the saved expression, revoking the potential
reason to raise blame.

Blame in λB and λBr. While λBr has a different semantics from λB (and λBg), the
semantics of the two calculi is still closely related. In particular, with respect to blame, a
program that does not raise blame in λBg or λB will also not raise blame in λBr. Achieving
this goal is not simple, because of the semantics of the blame calculus and λBg for higher-order
casts. For instance, consider the following λBg program:

((λx. x : (Bool → Bool) → (Bool → Bool)) : ⋆ → ⋆ : (Int → Int) → (Int → Int)) (λx . x : Int → Int)

In this well-typed program the lambda expression being applied has inconsistent type
annotations. However, because in the blame calculus and λBg the semantics of higher-order
casts is lazy, this program will not raise blame. Instead, it eventually reduces to:

(λx . x : Int → Int) : Int → Int : ⋆ → ⋆ : Bool → Bool : Bool → Bool : ⋆ → ⋆ : Int → Int

which is another lambda expression (arising from the argument) with inconsistent type
annotations.

In λBr the applied lambda expression in the original program would first be reduced to:

[λx . x : (Bool → Bool) → (Bool → Bool)](Int→Int)→(Int→Int)

To achieve the same semantics as λBg or λB, the design of λBr has to include rules that
can still perform beta-reduction for saved values being applied. In particular, λBr has the
following rule :

v 7−→A1,⋆,A2 v′

([λx . e : A1 → B1]A2→B2) v 7−→ e[x 7→ v′] : B1 : ⋆ : B2
VStep-apps

With such a rule, the program above is reduced in λBr as follows:

[λx.x : (Bool → Bool) → (Bool → Bool)](Int→Int)→(Int→Int)(λx . x : Int → Int)
7−→∗ (λx . x : Int → Int) : Int → Int

3 The λBg Calculus: Syntax, Typing and Semantics

In this section, we will introduce the gradually typed λBg calculus. The semantics of
the λBg calculus follows closely the semantics of the λB cast calculus, and it employs a
type-directed operational semantics [25] to have a direct operational semantics. λBg uses
bidirectional type-checking [33]. We prove a soundness result between the semantics of the
λBg and λB calculi (ignoring blame labels), as well as the usual type soundness property.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:11

Syntax

Types A, B ::= Int | ⋆ | A → B

Ground types G ::= Int | ⋆ → ⋆

Constants c ::= i | ...

T erms e ::= c | x | e : A | e1 e2 | λx.e : A → B

Result r ::= e | blame

V alues v ::= c | v : A → B | λx.e : A → B | v : ⋆

Context Γ ::= · | Γ, x : A

Frame F ::= [] e | v [] | [] : A

Typing modes ⇔ ::= ⇒|⇐
Syntactic sugar λx.e ≡ λx.e : ⋆ → ⋆

value e (Well-formed values for λBg calculus)

value-c

value c

value-anno

value λx . e : A → B

value-fanno
⌉v⌈= C → D

value v : A → B

value-dyn
Ground ⌉v⌈
value v : ⋆

Figure 2 Syntax and well-formed values for the λBg calculus.

3.1 Syntax
The syntax of λBg calculus is shown in Figure 2.

Types and Ground types. Meta-variables A and B range over types. There is a basic type:
the integer type Int. The calculus also has function types A → B, and dynamic types ⋆.
The type ⋆ is used to denote the dynamic type which is unknown. Just like in λB calculus,
ground types include Int and ⋆ → ⋆.

Constants, Expressions and Results. Meta-variable c ranges over constants. Each constant
is assigned a unique type. The constants include integers (i) of type Int. Expressions
range over by the meta-variable e. There are some standard constructs which include:
constants (c);variables (x); annotated expressions (e : A); application expressions (e1e2) and
lambda abstractions (λx.e : A → B). Note that lambda abstractions have the function type
annotation A → B, meaning that the input type is A and the output type is B. Similarly to
GTLC, lambdas without type annotations are just sugar for a lambda with the annotation
⋆ → ⋆. Results (r) include all expressions and blame, which is used to denote cast-errors at
run-time. Finally, note that, in our Coq formalization, constants such as addition of integers
are implemented, but omitted here for simplicity of presentation.

Value and Contexts. The meta-variable v ranges over values. Values include constants (c);
lambda abstractions (λx.e : A → B) and a special value with the syntax v : A → B. Note
that, similarly to λB, not all syntactic values are well-formed values. The value predicate,
at the bottom of Figure 2, defines well-formed values. Lambda expressions annotated with a
function type are values (rule value-anno). A value v with a function type annotation is

ECOOP 2021

12:12 Type-Directed Operational Semantics for Gradual Typing

a value if the dynamic type of the value is also a function type (rule value-fanno). The
expression of v : ⋆ is a value only when the type of v is a ground type (rule value-dyn).
Constants are also values. Note that ⌉v⌈ denotes the dynamic type of a value, and is defined
as:

▶ Definition 1 (Dynamic type). ⌉v⌈ denotes the dynamic type of the value v.

⌉i⌈ = Int
⌉λx . e : A → B⌈ = A → B

⌉v : A⌈ = A

The dynamic type is the most specific type of a value among all the other types. Finally,
typing contexts are standard. Γ is used to track the bound variables x with their type A.

Frame and Typing modes. The meta-variable F ranges over frames [39] which is a form of
evaluation contexts [31]. The frame is mostly standard, though it is perhaps noteworthy that
it includes annotated expressions. ⇔ is used to represent the two modes of the bidirectional
typing judgment. The ⇒ mode is the synthesis (inference) mode and ⇐ mode is the checking
mode.

3.2 Typing

We use bidirectional typing for our typing rules. The typing judgment is represented as
Γ ⊢ e ⇔ A, which means that the expression e could be inferred or checked by the type A

under the typing environment Γ. We ignore the highlighted parts, and explain them later in
Section 3.4.

Typing Relation. The typing relation of the λBg calculus is shown in Figure 3. Most of
the rules in inference mode follow the λB calculus’s type system. The typing for constants
(rule Typ-c) recovers the type of the constants using the definition of dynamic types. The
rule Typ-var for variables is standard. For lambda expressions, the λBg calculus is different
from the λB calculus: in the λBg calculus the type of a lambda expression is given. Thus
the body of the lambda expression is checked with a target type that should be consistent to
the type of the lambda body. For applications e1 e2, the rule is standard for bi-directional
type-checking: the type of e1 is inferred, and the type of e2 is checked against the domain type
of e1. The rule for annotations (rule Typ-anno) is also standard, inferring the annotated
type, while checking the expression in the against the annotated type. All the consistency
checks happen in the subsumption rule (rule Typ-sim). However, it is important to notice
that since the subsumption rule is in checking mode, all consistency checks can only happen
when typing is invoked in the checking mode.

Two important properties of the typing relation is that it computes dynamic types for the
inference mode, and if an expression e can be checked with type A, then e can be inferred
with some type B:

▶ Lemma 2 (Dynamic Types). For any value v, if · ⊢ v ⇒ A then ⌉v⌈= A.

▶ Lemma 3 (Checking to inference mode). If Γ ⊢ e ⇐ A then ∃B, Γ ⊢ e ⇒ B.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:13

Γ ⊢ e ⇔ A ⇝ t (Typing of λBg)

Typ-c

Γ ⊢ c ⇒ ⌉c⌈ ⇝ c

Typ-var
x : A ∈ Γ

Γ ⊢ x ⇒ A ⇝ x

Typ-abs
Γ, x : A ⊢ e ⇐ B ⇝ t

Γ ⊢ λx . e : A → B ⇒ A → B ⇝ λx :A. t

Typ-app
Γ ⊢ e1 ⇒ A → B ⇝ t1

Γ ⊢ e2 ⇐ A ⇝ t2

Γ ⊢ e1 e2 ⇒ B ⇝ t1 t2

Typ-anno
Γ ⊢ e ⇐ A ⇝ t

Γ ⊢ e : A ⇒ A ⇝ t

Typ-sim
Γ ⊢ e ⇒ A ⇝ t

A ∼ B

Γ ⊢ e ⇐ B ⇝ t : A ⇒ B

Figure 3 Type system of the λBg calculus.

v 7−→A r (Typed Reduction for λBg calculus)

TReduce-abs
⌉v⌈= C → D

C → D ∼ A → B

v 7−→A→B v : A → B

TReduce-v
Ground ⌉v⌈
v 7−→⋆ v : ⋆

TReduce-lit

i 7−→Int i

TReduce-dd

v : ⋆ 7−→⋆ v : ⋆

TReduce-anyd
FLike ⌉v⌈

v 7−→⋆ v : ⋆ → ⋆ : ⋆

TReduce-dyna
FLike A ⌉v⌈∼ A

v : ⋆ 7−→A v : A

TReduce-vany

v : ⋆ 7−→⌉v⌈ v

TReduce-blame
⌉v⌈≁ A

v : ⋆ 7−→A blame

Figure 4 Typed Reduction for the λBg calculus.

Consistency. Consistency plays an important role in a gradually type lambda calculus.
Consistency acts as a relaxed equality relation. The consistency relation is the same as λB,
and is already shown in Figure 1. In consistency, the reflexivity and symmetry properties
hold. However, it is well-known that consistency is not a transitive relation. If consistency
were transitive then every type would be consistent with any other type [43].

3.3 Dynamic Semantics
The dynamic semantics of λBg employs a type-directed operational semantics (TDOS) [25].
In TDOS, besides the usual reduction relation, there is a special typed reduction relation for
values that is used to further reduce values based on the type of the value. Typed reduction
is used by the TDOS reduction relation. In a gradually typed calculus with TDOS the typed
reduction relation plays a role analogous to various cast-related reduction rules in a cast
calculus. We first introduce typed reduction and then move on to the definition of reduction.

Typed Reduction. We reduce a value under a certain type using the typed reduction
relation. The form of the typed reduction relation is v 7−→A r, which means that a value v

annotated with A reduces under type A to a result r. Note that the result r produced by
typed reduction can only be a value or blame. Blame is raised during typed reduction if

ECOOP 2021

12:14 Type-Directed Operational Semantics for Gradual Typing

we try to reduce the value under a type that is not consistent with the type of the value.
For instance trying to reduce the value 1 : ⋆ under the type Bool will raise blame. Thus,
it should be clear that typed reduction mimics the behavior of casts in cast calculi like the
λB calculus. In the λB calculus, in a cast t : B ⇒ A, t should be a cast from a source type
B to a target type A. Using typed reduction, the type A is the target type, whereas the
dynamic type of v is the source type.

Figure 4 shows the rules of typed reduction. Rule TReduce-abs and rule TReduce-v
just add a type annotation to the value. In rule TReduce-abs the dynamic type of the
value is a function type, thus v annotated with A → B is a value. In rule TReduce-v, v : ⋆

is also a value when the dynamic type of v is a ground type. Rule TReduce-lit is for
integer values: an integer i being reduced under the integer type results in the same integer
i. A value v : ⋆ type-reduced under ⋆ returns the original value as well (rule TReduce-dd).
In rule TReduce-anyd, the premise is that the dynamic type of v should be a function-like
type (FLike). The definition of FLike, which plays a role analogous to ug(A, ⋆ → ⋆) in λB,
is:

FLike A ::= A ̸= ⋆ ∧ A ̸= ⋆ → ⋆ ∧ A ∼ ⋆ → ⋆

If a type A is FLike then it is not the type ⋆ and the type ⋆ → ⋆, but should be consistent
with ⋆ → ⋆. In other words, the dynamic type of v should be any function type A → B except
for ⋆ → ⋆. In the end v is type-reduced under type ⋆ and returns the value v : ⋆ → ⋆ : ⋆.
In rule TReduce-vany, v : ⋆ is type-reduced under the dynamic type of v, returning v

and dropping the annotation ⋆. In rule TReduce-blame, if the dynamic type of v is
not consistent to the type A that we are type-reducing, then blame is raised. Finally, in
rule TReduce-dyna, a value v : ⋆ being type-reduced under type A (where A is function-like
and the dynamic type of v is consistent with A) results in v : A. That is the annotation ⋆

gets replaced by the function type A.

Properties of Typed Reduction. Some properties of typed reduction of λBg calculus are
shown next:

▶ Lemma 4 (Typed reduction preserves well-formedness of values). If value v and v 7−→A v′

then value v′.

▶ Lemma 5 (Preservation of Typed Reduction). If · ⊢ v ⇐ B and v 7−→A v′ then · ⊢ v′ ⇒ A.

▶ Lemma 6 (Progress of Typed Reduction). If · ⊢ v ⇐ A then ∃v′, v 7−→A v′ or v 7−→A

blame.

▶ Lemma 7 (Determinism of Typed Reduction). If · ⊢ v ⇐ B, v 7−→A r1 and v 7−→A r2
then r1 = r2.

▶ Lemma 8 (Typed Reduction Respects Consistency). If v 7−→A v′ then ⌉v⌈∼ A.

According to Lemma 4, if the result of a value type-reduced under a type A is not blame,
then it should be a well-formed value. Lemma 5 shows that the target type A is preserved
after typed reduction: if a value v is type-reduced by A, the result type of v′ is of type
A. Note that this lemma (and some others) have a premise that ensures that the value
under typed reduction must be well-typed under some type B. That is, the lemma only
holds for well-typed values (which are the only ones that we care about). Lemma 6 shows
that if a value v is well-typed with A, then type-reducing the value will either return a

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:15

e 7−→ r (Small-step Semantics)

Step-eval
e 7−→ e′

F. e 7−→ F. e′

Step-blame
e 7−→ blame

F. e 7−→ blame

Step-beta
v 7−→A v′

(λx . e : A → B) v 7−→ e[x 7→ v′] : B

Step-betap
v 7−→A blame

(λx . e : A → B) v 7−→ blame

Step-annov
not (value (v : A))

v 7−→A r

v : A 7−→ r

Step-abeta
value (v1 : A → B)

v2 7−→A v′
2

(v1 : A → B) v2 7−→ (v1 v′
2) : B

Step-abetap
value (v1 : A → B)

v2 7−→A blame

(v1 : A → B) v2 7−→ blame

Figure 5 Semantics of λBg.

well-formed value or blame. The typed reduction relation is deterministic for well-typed
values (Lemma 7): if a well-typed value v is type-reduced by type A, the result will be unique.
Finally, if v is type-reduced by A, the dynamic type of v should be consistent with type A

(Lemma 8). Most of these lemmas are proved by induction on typed reduction relation.

Reduction. The reduction rules are shown in Figure 5. Rule Step-eval and rule Step-
blame are standard evaluation context reduction rules. Rule Step-beta is the beta reduction
rule. Importantly, note that typed reduction under type A is needed for v: that is we type-
reduce value v to v′ and replace the bound variable x in e by v′. Rule Step-betap applies
when v type-reducing under type A raises blame. Rule Step-annov states that v type-
reduces under type A to return r. Rule Step-abeta says v2 type-reduces by type A to get
v′

2 and v1 will erase the annotation. The expression v1 v′
2 in the result is annotated with type

B. Rule Step-abetap covers the case when v2 type-reducing under type A raises blame.

Determinism. The operational semantics of λBg is deterministic: a well-typed expression
reduces to a unique result. Theorem 9 is proved using Lemma 7.

▶ Theorem 9 (Determinism of λBg calculus). If · ⊢ e ⇐ A, e 7−→ r1 and e 7−→ r2 then
r1 = r2.

Type Safety. The λBg calculus is type safe. Theorem 10 says that if an expression is
well-typed with type A, the type will be preserved after the reduction. Progress is given
by Theorem 11. A well-typed expression e is either a value or there exists an expression e′

which e could reduce to, or e reduces to blame.

▶ Theorem 10 (Type Preservation of λBg Calculus). If · ⊢ e ⇔ A and e 7−→ e′ then
· ⊢ e′ ⇔ A.

▶ Theorem 11 (Progress of λBg Calculus). If · ⊢ e ⇔ A then e is a value or ∃e′, e 7−→ e′

or e 7−→ blame.

ECOOP 2021

12:16 Type-Directed Operational Semantics for Gradual Typing

3.4 Soundness to λB

The judgment Γ ⊢ e ⇔ A ⇝ t , shown in Figure 3 has an elaboration step from λBg

expressions to λB expressions in the gray portion of the judgement. This elaboration step is
used to prove a soundness result between the semantics of λBg and λB. A first property,
given by Theorem 12, is that the elaboration is type-safe. Theorem 13 and Theorem 14 show
the soundness property between the dynamic semantics of λBg and λB. The soundness
result is proved using the auxiliary lemmas 15 and 16.

▶ Theorem 12 (Type-Safety of Elaboration). If Γ ⊢ e ⇔ A ⇝ t then Γ ⊢ t : A.

▶ Theorem 13 (Soundness of λBg calculus semantics with respect to λB calculus semantics).
If · ⊢ e ⇔ A ⇝ t and e 7−→ e′ then ∃t′, t 7−→∗ t′ and · ⊢ e′ ⇔ A ⇝ t′ .

▶ Theorem 14 (Soundness of λBg calculus semantics with respect to λB calculus semantics).
If · ⊢ e ⇔ A ⇝ t and e 7−→ blame then t 7−→∗ blame.

▶ Lemma 15 (Soundness of Typed Reduction λBg calculus with respect to λB calculus
semantics). If · ⊢ v : A ⇒ A ⇝ t and v 7−→A v′ then ∃t′, t 7−→∗ t′ and · ⊢ v′ ⇒ A ⇝ t′ .

▶ Lemma 16 (Soundness of Typed Reduction λBg calculus with respect to λB calculus
semantics). If · ⊢ v : A ⇒ A ⇝ t and v 7−→A blame then t 7−→∗ blame.

4 The λBr Calculus and the Blame Recovery Semantics

In this section, we will introduce a gradually typed calculus with a blame recovery semantics.
The idea of the blame recovery semantics is essentially to ignore intermediate inconsistent
types in annotations. Thus, if blame arises from intermediate type annotations, but later the
final source type is found to be consistent to the final target type then blame is not raised. A
nice aspect of the blame recovery semantics is that it avoids accumulating type annotations,
leading to a more space-efficient representation of values. The details of syntax, typing and
semantics of λBr calculus are shown below.

4.1 Syntax
The syntax of the λBr calculus is shown in Figure 6.

Types. Types are the same as in λBg. A type is either a integer type Int, a function type
A → B or a dynamic type ⋆.

Expressions and Results. For expressions and results, λBr extends λBg with two expression
forms: base expressions and saved expressions. Base expressions (ss) include annotated
lambda expressions and integers (i). Saved expressions ([s]A→B) store a lambda expression
and a type A → B which is not consistent with the type of the lambda expression. The
lambda expressions stored in saved expressions are denoted as s. In our Coq formalization,
addition is also implemented and omitted here for simplicity of presentation.

Values. As in λBg, v denotes values, which are base expressions ss or saved forms annotated
with a type. Thus i : A and λx . e : A → B : C are examples of such expressions. Notably, in
contrast with λBg, λBr’s notion of (well-formed) values is purely syntactic: no additional
constraints (besides) syntax are needed. Moreover, it should be noted that in λBr values
have a bounded number of annotations (up-to 2 for lambda and saved values), unlike the
λBg calculus.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:17

Types A, B, C ::= Int | A → B | ⋆

Saved Forms s ::= λx.e : A → B

Base Expressions ss ::= s | i

Expressions e ::= x | e : A | e1 e2 | ss | [s]C→D

Results r ::= e | blame

V alue v ::= ss : A | [s]A
Contexts Γ ::= · | Γ, x : A

Frame F ::= v [] | [] e

Typing modes ⇔ ::= ⇒|⇐
Syntactic sugar λx.u ≡ λx.e : ⋆ → ⋆

Figure 6 Syntax of the λBr calculus (syntax that is the same as λBg in lighter gray).

Γ ⊢ e ⇔ A (New Typing Rules)

Etyp-save
· ⊢ s ⇒ C → D

A → B ≁ C → D

Γ ⊢[s]A→B ⇒ A → B

Figure 7 Type system of the λBr calculus. Only new typing rules are shown. All other typing
rules are the same as Figure 3.

Contexts, Frame and Typing modes. Typing environments and typing modes are just the
same as in the λBg calculus. Compared to the λBg calculus, annotation contexts are not in
the frame. This change is because in the λBg calculus we accumulate the annotations, but
in the λBr calculus we employ a blame recovery semantics. If annotated expressions were
formulated in the frame, we could not formulate a rule that recovers a saved value.

4.2 Typing

As the λBg calculus, bidirectional typing is used. Most of the rules are standard and the
same as those used by the λBg calculus in Figure 3. The only novel rule is rule Etyp-save,
which states that saved forms s should be well-typed with type C → D, and the type A → B

in the saved expression [s]A→B is not consistent with type C → D. The context is empty
because we only use saved expressions as intermediate results during reduction and such
results must be closed.

Dynamic type for the λBr calculus. As in the λBg calculus, dynamic types play an
important role in the calculus. ⌉v⌈ denotes the dynamic type of v, and ⌉ss⌈ denotes the
dynamic type of ss. We need both dynamic types for values and base expressions ss, and we
can define dynamic types easily as follows:

ECOOP 2021

12:18 Type-Directed Operational Semantics for Gradual Typing

v 7−→A r (Typed Reduction for λBr)

TReducev-sim
⌉ss⌈∼ B

ss : A 7−→B ss : B

TReducev-i
Int ≁ B

i : A 7−→B blame

TReducev-simp
⌉s⌈≁ B → C

s : A 7−→B→C [s]B→C

TReducev-save
⌉s⌈≁ C → D

[s]A→B 7−→C→D [s]C→D

TReducev-savep
⌉s⌈∼ C

[s]A→B 7−→C s : C

TReducev-p

(λx . e : A → B) : C 7−→Int blame

v 7−→Ā r (Multi-typed Reduction for λBg)

TLists-nil

v 7−→· v

TLists-baseb
v 7−→A blame

v 7−→Ā,A blame

TLists-cons
v 7−→A v′ v′ 7−→Ā r

v 7−→Ā,A r

Figure 8 Typed Reduction for the λBr Calculus.

▶ Definition 17 (Dynamic type). ⌉ss⌈ returns the dynamic type of the base expressions ss.
⌉v⌈ returns the dynamic type of the value v.

⌉i⌈ = Int
⌉λx . e : A → B⌈ = A → B

⌉s : A⌈ = A

⌉[s]A⌈ = A

Two lemmas about dynamic types and a typing lemma about checking mode are:

▶ Lemma 18 (Dynamic Types of Values). If · ⊢ v ⇒ A then ⌉v⌈= A.

▶ Lemma 19 (Dynamic Types of Base Expressions). If · ⊢ ss ⇒ A then ⌉ss⌈= A.

▶ Lemma 20 (Checked expressions can be inferred). If Γ ⊢ e ⇐ A then ∃B, Γ ⊢ e ⇒ B.

4.3 Dynamic Semantics
As in the λBg calculus, typed reduction is used in the semantics to get a direct operational
semantics. Interestingly, the calculus uses not only typed reduction with single type, but
also typed reduction for a collection of types.

Typed Reduction. The typed reduction rules are shown in Figure 8. Rule TReducev-sim
shows that ss : A type-reduces by type B to ss : B, if the type of ss is consistent with type
B. If the type of ss is not consistent with type B, the cases for integer (i) and lambda
(λx . e : A → B), which are included in ss, are different. For i : A, rule TReducev-i
shows that if type B is not consistent with Int, it raises blame. For a value of the form
(λx . e : A1 → B1) : A, if the type used for typed reduction is a function type B → C,
then the value reduces to [λx . e : A1 → B1]B→C using rule TReducev-simp. However

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:19

rule TReducev-p says that if the type used for typed reduction is Int, then blame is raised.
Rule TReducev-savep says that if the dynamic type of a saved form in [s]A→B is consistent
with C, then we can recover and return s : C. Otherwise, if the dynamic type of the saved
form s is also not consistent with C → D, then [s]A→B type-reduces to another saved value
[s]C→D as shown by rule TReducev-save.

An Example. Lets take an example to explain behavior of typed reduction with blame
recovery semantics. Suppose that we take a chain of annotations (λx . x : Int → Int) : Int →
Int : ⋆ : Bool → Bool : ⋆. Firstly, the dynamic type of λx . x : Int → Int is consistent with type
⋆ and the intermediate type Int → Int is erased. Then the dynamic type of λx . x : Int → Int
is not consistent with Bool → Bool. While reducing such an expression, an intermediate
saved expression [λx . x : Int → Int]Int→Int is generated. However, the saved expression would
later be recovered because the final type annotation ⋆ is consistent with the dynamic type of
the value.

The typed reduction (and reduction) steps to reduce such an expression are shown next:

(λx . x : Int → Int) : Int → Int : ⋆ : Bool → Bool : ⋆

7−→ {by step-annov and typed reduction under ⋆}
(λx . x : Int → Int) : ⋆ : Bool → Bool : ⋆

7−→ {by step-annov and typed reduction under Bool → Bool}
([λ.x : Int → Int]Bool→Bool) : ⋆

7−→ {by step-annov and typed reduction under ⋆}
(λx . x : Int → Int) : ⋆

Typed Reduction Properties. Typed reduction for the λBr calculus has some interesting
properties. The most interesting property is transitivity of typed reduction, which may come
as a surprise since the consistency relation is not transitive, and typed reduction for λBg is
not transitive either. The transitivity lemma (Lemma 21) says that typed reduction is the
same no matter whether it is type-reduced directly or indirectly via some intermediate type.

▶ Lemma 21 (Transitivity of typed reduction). If v 7−→A v1, and v1 7−→B v2 then v 7−→B v2.

Lets take an example, firstly using the typed reduction of λBg:

1) λx. x : Int → Int : Int → Int 7−→⋆→⋆ λx. x : Int → Int : Int → Int : ⋆ → ⋆

2) λx. x : Int → Int : Int → Int : ⋆ → ⋆

7−→Bool→Bool λx. x : Int → Int : Int → Int : ⋆ → ⋆ : Bool → Bool

3) λx. x : Int → Int : Int → Int ̸7−→Bool→Bool λx. x : Int → Int : Int → Int : ⋆ → ⋆ : Bool → Bool

The three typed reductions correspond to the two premises and the conclusion in the
transitivity lemma. The last typed reduction does not hold, and is a counter-example to
transitivity of typed reduction in λBg. Although Int → Int is consistent with ⋆ → ⋆ and
⋆ → ⋆ is consistent with Bool → Bool, Int → Int is not consistent with Bool → Bool. Since
transitivity does not hold in type consistency and the annotations are accumulated in λBg,
the transitivity of typed reduction does not hold in λBg. However in λBr, the annotations
are not accumulated and saved expressions are used to save the source type, so the transitivity

ECOOP 2021

12:20 Type-Directed Operational Semantics for Gradual Typing

of typed reduction holds. The following three typed reductions illustrate what happens for
the above example in λBr:

1) λx . x : Int → Int : Int → Int 7−→⋆→⋆ λx . x : Int → Int : ⋆ → ⋆

2) λx . x : Int → Int : ⋆ → ⋆ 7−→Bool→Bool [λx.x : Int → Int]Bool→Bool

3) λx . x : Int → Int : Int → Int 7−→Bool→Bool [λx.x : Int → Int]Bool→Bool

Additionally, typed reduction has several of the other properties for typed reduction
shown in Section 3:

▶ Lemma 22 (Preservation of Typed Reduction). If · ⊢ v ⇐ B and v 7−→A v′ then
· ⊢ v′ ⇒ A.

▶ Lemma 23 (Progress of Typed Reduction). If · ⊢ v ⇐ A then ∃v′, v 7−→A v′.

▶ Lemma 24 (Determinism of Typed Reduction). If · ⊢ v ⇐ B, v 7−→A r1 and v 7−→A r2
then r1 = r2.

Multi-Typed Reduction. The bottom of Figure 8 shows multi-typed reduction. If a value
v is multi-type reduced with an empty type collection, then the original v is returned as
shown in rule TLists-nil. Rule TLists-baseb states that value v multi-type reducing
with a type collection (Ā, A) raises blame when v type-reduced under type A raises blame.
Rule TLists-cons says that value v multi-type reducing with a type collection (Ā, A) returns
r if v type-reduces under type A return v′ and further reduction of v′ under Ā returns r.

Reduction. Figure 9 shows the reduction rules of the λBr calculus. Rule vstep-eval and
rule vstep-blame are standard rules. Annotation expressions are not in the frame because
we aim at having a blame recovery semantics. Rule vstep-annop and rule vstep-anno are
standard rules. Rule vstep-abs and rule vstep-i add an extra annotation with the dynamic
type to produce a value. In rule vstep-annov if v type-reduces to v′ under type A then
v : A reduces to v′.

There are four rules related to beta-reduction. Rule vstep-beta is the main form of
beta-reduction. However, the argument v needs to first be (multi)type reduced with the
input types, and the annotations with the output types are added in the final expression. If
the multi-typed reduction of v raise blame, then the final result is also blame as shown in
rule vstep-betap. Rule vstep-apps is another form of beta-reduction that recovers the
lambda expression in the saved value when the argument value v successfully type-reduces
to another value. Importantly, because the dynamic type of the lambda expression and the
saved value are inconsistent, an intermediate type ⋆ is added in between the inputs/output
types in both multi-typed reduction and the annotations for the resulting expression. The
reason why ⋆ is needed in multi-typed reduction is that without ⋆, the result of typed
reduction would not be well-typed. Take an example where v is 1 : ⋆ and we are multi-type
reducing using the inconsistent types (Bool, Int). The final value 1 : Bool is not well-typed:

1 : ⋆ 7−→Bool,Int 1 : Int 7−→Bool 1 : Bool 1 : Bool is not well-typed!

When the multi-typed reduction of v raises blame, the final result is blame as shown in
rule vstep-appsp. Note that an alternative to rule vstep-apps and rule vstep-appsp
is to have a rule that always raises blame for any saved expression being applied. Such
alternative rule would be significantly simpler, but would raise blame in some cases where

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:21

e 7−→ r (Small-step Semantics for the λBr calculus)

vstep-eval
e 7−→ e′

F. e 7−→ F. e′

vstep-blame
e 7−→ blame

F. e 7−→ blame

vstep-annop
e 7−→ blame

¬(value e : A)
e : A 7−→ blame

vstep-annov
v 7−→A v′

v : A 7−→ v′

vstep-apps
v 7−→A1,⋆,A2 v′

([λx . e : A1 → B1]A2→B2) v 7−→ e[x 7→ v′] : B1 : ⋆ : B2

vstep-anno
e 7−→ e′

¬(value e : A)
e : A 7−→ e′ : A

vstep-appsp
v 7−→A1,⋆,A2 blame

([λx . e : A1 → B1]A2→B2) v 7−→ blame

vstep-abs

λx . e : A → B 7−→ (λx . e : A → B) : A → B

vstep-beta
v 7−→A1,A2 v′

((λx . e : A1 → B1) : A2 → B2) v 7−→ e[x 7→ v′] : B1 : B2

vstep-i

i 7−→ i : Int

vstep-betap
v 7−→A1,A2 blame

((λx . e : A1 → B1) : A2 → B2) v 7−→ blame

Figure 9 Semantics of the λBr Calculus.

the blame calculus or λBg do not. The more complex rules vstep-apps and vstep-appsp
are necessary to ensure that blame is not raised when a analogous program in λBg would not
raise blame. The last example in Section 2 shows this situation and illustrates the benefit of
having rule vstep-apps to respect the blame semantics of λBg.

One important property is that the reduction relation is deterministic:

▶ Theorem 25 (Determinism of λBr calculus). If · ⊢ e ⇐ A, e 7−→ r1 and e 7−→ r2 then
r1 = r2.

Type Safety. Another important property is that the λBr calculus is type safe. Theorem
26 says that if an expression is well-typed with type A, the type will be preserved after the
reduction. Progress is shown by Theorem 27. A well-typed expression e will be a value or
there exists an expression e′ which e could reduce to e′ or e could raise blame.

▶ Theorem 26 (Type Preservation of λBr Calculus). If · ⊢ e ⇔ A and e 7−→ e′ then
· ⊢ e′ ⇔ A.

▶ Theorem 27 (Progress of λBr Calculus). If · ⊢ e ⇔ A then e is a value or ∃e′, e 7−→ e′

or e 7−→ blame.

Less blame. λBr raises blame strictly less often than λBg. As we have seen in Section 2
we can find programs that raise blame in λBg, but will result in values in λBr. Moreover we
have proved the following theorem:

ECOOP 2021

12:22 Type-Directed Operational Semantics for Gradual Typing

| i | = i
| λx. e : A → B | = λx. | e | : A → B

| e : A | = | e | : A

| e1 e2 | = | e1 | | e2 |
| [s]A→B | = | s | : ⋆ → ⋆ : A → B

Figure 10 Translating λBr expressions to λBg.

▶ Theorem 28 (Conformance to the blame semantics of λBg). If · ⊢ | e | ⇔g A and e 7−→r

blame then | e | 7−→g∗ blame.

which states that if a λBr expression e reduces to blame, and the corresponding λBg

expression |e| is well-typed, then reducing |e| also raises blame. Note that in the theorem,
for disambiguation, we annotate the relations with g or r to clarify which calculus does the
relation belong to. In other words a program that results in blame in λBr will also result in
blame in λBg. Moreover, because of the soundness lemma between λBg and λB, λBr also
raises blame less often than λB.

To prove Theorem 28 we need a translation function between λBr expressions and λBg

expressions. In λBr, we have saved expressions/values, while there is no such expression
in λBg. The translation function is shown in Figure 10. For instance, the λBr expression
[λx . x : Bool → Bool]Int→Int would translate to (λx . x : Bool → Bool) : ⋆ → ⋆ : Int → Int in
λBg.

4.4 Gradual Guarantee
Siek et al. [41] suggested that a calculus for gradual typing should also enjoy the gradual
guarantee, which ensures that programs can smoothly move from being more/less dynamically
typed into more/less statically typed.

Precision. The top of Figure 11 shows the precision relation on types. A ⊑ B means
that A is more precise than B. Every type is more precise than type ⋆. A function type
A1 → B1 is more precise than A2 → B2 if type A1 is more precise then A2 and type B1 is
more precise than B2. The bottom of Figure 11 shows the precision relation of expressions.
e1 ⊑ e2 means that e1 is more precise than e2. The precision relation of expressions is derived
from the precision relation of types. Every expression has a precision relation with itself.
λx . e1 : A1 → B1 is more precise than λx . e2 : A2 → B2 if e1 is more precise than e2 and the
types are in the precision relation. For application expressions, precision holds if e1 ⊑ e2
holds and e′

1 ⊑ e′
2 holds. For annotated expressions e1 : A is more precise than e2 : B if e1

is more precise than e2 and A is more precise than B. For saved expressions, the precision
relation is similar to annotation expressions.

Notably, a saved expression [s1]A→B is more precise than an expression s2 : C → D if s1
is more and precise than s2 and the type A → B is more precise than C → D (rule ep-sa).
Lets take an example, to see the use of such precision rule. The expression (λx . x : Int →
Int) : ⋆ → ⋆ : Bool → Bool is more precise than (λx . x : Int → Int) : ⋆ → ⋆ : ⋆ → ⋆ by
rule ep-anno. According to the reduction rules, (λx . x : Int → Int) : ⋆ → ⋆ : Bool → Bool

reduces to [λx . x : Int → Int]Bool→Bool, while (λx . x : Int → Int) : ⋆ → ⋆ : ⋆ → ⋆ reduces
to (λx . x : Int → Int) : ⋆ → ⋆. In addition, e1 : ⋆ : A is more precise than e2 : B if e1
is more precise than e2 and type A is more precise than B by rule ep-annol. As an
example to illustrate the usefulness of this rule the expression (λx . x : Int → Int) : ⋆ →

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:23

A ⊑ B (Precision relation for types)

tp-i

Int ⊑ Int

tp-dyn

A ⊑ ⋆

tp-abs
A1 ⊑ A2 B1 ⊑ B2

(A1 → B1) ⊑ (A2 → B2)

e1 ⊑ e2 (Precision relation for expressions)

ep-refl

e ⊑ e

ep-abs
e1 ⊑ e2

A1 ⊑ A2 B1 ⊑ B2

λx . e1 : A1 → B1 ⊑ λx . e2 : A2 → B2

ep-app
e1 ⊑ e′

1 e2 ⊑ e′
2

(e1 e2) ⊑ (e′
1 e′

2)

ep-anno
A ⊑ B e1 ⊑ e2

e1 : A ⊑ e2 : B

ep-save
A ⊑ C

B ⊑ D s1 ⊑ s2

[s1]A→B ⊑ [s2]C→D

ep-sa
A ⊑ C

B ⊑ D s1 ⊑ s2

[s1]A→B ⊑ s2 : C → D

ep-annol
A ⊑ B e1 ⊑ e2

e1 : ⋆ : A ⊑ e2 : B

ep-saver
A ⊑ C

B ⊑ D e1 ⊑ s2

e1 : ⋆ : A → B ⊑ [s2]C→D

Figure 11 Precision relations.

⋆ : ⋆ : Bool → Bool is more precise than (λx . x : Int → Int) : ⋆ → ⋆ : Bool → Bool. The
expression (λx . x : Int → Int) : ⋆ → ⋆ : ⋆ : Bool → Bool reduces to (λx . x : Int → Int) : ⋆ :
Bool → Bool while (λx . x : Int → Int) : ⋆ → ⋆ : Bool → Bool would reduce to a saved value
[λx . x : Int → Int]Bool→Bool. Rule ep-saver shows the precision relation of these two results.
Rule ep-saver says that e2 : ⋆ : A → B is more precise than [s2]C→D while e1 is more
precise than s2 and type A → B is more precise than C → D.

Static Gradual Guarantee. Theorem 29 shows that the static criteria of the gradual
guarantee holds for the λBr calculus. It says that if e is more precise than e′, e has type A

and e′ is has type B, then type A is more precise than B.

▶ Theorem 29 (Static Gradual Guarantee of λBr Calculus). If e ⊑ e′, · ⊢ e ⇒ A and
· ⊢ e′ ⇒ B then A ⊑ B.

Dynamic Gradual Guarantee. The λBr calculus has a dynamic gradual guarantee. Here
we formulate a theorem for the dynamic gradual guarantee. Theorem 31 shows that if e1 is
more precise than e2, e1 and e2 are well-typed, and if e1 reduces to e′

1, then e2 reduces (in
multiple steps) to e′

2. Note that e′
1 is guaranteed to be more precise than e′

2. Theorem 31 is
similar to the one formalized in the AGT approach [17]. A small difference is that we use
a multi-step relation in the conclusion because in the precision relation we have rules like
rule ep-annol. If we have that 1 : ⋆ : Int is more precise than 1 : ⋆, then 1 : ⋆ : Int needs
to reduce to 1 : Int while 1 : ⋆ is already a value for which no step is required. Theorem 32
is derived easily from Theorem 31. The auxiliary Lemma 30, which shows the property of
dynamic gradual guarantee for typed reduction, is helpful to prove Theorem 32.

ECOOP 2021

12:24 Type-Directed Operational Semantics for Gradual Typing

▶ Lemma 30 (Dynamic Gradual Guarantee for Typed Reduction). If v1 ⊑ v2 , · ⊢ v1 ⇐ A,
· ⊢ v2 ⇐ B , A ⊑ B and v1 7−→A v′

1 then ∃v′
2, v2 7−→A v′

2 and v′
1 ⊑ v′

2.

▶ Theorem 31 (Dynamic Gradual Guarantee). If e1 ⊑ e2 , · ⊢ e1 ⇔ A, · ⊢ e2 ⇔ B and
e1 7−→ e′

1 then ∃e′
2, e2 7−→∗ e′

2 and e′
1 ⊑ e′

2.

▶ Theorem 32 (Dynamic Gradual Guarantee). If e1 ⊑ e2 , · ⊢ e1 ⇔ A, · ⊢ e2 ⇔ B and
e1 7−→∗ v1 then ∃v2, e2 7−→∗ v2 and v1 ⊑ v2.

5 Related Work

This section discusses related work. We focus on gradual typing criteria, cast calculi, gradually
typed calculi, the AGT approach and typed operational semantics.

Gradual Typing Languages and Criteria. There is a growing number of research work
focusing on combining static and dynamic typing [2, 7, 22, 29, 30, 34, 45, 46, 48, 53]. Many
mainstream programming languages have some form of integration between static and
dynamic typing. These include TypeScript [6], Dart [8], Hack [51], Cecil [10], Bigloo [35],
Visual Basic.NET [30], ProfessorJ [20], Lisp [44], Dylan [36] and Typed Racket [50].

Much work in the research literature of gradual typing focuses on the pursuit of sound
gradual typing. In sound gradual typing the idea is that some form of type-safety should
still be preserved. This often requires some dynamic checks that arise from static type
information. Furthermore, gradually typed languages should provide a smooth integration
between dynamic and static typing. For instance, one of the criteria for gradual typing is
that a program that has static types should behave equivalently to a standard statically
typed program [43]. Siek et al. [41], proposed the gradual guarantee to clarify the kinds of
guarantees expected in gradually typed languages. The principle of the gradual guarantee
is that static and dynamic behavior changes by changing type annotations. For the static
(gradual) guarantee, the type of a more precise term should be more precise than the type of
a less precise term. For the dynamic (gradual) guarantee, any program that runs without
errors should continue to do so with less precise types.

Cast calculi. Due to the unknown type and consistency of the gradual typing, more
programs are accepted by a gradual type system compared to their analogous static type
system. Therefore, some runtime checks are required at run-time to ensure type-safety. The
most common approach to give the semantics to a gradually typed language is by translating
to a cast calculus, which has a standard dynamic semantics. The process of the translation
to cast calculi involves inserting casts whenever type consistency holds.

There are several varieties of cast calculi. Findler and Felleisen [15] introduced assertion-
based contracts for higher-order functions. Based on mirrors and contracts, Gray et al. [20]
shown a new model to implement Java and Scheme. Henglein’s dynamically typed λ-
calculus [23] is an extention of the statically typed λ-calculus with a dynamic type and
explicit dynamic type coercions. Tobin-Hochstadt and Felleisen [49] presented a framework
of interlanguage migration, which ensures type-safety.

Wadler and Findler [52] introduced the blame calculus. The blame comes from Findler
and Felleisen’s contracts and tracks the locations where cast errors happen using blame
labels. Siek et al. [37] explored the design space of higher-order casts. For first-order casts
(casts on base types), the semantics is straightforward. But there are issues for higher-order
casts (functions): a higher-order cast is not checked immediately. For higher-order casts,

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:25

checking is deferred until the function is applied to an argument. After application, the cast
is checked against the argument and return value. A cast is used as a wrapper and splitted
until the wrapped function is applied to an argument. Wrappers for higher-order casts can
lead to unbounded space consumption [24].

There are some different designs for the dynamic semantics for casts calculi in the
literature. Herman et al. [24] and Wadler et al. [52] use a lazy error detection strategy. With
this strategy, run-time type checking is not performed when a higher-order cast is applied
to a value. Instead, lazy error detection coerces the arguments of a function to the target
type, and checking is only done when the argument is applied. Siek et al. [43] use a different
strategy where checking higher-order casts is performed immediately when the source type is
the dynamic type (⋆). Otherwise, the later strategy is the same as lazy error detection. In
the λBr calculus, we introduce the blame recovery semantics, which is essentially to ignore
intermediate type annotations in a chain of type annotations for higher-order functions. The
idea is to only raise blame if the initial source type of the value and final target types are not
consistent. Otherwise, even if intermediate annotations trigger type conversions, which would
not be consistent, the final result can still be a value provided that the initial source and final
target types are themselves consistent. This alternative approach has a bounded number of
annotations, which avoids the accumulation of type annotations (up-to 2 for higher-order
values).

Siek and Wadler [42] introduced threesomes, where a cast consists of three types instead
of two types (twosomes) of the blame calculus. The threesome calculus is proved to be
equivalent to blame calculus and a coercion-based calculus without blame labels but with
space efficiency. The three types in a threesome contain the source, intermediate and target
types. The intermediate type is computed by the greatest lower bound of all the intermediate
types. For example, in a chain of casts:

1 : Int ⇒ ⋆ : ⋆ ⇒ Int : Int ⇒ Int

the source type and target are both Int and the intermediate type is computed to be the
greatest lower bound of ⋆ and Int, resulting in Int. Compared to our λBr calculus, function
values are twosomes (borrowing Siek and Wadler’s terminology). Instead of accumulating
annotations, and computing the intermediate types, we simply discard them.

Like λBr, Castagna and Lanvin [9] propose a calculus that discards annotations for
higher-order functions. However their semantics is different. The key difference is that in
their semantics intermediate casts are discarded after consistency checks are performed. This
means that programs such as (here using our notation):

λx . x : Int → Int : Int → Int : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆

will raise CastErrors (i.e. blame), whereas in λBg, λB and λBr that is not the case. Indeed
one of the design principles of λBr is that we do not raise blame when λBg (and λB) does
not (see also Theorem 28). Saved expressions are the key to avoiding raising blame too early
(or at all) in λBr, and are generated when Castagna and Lanvin’s calculus would generate
blame for higher-order casts. Greenberg [21] introduced similar semantics to Castagna and
Lanvin [9]. Blame is also raised in the above example. As λBr, the intermediate consistent
type for a higher-order function will be eliminated in Greenberg [21]. While in Castagna and
Lanvin [9]’s work, the consistent intermediate type will be stored.

Finally, various cast calculi have been extended with various of features of practical interest.
For instance, Ahmed et al. [3] extended the blame calculus to incorporate polymorphism,
based on the dynamic sealing proposed by Matthews et al. [28] and Neis et al. [32].

ECOOP 2021

12:26 Type-Directed Operational Semantics for Gradual Typing

Gradually Typed Calculi. A gradually typed lambda calculus (GTLC) should support both
fully static typed and fully dynamic typed, as well as partially typed ones. Siek and Taha
[43] introduced gradual typing with the notion of unknown types ⋆ and type consistency.
To support object-oriented languages, Siek and Taha [38] extended the work of Abadi and
Cardelli [1] and introduced gradual typing for objects. The semantics of both gradually
typed calculi are indirectly defined by typed-directed translation to an intermediate language
(a cast calculi). Cast calculi are independent from the GTLC, having their own type systems
and operational semantics. The only tie between them is type-directed translation from the
source gradually typed language to the cast calculus. In λBg and λBr, by using TDOS, the
semantics of a GTLC is given directly without translating to any other calculus.

Because runtime checking is needed by a gradually typed language, function types
dynamically generate function proxies at runtime in most of gradually typed languages.
Therefore the number of proxies in unbound. Herman et al. [24] implemented gradual typing
based on coercions and combined adjacent coercions. Thus, space consumption has been
limited and the type system was proved to be type-safe. Addressing the space consumption
issues of gradual typing has been an ongoing research effort for gradual typing, with many
works on the area [16, 24, 37, 42]. The blame recovery semantics circumvents some of the
space consumption issues by employing a different semantics.

Abstracting Gradual Typing (AGT). Garcia et al. [17] introduce the abstracting gradual
typing (AGT) approach, following an idea by Schwerter [4]. An externally justified cast
calculus is not required in AGT. Instead the runtime checks are deduced by the evidence for
the consistency judgement. For the static semantics, AGT uses techniques from abstract
interpretation to lift terms of the static system to gradual terms. A concretization function
is used to lift gradual types to static type sets. After that, a gradual type system can be
derived according to the static type system. The gradual type system keeps type safety, and
enjoys the criteria of Siek et al. [41]. For the dynamic semantics, the semantics is introduced
by reasoning about consistency relations. Gradual typing derivations are represented as
intrinsically typed terms [12], which correspond to typing derivations directly.

Similarly to the AGT approach, by using TDOS for the dynamic semantics and a bi-
directional type system, we can design a gradually typed language with a direct semantics.
While related by the fact that both the AGT approach and TDOS provide means to obtain
direct operational semantics for gradually typed languages, the two approaches have different
and perhaps complementary goals. The goals of TDOS are more modest than those of AGT,
which aims at deriving various definitions for gradually types languages in a systematic
manner. In contrast TDOS and our work have no such goals. Our main aim is to adapt the
standard and well-known techniques from small-step semantics, into the design of gradually
typed languages. We expect that the familiarity and simplicity of the TDOS approach would
be a strength, whereas the AGT approach requires some more infrastructure, but the payoff
is that many definitions can then be derived. For future work, it would be interesting to
see whether it is possible to combine ideas from both approaches. Perhaps having much of
the AGT infrastructure, but with an alternative model for the dynamic semantics based on
TDOS.

Typed Operational Semantics. In this paper, we use the type-directed operational semantics
(TDOS) approach [25]. TDOS was originally used to describe the semantics of languages
with intersection types and a merge operator. Like gradual typing, such features require a
type-dependent semantics. In TDOS type annotations become operationally relevant and

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:27

can affect the result of a program. Typed reduction is the distinctive feature in TDOS. Typed
reduction is used to provide an operational interpretation to type conversions in the language,
similarly to coercions in coercion-based calculi [23]. Our work shows that TDOS enables a
direct semantics for gradual typing. In this paper, we explored two possible semantics for
gradual typing: one following a semantics similar to the blame calculus, and another with a
novel blame recovery semantics. One interesting aspect of the blame recovery semantics is
that it avoids some space costs that arise in some cast calculi, while being relatively simple.

There are other variants of operational semantics that make use of type annotations.
Types are used in Goguen’s typed operational semantics [18] reductions, similarly to TDOS.
Typed operational semantics has been applied to various calculi, including simply typed
lambda calculi [19], calculi with dependent types [14] and higher-order subtyping [13].
An extensive overview of related work on type-dependent semantics is given by Huang and
Oliveira [25].

6 Conclusion

In this work we proposed an alternative approach to give a direct semantics to gradually
typed languages without an intermediate cast calculus. Our approach is based on TDOS [25].
TDOS is a variant of small-step semantics where type annotations are operationally relevant
and a special relation, called typed reduction, gives an interpretation to such type annotations
at runtime. We believe that TDOS can be a valuable technique for language designers of
gradually typed languages, giving them a simple and direct way to express the semantics of
their language.

We presented two gradually typed lambda calculi: λBg and λBr. The λBg semantics
is sound to the semantics of λB. The λBr calculus explores the large design space in the
semantics of gradually typed languages with a new semantics that we call blame recovery
semantics. This new semantics is more liberal than the semantics of the blame calculus,
while still ensuring type-safety and a form of the gradual guarantee.

There is much to be done for future work. Obviously, to prove that TDOS is a worthy
alternative to existing cast calculi or other approaches for the semantics of gradually typed
languages, many more features should be developed with TDOS. Cast calculi have been
shown to support a wide range of features, including blame tracking [52], polymorphism [3],
subtyping [38] and various other features [26,40,47]. We hope to explore this in the future.
Another important line for future work is to see whether the blame recovery semantics
provides relevant space efficiency benefits in practice. This would require a well-engineered
compiler for gradual typing. Perhaps trying to modify the Grift compiler [27] would be a
first step on this direction. Empirical validation and case studies would be necessary.

References

1 Martin Abadi and Luca Cardelli. A theory of objects. Springer Science & Business Media,
2012.

2 Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in
a statically typed language. ACM transactions on programming languages and systems
(TOPLAS), 13(2):237–268, 1991.

3 Amal Ahmed, Robert Bruce Findler, Jeremy G Siek, and Philip Wadler. Blame for all.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 201–214, 2011.

ECOOP 2021

12:28 Type-Directed Operational Semantics for Gradual Typing

4 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual effect
systems. In Proceedings of the 19th ACM SIGPLAN international conference on Functional
programming, pages 283–295, 2014.

5 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti
Venneri. Java & lambda: a featherweight story. Logical Methods in Computer Science, 14(3),
2018.

6 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

7 John Tang Boyland. The problem of structural type tests in a gradual-typed language.
Foundations of Object-Oriented Langauges, 2014.

8 Gilad Bracha. The Dart programming language. Addison-Wesley Professional, 2015.
9 Giuseppe Castagna and Victor Lanvin. Gradual typing with union and intersection types.

Proceedings of the ACM on Programming Languages, 1(ICFP):1–28, 2017.
10 Craig Chambers. The cecil language, specification and rationale, 1993.
11 Avik Chaudhuri. Flow: a static type checker for javascript. SPLASH-I In Systems, Program-

ming, Languages and Applications: Software for Humanity, 2015.
12 Alonzo Church. A formulation of the simple theory of types. The journal of symbolic logic,

5(2):56–68, 1940.
13 Adriana Compagnoni and Healfdene Goguen. Typed operational semantics for higher-order

subtyping. Information and Computation, 184(2):242–297, 2003.
14 Yangyue Feng and Zhaohui Luo. Typed operational semantics for dependent record types.

arXiv preprint arXiv:1103.3321, 2011.
15 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In

Proceedings of the seventh ACM SIGPLAN international conference on Functional programming,
pages 48–59, 2002.

16 Ronald Garcia. Calculating threesomes, with blame. In Proceedings of the 18th ACM SIGPLAN
international conference on Functional programming, pages 417–428, 2013.

17 Ronald Garcia, Alison M Clark, and Éric Tanter. Abstracting gradual typing. ACM SIGPLAN
Notices, 51(1):429–442, 2016.

18 Healfdene Goguen. A typed operational semantics for type theory, 1994.
19 Healfdene Goguen. Typed operational semantics. In International Conference on Typed

Lambda Calculi and Applications, pages 186–200. Springer, 1995.
20 Kathryn E Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained interoperability

through mirrors and contracts. ACM SIGPLAN Notices, 40(10):231–245, 2005.
21 Michael Greenberg. Space-efficient manifest contracts. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 181–194,
2015.

22 Lars T Hansen. Evolutionary programming and gradual typing in ecmascript 4 (tutorial).
Lars, 2007.

23 Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of Computer Programming,
22(3):197–230, 1994.

24 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. Higher-
Order and Symbolic Computation, 23(2):167, 2010.

25 Xuejing Huang and Bruno C d S Oliveira. A type-directed operational semantics for a
calculus with a merge operator. In 34th European Conference on Object-Oriented Programming
(ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

26 Lintaro Ina and Atsushi Igarashi. Gradual typing for generics. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems languages and applications,
pages 609–624, 2011.

27 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G Siek. Efficient gradual typing.
arXiv preprint arXiv:1802.06375, 2018.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:29

28 Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time sealing. In
European Symposium on Programming (ESOP), pages 16–31. Citeseer, 2008.

29 Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs.
ACM SIGPLAN Notices, 42(1):3–10, 2007.

30 Erik Meijer and Peter Drayton. Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages. In OOPSLA’04 Workshop on
Revival of Dynamic Languages. Citeseer, 2004.

31 Andrew Myers. CS 6110 Lecture 8 Evaluation Contexts , Semantics by Translation, 2013.
32 Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity. ACM

Sigplan Notices, 44(9):135–148, 2009.
33 Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions on

Programming Languages and Systems (TOPLAS), 22(1):1–44, 2000.
34 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type inference.

ACM SIGPLAN Notices, 47(1):481–494, 2012.
35 Manuel Serrano and Pierre Weis. Bigloo: a portable and optimizing compiler for strict

functional languages. In International Static Analysis Symposium, pages 366–381. Springer,
1995.

36 Andrew Shalit. The Dylan reference manual: the definitive guide to the new object-oriented
dynamic language. Addison Wesley Longman Publishing Co., Inc., 1996.

37 Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order
casts. In European Symposium on Programming, pages 17–31. Springer, 2009.

38 Jeremy Siek and Walid Taha. Gradual typing for objects. In European Conference on
Object-Oriented Programming, pages 2–27. Springer, 2007.

39 Jeremy Siek, Peter Thiemann, and Philip Wadler. Blame and coercion: together again for the
first time. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 425–435, 2015.

40 Jeremy G Siek and Manish Vachharajani. Gradual typing with unification-based inference. In
Proceedings of the 2008 symposium on Dynamic languages, pages 1–12, 2008.

41 Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. Refined criteria
for gradual typing. In 1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

42 Jeremy G Siek and Philip Wadler. Threesomes, with and without blame. ACM Sigplan Notices,
45(1):365–376, 2010.

43 G Siek Jeremy and Taha Walid. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

44 Guy Steele. Common LISP: the language. Elsevier, 1990.
45 T Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.

Chaperones and impersonators: run-time support for reasonable interposition. ACM SIGPLAN
Notices, 47(10):943–962, 2012.

46 Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-
Yves Strub, and Gavin Bierman. Gradual typing embedded securely in javascript. ACM
SIGPLAN Notices, 49(1):425–437, 2014.

47 Asumu Takikawa, T Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Mat-
thias Felleisen. Gradual typing for first-class classes. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications, pages 793–810,
2012.

48 Satish Thatte. Quasi-static typing. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 367–381, 1989.

49 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to pro-
grams. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 964–974, 2006.

ECOOP 2021

12:30 Type-Directed Operational Semantics for Gradual Typing

50 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme.
ACM SIGPLAN Notices, 43(1):395–406, 2008.

51 Julien Verlaguet. Facebook: Analyzing php statically. Commercial Users of Functional
Programming (CUFP), 13, 2013.

52 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In European
Symposium on Programming, pages 1–16. Springer, 2009.

53 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In
European Conference on Object-Oriented Programming, pages 459–483. Springer, 2011.

54 Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

Linear Promises: Towards Safer Concurrent
Programming
Ohad Rau # Ñ

Georgia Institute of Technology, Atlanta, GA, USA

Caleb Voss # Ñ

Georgia Institute of Technology, Atlanta, GA, USA

Vivek Sarkar # Ñ

Georgia Institute of Technology, Atlanta, GA, USA

Abstract
In this paper, we introduce a new type system based on linear typing, and show how it can be
incorporated in a concurrent programming language to track ownership of promises. By tracking
write operations on each promise, the language is able to guarantee exactly one write operation is
ever performed on any given promise. This language thus precludes a number of common bugs found
in promise-based programs, such as failing to write to a promise and writing to the same promise
multiple times. We also present an implementation of the language, complete with an efficient type
checking algorithm and high-level programming constructs. This language serves as a safer platform
for writing high-level concurrent code.

2012 ACM Subject Classification Software and its engineering → Concurrent programming lan-
guages; Theory of computation → Operational semantics; Theory of computation → Type theory

Keywords and phrases promises, type systems, linear typing, operational semantics, concurrency

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.13

Supplementary Material Software (Source Code): https://github.com/OhadRau/LinearPromises
archived at swh:1:dir:311764ac58400c3720161e108bb3611fcab4c2d9

Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.15

1 Introduction

In recent decades, the prevalence of concurrent programming1 has increased as programmers
strive to take advantage of increasingly parallel machines. Unstructured concurrency has
proven to be highly error-prone, and programmers have subsequently undertaken efforts to
formalize concurrent programming using structured techniques. One such technique is the
promise – a container used to refer to a value that is produced asynchronously [14]. Promises
typically include both a “read” (or “await”) operation – which blocks until a value is available
and returns that value – as well as a “write” (or “fulfill”) operation – which provides the
value for the promise. Promises are frequently used to communicate between threads or
tasks, where one thread awaits a value and another performs some asynchronous computation
before writing the value to the promise. This creates a higher-level abstraction as compared
to more traditional concurrency primitives like the lock/mutex (which allows programs to
ensure mutually-exclusive access to shared resources) and a more general abstraction than
the future (which represents a placeholder for the result of a function being evaluated by
a predetermined task or thread). In recent years, promises have been incorporated into
mainstream languages such as C++, JavaScript, and Java as popular concurrency primitives.

1 In this paper, we use “concurrent” interchangeably with “parallel”, though we recognize that a distinction
is made between the two terms in other contexts.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Ohad Rau, Caleb Voss, and Vivek Sarkar;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 13; pp. 13:1–13:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ohad@gatech.edu
http://www.gatech.edu
mailto:cvoss@gatech.edu
http://www.gatech.edu
mailto:vsarkar@gatech.edu
http://www.gatech.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2021.13
https://github.com/OhadRau/LinearPromises
https://archive.softwareheritage.org/swh:1:dir:311764ac58400c3720161e108bb3611fcab4c2d9;origin=https://github.com/OhadRau/LinearPromises;visit=swh:1:snp:aaaef0428b735fbc0cffc01bf1df0168de4e10c4;anchor=swh:1:rev:aee6b92c02742af1e67684c34e342bbf7abedcba
https://doi.org/10.4230/DARTS.7.2.15
https://doi.org/10.4230/DARTS.7.2.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Linear Promises: Towards Safer Concurrent Programming

Despite the value of structured concurrency in preventing bugs, these techniques – includ-
ing the promise – are not without their own share of bugs. Madsen et al. [15] identify several
common promise-related concurrency bugs, including the omitted write – a promise that is
never fulfilled – and the double write – a promise that is fulfilled multiple times. In their
case study, these two bugs are the direct cause of 6 of the 21 concurrency bugs analyzed.

In addition to the omitted write and double write bugs, there are other kinds of concurrency
errors that can occur with the use of promises. A deadlock is composed of a cyclical dependency
among a set of threads [11]. Further, an unowned write occurs when one thread assumes
ownership over a promise only to have another thread perform the actual write operation.
This is distinct from the double write, as it can make it difficult for the programmer to
reason about the source of a promise’s fulfillment and often results in a race to fulfill the
promise between two threads. This comes in contrast to a double write to an owned promise,
which would only exhibit a race when reading2.

Each of these bugs has the potential to create critical issues in a program, ranging from
making the program inoperable to creating major security flaws. For example, both omitted
writes and deadlocks can cause a program to hang indefinitely, while unowned or double
writes may contribute to data races and, by extension, inconsistent, unpredictable, or even
undefined behavior. In fact, these bugs have been cited [9, 10] as a disadvantage of promises
relative to futures, which by definition cannot result in unowned, double, or omitted writes3.

Over the years, programmers have devised many tools that can be used to quickly detect
bugs in programs. In general, these fall into two major categories: dynamic analyses, which
attempt to identify bugs during a program’s execution, and static analyses, which attempt
to identify bugs before execution [8]. Each method has its own advantages, with dynamic
analyses generally producing fewer false positives as well as more detailed results (due to the
availability of more information about the program) and static analyses revealing possible
bugs before the code is run [7]. Beyond that, static analyses present the advantage of proving
the absence of behaviors (i.e. that a program can never exhibit a certain bug). This allows
for bugs to be found that would only appear intermittently or rarely in the running program;
in contrast, such bugs can be very challenging to find using dynamic analyses.

One particularly useful class of static analysis takes the form of type checking. Substruc-
tural type systems are a class of type systems in which restrictions are placed on the number
of times a variable may be used. One such system is known as linear typing, in which linear
variables must be used exactly once [23]. As an example, with a linear variable x both the
program x + x and 0 cannot be typed, as neither uses the variable x exactly once. In recent
years, substructural type systems have risen in popularity through their use in languages
such as Rust [24], Haskell [2], ATS [26], and F∗ [21].

The contributions of this paper are as follows:
1. We present the design and implementation of a new concurrent programming language

aimed at preventing certain classes of promise-related bugs.
2. We introduce a linear type system that tracks ownership of promises.
3. We provide a formal semantics for the behavior of concurrent, promise-based programs.
4. We prove that it is impossible to create double writes and unowned writes in this language,

as well as omitted writes in terminating programs.

2 The write permission of an owned promise is only owned by one thread at a time, so no two writers can
race to fulfill the same owned promise. Both situations can result in a race when reading, because the
value read depends on the non-deterministic order of read and write operations.

3 Recall that a future can only be fulfilled as the result of a function. Given a function f known to return
exactly once, a future yielding f ’s result will be fulfilled exactly once (and only by f).

O. Rau, C. Voss, and V. Sarkar 13:3

5. We provide a decidable type checking algorithm, and experimentally evaluate its speed.
6. We demonstrate the abilities of this language to find bugs in real-world programs.

2 Language Formalisms

Our work revolves around a custom programming language intended to create safer type-
level primitives for interacting with promises. However, we believe that this approach can
be incorporated into other strongly-typed, concurrent languages with promises. Voss and
Sarkar [22] introduce the concept of promise ownership as a key mechanism for dynamically
identifying omitted write bugs and deadlocks. Specifically, ownership of a promise p by a
task T is defined as the responsibility of T to either fulfill p or transfer ownership to another
task. Based on their approach, we leverage a linear type system to statically track promise
ownership. By using the type system, we can not only statically prevent omitted writes in
terminating programs, but also unowned and double writes. As in their work, we can also
leverage the language’s semantics to dynamically detect deadlocks.

This notion of promise ownership is established by splitting promises into two components,
a “read-end” and a “write-end,” similar to the split between “futures” and “promises” in
C++, respectively [12]. In this system, the write-end of a promise is linearly typed so as to
ensure it is fulfilled exactly once. Compound data types, such as products and sums, are
linear if they contain one or more linear components. All other variables remain unrestricted.
By applying linear typing in this way, we enable liberal use of the read-end, while restricting
the write-end to only a single use by its owner. We formally define the programming language
in three parts (syntax, type system, and semantics), taking careful consideration to create as
simple a language as possible.

2.1 Syntax
The language consists of multi-procedure programs, which are able to spawn asynchronous
tasks. Values are integers, promise read and write handles, sums, products, and named
functions. Control flow is expressed by matching on sums and products, while looping is
expressed via recursion. Functions take a single parameter and return a single value. Types
take the form of the base Int type for integers, the promise read handle type Promise(τ), the
promise write handle type Promise∗(τ), binary sum and product types4, and function types.

Figure 1 defines the syntax, and features several interesting constructs:
async e – Schedules the expression e to be performed asynchronously.
promise τ – Constructs a promise of a τ , yielding a pair of the write and read handles.
?x – Blocks on and retrieves the value contained by a promise x (e.g. “await”).
x← e – Writes the value of e to the owned promise x (resolving/fulfilling the promise).

2.2 Type System
Before specifying the typing rules, we must first introduce the notion of a linear type [23].
Variables of linear types have the property that they must be used exactly once along any
path of execution. For example, if a linear variable x is in scope, then the expression 1
cannot be typed, since it does not use the linear variable x. Likewise, the expression x + x

4 Unbounded data was left out of the language definition for simplicity. The language can be trivially
extended with recursive data types (Section 4.1) to allow for dynamically-sized data types. Such a
modification does not invalidate any of the language’s properties.

ECOOP 2021

13:4 Linear Promises: Towards Safer Concurrent Programming

τ ∈ Type ::= Int | Promise(τ) | Promise∗(τ) | τ1 + τ2 | τ1 × τ2 | τ1 → τ2

e ∈ Expr ::= i | x | let x := e1 in e2 | f(e) | async e | (e1, e2)
| InlτL,τR

e | InrτL,τR
e

| match e0 { (x1, x2)⇒ e1 }
| match e0 { Inl x1 ⇒ e1 , Inr x2 ⇒ e2 }
| promise τ | ?x | x← e

F ∈ Function ::= fun f(x : τ1) : τ2 { e }

P ∈ Program ::= F | F P

Figure 1 Syntax rules for the language.

IsLinear(Promise∗(τ))

IsLinear(τ1) ∨ IsLinear(τ2)
IsLinear(τ1 × τ2)

IsLinear(τ1) ∨ IsLinear(τ2)
IsLinear(τ1 + τ2)

Figure 2 The IsLinear judgment, which is used to determine whether a type τ is linear.

cannot be typed, since it uses the linear variable x twice. The linear types in our language
are types of the form Promise∗(τ) (i.e. write handles) and any compound type containing
at least one Promise∗. Note that functions in this type system need not be linear, as the
lack of closures and global variables ensures that a call to a function cannot use a linear
variable without receiving it as a parameter or creating it. A generalization to allow closures
is possible, and would require functions to become linear when capturing linear variables5.
Types are determined to be linear by the judgment IsLinear, defined in Figure 2.

We define the typing environment Γ as a sequence of statements of the form x : τ , such
that each statement denotes the type τ of the variable x in the environment. Note that the
same environment contains both linearly and non-linearly typed variables.

Γ ∈ Environment ::= ∅ | Γ, x : τ

Following the notation of Slepak [20], Figure 3 defines the “environment splitting” relation
⊞, such that given an environment Γ, one can state that Γ = Γ1 ⊞ Γ2 if the environment Γ
can be split into Γ1 and Γ2. This splitting relation asserts that the linear variables in the
environments Γ1 and Γ2 are disjoint and that each linear variable in Γ belongs to exactly
one of Γ1 and Γ2. However, non-linear variables can be duplicated between both Γ1 and
Γ2. For example, given a linear variable v and a standard variable w, we cannot split the
environment in such a way as to share the variable v between two scopes (i.e. if Γ = Γ1 ⊞ Γ2,
then v ∈ Γ1 ⊻ v ∈ Γ2). However, the same restriction does not apply to w, which can be
present in one or both environments.

5 A linear closure would be restricted to a single call. This is overly conservative in some cases, but has
been successfully employed in other languages with substructural type systems (e.g. FnOnce in Rust).

O. Rau, C. Voss, and V. Sarkar 13:5

∅ = ∅⊞ ∅
Γ = Γ1 ⊞ Γ2

Γ, x : τ = (Γ1, x : τ) ⊞ Γ2

Γ = Γ1 ⊞ Γ2

Γ, x : τ = Γ1 ⊞ (Γ2, x : τ)

Γ = Γ1 ⊞ Γ2 ¬IsLinear(τ)
Γ, x : τ = (Γ1, x : τ) ⊞ (Γ2, x : τ)

Figure 3 The environment splitting relation ⊞.

(T-Weaken)
Γ1 ⊢ e : τ1 ∄x : τ2 ∈ Γ2.IsLinear(τ2)

Γ1 ⊞ Γ2 ⊢ e : τ1

(T-Int)
⊢ i : Int

(T-Var)
x : τ ⊢ x : τ

(T-Let)
Γ1 ⊢ ev : τv Γ2, xv : τv ⊢ eb : τb

Γ1 ⊞ Γ2 ⊢ let xv := ev in eb : τb

(T-App)
f : τ → τ ′ ⊢ f : τ → τ ′ Γ ⊢ e : τ

Γ ⊞ f : τ → τ ′ ⊢ f(e) : τ ′ (T-Async)
Γ ⊢ e : Int

Γ ⊢ async e : Int

(T-Product)
Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1 ⊞ Γ2 ⊢ (e1, e2) : τ1 × τ2
(T-Left)

Γ ⊢ eL : τL

Γ ⊢ InlτL,τR
eL : τL + τR

(T-Right)
Γ ⊢ eR : τR

Γ ⊢ InrτL,τR
eR : τL + τR

(T-MatchProduct)
Γ1 ⊢ ev : τ1 × τ2 Γ2, x1 : τ1, x2 : τ2 ⊢ eb : τb

Γ1 ⊞ Γ2 ⊢ match ev { (x1, x2)⇒ eb } : τb

(T-MatchSum)
Γ1 ⊢ ev : τL + τR Γ2, xL : τL ⊢ eL : τb Γ2, xR : τR ⊢ eR : τb

Γ1 ⊞ Γ2 ⊢ match ev { Inl xL ⇒ eL , Inr xR ⇒ eR } : τb

(T-Promise)
¬IsLinear(τ)

⊢ promise τ : Promise∗(τ)× Promise(τ)
(T-Read)

Γ ⊢ x : Promise(τ)
Γ ⊢?x : τ

(T-Write)
Γ1 ⊢ xp : Promise∗(τ) Γ2 ⊢ ev : τ

Γ1 ⊞ Γ2 ⊢ xp ← ev : Int

(T-Func)
x : τ ⊢ e : τ ′

⊢ fun f(x : τ) : τ ′{e} : τ → τ ′

Figure 4 The typing rules for the languagea.
a The results of (T-Async) and (T-Write) are meaningless, but evaluate to placeholder integers due to

the absence of a void/unit type.

ECOOP 2021

13:6 Linear Promises: Towards Safer Concurrent Programming

Listing 1 Program violating double write restriction.
1 fun doubleWrite (p: Promise∗(Int)): Int {
2 let _ := p ← 0 in
3 p ← 1
4 }

Figure 4 defines the typing rules. While most of the rules are fairly standard, it is
important to observe the mechanics used for linear typing. Each rule only allows the most
restricted possible environment6 to be present (e.g. (T-Var) operates on an environment
that contains only the referenced variable). This prevents the program from dropping a
linear variable without using it.

The (T-Weaken) rule is employed to relax the restriction of only applying a rule to
the smallest environment. Specifically, (T-Weaken) allows for unrestricted variables to be
dropped arbitrarily. For example, take the program let x := 5 in 0. Since the (T-Int) rule
only operates on an empty environment, we cannot directly apply it to type 0 as an Int with x

in the context. However, (T-Weaken) allows us to drop the variable x when type-checking
0, because x is an unrestricted variable. In practice, this means that unrestricted variables
behave exactly as they would in languages without linear typing. Note that (T-Weaken)
cannot be applied to linear variables, since dropping a linear variable would allow it to escape
from being used (breaking the guarantee that each linear variable is used exactly once).

Environment splitting accomplishes the other half of linear typing. Whenever a linear
variable appears in the environment for an expression containing multiple sub-expressions, we
must ensure that it is only available in one sub-expression. For example, consider a product
(e1, e2) and a linear variable x. If x appeared in both e1 and e2, it would clearly allow for x

to be used twice. To circumvent this, typing rules with multiple sub-expressions split the
environment into several sub-environments, such that each linear variable appears in only
one sub-environment. In this case, x could only be in scope for one of e1 and e2.

Several rules relate directly to promises and are critical to implementing the desired
safety guarantees. Specifically, note the fact that the promise constructor in (T-Promise)
returns both a linear/owned handle for the promise and a standard handle for the promise;
this creates the split between the write-end and read-end of the promise, respectively. In the
case of (T-Read), observe that it cannot accept a write-end to a promise, as reading from
the write-end would “use” the promise and result in never writing to it. Likewise, observe
that in (T-Write) the promise must be a linear write-end, so as to enforce only writing to
a promise a single time and only in an owned context.

Put together, these typing rules enforce the critical property that promises must be
written to exactly once. Since only one un-copyable and un-droppable handle exists for
writing to a given promise, it is impossible to write to a promise twice or to forget to write
to a promise. Further, the establishment of ownership by the linear type system enforces the
property that a promise can only ever be written to by its owner.

As an illustration of the typing rules and their effects, let us consider several small
programs that fail to type check and, more importantly, demonstrate bugs that can occur
via incorrect use of promises.

6 This is similar to the “Small Footprint” rule used in separation logics, in that the typing rules contain
the smallest possible environment but can be generalized by (T-Weaken).

O. Rau, C. Voss, and V. Sarkar 13:7

Listing 2 Program violating omitted write restriction.
1 fun omittedWrite (p: Promise∗(Int)): Int {
2 match Inl Int,Int 0 {
3 Inl i ⇒ 0,
4 Inr i ⇒ p ← 1
5 }
6 }

Listing 3 Program violating unowned write restriction.
1 fun unownedWrite (p: Promise (Int)): Int {
2 p ← 0
3 }

Listing 1 illustrates a double write bug. When type checking this function, we must split
the environment on line 2 (via (T-Let)) such that p belongs to the right-hand side of the let
expression and is no longer owned in line 3. Thus, it becomes impossible to type check line 3
in this context, since (T-Write) demands that p be owned when writing. In other words,
there is no way to type this function. If allowed to execute, this program would attempt to
assign a second value to the promise p. This may lead to undefined behavior; if, for example,
two threads await the promise p, they may read different values depending on when the
second write occurs. While other languages handle this scenario as a runtime error – for
example, this same error is handled as an exception future_errc::promise_already_satisfied in
C++ and by simply ignoring subsequent writes to the promise in JavaScript – our language
can statically prevent this behavior from ever occurring.

Listing 2 demonstrates an omitted write bug, in which a promise is not fulfilled in some
paths of execution. As an analogy, compare this to how the Java compiler rejects functions
that are missing a return statement in one branch of a conditional. When type checking
the match expression on line 2 with (T-MatchSum), we split the environment between the
value being matched and the two branches, requiring that both branches type check under
the same environment. In this case, we assign an empty environment to the value being
matched and an environment consisting of p to the two branches. While the branch on line 4
type checks via (T-Write), the variable p is unused on line 3. Since p is a linear variable,
it is impossible to eliminate p via (T-Weaken), and thus the program cannot type check.
When executing this program, the match expression would reach line 3 and fail to assign a
value to p before returning.

Finally, Listing 3 demonstrates writing to a promise that is not owned. This is in contrast
to Listing 1, where a write is attempted while no promise is in scope. When attempting to
type check line 2, we find it impossible to apply (T-Write) since the type of p is not of the
form Promise∗(Int). During execution, this program would allow various bugs to occur due
to the inability to track this write operation elsewhere in the program. For example, it could
perform a second write to an already-fulfilled promise, creating a double write bug.

2.3 Operational Semantics
To define the operational semantics of a program, we must first introduce some extra syntax
to represent the runtime state of a program. First, we extend the expression syntax with
the construct &iτ , which represents a reference to the read-end of a promise of τ with the

ECOOP 2021

13:8 Linear Promises: Towards Safer Concurrent Programming

(T-PromiseRef)
⊢ &iτ : Promise(τ)

(T-PromiseRef∗)
⊢ &∗iτ : Promise∗(τ)

Figure 5 Typing rules for promise references.

m ∈ Thread ID ::= i

T ∈ Threads ::= ⟨m, e⟩ | T ∥ T

Figure 6 Syntax for thread trees.

unique ID i. We also add the construct &∗iτ , which represents a reference to the write-end
of a promise of τ with the unique ID i. We augment the type system with two new rules,
defined in Figure 5, to give the promise-reference literals a type.

Figure 6 defines the currently-executing state of a program as a binary tree of threads,
known as a fork-tree. In such a fork-tree, each node contains a thread ID and an expression.
Each fork operation splits the node to a left thread, representing the currently executing
code, and a right thread, representing the new task. These terms are composed together to
create a tree of all concurrently executing tasks. We encode the entire state of the program
as the quadruple (i, P, O, t): the next-available ID for a promise or thread, a mapping of
promise IDs to an optional value, a mapping of promises to their owner thread, and the
thread tree for the program. Semantically, P stores the values (or lack thereof) associated
with a given promise, and also indicates whether a given promise has been fulfilled. This
is encoded by the type τ + Int, where τ corresponds to a value and Int corresponds to a
placeholder for an unfulfilled promise (the value of which is ignored). The initial state of a
program is (1, ∅, ∅, ⟨0, main(0)⟩), where main : Int→ Int.

Figure 7 defines the Isvalue predicate, used to identify expressions that are fully evaluated.
Finally, we utilize contextual semantics to simplify the notation for the operational semantics.
Specifically, Figure 8 defines two contexts K and J to represent an expression with a hole
and a fork-tree with a hole, respectively. While the normal transition rules (e.g. (S-Write))
implement the transition rules for base-case expressions, the K contextual semantics allow us
to recursively apply these transformations to sub-expressions and the J contextual semantics
allow us to apply these transformations to any thread in the tree.

Figure 9 defines the operational semantics. Of particular interest here are the rules for
modeling non-determinism. The binary fork-tree structure of the program allows us to apply
the basic stepping rules (such as function application, let evaluation, etc.) to any thread at

IsValue(i) IsValue(&iτ) IsValue(&∗iτ)
IsValue(v1) ∧ IsValue(v1)

IsValue((v1, v2))

IsValue(v)
IsValue(InlτL,τR

v)
IsValue(v)

IsValue(InrτL,τR
v)

Figure 7 The IsValue predicate, which determines whether an expression is a terminal value.

O. Rau, C. Voss, and V. Sarkar 13:9

K ∈ Expr Context ::= · | let x := K in e | f(K) | Inl K | Inr K

| (K, e) | (e, K) | match K { Inl x1 ⇒ e1, Inr x2 ⇒ e2 }
| match K { (x1, x2)⇒ e } | ?K | K ← e | e← K

J ∈ Thread Context ::= · | J ∥ T | T ∥ J

Figure 8 K (expression-level) and J (thread-level) contextual semantics.

(SJ-Schedule)
(i, P, O, ⟨m, e⟩) −→ (i′, P ′, O′, T ′)

(i, P, O, J [⟨m, e⟩]) −→ (i′, P ′, O′, J [T ′])

(SK-RunExpr)
(i, P, O, ⟨m, e⟩) −→ (i′, P ′, O′, ⟨m, e′⟩)

(i, P, O, ⟨m, K[e]⟩) −→ (i′, P ′, O′, ⟨m, K[e′]⟩)

(SK-RunFork)
(i, P, O, ⟨m, e⟩) −→ (i′, P ′, O′, ⟨m, e′⟩ ∥ T)

(i, P, O, ⟨m, K[e]⟩) −→ (i′, P ′, O′, ⟨m, K[e′]⟩ ∥ T)

(S-Fork)

Γ ⊢ e : τ

OL = {p 7→ m | p 7→ m ∈ O, p /∈ Γ} OR = {p 7→ i | p 7→ m ∈ O, p ∈ Γ}
(i, P, O, ⟨m, async e⟩) −→ (i + 1, P, OL ∪OR, ⟨m, 0⟩ ∥ ⟨i, e⟩)

(S-Let)
IsValue(v)

(i, P, O, ⟨m, let x := v in e⟩) −→ (i, P, O, ⟨m, e[v/x]⟩)

(S-App)
IsValue(v)

(i, P, O, ⟨m, f(v)⟩) −→ (i, P, O, ⟨m, Body(f)[v/Arg(f)]⟩)

(S-MatchProduct)
IsValue(v1) IsValue(v2)

(i, P, O, ⟨m, match (v1, v2){(x1, x2)⇒ e}⟩) −→
(i, P, O, ⟨m, e[v1/x1, v2/x2]⟩)

(S-MatchSumL)
IsValue(v)

(i, P, O, ⟨m, match Inl v{Inl xL ⇒ eL, Inr xR ⇒ eR}⟩) −→
(i, P, O, ⟨m, eL[v/xL]⟩)

(S-MatchSumR)
IsValue(v)

(i, P, O, ⟨m, match Inr v{Inl xL ⇒ eL, Inr xR ⇒ eR}⟩) −→
(i, P, O, ⟨m, eR[v/xR]⟩)

(S-Promise)
(i, P, O, ⟨m, promise τ⟩) −→ (i + 1, [i 7→ Inr 0; P], [i 7→ m; O], ⟨m, (&∗iτ , &iτ)⟩)

(S-Read)
ep = &(ip)τ P (ip) = Inl v

(i, P, O, ⟨m, ?ep⟩) −→ (i, P, O, ⟨m, v⟩)

(S-Write)
ep = &∗(ip)τ IsValue(v)

(i, P, O, ⟨m, ep ← v⟩) −→ (i, [ip 7→ Inl v; P], O, ⟨m, 0⟩)

Figure 9 Operational semantics for the language.

ECOOP 2021

13:10 Linear Promises: Towards Safer Concurrent Programming

any time, while also enabling forking to occur at any program point. In other words, we
rely on the ability to substitute a single thread (e.g. ⟨let x := async e1 in e2⟩) with a sub-tree
(e.g. ⟨let x := 0 in e2⟩ ∥ ⟨e1⟩) to allow for forking within the scope of an arbitrary expression.

Much of the heavy-lifting with regards to concurrency occurs via the contextual semantics,
which are implemented via three transition rules: (SJ-Schedule), (SK-RunExpr), and
(SK-RunFork). (SJ-Schedule) forms the basis of the threading model, allowing us to
treat any individual task in the fork-tree as a hole (where we can apply other transition rules).
In practice, this implements scheduling for the program by picking a thread and performing
transformations on it. The two K-level rules, (SK-RunExpr) and (SK-RunFork) are
extremely similar, in that they focus on a hole in the expression tree and apply further
transformations to it. In practice, these holes take the form of larger expressions that require
reduction before evaluation; for example, consider how (S-App) requires the function’s
argument to be reduced to a value before calling the function. The two rules differ in that
(SK-RunFork) specifically allows for a fork operation to occur within the sub-expression,
whereas (SK-RunExpr) runs the sub-expression as a singular thread. As an example,
imagine that the argument to a function involves an async operation. When evaluating the
argument, the hole is no longer a single expression, but rather a fork-tree of two expressions.
When substituting this subtree into the program, care must be taken to ensure that the old
thread’s expression is substituted in while the new thread stays distinct.

The rule (S-Fork) is also of particular interest, as it is used to spawn new threads.
When (S-Fork) creates a new thread, it must assign a new thread ID to it (picking a unique
value from the state of the program i). Note that a promise write handle’s owner is the
thread that will write to that promise. That is, since two thread IDs now exist, each promise
in scope will be mapped to one of these IDs in the ownership map O. For example, if the
newly spawned thread will use an owned promise p then we must transfer the ownership of
p to the new thread. This runtime ownership tracking is used only for proofs, and can be
removed from the semantics of the language for an actual implementation without any effect.
At the same time, it provides a tool that could be leveraged to perform deadlock detection
at runtime [22], which may be useful for an implementation.

Finally, let us briefly consider the mechanics of the (S-Promise), (S-Read) and (S-
Write) rules. These rules all rely on the map P , which tracks each promise’s state.
(S-Promise) adds an entry for i (the ID of the new promise), mapping it to Inr 0 – a
placeholder indicating that p hasn’t been fulfilled. In (S-Write), P is extended with a
mapping of ip (the ID of the promise p) to Inl v (a value v). The use of the Inl constructor
indicates that p has been fulfilled, and the value v corresponds to p’s new value. (S-Read)
checks the state of ip, and only advances once the value stored in P (ip) is fulfilled (indicated
by the Inl constructor). Once p is fulfilled, (S-Read) evaluates to the stored value. In effect,
this forces (S-Read) to block until a value for p becomes available.

3 Theoretical Guarantees

The goal of our language is designing a system that is free of a number of common concurrency
bugs. Specifically, we argue that our language cannot exhibit an omitted write bug (creating a
promise but never fulfilling it) in terminating programs, and cannot ever exhibit an unowned
write bug (writing to a promise that is not owned by the current thread) or a double write
bug (fulfilling the same promise twice).

▶ Theorem 1 (Linearity). Given a linear variable x : τx, if Γ, x : τx ⊢ e : τe then it is always
the case that Γ ⊢ e : τe cannot be well-typed. Likewise, if Γ ⊢ e : τe then Γ, x : τx ⊢ e : τe

cannot be well-typed. That is, a linear variable cannot be added/dropped in Γ for the same e.

O. Rau, C. Voss, and V. Sarkar 13:11

Proof. We argue that whenever a linear variable x : τx exists in the environment Γ, x : τx

for a well-typed program e, then x cannot be dropped while retaining a well-typed program.
Further, whenever x : τx does not exist in Γ for a well-typed e, x cannot be added to Γ
while retaining a well-typed program. Each can be shown by trivial induction on the typing
rules. ◀

3.1 Soundness
We define soundness to mean that if a program type-checks it can only get “stuck” due to
promise dependency cycles. That is, either a program is done executing, is able to progress
via the operational semantics, or it contains a set of threads T such that every thread in T is
blocked on a promise owned by another thread in T . This is critical to proving the various
other properties of our language.

▶ Lemma 2 (Substitution Preservation). Given a well-typed program, such that Γ ⊢ e : τ , if
Γ ⊢ x0 : τ0 and Γ ⊢ e0 : τ0 then Γ ⊢ e[e0/x0] : τ .

Proof. Observe that the typing relation is defined such that if an expression is well-typed,
any sub-expression must also be well-typed. Since x0 and e0 share the same type, substitution
cannot effect the overall typing judgment. This can be trivially shown by induction on e. ◀

▶ Lemma 3 (Promise Preservation). Given a promise p : Promise(τ), ⊢ P (p) : τ + Int.

Proof. First, observe that an owned promise p : Promise∗(τ) can only be fulfilled via the
(T-Write) rule on an expression p← v, where the value v is an inhabitant of the type τ .
By definition, the value written to the promise will always match the correct type τ .

Next, observe that the write and read ends of a promise always share their type. The
only way to create a promise literal of the form &iτ or &∗iτ is via the (S-Promise) rule. By
definition this rule assigns the same unique ID to both ends, so each newly created read-end
and write-end will correspond to a matching type τ .

Finally, notice that the type of both a read-end and a write-end of a promise will never
change throughout the program. Via (T-PromiseRef) and (T-PromiseRef∗), a promise
literal’s type is directly encoded in the syntax of the promise literal. By case analysis, it
is trivially true that there is no way to transform the type encoded in the promise literal.
There is no possible syntax that can allow for the wrong type of value to be written to a
promise and there is also no possible syntax to attempt reading a promise as the wrong type.

Thus, in any step e −→ e′ where e involves a write operation, both the value placed into
the promise and the promise itself always retain their types. Therefore it can be seen that no
possible sequence of steps can result in a promise p containing a value of the wrong type. ◀

▶ Lemma 4 (Local Preservation). Given a program ⟨m, e⟩ such that ⊢ e : τ , then if ⟨m, e⟩ −→
⟨m, e′⟩ or ⟨m, e⟩ −→ ⟨m, e′⟩ ∥ t it must be true that ⊢ e′ : τ .

Proof. By simple induction over the transition rules and appeal to Lemmas 2 and 3, it can
be seen that any step e −→ e′ yields e′ with the same type τ (and when forking, a second
thread with any type). Therefore, in all cases the original thread retains its type τ . ◀

▶ Theorem 5 (Global Preservation). For any well-typed program, any operational semantics
step taken will leave us with a well-typed program where each thread either retains its old
type or has been newly created.

ECOOP 2021

13:12 Linear Promises: Towards Safer Concurrent Programming

Proof. By induction on the step that is taken, observe that either:
1. The program consists of a single thread and does not fork, in which case it is trivially

true that the program’s type remains globally preserved via Lemma 4.
2. A new thread is created and the parent thread is modified via (S-Fork). By Lemma 4

we know that the parent thread is preserved. Since the newly created thread was not
previously present in the tree, and the sub-expression it is created from was well-typed,
then it must be true that the new thread is well-typed.

3. A thread is modified in a program consisting of many threads, which can only be done
by using the thread-level contextual semantics to navigate to that thread’s subtree. In
this case we can apply the inductive hypothesis to the thread’s subtree in order to show
that all threads in the subtree are preserved once they are modified. The threads that
were not modified are preserved by definition, therefore it must be true that the entire
tree is preserved after substituting in the modified subtree. ◀

▶ Lemma 6 (No Ownership on Termination). For any thread ⟨m, e⟩ with well-typed e, e cannot
be reduced to a terminal value while still owning a promise.

Proof. Observe that, by definition, all terminal values can only be well-typed in the empty
environment. We cannot drop an owned promise (or any linear variable that might contain a
promise) via (T-Weaken). No task can terminate as a linear value, as the async expression
requires a type of Int for the spawned task and the main function evaluates to Int (i.e. all
threads evaluate to Int). Thus, before termination a thread must always eliminate all owned
promises. ◀

▶ Definition 7 (ContainsCycle(O, T)). Given a promise-ownership map O and a tree of
tasks T , let G be a graph containing a vertex for each task in T . Then, for every task t1 that
is currently reading a promise p, where p’s owner O(p) = t2, create a directed edge from t1
to t2. The pair (O, T) are said to contain a cycle iff G contains a cycle.

▶ Theorem 8 (Progress). Given a well-typed program (i, P, O, T), either (i, P, O, T) −→
(i′, P ′, O′, T ′) ∨ ∀t ∈ T.IsValue(t) ∨ ContainsCycle(O, T).

Proof. We structure our progress theorem as the statement that given a well-typed program
either the program can make progress, the program has terminated (i.e. every thread is a
value literal), or the program contains a promise dependency cycle. In any case where a step
can be made or all threads have terminated, there is nothing to show. Thus, if we assume
that progress is impossible but the program has not terminated, we argue that it must be
due to the existence of such a promise dependency cycle.

Let us assume that all non-value threads in T are not steppable and that at least one
thread t = ⟨m, e⟩ is not reduced to a value. For a non-value thread to be un-steppable, it
must be performing a read operation applied to a promise reference: K[?(&iτ)]. This can be
seen by induction over e: if e is not a terminal value, the program can always unconditionally
step forward or reduce further using K-level contextual semantics unless it is in the form of
a read operation K[?(&iτ)] where the promise &iτ is unfulfilled (in which case e is blocked
on the promise i). Let the owner thread o = O(i), the owner of the promise i. We consider a
recursive walk through the tree of threads, in which there are three cases:
1. o refers to the current thread. In this case, we trivially observe a cycle from o to o.
2. o refers to a thread that is a basic value and cannot be further evaluated. This case is

trivially shown to be impossible, since o is unable to own the promise i via Lemma 6.
3. o refers to another blocked thread, and we recursively apply the same logic to o.

O. Rau, C. Voss, and V. Sarkar 13:13

Given that there is a finite set of threads, by the pigeonhole principle we observe that
the process of traversing dependencies must eventually terminate with a cycle (note that
we have already rejected the base case of the thread being able to step forward). By this
logic, it can be seen that the only case where a program is not terminated and cannot step
forward is when a cycle exists in (O, T).

Therefore we have shown that for any well-typed program, the condition holds that the
program is finished evaluating, can step forward, or contains a dependency cycle. ◀

▶ Theorem 9 (Soundness). Given a well-typed program (i, P, O, T), if (i, P, O, T) −→∗

(i′, P ′, O′, T ′) then either the program T ′ can continue, all threads have reached a terminal
value, or it contains a cycle.

Proof. By induction over the set of steps (i, P, O, T) −→∗ (i′, P ′, O′, T ′):
1. If no steps were taken, we argue that since the program is well-typed then by Theorem 8

it must be true that either T ′ can step forward, it has terminated, or it contains a cycle.
2. If at least one step (i, P, O, T) −→ (i′, P ′, O′, T ′) has been taken, then we apply Theorem 5

to show that the program (i′, P ′, O′, T ′) remains well-typed. Now, by the inductive
hypothesis we argue that the rest of the sequence of steps must either be able to continue,
have already terminated, or contain a cycle.

Therefore, for any sequence of steps it must be the case that the final result can continue,
has terminated, or contains a cycle. ◀

3.2 Additional Properties
Building on Theorem 9, we can easily show that each of the language’s guarantees still holds.

▶ Lemma 10 (Single-Write of Promises). For any well-typed program, all promises in that
program are written to at most once. For any well-typed program that terminates successfully,
all promises in that program are written to exactly once.

Proof. This can be easily observed, as there are only two ways that an owned promise can
be used: transferring ownership via a function call/function return/alias or writing to it.
Since the single-use property of linear variables is unconditionally true in the program by
Theorem 1, then it must be the case that, for any promise p:
1. Given a write operation, a promise p is used and can no longer be reused.
2. Given a transfer operation, a promise p is used and an alias p′ is created, which must

then be used by the program.
3. Given any other operation, the promise p remains available and must be used.

In order for the above to reach termination, it must eventually reach the base case
of writing to a promise. Therefore, for any program that has successfully terminated, all
promises have been written to exactly once. Until the point of termination, there is no
operation that allows for the duplication of a promise, and thus we can create an upper-bound
of at most one write to any promise for programs that have not yet terminated. ◀

▶ Corollary 11 (No Omitted Writes). If a program is well-typed and terminates successfully,
all created promises will be fulfilled during execution.

▶ Corollary 12 (No Double Writes). If a program is well-typed, no promise will be fulfilled
multiple times.

ECOOP 2021

13:14 Linear Promises: Towards Safer Concurrent Programming

▶ Theorem 13 (No Unowned Writes). If a program is well-typed, any promise that is written
to will be owned by the currently executing thread (i.e. the writer).

Proof. Promises can only become owned by the currently executing thread when created in
it or when transferred to it. Transfer can only occur via async, as the only other inter-thread
communication consists of promises (which cannot contain linear values). By definition
(S-Fork) transfers ownership to the thread that will use the promise. Since the only promise
we can write to is an owned promise, and other values cannot change types to become an
owned promise by Theorem 5, then it is impossible to write to anything except a promise
owned by the current thread. ◀

We have shown that our language does not permit double or unowned writes, and that it
does not permit omitted writes in terminating programs. Note that a diverging program may
indefinitely postpone promise writes; for example, consider a program that runs an infinite
loop before issuing a write to a promise. While this is a limit to the language’s guarantees,
observe that futures have this same limitation: a future created from a function that does
not terminate will never be fulfilled. In effect, the type system gives promises similar safety
characteristics to futures: both promises and futures will always be fulfilled at most once
and only by their owner, and will always be fulfilled exactly once if the program reaches
termination. This side-steps the safety gap between promises and futures noted by [9, 10].

▶ Corollary 14 (Only Cyclical Deadlocks). If a program is well-typed, the program can only
ever get stuck7 due to a cyclical deadlock.

Proof. This directly follows from Theorem 9. ◀

With the result of Corollary 14, it’s useful to note the advantages our language presents
for runtime deadlock detection. Voss and Sarkar [22] present an algorithm for dynamically
detecting deadlocks in promise-based programs, which consists of two conditions: that
all promises are fulfilled and that there are no cyclical dependencies among tasks caused
by promises awaiting a result. Since all promises are known to be eventually fulfilled by
Corollary 11, simply identifying the cycles at runtime must be sufficient to catch all possible
deadlocks encountered during a program’s execution. Notably, the thread/promise-ownership
table used for deadlock detection in their algorithm is already tracked at runtime per the
operational semantics of the language. In effect, this allows us to trivially implement dynamic
deadlock detection in our language without altering the syntax, type system, or semantics.

4 Implementation

In order to evaluate our language, we implemented a compiler that performed type checking
and translated our language to a subset of Java8. Specifically, the compiler built upon
the formalisms of the language and carefully extended it to allow for more user-friendly
programming. Thanks to the type system’s guarantees, no additional runtime overhead is
added to the generated programs.

7 In the sense that no operational semantics steps can be taken and the program is not done executing.
8 The implementation is included as part of the supplementary materials.

O. Rau, C. Voss, and V. Sarkar 13:15

4.1 Language Extensions
In designing the compiler, a number of additional features were added to the language that
are not represented in Section 2. First, we extended the language to allow named and
recursive types, as the current language definition only supports anonymous, non-recursive
sum and product types. Through a simple syntax for defining new types (known as “records”
and “unions”), the language is able to apply similar typing rules to the specified product
and sum types, respectively. The addition of named types follows the existing type system
rules, so that IsLinear(τ) is true for all user-defined τ that contain linear members. In other
words, we can still reason about a named type being linear, since naming a type does not
hide its linearity. This generalization enables users of the language to create and interact
with various recursive types, such as linked-lists and binary trees.

As another quality of life improvement, the language implementation was generalized to
allow N-ary functions, whereas the type system described in Section 2 only allows for unary
functions (functions with a single parameter). This, combined with support for additional
types such as Unit, Bool and String, eases translation for many real-world programs.

Both for and while loops were also added to the language. However, due to the nature of
loops – which may execute any number of times – it is impossible to guarantee that variables
in a loop will be used exactly once. For example, consider the program while condition()
{ p <- 0 }. If p is a value of type Promise∗(Int), we can observe two possible bugs in the
above program. Firstly, the function condition() may initially return false, in which
case the write would never occur. Likewise, it is possible that condition() returns true
multiple times in a row, in which case the write would occur more than once. Both of these
possibilities would clearly violate the language’s guarantees, and thus must be disallowed. To
do so, the compiler prevents capturing a free linear variable in a loop. In this case, unless p is
defined within the loop, it is impossible to reference it from within the loop. Note that while
such a restriction is overly conservative (i.e. a loop could be designed to only write once),
similar restrictions exist in other substructural type systems. In practice, such a restriction
has not prevented the adoption of other substructurally-typed languages (e.g. Rust, which
has partially addressed this problem through the use of iterators).

The compiler also provides a function unsafeWrite, which enables writing to a promise’s
read-end. At runtime, this operation is equivalent to writing to the write-end, but allows for
multiple writes to the same promise during type checking. This enables an escape hatch,
which can be useful when directly translating a foreign program or dealing with conditions
that are difficult to reason about (e.g. consider a loop that only fulfills a promise on the first
iteration). While this construct introduces an unowned write bug (and potentially double
writes), it does not negate the language’s soundness and still prevents the omitted write bug.
This must be the case because of the existence of the write-end, which ensures that at least
one write unconditionally occurs. If unsafeWrite were implemented as a no-op, the program
would still be sound by definition (it is equivalent to the program without unsafeWrite).
Now observe that there is no way for an additional write to cause the program to get stuck,
because threads can only block while awaiting an unfulfilled promise. Therefore, it must be
the case that all well-typed programs remain sound with unsafeWrite enabled.

4.2 The Type Checking Algorithm
The type checking algorithm is largely built upon the notion of environment splitting.
However, to perform splitting efficiently a split(Γ, e1, e2) function had to be devised such
that split(Γ, e1, e2) = (Γ1, Γ2) =⇒ Γ = Γ1 ⊞ Γ2 ∧ Γ1 ⊢ e1 : τ1 ∧ Γ2 ⊢ e2 : τ2. In

ECOOP 2021

13:16 Linear Promises: Towards Safer Concurrent Programming

other words, the split function would inspect two expressions and assign variables from the
environment to each expression, creating their corresponding type checking environments.
This is used to to mimic the behavior of the Γ1 ⊞ Γ2 relation in the type system.

In Voss and Sarkar [22], user-supplied annotations indicate the transfer of promise
ownership between tasks. These annotations take the form of a list of promises to “move”
at every async expression, and the newly-spawned task becomes the owner of the provided
promises. This mechanism is integral to both the dynamic detection of omitted writes and
the dynamic deadlock detection algorithm that Voss and Sarkar introduce. By encoding
ownership information in the type system and inferring the “moves” via our environment
splitting algorithm, our type checker provides a way to lower the burden of explicit annotations
for such a system. The key, in this case, is the ability of the split operation to statically
determine which sub-expression (the async task or the code that follows spawning the new
task) should become the owner of any given promise and, through the linearity constraints
of promises, force this ownership model to be adhered to.

Algorithm 1 Environment Splitting between Expressions.

1: function split(Γ, e1, e2)
2: free1 ← free(e1)
3: free2 ← free(e2)
4: Γ1 ← {v : τ | v : τ ∈ Γ, v ∈ free1}
5: Γ2 ← {v : τ | v : τ ∈ Γ, v ∈ free2}
6: allUsed ← ∀v : τ ∈ Γ . v ∈ Γ1 ∨ v ∈ Γ2 ∨ ¬IsLinear(τ)
7: noneReused ← ∄v : τ ∈ Γ . IsLinear(τ) ∧ v ∈ Γ1 ∧ v ∈ Γ2
8: if allUsed ∧ noneReused then return (Γ1, Γ2)
9: else type error

The split function, defined in Algorithm 1, operates on an environment Γ and two
expressions, e1 and e2. It begins by finding the free variables in each expression with respect
to an empty environment, revealing which variables will be referenced in each expression
(lines 2-3). Then, it creates an environment for each expression by taking all variables from Γ
that are in that expression’s free set (lines 4-5). We then define allUsed as the statement that
every variable in Γ either appears in one of the two environments or is non-linear; that is, are
0 linear variables dropped? Next, we define noneReused to be the statement that there are no
variables in Γ that are linear and used in both environments; that is, are 0 linear variables
copied? If both conditions hold true, we return the two environments (line 8); otherwise, we
throw a type error, as the environment cannot be validly split (line 9).

Since functions are generalized to be N-ary, special care must be taken to ensure that the
environment is split correctly for each argument. Algorithm 2 thus defines a special form of
the split function called split_sequence(Γ, es). This function utilizes the same approach
as the split function, but operates recursively on a single expression at a time. In doing so,
it is able to confirm that at every step the all-used and none-reused conditions still hold.

split_sequence functions as a generalization of split, taking an environment Γ and a
list of expressions es. This algorithm recursively walks through es and splits the environment
at each expression. The base case of an empty list returns an empty list of environments
(line 2). Otherwise, the function continues to its recursive step on line 4. First, we define expr
to be the head of the list and rest to be the remainder of the list (lines 4-5). We then find
the free variables for expr (line 6) and define free_rest to be the union of the free variables for
each expression in rest (line 7). As with split, we construct a Γ for each set of free variables

O. Rau, C. Voss, and V. Sarkar 13:17

Algorithm 2 Environment Splitting between a Sequence of Expressions.

1: function split_sequence(Γ, es)
2: if es = [] then return []
3: else
4: expr ← head(es)
5: rest ← tail(es)
6: freeexpr ← free(expr)
7: freerest ←

⋃
e∈rest

free(e)

8: Γ1 ← {v : τ | v : τ ∈ Γ, v ∈ freeexpr}
9: Γ2 ← {v : τ | v : τ ∈ Γ, v ∈ freerest}

10: allUsed ← ∀v : τ ∈ Γ . v ∈ Γ1 ∨ v ∈ Γ2 ∨ ¬IsLinear(τ)
11: noneReused ← ∄v : τ ∈ Γ . IsLinear(τ) ∧ v ∈ Γ1 ∧ v ∈ Γ2
12: if allUsed ∧ noneReused then return append(Γ1, split_sequence(Γ2, rest))
13: else type error

(lines 8-9) and then check whether all linear variables are used and none of them are reused
(lines 10-12). If so, the current expression can be split, so we return Γ1 appended to the
result of split_sequence on rest with Γ2 (line 12). Otherwise, we throw a type error to
signal that the environment cannot be split (line 13).

At a high-level, the type checker performs pattern matching against the various syntactic
constructs. Each case is handled as per the typing judgments, utilizing the split and split_-
sequence functions to assign the environments for each sub-expression. For the base cases
of the type checker, special care must be taken to ensure that weakening is applied correctly;
in this case, splitting the environment between the actual expression and an empty/dummy
expression ensures that only used variables (including linear variables) remain. In the case of
branches, both branches must be split from the condition/matched value (and not from each
other) so that it is ensured that the same linear variables occur in each branch.

In Algorithm 3, the typecheck function takes an environment Γ and an expression
e to type check in Γ. The function defines a variable complete as the result of splitting Γ
between e and a dummy expression (line 2). This is used to determine whether all linear
variables in Γ are used by e: if e cannot be split, it must be due to dropping or reusing
a linear variable in Γ. Next, the function performs pattern matching against e (line 3) to
determine the syntactic construct that appears.

Lines 4-7 handle references to variables (called x, in this case). Because this is a base
case, care must be taken to ensure that no linear variables are dropped; this is done by
checking that complete references a valid environment (line 5). If so, the type of x is fetched
from the environment Γ (line 6); otherwise, the function throws a type error (line 7).

Lines 8-12 handle the let syntax. In particular, when a let expression is encountered, the
environment must be split so that the value and body are checked in different environments.
Γ is split into Γrhs and Γbody, which are used for the RHS and the body, respectively (line 9).
We recurse to determine the type of the RHS (line 10). We then add id : τrhs to the body’s
environment so that the bound variable id is available in the body’s scope (line 11). Finally,
we return the body’s type by recursively calling typecheck (line 12).

Lines 13-22 handle the if syntax. When an if statement is encountered, the environment
splitting is a little more difficult. For example, consider the case where one branch uses a
linear variable and the other does not; clearly, this would violate the language’s guarantees.
Thus, we must ensure that both branches use all linear variables that are not assigned to the

ECOOP 2021

13:18 Linear Promises: Towards Safer Concurrent Programming

Algorithm 3 Type Checker Implementation for Selected Constructs.

1: function typecheck(Γ, e)
2: complete ← split(Γ, e, ())
3: match e with
4: case x ⇒
5: if complete is not a type error then
6: return Γ(x)
7: else type error
8: case let id := rhs in body ⇒
9: Γrhs, Γbody ← split(Γ, rhs, body)

10: τrhs ← typecheck(Γrhs, rhs)
11: Γ′

body ← Γbody, id : τrhs

12: return typecheck(Γ′
body, body)

13: case if cond then thenBranch else elseBranch ⇒
14: Γcond,0, Γthen ← split(Γ, cond, thenBranch)
15: Γcond,1, Γelse ← split(Γ, cond, elseBranch)
16: if Γcond,0 = Γcond,1∧ typecheck(Γcond,0, cond) = ‘Bool’ then
17: τthen ← typecheck(Γthen, thenBranch)
18: τelse ← typecheck(Γthen, elseBranch) ▷ Must both typecheck in Γthen

19: if τthen = τelse then
20: return τthen

21: else type error
22: else type error
23: case f(args . . .) ⇒
24: match Γ(f) with
25: case (τexpected . . .)→ τ ′ ⇒
26: Γargs ← split_sequence(Γ, args)
27: τargs ← {typecheck(Γargs,i, argsi) | i ∈ 0..length(args)}
28: if τargs = τexpected then
29: return τ ′

30: else type error
31: otherwise ⇒ type error
32: end match
33: case async e ⇒
34: if typecheck(Γ, e) = ‘Unit’ then
35: return ‘Unit’
36: else type error
37: . . . ▷ Other cases have been omitted for brevity, but follow a similar approach
38: end match

O. Rau, C. Voss, and V. Sarkar 13:19

condition. We begin by splitting the environment between cond and thenBranch, and cond

and elseBranch, respectively (lines 14-15). This leaves us with two valid environments for
cond and guarantees that the two branches are split in such a way that they cannot drop
any linear variables. We then check whether the two cond environments are identical and
that cond evaluates to a boolean (line 16). If not, we throw a type error (line 22). Next, we
check that the two branches evaluate to the same type (line 19); if so, we return that type
(line 20) and if not, we throw a type error (line 21).

Lines 23-32 handle function calls. Note that in contrast to the typing rules presented
earlier, functions here are N-ary. As a result, args is a list of N arguments to the function
f . We begin by looking up the type of f in Γ to confirm it is indeed a function, calling its
argument types τexpected and return type τ ′ (lines 24-25). Whenever f cannot be found in Γ
or it is not a function type, we throw a type error (line 31). To type check the arguments,
we need each to have its own environment. To do so, we call the split_sequence function
on args to split Γ for each argument (line 26). Then, we map over each argument and
recursively call typecheck on it with the corresponding environment, storing the results in
τargs (line 27). When τargs matches τexpected, we return the function’s return type τ ′ (lines
28-29); otherwise, we throw a type error (30).

Lines 33-36 handle the async syntax. Because async only contains a single sub-expression,
knowing that the sub-expression is well-typed is enough to ensure that the entire async
expression is also well-typed; thus we do not need to check the complete property. Given
an expression e to run asynchronously, we simply typecheck it in Γ and verify that it
evaluates to the unit type (line 34). If so, we can return the unit type for the entire async
expression (line 35). Otherwise, we signal a type error (line 36).

The various other cases are left out for brevity, as they use the same techniques demon-
strated in the above cases.

Since the typecheck function visits each syntax node exactly once, and at each syntax
node performs a split operation, the time complexity is a linear function of the cost of type
checking and the cost of splitting. The complexity of splitting is proportional to the size of
the environment (i.e. the number of variables in scope) and the time complexity of the free
function. With memoization, it is possible to create an amortized O(1) implementation of
the free function since the same nodes are repeatedly visited (the worst-case – an unvisited
node – being linear with respect to the size of the subtree). Thus, we believe that with an
efficient implementation of free the amortized worst-case time complexity of typecheck is
O(|Γ| × |e|), where Γ is the environment and e is the syntax tree.

5 Evaluation

We evaluate our compiler implementation on two separate metrics. First, we measured the
speed at which a number of test programs of various sizes could be type checked. This was
important to evaluate how practical opting into such a type system would be. Second, we
conduct a case study on the language’s ability to catch bugs. This is done by translating a
number of JavaScript programs containing promise-related bugs. In performing this case
study, we are able to evaluate how useful opting into such a type system would be.

5.1 Type Checker Performance
While a theoretical worst-case time complexity was calculated for the type checker, we were
also interested in its the real-world performance. To estimate the scalability of the type
checking algorithm in realistic conditions, we created several synthetic test programs that

ECOOP 2021

13:20 Linear Promises: Towards Safer Concurrent Programming

Table 1 Compile time evaluation.

Program Lines of Code Type Checking
µs per run1)

Full Compile
µs per run1) % time in type checker2)

Infer 5 6.5 9.1 71.4%
Strings 6 26.3 28.8 91.3%
State 12 25.3 28.6 88.5%
Square 26 58.9 68.6 85.9%
Useful 29 59.5 64.8 91.8%
Basic 34 57.1 67.2 85.0%
Cppreference 38 76.9 109.6 70.2%
IO 45 189.5 211.6 89.6%
Long 231 1107.0 1359.8 81.4%

1) Averaged over 1000 runs.
2) The compiler performs a straight-shot translation to source-level Java, and thus requires

very little time to generate code. Type-checking therefore comprises the bulk of the work.

demonstrated various language constructs (available in the supplementary materials). These
programs ranged in length from 5 lines to 231 lines, and ranged in complexity from simple
tests to programs that implemented buffered, asynchronous reading and parsing of files. To
measure the performance, we created a benchmarking mode in the compiler. This mode
allowed us to measure runtime for 1000 runs of both the type checker and the entire compiler
pipeline. Care was taken to time only the operation in question, so that for example parsing
time would not contribute to the type checking benchmark and the overhead of file I/O
syscalls would never contribute to the full pipeline benchmark. Thus, all necessary input
was pre-computed to allow for a simple loop of the runs to be timed together.

Table 1 shows the average runtime for type checking and compiling each program, as well
as the proportion of the total compile time spent type checking. The benchmarks were run
in Windows 10 on an Intel i5-7300U CPU clocked to 2.71GHz with 8GB of RAM.

In general, we find that the results in Table 1 are empirically consistent with an approx-
imately linear average time complexity with respect to the length of the program. However,
variance does exist due to the actual factors (number of syntax nodes and variables in scope)
not necessarily scaling proportionally to the overall length of programs. For example, consider
the worst-case for our type checker: a program composed of one or more extremely long
functions, which introduce hundreds of variables into scope. In such a program, we might
expect approximately quadratic time with respect to the length of the program due to the
cost of splitting the environment at each syntax node. Overall, we believe that our type
checker is sufficiently performant for most real-world use cases, as our benchmarks show that
the performance typically exceeds the worst-case time complexity.

5.2 Case Study
Madsen et al. [15] perform a case study of common promise-based bugs in JavaScript
using programs from StackOverflow. To evaluate our compiler, we attempted to port these
programs to our language; while not all features were possible, we tried to capture the general
behavior of each program. For example, whenever callbacks were registered as event listeners,
we replaced these with asynchronous infinite loops that would conditionally call a function
representing the callback. A number of programs could not be translated to our language, as
they relied on various JavaScript features that could not be emulated. Several programs used

O. Rau, C. Voss, and V. Sarkar 13:21

Table 2 Case study of JavaScript promise bugs posted to StackOverflow.

StackOverflow ID Type of Bug Detected?
41268953 Omitted Write ✓

41488363 Omitted Write ✓

42304958 Double Write ✓

42551854 Double Write ✓

42672914 Omitted Write ✓

42777771 Double Write ✓

29210234 Fork in Promise Chain
41699046 Missing Return in .then ✓

41764399 .then replaces error
42163367 Fork in Promise Chain
42408234 Missing Return leads to Omitted Write ✓

42577647 Failure to Return Promise ✓

42719050 Missing Return leads to Omitted Write ✓

42788603 Missing Return leads to Omitted Write ✓

42828856 Missing Return leads to Omitted Write ✓

exceptions, which our language does not support. Several other programs passed incorrect
arguments to the .then() method, making their semantics nonsensical (e.g. using a promise
value when a function was expected). The source code of the successfully translated programs
is included in the stackoverflow/ directory of the supplementary materials.

Madsen et al. [15] identify 6 out of 21 programs as either omitted writes or double writes,
though 4 other programs also exhibit omitted writes indirectly. The additional omitted
writes were all caused by a missing return value in the .then() method; the callback for
this method is expected to return a new value for the promise, which was missing in several
programs. Table 2 shows the complete set of tested questions (sourced from the original case
study [15]). Since we have proven that these bugs cannot exist in our language (Corollaries 11
and 12), we expected that these programs would not type check.

Listing 4 Translation of StackOverflow question 42777771 with corresponding error.
1 func doIt (): Promise (String) begin
2 let numKeys = 1 in
3 promise p, resolve : String in
4 resolve <- " resolve called !";
5 for key = 0 to numKeys begin
6 resolve <- " inside resolve called "
7 end;
8 p
9 end

Cannot reuse linear variables [resolve: Promise*(String)] in both
resolve <- "resolve called!"

and
for key = 0 to numKeys begin

resolve <- "inside resolve called"
end;
p

ECOOP 2021

https://stackoverflow.com/questions/41268953/
https://stackoverflow.com/questions/41488363/
https://stackoverflow.com/questions/42304958/
https://stackoverflow.com/questions/42551854/
https://stackoverflow.com/questions/42672914/
https://stackoverflow.com/questions/42777771/
https://stackoverflow.com/questions/29210234/
https://stackoverflow.com/questions/41699046/
https://stackoverflow.com/questions/41764399/
https://stackoverflow.com/questions/42163367/
https://stackoverflow.com/questions/42408234/
https://stackoverflow.com/questions/42577647/
https://stackoverflow.com/questions/42719050/
https://stackoverflow.com/questions/42788603/
https://stackoverflow.com/questions/42828856/
https://stackoverflow.com/questions/42777771/

13:22 Linear Promises: Towards Safer Concurrent Programming

All 10 programs exhibiting omitted or double writes failed to compile due to a linearity
error under our type checker (e.g. Listing 4). Two other programs failed through basic type
errors, due to type mismatches between the branches of if statements.

6 Related Work

6.1 Program Analysis
In the past few decades, numerous approaches have been devised for program analysis
[8]. Empirical studies have demonstrated the widespread use of program analysis tools in
industrial software engineering [6]. Program analysis techniques can be divided into two
classes: dynamic analysis, which occurs during program execution, and static analysis, which
occurs without executing the program. While dynamic analysis techniques are generally able
to make more precise conclusions due to additional information available only at runtime, their
results cannot be generalized to program paths that are not executed in testing. In contrast,
static analysis often provides more conservative (and sound) results, usually with fewer or
no false negatives [7]. Christakis and Bird [6] observe that “60% [of survey respondents]
reported that they would accept a slower analyzer if it captured more issues (fewer false
negatives)” and “50.7% felt that finding more real issues was worth the cost of dealing with
false positives”, showing that programmers may often find value in the more conservative
nature of static analysis. In the same study, approximately one third of respondents stated
that they would like program analyzers to detect concurrency bugs.

A large body of research has been conducted into dynamic analysis for concurrency bugs
[22, 18, 1, 17]. While these works offer promising results in precisely finding concurrency-
related bugs, dynamic analysis is not suited for all use-cases. Specifically, the inherent lack
of soundness guarantees for dynamic analysis could lead to too many false negatives in rarely
executed code paths. Likewise, in performance-critical environments, the runtime or memory
overhead of performing dynamic analysis may not be acceptable.

Voss and Sarkar [22] describe a promise ownership policy in which ownership of a promise
by a task denotes the task’s responsibility to fulfill the promise or transfer its ownership. This
policy is utilized to dynamically detect two classes of bugs: omitted writes and deadlocks.
Our static promise ownership model draws on this design, encoding the same ownership
relation as a compile-time property. In doing so, we are able to translate the dynamic
detection of omitted writes employed by Voss and Sarkar into a compile-time guarantee –
precluding false negatives. Further, although the algorithm described by Voss and Sarkar
requires syntactic annotations indicating the transfer of promise ownership between tasks,
our type system statically infers the same information. As such, our type checking algorithm
makes it possible to remove these annotations, thus lowering the user cost of enabling online
deadlock detection for programs written in our language.

Two major camps currently exist for static analysis. On the one hand, many static analysis
tools are built-in to compilers, often in the form of type systems. These tools generally offer
a streamlined approach to analyzing programs as a result of their deep integration into the
language. On the other hand, third-party static analysis tools often exist as standalone
programs or frameworks meant to augment the guarantees of the language itself. These are
often able to provide a valuable addition to large/existing code bases, in that these analyses
can easily be retrofit into existing environments. At the same time, because of their nature
as language extensions, they may only be able to analyze a subset of programs (leading to
situations where errors can leak in through dependencies).

O. Rau, C. Voss, and V. Sarkar 13:23

In terms of static analysis for concurrent programs, much of the research has focused
on the use of advanced type systems. Boyapati et al. [3] present an extension to Java that
encodes a partial ordering of locks using ownership types. This work provides promising
results, including preventing all data-races and deadlocks. This work predates the widespread
adoption of promises as a concurrency abstraction, and thus does not offer a similarly
high-level abstraction for writing concurrent code. The need for annotations also complicates
adoption for such a system. Westbrook et al. [25] introduce an extension to Java utilizing
fractional permissions to statically prevent data races. This provides analysis using only
minor modifications over normal Java programs and uses gradual typing to facilitate an easier
translation process. This differs from our work in that it does not allow for the compile-time
detection of the promise-based bugs our language prevents. Carbone and Montesi [4] present
a deadlock-free type system based on multiparty session types. This also provides promising
results, as the language is able to statically prevent a large class of bugs. As with our own
work, this language is not based on existing mainstream programming languages. In contrast
to our language, however, programming begins with a global specification of the program’s
behavior. This can then allow for projection of the global protocol to various programming
languages to implement the program’s business logic, but due to the development methodology
requires a new approach to designing concurrent programs.

Ábrahám et al. [27] introduce a programming language that uses affine types for promises.
This is somewhat similar to our own approach of using linear types, but does not require
the programmer to fulfill all promises along each execution path (because affine types allow
for weakening, i.e. an affine variable can be left unused). This prevents the language from
statically identifying omitted writes, and by extension means that programs without any
deadlocks can still get stuck. The language also disallows promises contained in heap-allocated
data, a restriction which we have loosened in our type system. A final difference is that we
introduce a deterministic and efficient type checking algorithm for our type system, which
could aid in the implementation of such a type system.

Niehren et al. [16] present a linear type system and semantics for a lambda calculus with
promises, λ(fut). We follow a similar model in describing a type system that makes promise
handles linear. Both systems guarantee similar properties about the safety of promises, such
as all promises being fulfilled exactly once. However, λ(fut)’s linear type system is not
intended to be used for programming. It is a proof system that one may apply to an existing
program to verify correctness properties. This fundamentally differs from our language, in
which the use of linear types in the program itself enables the compiler to immediately verify
these correctness properties and enables users to build on language-defined abstractions
using their safety guarantees. Beyond that, by diverging from the λ-calculus basis of λ(fut),
we provide a language more akin to mainstream programming languages. Consequently,
we believe that we have designed a linear type system that is more intuitive for users. In
practice, this means that users are better able to translate conventional code without having
to think hard about how to represent it. Additionally, our introduction of a decidable and
efficient type checking algorithm creates a simpler path for adoption.

As compared to related works using type systems to prevent concurrency bugs [3, 25, 4,
27, 16], we believe that our language strikes a desirable balance between powerful high-level
abstractions, an intuitive programming model, and strong compile-time guarantees. Due to
the basis of promises as the core concurrency primitive, we believe that translation of existing
promise-based programs to our language would be relatively straight-forward. Based on the
familiar programming model (as compared to other general purpose languages) and the lack
of complex typing rules/annotations, we also believe that our type system could be easier to

ECOOP 2021

13:24 Linear Promises: Towards Safer Concurrent Programming

pick up than similar languages. This is especially true with the introduction of substructural
typing into mainstream programming languages via Rust, which has shown that similar type
systems can be easily employed for general-purpose programming tasks [24].

6.2 Semantics for Concurrent Programs
Various works have explored formalizing the operational semantics of concurrent and/or
promise-based programs [15, 13, 16, 25]. Though other works have similar goals in defining
their semantics, we find that none mapped perfectly to the goals of this language.

The semantics of λ(fut) share many similarities with our own semantics [16]. For example,
our semantics models tasks and parallelism in a similar way to λ(fut) and builds on similar
concurrency constructs, such as promises and forking. In contrast, we believe that our
semantics better fit the characteristics of promises in most contemporary programming
languages. Specifically, λ(fut)’s semantics perform promise reads implicitly and only by
need: if the value of a promise is never used, then the program will not await the promise
before continuing. Such a system could lead to confusing semantics for users unfamiliar with
non-strict evaluation and, more importantly, cannot be retrofit onto languages with strict
evaluation schemes such as C++, Java, or JavaScript. Thus, we believe that our semantics
serve a more appropriate basis for implementation in popular programming languages.

Lee and Palsberg [13] present operational semantics for Featherweight X10, which models
threads as a tree of forked tasks. This design fits very well into our work and we drew
upon these semantics as inspiration. In contrast to the similar operational semantics of
Featherweight X10, however, our rules allow for the free use of async in any expression (via
our use of contextual semantics to substitute threads in the tree). This is advantageous in
that it generalizes the language so that spawning asynchronous tasks may occur from any
expression without restricting us to a linear instruction-based program. As an example, one
could not spawn an asynchronous task as part of the condition for an if expression or the
right-hand side of a let expression in Featherweight X10.

Westbrook et al. [25] present another operational semantics for concurrent programs.
The operational semantics introduces special tracking of heap values and their associated
permissions. This design was inspirational in terms of tracking promises and their owners
in our operational semantics. However, these semantics build heavily on notions such as
permissions, which were not included in our language. Additionally, both the semantics
of Featherweight X10 [13] and Westbrook et al. [25] are based on async-finish parallelism,
which did not map well to our language due to the lack of a finish construct.

Madsen et al. [15] focus more heavily on promise-based concurrency, defining a language
λp that formalizes the semantics of JavaScript’s promises. Our semantics share many
similarities with those of λp, such as drawing on a similar model for tracking promise states
and describing many of the same classes of promise-based bugs using our semantics. Due to
the single-threaded nature of JavaScript, however, JavaScript-style promises rely on reactions
to events (such as fulfillment or rejection of a promise) rather than distinct, parallel threads
of execution. Since our language is inherently parallel and does not feature promise reactions,
we could not reuse the same semantics to describe all possible programs in our language.

7 Conclusion & Future Work

Promises are a powerful structured concurrency primitive, which are increasingly being
used in modern programming languages. While they represent a huge step forward from

O. Rau, C. Voss, and V. Sarkar 13:25

unstructured concurrency, promises can still contribute to their own fair share of bugs. To
address this:
1. We have introduced a complete language featuring a novel type system and operational

semantics for promise-based programming.
2. Utilizing a linear type system in which promises must be fulfilled exactly once, our

language precludes several classes of promise-based bugs – omitted writes in terminating
programs, double writes, and unowned writes – with no runtime overhead.

3. Further, by integrating the results directly into the language rather than an external
proof system, the language offers the advantages of first-class support for this style of
programming. For example, as in other advanced type systems (e.g. Rust’s substructural
type system [24]), all libraries included in a program satisfy the language’s guarantees
using no extra instrumentation or annotations. This is in contrast to gradual typing
systems – such as Flow [5] and TypeScript [19] – that can only guarantee safety properties
for the subset of code that features the proper annotations.

4. With an efficient implementation of the type checker (linearly proportional to the size of
the program times the number of variables in scope), this would enable quick verification
of large programs. In doing so, a large swathe of promise-related bugs normally only
found at runtime will always be caught before the program is ever run.

In future work, this language could be extended with several features – such as closures,
generics, and arrays – in order to incorporate its design into existing languages like Java
or C++. Further, developing a gradual type system based on our approach may serve to
streamline integration into gradually typed languages such as TypeScript. Due to the reliance
on promises as a core abstraction in JavaScript and TypeScript, this type system could have
far reaching effects in the JavaScript/TypeScript ecosystem. Likewise, Haskell could serve as
an interesting target for implementation with its recent addition of a linear typing extension.

The role that a type system with owned promises can serve in statically detecting deadlocks
remains an open question. Through the availability of more information on promise ownership
and thread relationships at compile-time, it may be possible to identify deadlocks early via
minor extensions to the type system. Finally, while data race freedom has not been proven
for the language, we believe that data races are likely impossible given our design.

We believe that our language provides a strong foundation for designing safer promise
abstractions in both novel and existing programming languages. Due to a decidable and
efficient type checking algorithm, we believe that the required analysis can be performed
at sufficient speeds for real-world programs. Further, we believe that accessing these new
guarantees is not overly burdensome to users, as no extra annotations are required to enforce
promise ownership. With a similar programming model to promises in C++, we believe that
our language provides the proper abstractions to write real-world code. Finally, we believe
that, with minimal additions to our type system, it is feasible to extend various existing
languages in order to adopt the same guarantees.

References
1 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding broken promises in

asynchronous javascript programs. Proc. ACM Program. Lang., 2(OOPSLA), October 2018.
doi:10.1145/3276532.

2 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear Haskell: Practical linearity in a higher-order polymorphic language.
Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158093.

ECOOP 2021

https://doi.org/10.1145/3276532
https://doi.org/10.1145/3158093

13:26 Linear Promises: Towards Safer Concurrent Programming

3 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of the 17th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’02, page 211–230, New York, NY, USA, 2002. Association for Computing Machinery.
doi:10.1145/582419.582440.

4 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty asynchronous
global programming. SIGPLAN Not., 48(1):263–274, January 2013. doi:10.1145/2480359.
2429101.

5 Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. Fast
and precise type checking for JavaScript. Proc. ACM Program. Lang., 1(OOPSLA), October
2017. doi:10.1145/3133872.

6 Maria Christakis and Christian Bird. What developers want and need from program analysis:
An empirical study. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, page 332–343, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2970276.2970347.

7 Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003: ICSE
Workshop on Dynamic Analysis, pages 24–27, 2003.

8 R. E. Fairley. Tutorial: Static analysis and dynamic testing of computer software. Computer,
11(4):14–23, 1978. doi:10.1109/C-M.1978.218132.

9 Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo. Forward to a
promising future. In Giovanna Di Marzo Serugendo and Michele Loreti, editors, Coordination
Models and Languages, pages 162–180, Cham, 2018. Springer International Publishing.

10 Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen, and Tobias
Wrigstad. Godot: All the Benefits of Implicit and Explicit Futures. In Alastair F. Donaldson,
editor, 33rd European Conference on Object-Oriented Programming (ECOOP 2019), volume
134 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:28, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ECOOP.2019.2.

11 Richard C. Holt. Some deadlock properties of computer systems. ACM Comput. Surv.,
4(3):179–196, 1972. doi:10.1145/356603.356607.

12 ISO. ISO/IEC 14882:2017 Information technology — Programming languages — C++, pages
1391–1407. International Organization for Standardization, Geneva, Switzerland, fifth edition,
2017. URL: https://www.iso.org/standard/68564.html.

13 Jonathan K. Lee and Jens Palsberg. Featherweight X10: A core calculus for async-finish
parallelism. SIGPLAN Not., 45(5):25–36, 2010. doi:10.1145/1837853.1693459.

14 B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls
in distributed systems. SIGPLAN Not., 23(7):260–267, 1988. doi:10.1145/960116.54016.

15 Magnus Madsen, Ondřej Lhoták, and Frank Tip. A model for reasoning about JavaScript
promises. Proc. ACM Program. Lang., 1(OOPSLA), 2017. doi:10.1145/3133910.

16 J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus with futures.
Theor. Comput. Sci., 364(3):338–356, 2006. doi:10.1016/j.tcs.2006.08.016.

17 Jihyun Park, Byoungju Choi, and Seungyeun Jang. Dynamic analysis method for concur-
rency bugs in multi-process/multi-thread environments. International Journal of Parallel
Programming, 48, December 2020. doi:10.1007/s10766-020-00661-3.

18 Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Scalable
and precise dynamic datarace detection for structured parallelism. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, page 531–542, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2254064.2254127.

19 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe &
efficient gradual typing for TypeScript. In Proceedings of the 42nd Annual ACM SIGPLAN-

https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/2480359.2429101
https://doi.org/10.1145/2480359.2429101
https://doi.org/10.1145/3133872
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1109/C-M.1978.218132
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://doi.org/10.1145/356603.356607
https://www.iso.org/standard/68564.html
https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/960116.54016
https://doi.org/10.1145/3133910
https://doi.org/10.1016/j.tcs.2006.08.016
https://doi.org/10.1007/s10766-020-00661-3
https://doi.org/10.1145/2254064.2254127

O. Rau, C. Voss, and V. Sarkar 13:27

SIGACT Symposium on Principles of Programming Languages, POPL ’15, page 167–180, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2676726.2676971.

20 Justin Slepak. Notes on substructural types. URL: http://www.ccs.neu.edu/~jrslepak/
substruct-notes.pdf.

21 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bharagavan,
and Jean Yang. Secure distributed programming with value-dependent types. Technical
Report MSR-TR-2011-37, Microsoft Research, March 2011. This is an extended version of
the conference paper (ICFP ’11) with the same title. A final version of this full technical
report is forthcoming. URL: https://www.microsoft.com/en-us/research/publication/
secure-distributed-programming-with-value-dependent-types/.

22 Caleb Voss and Vivek Sarkar. An ownership policy and deadlock detector for promises, 2021.
arXiv:2101.01312.

23 P. Wadler. Linear types can change the world! In Programming Concepts and Methods, 1990.
24 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed.

Oxide: The essence of Rust, 2020. arXiv:1903.00982v3.
25 Edwin Westbrook, Jisheng Zhao, Zoran Budimlić, and Vivek Sarkar. Practical permissions for

race-free parallelism. In James Noble, editor, ECOOP 2012 – Object-Oriented Programming,
pages 614–639, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

26 Dengping Zhu. To Memory Safety through Proofs. PhD thesis, Boston University, USA, 2006.
27 Erika Ábrahám, Immo Grabe, Andreas Grüner, and Martin Steffen. Behavioral interface

description of an object-oriented language with futures and promises. The Journal of Logic
and Algebraic Programming, 78(7):491–518, 2009. The 19th Nordic Workshop on Programming
Theory (NWPT 2007). doi:10.1016/j.jlap.2009.01.001.

ECOOP 2021

https://doi.org/10.1145/2676726.2676971
http://www.ccs.neu.edu/~jrslepak/substruct-notes.pdf
http://www.ccs.neu.edu/~jrslepak/substruct-notes.pdf
https://www.microsoft.com/en-us/research/publication/secure-distributed-programming-with-value-dependent-types/
https://www.microsoft.com/en-us/research/publication/secure-distributed-programming-with-value-dependent-types/
http://arxiv.org/abs/2101.01312
http://arxiv.org/abs/1903.00982v3
https://doi.org/10.1016/j.jlap.2009.01.001

Lifted Static Analysis of Dynamic Program
Families by Abstract Interpretation
Aleksandar S. Dimovski #

Mother Teresa University, Skopje, North Macedonia

Sven Apel #

Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany

Abstract
Program families (software product lines) are increasingly adopted by industry for building families
of related software systems. A program family offers a set of features (configured options) to control
the presence and absence of software functionality. Features in program families are often assigned at
compile-time, so their values can only be read at run-time. However, today many program families
and application domains demand run-time adaptation, reconfiguration, and post-deployment tuning.
Dynamic program families (dynamic software product lines) have emerged as an attempt to handle
variability at run-time. Features in dynamic program families can be controlled by ordinary program
variables, so reads and writes to them may happen at run-time.

Recently, a decision tree lifted domain for analyzing traditional program families with numerical
features has been proposed, in which decision nodes contain linear constraints defined over numerical
features and leaf nodes contain analysis properties defined over program variables. Decision nodes
partition the configuration space of possible feature values, while leaf nodes provide analysis
information corresponding to each partition of the configuration space. As features are statically
assigned at compile-time, decision nodes can be added, modified, and deleted only when analyzing
read accesses of features. In this work, we extend the decision tree lifted domain so that it can be used
to efficiently analyze dynamic program families with numerical features. Since features can now be
changed at run-time, decision nodes can be modified when handling read and write accesses of feature
variables. For this purpose, we define extended transfer functions for assignments and tests as well
as a special widening operator to ensure termination of the lifted analysis. To illustrate the potential
of this approach, we have implemented a lifted static analyzer, called DSPLNum2Analyzer, for
inferring numerical invariants of dynamic program families written in C. An empirical evaluation
on benchmarks from SV-COMP indicates that our tool is effective and provides a flexible way of
adjusting the precision/cost ratio in static analysis of dynamic program families.

2012 ACM Subject Classification Software and its engineering → Software product lines; Theory of
computation → Abstraction; Software and its engineering → Software functional properties

Keywords and phrases Dynamic program families, Static analysis, Abstract interpretation, Decision
tree lifted domain

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.14

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.6

1 Introduction

A program family (software product line) is a set of similar programs, called variants, that is
built from a common code base [39]. The variants of a program family can be distinguished
in terms of features, which describe the commonalities and variability between the variants.
Program families are commonly seen in the development of commercial embedded and critical
system domains, such as cars, phones, avionics, medicine, robotics, etc. [1]. There are
several techniques for implementing program families. Often traditional program families
[11] support static feature binding and require to know the values of features at compile-
time. For example, #if directives from the C preprocessor CPP represent the most common

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Aleksandar S. Dimovski and Sven Apel;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 14; pp. 14:1–14:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksandar.dimovski@unt.edu.mk
https://orcid.org/0000-0002-3601-2631
mailto:apel@cs.uni-saarland.de
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/DARTS.7.2.6
https://doi.org/10.4230/DARTS.7.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

implementation mechanism in practice [34]. At compile-time, a variant is derived by assigning
concrete values to a set of features relevant for it, and only then is this variant compiled or
interpreted. However, in an increasingly dynamic world, the increasing need for adaptive
software demands highly configurable and adaptive variability mechanisms, many of them
managed at run-time. Recent development approaches such as dynamic program families
(dynamic software product lines) [29, 28, 41, 7] support dynamic feature binding, and so
features can be assigned at run-time. This provides high flexibility to tailor a variant with
respect to available resources and user preferences on demand. Dynamic binding is often
necessary in long-running systems that cannot be stopped but have to adapt to changing
requirements [27]. For example, for a mobile device, we can decide at run-time which values
of features are actually required according to the location of the device. Hence, a dynamic
program family adapts to dynamically changing requirements by reconfiguring itself, which
may result in an infinite configuration process [10].

In this paper, we devise an approach to perform static analysis by abstract interpretation
of dynamic program families. Abstract interpretation [12, 38] is a powerful framework for
approximating the semantics of programs. It provides static analysis techniques that analyze
the program’s source code directly and without intervention at some level of abstraction.
The obtained static analyses are sound (all reported correct programs are indeed correct)
and efficient (with a good trade-off between precision and cost). However, static analysis
of program families is harder than static analysis of single programs, because the number
of possible variants can be very large (often huge) in practice. Recently, researchers have
addressed this problem by designing aggregate lifted (family-based) static analyses [5, 36, 47],
which analyze all variants of the family simultaneously in a single run. These techniques take
as input the common code base, which encodes all variants of a program family, and produce
precise analysis results for all variants. Lifted static analysis by abstract interpretation of
traditional (static) program families with numerical features has been introduced recently
[21]. The elements of the lifted abstract domain are decision trees, in which the decision
nodes are labelled with linear constraints over numerical features, whereas the leaf nodes
belong to a single-program analysis domain. The decision trees recursively partition the
space of configurations (i.e., the space of possible combinations of feature values), whereas
the program properties at the leaves provide analysis information corresponding to each
partition, i.e. to the variants (configurations) that satisfy the constraints along the path to
the given leaf node. Since features are statically bound at compile-time and only appear in
presence conditions of #if directives, new decision nodes can only be added by feature-based
presence conditions (at #if directives), and existing decision nodes can be removed when
merging the corresponding control flows again. The fundamental limitation of this decision
tree lifted domain [21] (as well as other lifted domains [4, 36, 47]) is that it cannot handle
dynamically bound features that can be changed at run-time.

To improve over the state-of-the-art, we devise a novel decision tree lifted domain for
analyzing dynamic program families with numerical features. Since features can now be
dynamically reconfigured and bound at run-time, linear constraints over features that occur
in decision nodes can be dynamically changed during the analysis. This requires extended
transfer functions for assignments and tests that can freely modify decision nodes and leafs.
Moreover, we need a special widening operator applied on linear constraints in decision nodes
as well as on analysis properties in leaf nodes to ensure that we obtain finite decision trees.
This way, we minimize the cost of the lifted analysis and ensure its termination.

The resulting decision tree lifted domain is parametric in the choice of the numerical
domain that underlies the linear constraints over numerical features labelling decision nodes,
and the choice of the single-program analysis domain for leaf nodes. In our implementation,

A. S. Dimovski and S. Apel 14:3

we also use numerical domains for leaf nodes, which encode linear constraints over both
program and feature variables. We use well-known numerical domains, including intervals [12],
octagons [37], polyhedra [16], from the APRON library [33], to obtain a concrete decision
tree-based implementation of the lifted abstract domain. To demonstrate the feasibility of our
approach, we have implemented a lifted analysis of dynamic program families written in C for
the automatic inference of numerical invariants. Our tool, called DSPLNum2Analyzer1,
computes a set of possible numerical invariants, which represent linear constraints over
program and feature variables. We can use the implemented lifted static analyzer to check
invariance properties of dynamic program families in C, such as assertions, buffer overflows,
null pointer references, division by zero, etc. [14].

Since features behave as ordinary program variables in dynamic program families, they
can be also analyzed using off-the-shelf single-program analyzers. For example, we can use
numerical abstract domains from the APRON library [33] for analyzing dynamic program
families. However, these domains infer a conjunction of linear constraints over variables to
record the information of all possible values of variables and relationships between them.
The absence of disjunctions may result in rough approximations and very weak analysis
results, which may lead to imprecisions and the failure of showing the required program
properties. The decision tree lifted domain proposed here overcomes these limitations of
standard single-program analysis domains by adding weak forms of disjunctions arising from
feature-based program constructs. The elements of the decision tree lifted domain partition
the space of possible values of features inducing disjunctions into the leaf domain.

In summary, we make several contributions:
We propose a new parameterized decision tree lifted domain suited for handling program
families with dynamically bound features.
We develop a lifted static analyzer, DSPLNum2Analyzer, in which the lifted domain is
instantiated to numerical domains from the APRON library.
We evaluate our approach for lifted static analysis of dynamic program families written
in C. We compare (precision and time) performances of our decision tree-based approach
with the single-program analysis approach; and we show their concrete application in
assertion checking. Our lifted analysis provides an acceptable precision/cost tradeoff: we
obtain invariants with a higher degree of precision within a reasonable amount of time
than when using single-program analysis.

2 Motivating Example

We now illustrate the decision tree lifted domain through several motivating examples. The
code base of the program family sFAMILY is given in Fig. 1. sFAMILY contains one
numerical feature A whose domain is [0, 99] = {0, 1, . . . , 99}. Thus, there are a hundred
valid configurations K = {(A = 0), (A = 1), . . . , (A = 99)}. The code of sFAMILY contains
one #if directive that changes the current value of program variable y depending on how
feature A is set at compile-time. For each configuration from K, a variant (single program)
can be generated by appropriately resolving the #if directive. For example, the variant
corresponding to configuration (A=0) will have the assignment y := y+1 included in location

3⃝, whereas the variant corresponding to configuration (A = 10) will have the assignment
y := y-1 included in location 3⃝.

1 Num2 in the name of the tool refers to its ability to both handle Numerical features and to perform
Numerical client analysis of dynamic program families (DSPLs).

ECOOP 2021

14:4 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

1⃝ int x := 10, y := 5;
2⃝ while (x ≥ 0) {
3⃝ #if (A ≤ 5) y := y+1;
4⃝ #else y := y-1; #endif
5⃝ x := x-1;
6⃝ }

Figure 1 Program family sFAMILY.

1⃝ int x := 10, y := 5;
2⃝ A := [0, 9];
3⃝ while (x ≥ 0) {
4⃝ if (A ≤ 5) then y := y+A;
5⃝ else y := y-A;
6⃝ x := x-1; }
7⃝ if (A ≤ 5) then assert (y ≥ 5);
8⃝ else assert (y≤−60);

Figure 2 Dynamic program family dFAMILY.

A ≤ 5

y = 16 ∧ x = −1 y=−6 ∧ x=−1
(a) sFAMILY.

A ≤ 5

5≤y-A≤55 ∧ x=−1 6 ≤

A≤ 9

−85≤y+A≤−55 ∧ x=−1 ⊥

(b) dFAMILY.

Figure 3 Inferred decision trees at final program locations (solid edges = true, dashed edges =
false).

Assume that we want to perform lifted polyhedra analysis of sFAMILY using the decision
tree lifted domain introduced in [21]. The decision tree inferred at the final location of
sFAMILY is shown in Fig. 3a. Notice that inner decision nodes (resp., leaves) of the decision
tree in Fig. 3a are labeled with Polyhedra linear constraints over feature A (resp., over
program variables x and y). The edges of decision trees are labeled with the truth value of
the decision on the parent node; we use solid edges for true (i.e. the constraint in the parent
node is satisfied) and dashed edges for false (i.e. the negation of the constraint in the parent
node is satisfied). We observe that decision trees offer good possibilities for sharing and
interaction between analysis properties corresponding to different configurations, and so they
provide compact representation of lifted analysis elements. For example, the decision tree in
Fig. 3a shows that when (A≤5) the shared property in the final location is (y=16, x=−1),
whereas when (A>5) the shared property is (y=−6, x=−1). Hence, the decision tree-based
approach uses only two leaves (program properties), whereas the brute force enumeration
approach that analyzes all variants one by one will use a hundred program properties. This
ability for sharing is the key motivation behind the usage of decision trees in lifted analysis.

Consider the code base of the dynamic program family dFAMILY in Fig. 2. Similarly
to sFAMILY, dFAMILY contains one feature A with domain [0, 99]. However, feature A in
sFAMILY can only be read and occurs only in presence conditions of #if-s. In contrast,
feature A in dFAMILY can also be assigned and occurs freely in the code as any other
program variable (see locations 2⃝, 4⃝, 5⃝, and 7⃝). To perform lifted polyhedra analysis
of dFAMILY, we need to extend the decision tree lifted domain for traditional program
families [21], so that it takes into account the new possibilities of features in dynamic program
families. The decision tree inferred in program location 7⃝ of dFAMILY is depicted in
Fig. 3b. It can be written as the following disjunctive property in first order logic:(

0≤A≤5∧ 5≤y-A≤55∧ x=−1
)
∨

(
6≤A≤9∧−85≤y+A≤−55∧ x=−1

)
∨

(
9<A≤99∧⊥

)

A. S. Dimovski and S. Apel 14:5

This invariant successfully confirms the validity of the given assertion. Note that, the
leaf node ⊥ abstracts only the empty set of (concrete) program states and so it describes
unreachable program locations. Hence, ⊥ in Fig. 3b means that the assertion at location 7⃝ is
unreachable when (A > 9). Also, as decision nodes partition the space of valid configurations
K, we implicitly assume the correctness of linear constraints that take into account domains
of features. For example, the decision node (A≤5) is satisfied when (A ≤ 5) ∧ (0≤A≤99),
whereas its negation is satisfied when (A > 5) ∧ (0≤ A≤ 99). The constraint (0≤ A≤ 99)
represents the domain of A.

Alternatively, dynamic program family dFAMILY can be analyzed using the off-the-shelf
(single-program) APRON polyhedra domain [33], such that feature A is considered as an
ordinary program variable. In this case, we obtain the invariant: A+y≤66 ∧ A-y≥−54 at
location 7⃝. However, this invariant is not strong enough to establish the validity of the
given assertion. This is because the different partitions of the set of valid configurations
have different behaviours and this single-program domain do not consider them separately.
Therefore, this domain is less precise than the decision tree lifted domain that takes those
differences into account.

3 A Language for Dynamic Program Families

Let F = {A1, . . . , An} be a finite and totaly ordered set of numerical features available in a
dynamic program family. For each feature A ∈ F, dom(A) ⊆ Z denotes the set of possible
values that can be assigned to A. Note that any Boolean feature can be represented as
a numerical feature B ∈ F with dom(B) = {0, 1}, such that 0 means that feature B is
disabled while 1 means that B is enabled. An assignment of values to all features represents
a configuration k, which specifies one variant of a program family. It is given as a valuation
function k : K = F → Z, which is a mapping that assigns a value from dom(A) to each
feature A, i.e. k(A) ∈ dom(A) for any A ∈ F. We assume that only a subset K of all
possible configurations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented by a formula:
(A1 = k(A1)) ∧ . . . ∧ (An = k(An)). Given a Boolean feature B ∈ F, we often abbreviate
(B = 1) with formula B and (B = 0) with formula ¬B. The set of valid configurations K
can be also represented as a formula: ∨k∈Kk.

We consider a simple sequential non-deterministic programming language, which will be
used to exemplify our work. The program variables Var are statically allocated and the
only data type is the set Z of mathematical integers. To introduce dynamic variability into
the language, apart from reading the current values of features, it is possible to write into
features. The new statement “A:=ae” has a possibility to update the current configuration
(variant) k ∈ K by assigning a new arithmetic expression ae to feature A. This is known
as run-time reconfiguration [7]. We write k[A 7→ n] for the updated configuration that is
identical to k but feature A is mapped to value n. The syntax of the language is:

s ::= skip | x:=ae | s; s | if (be) then s else s | while (be) do s | A:=ae,

ae ::= n | [n, n′] | x ∈ Var | A ∈ F | ae⊕ae,

be ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

where n ranges over integers Z, [n, n′] over integer intervals, x over program variables Var, A

over numerical features F, and ⊕ ∈ {+,−, ∗, /}, ▷◁∈ {<,≤, =, ̸=}. Integer intervals [n, n′]
denote a random choice of an integer in the interval. The set of all statements s is denoted
by Stm; the set of all arithmetic expressions ae is denoted by AExp; the set of all boolean
expressions be is denoted by BExp.

ECOOP 2021

14:6 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

[[skip]]S = S

[[x := ae]]S = {⟨σ[x 7→ n], k⟩ | ⟨σ, k⟩ ∈ S, n ∈ [[ae]]⟨σ, k⟩}
[[s1 ; s2]]S = [[s2]]([[s1]]S)

[[if be then s1 else s2]]S = [[s1]]{⟨σ, k⟩ ∈ S | true ∈ [[be]]⟨σ, k⟩}∪
[[s2]]{⟨σ, k⟩ ∈ S | false ∈ [[be]]⟨σ, k⟩}

[[while be do s]]S = {⟨σ, k⟩ ∈ lfp ϕ | false ∈ [[be]]⟨σ, k⟩}
ϕ(X) = S ∪ [[s]]{⟨σ, k⟩ ∈ X | true ∈ [[be]]⟨σ, k⟩}

[[A := ae]]S = {⟨σ, k[A 7→n]⟩ | ⟨σ, k⟩∈S, n∈ [[ae]]⟨σ, k⟩, k[A 7→n]∈K}

Figure 4 Invariance semantics [[s]] : P(Σ × K) → P(Σ × K).

Semantics

We now define the semantics of a dynamic program family. A store σ : Σ = Var → Z
is a mapping from program variables to values, whereas a configuration k : K = F → Z
is a mapping from numerical features to values. A program state s = ⟨σ, k⟩ : Σ × K is a
pair consisting of a store σ ∈ Σ and a configuration k ∈ K. The semantics of arithmetic
expressions [[ae]] : Σ × K → P(Z) is the set of possible values for expression ae in a given
state. It is defined by induction on ae as a function from a store and a configuration to a set
of values:

[[n]]⟨σ, k⟩ = {n}, [[[n, n′]]]⟨σ, k⟩ = {n, . . . , n′}, [[x]]⟨σ, k⟩ = {σ(x)},
[[A]]⟨σ, k⟩ = {k(A)}, [[ae0⊕ae1]]⟨σ, k⟩ = {n0 ⊕ n1 | n0 ∈ [[ae0]]⟨σ, k⟩, n1 ∈ [[ae1]]⟨σ, k⟩}

Similarly, the semantics of boolean expressions [[be]] : Σ×K→ P({true, false}) is the set of
possible truth values for expression be in a given state.

[[ae0▷◁ae1]]⟨σ, k⟩ = {n0 ▷◁ n1 | n0 ∈ [[ae0]]⟨σ, k⟩, n1 ∈ [[ae1]]⟨σ, k⟩}
[[¬be]]⟨σ, k⟩ = {¬t | t ∈ [[be]]⟨σ, k⟩},
[[be0 ∧ be1]]⟨σ, k⟩ = {t0 ∧ t1 | t0 ∈ [[be0]]⟨σ, k⟩, t1 ∈ [[be1]]⟨σ, k⟩}
[[be0 ∨ be1]]⟨σ, k⟩ = {t0 ∨ t1 | t0 ∈ [[be0]]⟨σ, k⟩, t1 ∈ [[be1]]⟨σ, k⟩}

We define an invariance semantics [12, 38] on the complete lattice ⟨P(Σ×K),⊆,∪,∩, ∅, Σ×
K⟩ by induction on the syntax of programs. It works on sets of states, so the property of
interest is the possible sets of stores and configurations that may arise at each program
location. In Fig. 4, we define the invariance semantics [[s]] : P(Σ×K)→ P(Σ×K) of each
program statement. The states resulting from the invariance semantics are built forward:
each function [[s]] takes as input a set of states (i.e. pairs of stores and configurations)
S ∈ P(Σ×K) and outputs the set of possible states at the final location of the statement.
The operation k[A 7→n] (resp., σ[x 7→ n]) is used to update a configuration from K (resp., a
store from Σ). Note that a while statement is given in a standard fixed-point formulation
[12], where the fixed-point functional ϕ : P(Σ×K)→ P(Σ×K) accumulates the possible
states after another while iteration from a given set of states X.

However, the invariance semantics [[s]] is not computable since our language is Turing
complete. In the following, we present sound decidable abstractions of [[s]] by means of
decision tree-based abstract domains.

A. S. Dimovski and S. Apel 14:7

4 Decision Trees Lifted Domain

Lifted analyses are designed by lifting existing single-program analyses to work on program
families, rather than on individual programs. Lifted analysis for traditional program families
introduced in [21] relies on a decision tree lifted domain. The leaf nodes of decision trees
belong to an existing single-program analysis domain, and are separated by linear constraints
over numerical features, organized in decision nodes. In Section 4.1, we first recall basic
elements of the decision tree lifted domain [21] that can be reused for dynamic program
families. Then, in Section 4.2 we consider extended transfer functions for assignments
and tests when features can freely occur in them, whereas in Section 4.3 we define the
extrapolation widening operator for this lifted domain. Finally, we define the abstract
invariance semantics based on this domain and show its soundness in Section 4.4.

4.1 Basic elements
Abstract domain for leaf nodes

We assume that a single-program numerical domain D defined over a set of variables V is
equipped with sound operators for concretization γD, ordering ⊑D, join ⊔D, meet ⊓D, the
least element (called bottom) ⊥D, the greatest element (called top) ⊤D, widening ∇D, and
narrowing △D, as well as sound transfer functions for tests (boolean expressions) FILTERD
and forward assignments ASSIGND. The domain D employs data structures and algorithms
specific to the shape of invariants (analysis properties) it represents and manipulates. More
specifically, the concretization function γD assigns a concrete meaning to each element in D,
ordering ⊑D conveys the idea of approximation since some analysis results may be coarser
than some other results, whereas join ⊔D and meet ⊓D convey the idea of convergence since
a new abstract element is computed when merging control flows. To analyze loops effectively
and efficiently, the convergence acceleration operators such as widening ∇D and narrowing △D
are used. Transfer functions give abstract semantics of expressions and statements. Hence,
ASSIGND(d : D, x:=ae : Stm) returns an updated version of d by abstractly evaluating x:=ae

in it, whereas FILTERD(d : D, be : BExp) returns an abstract element from D obtained
by restricting d to satisfy test be. In practice, the domain D will be instantiated with
some of the known numerical domains, such as Intervals ⟨I,⊑I⟩ [12], Octagons ⟨O,⊑O⟩
[46], and Polyhedra ⟨P,⊑P ⟩ [16]. The elements of I are intervals of the form: ±x ≥ β,
where x ∈ V, β ∈ Z; the elements of O are conjunctions of octagonal constraints of the form
±x1±x2 ≥ β, where x1, x2 ∈ V, β ∈ Z; while the elements of P are conjunctions of polyhedral
constraints of the form α1x1 + . . . + αkxk + β ≥ 0, where x1, . . . xk ∈ V, α1, . . . , αk, β ∈ Z.

We will sometimes write DV to explicitly denote the set of variables V over which domain D
is defined. In this work, we use domains DVar∪F for leaf nodes of decision trees that are defined
over both program and feature variables. The abstraction for numerical domains ⟨DVar∪F,⊑D⟩
is formally defined by the concretization-based abstraction ⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩.
We refer to [38] for a more detailed discussion of the definition of γD as well as other abstract
operations and transfer functions for Intervals, Octagons, and Polyhedra.

Abstract domain for decision nodes

We introduce a family of abstract domains for linear constraints CD defined over features
F, which are parameterized by any of the numerical domains D (intervals I, octagons O,
polyhedra P). For example, the finite set of polyhedral constraints is CP = {α1A1 + . . . +
αkAk + β ≥ 0 | A1, . . . Ak ∈ F, α1, . . . , αk, β ∈ Z, gcd(|α1|, . . . , |αk|, |β|) = 1}. The finite set

ECOOP 2021

14:8 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

CD of linear constraints over features F is constructed by the underlying numerical domain
⟨D,⊑D⟩ using the Galois connection ⟨P(CD),⊑D⟩ −−−−→←−−−−

αCD

γCD ⟨D,⊑D⟩, where P(CD) is the power
set of CD. The concretization function γCD : D→ P(CD) maps a conjunction of constraints
from D to a finite set of constraints in P(CD).

The domain of decision nodes is CD. We assume the set of features F = {A1, . . . , An} to
be totally ordered, such that the ordering is A1 > . . . > An. We impose a total order <CD

on CD to be the lexicographic order on the coefficients α1, . . . , αn and constant αn+1 of the
linear constraints, such that:

(α1 ·A1 + . . . + αn ·An + αn+1≥0) <CD (α′
1 ·A1 + . . . + α′

n ·An + α′
n+1≥0)

⇐⇒ ∃j > 0.∀i < j.(αi = α′
i) ∧ (αj < α′

j)

The negation of linear constraints is formed as: ¬(α1A1+. . . αnAn+β≥0) = −α1A1 −
. . .− αnAn − β − 1 ≥ 0. For example, the negation of A− 3 ≥ 0 is −A + 2 ≥ 0. To ensure
canonical representation of decision trees, a linear constraint c and its negation ¬c cannot
both appear as decision nodes. Thus, we only keep the largest constraint with respect to
<CD between c and ¬c.

Abstract domain for decision trees

A decision tree t ∈ T(CDF ,DVar∪F) over the sets CDF of linear constraints defined over F
and the leaf abstract domain DVar∪F defined over Var ∪ F is: either a leaf node ≪d≫
with d ∈ DVar∪F, or [[c : tl, tr]], where c ∈ CDF (denoted by t.c) is the smallest constraint
with respect to <CD appearing in the tree t, tl (denoted by t.l) is the left subtree of t

representing its true branch, and tr (denoted by t.r) is the right subtree of t representing its
false branch. The path along a decision tree establishes the set of configurations (those that
satisfy the encountered constraints), and the leaf nodes represent the analysis properties for
the corresponding configurations.

▶ Example 1. The following two decision trees t1 and t2 have decision and leaf nodes labelled
with polyhedral linear constraints defined over numerical feature A with domain Z and over
integer program variable y, respectively:

t1 = [[A≥4 :≪[y≥2]≫,≪[y =0]≫]], t2 = [[A≥2 :≪[y≥0]≫,≪[y≤0]≫]] ⌟

Abstract Operations

We define the following concretization-based abstraction ⟨P(Σ×K),⊆⟩ γT←− ⟨T(CD,D),⊑T⟩.
The concretization function γT of a decision tree t ∈ T(CD,D) returns a set of pairs ⟨σ, k⟩,
such that ⟨σ, k⟩ ∈ γD(d) and k satisfies the set C ∈ P(CD) of constraints accumulated along
the top-down path to the leaf node d ∈ D. More formally, the concretization function
γT(t) : T(CD,D)→ P(Σ×K) is defined as:

γT(t) = γT[K](t)

where K ∈ P(CD) is the set of configurations, i.e. the set of constraints over F taking into
account the domains of features. Function γT : P(CD)→ T(CD,D)→ P(Σ×K) is defined as:

γT[C](≪d≫)={⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d), k |= C},
γT[C]([[c : tl, tr]])=γT[C ∪ {c}](tl) ∪ γT[C ∪ {¬c}](tr)

Note that k |= C is equivalent with αCD({k}) ⊑D αCD(C), thus we can check k |= C using
the abstract operation ⊑D of the numerical domain D.

A. S. Dimovski and S. Apel 14:9

Algorithm 1 UNIFICATION(t1, t2, C).

1 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2);
2 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
3 if isRedundant(t2.c, C) then return UNIFICATION(t1, t2.l, C);
4 if isRedundant(¬t2.c, C) then return UNIFICATION(t1, t2.r, C);
5 (l1, l2) = UNIFICATION(t1, t2.l, C ∪ {t2.c});
6 (r1, r2) = UNIFICATION(t1, t2.r, C ∪ {¬t2.c});
7 return ([[t2.c : l1, r1]], [[t2.c : l2, r2]]);
8 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c <CD t2.c) then
9 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C);

10 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C);
11 (l1, l2) = UNIFICATION(t1.l, t2, C ∪ {t1.c});
12 (r1, r2) = UNIFICATION(t1.r, t2, C ∪ {¬t1.c});
13 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);
14 else
15 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2.l, C);
16 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2.r, C);
17 (l1, l2) = UNIFICATION(t1.l, t2.l, C ∪ {t1.c});
18 (r1, r2) = UNIFICATION(t1.r, t2.r, C ∪ {¬t1.c});
19 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

Other binary operations rely on the algorithm for tree unification [45] given in Algorithm 1,
which finds a common labelling of two trees t1 and t2 by forcing them to have the same
structure. It accumulates into the set C ∈ P(CD) (initially equal to K) the linear constraints
encountered along the paths of the decision trees possibly adding new constraints as decision
nodes (Lines 5–7, Lines 11–13) or removing constraints that are redundant with respect
to C (Lines 3,4,9,10,15,16). This is done by using the function isRedundant(c, C), which
checks whether the linear constraint c ∈ CD is redundant with respect to the set C by testing
αCD(C) ⊑D αCD({c}). Note that the tree unification does not lose any information.

▶ Example 2. After tree unification of t1 and t2 from Example 1, we obtain:

t1 = [[A ≥ 4 :≪[y ≥ 2]≫, [[A ≥ 2 :≪[y = 0]≫,≪[y = 0]≫]]]],
t2 = [[A ≥ 4 :≪[y ≥ 0]≫, [[A ≥ 2 :≪[y ≥ 0]≫,≪[y ≤ 0]≫]]]]

Note that the tree unification adds a decision node for A ≥ 2 to the right subtree of t1,
whereas it adds a decision node for A ≥ 4 to t2 and removes the redundant constraint A ≥ 2
from the resulting left subtree of t2. ⌟

Some binary operations are performed leaf-wise on the unified decision trees. Given two
unified decision trees t1 and t2, their ordering t1 ⊑T t2, join t1 ⊔T t2, and meet t1 ⊓T t2 are
defined recursively:

≪d1≫⊑T≪d2≫= d1⊑D d2, [[c : tl1, tr1]]⊑T [[c : tl2, tr2]]=(tl1⊑T tl2) ∧ (tr1⊑T tr2)
≪d1≫⊔T≪d2≫=≪d1⊔Dd2≫, [[c : tl1, tr1]]⊔T [[c : tl2, tr2]]=[[c : tl1⊔Ttl2, tr1⊔Ttr2]]
≪d1≫⊓T≪d2≫=≪d1⊓Dd2≫, [[c : tl1, tr1]]⊓T [[c : tl2, tr2]]=[[c : tl1⊓Ttl2, tr1⊓Ttr2]]

The top is a tree with a single ⊤D leaf: ⊤T =≪⊤D≫, while the bottom is a tree with a single
⊥D leaf: ⊥T =≪⊥D≫.

ECOOP 2021

14:10 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

▶ Example 3. Consider the unified trees t1 and t2 from Example 2. We have that t1⊑T t2
holds, t1⊔Tt2 =[[A≥4:≪[y≥0]≫, [[A≥2:≪[y≥0]≫,≪[y≤0]≫]]]], and t1⊓Tt2 =[[A≥4:≪[y≥2]≫
, [[A≥2:≪[y =0]≫,≪[y =0]≫]]]]. ⌟

The concretization function γT is monotonic with respect to the ordering ⊑T.

▶ Lemma 4. ∀t1, t2 ∈ T(CD,D): t1 ⊑T t2 =⇒ γT(t1) ⊆ γT(t2).

Proof. Let t1, t2 ∈ T such that t1 ⊑T t2. The ordering ⊑T between decision trees is
implemented by first calling the tree unification algorithm, and then by comparing the
decision trees “leaf-wise”. Tree unification forces the same structure on decision trees, so
all paths to the leaf nodes coincide between the unified decision trees. Let C ∈ P(CD)
denote the set of linear constraints satisfied along a path of the unified decision trees, and let
d1, d2 ∈ DVar∪F denote the leaf nodes reached following the path C within the first and the
second decision tree. Since t1 ⊑T t2, we have that d1 ⊑D d2 and so γD(d1) ⊆ γD(d2). The
proof follows from: {⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d1), k |= C} ⊆ {⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d2), k |= C}. ◀

Basic Transfer functions

We define basic lifted transfer functions for forward assignments (ASSIGNT) and tests
(FILTERT), when only program variables occur in given assignments and tests (boolean
expressions). Those basic transfer functions ASSIGNT and FILTERT modify only leaf nodes
since the analysis information about program variables is located in leaf nodes while the
information about features is located in both decision nodes and leaf nodes.

Algorithm 2 ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var.

1 if isLeaf(t) then return ≪ASSIGNDVar∪F(t, x:=ae)≫;
2 if isNode(t) then
3 l = ASSIGNT(t.l, x:=ae, C ∪ {t.c});
4 r = ASSIGNT(t.r, x:=ae, C ∪ {¬t.c});
5 return [[t.c : l, r]]

Algorithm 3 FILTERT(t, be, C) when vars(be) ⊆ Var.

1 if isLeaf(t) then return ≪FILTERDVar∪F(t, be)≫;
2 if isNode(t) then
3 l = FILTERT(t.l, be, C ∪ {t.c});
4 r = FILTERT(t.r, be, C ∪ {¬t.c});
5 return [[t.c : l, r]]

Basic transfer function ASSIGNT for handling an assignment x:=ae is described by
Algorithm 2. Note that x ∈ Var is a program variable, and ae ∈ AExp may contain only
program variables, i.e. the set of variables that occur in ae is vars(ae) ⊆ Var. ASSIGNT
descends along the paths of the decision tree t up to a leaf node d, where ASSIGNDVar∪F is
invoked to substitute expression ae for variable x in d. Similarly, basic transfer function
FILTERT for handling tests be ∈ BExp when vars(be) ⊆ Var, given in Algorithm 3, is
implemented by applying FILTERDVar∪F leaf-wise, so that be is satisfied by all leaves.

A. S. Dimovski and S. Apel 14:11

Algorithm 4 FILTERT(t, be, C) when vars(be) ⊆ F.

1 switch be do
2 case (ae0 ▷◁ ae1) || (¬(ae0 ▷◁ ae1)) do
3 J = FILTERDF(⊤DF , be); return RESTRICT(t, C, J)
4 case be1 ∧ be2 do
5 return FILTERT(t, be1, C) ⊓T FILTERT(t, be2, C)
6 case be1 ∨ be2 do
7 return FILTERT(t, be1, C) ⊔T FILTERT(t, be2, C)

Note that, in program families with static feature binding, features occur only in presence
conditions (tests) of #if directives. Thus, special transfer functions FEAT-FILTERT for
feature-based tests and IFDEFT for #if directives are defined in [21], which can add, modify,
or delete decision nodes of a decision tree. Therefore, the basic transfer function FILTERT
for handling tests be ∈ BExp when vars(be) ⊆ F coincides with FEAT-FILTERT in [21],
and is given in Algorithm 4. It reasons by induction on the structure of be. When be is a
comparison of arithmetic expressions (Lines 2,3), we use FILTERDF to approximate be, thus
producing a set of constraints J , which are then added to the tree t, possibly discarding
all paths of t that do not satisfy be. This is done by calling function RESTRICT(t, C, J),
which adds linear constraints from J to t in ascending order with respect to <CD as shown
in Algorithm 5. Note that be may not be representable exactly in CD (e.g., in the case of
non-linear constraints over F), so FILTERDF may produce a set of constraints approximating
it. When be is a conjunction (resp., disjunction) of two feature expressions (Lines 4,5) (resp.,
(Lines 6,7)), the resulting decision trees are merged by operation meet ⊓T (resp., join ⊔T).

The above transfer function and some of the remaining operations rely on function
RESTRICT given in Algorithm 5 for constraining a decision tree t with respect to a given set J

of linear constraints over F. The subtrees whose paths from the root satisfy these constraints
are preserved, while leafs of the other subtrees are replaced with bottom ⊥D. Function
RESTRICT(t, C, J) takes as input a decision tree t, a set C of constraints accumulated along
paths up to a node, a set J of linear constraints in canonical form that need to be added to
t. For each constraint j ∈ J , there exists a boolean bj that shows whether the tree should be
constrained with respect to j (bj is set to true) or with respect to ¬j (bj is set to false). At
each iteration, the smallest linear constraint j is extracted from J (Line 9), and is handled
appropriately based on whether j is smaller or equal (Line 11–15), or greater (Line 17–21) to
the constraint at the node of t we currently consider.

4.2 Extended transfer functions
We now define extended transfer functions ASSIGNT and FILTERT where assignments and
tests may contain both feature and program variables.

Assignments

Transfer function ASSIGNT(t, x:=ae, C), when vars(ae) ⊆ Var ∪ F, is given in Algorithm 6.
It accumulates the constraints along the paths in the decision tree t in a set of constraints
C ∈ P(CD) (Lines 8–10), which is initialized to K, up to the leaf nodes in which assignment
is performed by ASSIGNDVar∪F . That is, we first merge constraints from the leaf node t

ECOOP 2021

14:12 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

Algorithm 5 RESTRICT(t, C, J).

1 if isEmpty(J) then
2 if isLeaf(t) then return t;
3 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
4 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
5 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
6 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
7 return ([[t.c : l, r]]);
8 else
9 j = min<CD

(J) ;
10 if isLeaf(t) ∨ (isNode(t) ∧ j ≤CD t.c) then
11 if isRedundant(j, C) then return RESTRICT(t, C, J\{j});
12 if isRedundant(¬j, C) then return ≪⊥A≫;
13 if j =CD t.c then (if bj then t = t.l else t = t.r) ;
14 if bj then return ([[j : RESTRICT(t, C ∪ {j}, J\{j}),≪⊥A≫]]) ;
15 else return ([[j :≪⊥A≫, RESTRICT(t, C ∪ {¬j}, J\{j})]]) ;
16 else
17 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
18 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
19 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
20 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
21 return ([[t.c : l, r]]);

defined over Var∪F and constraints from decision nodes C ∈ P(CDF) defined over F, by using
⊎Var∪F operator. Thus, we obtain an abstract element from DVar∪F on which the assignment
operator of the domain DVar∪F is applied (Line 2).

Transfer function ASSIGNT(t, A:=ae, C), when vars(ae) ⊆ Var ∪ F, is implemented by
Algorithm 7. It calls the auxiliary function ASSIGN-AUXT(t, A:=ae, C), which performs the
assignment on each leaf node t merged with the set of linear constraints C collected along the
path to the leaf (Line 6). The obtained result d′ is a new leaf node (Line 7), and furthermore
it is projected on feature variables using ↾F operator to generate a new set of constraints
J = γCD(d′ ↾F) that needs to be substituted to C in the decision tree (Lines 8–13). The
substitution is done at each decision node, such that new sets of constraints J1 and J2 are
collected from its left and right subtrees, and then they are used as constraints in the given
decision node instead of t.c and ¬t.c. Let J = J1 ∩ J2 be the common (overlapping) set of
constraints that arise due to non-determinism (Line 11). When both J1\J and J2\J are
empty, the left and the right subtrees are joined (Line 12). Otherwise, the corresponding
tree is constructed using sets J1\J and J2\J and together with the set J are propagated to
the parent node (Line 13). Note that, if some of the sets of constraints J , J1\J , and J2\J is
empty in the returned trees in Lines 12-13, then it is considered as a true constraint so that
its true branch is always taken.

Tests

Transfer function FILTERT(t, be, C), when vars(be) ⊆ Var ∪ F, is described by Algorithm 8.
Similarly to ASSIGNT(t, x:=ae, C) in Algorithm 6, it accumulates the constraints along the
paths in the decision tree t in a set of constraints C ∈ P(CD) up to the leaf nodes (Lines

A. S. Dimovski and S. Apel 14:13

Algorithm 6 ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var ∪ F.

1 if isLeaf(t) then
2 d′ = ASSIGNDVar∪F(t ⊎Var∪F αCD(C), x:=ae);
3 return ≪d′≫
4 if isNode(t) then
5 l = ASSIGNT(t.l, x:=ae, C ∪ {t.c});
6 r = ASSIGNT(t.r, x:=ae, C ∪ {¬t.c});
7 return [[t.c : l, r]]

Algorithm 7 ASSIGNT(t, A:=ae, C) when vars(ae) ⊆ Var ∪ F.

1 (t,d) = ASSIGN-AUXT(t, A:=ae, C)
2 return t

3

4 Function ASSIGN-AUXT(t, A:=ae, C):
5 if isLeaf(t) then
6 d′ = ASSIGNDVar∪F(t ⊎Var∪F αCD(C), A:=ae)
7 return (≪d′≫, γCD(d′ ↾F))
8 if isNode(t) then
9 (t1, J1) = ASSIGN-AUXT(t.l, A:=ae, C ∪ {t.c})

10 (t2, J2) = ASSIGN-AUXT(t.r, A:=ae, C ∪ {¬t.c})
11 J = J1 ∩ J2
12 if isEmpty(J1\J) ∧ isEmpty(J2\J) then return

(
[[J, t1 ⊔T t2,⊥T]], ∅

)
13 else return

(
[[J1\J, t1, [[J2\J, t2,⊥T]]]], J

)

6–9). When t is a leaf node, test be is handled using FILTERDVar∪F applied on an abstract
element from DVar∪F obtained by merging constraints in the leaf node and decision nodes
along the path to the leaf (Lines 2). The obtained result d′ represents a new leaf node, and
furthermore d′ is projected on feature variables using ↾F operator to generate a new set of
constraints J that is added to the given path to d′ (Lines 3–5).

Note that the trees returned by ASSIGNT(t, x:=ae, C), ASSIGNT(t, A:=ae, C), and
FILTERT(t, be, C) are sorted (normalized) to remove possible multiple occurrences of a
constraint c, possible occurrences of both c and ¬c, and possible ordering inconsistences.
Moreover, the obtained decision trees may contain some redundancy that can be exploited to
further compress them. We use several optimizations [21, 45]. E.g., if constraints on a path
to some leaf are unsatisfiable, we eliminate that leaf node; if a decision node contains two
same subtrees, then we keep only one subtree and we also eliminate the decision node, etc.

▶ Example 5. Let us consider the following dynamic program family P ′:

1⃝ int y := [0, 4];
2⃝ if (A < 2) y := y+1; else y := y-1;
3⃝ A := y+1;
4⃝ y := A+1;
5⃝ A := 5; 6⃝

The code base of P ′ contains only one program variable Var = {y} and one numerical feature
F = {A} with domain dom(A) = [0, 99]. In Fig. 5 we depict decision trees inferred by
performing polyhedral lifted analysis using the lifted domain T(CP, P). We use FILTERT

ECOOP 2021

14:14 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

Algorithm 8 FILTERT(t, be, C) when vars(be) ⊆ Var ∪ F.

1 if isLeaf(t) then
2 d′ = FILTERDVar∪F(t ⊎Var∪F αCD(C), be);
3 J = γCD(d′ ↾F);
4 if isRedundant(J, C) then return ≪d′≫;
5 else return RESTRICT(≪d′≫, C, J\C);
6 if isNode(t) then
7 l = FILTERT(t.l, be, C ∪ {t.c});
8 r = FILTERT(t.r, be, C ∪ {¬t.c});
9 return [[t.c : l, r]]

[y = ⊤I]
(a) Loc. 1⃝.

[0 ≤ y ≤ 4]
(b) Loc. 2⃝.

A ≤ 1

[1 ≤ y≤5] [−1 ≤ y≤3]
(c) Loc. 3⃝.

A ≤ 6

[y=A-1] ⊥I

(d) Loc. 4⃝.

A ≤ 6

[y=A+1] ⊥I

(e) Loc. 5⃝.

A = 5

[1 ≤ y≤7] ⊥I

(f) Loc. 6⃝.

Figure 5 Decision tree-based (polyhedral) invariants at program locations from 1⃝ to 6⃝ of P ′.

from Algorithm 4 to analyze statement at location 2⃝ and infer the decision tree at location
3⃝. Then, we use ASSIGNT from Algorithm 7 to analyze the statement A := y+1 at 3⃝ and

infer the tree at location 4⃝. Note that, by using the left and right leafs in the input tree at
3⃝, we generate constraint sets J1 = (2 ≤ A ≤ 6) and J2 = (0 ≤ A ≤ 4) with the same leaf

nodes [y=A-1]. After applying reductions, we obtain the tree at location 4⃝. Recall that we
implicitly assume the correctness of linear constraints K that take into account domains of
features. Hence, node (A ≤ 6) is satisfied when (A ≤ 6) ∧ (0 ≤ A ≤ 99), where constraint
(0 ≤ A ≤ 99) represents the domains of A. Finally, statement y := A+1 at location 4⃝ is
analyzed using Algorithm 6 such that all leafs in the input tree are updated accordingly,
whereas statement A := 5 at location 5⃝ is analyzed using Algorithm 7 such that all leafs in
the input tree along the paths to them are joined to create new leaf that satisfies (A = 5).

4.3 Widening
The widening operator ∇T is necessary in order to extrapolate an analysis property over
configurations (values of features) and stores (values of program variables) on which it is not
yet defined. Hence, it provides a way to handle (potentially) infinite reconfiguration of features
inside loops. The widening t1∇T t2 is implemented by calling function WIDENT(t1, t2,K),
where t1 and t2 are two decision trees and K is the set of valid configurations. Function
WIDENT, given in Algorithm 9, first calls function LEFT_UNIFICATION (Line 1) that performs
widening of the configuration space (i.e., decision nodes), and then extrapolates the value

A. S. Dimovski and S. Apel 14:15

of leafs by calling function WIDEN_LEAF (Line 2). Function LEFT_UNIFICATION (Lines 4–17)
limits the size of decision trees, and thus avoids infinite sequences of partition refinements.
It forces the structure of t1 on t2. This way, there may be information loss by applying
this function. LEFT_UNIFICATION accumulates into a set C (initially equal to K) the linear
constraints along the paths in the first decision tree, possibly adding nodes to the second
tree (Lines 10–17), or removing decision nodes from the second tree in which case the left
and the right subtree are joined (Lines 6–9), or removing constraints that are redundant
(Lines 7,8 and 11,12). Finally, function WIDEN_LEAF (Line 18–23) applies the widening ∇D
leaf-wise on the left unified decision trees.

Algorithm 9 WIDENT(t1, t2, C).

1 (t1, t2) =LEFT_UNIFICATION(t1, t2, C)
2 return WIDEN_LEAF(t1, t2, C)
3

4 Function LEFT_UNIFICATION(t1, t2, C):
5 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2)
6 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
7 if isRedundant(t2.c, C) then return LEFT_UNIFICATION(t1, t2.l, C)
8 if isRedundant(¬t2.c, C) then return LEFT_UNIFICATION(t1, t2.r, C)
9 return LEFT_UNIFICATION(t1, t2.l ⊔T t2.r, C)

10 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c ≤CD t2.c) then
11 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C)
12 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C)
13 if t1.c <CD t2.c then t21 = t2; t22 = t2;
14 else t21 = t2.l; t22 = t2.r;
15 (l1, l2) = UNIFICATION(t1.l, t21, C ∪ {t1.c})
16 (r1, r2) = UNIFICATION(t1.r, t22, C ∪ {¬t1.c})
17 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]])

18 Function WIDEN_LEAF(t1, t2, C):
19 if isLeaf(t1) ∧ isLeaf(t2) then return (≪t1∇Dt2≫)
20 if isNode(t1) ∧ isNode(t2) then
21 l = WIDEN_LEAF(t1.l, t2.l, C ∪ {t1.c})
22 r = WIDEN_LEAF(t1.r, t2.r, C ∪ {¬t1.c})
23 return ([[t1.c : l, r]])

▶ Example 6. Consider the following two decision trees t1 and t2:

t1 = [[A>1 : [[A>5 :≪[y≥0]≫,≪[y≤0]≫]],≪[y =0]≫]]
t2 = [[A>2 :≪[y =1]≫,≪[y >1]≫]]

After applying the left unification of t1 and t2, the tree t2 becomes:

t2 = [[A>1 : [[A>5 :≪[y =1]≫,≪[y≥1]≫]],≪[y >1]≫]]

Note that when (A>1) and ¬(A>5), the left and right leafs of the input t2 are joined, thus
yielding the leaf [y≥1] in the left-unified t2. This represents an example of information-loss
in a left-unified tree. After applying the leaf-wise widening of t1 and left-unified t2, we obtain:

t = [[A>1 : [[A>5 :≪[y≥0]≫,≪⊤≫]],≪[y≥0]≫]] ⌟

ECOOP 2021

14:16 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

[[skip]]♮t = t

[[x := ae]]♮t = ASSIGNT(t, x:=ae,K)
[[s1 ; s2]]♮t = [[s2]]♮([[s1]]♮t)

[[if be then s1 else s2]]♮t = [[s1]]♮(FILTERT(t, be,K)) ⊔T [[s2]]♮(FILTERT(t,¬be,K))
[[while be do s]]♮t = FILTERT(lfp♮ ϕ♮,¬be,K)

ϕ♮(x) = t ⊔T [[s]]♮(FILTERT(x, be,K))
[[A := ae]]♮t = ASSIGNT(t, A:=ae,K)

Figure 6 Abstract invariance semantics [[s]]♮ : T → T.

4.4 Soundness
The operations and transfer functions of the decision tree lifted domain T(CD,D) can now be
used to define the abstract invariance semantics. In Fig. 6, we define the abstract invariance
semantics [[s]]♮ : T → T for each statement s. Function [[s]]♮ takes as input a decision tree
over-approximating the set of reachable states at the initial location of statement s, and
outputs a decision tree that over-approximates the set of reachable states at the final location
od s. For a while loop, lfp♮ ϕ♮ is the limit of the following increasing chain defined by the
widening operator ∇T (note that, t1∇T t2 = WIDENT(t1, t2,K)):

y0 = ⊥T, yn+1 = yn∇T ϕ♮(yn)

The lifted analysis (abstract invariance semantics) of a dynamic program family s is defined
as [[s]]♮tin, where the input tree tin at the initial location has only one leaf node ⊤D and
decision nodes define the set K. Note that tin =≪⊤D≫ if there are no constraints in K. This
way, by calculating [[s]]♮tin we collect the possible invariants in the form of decision trees at
all program locations.

We can establish soundness of the abstract invariant semantics [[s]]♮tin ∈ T(CD,D) with
respect to the invariance semantics [[s]]⟨Σ,K⟩ ∈ P(Σ×K), where ⟨Σ,K⟩ = {⟨σ, k⟩ | σ ∈ Σ, k ∈
K}, by showing that [[s]]⟨Σ,K⟩ ⊆ γT

(
[[s]]♮tin

)
. This is done by proving the following result. 2

▶ Theorem 7 (Soundness). ∀t ∈ T(CD,D) : [[s]]γT(t) ⊆ γT
(
[[s]]♮t

)
.

Proof. The proof is by structural induction on s. We consider the most interesting cases.
Case skip. [[skip]]γT(t) = γT(t) = γT([[skip]]♮t).
Case x:=ae. Let ⟨σ, k⟩ ∈ γT(t). By definition of [[x := ae]] in Fig. 4, it holds that
⟨σ[x 7→ n], k⟩ ∈ [[x := ae]]γT(t) for all n ∈ [[ae]]⟨σ, k⟩. Since ⟨σ, k⟩ ∈ γT(t), there must be
a leaf node d of t and a set of constraints C collected along the path to d, such that
⟨σ, k⟩ ∈ γD(d)∧ k |= C. By definition of the abstraction ⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩,
the soundness of ASSIGNDVar∪F , and by definition of ASSIGNT (cf. Algorithms 2 and 6), it
must hold ⟨σ[x 7→ n], k⟩ ∈ γT(ASSIGNT(t, x := ae,K)) due to the fact that Algorithms 2
and 6 invoke ASSIGNDVar∪F for every leaf node of t that may be merged with linear con-
straints from decision nodes found on the path from the root to that leaf. Thus, we
conclude [[x := ae]]γT(t) ⊆ γT(ASSIGNT(t, x:=ae,K)) = γT([[x := ae]]♮t).

2 Note that γT(tin) = ⟨Σ,K⟩.

A. S. Dimovski and S. Apel 14:17

Case if be then s1 else s2. Let ⟨σ, k⟩∈γT(t) and ⟨σ′, k′⟩∈ [[if be then s1 else s2]]{⟨σ, k⟩}.
By structural induction, we have that [[s1]]γT(t′) ⊆ γT([[s1]]♮t′) and [[s2]]γT(t′) ⊆ γT([[s2]]♮t′)
for any t′. By definition of [[if be then s1 else s2]] in Fig. 4, we have that ⟨σ′, k′⟩ ∈
[[s1]]{⟨σ, k⟩} if true ∈ [[be]]⟨σ, k⟩ or ⟨σ′, k′⟩ ∈ [[s2]]{⟨σ, k⟩} if false ∈ [[be]]⟨σ, k⟩. Since
⟨σ, k⟩ ∈ γT(t), there must be a leaf node d of t and a set of constraints C collected
along the path to d, such that ⟨σ, k⟩ ∈ γD(d) ∧ k |= C. By definition of the abstraction
⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩, the soundness of FILTERDVar∪F , and by definition of
FILTERT (cf. Algorithms 2, 4, and 8), it must hold that ⟨σ, k⟩ ∈ γT(FILTERT(t, be,K)) or
⟨σ, k⟩ ∈ γT(FILTERT(t,¬be,K)) due to the fact that these Algorithms invoke FILTERDVar∪F

for every leaf node of t that may be merged with linear constraints from decision nodes
found on the path from the root to that leaf. Thus, by structural induction, we have
⟨σ′, k′⟩ ∈ γT([[s1]]♮FILTERT(t, be,K)) or ⟨σ′, k′⟩ ∈ γT([[s2]]♮FILTERT(t,¬be,K)), and so
⟨σ′, k′⟩ ∈ γT([[s1]]♮FILTERT(t, be,K) ⊔T [[s2]]♮FILTERT(t,¬be,K)). Thus, we conclude that
[[if be then s1 else s2]]γT(t) ⊆ γT([[s1]]♮FILTERT(t, be,K) ⊔T [[s2]]♮FILTERT(t,¬be,K)) =
γT([[if be then s1 else s2]]♮t).

Case while e do s. We show that, given a t ∈ T, for all x ∈ T, we have: ϕ(γT(x)) ⊆
γT(ϕ♮(x)). By structural induction, we have [[s]]γT(x) ⊆ γT([[s]]♮x).
Let ⟨σ, k⟩ ∈ γT(x) and ⟨σ′, k′⟩ ∈ ϕ(γT(x)). By definition of ϕ(x) in Fig. 4, we have
that ⟨σ′, k′⟩ ∈ [[s]]{⟨σ, k⟩} and true ∈ [[be]]⟨σ, k⟩. By definition of the abstraction
⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩, the soundness of FILTERDVar∪F , and by definition of
FILTERT (cf. Algorithms 2, 4, and 8), it must hold that ⟨σ, k⟩ ∈ γT(FILTERT(x, be,K))
by using similar arguments to “if” case. Thus, by structural induction, we have ⟨σ′, k′⟩ ∈
γT([[s]]♮FILTERT(x, be,K)), and so ⟨σ′, k′⟩ ∈ γT(ϕ♮(x)). We conclude ϕ(γT(x)) ⊆ γT(ϕ♮(x)).
The proof that [[while e do s]]γT(t) ⊆ γT([[while e do s]]♮(t)) follows from the definition
of ∇T (cf. Algorithm 9) that invokes the sound ∇DVar∪F operator on leaf nodes. ◀

▶ Example 8. Let us consider the following dynamic program family P ′′:

1⃝ A := [10, 15];
2⃝ int x := 10, y;
3⃝ if (A>12) then y := 1 else y := −1;
4⃝ while 5⃝ (x > 0) {
6⃝ A := A+y;
7⃝ x := x-1;
8⃝ } 9⃝

which contains one feature A with domain [0,99]. Initially, A can have a value from [10,15].
We can calculate the abstract invariant semantics [[P ′′]]♮, thus obtaining invariants from
T in all locations. We show the inferred invariants in locations 5⃝ and 9⃝ in Figs. 7 and
8, respectively. The decision tree at the final location 9⃝ shows that we have x=0 ∧ y=1
when 23 ≤A≤ 25 and x=0 ∧ y=-1 when 0 ≤A≤ 2 on program exit. On the other hand,
if we analyze P ′′ using single-program polyhedra analysis, where A is considered as an
ordinary program variable, we obtain the following less precise invariant on program exit:
x=0 ∧ −1≤y≤1 ∧ 5≤2A− 5y≤45. ⌟

5 Evaluation

We evaluate our decision tree-based approach for analyzing dynamic program families by
comparing it with the single-program analysis approach, in which dynamic program families

ECOOP 2021

14:18 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

13 ≤

A ≤ 25

[13 ≤ A+x≤25 ∧ 0 ≤ x≤10 ∧ y=1] 0 ≤

A ≤ 12

[0 ≤ A-x≤2 ∧ 0 ≤ x≤10 ∧ y=− 1] ⊥I

Figure 7 Invariant at loc. 5⃝ of P ′′.

23 ≤

A ≤ 25

[x=0 ∧ y=1] 0 ≤

A ≤ 2

[x=0 ∧ y=− 1] ⊥I

Figure 8 Invariant at loc. 9⃝ of P ′′.

are considered as single programs and features as ordinary program variables. The evaluation
aims to show that our decision tree-based approach can effectively analyze dynamic program
families and that it achieves a good precision/cost tradeoff with respect to the single-program
analysis. Specifically, we ask the following research questions:
RQ1: How precise are inferred invariants of our decision tree-based approach compared to

single-program analysis?
RQ2: How time efficient is our decision tree-based approach compared to single-program

analysis?
RQ3: Can we find practical application scenarios of using our approach to effectively analyze

dynamic program families?

Implementation

We have developed a prototype lifted static analyzer, called DSPLNum2Analyzer, which
uses the lifted domain of decision trees T(CD,D). The abstract operations and transfer
functions of the numerical domain D (e.g., intervals, octagons, and polyhedra) are provided
by the APRON library [33]. Our proof-of-concept implementation is written in OCaml
and consists of around 8K lines of code. The current front-end of the tool provides only a
limited support for arrays, pointers, recursion, struct and union types, though an extension
is possible. The only basic data type is mathematical integers, which is sufficient for our
purposes. DSPLNum2Analyzer automatically computes a decision tree from the lifted
domain in every program location. The analysis proceeds by structural induction on the
program syntax, iterating while-s until a fixed point is reached. We apply delayed widening
[13], which means that we start extrapolating by widening only after some fixed number of
iterations we explicitly analyze the loop’s body. The precision of the obtained invariants
for while-s is further improved by applying the narrowing operator [13]. We can tune the
precision and time efficiency of the analysis by choosing the underlying numerical abstract
domain (intervals, octagons, polyhedra), and by adjusting the widening delay. The precision
of domains increases from intervals to polyhedra, but so does the computational complexity.

Experimental setup and Benchmarks

All experiments are executed on a 64-bit Intel®CoreT M i7-8700 CPU@3.20GHz × 12, Ubuntu
18.04.5 LTS, with 8 GB memory. All times are reported as averages over five independent
executions. The implementation, benchmarks, and all results obtained from our experiments
are available from [20]: https://zenodo.org/record/4718697#.YJrDzagzbIU. We use
three instances of our lifted analyses via decision trees: AT(I), AT(O), and AT(P), which
use intervals, octagons, and polyhedra domains as parameters. We compare our approach

https://zenodo.org/record/4718697#.YJrDzagzbIU

A. S. Dimovski and S. Apel 14:19

Table 1 Performance results for single analysis A(I) vs. lifted analysis AT(I) with one and two
features on selected e-mail variant simulators. All times are in seconds.

Benchmark LOC
A(I), 0 feature AT(I), 1 feature AT(I), 2 features

Time Unrea. Rea. Time Unrea. Mix Time Unrea. Mix

e-mail_spec0 2645 16.2 80 48 29.3 80 48(1:1) 50.7 80 48(3:1)

e-mail_spec6 2660 18.8 6 26 23.6 16 16(1:1) 24.2 16 16(3:1)

e-mail_spec8 2665 14.6 12 20 19.1 12 20(1:1) 27.7 12 20(2:2)

e-mail_spec11 2660 15.2 160 96 24.7 160 96(1:1) 32.1 160 96(3:1)

e-mail_spec27 2630 14.5 384 128 28.4 384 128(1:1) 38.4 384 128(3:1)

with three instances of the single-program analysis based on numerical domains from the
APRON library [33]: A(I), A(O), and A(P), which use intervals, octagons, and polyhedra
domains, respectively. The default widening delay is 2.

The evaluation is performed on a dozen of C numerical programs collected from several
categories of the 9th International Competition on Software Verification (SV-COMP 2020)
3: product lines, loops, loop-invgen (invgen for short), loop-lit (lit for short), and
termination-crafted (crafted for short). In the case of product lines, we selected
the e-mail system [26], which has been used before to assess product-line verification in
the product-line community [2, 3, 48]. The e-mail system has eight features: encryption,
decryption, automatic forwarding, e-mail signatures, auto responder, keys, verify, and address
book, which can be activated or deactivated at run-time. There are forty valid configurations
that can be derived. For the other categories, we have first selected some numerical programs,
and then we have considered some of their integer variables as features. Basically, we selected
those program variables as features that control configuration decisions and can influence
the outcome of the given assertions. Tables 1 and 2 present characteristics of the selected
benchmarks in our empirical study, such as: the file name (Benchmark), the category where
it is located (folder), number of features (|F|), total number of lines of code (LOC).

We use the analyses A(D) and AT(D) to evaluate the validity of assertions in the
selected benchmarks. Let d ∈ D be a numerical invariant found before the assertion
assert(be). An analysis can establish that the assertion is: (1) “unreachable”, if d = ⊥D;
(2) “correct” (valid), if d ⊑D FILTERD(d, be), meaning that the assertion is indeed valid
regardless of approximations; (3) “erroneous” (invalid), if d⊑D FILTERD(d,¬be), meaning
that the assertion is indeed invalid; and (4) “I don’t know”, otherwise, meaning that the
approximations introduced due to abstraction prevent the analyzer from giving a definite
answer. We say that an assertion is reachable if one of the answers (2), (3), or (4) is obtained.
In the case of the lifted analysis AT(D), we may also obtain mixed assertions when different
leaf nodes of the resulting decision trees yield different answers.

Results

E-mail system. We use a variant simulator that has been generated with variability encoding
from the e-mail configurable system [26]. Variability encoding is a process of encoding
compile-time (static) variability of a configurable system as run-time (dynamic) variability
in the variant simulator [48, 32]. In this setting, compile-time features are encoded with
global program variables, and static configuration choices (e.g., #if-s) are encoded with

3 https://sv-comp.sosy-lab.org/2020/

ECOOP 2021

https://sv-comp.sosy-lab.org/2020/

14:20 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

conditional statements in the target language (if statements). We consider five specifications
of the e-mail system encoded as assertions in SV-COMP. As variant simulators use standard
language constructs to express variability (if statements), they can be analyzed by standard
single-program analyzers A(D). We also analyze the variant simulators using our lifted
analysis AT(D), where some of the feature variables are considered as real features. This
way, our aim is to obtain more precise analysis results. For effectiveness, we consider only
those feature variables that influence directly the specification as real features. Specifically,
we consider variant simulators with one and two separate features, and five specifications:
spec0, spec6, spec8, spec11, and spec27. For example, spec0 checks whether a message
to be forwarded is readable, while spec27 checks whether the public key of a person who sent
a message is available. For each specification, many assertions appear in the main function
after inlining.

Table 1 shows the results of analyzing the selected e-mail simulators using A(I) and
AT(I) with one and two features. In the case of A(I), we report the number of assertions
that are found “unreachable”, denoted by Unrea., and reachable (“correct”/“erroneous”/“I
don’t know”), denoted by Rea.. In the case of AT(I), we report the number of “unreachable”
assertions, denoted by Unrea., and mixed assertions, denoted by Mix. When a reachable
(“correct”/“erroneous”/“I don”t know”) assertion is reported by A(I), the lifted analysis
AT(I) may give more precise answer by providing the information for which variants that
assertion is reachable and for which is unreachable. We denote by (n : m) the fact that one
assertion is unreachable in n variants and reachable in m variants. Note that feature variables
in variant simulators are non-deterministically initialized at the beginning of the program
and then can be only read in guards of if statements, thus AT(I) may only find more precise
answers than A(I) with respect to the reachability of assertions. That is, it may find more
assertions that are unreachable in various variants. See the following paragraph “Other
benchmarks” for examples where “I don’t know” answers by A(I) are turned into definite
(“correct”/“erroneous”) answers by AT(I). We can see in Table 1 that, for all reachable
assertions found by A(I), we obtain more precise answers using the lifted analysis AT(I).
For example, A(I) finds 128 “I don’t know” assertions for spec27, while AT(I) with one
feature Keys finds 128 (1:1) mixed assertions such that each assertion is “unreachable” when
Keys=0 and “I don’t know” when Keys=1. By using AT(I) with two features Keys and
Forward, we obtain 128 (3:1) mixed assertions, with each assertion is “unreachable” when
Keys = 0 ∨ Forward = 0. Similar analysis results are obtained for the other specifications.
For all specifications, the analysis time increases by considering more features. In particular,
we find that AT(I) with one feature is in average 1.6 times slower than A(I), and AT(I)
with two features is in average 2.2 times slower than A(I). However, we also obtain more
precise information when using AT(I) with respect to the reachability of assertions in various
configurations.
Other benchmarks. We now present the performance results for the benchmarks from
other SV-COMP categories. The program half_2.c from loop-invgen category is given
in Fig. 9a. When we perform a single-program analysis A(P), we obtain the “I don’t
know” answer for the assertion. However, if n is considered as a feature and the lifted
analysis AT(P) is performed on the resulting dynamic program family, we yield that the
assertion is: “correct” when n ≥ 1, “erroneous” when n ≤ −2, and “I don’t know” answer
otherwise. We observe that the lifted analysis considers two different behaviors of half_2.c
separately: the first when the loops are executed one or more times, and the second
when the loops are not executed at all. Hence, we obtain definite answers, “correct” and
“erroneous”, for the two behaviors. The program seq.c from loop-invgen category is

A. S. Dimovski and S. Apel 14:21

n:=[-Max, Max];
int k:=n, i:=0;
while (i<n) {

k := k-1;
i := i+2; }

int j:=0;
while (j<n/2) {

k := k-1;
j := j+1; }

assert
(

k≥−1
)
;

(a) half_2.c.

n0:=[-Max, Max];
n1:=[-Max, Max];
int i0:=0, k=0;
while (i0<n0) {

i0 := i0+1;
k := k+1; }

int i1:=0;
while (i1<n1) {

i1 := i1+1;
k := k+1; }

int j1:=0;
while (j1<n0+n1) {

j1 := j1+1;
k := k-1; }

assert
(

k==0
)
;

(b) seq.c.

n:=[0, Max];
int a := 2;
int i, j:=10, sn=0;
for (i=1; i ≤ n; i++) {

if (j>n) then

sn := sn+a;
j := j-1;

}

assert (sn == n*a);

(c) sum01_bug02.c.

n:=[-Max, Max];
int x := n;
int y=0;
while (n>0) {

n := n-1;
y := y+1; }

}

assert (y == x);

(d) count_up_down ∗ .c.

res:=[-Max, Max];
cnt:=[-Max, Max];
int a:=res, b:=cnt;
while (cnt>0) {

cnt := cnt-1;
res := res+1; }

assert
(

res==a+b
)
;

(e) hhk2008.c.

x:=[-Max, Max];
x:=-50;
int y:=[-9,9];
while (x<0) {

x := x+y;
y := y+1; }

assert
(

y≤60+x
)
;

(f) gsv2008.c.

c:=[-Max, Max];
int x := [−Max, Max];
if (c ≥ 2) then {

while (x+c ≥ 2) {
x := x-c;
c := c+1; }

}

assert (x ≤ −3);

(g) Mysore.c.

x:=[-Max, Max];
y:=[-Max, Max];
int oldx;
while (x ≥ 0 ∧ y ≥ 0) }

oldx := x;
x := y-1; }
y := oldx-1; }

assert (x+y ≤ 0);

(h) Copenhagen.c.

Figure 9 Benchmarks from SV-COMP. All underlined variables are considered as features in the
corresponding dynamic program families.

given in Fig. 9b. When seq.c is analyzed using A(P), we obtain “I don’t know” for the
assertion. When n0 and n1 are considered as features with the domains [−Max, +Max],
AT(P) gives more precise results for the assertion. In particular, the assertion is “correct”
when (1 ≤ n0 ≤ Max ∧ 1 ≤ n1 ≤ Max) or (−Max ≤ n0 ≤ 0 ∧ −Max ≤ n1 ≤ 0), whereas
the assertion is “erroneous” when (n0 + n1 ≤ 0 ∧ (n0 ≥ 1 ∨ n1 ≥ 1)) and we obtain “I don’t
know” when (n0 + n1 ≥ 1 ∧ (n0 ≤ 0 ∨ n1 ≤ 0)). The program sum01_bug02.c from loops
is given in Fig. 9c. A(P) reports “I don’t know” for the assertion, while AT(P), when n

is a feature with domain [0, Max], reports more precise answers: “erroneous” when n ≥ 9,
“correct” when n = 0, and “I don’t know” otherwise. A(P) reports “I don’t know” for the
assertion in count_up_down*.c from loops, which is given in Fig. 9d. Still, AT(P) when n

is a feature with domain [−Max, Max] reports: “correct” answer when n = 0 at the final
location, “erroneous” when n ≤ −1, and “I don’t know” otherwise. Similarly, A(P) reports “I
don’t know” for the assertions in hhk2008.c and gsv2008.c from loop-lit (given in Figs. 9e
and 9f). However, AT(P) reports more precise answers in both cases. We consider res and
cnt (resp., x) as features with domains [−Max, Max] for hhk2008.c (resp., gsv2008.c), and
we obtain “correct” answer when cnt = 0 for hhk2008.c (resp., when x ≥ 0 for gsv2008.c),
“erroneous” answer when cnt ≤ −1 for hhk2008.c, and “I don’t know” answer otherwise.
Finally, AT(P) reports more precise answers than A(P) for Mysore.c and Copenhagen.c
from termination crafted category (given in Figs. 9g and 9h).

ECOOP 2021

14:22 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

Table 2 Performance results for single analysis A(D) vs. lifted analysis AT(D) and AT(O) on
selected benchmarks from SV-COMP.All times are in seconds.

Benchmark folder |F| LOC
A(P) AT(O) AT(P)

Time Ans. Time Ans. Time Ans.

half_2.c invgen 1 25 0.008 × 0.014 ≃ 0.017 ✓

seq.c invgen 2 30 0.015 × 0.084 ✓ 0.045 ✓

sum01*.c loops 1 15 0.008 × 0.009 ✓ 0.041 ✓

count_up_d*.c loops 1 15 0.002 × 0.008 ≃ 0.011 ✓

hhk2008.c lit 2 20 0.003 × 0.073 ≃ 0.032 ✓

gsv2008.c lit 1 20 0.002 × 0.007 ✓ 0.015 ✓

Mysore.c crafted 1 30 0.0008 × 0.002 ✓ 0.004 ✓

Copenhagen.c crafted 2 30 0.002 × 0.012 ≃ 0.021 ✓

Although for all benchmarks AT(P) infers more precise invariants, still AT(P) also takes
more time than A(P), as expected. On our benchmarks, this translates to slow-downs (i.e.,
A(P) vs. AT(P)) of 4.9 times in average when |F| = 1, and of 6.9 times in average when
|F| = 2. However, in some cases the more efficient version AT(O), which uses octagons, can
also provide more precise results than A(P). For example, AT(O) for half_2.c gives the
precise “erroneous” answer like AT(P) but gives “I don’t know” in all other cases, whereas
AT(O) for count_up_down*.c gives the precise “erroneous” and “unreachable” answers like
AT(P) but it turns the “correct” answer from AT(P) into an “I don’t know”. On the other
hand, for gsv2008.c and Mysore.c, AT(O) gives the same precise answers as AT(P), but
twice faster. Furthermore, for sum01*.c, even AT(I), which uses intervals, gives the same
precise answers like AT(P), but with the similar time performance as A(P). Table 2 shows
the running times of A(P), AT(O), and AT(P), as well as whether the corresponding analysis
precisely evaluates the given assertion – denoted by Ans. (we use ✓ for yes, ≃ for partially
yes, and × for no).

Discussion

Our experiments demonstrate that the lifted analysis AT(D) is able to infer more precise
numerical invariants than the single-program analysis A(D) while maintaining scalability
(addresses RQ1). As the result of more complex abstract operations and transfer functions
of the decision tree domain, we observe slower running times of AT(D) as compared to A(D).
However, this is an acceptable precision/cost tradeoff, since the more precise numerical
invariants inferred by AT(D) enables us to successfully answer many interesting assertions in
all considered benchmarks (addresses RQ2 and RQ3). Furthermore, our current tool is only
a prototype implementation to experimentally confirm the suitability of our approach. Many
abstract operations and transfer functions of the lifted domain can be further optimized,
thus making the performances of the tool to improve.

Our current tool supports a non-trivial subset of C, and the missing constructs (e.g.
pointers, struct and union types) are largely orthogonal to the solution (lifted domains).
In particular, these features complicate the abstract semantics of single-programs and
implementation of the domains for leaf nodes, but have no impact on the semantics of
variability-specific constructs and the lifted domains we introduce in this work. Therefore,
supporting these constructs would not provide any new insights to our evaluation. If a
real-world tool based on abstract interpretation (e.g. ASTREE [14]) becomes freely available,
we can easily transfer our implementation to it.

A. S. Dimovski and S. Apel 14:23

6 Related Work

Decision-tree abstract domains have been a topic of research in the field of abstract inter-
pretation in recent times [25, 15, 9, 46]. Decision trees have been applied for the disjunctive
refinement of interval (boxes) domain [25]. That is, each element of the new domain is a
propositional formula over interval linear constraints. Decision tree abstract domains has also
been used to enable path dependent static analysis [15, 9] by handling disjunctive analysis
properties. Binary decision tree domains [9] can express disjunctive properties depending on
the boolean values of the branch (if) conditions (represented in decision nodes) with sharing
of the properties of the other variables (represented in leaf nodes). Segmented decision
tree abstract domains [15] are generalizations of binary decision tree domains and array
segmentation, where the choices in decision nodes are made on the values of decision variables
according to the ranges specified by a symbolic segmentation. A pre-analysis is used to find
decision variables and their symbolic segmentation. The choices for a given decision variable
are made only once along a given path. The decision tree lifted domain proposed here can
be considered as a generalization of the segmented decision tree domain, where the choices
for a given feature variable can be made several times along a given path and arbitrary
linear constraints over feature variables can be used to represent the choices in decision
nodes. Moreover, linear constraints labelling decision nodes here are semantically inferred
during the static analysis and do not necessarily syntactically appear in the code. Urban and
Mine [46] use decision tree-based abstract domains to prove program termination. Decision
nodes are labelled with linear constraints that split the memory space and leaf nodes contain
affine ranking functions for proving program termination. The APRON library has been
developed by Jeannet and Mine [33] to support the application of numerical abstract domains
in static analysis. The ELINA library [44] represents an another efficient implementation of
numerical abstract domains.

Several lifted analyses based on abstract interpretation have been proposed recently
[36, 23, 18, 19, 21] for analyzing traditional program families with #ifdef-s. A formal
methodology for derivation of tuple-based lifted analyses from existing single-program analyses
phrased in the abstract interpretation framework has been proposed by Midtgaard et. al. [36].
They use a lifted domain that is a |K|-fold product of an existing single-program domain.
That is, the elements of the lifted domain are tuples that contain one separate component for
each configuration of K. A more efficient lifted analysis by abstract interpretation obtained
by improving representation via BDD-based lifted domains is proposed by Dimovski [18, 19].
The elements of the lifted domain are BDDs, in which decision nodes are labelled with Boolean
features and leaf nodes belong to an existing single-program domain. BDDs offer more
possibilities for sharing and interaction between analysis properties corresponding to different
configurations. The above lifted analyses are applied to program families with only Boolean
features. The work [21] extends prior approaches by using decision tree-based lifted domain
for analyzing program families with numerical features. In this case, the elements of the
lifted domain are decision trees, in which decision nodes are labelled with linear constraints
over numerical features and leaf nodes belong to an existing single-program domain. This
domain is also successfully applied to program synthesis for resolving program sketches [22].
Several other efficient implementations of the lifted dataflow analysis from the monotone
framework (a-la Kildall) [35] have also been proposed in the SPL community. Brabrand et
al. [5] have introduced a tuple-based lifted dataflow analysis, whereas an approach based
on using variational data structures (e.g., variational CFGs, variational data-flow facts) [47]
have been used for achieving efficient dataflow computation of some real-world systems.

ECOOP 2021

14:24 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

Finally, SPLLIFT [4] is an implementation of the lifted dataflow analysis formulated within
the IFDS framework, which is a subset of dataflow analyses with certain properties, such as
distributivity of transfer functions.

Dynamic program families (DSPLs) have been introduced by Hallsteinsen et al. [28] in
2008 as a technique that uses the principles of traditional SPLs to build variants adaptable
at run-time. Since then, the research on DSPLs has been mainly focussed on developing
mechanisms for implementing DSPLs and for defining suitable feature models.

There are many strategies for implementing variability in traditional SPLs, such as:
annotative approach via the C-preprocessor’s #ifdef construct [34], compositional approach
via the feature-oriented programming (FOP) [40] and the delta-oriented programming (DOP)
[43], etc. The extensions of FOP and DOP to support run-time reconfiguration and software
evolution as found in DSPLs has been proposed by Rosenmuller et al. [42] and Damiani
et al [17]. In this work, we extend the annotative approach via #ifdef-s to implement
variability in DSPLs. The set of valid configurations K of a program family with Boolean
and numerical features is typically described by a numerical feature model, which represents
a tree-like structure that describes which combinations of feature’s values and relationships
among them are valid. Several works address the need to change the structural variability
(feature model) at run-time. One approach [30] relies on the Common Variability Language
(CVL) as an attempt for modelling variability transformations by allowing different types
of substitutions to re-configure new versions of base models. Cetina et al. [8] also propose
several strategies for modelling runtime transformations using CVL. Helleboogh et al. [31]
use a meta-variability model to support dynamic feature models, where high-level constructs
enable the addition and removal of variants on-the-fly to the base feature model. In this work,
we disregard syntactic representations of the set K as feature model, as we are concerned
with behavioural analysis of program families rather than with implementation details of
K. Therefore, we use the set-theoretic view of K that is syntactically fixed a priori. This is
convenient for our purpose here. To the best of our knowledge, our work is pioneering in
studying specifically designed behavioral analysis of dynamic program families.

7 Conclusion

In this work, we employ decision trees and widely-known numerical abstract domains for the
automatic analysis of C program families that contain dynamically bound features. This
way, we obtain a decision tree lifted domain for handling dynamic program families with
numerical features. Based on a number of experiments on benchmarks from SV-COMP, we
have shown that our lifted analysis is effective and performs well on a wide variety of cases
by achieving a good precision/cots tradeoff. The lifted domain T(CD,D) is very expressive
since it can express weak forms of disjunctions arising from feature-based constructs.

In the future, we would like to extend the lifted abstract domain to also support non-linear
constraints, such as congruences and non-linear functions (e.g. polynomials, exponentials)
[6]. Note that the lifted analysis AT(D) reports constraints defined over features for which
a given assertion is valid, fails, or unreachable. The found constraints take into account
the value of features at the location before the given assertion. By using a backward lifted
analysis [24, 38], which propagates backwards the found constraints by AT(D), we can infer
the necessary preconditions (defined over features) in the initial state that will guarantee the
assertion is always valid, fails, or unreachable.

A. S. Dimovski and S. Apel 14:25

References
1 Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented

Software Product Lines - Concepts and Implementation. Springer, 2013. doi:10.1007/
978-3-642-37521-7.

2 Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer. Detection
of feature interactions using feature-aware verification. In 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pages 372–375, 2011. doi:
10.1109/ASE.2011.6100075.

3 Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.
Strategies for product-line verification: case studies and experiments. In 35th International
Conference on Software Engineering, ICSE ’13, pages 482–491, 2013. doi:10.1109/ICSE.2013.
6606594.

4 Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.
Spllift: statically analyzing software product lines in minutes instead of years. In ACM
SIGPLAN Conference on PLDI ’13, pages 355–364, 2013. doi:10.1145/2491956.2491976.

5 Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba. Intrapro-
cedural dataflow analysis for software product lines. T. Aspect-Oriented Software Development,
10:73–108, 2013. doi:10.1007/978-3-642-36964-3_3.

6 Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In
Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon,
Portugal, July 11-15, 2005, Proceedings, volume 3580 of LNCS, pages 1349–1361. Springer,
2005. doi:10.1007/11523468_109.

7 Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz Cortés, and Mike Hinchey. An
overview of dynamic software product line architectures and techniques: Observations from
research and industry. J. Syst. Softw., 91:3–23, 2014. doi:10.1016/j.jss.2013.12.038.

8 Carlos Cetina, Øystein Haugen, Xiaorui Zhang, Franck Fleurey, and Vicente Pelechano.
Strategies for variability transformation at run-time. In Software Product Lines, 13th Inter-
national Conference, SPLC 2009, Proceedings, volume 446 of ACM International Conference
Proceeding Series, pages 61–70. ACM, 2009. URL: https://dl.acm.org/citation.cfm?id=
1753245.

9 Junjie Chen and Patrick Cousot. A binary decision tree abstract domain functor. In Static
Analysis - 22nd International Symposium, SAS 2015, Proceedings, volume 9291 of LNCS,
pages 36–53. Springer, 2015. doi:10.1007/978-3-662-48288-9_3.

10 Andreas Classen, Arnaud Hubaux, and Patrick Heymans. A formal semantics for multi-level
staged configuration. In Third International Workshop on Variability Modelling of Software-
Intensive Systems, Seville, Spain, January 28-30, 2009. Proceedings, volume 29 of ICB Research
Report, pages 51–60. Universität Duisburg-Essen, 2009. URL: http://www.vamos-workshop.
net/proceedings/VaMoS_2009_Proceedings.pdf.

11 Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2001.

12 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth ACM Symposium on Principles of Programming Languages, pages 238–252. ACM,
1977. doi:10.1145/512950.512973.

13 Patrick Cousot and Radhia Cousot. Comparing the galois connection and widening/narrowing
approaches to abstract interpretation. In Programming Language Implementation and Logic
Programming, 4th International Symposium, PLILP’92, Proceedings, volume 631 of LNCS,
pages 269–295. Springer, 1992. doi:10.1007/3-540-55844-6_142.

14 Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. The astreé analyzer. In Programming Languages and Systems,
14th European Symposium on Programming, ESOP 2005, Proceedings, volume 3444 of LNCS,
pages 21–30. Springer, 2005. doi:10.1007/978-3-540-31987-0_3.

ECOOP 2021

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1007/978-3-642-36964-3_3
https://doi.org/10.1007/11523468_109
https://doi.org/10.1016/j.jss.2013.12.038
https://dl.acm.org/citation.cfm?id=1753245
https://dl.acm.org/citation.cfm?id=1753245
https://doi.org/10.1007/978-3-662-48288-9_3
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/978-3-540-31987-0_3

14:26 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

15 Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. A scalable segmented decision tree
abstract domain. In Time for Verification, Essays in Memory of Amir Pnueli, volume 6200 of
LNCS, pages 72–95. Springer, 2010. doi:10.1007/978-3-642-13754-9_5.

16 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages (POPL’78), pages 84–96. ACM Press, 1978. doi:
10.1145/512760.512770.

17 Ferruccio Damiani, Luca Padovani, and Ina Schaefer. A formal foundation for dynamic delta-
oriented software product lines. In Generative Programming and Component Engineering,
GPCE’12, pages 1–10. ACM, 2012. doi:10.1145/2371401.2371403.

18 Aleksandar S. Dimovski. Lifted static analysis using a binary decision diagram abstract
domain. In Proceedings of the 18th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2019, pages 102–114. ACM, 2019. doi:
10.1145/3357765.3359518.

19 Aleksandar S. Dimovski. A binary decision diagram lifted domain for analyzing program
families. Journal of Computer Languages, 63:101032, 2021. doi:10.1016/j.cola.2021.
101032.

20 Aleksandar S. Dimovski and Sven Apel. Tool artifact for “lifted static analysis of dynamic
program families by abstract interpretation”. Zenodo, 2021. doi:10.5281/zenodo.4718697.

21 Aleksandar S. Dimovski, Sven Apel, and Axel Legay. A decision tree lifted domain for analyzing
program families with numerical features. In Fundamental Approaches to Software Engineering
- 24th International Conference, FASE 2021, Proceedings, volume 12649 of LNCS, pages 67–86.
Springer, 2021. doi:10.1007/978-3-030-71500-7_4.

22 Aleksandar S. Dimovski, Sven Apel, and Axel Legay. Program sketching using lifted analysis
for numerical program families. In NASA Formal Methods - 13th International Symposium,
NFM 2021, Proceedings, volume 12673 of LNCS. Springer, 2021.

23 Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Variability abstractions:
Trading precision for speed in family-based analyses. In 29th European Conference on Object-
Oriented Programming, ECOOP 2015, volume 37 of LIPIcs, pages 247–270. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.ECOOP.2015.247.

24 Aleksandar S. Dimovski and Axel Legay. Computing program reliability using forward-
backward precondition analysis and model counting. In Fundamental Approaches to Software
Engineering - 23rd International Conference, FASE 2020, Proceedings, volume 12076 of LNCS,
pages 182–202. Springer, 2020. doi:10.1007/978-3-030-45234-6_9.

25 Arie Gurfinkel and Sagar Chaki. Boxes: A symbolic abstract domain of boxes. In Static
Analysis - 17th International Symposium, SAS 2010. Proceedings, volume 6337 of LNCS, pages
287–303. Springer, 2010. doi:10.1007/978-3-642-15769-1_18.

26 Robert J. Hall. Fundamental nonmodularity in electronic mail. Automated Software Engineer-
ing, 12(1):41–79, 2005. doi:10.1023/B:AUSE.0000049208.84702.84.

27 Svein O. Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. 2nd international
workshop on dynamic software product lines DSPL 2008. In Software Product Lines, 12th
International Conference, SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceedings,
page 381. IEEE Computer Society, 2008. doi:10.1109/SPLC.2008.69.

28 Svein O. Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic software
product lines. Computer, 41(4):93–95, 2008. doi:10.1109/MC.2008.123.

29 Svein O. Hallsteinsen, Erlend Stav, Arnor Solberg, and Jacqueline Floch. Using product
line techniques to build adaptive systems. In Software Product Lines, 10th International
Conference, SPLC 2006, Baltimore, Maryland, USA, August 21-24, 2006, Proceedings, pages
141–150. IEEE Computer Society, 2006. doi:10.1109/SPLINE.2006.1691586.

30 Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and Andreas Svendsen.
Adding standardized variability to domain specific languages. In Software Product Lines, 12th

https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/2371401.2371403
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1016/j.cola.2021.101032
https://doi.org/10.1016/j.cola.2021.101032
https://doi.org/10.5281/zenodo.4718697
https://doi.org/10.1007/978-3-030-71500-7_4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.1007/978-3-030-45234-6_9
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1023/B:AUSE.0000049208.84702.84
https://doi.org/10.1109/SPLC.2008.69
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1109/SPLINE.2006.1691586

A. S. Dimovski and S. Apel 14:27

International Conference, SPLC 2008, Proceedings, pages 139–148. IEEE Computer Society,
2008. doi:10.1109/SPLC.2008.25.

31 Alexander Helleboogh, Danny Weyns, Klaus Schmid, Tom Holvoet, Kurt Schelfthout, and
Wim Van Betsbrugge. Adding variants on-the-fly: Modeling meta-variability in dynamic
software product lines. In Synamic Software Product Lines, 3rd International Workshop, SSPL
2009, Proceedings, 2009.

32 Alexandru F. Iosif-Lazar, Jean Melo, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej
Wasowski. Effective analysis of c programs by rewriting variability. Programming Journal,
1(1):1, 2017. doi:10.22152/programming-journal.org/2017/1/1.

33 Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains
for static analysis. In Computer Aided Verification, 21st International Conference, CAV
2009. Proceedings, volume 5643 of LNCS, pages 661–667. Springer, 2009. doi:10.1007/
978-3-642-02658-4_52.

34 Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD thesis,
University of Magdeburg, Germany, May 2010.

35 Gary A. Kildall. A unified approach to global program optimization. In Conference Record of
the ACM Symposium on Principles of Programming Languages, (POPL’73), pages 194–206,
1973. doi:10.1145/512927.512945.

36 Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Systematic
derivation of correct variability-aware program analyses. Sci. Comput. Program., 105:145–170,
2015. doi:10.1016/j.scico.2015.04.005.

37 Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006. doi:10.1007/s10990-006-8609-1.

38 Antoine Miné. Tutorial on static inference of numeric invariants by abstract interpretation.
Foundations and Trends in Programming Languages, 4(3-4):120–372, 2017. doi:10.1561/
2500000034.

39 David Lorge Parnas. On the design and development of program families. IEEE Trans.
Software Eng., 2(1):1–9, 1976. doi:10.1109/TSE.1976.233797.

40 Christian Prehofer. Feature-oriented programming: A fresh look at objects. In ECOOP’97 -
Object-Oriented Programming, 11th European Conference, 1997, Proceedings, volume 1241 of
LNCS, pages 419–443. Springer, 1997. doi:10.1007/BFb0053389.

41 Marko Rosenmüller, Norbert Siegmund, Sven Apel, and Gunter Saake. Flexible feature
binding in software product lines. Autom. Softw. Eng., 18(2):163–197, 2011. doi:10.1007/
s10515-011-0080-5.

42 Marko Rosenmüller, Norbert Siegmund, Mario Pukall, and Sven Apel. Tailoring dynamic
software product lines. In Generative Programming And Component Engineering, Proceedings
of the 10th International Conference on Generative Programming and Component Engineering,
GPCE 2011, pages 3–12. ACM, 2011. doi:10.1145/2047862.2047866.

43 Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines. In Software Product Lines: Going Beyond -
14th International Conference, SPLC 2010. Proceedings, volume 6287 of LNCS, pages 77–91.
Springer, 2010. doi:10.1007/978-3-642-15579-6_6.

44 Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Making numerical program analysis
fast. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2015, pages 303–313. ACM, 2015. doi:10.1145/2737924.2738000.

45 Caterina Urban. Static Analysis by Abstract Interpretation of Functional Temporal Properties
of Programs. PhD thesis, École Normale Supérieure, Paris, France, 2015. URL: https:
//tel.archives-ouvertes.fr/tel-01176641.

46 Caterina Urban and Antoine Miné. A decision tree abstract domain for proving conditional
termination. In Static Analysis - 21st International Symposium, SAS 2014. Proceedings,
volume 8723 of LNCS, pages 302–318. Springer, 2014. doi:10.1007/978-3-319-10936-7_19.

ECOOP 2021

https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/512927.512945
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1109/TSE.1976.233797
https://doi.org/10.1007/BFb0053389
https://doi.org/10.1007/s10515-011-0080-5
https://doi.org/10.1007/s10515-011-0080-5
https://doi.org/10.1145/2047862.2047866
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/2737924.2738000
https://tel.archives-ouvertes.fr/tel-01176641
https://tel.archives-ouvertes.fr/tel-01176641
https://doi.org/10.1007/978-3-319-10936-7_19

14:28 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

47 Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel.
Variability-aware static analysis at scale: An empirical study. ACM Trans. Softw. Eng.
Methodol., 27(4):18:1–18:33, 2018. doi:10.1145/3280986.

48 Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel. Variability
encoding: From compile-time to load-time variability. J. Log. Algebraic Methods Program.,
85(1):125–145, 2016. doi:10.1016/j.jlamp.2015.06.007.

https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007

Best-Effort Lazy Evaluation for Python Software
Built on APIs
Guoqiang Zhang #

Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Xipeng Shen #

Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Abstract
This paper focuses on an important optimization opportunity in Python-hosted domain-specific
languages (DSLs): the use of laziness for optimization, whereby multiple API calls are deferred and
then optimized prior to execution (rather than executing eagerly, which would require executing
each call in isolation). In existing supports of lazy evaluation, laziness is “terminated” as soon as
control passes back to the host language in any way, limiting opportunities for optimization. This
paper presents Cunctator, a framework that extends this laziness to more of the Python language,
allowing intermediate values from DSLs like NumPy or Pandas to flow back to the host Python
code without triggering evaluation. This exposes more opportunities for optimization and, more
generally, allows for larger computation graphs to be built, producing 1.03-14.2X speedups on a set
of programs in common libraries and frameworks.

2012 ACM Subject Classification Software and its engineering → Dynamic compilers; Software and
its engineering → Runtime environments

Keywords and phrases Lazy Evaluation, Python, API Optimization

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.15

Funding This material is based upon work supported by the National Science Foundation (NSF)
under Grants CCF-1703487. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of NSF.

1 Introduction

Modern software is built upon APIs. Although APIs typically encapsulate highly optimized
code, suboptimal usage of APIs can cause large performance degradation. Such a problem is
especially common in Python programs, as Python has become the host language of many
popular libraries or domain-specific languages (DSL) targeting performance-demanding tasks,
such as NumPy [28], Pandas [17], PySpark [31], TensorFlow [1], and PyTorch [25].

S1:	x	=	numpy.add(a,b)
S2:	x	=	numpy.add(x,c)

(a)

S1:	wa=	weldarray(a)
S2:	x	=	weldnumpy.add(wa,b)
S3:	x	=	weldnumpy.add(x,c)
S4:	x.evaluate()

(b)

S1:	wa	=	weldarray(a)
S2:	x	=	weldnumpy.add(wa,b)
S3:	x	=	weldnumpy.add(x,c)
S4:	a[0]	=	0
S5:	x.evaluate()

(c)

Figure 1 NumPy example and WeldNumpy variants.

© Guoqiang Zhang and Xipeng Shen;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 15; pp. 15:1–15:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gzhang9@ncsu.edu
mailto:xshen5@ncsu.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Best-Effort Lazy Evaluation for Python Software Built on APIs

Suboptimal usage of APIs typically involves a sequence of API calls. For illustration
purpose, we show a simple example in Figure 1(a). While the code is simple, it suffers the
performance flaw of a redundant temporary value: S1 creates an object and assigns it to
x, but after x points to another object in S2, Python garbage collector (GC) releases the
former object as it now has zero reference count. The program can be optimized by replacing
the second statement with an in-place operation: numpy.add(x, c, out=x). The argument
out=x instructs numpy.add to reuse x to store the result. The optimization not only improves
data locality, but also reduces memory usage.

Existing work to tackle the problem of suboptimal API sequence relies on lazy evaluation.
Several API sets, such as Spark [31], TensorFlow [1], and WeldNumpy [22], have been
designed and implemented in that way. They designate some APIs as eager APIs and the
rest as lazy APIs. Invocations of lazy APIs only log the APIs in a certain form rather
than execute them. Once an eager API is encountered, the logged sequence of APIs will
be optimized together and then executed. For instance, Figure 1b shows the WeldNumpy
version of the code in Figure 1a; the two add operations are not evaluated until S4; before the
evaluation happens, the WeldNumpy runtime optimizes the two add operations and avoids
the unnecessary object creation for x in the second add operation.

A fundamental problem underlying the API-based lazy evaluation is the data dependence
that arises between the invocations of the APIs and the host Python code. Figure 1c gives
an illustration. Compared to Figure 1b, the difference is that a Python statement S4 updates
the input of S1 before evaluate(). Python statements, by default, are eagerly evaluated.
But as the weldnumpy.add API is lazily evaluated, S2 would end up using the wrong values
of a.

Existing frameworks either leave the issue to the programmers (e.g., in WeldNumpy [22]),
relying on them to put in eager APIs at the right places, or design the library such that
any API that might incur dependencies with the host code is designated as an eager API,
regardless of the context (e.g., in Spark [31] or TensorFlow [1]). The former increases
programmers’ burdens, while the latter often misses optimization opportunities due to its
conservative design.

Listing 1 shows an example in Spark. It loads a text file (Line 1), splits the lines into
words (Line 2), filters out illegal words (Line 3), counts the number of words (Line 4), sums
the lengths of all words (Line 5), and finally outputs the average word length (Line 5). In
Spark, the APIs textFile, flatMap, filter, and map are always lazily evaluated; both
count and sum are always eagerly evaluated APIs because they return values to the host code
and hence the value, in general, could potentially be operated on by the host code. When an
eager API is invoked, Spark fuses relevant lazy APIs together into a pipeline; intermediate
results are not cached. As there are two eager API calls, the lazy operations textFile,
filter, and flatMap are evaluated twice at lines 4 and 5. The solution from Spark is to
introduce extra APIs such that programmers can use them for caching. This “band-aid”
solution further increases the burdens of programmers, who now need to be concerned of not
only the usage of the many existing APIs but also the best places to use the caching APIs.

Our study (§9) shows that these limitations prevent existing frameworks from tapping
into the full potential of lazy evaluations for Python+API programs, leaving up to 14X
performance improvement yet to harvest.

The primary goal of this work is to create a solution that overcomes the limitations of the
existing methods for enabling lazy evaluation for Python+API programming. The principles
for developing our solution are two fold: (1) It should be automatic such that programmers
do not need to worry about manually finding the best places in their code to insert APIs to
trigger evaluations; (2) it should be effective in postponing API evaluations to places as late
as possible to maximize API optimization opportunities.

G. Zhang and X. Shen 15:3

Listing 1 A Spark program with performance issues that are hard to automatically optimize
away

1 lines = sc.textFile("foo")
2 ws = lines.flatMap(lambda l: l.split())
3 ws = ws.filter(lambda x: re.match("^[\w]+$", x))
4 word_count = ws.count()
5 total_len = ws.map(lambda w: len(w)).sum()
6 avg_len = total_len / word_count

The key to both principles is to effectively analyze data dependencies between the host
code and the APIs in a Python program. The problem is challenging. Many features of
Python, such as dynamic typing and reflection, make analysis of the host code difficult. The
difficulty is exacerbated by the extra need to analyze library APIs and their interactions
with the host code. The lack of such automatic data dependence analysis is plausibly one of
the main reasons for the unsatisfying solutions being used today.

In this work, we address the challenge by developing a minimum interference runtime
watching scheme (MIN-watch for short). The basic idea underlying MIN-watch is simple,
tracking data accesses at runtime to detect data dependencies. The novelty is in how MIN-
watch makes the tracking efficient and effective for sound dependence detection in the context
of Python+API programs. MIN-watch does it by taking advantage of the characteristics of
Python and the special needs in lazy evaluation for Python+API. It is resilient to Python
language complexities. It minimizes runtime overhead through a focused tracking scope
in data and an efficient runtime checking mechanism (bit-level flagging and deferred flag
resetting). It meanwhile imposes near-zero burdens on programmers. MIN-watch is based on
a dependence theorem we introduce to formulate the correctness of lazy evaluation in this
host+API context (§3).

Based on MIN-watch, we further develop Cunctator, a software framework for materializing
the extended lazy evaluation. Cunctator consists of an intermediate representation (lazy IR)
for the deferred operations, a lazy IR evaluator, a class that delegates the results of deferred
operations and postpones operations applied to itself, and a set of interfaces for redirecting
API calls and registering optimizers. With these components together, Cunctator provides
programmers the conveniences of enabling the automatic Best-Effort Lazy Evaluation (BELE)
for a Python library and harvesting the optimization benefits.

To demonstrate the usefulness of Cunctator, we implement four optimizations enabled by
BELE for three API packages (numpy, Spark, Pandas). Experiments on 15 programs show
that the optimizations generate 1.03-14.2X speedups. Stress testing shows that the overhead
of Cunctator is no greater than 2.25% (in its default setting).

In summary, this work makes the following major contributions:
It introduces the concept of Best-Effort Lazy Evaluation, and shows that MIN-watch
is effective in enabling data dependence analysis for Python+API programs to support
Best-Effort Lazy Evaluation.
It develops the first software framework to support Best-Effort Lazy Evaluation for
Python+API programs.
It demonstrates the effectiveness of the techniques in enabling optimizations of Py-
thon+API programs.

ECOOP 2021

15:4 Best-Effort Lazy Evaluation for Python Software Built on APIs

Lazy Value
Propagation (§4.2)

Runtime

Application
in Python

API

API Call

Original API

Lazy IR (§5)

IR Evaluation
(§5)

API Redirection
(§6)

Optional
extension

Optimization
passes (§7)

Optimizer

CunctatorApplication

M
IN

-
w

atch (§4.1)

Figure 2 Architecture of Cunctator.

8

L1	=	np._add(a,	b)

L1[0]	=	0

L2	=	np._add(L1,	c,	out=L1)

del	L1

7

Optimizer

1x	=	np.add(a,	b)

3x	=	np.add(x,	c)

2x[0]	=	0

5a[0]	=	0

L2	=	np._add(L1,	c)

L1	=	np._add(a,	b)

del	L1

L1[0]	=	0

1

1
1

4L1

L2

4
Python

GC

LVP

notify

MIN-
watch

invokeEvaluator

6

Redirected API Lazy Object

Program

Lazy IR

Optimized Lazy IR

1

2

3

4

Figure 3 Running example. Numbers on directed edges indicate the order of actions.

2 Overview

Figure 2 illustrates Cunctator’s architecture. When an application invokes a DSL API, the
API call is redirected to a Cunctator optimizer. Instead of evaluating the API, the optimizer
records the API in the form of Lazy IR (§5), and returns a lazy object. The lazy object
supports Lazy Value Propagation (LVP, see §4.2), which tries to propagate a new lazy object
when an operation is applied to the lazy object. Cunctator employs MIN-watch (§4.1) to
monitor accesses to objects related with the deferred operations. When MIN-watch encounters
host statements or APIs that prevent further delays (based on dependence theorems in §3),
it triggers the evaluation of the deferred operations. During the evaluation, the Cunctator
optimizer applies optimization passes (§6) onto the IR, and then invokes the original DSL
APIs for evaluation. To apply Cunctator to a domain, the developers of the DSL optimizer
only needs to use Cunctator interfaces to specify redirections of the domain APIs, to support
MIN-watch for some common types, and to write domain-specific optimizations. The extra
work an application developer needs to do is just to import one or several modules.

G. Zhang and X. Shen 15:5

Figure 3 shows the execution flow of a NumPy program with Cunctator. First, the
np.add in line 1 is redirected to Cunctator optimizer, which records the API call as a lazy
IR instruction and returns a lazy object L1. Note, the assignment to x is not deferred
but executed, and x now points to the lazy object L1. The optimizer also sets up the
two arguments, a and b, for watching. At line 2, because x is lazy, the Lazy Object class
automatically captures and logs this operation and defers its execution. Line 3 is similar to
line 1, and Cunctator defers and logs the operation. That assignment makes x point to L2;
L1’s reference count reduces to zero, which triggers Python’s garbage collection on L1. L1’s
deconstructor, however, rather than deconstructs L1, defers the deconstruction and inserts
a del instruction into the IR. Line 4 tries to update a, which is captured by MIN-watch,
which triggers the evaluation of all the deferred operations. The evaluator first invokes the
optimizer, which reduces redundant temporary variables, and then evaluates the operations.

Before presenting the details of Cunctator, in the next section, we first define some terms
and prove a dependence theorem that formulate Cunctator’s correctness.

3 Dependencies between Operations

To ensure the correctness of Cunctator, one key aspect is to properly manage the dependencies
between postponed API calls and eagerly executed statements. We first introduce a set of
terms that are used in the following discussions.

Terminology. Unless otherwise stated, an object denotes a Python object. An operator
denotes a Python built-in operator. An operation denotes the process of applying an operator
to its operands. For example, foo.bar() consists of two operations: The ‘.’ operator is
applied to foo and “bar” to return a function object, which becomes the operand of the ‘()’
operator. We in addition introduce the following terms.

Contents of an object: All in-memory states that could be potentially accessed or updated
directly through the object’s fields and methods. Take the list object [“foo”, “bar”]
as an example – its contents are the references to its two elements, the string objects,
rather than the characters of the strings. By this definition, two objects could share
contents, namely, their methods or attributes could access or update the same in-memory
state.
Sealed object: An object that shares no content with other objects. This means the
contents of a sealed object can be accessed or updated only by its own attributes or
methods.
Domestic object: An object whose attributes and methods access no external resources
(e.g., files and network) but only the memory space of the current process. We are
interested in sealed and domestic objects (e.g., list objects).
Dependents of an object: The object itself and the objects referred to in the contents of
the object. For example, the dependents of a list are itself and its elements.
Relatives of an object: Object R is a relative of object O if and only if there is a dependent
chain O ← ...← R, in which x← y denotes that object y is a dependent of object x.
Regular operation: An operation is regular if the relatives of its operands and return value
are all sealed and domestic, and it only accesses or updates the contents of its operands’
relatives or newly created objects during the operation. In most cases, a DSL API call is
a regular operation. One example of irregular operation is an API manipulating global
variables.

ECOOP 2021

15:6 Best-Effort Lazy Evaluation for Python Software Built on APIs

Without noting otherwise, the following discussions assume regular operations and sealed
and domestic objects and there is no exceptions. Section 4.4 discusses exceptions and other
complexities.

Dependency types. Based on the above definitions, we classify potential dependencies
between an API call OA and a statement OB into three types:

Return-access: The return value of OA is accessed (read or written) by OB , as illustrated
by the top left example in Figure 4.
Input-update: A relative of OA’s operands is updated in OB , illustrated by the bottom
left example in Figure 4.
Update-access: OA updates a relative of its operand I and OB accesses that relative,
illustrated on the right side in Figure 4. Cunctator uses a conservative version of this
definition, which forgoes the requirement of the two relatives being the same. It simplifies
runtime checking as shown later.

v1	=	foo(...)
v2	=	v1.bar

Return-access

v1	=	foo(v2,	...)
v2.bar	=	v3

Input-update

def	foo(arg1,	...):
		...
		arg1.bar	=	v0
		...

v1	=	foo(v2,	...)
v3	=	v2.bar

Update-access

Figure 4 Three types of dependencies.

Dependency Theorem. This part presents the dependence theorem governing the validity
of lazy evaluation for APIs, which underpins the design of Best-Effort Lazy Evaluation.

▶ Lemma 1. For an API call A followed by a statement B, deferring the execution of
A to a point after B does not change the data dependencies between them if there are no
return-access, input-update, or update-access dependencies between them.

The lemma comes from the observation that for the properties of sealed and domestic
objects and regular operations, the three types of dependencies cover all possible data
dependencies (true dependencies, anti-dependencies, output dependencies) [2] between two
statements.

▶ Theorem 2. For an API call A followed by a sequence of statements S, deferring the
execution of A to a point after S is valid if there are no return-access, input-update, or
update-access dependencies between A and any of the statements in S.

This theorem is derived from the classic fundamental theorem of dependence [2], which
states the following: Any reordering transformation that preserves every dependence in a
program preserves the meaning of that program. Deferring executions is clearly a kind of
reordering transformation. The deferring does not cause any dependence changes according
to Lemma 1 for none of the three types of dependencies exist between A and S. The theorem
hence holds.

G. Zhang and X. Shen 15:7

Theorem 2 is essentially a variant of the fundamental theorem of dependence in the context
of API lazy evaluation; the benefits of having it are however significant. It entails what types
of dependencies are needed to consider during lazy evaluation, and what set of data objects
are needed to watch, which lay the foundation for the design of MIN-watch and BELE in the
next section.

4 Best-Effort Lazy Evaluation (BELE)

The purpose of BELE is to defer DSL API calls until the necessary moment. The central
challenge that BELE confronts is to satisfy three mutually constrained requirements: First,
BELE has to ensure correctness of the program. Second, the deferring period, or laziness,
should be as long as possible to harvest optimization opportunities. Finally, the overhead
should be low.

To address these challenges, we introduce minimum interference runtime watching (MIN-
watch) in §4.1 to detect, with low overhead, input-update and update-access dependencies
between deferred API calls and host code. In addition, Cunctator §4.2 employs lazy value
propagation (LVP) to manage return-access dependencies while ensuring enough laziness.
The overheads of Cunctator and strategies to control them are discussed in §4.3. Finally,
§4.4 describes how to handle special scenarios.

4.1 Minimum interference runtime watching (MIN-Watch)

Based on Theorem 2, the key for BELE is in detecting data dependencies. MIN-watch takes
the way of runtime object watching, which makes it not subject to the language complexities
Python imposes on compilers or other static methods.

4.1.1 Overview of MIN-Watch

What makes MIN-watch distinctive over common runtime access tracking is the strategy it
employs, which takes advantage of the characteristics of this problem setting and Python
language properties, and uses a lightweight type-based scheme for non-intrusive implementa-
tion. Specifically, the design of MIN-watch draws on three observations: (1) In Python, most
memory accesses go through object interface with multiple layers of redirection and procedure
abstractions, hence a much reduced sensitivity to runtime memory access tracking overhead
compared to many other languages and settings. (2) The key to BELE is the dependence
between API and host. So many data accesses that are irrelevant to such dependencies can
be exempted from tracking. (3) Python object assignments and parameter passing are both
through references; so to check dependencies related to an actual object, it is not necessary
to track references to it, if the watching scheme is put onto that object.

Built on the observations, MIN-watch has the following features: (1) By focusing on
API to host dependencies and Theorem 2, MIN-watch concentrates runtime watching on
only relevant data objects. (2) It employs an efficient runtime checking mechanism (bit-level
flagging and deferred flag resetting) via the Python interpreters to minimize interference
to program executions. (3) It employs a type-based approach to enabling runtime object
watching, but does it in a non-intrusive way such that application developers need to make
no changes to the implementation of a data type for the approach to take effect. Moreover,

ECOOP 2021

15:8 Best-Effort Lazy Evaluation for Python Software Built on APIs

Watch
framework

Type-specific
implementation

Watch objects and their
relatives

Relatives
Discovering

Watch a single Object

Watch
Protocol Optional realization

Discover dependents

Intrusive

Non-intrusive

API

Figure 5 The architecture of MIN-watch. Arrows indicate invocation; dotted lines indicate
optional implementation.

#	in	module	numpy
#	gIR:	the	global	IR	scratchpad
def	add(a,	b):
			setupWatch(a,	True)
			setupWatch(b,	True)
			id	=	gIR.add_call(...)
			return	Lazy(gIR,	id)

def	setupWatch(obj,	watchUpdateOnly):
			for	r	in	findRelatives(obj):
						r.__set_watch__(watchUpdateOnly)

Figure 6 A high-level illustration of how MIN-watch works for API numpy.add(a,b).

the utilities in Cunctator simplify the work an optimizer developer1 needs to do to enable
MIN-watch (and BELE) for a domain DSL. The first two features make MIN-watch efficient,
and the other features make it easy to use.

Figure 5 shows the architecture of MIN-watch, and Figure 6 uses numpy.add(a, b) as
an example to illustrate at a high level how MIN-watch works. The API was overloaded
such that when the API is called in a program, instead of doing the computation of arrays
addition, it sets up objects a and b and their relatives for runtime watching via function
setupWatch. Function setupWatch calls a function findRelatives() to go through each
relative of an object, and calls __set_watch__ of that object to set it up for runtime watching.
The setup process flags some special bits in the object header such that the extended Python
interpreter, when executing a statement, can recognize such objects and invoke Cunctator
lazy evaluation listener to evaluate deferred operations.

We next explain MIN-watch in detail, starting with the basic watch protocol on a
single object (§4.1.2), and moving on to describe the procedure in finding and watching all
relatives (§4.1.3).

1 Please note the differences between an application developer and an optimizer developer.

G. Zhang and X. Shen 15:9

insert

set

obj.__set_watch__() set of
watched
objects

check

query
notify

Python
interpreter

global
listener

object head
ref cntref count (62 bits)

watch
flags

obj.foo	=	bar

Setup watching Watch an accessData structures

Figure 7 Default implementation of watch protocol.

4.1.2 Watch protocol

Cunctator adds the following method into the root class in Python:

def __set_watch__(self, watchUpdateOnly):
pseudo-code
self.watch_flag = WATCH_UPDATE_ONLY
g_watch_set.insert(self)

The parameter watchUpdateOnly determines whether the object should be watched for
read and write accesses (false) or just writes (true).

Figure 7 depicts the actions when the protocol takes place. In the setup time (e.g., when
numpy.add(a,b) is called in the example in Figure 6), __set_watch__ sets two bits in the
object head to indicate whether the object is to be watched for update only (01), read/update
(10), or nothing (00). These bits help the interpreter determine the corresponding action
quickly. Our implementation borrows the first two bits of the reference count field of an object.
That saves extra memory, and also helps ensure that most third-party binary libraries are
still compatible by keeping the length of the head unchanged. The method __set_watch__
in addition adds the object into a global set watchSet. It is for fast resetting at the time
when the deferred operations are evaluated, which will be elaborated in §4.1.4.

We extend the Python interpreter such that it notifies Cunctator lazy evaluation listener
when the content of an object that is being watched is accessed by a bytecode (e.g., LOAD_ATTR
and STORE_SUBSCR).

The default implementation of __set_watch__ ignores the parameter watchUpdateOnly
(i.e., assuming it is false). It is because when just encountering the statement, for some data
types, the interpreter sometimes cannot tell whether the access would update the object.
(Note that it is legitimate in Python for a seemingly read-only (e.g., foo.bar) operation to
update the object.) This conservative implementation may reduce the laziness but won’t cause
correctness issues. For a given data type, the optimizer developer can choose to customize
its __set_watch__() method and other methods to enable a more precise treatment.

It is worth noting that if an object is not sealed, accesses or updates to the object’s
contents through other objects are not watched with the default implementation. This is
fixed in the upper relatives discovering component by not supporting the specific type, which
causes the watch process to fail and thus triggers eager evaluations of involved operations.

ECOOP 2021

15:10 Best-Effort Lazy Evaluation for Python Software Built on APIs

4.1.3 Watching relatives

With the watch protocol, we can watch a single object. MIN-watch requires watching all
the relatives of an object of interest as Figure 6 has shown. The watch framework holds a
registry that can register user-defined procedures to discover dependents of specific types.
Through recursively calling registered procedures, all relatives of an object can be found.
For example, a list A contains objects B, C, and D, and D is another list that contains
E and F . Then, the dependent-discovering procedure registered for type list returns B,
C, and D for object A, after which a recursive call of the procedure for D returns E and
F . Typically, a type-specific dependent-discovering procedure is easy to implement. For
example, the procedure for list is as simple as2:

def list_deps(l):
for e in l:

yield e

Algorithm 1 shows the process of setting up to watch an object’s relatives. The SetWatch
procedure first checks existing watch flags and returns in two cases: The first case is that
the object is watched for access, when the procedure returns disregarding the parameter
watchUpdateOnly. The second case is that the object is watched for updates only and the
parameter watchUpdateOnly is True. In other cases, the procedure sets up to watch the
object through the watch protocol and then recursively calls SetWatch for each of its
dependents (except for the object itself). If the type of the object is not registered in the
registry, the procedure raises an exception, which will be caught by Cunctator to trigger an
eager evaluation of the involved operation.

Algorithm 1 Setting up to watch an object’s relatives.

1: DepReg ← the registry for discovering dependents
2: procedure SetWatch(obj, watchUpdateOnly)
3: if obj is watched for access then return
4: if watchUpdateOnly ∧ obj is watched then return
5: obj.__set_watch__(watchUpdateOnly)
6: for all d ∈ Deps(obj) do
7: SetWatch(d, watchUpdateOnly)
8: procedure Deps(obj)
9: if type(obj) is registered in DepReg then

10: return DepReg.getHandler(type(obj))(obj)
11: else
12: raise an exception

When Cunctator defers an operation, it invokes the SetWatch procedure for all the
operands except for lazy values, whose potential dependency is handled by lazy value
propagation.

2 yield is a Python construct that returns the next value in the next call of its enclosing function.

G. Zhang and X. Shen 15:11

4.1.4 Unwatching objects via deferred flag resetting
After the deferred operations are triggered to get evaluated (or when a watch procedure is
aborted because of an unsupported type, see §4.1.3), Cunctator would need to clear the watch
flags of all watched objects. Otherwise, later accesses to them would trigger unnecessary
evaluations. Going through all the objects could incur substantial overhead. Cunctator
circumvents it by introducing a global watchSet. Recall in Figure 7, __set_watch__() puts
an object to be watched into watchSet at setup time. That set is emptied once the evaluation
of deferred operations is triggered. Python interpreter, when it encounters an object with
watching bits set, would check whether that object is within watchSet. If not, it cleans the
watch bits; otherwise, it invokes Cunctator lazy evaluation listener.

4.2 Lazy value propagation
Return-access dependency is easy to detect for lazily evaluated operations, since all subsequent
visits to the return value fall to the actually returned lazy object, which can trigger the
evaluation whenever it is used, similar to how the modifier lazy works in some other popular
languages (e.g., Scala and Swift). However, too often, a lazy object is used shortly after
it is returned. For example, in the statement (a, b) = lazy_func(), the lazy object is
used to unpack its elements right after it is returned from lazy_func(). In such cases, an
evaluate-when-used semantics of lazy objects results in short-lived laziness, and leaves no
optimization opportunities. As a solution to ensure sufficient laziness, we enhance Python
with lazy value propagation (LVP), which propagates new lazy values for most operations
applied to existing lazy values. In this way, the return-access dependency is not violated,
since the operation that uses the return value is deferred as well.

When a lazy value is being operated, LVP records the operation into the lazy IR and
then returns a newly created lazy object. One problem that LVP has to solve is when the
propagation should stop – in other words, when the true evaluation should be triggered. An
evident scenario is when a lazy value is used to determine the execution branch (e.g., the if
condition). Theoretically, we could explore all possible paths and collect the lazy IR in the
form of computational tree logic (CTL) [4]. Such exploration, however, would introduce large
overhead, while its benefit is unclear. Another situation of stopping LVP involves overhead
control (see §4.3).

Cunctator implements LVP within the class of lazy objects through operator overwriting,
as shown in Listing 2. A lazy object is bound with one lazy IR variable. The __add__
function, for instance, overwrites the operation lazy + r. Their operands are set up for
watching before the operation is recorded in the lazy IR. Other operations are overwritten in
a similar way, except for the bool() operation, which triggers the evaluation, as the operation
is invoked when a value is used for branch selection. Although the bool() operation does
not necessarily imply branching, it is a good heuristic.

A special operation in Python is accessing an object’s attribute. Commonly, the attribute
is accessed by the ‘.’ notation (e.g. o.a), which can be overwritten by __setattr__()
and __getattr__(). But the special __dict__ attribute can be used to access other
attributes. For example, o.__dict__[“a”] is equivalent to o.a. Cunctator extends the
Python interpreter to invoke the lazy evaluation listener when the __dict__ attribute is
accessed.

It is worth noting that Cunctator chooses to implement LVP in pure Python for fast
prototyping. We plan to re-implement it as a part of Python interpreter in the future. This
built-in LVP will have lower overhead and know precisely when a value is used for branch
selection.

ECOOP 2021

15:12 Best-Effort Lazy Evaluation for Python Software Built on APIs

Listing 2 Lazy value propagation

class Lazy:
def __init__(self, ir, v):

self.__ir, self.__v = ir, v
def __add__(self, r):

if self.__ir.evaluated(self.__v):
return self.__ir.value(self.__v) + r

watch(r)
newv = self.__ir.add_op2(’+’, self, r)
return Lazy(self.__ir, newv)

def __bool__(self):
return bool(self.__ir.evaluate(self.__v))

More overwritten operations
...

4.3 Overhead control
If there are too many inexpensive DSL API calls or too many propagated lazy values,
generating and evaluating the lazy IR could introduce too much overhead. Although such
cases never appear in our experiments, we still introduce a dynamic scheme to prevent it
from happening in the extreme cases. Cuncator employs a parameter NIRP S to control how
many lazy IR instructions can be generated per second. Initially, Cunctator sets a variable
M to NIRP S . When the total number of generated instructions is equal to M, Cunctator
evaluates recorded IR, then it sets M to NIRP S ∗ T , in which T is the total elapsed time
since the first API is deferred. If M’s new value is smaller than its old value, it indicates
that the program is an extreme case; Cunctator disables itself by avoding API redirection
and LVP. In our experiments, we set NIRP S to 1000.

4.4 Additional complexities
Exception. Theorem 2 assumes that neither OA nor OB raises exceptions. Exceptions could
direct the execution to their handlers. If there is no exception handler set up, which is the
case for most of the DSL programs we encountered, any raised exception would cause the
program to crash. Thus, Cunctator disregards potential exceptions of an operation when
there is no installed exception handler. When the current context has exception handlers,
Cunctator disables BELE, and thence, all operations are eagerly evaluated. Cunctator
checks the currently installed exception handlers through an interface added to the Python
interpreter.

External dependency. Theorem 2 assumes that OA and OB are not dependent on each other
through external resources (e.g., one writes to a file, and the other reads the file). Cunctator
considers that the information of whether lazily evaluated APIs access external resources
as domain knowledge and relies on the optimizer’s developer to provide the knowledge.
If none of the lazily evaluated operations access external resources, there is no external
dependency. Otherwise, a monitor that watches the program’s system calls could notify
Cunctator when the program tries to access external resources; Cunctator can then avoid
deferring the operations.

G. Zhang and X. Shen 15:13

Unwatchable objects. Although the watch framework works in most cases, there are objects
that cannot be watched because they are not sealed or domestic. For example, if an object
holds a segment of shared memory, an update to the shared memory in another process
will not notify the listener. In addition, it is impractical to implement MIN-watch for all
potential types; thus, some uncommon types may not support MIN-watch. Any kind of
unwatchable object causes an involved operation to be eagerly evaluated.

Loss of seal. A sealed object may become not sealed at runtime. For example, numpy.ones()
creates a sealed object O; however, O.reshape() may create a new object P that shares
O’ data buffer (not a Python object) through pointer alias, rendering that O is not sealed
any more, and updates to the data buffer by operating P cannot be monitored by watching
O. Therefore, if a type supports MIN-Watch, and there is a method of the type leaks the
content, the method needs to mark the involved object as unwatchable by setting watch
flags’ value to 11 (see §4.1.2). Subsequent attempts to set watch on O will enforce eager
evaluation.

5 Intermediate Representation

This section gives details on the design of the lazy IR in Cunctator. The lazy IR has a static
single assignment (SSA) form. Each instruction is a 4-tuple:

< ID, OP, Operands, Annotation >

ID is a globally unique name, which represents the result of current instruction. OP is
the operator, such as ‘+’, ‘.’ (attribute access), ‘[]’ (array alike access), ‘()’ (function calls).
Operands are stored as a list. Annotation can be used to store any extra info that the
optimizer may use. For an API call, for instance, it is logged as a call instruction (OP is
‘()’), the function pointer is stored in the Operands field along with the function’s arguments,
and the API name is put into the Annotation field.

An operand of an IR instruction could be either a lazy value or a non-lazy value. When
an operand is a lazy value, the instruction stores its ID. For a non-lazy value, the instruction
stores a reference to it. (In our discussion, Lx denotes a lazy value, Nx a non-lazy value, and
Vx can be any value.)

Cunctator provides a simple interface for optimizer developers of a DSL to register
optimization passes. Each optimization pass accepts a sequence of IR instructions as input,
and outputs an optimized sequence. Registered optimization passes are chained in order.
During an evaluation, the sequence of all recorded IR instructions since the last evaluation is
passed down through all optimization passes.

6 Optimizers

Cunctator is an enabler. By enabling BELE, it paves the way for many optimizations that
are not supported by existing DSL frameworks. We have implemented proof-of-concept DSL
optimizers for NumPy, Pandas, and Spark. These optimizations fall into two categories:
in-language optimization and cross-language optimization. The in-language optimization
tries to identify inefficient API uses and replace them with some other APIs of the DSL. The
cross-language optimization tries to replace APIs of one DSL with APIs of another DSL.
Two techniques for each category are illustrated in the following sections.

ECOOP 2021

15:14 Best-Effort Lazy Evaluation for Python Software Built on APIs

6.1 Reducing temporary variables in NumPy

L1	=	np.add(Va,	Vb)
L2	=	np.add(L1,	Vc)
del	L1

L1	=	np.add(Va,	Vb)
L2	=	np.add(L1,	Vc,	out	=	L1)
del	L1

Figure 8 Reducing redundant temporary variables in NumPy.

Redundant temporary variables are a performance issue in many NumPy programs. They
impair performance in two ways. First, value assignment to a new variable has worse data
locality than an in-place value update. Second, depending on the array size, a temporary
variable can consume a lot of memory and thus increase peak memory usage.

When the API call trace is collected as lazy IR in Cunctator, an optimizer can easily
optimize away a redundant temporary variable through pattern matching and IR rewriting.
At the pattern matching stage, the optimizer locates a redundant temporary variable La if
the following conditions are all satisfied:

La’s value is initialized from the result of an operation that generates a new value rather
than performing in-place update.
La participates in no in-place updating operations.
La is passed to an operation O that generates a new value Lb, and O has a counterpart
O′ that performs an in-place update.
After being used in operation O, La is deleted and participates in no other operations.

At the IR rewriting stage, the optimizer replaces the operation O with O′, which saves the
result to La. Figure 8 shows an example of this optimization technique.

6.2 Adaptive caching for PySpark

L1	=	...
L2	=	L1.filter
L3	=	L2(Vf1)
L4	=	L3.count
L5	=	L4()
L6	=	L3.map
L7	=	L6(Vf2)
L8	=	L7.sum
...

filter

count

map sum

Collected IR

...

filter

count

map sum

... cache

L1	=	...
L2	=	L1.filter
L9	=	L2(Vf1)
L10	=	L9.cache
L3	=	L10()
L4	=	L3.count
L5	=	L4()
L6	=	L3.map
L7	=	L6(Vf2)
L8	=	L7.sum
...

Optimized IR

Figure 9 Adding cache operation in Spark.

PySpark is Spark’s Python programming interface. Although Spark’s runtime employs
lazy evaluation to optimize its API call sequences, it fails to handle performance flaws similar
to that in Listing 1, because an eager API does not know whether the intermediate result of
a lazy API will be used by a subsequent eager API.

With Cunctator, the performance problem in Listing 1 can be optimized away by adding
cache operations for intermediate results used by more than one eager operation, as shown
in Figure 9. The IR shown on the left side of the figure is collected by Cunctator. Note
that del instructions are omitted for concision. Based on the collected IR, the optimizer
constructs a data flow graph for all Spark operations. If two or more eager operations share
a common ancestor, the optimizer inserts a cache operation at the fork.

G. Zhang and X. Shen 15:15

Another similar performance problem involves unnecessary cache operations, namely,
cache operations for intermediate results used by only one eager API. Such operations
introduce unnecessary memory writing and consume a lot of memory. Based on the same
graph analysis as was used for inserting cache operations, the optimizer can identify and
remove unnecessary cache operations.

6.3 From NumPy to WeldNumpy

L6=np.random.rand(N1)
L1=weldarray(L6)
L2=L1+0
L3=L1*1
L7=L3.evaluate
L8=L7()
L4=L1==L2
L9=L4.evaluate
L10=L9()
L5=np.array_equal(L1,L3)
del	L1
del	L2
del	L3

L1=np.random.rand(N1)
L2=L1+0
L3=L1*1
L4=L1==L2
L5=np.array_equal(L1,L3)
del	L1
del	L2
del	L3

Figure 10 Translating NumPy to WeldNumpy.

WeldNumpy [30] was developed as a replacement for NumPy with better performance,
which was achieved via two main techniques. First, WeldNumpy exploits lazy evaluation
instead of eager evaluation, which is used in NumPy. Second, WeldNumpy implements
its APIs using Weld IR [22], an intermediate representation designed for parallel data
processing. Through lazy evaluation, the IR fragments of invoked APIs are combined into an
IR program. During a true evaluation, the IR program is compiled and optimized for native
hardware. Some major optimization techniques are loop fusion, loop tiling, and vectorization.
WeldNumpy provides weldarray, a subclass of NumPy’s ndarray. Thus, after an ndarray
is converted to a weldarray, the new object supports most NumPy operations and enjoys
improved performance.

However, as WeldNumpy is lazily evaluated, it requires users to explicitly call evaluate()
when necessary. The evaluate() method should not be invoked too often; otherwise,
the WeldNumpy runtime misses optimization opportunities and introduces overheads of
compiling the Weld IR. Neither should it be too late as that would cause errors. Thus, a
NumPy-to-WeldNumpy translator needs to figure out the appropriate positions to insert
evaluate().

The evaluating positions can be located by identifying exposed lazy variables. A variable
is exposed if it is used beyond the DSL’s APIs, which means the true value of the variable
may be required, or it is alive at the end of the collected lazy IR, which allows potential
external usage of the variable during subsequent execution. When a variable is exposed but
lazy, it should be explicitly evaluated. Such variables can be identified within an one-pass
scan of the lazy IR. The translator can thence insert evaluate() for these variables.

ECOOP 2021

15:16 Best-Effort Lazy Evaluation for Python Software Built on APIs

Figure 10 shows an example of translating NumPy to WeldNumpy. The translated IR
first converts L1, an ndarray, to a weldarray, such that L2, L3, and L4 enjoy WeldNumpy’s
optimization. However, np.array_equal() is not supported by WeldNumpy; thus, operand
L3 has to be evaluated before being passed. While L4 is explicitly evaluated because of
potential exposure, L2 remains lazy, since it is deleted and has no external use.

Such a translator leverages the laziness analysis enabled by Cunctator. It might be
tempting to think that the translation could be done through a compiler without Cunctator.
Note that that compiler would have to face the laziness analysis problem as Cunctator
tackles; if it ignores that, its replacement of an eagerly evaluated NumPy API with a lazy
evaluated WeldNumpy could cause errors. Doing the laziness analysis is difficult for a
compiler for the many challenges (e.g., Python complexities, API-host interplay) mentioned
in the introduction section.

6.4 From Pandas to Spark

pd.read_csv() ['Incident Zip'] str.slice(0, 5) == '00000'

T[I]= np.nan

T['Incident Zip'] = S ['Incident Zip'] unique()

spark.read.csv()

T.withColumn
('Incident Zip', C)

['Incident Zip']

select('Incident Zip') distinct() toPandas()
['Incident Zip']

T

P
T

P
I

P

S P

P

P

P

T

S
C

S

UDF(C)

C S

S S S

UDF

@pandas_udf('string')
def	func(pdf):
		pdf1=pdf.str.slice(0,5)
		pdf2=pdf1=='00000'
		pdf1[pdf2]=np.nan
		return	pdf1

synthesize

Pandas

Spark

PP S SPandas DataFrame Pandas Series Spark DataFrame Spark Column Output

Figure 11 Pandas to Spark.

Both Pandas and Spark provide a class called DataFrame. They both represent logical
tables, which have named and typed columns. While Pandas’ operations in DataFrame are
eagerly evaluated, most of Spark’s DataFrame methods are lazily evaluated. During a true
evaluation, Spark employs a code generation technique [20] to compile an operation sequence.
Such technique renders the Spark DataFrame API a performant replacement of Pandas.
In addition, Spark has native support for Pandas, including Pandas UDF [24], by which
a user can apply Pandas operations to a Spark Column. Spark also contains type casting
APIs that convert between Spark DataFrame and Pandas DataFrame. These features offers
conveniences to translation of a Pandas program to a Spark program.

G. Zhang and X. Shen 15:17

Similar to NumPy to WeldNumpy, the laziness analysis by Cunctator puts down the basis
for the development of an automatic Pandas-to-Spark translator. Our prototype focuses
on a common use pattern of Pandas: A program first loads a file as a DataFrame, then
performs some operations on it, and finally outputs the result. In such a pattern, only
one DataFrame object is involved, and no Pandas DataFrame object or Series (typically
represents a column) object is exposed, so all instances of the two types only participate in
Pandas operations. When such a pattern is matched, the translator tries to optimize it.

During the translation, the Pandas file loading function is replaced by a counterpart in
Spark, thus creating a Spark DataFrame. Correspondingly, the Series objects selected from
Pandas’ DataFrame become Spark Column objects. If there is a sequence of operations on a
Series that outputs another Series, the sequence is synthesized into a Pandas UDF for
Spark, which is applied to the corresponding Spark Column. If a Series is assigned to the
Pandas DataFrame, the corresponding Column is assigned to the Spark DataFrame as well.
When an operation on a Series returns an object other than a Series, if the operation (e.g.,
unique()) has a counterpart in Spark, the Column is applied to the corresponding Spark
operation, and then the result is converted to the expected type; otherwise (e.g., diff()),
the Column is selected and converted to a Series before applying the operation. Figure 11
illustrates the translation for a Pandas program collected from the Pandas Cookbook [23].

7 API Redirection

If a DSL’s runtime needs to leverage Cunctator to perform optimization, the optimizer
developer needs to redirect the APIs in the DSL through renaming and rewriting. With the
Cunctator framework, the process is made simple. For example, to redirect numpy.add in
NumPy’s runtime, current implementation of numpy.add could be renamed to numpy._add;
then, a new implementation of numpy.add will just record API calls as lazy IR instructions
and returns a lazy object as shown in Figure 6.

To simplify the process, Cunctator offers some utilities. For the aforementioned example,
what the optimizer developer needs to write to put the following into the module numpy:

def add(*args, **kwargs):
return lazy_call("numpy.add", numpy._add, args, kwargs,

kwargsToUpdate={"out"})

Method lazy_call is the utility interface that Cunctator offers. Its first argument is for
the annotation field of a call instruction (see §5). The argument kwargsToUpdate specifies
that numpy._add is going to update only its argument out (if there is one). The call to
lazy_call in this example will essentially materialize the method shown in Figure 6.

8 Efforts in Applying Cunctator

There is some work needed from the library developers. This work needs to be done only
once for a given library; the results can benefit all programs using that library. This one-time
work includes: (1) redirecting some APIs that are important for performance (other APIs can
be left alone, which will be treated in the same way as host Python code is); (2) supporting
MIN-watch for some common types; and (3) implementing optimization passes. Table 1
shows our prototype optimizers’ summary in this work. For a common programmer that
uses a library, the only change she needs to make to her code is to insert one or several lines
of code to import the optimizer.

ECOOP 2021

15:18 Best-Effort Lazy Evaluation for Python Software Built on APIs

We initially considered automatic library transformations, but found that it was difficult
to do for the complexities of Python. It is, for instance, often impossible for static code
analysis to tell whether an argument is subject to modifications, due to dynamic types,
aliases, higher-level functions, and inter-procedural complexities. The design choice made in
Cunctator is a choice for practicability.

Table 1 Summary of optimizers.

Optimizer #APIs∗ Supported types† Opt pass LoC‡

NumPy 45 ndarray, dtype
50 (§6.1)
93 (§6.3)

Spark 24 RDD, StorageLevel 201 (§6.2)
Pandas 28 DataFrame, Series 436 (§6.4)

* The number of redirected APIs.
† The types that support dependent discovery.
‡ Lines of code for implementing the optimization passes described in §6.

9 Evaluation

In this section, we conduct a series of experiments to (1) demonstrate the usefulness of the
four optimizations (§6) enabled by Cunctator, and (2) measure the runtime overhead of
Cunctator. Time usage is collected by the timeit command of jupyter [12], which adaptively
chooses a number of repetitions in favor of timing accuracy. Peak memory usage is collected
by memit command extended by memory-profiler [18], which profiles a program’s memory
usage line by line. The test platform for NumPy and Pandas is a Linux machine with Intel
Xeon Silver 4114 CPUs. Spark programs run on a cluster of eight Linux machines with AMD
Opteron 6128 CPUs.

9.1 Optimizers
We collect 15 programs for the experiments that are relevant to the example optimizations
described in the previous section; five for each of the three packages (NumPy, Spark, Pandas).
Thirteen of them were collected from GitHub; the other two were the examples used in the
earlier sections of this paper – we included them to show the performance benefits for the
described optimizations. Table 2 shows the descriptions and inputs of all benchmarks. Their
source code can be found in the Docker image of Cunctator [5]. Figure 12 shows the speedups
in different optimizer settings. Detailed results are presented in Table 3. Each program set
is discussed separately in following subsections.

9.1.1 NumPy
The temporary variable reducer (abbr. reduceTmp) accelerates all benchmarks, with speedups
ranging from 1.19X to 1.54X. The highest speedup is achieved on P1, because its operations
are easy to compute and hence the cost of temporary variable is prominent. Besides time
benefits, reduceTmp also reduces peak memory usage. P4 highlights the reduction with a
rate of 75%. The high rate is because of pipelined operations, which means each temporary
variable is only used one time and then discarded.

G. Zhang and X. Shen 15:19

Table 2 Descriptions of collected benchmarks.

Description Input
NumPy

P1 Program in Figure 1a vectors of size 109

P2 Compute vibration energy vectors of size 5×108

P3 Find least-squares solution vectors of size 5×108

P4 Find log-likelihood of N (µ, σ2) vectors of size 5×108

P5 Compute Black-Scholes model vectors of size 108

Spark
P1 Program in Listing 1 text file of 90MB
P2 Demultiplex a file to multiple files xml file of 244MB
P3 Transform data format json file of 62MB
P4 Intersect IDs in two tables two csv files of 34MB
P5 Find counts of different words text file of 460MB

Pandas
P1 Find names of median occurrence csv file of 273MB
P2 Find top complaints csv file of 526MB
P3 Find ratios of noise complaints csv file of 526MB
P4 Find unique zip codes after data cleaning csv file of 526MB
P5 Find top occupations wrt. male ratio csv file of 240MB

Table 3 Benchmark results.

P1 P2 P3 P4 P5
NumPy time usage (mean ± std. dev.)

baseline 12.5s±2.95ms 41.1s±75.4ms 27.4s±5.51ms 43.2s±57.6ms 39.1s±23ms
reduceTmp 8.14s±2.14ms 34s±15.3ms 22.9s±105ms 33.7s±26.9ms 32.9s±22.7ms

Weld 1T 6.38s±34.1ms 39.1s±87.6ms 21.8s±45ms 42.7s±144ms 22.6s±28.3ms
Weld 10T 995ms±9.24ms 27s±142ms 17.4s±60.3ms 15.6s±44.4ms 9.94s±35ms

NumPy peak memory usage (MB)
baseline 38181 19131 19130 15316 9213

reduceTmp 30577 11503 15317 3873 6251
Spark time usage (mean ± std. dev.)

baseline 31.9s±123ms 82s±698ms 38.5s±116ms 20.9s±36ms 49.1s±272ms
w/o opt 32.1s±215ms 81s±639ms 38.5s±178ms 21.1s±75.8ms 49.2s±392ms

optimized 17.1s±93.4ms 48.8s±348ms 28.8s±66.8ms 20.3s±317ms 47s±226ms
Pandas time usage (mean ± std. dev.)

baseline 6.03s±50.3ms 9.65s±21.8ms 9.8s±13.4ms 9.72s±40.7ms 7.7s±37.4ms
Spark 1T 17.1s±100ms 5.51s±152ms 3.01s±127ms 5.76s±101ms 7.45s±241ms

Spark 10T 2.92s±203ms 951ms±51ms 690ms±26.9ms 1.3s±145ms 1.29s±59ms

For WeldNumpy converter, we test it with one thread (abbr. Weld 1T) and ten threads
(abbr. Weld 10T) separately. Weld 1T shows speedups ranging from 1.01X to 1.95X. Because
WeldNumpy currently supports only a limited number of NumPy APIs, for unsupported APIs,
it needs to transform data from Weld format to NumPy format to perform the operations, and
if necessary, the results need to be transformed back. As WeldNumpy evolves to support more
APIs, Weld 1T is going to perform better. Moreover, with ten threads, WeldNumpy achieves
significant speedups up to 12.5X. Note that Weld has built-in support for multi-threading
but NumPy does not.

ECOOP 2021

15:20 Best-Effort Lazy Evaluation for Python Software Built on APIs

P1 P2 P3 P4 P5
100

101

Numpy
reduceTmp
Weld 1T

Weld 10T

P1 P2 P3 P4 P5
0.0

0.5

1.0

1.5

Spark
w/o opt optimized

P1 P2 P3 P4 P5
10 1

100

101

102 Pandas
Spark 1T Spark 10T

Figure 12 Speedups.

9.1.2 Spark
The Spark optimizer shows speedups ranging from 1.03X to 1.87X. Among the benchmarks,
P1 and P2 lack cache(); P3 and P5 have unnecessary cache(); P4 has a cache() operation
at a useless location, while the place that needs cache() does not have one. Our optimizer
fixes them all. It adds cache() to P1 and P2, removes cache() from P3 and P5, and corrects
P4 by removing the unnecessary cache() and adding one at the appropriate place.

In addition, we test the benchmarks with Cunctator enabled but optimizing pass dis-
abled(abbr. w/o opt). The results show no performance degradation. This confirms that
MIN-watch has almost no overhead for non-watched objects, as PySpark programs typically
invoke user defined functions written in Python frequently.

9.1.3 Pandas
The Pandas-to-Spark optimizer is tested with one Spark thread (abbr. Spark 1T) and ten
Spark threads (abbr. Spark 10T). Note that Spark supports multi-threading but Pandas
does not. Spark 1T shows speedups on three programs. This is impressive because, while
Pandas enjoys the high performance of SIMD instructions, Spark’s query compiler emits
Java bytecode. The slowdown on P1 is dominated by Spark’s CSV loader, which performs
much worse than Pandas’ loader in this case. Nevertheless, Spark 10T enjoys speedups as
high as 14.2X.

G. Zhang and X. Shen 15:21

Table 4 Overhead (percentage of 10s program runs).

CPS
50 500 1000 2000 10000

T
hr

es
ho

ld

50 0 0.85 0.85 1.7 0
500 0.35 3.05 1.05 1.8 0

1000 0.25 2.35 2.25 1.7 0
2000 0.15 2.15 2.05 2.5 0.1

10000 0.15 1.25 1.75 2.9 11.8

9.2 Overheads
For programs that cannot be optimized, a major concern is the overhead, which is highly
related to the number of lazy IR instructions recorded. To investigate the overhead in
different cases, we design an adversarial case for stress-testing:

def cps_simulator(M, N):
for i in range(M):

numpy.ones(N)

The program calls M times of numpy.ones(N), which initializes a vector of size N . By
tuning M and N , we can control the number of calls per second (CPS) and the total run
time. We then combine some representative values of CPS and overhead control thresholds
(see §4.3). For each combination, we run a ten-second experiment with Cunctator. By
subtracting the results with the corresponding baseline results, we obtain an overhead matrix,
shown as Table 4.

The overhead increases when CPS increases. When CPS exceeds the threshold, Cunctator
disables itself for the later part of the run; the overhead drops. For the default threshold
(1000), the worst overhead is 2.35%, which happens in the extreme case where there are
1000 function calls per second. In practice, a program is unlikely to have a stable CPS rate
close to the threshold, thus the overhead is much lower. In addition, it is worth noting that
Cunctator is mainly implemented in Python, except for the MIN-watch. If we reimplement
some critical components in C, such as the lazy IR evaluator, a lower overhead is expected.

It is worth noting that, in the domains that we explored, the number of relatives per
object is few, hence our benchmarks bear little overhead of finding relatives. For example, a
NumPy array usually has no relative if its buffer belongs to itself, or only one relative if its
buffer is from another object. For domains where deeply nested objects are common, the
overhead control threshold can be adjusted to fit the need of the domains.

9.3 Threats to Validity
Cunctator is evaluated based on Python 3.7.3, NumPy 1.17.0, WeldNumpy 0.0.1, Pandas
0.25.0, and Spark 2.4.3. The APIs and implementation of these software packages may
change after new versions are released. Thus the new releases may invalidate our optimization
techniques and evaluation results. Nevertheless, new patterns of API misuses related to these
new releases are likely to appear. Unless the new versions employ a technique similar to
BELE, Cunctator can be leveraged to optimize the new patterns.

The soundness of a Cunctator-based optimizer relies on the correctness of the API
knowledge provided by the optimizer’s developer. Such knowledge includes how to discover
the relatives of an object, which arguments of an API could be updated during the API call,
and how to apply optimization passes onto the recorded lazy IR. If any of the knowledge is
incorrect, programs optimized by Cunctator may yield unexpected results.

ECOOP 2021

15:22 Best-Effort Lazy Evaluation for Python Software Built on APIs

10 Related Work

Lazy evaluation has been studied extensively in functional programming [9, 11, 3, 16, 10].
Scala [21] provides a lazy keyword to express the call-by-need semantics of a variable.
However, Scala does not manage the potential side-effect of a thunk, the expression bound
to the lazy variable; thus, the correctness of lazy evaluation relies on the programmer. Many
hosted DSLs (e.g., Spark [31] and TensorFlow [1]) employ lazy evaluation; their limitations
have been discussed in §1.

There are some studies on optimizing DSLs. Weld [22] and its limitations have been
discussed and compared with. Delite [26] is a framework for developing Scala-hosted DSLs
by leveraging generative programming [6]. Similarly to Cunctator, it lazily evaluates DSL
operations and logs them as a form of IR, which will be optimized and executed at a certain
point in time. However, Delite provides no mechanism to handle the dependencies between
DSL operations and their host code.

There are several earlier studies (e.g., telescoping languages [13], Broadway [8]) that
try to use manual annotations of libraries to help optimizations. They give no systematic
considerations of the host-API dynamic dependencies. Numba [15] is a JIT compiler of
Python that targets optimizing manipulations of ndarray in NumPy. AutoGraph [19]
employs static code conversion and generative programming to transform PyTorch-style
programs to TensorFlow-style programs. All these methods and tools offer a closed set of
optimization techniques for specific program semantics. Cunctator does not include any
optimization technique but provides a general framework to simplify the creation of a DSL
optimizer.

Finally, the NumPy optimizer presented in Section 6.1 replaces list copies with in-place
updates. In this sense, it is similar to deforestation, an optimization technique usually
used in programming environments where referential transparency ends up being very
costly[29, 14, 7, 27].

11 Conclusion

This paper introduces the concept of BELE, and describes MIN-watch, the first efficient
runtime monitoring method tailored to data dependence analysis between host code and APIs
for BELE. The paper demonstrates the usefulness of Cunctator in enabling four optimizations
that are not supported by existing frameworks, giving 1.03-14.2X speedups. While Cunctator
targets Python-hosted DSLs, we believe the potentially applicability of the techniques goes
much beyond Python.

References
1 Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A
system for large-scale machine learning. In Kimberly Keeton and Timothy Roscoe, editors,
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 265–283. USENIX Association, 2016. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

2 Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-
based Approach. Morgan Kaufmann, 2001.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

G. Zhang and X. Shen 15:23

3 Adrienne G. Bloss, Paul Hudak, and Jonathan Young. Code optimizations for lazy evaluation.
LISP Symb. Comput., 1(2):147–164, 1988.

4 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981. doi:10.1007/BFb0025774.

5 Cunctator Docker Image. https://github.com/sangongs/Cunctator_docker.
6 Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming - methods, tools and

applications. Addison-Wesley, 2000. URL: http://www.addison-wesley.de/main/main.asp?
page=englisch/bookdetails&productid=99258.

7 Bruno Morais Ferreira, Britaldo Silveira Soares-Filho, and Fernando Magno Quintão Pereira.
The dinamica EGO virtual machine. Sci. Comput. Program., 173:3–20, 2019. doi:10.1016/j.
scico.2018.02.002.

8 Samuel Z. Guyer and Calvin Lin. Broadway: A compiler for exploiting the domain-specific
semantics of software libraries. Proc. IEEE, 93(2):342–357, 2005. doi:10.1109/JPROC.2004.
840489.

9 Peter Henderson and James H. Morris Jr. A lazy evaluator. In Susan L. Graham, Robert M.
Graham, Michael A. Harrison, William I. Grosky, and Jeffrey D. Ullman, editors, Conference
Record of the Third ACM Symposium on Principles of Programming Languages, Atlanta,
Georgia, USA, January 1976, pages 95–103. ACM Press, 1976. doi:10.1145/800168.811543.

10 Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler. A history of haskell:
being lazy with class. In Barbara G. Ryder and Brent Hailpern, editors, Proceedings of the
Third ACM SIGPLAN History of Programming Languages Conference (HOPL-III), San Diego,
California, USA, 9-10 June 2007, pages 1–55. ACM, 2007. doi:10.1145/1238844.1238856.

11 Thomas Johnsson. Efficient compilation of lazy evaluation. In Mary S. Van Deusen and Susan L.
Graham, editors, Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction,
Montreal, Canada, June 17-22, 1984, pages 58–69. ACM, 1984. doi:10.1145/502874.502880.

12 Project Jupyter. https://jupyter.org/.
13 Ken Kennedy, Bradley Broom, Arun Chauhan, Robert J. Fowler, John Garvin, Charles

Koelbel, Cheryl McCosh, and John M. Mellor-Crummey. Telescoping languages: A system
for automatic generation of domain languages. Proc. IEEE, 93(2):387–408, 2005. doi:
10.1109/JPROC.2004.840447.

14 Georgios Korfiatis, Michalis A. Papakyriakou, and Nikolaos Papaspyrou. A type and effect
system for implementing functional arrays with destructive updates. In Maria Ganzha,
Leszek A. Maciaszek, and Marcin Paprzycki, editors, Federated Conference on Computer
Science and Information Systems - FedCSIS 2011, Szczecin, Poland, 18-21 September 2011,
Proceedings, pages 879–886, 2011. URL: http://ieeexplore.ieee.org/document/6078196/.

15 Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based python JIT
compiler. In Hal Finkel, editor, Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, pages 7:1–7:6.
ACM, 2015. doi:10.1145/2833157.2833162.

16 John Launchbury. A natural semantics for lazy evaluation. In Mary S. Van Deusen and
Bernard Lang, editors, Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Charleston, South Carolina, USA,
January 1993, pages 144–154. ACM Press, 1993. doi:10.1145/158511.158618.

17 Wes McKinney. pandas: a foundational python library for data analysis and statistics. Python
for High Performance and Scientific Computing, 14, 2011.

18 Python memory-profiler Library. https://pypi.org/project/memory-profiler/.
19 Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary

Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko. Autograph: Imperative-style
coding with graph-based performance. CoRR, abs/1810.08061, 2018. arXiv:1810.08061.

ECOOP 2021

https://doi.org/10.1007/BFb0025774
https://github.com/sangongs/Cunctator_docker
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
https://doi.org/10.1016/j.scico.2018.02.002
https://doi.org/10.1016/j.scico.2018.02.002
https://doi.org/10.1109/JPROC.2004.840489
https://doi.org/10.1109/JPROC.2004.840489
https://doi.org/10.1145/800168.811543
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/502874.502880
https://jupyter.org/
https://doi.org/10.1109/JPROC.2004.840447
https://doi.org/10.1109/JPROC.2004.840447
http://ieeexplore.ieee.org/document/6078196/
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/158511.158618
https://pypi.org/project/memory-profiler/
http://arxiv.org/abs/1810.08061

15:24 Best-Effort Lazy Evaluation for Python Software Built on APIs

20 Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. Proc.
VLDB Endow., 4(9):539–550, 2011. doi:10.14778/2002938.2002940.

21 Martin Odersky and Tiark Rompf. Unifying functional and object-oriented programming with
scala. Commun. ACM, 57(4):76–86, 2014. doi:10.1145/2591013.

22 Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger Pirk, Malte
Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford InfoLab. Weld: A common
runtime for high performance data analytics. In Conference on Innovative Data Systems
Research (CIDR), 2017.

23 Pandas Cookbook Example. https://nbviewer.jupyter.org/github/jvns/
pandas-cookbook/tree/v0.1/cookbook/.

24 Introducing Pandas UDF for PySpark. https://databricks.com/blog/2017/10/30/
introducing-vectorized-udfs-for-pyspark.html.

25 Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Tensors and dynamic
neural networks in python with strong gpu acceleration, 2017.

26 Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. Delite: A compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans. Embed. Comput. Syst., 13(4s):134:1–134:25,
2014. doi:10.1145/2584665.

27 Sebastian Ullrich and Leonardo de Moura. Counting immutable beans: Reference counting
optimized for purely functional programming. CoRR, abs/1908.05647, 2019. arXiv:1908.
05647.

28 Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array: A structure
for efficient numerical computation. Comput. Sci. Eng., 13(2):22–30, 2011. doi:10.1109/
MCSE.2011.37.

29 Philip Wadler. Deforestation: Transforming programs to eliminate trees. In Harald Ganzinger,
editor, ESOP ’88, 2nd European Symposium on Programming, Nancy, France, March 21-24,
1988, Proceedings, volume 300 of Lecture Notes in Computer Science, pages 344–358. Springer,
1988. doi:10.1007/3-540-19027-9_23.

30 WeldNumpy. https://www.weld.rs/weldnumpy/.
31 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster computing with working sets. In Erich M. Nahum and Dongyan Xu, editors,
2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
June 22, 2010. USENIX Association, 2010. URL: https://www.usenix.org/conference/
hotcloud-10/spark-cluster-computing-working-sets.

https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/2591013
https://nbviewer.jupyter.org/github/jvns/pandas-cookbook/tree/v0.1/cookbook/
https://nbviewer.jupyter.org/github/jvns/pandas-cookbook/tree/v0.1/cookbook/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://doi.org/10.1145/2584665
http://arxiv.org/abs/1908.05647
http://arxiv.org/abs/1908.05647
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1007/3-540-19027-9_23
https://www.weld.rs/weldnumpy/
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

Accelerating Object-Sensitive Pointer Analysis by
Exploiting Object Containment and Reachability
Dongjie He #

University of New South Wales, Sydney, Australia

Jingbo Lu #

University of New South Wales, Sydney, Australia

Yaoqing Gao
Huawei, Toronto, Canada

Jingling Xue #

University of New South Wales, Sydney, Australia

Abstract
Object-sensitive pointer analysis for an object-oriented program can be accelerated if context-
sensitivity can be selectively applied to some precision-critical variables/objects in the program.
Existing pre-analyses, which are performed to make such selections, either preserve precision but
achieve limited speedups by reasoning about all the possible value flows in the program conservatively
or achieve greater speedups but sacrifice precision (often unduly) by examining only some but not
all the value flows in the program heuristically. In this paper, we introduce a new approach, named
Turner, that represents a sweet spot between the two existing ones, as it is designed to enable
object-sensitive pointer analysis to run significantly faster than the former approach and achieve
significantly better precision than the latter approach. Turner is simple, lightweight yet effective due
to two novel aspects in its design. First, we exploit a key observation that some precision-uncritical
objects can be approximated based on the object-containment relationship pre-established (by
applying Andersen’s analysis). This approximation introduces a small degree yet the only source of
imprecision into Turner. Second, leveraging this initial approximation, we introduce a simple DFA
to reason about object reachability for a method intra-procedurally from its entry to its exit along all
the possible value flows established by its statements to finalize its precision-critical variables/objects
identified. We have validated Turner with an implementation in Soot against the state of the art
using a set of 12 popular Java benchmarks and applications.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Object-Sensitive Pointer Analysis, CFL Reachability, Object Containment

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.16

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.12

Funding This work is supported by an ARC DP grant (DP180104069) and a UNSW-Huawei research
grant (YBN2019105002).

Acknowledgements We thank the reviewers for their constructive comments.

1 Introduction

Pointer analysis is a significant static program analysis that approximates the potential
runtime values (memory locations) for the pointer variables in a program. It plays an
important role in a wide range of real-world applications, including security analysis [2, 10],
program verification [8], program understanding [36, 20], and bug detection [25, 11].

For object-oriented languages like Java, context sensitivity, which distinguishes the
variables declared and objects allocated locally in a method under different calling contexts,
is widely enforced in developing highly precise pointer analyses. In general, a context is
represented by a sequence of k context elements (under k limiting). There are two common

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 16; pp. 16:1–16:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongjieh@cse.unsw.edu.au
mailto:jlu@cse.unsw.edu.au
mailto:jingling@cse.unsw.edu.au
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16
https://doi.org/10.4230/DARTS.7.2.12
https://doi.org/10.4230/DARTS.7.2.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Accelerating Object-Sensitive Pointer Analysis

forms of context-sensitivity: k-call-site-sensitivity [29] (which distinguishes the contexts of a
method by its k-most-recent call sites) and k-object-sensitivity [23] (which distinguishes the
contexts of a method by its receiver object’s k-most-recent allocation sites). The latter is
widely regarded as a better abstraction in achieving precision and efficiency [31, 39, 41, 12, 22].

However, k-object-sensitive pointer analysis (with k-object-sensitivity as its context
abstraction), denoted kobj, still does not scale well for reasonably large programs when
k ⩾ 3 and is often time-consuming when it is scalable [31, 39, 41, 12]. As k increases, blindly
applying a k-limiting context abstraction uniformly to a program can cause the number of
contexts handled to blow up exponentially (often without improving precision much).

In this paper, we address the problem of developing a pre-analysis for a Java program to
enable kobj to apply context-sensitivity (i.e, a k-limited context abstraction) only to some
of its variables/objects selected and context-insensitivity to all the rest in the program.

▶ Definition 1. A variable/object n in a program is precision-critical if kobj loses precision
in terms of the points-to information obtained (for some value of k) when n is analyzed by
kobj context-insensitively instead of context-sensitively.

A pre-analysis is said to be precision-preserving if it can identify the precision-critical
variables/objects in a program precisely or over-approximately as being context-sensitive, and
non-precision-preserving otherwise. Unfortunately, making such selections precisely is out of
question as solving kobj without k-limiting is undecidable [27]. When designing a practical
pre-analysis, which aims to select the set of context-sensitive variables/objects, Cideal, in the
program, the main challenge are to ensure that (1) Cideal includes as many precision-critical
variables/objects as possible but as few precision-uncritical variables/objects as possible, (2)
Cideal results in no or little precision loss, and (3) Cideal is found in a lightweight manner to
ensure that the pre-analysis overhead introduced is negligible (relative to kobj).

Recently, several pre-analyses have been proposed [32, 13, 9, 19, 22, 21]. Broadly speaking,
two approaches exist. Eagle [22, 21] represents a precision-preserving acceleration of kobj
by reasoning about CFL (Context-Free-Language) reachability in the program. Designed
to be precision-preserving, Eagle analyzes conservatively and often efficiently the value
flows reaching a variable/object and selects the set of context-sensitive variables/objects as a
superset of the set of precision-critical variables/objects in the program over-approximately,
thereby limiting the potential speedups achieved. On the other hand, Zipper [19], as a
non-precision-preserving representative of the remaining pre-analyses [32, 13, 9, 19], examines
the value flows reaching a variable/object heuristically and often efficiently by selecting the
set of context-sensitive variables/objects to include some but not all the precision-critical
variables/objects and also some precision-uncritical variables/objects in the program. As a
result, Zipper can sometimes improve the efficiency of kobj more significantly than Eagle
but at the expense of introducing a substantial loss of precision for some programs.

In this paper, we introduce a new approach, named Turner, that represents a sweet
spot between Eagle and Zipper: Turner enables kobj to run significantly faster than
Eagle while achieving significantly better precision than Zipper. Despite losing a small
precision in the average points-to set size (#avg-pts), Turner achieves exactly the same
precision for the other three commonly used precision metrics [31, 39, 41, 12, 22, 21], call
graph construction (#call-edges), may-fail casting (#may-fail-casts) and polymorphic call
detection (#poly-calls), for a set of 12 popular Java benchmarks and applications evaluated.
Turner is simple, lightweight yet effective due to two novel aspects in its design. First, we
exploit a key observation that some precision-uncritical objects can be approximated initially
based on the object-containment relationship that is inferred from the points-to information
pre-computed by Andersen’s analysis [1]. This approximation turns out to be practically

D. He, J. Lu, Y. Gao, and J. Xue 16:3

accurate, as it introduces a small degree yet the only source of imprecision into the final
points-to information computed. Second, leveraging this initial approximation, we introduce
a simple DFA (Deterministic Finite Automaton) to reason about object reachability across
a method (from its entry to its exit) intra-procedurally along all the possible value flows
established by its statements to finalize all its precision-critical variables/objects selected.

We have validated Turner with an implementation in Soot against Eagle and Zipper
using a set of 12 Java benchmarks and applications. In general, Turner enables kobj
to run significantly faster than Eagle due to fewer precision-uncritical variables/objects
analyzed context-sensitively and achieve significantly better precision than Zipper due to
more precision-critical variables/objects analyzed context-sensitively than Zipper.

In summary, our paper makes the following contributions:
We introduce a new approach, Turner, that can accelerate k-object-sensitive pointer
analysis (i.e., kobj) for Java programs significantly with negligible precision loss.
We propose to first approximate the precision-criticality of the objects in a program based
on object containment and then decide whether the variables/objects in the program
should be context-sensitive or not by conducting an object reachability analysis intra-
procedurally with a DFA, which turns out to be simple, lightweight and effective.
Turner enables kobj to run significantly faster than Eagle and achieve significantly
better precision than Zipper for a set of 12 popular Java benchmarks and applications
evaluated in terms of four common precision metrics, #avg-pts, #call-edges, #may-fail-
casts, and #poly-calls (with Turner losing no precision for the last three metrics).

The rest of this paper is organized as follows. Section 2 motivates our Turner approach.
Section 3 gives a version of kobj that supports selective context-sensitivity. Section 4
formalizes our Turner approach. In Section 5, we evaluate Turner against the state of
the art. Section 6 discusses the related work. Finally, Section 7 concludes the paper.

2 Motivation

We motivate Turner in the context of the two state-of-the-art pre-analyses, Eagle [22, 21]
and Zipper [19]. Eagle supports partial context-sensitivity as it enables kobj to analyze
only a subset of variables/objects in a method context-sensitively. On the other hand, Zipper
allows kobj to analyze a method either fully context-sensitively or fully context-insensitively.
Like Eagle, Turner also supports partial context-sensitivity in order to maximize the
potential speedups attainable. As in Eagle and Zipper, Turner also relies on the points-to
information in a program pre-computed by Andersen’s analysis [1] (context-insensitively).

In Section 2.1, we give some background information. In Section 2.2, we examine the
main challenges faced in developing a pre-analysis for accelerating kobj and discuss the
methodological differences between Turner and two existing approaches, Eagle and Zipper.
In Section 2.3, we introduce a motivating example abstracted from real code by highlighting
the effects of these differences on the context-sensitivity selectively applied to kobj. In
Section 2.4, we describe the basic idea behind Turner (including our insights and trade-offs).

2.1 Background
In object-sensitive pointer analysis [23], the calling contexts of a method are distinguished by
its receiver objects. Let each allocation site be abstracted by one unique object. In kobj, an
object o1 is modeled context-sensitively by a heap context of length k − 1, [o2, ..., ok], where
oi is the receiver object of a method in which oi−1 is allocated. As a result, a method with

ECOOP 2021

16:4 Accelerating Object-Sensitive Pointer Analysis

o1 as its receiver object will be analyzed context-sensitively multiple times, once for each of
o1’s heap contexts [o2, ..., ok], i.e., once under every possible method context [o1, ..., ok] of
length k. Thus, kobj can be specified by either heap or method contexts alone.

Given a variable v analyzed under a method context c, its context-sensitive points-to
set is expressed as pts(v, c) = {(o1, c1),⋯, (on, cn)}, where each pointed-to object oi is
identified by its heap context ci. Let Mv be the set of method contexts under which v

is analyzed. Then the context-insensitive points-to set for v can be found as pts(v) =

⋃c∈Mv
{o ∣ (o, c

′) ∈ pts(v, c)}. When comparing different context-sensitive pointer analyses
precision-wise, the context-insensitive points-to information thus obtained is used, as is done
in the literature [32, 12, 13, 39, 19, 21].

2.2 Challenges
A variable/object n in a program is precision-critical if kobj loses precision when it analyzes
n context-insensitively instead of context-sensitively (Definition 1). In the case of a precision
loss, there must exist some variable v in the program such that its context-insensitive
points-to information becomes less precise. In this case, pts(v) will contain not only the
pointed-to objects found before (when n is analyzed context-sensitively) but also some
spurious pointed-to objects introduced now (when n is analyzed context-insensitively). As n

and v can be further apart in the program, separated by a long sequence of method calls
(with complex field accesses on n along the way), designing a practical pre-analysis P , which
selects a set of variables/objects in a program for kobj to analyze context-sensitively, is
challenging (since solving kobj without k-limiting is undecidable [27]). For a program, let
Cideal be the set of precision-critical variables/objects specified by Definition 1 and CP the set
of context-sensitive variables/objects selected by P . The main challenges lie in how to ensure
that (1) ∣Cideal − CP ∣ is minimized (so that as many precision-critical variables/objects are
selected) and ∣CP −Cideal∣ is minimized (so that as few precision-uncritical variables/objects
are selected), (2) CP causes kobj to lose no or little precision, and (3) CP is selected in a
lightweight manner (so that P introduces negligible overhead relative to kobj).

A pre-analysis for kobj relies on the following fact to identify a precision-critical vari-
able/object, with its accesses possibly triggered by statements outside its containing method.
Without loss of generality, a method is assumed to contain only one return statement of the
form “return r”, where r a local variable in the method (referred to as its return variable).

▶ Fact 2. Consider a program being analyzed object-sensitively with the parameters and the
return variable of a method modeled as its (special) fields as in [22, 21]. A variable/object n

in a method M in the program is considered to be precision-critical only if, during program
execution, there is a value flow entering and leaving M via a parameter or the return variable
of M , by passing through n (i.e., by first writing into n via an access path and then reading
it from the same access path), where n may be the parameter or the return variable itself.

In this case, analyzing n context-sensitively will allow several such value flows to be tracked
separately based on their calling contexts. Otherwise, some precision may be potentially lost.

A pre-analysis, as illustrated in Figure 1, should identify a (local) variable x as precision-
critical by considering a total of four possible value-flow patterns passing through x (classified
according to whether the two end points of a value-flow are a parameter or the return variable
of its containing method [34, 22]). The same four patterns are also applicable to a locally
allocated object. In “param-return” (Figure 1(a)), the pre-analysis should recognize that the
object created in line 8 will flow into x in id() via its parameter p and then out of id()
via a return variable, which happens to be x itself. In “return-param” (Figure 1(b)), the

D. He, J. Lu, Y. Gao, and J. Xue 16:5

(a) param-return

 1. class B {
 2. Object id(Object p) {
 3. = p;
 4. return ;
 5. }
 6. static void main() {
 7. B b = new B(); // B
 8. Object o1 = new Object();
 9. Object o2 = b.id(o1);
10. }}

 1. class A { Object f; }
 2. class B {
 3. Object id(Object p) {
 4. = p;
 5. return ;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A
 9. B b = new B(); // B
10. A a2 = (A) b.id (a1);
11. a2.f = new Object(); // O
12. Object o = a2.f;
13. }}

 1. class A { Object f; }
 2. class B {
 3. A create() {
 4. A = new A(); // A
 5. return ;
 6. }
 7. static void main() {
 8. B b = new B(); // B
 9. A a = b.create();
10. a.f = new Object(); // O
11. Object o = a.f;
12. }}

 1. class A { Object f; }
 2. class B {
 3. void foo(A q, A p) {
 4. = p;
 5. .f = q;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A1
 9. A a2 = new A(); // A2
10. B b = new B(); // B
11. b.foo(a1, a2);
12. Object o = a2.f;
13. }}

(b) return-param (c) param-param (d) return-return

xx

param

return

xx xx

xx

xx
xx

xx

xx

Figure 1 A total of four possible value-flow patterns for determinng whether a variable x should
be precision-critical or not.

pre-analysis, when checking whether the object created in line 11 will flow into o in line 12 or
not, will first need to find out what a2 points to. This will entail reasoning about the value
flow of a2 in reverse order, by entering id() via its return statement (variable) and leaving
id() from its parameter p. In “param-param” (Figure 1(c)), the object A1 created in line 8
will flow into x (or x.f precisely) in foo() via its parameter q and then out of foo() via its
parameter p. In “return-return” (Figure 1(d)), the pre-analysis, when checking whether the
object created in line 10 can flow into o in line 11 or not, will need to find what a points to,
by entering and exiting create() from its return variable and visiting x in between.

We can now discuss how Turner differs from Eagle [22, 21] and Zipper [19] methodo-
logically. To start with, all the three are relatively lightweight with respect to kobj. Below
we examine these pre-analyses in terms of their efficiency and precision tradeoffs made on
approximating Cideal. There are two caveats. First, Cideal is conceptual but cannot be found
exactly in a program. Second, some precision-critical variables/objects affect the precision
and/or efficiency of kobj more profoundly than others, but they cannot be easily identified.
How to do so approximately can be an interesting research topic in future work.

Eagle is precision-preserving, since it accounts for all the four value-flow patterns
given in Figure 1 by reasoning about CFL reachability in the program inter-procedurally
to ensure that Cideal − CEagle = ∅. For some programs, Eagle may conservatively mis-
classify many precision-uncritical variables/objects as being precision-critical, thereby causing
CEagle − Cideal to be unduly large, and consequently, limiting the speedups attainable.

Zipper is not precision-preserving (implying that Cideal − CZipper ≠ ∅, in general), since
it considers only the “param-return” and “return-param” patterns in Figure 1 heuristically
by pattern-matching and ignores “param-param” (according to its authors [19]) and “return-
return” (according to its open-source implementation). For some programs, Zipper can
achieve greater speedups than Eagle (under certain configurations that dictate how certain
objects should be analyzed) but at a precision loss, since it has misclassified some precision-
yet performance-critical variables/objects as context-insensitive.

In this paper, Turner is designed to strike a good balance between Eagle and Zipper.
We aim to ensure that ∣CTurner−Cideal∣ < ∣CEagle−Cideal∣ so that Turner can enable kobj to
run significantly faster than Eagle (due to fewer precision-uncritical variable/objects selected

ECOOP 2021

16:6 Accelerating Object-Sensitive Pointer Analysis

 1. class Entry {
 2. Object key, value;
 3. Entry(Object p, Object q) {
 4. this.key = p;
 5. this.value = q;
 6. }}

 7. class HashMap {
 8. Entry[] table;
 9. Object get(Object k){
10. int idx = k.hashCode;
11. Entry[] t = this.table;
12. Entry e = t[idx];
13. Object r = e.value;
14. return r;
15. }
16. void put(Object k, Object v) {
17. int idx = k.hashCode;
18. Entry e = new Entry(k, v); // E
19. Entry[] t = this.table;
20. t[idx] = e;
21. }

22. HashMap() {
23. Entry[] t = new Entry[16]; // @
24. this.table = t;
25. }}

26. class A {
27. void foo(Object k) {
28. HashMap map1 = new HashMap(); // M1
29. HashMap map2 = new HashMap(); // M2
30. Object v1 = new Object(); // O1
31. Object v2 = new Object(); // O2
32. map1.put(k, v1);
33. map2.put(k, v2);
34. Object w1 = map1.get(k);
35. Object w2 = map2.get(k);
36. }
37. public static void main(String args[]) {
38. Object k = new Object(); // O
39. A ai = new A(); // Ai

40. ai.foo(k);

41. …
42. }}

1 ≤ i ≤ n

Figure 2 A Java program abstracted from real code using the standard JDK library.

for kobj to analyze context-sensitively). At the same time, we aim to ensure that ∣Cideal −
CTurner∣ < ∣Cideal − CZipper∣ so that Turner can also enable kobj to achieve significantly
better precision than Zipper (due to more precision-critical variable/objects selected for
kobj to analyze context-sensitively). We accomplish this by exploiting object containment to
approximate the precision-criticality of objects and then reasoning about object reachability
by considering all the four value-flow patterns in Figure 1 intra-procedurally.

2.3 Example
Figure 2 gives a Java program abstracted from real code developed based on JDK. In
lines 1-25, a simplified HashMap class is defined. In lines 26-42, class A represents a use
case of HashMap. In foo(), two instances of HashMap, M1 and M2, and two instances of
java.lang.Object, O1 and O2, are created. Afterwards, O1 (O2), pointed to by v1 (v2), is
deposited into M1 (M2), pointed to by map1 (map2), with O (received from its parameter k) as
the corresponding key, and later retrieved and saved in w1 (w2). In main(), n instances of A,
A1, ..., An, are created (where n > 1) and then used as the receivers for invoking foo().

Table 1 lists the contexts used for analyzing this program by the four main analyses, 2obj,
E-2obj, Z-2obj, and T-2obj. Here, P -2obj denotes the version of 2obj that adopts the select-
ive context-sensitivity prescribed by P ∈ {E (for Eagle), Z (for Zipper), T (for Turner)}.
Eagle is always precision-preserving. For this program, Zipper happens to be also precision-
preserving since Z-2obj behaves exactly as 2obj does. Turner also happens to be precision-
preserving but T-2obj differs from 2obj/Z-2obj and E-2obj substantially. Below we focus
on examining how the context-insensitive points-to information for w1 and w2 in foo(),
pts(w1) = {O1} and pts(w2) = {O2}, is obtained by each of the four main analyses. For
reasons of symmetry, Figure 3 illustrates only how pts(w1) = {O1} is obtained.

D. He, J. Lu, Y. Gao, and J. Xue 16:7

Table 1 The contexts used for analyzing the variables/objects in Figure 2 by 2obj, E-2obj,
Z-2obj, and T-2obj (where i in each context containing Ai/ai ranges over [1, n]).

Method Variables/Objects 2obj/ Z-2obj E-2obj T-2obj
Entry p, q, this [E, M1], [E, M2] [E, M1], [E, M2] [E, M1], [E, M2]

get k [M1, Ai], [M2, Ai]
[] []

e, r, this, t [M1, Ai], [M2, Ai] [M1], [M2]

put k, v, e, this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2]E [M1], [M2] [M1], [M2]

HashMap this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2]@ [M1], [M2] [M1], [M2]

foo

v1, v2, w1, w2

[Ai]
[]

[]O1, O2
k, map1, map2 [Ai]M1, M2

main k, ai [] [] []O, Ai

First of all, 2obj analyzes foo() for a total of n times by identifying its variables/objects
under the i-th invocation with its receiver Ai (Figure 3(a)). Thus, ∀ 1 ⩽ i ⩽ n ∶ pts(w1, [Ai]) =
{O1, [Ai]} ∧ pts(w2, [Ai]) = {O2, [Ai]} context-sensitively. By projecting out all the contexts,
2obj obtains pts(w1) = {O1} and pts(w2) = {O2} context-insensitively, as desired.

For this particular program, Z-2obj is equivalent to 2obj (Table 1 and Figure 3(a)).
However, it is easy to modify it slightly so that Z-2obj will behave differently while suffering
from a loss of precision (as it does not consider the last two patterns given in Figure 1).

E-2obj enables 2obj to support partial context-sensitivity without losing any precision.
The variables/objects in {v1, v2, w1, w2, O1, O2} in foo() and variable k in get() will now
be context-insensitive. In the case of foo(), however, k, map1, map2, M1 and M2 must still be
analyzed context-sensitively due to a spurious “param-return” pattern established by the
facts that (1) k is a parameter, (2) put() can write into M1/M2, and (3) get() can read
from M1/M2. As a result, as illustrated in Figure 3(b), E-2obj will still need to analyze
foo() for a total of n times, since it must distinguish the two HashMap objects M1 and M2
created in foo() context-sensitively as in 2obj, except that it can now analyze the two
objects, O1 and O2, created in foo() context-insensitively. Thus, E-2obj obtains directly that
pts(w1, []) = {O1, []} and pts(w2, []) = {O2, []}, i.e., pts(w1) = {O1} and pts(w2) = {O2}.

T-2obj, as illustrated in Figure 3(c), goes beyond E-2obj (for this particular program)
by modeling M1 and M2 also context-insensitively. As a result, foo() is analyzed context-
insensitively only once. As in the case of E-2obj, T-2obj also obtains directly that
pts(w1, []) = {O1, []} and pts(w2, []) = {O2, []}, i.e., pts(w1) = {O1} and pts(w2) = {O2}.

2.4 Our Approach
Turner is designed to accelerate kobj with partial context-sensitivity at a negligible loss
of precision. Unlike Eagle [22, 21] and Zipper [19], Turner works by exploiting both
object containment and object reachability to enable kobj to strike a better balance between
efficiency and precision. In principle, Turner may lose precision in its first stage only but
will always preserve precision in its second stage if it does not lose precision in its first stage.

2.4.1 Object Containment
To start with, we exploit a key insight stated below to identify some precision-uncritical
objects approximately based on the object containment relationship that is inferred from the
points-to information pre-computed (context-insensitively) by Anderson’s analysis [1].

ECOOP 2021

16:8 Accelerating Object-Sensitive Pointer Analysis

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(a) 2OBJ/Z-2OBJ (b) E-2OBJ (c) T-2OBJ

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

Figure 3 Computing pts(w1) = {O1} for Figure 2 by 2obj, E-2obj, Z-2obj and T-2obj.

▶ Observation 3. A top container is an object that is pointed to by neither (1) another
object (which may be the container itself) via a field of a declared type of C or C[], where C

is a class type nor (2) the return variable of the method in which the container is allocated.
A bottom container is an object that does not point to another object (which may be the

container itself) via a field of a declared type of C or C[], where C is a class type.
Given a program, its top and bottom containers are considered as being precision-uncritical.

▶ Definition 4. Observation 3 is said to be precision-preserving for a program if kobj does
not lose precision when it analyzes the precision-uncritical objects identified in the program
context-insensitively and the remaining variables/objects exactly as before.

Therefore, an object created by a factory method (regarded here as a method that returns
its own allocated objects via its return variable) is not a top container. Such an object will
be considered as being precision-uncritical iff it is a bottom container. For a program, the
precision-uncritical objects identified here will be analyzed by kobj context-insensitively
(for the reasons given below) and the remaining objects will be further classified as either
precision-critical or precision-uncritical by an object reachability analysis (Section 2.4.2).

Consider create() in Figure 1(d). The object A created inside is not regarded as a top
container, since it is pointed to by its return variable. In object-sensitive pointer analysis,
when create() called on receiver object B in line 9 is analyzed, returning A to this caller
is actually modeled as this.ret = x (line 5) and a = b.ret (line 9), where both this
and b point to B, and ret can be understood as a special return variable introduced for
create() (Section 4.2.2.2) [22, 21]. Conceptually, A is not a top container. In this example,
A is not a bottom container either, since A.f = O in line 10, where O is an instance of
java.lang.Object. As a result, A is considered as being precision-critical. However, if lines
10-11 were not present, then A would be deemed as being precision-uncritical as it is now a
bottom container.

Consider Figure 2 (which is free of factory methods), where a total of n + 7 objects can
be found: E, @, M1, M2, O1, O2, O, A1, ..., An. According to the object containment relationship
inferred from Andersen’s analysis, M1 and M2 contain @, which contains E, which contains O1,
O2 and O. By Observation 3, the set of top containers is given by {M1, M2, A1, ...An} and the set
of bottom containers is given by {O1, O2, O, A1, ...An}. Note that both sets of containers are
not necessarily disjoint. Thus, the n + 5 objects in {M1, M2, O1, O2, O, A1, ...An} are considered
as being precision-uncritical and will thus be analyzed by kobj context-insensitively.

D. He, J. Lu, Y. Gao, and J. Xue 16:9

In our approach, Observation 3 (made based on object containment) represents the only
source of imprecision in Turner, which may propagate into its object reachability analysis.
Turner will suffer only a slight loss of precision in #avg-pts computed by T-kobj when
some top or bottom containers that should be context-sensitive are mis-classified as being
precision-uncritical, and consequently, analyzed by T-kobj context-insensitively. However,
this does not affect the precision of #call-edges, #may-fail-casts, and #poly-calls for the set
of 12 popular Java programs evaluated (at least). The set of top containers consists of the
objects that are allocated and used locally in a method, such as M1 and M2 (two HashMap
objects) in foo() in Figure 2. These objects do not require context-sensitivity, since their
encapsulated data does not usually flow out of its containing methods via their parameters
or return variables. On the other hand, a bottom container also does not usually require
context-sensitivity, as it represents an object that typically encapsulates its primitive data
(if any), including arrays of primitive types if it ever contains pointers, such as O, O1 and
O2 (three field-less java.lang.Object objects) in Figure 2. In Section 5.3, we will examine
two examples to explain why Turner loses some small precision in #avg-pts but preserves
precision in #call-edges, #may-fail-casts, and #poly-calls in real code.

2.4.2 Object Reachability
Given a program, Turner relies on a simple DFA to reason about implicitly the four value-
flow patterns in Figure 1 in a method to select its variables/objects to be analyzed by T-kobj
context-sensitively. By design, the precision-uncritical objects identified by Observation 3 in
the program are deemed context-insensitive. The remaining objects in the program will be
classified by the DFA as either precision-critical (context-sensitive) or precision-uncritical
(context-insensitive). Simultaneously, the variables in the program are classified. Turner’s
intra-procedural analysis will be precision-preserving if Observation 3 is precision-preserving,
as it is designed to over-approximate the precision-critical variables/objects in the program.

For our example in Figure 2, Table 1 gives the contexts selected by Turner for kobj,
i.e., T-2obj. We discuss only their differences with the contexts selected by Eagle for kobj,
i.e., E-2obj. By exploiting object containment as discussed in Section 2.4.1, M1, M2, O1, O2,
and O have been identified as being precision-uncritical and will thus be analyzed context-
insensitively. Given that M1 and M2, are now context-insensitive, k, map1, and map2 will also
be identified as being context-insensitive by our DFA, as the spurious “param-param” pattern
that causes Eagle to flag M1, M2, k, map1, and map2 in foo() as being context-sensitive no
longer exists (Section 2.3). As M1 and M2 are context-insensitive, the contexts [M1, Ai] and
[M2, Ai] listed under E-2obj have been shortened to [M1] and [M2] under T-2obj (Table 1).

3 Preliminaries

We take a standard formalization of kobj [23] from [35] and adapt it to support selective
context-sensitivity. This gives a formal basis to understand our pre-analysis introduced.

3.1 A Simplified Object-Oriented Language
We consider a simplified object-oriented language, i.e., a subset of Java, in which a program
consists of a set of classes, where each class consists of static/instance fields and methods.
Table 2 gives six kinds of statements, which are labeled by their line numbers, in the language
operated on by kobj. Note that “x = new T (...)” in Java is modeled as “x = new T ;
x.⟨init⟩(...)”, where ⟨init⟩() is the corresponding constructor invoked. Section 5 discusses
how to handle other complex language features such as reflection and native code.

ECOOP 2021

16:10 Accelerating Object-Sensitive Pointer Analysis

Table 2 Six types of statements analyzed by kobj.

Kind Statement Description
new l ∶ v = new T v is a local variable and T is a class type

assign l ∶ v = v
′

v and v
′ are local variables

assignglobal l ∶ v = v
′

v or v
′ is a global variable

load l ∶ v = v
′
.f v and v

′ are local variables and f is a field name
store l ∶ v.f = v

′
v and v

′ are local variables and f is a field name
call l ∶ b = a0.m(a1, ..., ar) b and ai are local variables and m is an instance method

As kobj is context-sensitive but flow-insensitive, the control flow statements in a program
are irrelevant. As is standard with several recent implementations of kobj [31, 39, 41, 12],
static fields are analyzed context-insensitively as global variables, but static methods can
be analyzed context-sensitively as instance methods as follows. For a static method m()
defined in class C, a call to m() can be interpreted as this.m() by proceeding as if m() were
an instance method defined in java.lang.Object and inherited by C. Given this.m(), m()
can then be analyzed context-sensitively under the receiver object pointed to by this, which
is the receiver object of m’s closest (instance) caller method, if any, on the call stack.

Finally, every method is assumed to have one single return statement of the form
“return r”, where r is a local variable (referred to as its return variable). Note that a return
statement in a method is not listed explicitly in Table 2, as it will be handled implicitly at a
call statement where the method is invoked (as shown in Figure 4).

3.2 Selective Object-Sensitive Pointer Analysis
Given a program, let M, F, H, V, G and L be its sets of methods, fields, allocation sites,
local variables, global variables, and statements (identified by their labels, e.g., line numbers),
respectively.

Let C = H∗ be the universe of contexts. Given a context ctx = [o1, ..., on] ∈ C and a
context element o, we write o ++ ctx for [o, o1, ..., on] and ⌈ctx⌉k for [o1, ..., ok].

The rules used for performing kobj will make use of the following functions:
methodOf ∶ L↦M
methodCtx ∶ M↦ ℘(C)
dispatch ∶ M ×H↦M
len ∶ V ∪G ∪H↦ N
pts ∶ (V ∪H × F) × C↦ ℘(H × C)

where methodOf gives the containing method of a statement, methodCtx keeps track of the
(method) contexts used for analyzing a method, dispatch resolves a virtual call to its target
method, len defines the length of contexts used for analyzing a variable/object, and pts
records the points-to information found for a variable or an object’s field.

Figure 4 gives five rules used by kobj for analyzing six kinds of statements in Table 2 with
two kinds of assignments processed together in one rule. In [New], v points to the object
ol uniquely identified by its allocation site l. Note that ⌈ctx⌉len(ol) is the heap context of ol

(Section 2.1). In [Assign/AssignGlobal], two kinds of assignments, where v and v
′ are

either local or global variables, are handled as copies. In [Store] and [Load], field accesses are
analyzed in the standard manner. In [CALL], a call to an instance method b = a0.m(a1, ..., ar)
is analyzed. We write this

m
′

, p
m

′

i and ret
m

′

for the “this” variable, i-th parameter and return
variable of m

′, respectively, where m
′ is a target method resolved. Frequently, we also write

D. He, J. Lu, Y. Gao, and J. Xue 16:11

l ∶ v = new T M = methodOf(l) ctx ∈ methodCtx(M)
(ol, ⌈ctx⌉len(ol)) ∈ pts(v, ⌈ctx⌉len(v))

[New]

l ∶ v = v
′

M = methodOf(l) ctx ∈ methodCtx(M)
pts(v′

, ⌈ctx⌉len(v′)) ⊆ pts(v, ⌈ctx⌉len(v))
[Assign/AssignGlobal]

l ∶ v.f = v
′

M = methodOf(l) ctx ∈ methodCtx(M) (o, hctx) ∈ pts(v, ⌈ctx⌉len(v))
pts(v′

, ⌈ctx⌉len(v′)) ⊆ pts(o.f, hctx)
[Store]

l ∶ v = v
′
.f M = methodOf(l) ctx ∈ methodCtx(M) (o, hctx) ∈ pts(v′

, ⌈ctx⌉len(v′))
pts(o.f, hctx) ⊆ pts(v, ⌈ctx⌉len(v))

[Load]

l ∶ b = a0.m(a1, ..., ar) M = methodOf(l) ctx ∈ methodCtx(M)
(o, hctx) ∈ pts(a0, ⌈ctx⌉len(a0)) m

′
= dispatch(m, o) ctx

′
= o ++ hctx

ctx
′
∈ methodCtx(m′) (o, hctx) ∈ pts(this

m
′

, ⌈ctx
′⌉len(thism′))

∀i ∈ [1, r] ∶ pts(ai, ⌈ctx⌉len(ai)) ⊆ pts(pm
′

i , ⌈ctx
′⌉len(pm′

i)) pts(ret
m

′

, ⌈ctx
′⌉len(retm′)) ⊆ pts(b, ⌈ctx⌉len(b))

[Call]

Figure 4 Rules for kobj formalized to support selective context-sensitivity.

p
m

′

0 for this
m

′

. In the conclusion of this rule, ctx
′
∈ methodCtx(m′) reveals how the method

contexts of a method are introduced. Initially, methodCtx(“main”) = {[]}.
kobj represents a k-object-sensitive pointer analysis with a (k − 1)-context-sensitive heap

(by handling global variables context-insensitively as is standard) [31, 39, 41, 12]. Thus, kobj
selects the context lengths for different entities e in V ∪G ∪H differently as follows:

lenkobj(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 e ∈ G
k e ∈ V
k − 1 e ∈ H

(1)

As a pre-analysis, Turner will select a subset CITurner ⊆ V∪H so that kobj will analyze
CITurner context-insensitively but (V ∪H) \ CITurner context-sensitively as follows:

lenTurner(e) = {0 e ∈ CITurner

lenkobj(e) e ∈ (V ∪G ∪H) \ CITurner
(2)

As discussed earlier, Eagle [22] will also enable kobj to analyze only a subset of variables/ob-
jects in a method context-sensitively but Zipper [19] will require a method (i.e., all its
variables/objects) to be analyzed either fully context-sensitively or fully context-insensitively.

4 Turner: Our Approach

We describe the two stages of Turner, object containment (Section 4.1) and reachability
(Section 4.2), by focusing predominantly on formalizing our object reachability analysis.

4.1 Object Containment
In this first stage on object containment analysis, we identify some precision-uncritical objects
in a program based on the points-to information pre-computed by Andersen’s analysis [1]
according to Observation 3. For an object o, we write reto to denote the return variable in
the method where o is allocated. For two objects o1 and o2, we write o1

class−type(f)
−−−−−−−−−−→ o2 if

o1.f = o2 for some field f whose declared type is either C or C[], where C is some class type.

ECOOP 2021

16:12 Accelerating Object-Sensitive Pointer Analysis

As a result, the set of precision-uncritical objects in a program can be found by:

CIOBS
Turner = TopCon ∪ BotCon (3)

where the sets of top and bottom containers in the program are identified as follows:

TopCon = {o
»»»»»»»»
(∄ (o′, f) ∈ H × F ∶ o

′ class−type(f)
−−−−−−−−−−→ o) ∧ reto does not point to o}

BotCon = {o
»»»»»»»
∄ (o′, f) ∈ H × F ∶ o

class−type(f)
−−−−−−−−−−→ o

′}
(4)

4.2 Object Reachability

In this second stage on object reachability analysis, we make use of a DFA to determine
intra-procedurally whether a variable/object requires context-sensitivity or not. Let CITurner
be the set of context-insensitive variables/objects that are finally selected by Turner to
support selective context-sensitivity required in (2). By design, CIOBS

Turner ⊆ CITurner, i.e.,
the precision-uncritical objects selected earlier will always be analyzed context-insensitively.
The remaining objects and all the variables in the program will be further classified as either
context-sensitive or context-insensitive according to the DFA, by leveraging CIOBS

Turner.
We first review a standard formulation for performing pointer analysis intra-procedurally

based on CFL (Context-Free Language) reachability (Section 4.2.1). We then evolve it
incrementally into a DFA-based intra-procedural reachability analysis (Section 4.2.2).

4.2.1 Standard CFL-Reachability-based Pointer Analysis

A parameterless method that contains no calls inside can be represented by a directed graph
G, known as PAG (Pointer Assignment Graph), with its nodes drawn from V∪G∪H and its
five types of edges added according to the rules given in Figure 5 [37, 28]. Loads and stores
to the elements of an array are modeled by collapsing all the elements into a special field arr

of the array. For each PAG edge x
ℓ
−→ y with its label ℓ, its inverse edge is denoted as y

ℓ
−→ x.

l ∶ v = new T

ol
new
−−→ v v

new
−−→ ol

[P-New]
v = v

′
.f

v
′ load[f]
−−−−→ v v

load[f]
−−−−→ v

′

[P-Load]
v.f = v

′

v
′ store[f]
−−−−→ v v

store[f]
−−−−→ v

′

[P-Store]

v = v
′

v
′ assign
−−−−→ v v

assign
−−−−→ v

′
[P-Assign]

v = v
′

v
′ assignglobal
−−−−−−−→ v v

assignglobal
−−−−−−−→ v

′
[P-AssignGlobal]

Figure 5 Rules for creating the PAG edges for a method containing no calls inside.

Let L be a CFL over Σ formed by the edge labels in G. Each path p in G has a string
L(p) in Σ∗ formed by concatenating in order the labels of edges in p. A node v in G is
L-reachable from a node u in G if there exists a path p from u to v, known as L-path and
denoted by L(u, v), such that L(p) ∈ L. For a node n in G, we write L(u, v)n if n appears
on L(u, v). For a path p in G such that its label is L(p) = ℓ1,⋯, ℓr in L, the inverse of p,
i.e., p has the label L(p) = ℓr,⋯, ℓ1.

D. He, J. Lu, Y. Gao, and J. Xue 16:13

We start with a standard grammar that defines the following language L0 [37, 28]:

L0 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

flowsto⟶ new flows∗

flows⟶ assign ∣ assignglobal ∣ store[f] alias load[f]

flowsto⟶ flows∗ new

flows⟶ assign ∣ assignglobal ∣ load[f] alias store[f]

alias⟶ flowsto flowsto

(5)

1. u = new O(); // O
2. p = new A(); // A
3. q = p;
4. p.f = u;
5. v = q.f;

(a) Code (b) PAG

O A

u

q

p
store[f]

new new

load[f]
v

assign

O A

u

q

p
store[f]

new new

load[f]
v

assign

Figure 6 The PAG for a code snippet.

If o flowsto v, then v is L0-reachable from o, i.e., L0(o, v). To handle aliases, flowsto is
introduced as the inverse of the flowsto relation. A flowsto path p can be inverted to obtain
its corresponding flowsto path p using its inverse edges, and vice versa. Thus, o flowsto x iff
x flowsto o. This means that flowsto actually represents the standard points-to relation. As
a result, x alias y iff x flowsto o flowsto y for some object o, so that field accesses are handled
precisely by solving a balanced parentheses problem. For the code snippet (consisting of local
variables only), together with its PAG, depicted in Figure 6, we know that L0(O, v), i.e.,
O flowsto v, implying that v points to O, which holds due to the following flowsto path:

O
new
−−→ u

store[f]
−−−−→ p

new
−−→ A

new
−−→ p

assign
−−−−→ q

load[f]
−−−−→ v (6)

By inverting all the edges in this flowsto path, a flowsto path showing v flowsto O is obtained.

4.2.2 Turner’s Context-Sensitivity-Deciding Reachability Analysis
We will now over-approximate L0 incrementally to obtain a regular grammar, i.e., a DFA to
decide intra-procedurally whether a variable/object requires context-sensitivity or not.

4.2.2.1 Ignoring Context-Insensitive Value Flows

Instead of computing points-to information in a program directly, Turner is designed to
analyze the context-sensitive value flows across the parameters or return variables of its
methods (Fact 2). Thus, we will ignore the assignglobal statements and the precision-uncritical
objects in CIOBS

Turner, as all the value-flows passing through them are context-insensitive.

l ∶ v = new T ol ∉ CIOBS
Turner

ol

cs-likely
−−−−−→ ol

[P-Object]

Figure 7 Rule for treating all the objects in CIOBS
Turner as context-insensitive.

To handle the objects in CIOBS
Turner context-insensitively as global variables, as shown in

Figure 7, we have added a self-loop edge label, named cs-likely, for each object that is not in

ECOOP 2021

16:14 Accelerating Object-Sensitive Pointer Analysis

CIOBS
Turner to indicate that it is currently treated as being potentially context-sensitive but will

be classified later as being either context-sensitive or context-insensitive by our reachability
analysis. By deleting the two terminals assignglobal and assignglobal from and adding one
new terminal cs-likely to the grammar for defining L0, we obtain:

L1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

flowsto⟶ new flows∗

flows⟶ assign ∣ store[f] alias load[f]

flowsto⟶ flows∗ new

flows⟶ assign ∣ load[f] alias store[f]

alias⟶ flowsto cs-likely flowsto

(7)

We will discuss how to handle method parameters and method calls shortly below.
Let us consider Figure 6 again by making two independent changes to the code snippet:
If q is a global variable, then p

assign
−−−−→ q will become p

assignglobal
−−−−−−−→ q. As a result, L1(O, v)

can no longer be established as in (6) earlier (due to the absence of assignglobal in L1).
if A is a cs-likely object, then L1(O, v) can also be established as before, since we have:

O
new
−−→ u

store[f]
−−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load[f]
−−−−→ v (8)

Otherwise, L1(O, v) will no longer be possible due to the absence of A
cs-likely
−−−−−→ A.

To simplify matters, returning values from a method can be treated identically as passing
parameters for the method. In object-sensitive pointer analysis [31, 39, 41, 12, 22, 21], a
method M is analyzed context-sensitively under different receiver objects. Thus, its return
statement “return r” can be modeled as “this.ret = r”, where ret is a fresh local variable
(interpreted now as the return variable of M) and the return values in “this.ret” can be
retrieved by its callers via its receiver objects. Given this simple transformation, the four
value-flow patterns given in Figure 1 can be unified as one “param-param” pattern.

▶ Lemma 5. A variable/object n in a method M requires context-sensitivity only if n lies on
a sequence of statements, s1, ..., sr, such that (1) si and si+1 form a def-use chain involving
only local variables and cs-likely objects, (2) s1 represents a use of either a cs-likely object or
a parameter of M , and (3) sr represents a definition of P.f , where P is a parameter of M

(including this) and f is a field of the objects pointed by P (including M ’s return variable
(ret)).

Proof. Follows directly from Fact 2 and the definition of cs-likely objects. ◀

In this case, n should be context-sensitive, since the modification effects of different definitions
of n on P.f under different calling contexts of M must be separated context-sensitively.

4.2.2.2 Approximating the Value Flows Spanning across Method Calls

We now consider how to handle a method call made in a method being analyzed. Turner
will over-approximate the context-sensitive value flows spanning across a call site without
analyzing its invoked methods. With L1, we can only reason about CFL reachability starting
from an object. With L2 given below, we can also start from a variable (Lemma 5):

L2 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

flows⟶ (new ∣ assign ∣ store[f] alias load[f])∗

flows⟶ (new ∣ assign ∣ load[f] alias store[f])∗

alias⟶ flows cs-likely flows

(9)

D. He, J. Lu, Y. Gao, and J. Xue 16:15

▶ Lemma 6. Let G be the PAG built by the rules in Figures 5 and 7. L2 ⊇ L1.

Proof. Follows simply from examining the structural differences in their productions. ◀

In both languages, the aliases between two variables are established in exactly the same way.
Next, we over-approximate L2 to obtain L3 by abstracting the field accesses with 1-limited

access paths and handling aliases more conservatively (as explained shortly below):

L3 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

flows⟶ (new ∣ assign ∣ load ∣ store alias)∗

flows⟶ (new ∣ assign ∣ load ∣ alias store)∗

alias⟶ flows cs-likely flows

(10)

Thus, the fields in loads and stores are ignored, and loads and assignments become indis-
tinguishable, but stores are treated differently (i.e., unsymmetrically as loads) in order to
keep track of aliases as desired. Note that L3 is is still a CFL, since (1) a store is required to
match a new, assign or load, and (2) a store is required to match a new, assign or load. This
balanced-parentheses property is somehow hidden in the alias-production.

For the code given in Figure 6, L3(O, v) will still hold even if, say, v = q.f is replaced by
v = q.g due to the existence of the following flowsto path:

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load
−−→ v (11)

▶ Lemma 7. Let G be the PAG built by the rules in Figures 5 and 7. L3 ⊇ L2.

Proof. In L3, the first two productions can be expressed equivalently as flows ⟶ (new ∣
assign ∣ load ∣ store alias load?)∗ and flows ⟶ (new ∣ assign ∣ load ∣ load? alias store)∗.
Here, (s)? indicates that s is optional, where ‘(’ and ‘)’ can be omitted if s represents one
symbol. We can conclude that L3 ⊇ L2 by noting that the field access paths in L3 are
1-limited. ◀

In L3, a store can now also be matched with a store when looking for aliases:

flows⟹+
... store flows cs-likely flows store ... (12)

For the code given in Figure 6, L3(O, v) will thus still hold if we (1) replace v = q.f by q.g
= v and (2) add v = new V(), where the allocated object, V, is assumed to be cs-likely:

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

store
−−−→ v

new
−−→ V

cs-likely
−−−−−→ V

new
−−→ v (13)

We discuss below how to exploit this property to avoid analyzing the methods invoked at a
call site while still keeping track of all context-sensitive value flows spanning the call site.

b = a0.m(a1, ..., ar)

∀ i ∶ ai

store[pm
′

i]
−−−−−−→ a0 ∀ i ∶ a0

store[pm
′

i]
−−−−−−→ ai a0

load[ret
m

′
]

−−−−−−−→ b b
load[ret

m
′
]

−−−−−−−→ a0

[P-Call]

Figure 8 Rule for analyzing a method call.

Consider how kobj analyzes a method call b = a0.m(a1, ..., ar), with a target method
m

′ resolved when a0 points to a receiver object O. Let its r + 1 parameters be p
m

′

0 , ..., p
m

′

r ,
where p

m
′

0 represents this
m

′

. Let its return variable ret
m

′

be introduced as described in
Section 4.2.2.1. Object-sensitively, p

m
′

0 , ..., p
m

′

r and ret
m

′

are handled as if they were special

ECOOP 2021

16:16 Accelerating Object-Sensitive Pointer Analysis

fields of O [22, 21]: ∀ i ∶ a0.p
m

′

i = ai for passing parameters and b = a0.ret
m

′

(for retrieving
return values). As a result, Figure 8 gives a rule, [P-Call], for adding the PAG edges required
for a method call according to [P-Load] and [P-Store]. When m

′ is analyzed by kobj, where
its this

m
′

variable points to O, its parameters will be initialized as ∀ i ∶ p
m

′

i = this
m

′

.p
m

′

i

and its return values will be made available in this
m

′

.ret
m

′

.
Given how b = a0.m(a1, ..., ar) is modeled above, we can determine whether or not a

context-sensitive value flow that enters one of its invoked methods via a parameter can
also exit it via another parameter without actually analyzing the invoked method itself, by
enforcing L3(ai, aj) conservatively, i.e., ensuring that whatever flows into ai flows also into
aj , if necessary. As will be clear in Section 4.2.2.3 below, b = a0.m(a1, ..., ar) needs to be
approximated this way if a0 may point to at least one cs-likely object and can be ignored
otherwise.

▶ Lemma 8. Let G be the PAG built by the rules in Figures 5, 7 and 8 for a method M (where
how its parameters are modeled is irrelevant here). When analyzing a call b = a0.m(a1, ..., ar)
contained in M , L3(ai, aj) is established iff a0 points to at least one cs-likely object.

Proof. Let O be an object pointed by a0. By [P-Call], passing ai and aj to a target method
m

′ at the call site is modeled by two stores a0.p
m

′

i = ai and a0.p
m

′

i = aj . Thus, we have:

flows⟹+
... ai

store
−−−→ a0 flows O ⋯ O flows a0

store
−−−→ aj ... (14)

As a result, L3(ai, aj) is established (as far as this particular call site is concerned, regardless
of its truthhood established elsewhere) iff O is a cs-likely object, in which case the “⋯” that
sits between the two occurrences of O can be replaced by

cs-likely
−−−−−→. ◀

4.2.2.3 Approximating the Incoming Value Flows from Parameters

We discuss now how to handle the parameters of a method when it is analyzed. It is
not computationally feasible to formulate our pre-analysis for a method in terms of L3
directly (even after its parameters are modeled in a certain way). As L3 is a CFL (with
balanced parentheses), the worst-time complexity for finding the points-to set of a variable is
O(N3Γ3

L3), where N is the number of nodes in the PAG and ΓL3 is the size of L3 [26, 15].
We now over-approximate L3 by turning it into a regular language L4 defined by:

L4 ∶ {
flows⟶ (new ∣ assign ∣ load)∗((store ∣ store) flows)?
flows⟶ (new ∣ assign ∣ load)∗(cs-likely flows)?

(15)

▶ Lemma 9. Let G be the PAG built by the rules in Figures 5, 7 and 8. L4 ⊇ L3.

Proof. L4 is regularized from L3 by no longer distinguishing store and store. ◀

Thus, we are now even more conservative in abstracting aliases in L4 than in L3. If we
replace p.f = u with u.f = p in Figure 6, L3(O, v) will not hold but L4(O, v) will, since

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load
−−→ v (16)

We are now ready to describe our final regular language L5 used to decide if a variable/ob-
ject in a method should be context-sensitive or not. By exploiting the fact that store and

D. He, J. Lu, Y. Gao, and J. Xue 16:17

p is a parameter

p
param
−−−−→ p p

param
−−−−→ p

[P-Param]

Figure 9 Rule for adding the PAG edges for parameters.

store are treated identically in L4, we have obtained L5, requiring the two self-loop edges to
be added for each parameter of a method according to a rule, [P-Param], given in Figure 9:

L5 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s⟶ param flows

flows⟶ (new ∣ assign ∣ load)∗((store ∣ store) flows)?
flows⟶ (new ∣ assign ∣ load)∗(cs-likely flows)?
flows⟶ param e

e⟶ ϵ

(17)

We can now analyze a method without knowing what its parameters may point to, by treating
it effectively as a parameterless method, so that all the results developed so far are applicable.

▶ Lemma 10. Let G be the PAG built for a method by the rules in Figures 5 and 7–9. Let P1
and P2 be its two (not necessarily different) parameters. Then L4(P1, P2) ⟺ L5(P1, P2).

Proof. Follows straightforwardly by noting the minor differences in their productions. ◀

As discussed in Section 4.2.1, if L is a CFL, L(u, v)n holds if L(u, v) holds due to an
L-path that contains a node n. Thus, CITurner that appears in (2) can now be defined as:

CITurner = {n ∣ M ∈ M, n is a node in GM ,∄P1, P2 ∈ param(M) ∶ L
GM

5 (P1, P2)n} (18)

where param(M) is the set of parameters of a method M and L5 is superscripted with the
PAG, GM , built for M . By construction, CIOBS

Turner ⊆ CITurner holds due to the absence of a
self-loop edge, labeled cs-likely, around each object in CIOBS

Turner. In addition, G ⊆ CITurner.
However, all the global variables will be context-insensitive according to (1) regardless.

Let us apply Turner to the four examples in Figure 1 to see how it has successfully
selected x to be context-sensitive (where “return x” in each example has been replaced by
“this.ret = x” and the object A created in Figure 1(d) is assumed to be a cs-likely object):

Figures 1(a) and 1(b): L5(p, this)x: p
assign
−−−−→ x

store
−−−→ this.

Figure 1(c). L5(p, q)x: p
assign
−−−−→ x

store
−−−→ q.

Figure 1(d): L5(this, this)x: this
store
−−−→ x

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ x

store
−−−→ this.

Finally, we show that Turner is precision-preserving if Observation 3 is precision-
preserving. The basic idea is to show that if a variable/object is context-sensitive according
to Lemma 5, i.e., Fact 2 (Figure 1), then it must reside on an L5-path.

▶ Theorem 11. Suppose Observation 3 is precision-preserving. Let G be the PAG built for a
method M (Figures 5 and 7–9). If a variable/object n in M is context-sensitive by Lemma 5,
then L5(P1, P2)n, where P1 and P2 are two (not necessarily different) parameters of M .

Proof. Our proof proceeds in the following three steps:
1. We assume that M is analyzed equivalently under one cs-likely receiver object, OM . Let

M
′ be obtained from M by augmenting it with (1) “this

M
= new T // OM ” and (2)

“P = this
M

.P ” for every parameter P of M . Let G
′ be the resulting PAG augmented from

ECOOP 2021

16:18 Accelerating Object-Sensitive Pointer Analysis

G. For every parameter P of M , we now have P
assign
−−−−→ this

M new
−−→ OM

cs-likely
−−−−−→ OM

new
−−→

this
M assign

−−−−→ P . Thus, L5(P1, P2)n holds over G, where P1 and P2 are two parameters of
M iff L5(P ′

, P
′)n holds over G

′, where P
′ is a parameter of M . In L5, every variable will

now be guaranteed to point to at least one object, which can be OM .
2. We show now that all the context-sensitive value flows that enter M under its different

calling contexts are tracked in L5 if they pass through a method call b = a0.m0(a1, ..., ar)
(via a0, ..., ar). Thus, it suffices to consider each call site in M in isolation. Note that the
loads and stores in a program can always be modeled as getters and setters.
By Lemmas 9 and 10, Lemma 8 applies also to L5: L5(ai, aj) is established in analyzing
b = a0.m0(a1, ..., ar) iff a0 points to at least one cs-likely object. Thus, we only need
to argue that if a0 points to only context-insensitive objects, recorded in Fa0 , then
each invoked method at this call site can be ignored in this sense. In this case (where
OM ∉ Fa0 as OM is context-sensitive by construction), if some pointed-to objects of
a0 are missing in Fa0 (as our pre-analysis is intra-procedural), then there must exist a
call chain, a0 = x1.m1(...), x1 = x2.m2(...), ..., xt−1 = xt.mt(...) (modeled effectively as
a0 = x1 = ... = xt in L5), where all the pointed-to objects of xt in the program are found
intra-procedurally (under the assumption that all the receiver objects of M are abstracted
by one single context-sensitive object, OM , as explained in Step 1).
Since Observation 3 is assumed to be precision-preserving, the value flows that enter
M under its different calling contexts (i.e., receiver objects) need not be tracked, i.e.,
separated context-sensitively at each call site mi(). To prove this claim inductively,
let us write x−1 = x0.m0(...) to represent b = a0.m0(...). Now, let Rmi

be the set of
objects returned by mi() but missed by L5, as mi() is not analyzed. Our claim is true
for xt−1 = xt.mt(...), since all the objects pointed to by xt in the program are context-
insensitive. This also implies that the objects in Rmt

are all conflated under different
calling contexts of M . Suppose that our claim holds for mi(), in which case, the objects
in Rmi

are all conflated. Let us consider xi−2 = xi−1.mi−1(...). As xi−1 can only point
to either some context-insensitive objects in Fa0 found intra-procedurally by L5 or the
conflated objects in Rmi

, our claim must also be true for mi−1().
3. If a variable n is context-sensitive by Lemma 5, there must exist a cs-likely O due to

Step 1 such that L1(O, P)n ∶ O flows n
′ store
−−−→ P , which contains n, where n

′ is a variable
(which may be n) and P is a parameter of M . By applying Lemmas 6 – 10 and the result
established in Step 2, we must have L5(O, P)n ∶ O flows n

′ store
−−−→ P (passing through n).

As a result, L5(P, P)n ∶ P
store
−−−→ n

′ flows O
cs-likely
−−−−−→ O flows n

′ store
−−−→ P holds. If an

object n is context-sensitive by Lemma 5, L5(P, P)n can be established similarly. ◀

4.2.2.4 Computing CITurner with a DFA

We give an efficient algorithm for computing CITurner with a DFA (Figure 10) obtained
equivalently from the regular grammar for L5. Our algorithm proceeds in linear time of the
number of nodes in the PAG by exploiting an antisymmetric property in our DFA.

The DFA is a quintuple A = (Q, Σ, δ, s, e), where Q = {s, flows, flows, e} is the set
of states, Σ = {param, param, new, new, assign, assign, load, load, store, store, cs-likely} is the
alphabet, δ ∶ Q × Σ ↦ Q is the state transition function, s is the start state, and e is the
accepting, i.e., final state.

▶ Definition 12. Given a PAG edge n1
σ
−→ n2 with a corresponding state transition δ(q1, σ) =

q2, we define (n1, q1) ↣ (n2, q2) as a one-step transition. The transitive closure of ↣,
denoted by ↣+, represents a multiple-step transition.

D. He, J. Lu, Y. Gao, and J. Xue 16:19

sstart flows flows e
param

new ∣ assign ∣ load store ∣ store
new ∣ assign ∣ load

param

cs-likely

Figure 10 The DFA as an equivalent representation of the grammar for defining L5.

We describe an antisymmetric property of our DFA in Lemmas 13 and 14 below.

▶ Lemma 13. Let n1 and n2 be two PAG nodes. We have (1) (n1, s) ↣+ (n2, flows) ⟹
(n2, flows) ↣+ (n1, e) and (2) (n1, s)↣+ (n2, flows) ⟹ (n2, flows) ↣+ (n1, e).

Proof. To prove (1), we note that n1 flows n2 ⟹ n2 flows n1 in L5. To prove (2), we

note that n1 flows n
store ∣ store
−−−−−−−→ n2 ⟹ n2

store ∣ store
−−−−−−−→ n flows n1 in L5, where n is a PAG

node. ◀

▶ Lemma 14. Let n1 and n2 be two PAG nodes. We have (n2, flows) ↣+ (n1, e) ⟹

(n1, s)↣+ (n2, flows) and (n2, flows) ↣+ (n1, e) ⟹ (n1, s)↣+ (n2, flows).

Proof. Proceeds as in the proof of Lemma 13 by noting [P-Param] given in Figure 9. ◀

In (18), we include a variable/object n in a method M (with its PAG denoted by GM) into
CITurner if L

GM

5 (P1, P2)n does not hold for any two parameters P1 and P2 of M . In terms
of our DFA, L

GM

5 (P1, P2)n holds iff (P1, s)↣+ (n, q)↣+ (P2, e), where q ∈ {flows, flows}.
The antisymmetric property of our DFA is exploited below.

▶ Theorem 15. Let n be a variable/object in a method with P1 and P2 as its two parameters.
(P1, s)↣+ (n, q)↣+ (P2, e) ⟺ (P2, s)↣+ (n, q)↣+ (P1, e), where q ∈ {flows, flows}.

Proof. Lemmas 13 and 14. ◀

As a result, we have designed an efficient algorithm for verifying L
GM

5 (P1, P2)n by
verifying n ∈ RM(flows) ∩ RM(flows) for a method M (with GM as its PAG), in which,
R ∶ Q ↦ ℘(V ∪ H) returns a set of nodes in GM reached at a given state q ∈ Q and
R

−1 ∶ V ∪ H ↦ ℘(Q) is the inverse of R. These two functions are computed according to
the two rules given in Figure 11. The two rules are simple: [A-I] performs the initializations
needed while [A-II] computes a fixed point for each function iteratively.

n ∈ NM

n ∈ RM(s) s ∈ R
−1
M (n)

[A-I]

n1
σ
−→ n2 ∈ EM q1 ∈ R

−1
M (n1) δ(q1, σ) = q2 q2 ∉ R

−1
M (n2)

n2 ∈ RM(q2) q2 ∈ R
−1
M (n2)

[A-II]

Figure 11 Rules for computing RM and R
−1
M for a method M with GM = (NM , EM).

Given RM computed above, we can now obtain CITurner efficiently as follows:

CITurner = {n ∣ M ∈ M, n is a node in GM , n ∉ RM(flows) ∩ RM(flows)} (19)

ECOOP 2021

16:20 Accelerating Object-Sensitive Pointer Analysis

4.3 Time Complexity

The worst-case time complexity of Turner in analyzing a program is linear in terms of its
number of statements, for two reasons. First, CIOBS

Turner given in (3) and (4) can be found
in O(∣H∣) based on the points-to information already computed by Andersen’s analysis [1].
Second, RM used in (19) for a method M , with its PAG denoted GM = (NM , EM), can be
computed by the rules in Figure 11 in O(∣EM ∣ × ∣Q∣), where ∣EM ∣ is the number of edges
in GM (constructed linearly based on the number of statements in M according to the rules
in Figures 5 and 7–9) and ∣Q∣, i.e., the number of states in the DFA (Figure 10), is 4.

5 Evaluation

We demonstrate that Turner can accelerate kobj significantly with only negligible precision
loss, by being both substantially faster than Eagle [22] (the currently best precision-
preserving pre-analysis) and substantially more precise than Zipper [19] (the currently best
non-precision-preserving pre-analysis). We address the following three research questions:

RQ1. Is Turner precise?
RQ2. Is Turner efficient?
RQ3. Is Turner effective (by exploiting object containment and reachability)?

We have implemented Turner in Soot [42], a program analysis and optimization
framework for Java, on top of its context-insensitive Andersen’s pointer analysis, Spark
[17], and an object-sensitive version of Spark (i.e., kobj) developed by ourselves. Our
pre-analysis is implemented in under 1000 lines of Java code, which will soon be released as
an open-source tool at http://www.cse.unsw.edu.au/~corg/turner. To compare Turner
with Eagle [22] and Zipper [19], we have implemented Eagle based on its three rules (in
600 lines of Java code) and used Zipper’s latest version (b83b038).

As Zipper is evaluated in Doop [30], we have used an experimental setting that is as close
as possible to its original one in several major aspects. First, objects such as StringBuilder,
StringBuffer and Throwable objects are merged in terms of their dynamic types and then
analyzed context-insensitively as is often done in Doop [6] and Wala [7]. Second, we
perform an exception analysis together with kobj as in Doop by handling exception objects
caught in terms of so-called exception-catch links [5]. Third, for type-filtering purposes
performed on the elements of an array, we use the declared type of its elements instead of
java.lang.Object. Finally, we use the summaries provided in Soot to handle native code.

We have carried out all the experiments on an Intel(R) Xeon(R) CPU E5-2637 3.5GHz
machine with 512GB of RAM. We have selected a set of 12 popular Java programs, including 9
benchmarks from DaCapo2006 [3], and 3 Java applications (checkstyle, JPC and findbugs),
which are commonly used in evaluating kobj [32, 40, 39, 13, 12]. The Java library used is
JRE1.6.0_45 (as the DaCapo2006 benchmarks rely only on an older version of JRE). We
use Tamiflex [4], a dynamic reflection analysis tool, to resolve Java reflection as is often
done in the pointer analysis literature [31, 32, 39, 19, 22, 21].

The time budget used for running each object-sensitive pointer analysis on a program is
set as 24 hours. The analysis time of a program is an average of three runs.

Table 3 presents our main results. We compare Turner with Eagle and Zipper in
terms of their efficiency and precision tradeoffs made on improving kobj. For each k ∈ {2, 3}
considered, kobj is the baseline, Z-kobj, E-kobj and T-kobj are the versions of kobj for
performing selective context-sensitivity under Zipper, Eagle and Turner, respectively.

http://www.cse.unsw.edu.au/~corg/turner

D. He, J. Lu, Y. Gao, and J. Xue 16:21

Table 3 Main results. For a given k ∈ {2, 3}, the speedups of E-kobj, Z-kobj, and T-kobj are
normalized with kobj as the baseline. For all the metrics except “Speedup”, smaller is better.

Metrics 2obj E-2obj Z-2obj T-2obj 3obj E-3obj Z-3obj T-3obj
Time (s) 24.5 12.4 12.7 6.8 628.9 570.8 141.4 196.5
Speedup - 2.0x 1.9x 3.6x - 1.1x 4.4x 3.2x
#may-fail-casts 516 516 565 516 456 456 513 456
#call-edges 50975 50975 51203 50975 50948 50948 51176 50948
#poly-calls 1607 1607 1629 1607 1600 1600 1622 1600

an
tlr

#avg-pts 6.110 6.110 6.585 6.125 4.927 4.927 5.427 4.945
Time (s) 412.6 290.9 324.2 138.9 10648.2 6994.7 6878.9 1902.8
Speedup - 1.4x 1.3x 3.0x - 1.5x 1.5x 5.6x
#may-fail-casts 1295 1295 1349 1295 1198 1198 1256 1198
#call-edges 56488 56488 56988 56488 56258 56258 56837 56258
#poly-calls 1549 1549 1587 1549 1535 1535 1577 1535

bl
oa

t

#avg-pts 14.796 14.796 15.672 14.816 13.995 13.995 14.802 14.019
Time (s) 206.2 107.5 28.3 75.1 OoM 12346.4 522.7 7886.1
Speedup - 1.9x 7.3x 2.7x - - - -
#may-fail-casts 1339 1339 1410 1339 - 1239 1316 1239
#call-edges 72426 72426 73009 72426 - 71987 72640 71987
#poly-calls 1988 1988 2011 1988 - 1962 1989 1962

ch
ar

t

#avg-pts 4.905 4.905 5.363 4.971 - 4.149 4.799 4.168
Time (s) 10680.5 5885.3 4122.8 4686.0 OoM OoM OoM OoM

Speedup - 1.8x 2.6x 2.3x - - - -
#may-fail-casts 3551 3551 3718 3551 - - - -
#call-edges 162208 162208 163186 162208 - - - -
#poly-calls 9525 9525 9572 9525 - - - -

ec
lip

se

#avg-pts 17.334 17.334 19.691 17.519 - - - -
Time (s) 18.7 10.2 6.9 5.2 728.1 651.6 123.8 187.3
Speedup - 1.8x 2.7x 3.6x - 1.1x 5.9x 3.9x
#may-fail-casts 414 414 460 414 362 362 416 362
#call-edges 34173 34173 34406 34173 34146 34146 34379 34146
#poly-calls 816 816 841 816 809 809 834 809

fo
p

#avg-pts 3.577 3.577 4.132 3.597 3.359 3.359 3.942 3.383
Time (s) 15.7 9.4 6.3 4.6 596.3 532.6 131.7 185.0
Speedup - 1.7x 2.5x 3.4x - 1.1x 4.5x 3.2x
#may-fail-casts 402 402 455 402 348 348 405 348
#call-edges 33449 33449 33689 33449 33422 33422 33662 33422
#poly-calls 905 905 932 905 898 898 925 898

lu
in

de
x

#avg-pts 3.595 3.595 4.285 3.612 3.352 3.352 4.072 3.374
Time (s) 22.3 15.8 11.1 10.4 1968.0 1736.8 523.5 881.1
Speedup - 1.4x 2.0x 2.1x - 1.1x 3.8x 2.2x
#may-fail-casts 417 417 473 417 366 366 425 366
#call-edges 36247 36247 36485 36247 36220 36220 36458 36220
#poly-calls 1103 1103 1131 1103 1096 1096 1124 1096lu

se
ar

ch

#avg-pts 3.611 3.611 4.229 3.627 3.358 3.358 3.959 3.381
Time (s) 42.1 23.9 23.8 18.3 1504.0 1380.1 358.6 266.2
Speedup - 1.8x 1.8x 2.3x - 1.1x 4.2x 5.7x
#may-fail-casts 1174 1174 1252 1174 1116 1116 1199 1116
#call-edges 59664 59664 59832 59664 59599 59599 59767 59599
#poly-calls 2329 2329 2354 2329 2322 2322 2347 2322

pm
d

#avg-pts 4.943 4.943 6.378 4.954 4.684 4.684 5.973 4.698
Time (s) 243.2 121.8 54.2 90.9 25424.4 6771.9 694.2 1386.4
Speedup - 2.0x 4.5x 2.7x - 3.8x 36.6x 18.3x
#may-fail-casts 569 569 629 569 516 516 582 516
#call-edges 45916 45916 46113 45916 45884 45884 46086 45884
#poly-calls 1589 1589 1611 1589 1582 1582 1604 1582

xa
la

n

#avg-pts 4.253 4.253 5.258 4.272 4.096 4.096 5.014 4.119
Time (s) 1240.6 710.2 484.3 339.3 OoM OoM OoM OoM

Speedup - 1.7x 2.6x 3.7x - - - -
#may-fail-casts 1129 1129 1203 1129 - - - -
#call-edges 66702 66702 67528 66702 - - - -
#poly-calls 2188 2188 2246 2188 - - - -ch

ec
ks

ty
le

#avg-pts 6.380 6.380 10.070 6.491 - - - -
Time (s) 101.9 59.2 31.0 44.0 2371.1 1172.9 175.9 316.8
Speedup - 1.7x 3.3x 2.3x - 2.0x 13.5x 7.5x
#may-fail-casts 1364 1364 1438 1364 1209 1209 1281 1209
#call-edges 81003 81003 81590 81003 79315 79315 79893 79315
#poly-calls 4255 4255 4301 4255 4115 4115 4159 4115

JP
C

#avg-pts 5.050 5.050 5.486 5.065 4.434 4.434 4.752 4.458
Time (s) 1820.6 681.1 128.7 150.9 OoM OoM 2133.8 1947.0
Speedup - 2.7x 14.1x 12.1x - - - -
#may-fail-casts 2037 2037 2100 2037 - - 1884 1650
#call-edges 87532 87532 88134 87532 - - 87289 86599
#poly-calls 3472 3472 3487 3472 - - 3463 3441fin

db
ug

s

#avg-pts 8.011 8.011 8.804 8.058 - - 7.203 6.632

ECOOP 2021

16:22 Accelerating Object-Sensitive Pointer Analysis

Table 4 Context-sensitive facts (in millions). For all the metrics, smaller is better.

Metrics 2obj E-2obj Z-2obj T-2obj 3obj E-3obj Z-3obj T-3obj
#cs-gpts 4.0K 3.8K 4.8K 2.2K 6.6K 6.0K 12.2K 2.8K
#cs-pts 8.7M 4.9M 8.8M 1.5M 83.4M 63.4M 72.4M 33.3M
#cs-fpts 0.4M 0.3M 0.4M 0.2M 10.2M 9.9M 10.3M 8.0M
#cs-calls 2.4M 1.8M 1.0M 0.7M 38.5M 33.5M 6.8M 25.1Man

tlr

Total 11.5M 7.1M 10.2M 2.4M 132.1M 106.7M 89.6M 66.4M
#cs-gpts 3.2K 3.0K 4.0K 2.2K 5.1K 4.3K 11.3K 3.1K
#cs-pts 120.4M 82.4M 111.1M 36.9M 1196.0M 856.5M 1137.5M 230.8M
#cs-fpts 4.0M 4.0M 5.1M 3.7M 35.8M 35.4M 51.3M 30.6M
#cs-calls 35.5M 32.1M 29.5M 15.0M 371.7M 340.5M 298.2M 109.9Mbl

oa
t

Total 159.9M 118.4M 145.7M 55.6M 1603.6M 1232.5M 1487.0M 371.3M
#cs-gpts 14.3K 13.0K 10.8K 8.2K - 34.5K 26.3K 22.0K
#cs-pts 64.3M 36.7M 17.0M 19.9M - 1378.0M 171.2M 1005.7M
#cs-fpts 1.5M 1.1M 0.8M 1.0M - 55.4M 24.8M 48.8M
#cs-calls 20.5M 12.2M 2.5M 8.7M - 356.0M 23.9M 260.8Mch

ar
t

Total 86.4M 49.9M 20.4M 29.7M - 1789.4M 220.0M 1315.3M
#cs-gpts 40.6K 39.9K 28.8K 10.0K - - - -
#cs-pts 991.9M 742.7M 744.5M 565.5M - - - -
#cs-fpts 21.8M 21.4M 20.4M 16.2M - - - -
#cs-calls 609.1M 342.7M 188.6M 296.5M - - - -ec

lip
se

Total 1622.8M 1106.8M 953.6M 878.2M - - - -
#cs-gpts 3.1K 2.9K 3.7K 2.1K 4.5K 3.8K 9.8K 2.7K
#cs-pts 3.7M 2.1M 3.6M 1.0M 70.3M 56.1M 48.8M 33.5M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 9.4M 7.9M
#cs-calls 1.1M 0.9M 0.5M 0.5M 33.7M 29.8M 4.2M 25.0Mfo

p

Total 5.0M 3.2M 4.2M 1.6M 113.7M 95.3M 62.5M 66.4M
#cs-gpts 2.8K 2.6K 3.8K 1.9K 4.5K 3.9K 11.0K 2.7K
#cs-pts 3.8M 2.2M 4.2M 1.1M 67.6M 54.2M 56.5M 33.2M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 10.8M 8.0M
#cs-calls 1.1M 0.9M 0.5M 0.5M 33.1M 29.6M 4.7M 25.1Mlu

in
de

x

Total 5.2M 3.3M 4.9M 1.7M 110.4M 93.2M 72.0M 66.3M
#cs-gpts 3.0K 2.7K 3.8K 1.9K 4.2K 3.5K 10.3K 2.5K
#cs-pts 5.8M 3.9M 5.1M 2.2M 167.7M 151.6M 115.3M 92.2M
#cs-fpts 0.3M 0.2M 0.2M 0.2M 11.2M 11.0M 11.0M 9.4M
#cs-calls 2.3M 1.9M 1.0M 1.4M 108.1M 94.9M 40.5M 80.8M

lu
se

ar
ch

Total 8.4M 6.0M 6.4M 3.8M 287.1M 257.5M 166.9M 182.4M
#cs-gpts 3.9K 3.6K 5.9K 2.5K 5.6K 4.9K 23.8K 3.4K
#cs-pts 12.2M 7.6M 15.1M 4.1M 144.6M 108.8M 184.5M 45.5M
#cs-fpts 1.1M 1.0M 1.1M 0.9M 15.9M 15.3M 19.0M 11.7M
#cs-calls 3.6M 2.6M 2.1M 1.7M 58.5M 49.0M 17.0M 33.3Mpm

d

Total 16.9M 11.1M 18.4M 6.7M 219.0M 173.1M 220.5M 90.6M
#cs-gpts 3.9K 3.6K 3.6K 2.4K 15.5K 13.5K 10.3K 6.1K
#cs-pts 99.1M 45.9M 20.1M 14.3M 1795.3M 987.3M 253.0M 104.5M
#cs-fpts 2.5M 2.4M 1.8M 1.9M 70.9M 63.6M 18.8M 27.0M
#cs-calls 26.0M 19.3M 4.7M 17.2M 432.4M 300.8M 35.3M 168.1Mxa

la
n

Total 127.6M 67.6M 26.6M 33.3M 2298.6M 1351.7M 307.1M 299.6M
#cs-gpts 7.8K 7.5K 11.5K 3.9K - - - -
#cs-pts 145.0M 107.2M 118.2M 38.0M - - - -
#cs-fpts 2.5M 2.3M 3.0M 1.6M - - - -
#cs-calls 78.6M 34.5M 23.2M 21.1M - - - -

ch
ec

ks
ty

le

Total 226.1M 144.0M 144.4M 60.7M - - - -
#cs-gpts 7.9K 7.1K 7.7K 5.7K 22.1K 19.5K 17.5K 10.2K
#cs-pts 28.7M 18.8M 13.9M 12.1M 618.1M 319.8M 68.6M 69.1M
#cs-fpts 1.2M 0.9M 1.0M 0.9M 22.8M 20.0M 13.0M 13.0M
#cs-calls 9.6M 7.1M 2.7M 5.8M 95.2M 61.4M 7.2M 38.4MJP

C

Total 39.6M 26.9M 17.6M 18.8M 736.1M 401.3M 88.8M 120.5M
#cs-gpts 33.5K 32.9K 10.7K 4.0K - - 45.6K 6.0K
#cs-pts 326.4M 245.0M 57.2M 37.8M - - 545.9M 183.3M
#cs-fpts 15.7M 15.5M 4.7M 1.1M - - 59.4M 26.6M
#cs-calls 120.0M 58.3M 11.9M 9.6M - - 96.4M 138.5M

fin
db

ug
s

Total 462.0M 318.9M 73.8M 48.5M - - 701.7M 348.5M

5.1 RQ1: Precision
Table 3 lists four common metrics used for measuring the precision of a context-sensitive
pointer analysis [31, 41, 19, 22, 21] in terms of its context-insensitive points-to information
obtained (as described in Section 2.1): (1) #may-fail-casts: the number of type casts that
may fail, (2) #call-edges: the number of call graph edges discovered, (3) #poly-calls: the
number of polymorphic calls discovered, and (4) #avg-pts: the average number of objects
pointed by a variable, i.e., the average points-to set size.

Eagle is designed to be precision-preserving by ensuring that E-kobj produces exactly
the same context-insensitive points-to information as kobj. Thus, E-2obj and E-3obj
achieve trivially the same precision in all the four metrics. Zipper is designed to accelerate

D. He, J. Lu, Y. Gao, and J. Xue 16:23

kobj heuristically as much as possible (by also ignoring the last two value-flow patterns in
Figure 1) while allowing sometimes a significant loss of precision. For 2obj, Z-2obj has
caused its #avg-pts to increase by 18.1% on average, resulting in the average percentage
precision losses of 7.8%, 0.7%, and 1.7% for #may-fail-casts, #call-edges, and #poly-calls,
respectively. For 3obj, Z-3obj has caused its #avg-pts to increase by 16.2% on average,
resulting in the average percentage precision losses of 10.8%, 0.7%, and 2.0% for #may-fail-
casts, #call-edges, and #poly-calls, respectively. In this paper, Turner is designed to trade
only a slight loss of precision for efficiency (by reasoning all the four value-flow patterns in
Figure 1 (implicitly) using a DFA based on object containment and reachability). Despite
some slightly imprecise points-to information produced (with #avg-pts increasing by 0.6%
and 0.5% under T-2obj and T-3obj, respectively), both T-2obj and T-3obj preserve the
precision for #may-fail-casts, #call-edges, and #poly-calls across all the 12 programs.

5.2 RQ2: Efficiency
On average, as shown in Table 3, T-kobj is faster than E-kobj but slower than Z-kobj.
By adopting the context selections prescribed by each of the three pre-analyses, kobj runs
faster under all the configurations. We compare Turner with Eagle and Zipper below.

T-kOBJ vs. E-kOBJ. Both achieve the same precision for #may-fail-casts, #call-edges,
and #poly-calls across the 12 benchmarks for k ∈ {2, 3}, but T-kobj is faster in each
case. For k = 2, the speedups of T-2obj over 2obj range from 2.1x (for lusearch) to
12.1x (for findbugs) with an average of 3.6x. In contrast, the speedups of E-2obj over
2obj range from 1.4x (for bloat and lusearch) to 2.7x (for findbugs) with an average
of 1.8x only. For k = 3, the speedups of T-3obj over 3obj range from 2.2x (for lusearch)
to 18.3x (for xalan) with an average of 6.2x, while the speedups of E-3obj over 3obj
range from 1.1x (for antlr, fop, luindex, lusearch, and pmd) to 3.8x (for xalan) with
an average of 1.6x only. Thus, the speedups of T-kobj over E-kobj are 1.9x when k = 2
and 3.4x (with chart included even though 3obj is unscalable) when k = 3.
In addition, T-kobj exhibits better scalability than E-kobj. For the four benchmarks,
chart, eclipse, checkstyle and findbugs, that are unscalable under 3obj, T-3obj
can now analyze chart and findbugs successfully but E-3obj can analyze chart only.
T-kOBJ vs. Z-kOBJ. Despite its substantially better precision, T-kobj is faster in
seven programs when k = 2 and three when k = 3. Compared with the kobj baseline,
the average speedups achieved by T-kobj and Z-kobj are 3.6x and 3.9x, respectively,
when k = 2, and 6.2x and 9.3x, respectively, when k = 3. As a result, Z-kobj is faster
than T-kobj by 1.1x when k = 2 and 2.7x (with chart and findbugs included) when
k = 3, on average. In terms of scalability, T-kobj is on par with Z-kobj for k ∈ {2, 3}.

Table 4 gives the numbers of context-sensitive facts established by kobj, E-kobj, Z-kobj
and T-kobj, with #cs-gpts, #cs-pts and #cs-fpts representing the numbers of context-
sensitive objects pointed by global variables (i.e., static fields), local variables and instance
fields, respectively, and #cs-calls representing the number of context-sensitive call edges. In
general, the speedups of a pointer analysis over a baseline come from a significant reduction
in the number of context-sensitive facts computed by the baseline. For example, Z-3obj is
significantly faster than T-3obj and E-3obj for chart as its number of context-sensitive
facts is significantly less than the other two. Similarly, T-3obj is also much faster than
E-3obj and Z-3obj for bloat. However, the analysis time of a pointer analysis is not linearly
proportional to the number of context-sensitive facts computed [41]. For example, T-3obj is
faster than 3obj by 3.2x for antlr but achieves a percentage time reduction of only 49.7%.

ECOOP 2021

16:24 Accelerating Object-Sensitive Pointer Analysis

Table 5 Times spent by Spark and the three pre-analyses in seconds.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
Spark 9.0 10.7 17.2 38.6 8.1 7.4 7.9 13.5 9.5 16.8 19.3 19.8 14.8
Eagle 3.5 3.8 9.9 34.6 2.8 2.7 3.0 9.3 6.1 9.2 9.6 12.1 8.9
Zipper 5.4 6.5 17.1 38.9 4.4 4.2 4.6 9.5 9.0 17.9 11.5 17.4 12.2
Turner 0.8 0.9 1.4 2.4 0.5 0.5 0.5 1.1 0.8 1.2 1.2 1.3 1.1

Table 5 gives the times spent by Spark [17] (an implementation of context-insensitive
Andersen’s analysis [1]) and the three pre-analyses, Eagle, Zipper and Turner. As
discussed earlier, each pre-analysis relies on the points-to information computed by Spark
to make its context selection decisions. Turner is significantly faster than Eagle and
Zipper across all the 12 programs. On average, we have 1.1 seconds (Turner), 8.9 seconds
(Eagle) and 12.2 seconds (Zipper). Eagle is a single-threaded pre-analysis, Zipper is
multi-threaded (with 16 threads used in our experiments), Turner is currently single-
threaded but is embarrassingly parallel, as it is intra-procedural. Without any parallelization,
Turner exhibits already negligible analysis times as it runs linearly in terms of the number
of statements in a program.

5.3 RQ3: Effectiveness

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
0%

20%

40%

60%

80%

100%

Object Containment Object Reachability

Figure 12 Percentage contributions made by Turner’s two analysis stages for the speedups of
T-2obj over 2obj.

Turner relies on object containment and reachability to make its context selections.
In order to understand roughly their percentage contributions to the speedups achieved by
T-kobj over kobj, let us consider two versions of T-kobj: (1) T-kobjC , where only object
containment is exploited, i.e., the objects in CIOBS

Turner are context-insensitive and all the rest
(the variables/objects in (V ∪G ∪H) \ CIOBS

Turner) are handled as in kobj, and (2) T-kobjR,
where only object reachability is exploited by assuming CIOBS

Turner = ∅. Let T-kobjS
Speedup be

the speedup obtained by T-kobjS over kobj, where S ∈ {C, R, ϵ}, for a program. Certainly,
T-kobjC

Speedup + T-kobjR
Speedup = T-kobjSpeedup is not expected for a program, as the com-

mon contribution made by T-kobjC and T-kobjR towards T-kobjSpeedup cannot be meaning-
fully isolated. Instead, we consider T-kobjS

Speedup/(T-kobjC
Speedup + T-kobjR

Speedup), where
S ∈ {C, R}, as the relative percentage contribution made by T-kobjS towards T-kobjSpeedup
in order to gain a rough understanding about whether both stages are indispensable. Fig-
ure 12 illustrates the case for accelerating 2obj by T-2obj, demonstrating that both object
containment and object reachability are indeed exploited beneficially for real-world programs.

D. He, J. Lu, Y. Gao, and J. Xue 16:25

Our work is largely driven by our insight stated in Observation 3. Therefore, Turner
is designed to exploit both object containment and reachability to classify the objects, and
consequently, the variables in a program as context-sensitive or context-insensitive.

TopCon ∩ BotConTopCon BotCon

CSTurner CI
DFA
Turner

Figure 13 The Venn diagram of the objects in a program.

Figure 13 gives a Venn diagram showing how Turner classifies the containers, i.e., objects
in a program. Based on object containment (Observation 3), CIOBS

Turner = TopCon ∪ BotCon
gives the set of precision-uncritical, i.e., context-insensitive objects identified. Based on
object reachability (performed by our DFA), CI

DF A
Turner ⊆ H \ CIOBS

Turner gives an additional set
of context-insensitive sets identified. Thus, CSTurner = H \ (CIOBS

Turner ∪ CI
DF A
Turner) represents

the set of context-sensitive objects identified. On average, across the 12 programs evaluated,
the ratios of ∣CIOBS

Turner∣, ∣CI
DF A
Turner∣ and ∣CSTurner∣ over ∣H∣ are 61.3%, 4.9%, and 33.8%,

respectively. As the performance benefits of making different objects context-insensitive can
be drastically different (which are hard to measure individually), these ratios, together with
Figure 12, demonstrate again the effectiveness of Turner’s two analysis stages.

Finally, we give two examples abstracted from the JDK library to explain why Turner
does not lose any precision in #call-edges, #may-fail-casts, and #poly-calls even though it
suffers from a small loss of precision in #avg-pts across the 12 programs evaluated. Turner
can render some points-to sets imprecise when some top/bottom containers that are classified
as precision-uncritical in CIOBS

Turner should have been analyzed context-sensitively.
Figure 14 illustrates a case in which whether the object P created in line 4 (a top

container according to Observation 3) is analyzed context-sensitively or not affects pts(str)
obtained in line 23. Consider 2obj, which will analyze P context-sensitively. When analyzing
lines 19–22, we find that pts(ui, []) = {(Ui, [])} ∧ pts(Ui.file, []) = pts(P.path, [Ui]) =

{(Si, [])}, where 1 ⩽ i ⩽ 2. When analyzing line 23, we find that pts(str, []) = {(S1, [])}.
Context-insensitively, 2obj thus obtains pts(str) = {S1}. In the case of T-2obj, however,
P ∈ CIOBS

Turner will be analyzed context-insensitively instead. When analyzing lines 19–22,
we have pts(ui, []) = {(Ui, [])} ∧ pts(Ui.file, []) = pts(P.path, []) = {(S1, []), (S2, [])},
where 1 ⩽ i ⩽ 2. As P is context-insensitive, analyzing line 23 this time will give rise to
pts(str, []) = {(S1, []), (S2, [])}. Thus, context-insensitively, T-2obj obtains pts(str) =
{S1, S2}, which contains a spurious target S2 introduced for str. Despite this loss of precision
in #avg-pts, however, T-2obj does not lose any precision in #may-fail-casts, #call-edges,
and #poly-calls, as both S1 and S2 have exactly the same type, java.lang.String.

Figure 15 illustrates another case in which whether the object D created in line 14
(a bottom container according to Observation 3) is analyzed context-sensitively or not
affects pts(t) obtained in line 7. Consider 2obj, which will analyze D context-sensitively.
When analyzing lines 17–20, we find that pts(vi, []) = {(Vi, [])} ∧ pts(Vi.buffer, []) =

ECOOP 2021

16:26 Accelerating Object-Sensitive Pointer Analysis

 1. class URL {
 2. String file;
 3. URL(String s) {
 4. Parts parts = new Parts(s); // P
 5. this.file = parts.getPath();
 6. }
 7. String getFile() {
 8. return this.file;
 9. }}
10. class Parts {
11. String path;
12. Parts(String p) {
13. this.path = p;
14. }

15. String getPath() {
16. return this.path;
17. }}

18. void main() {
19. String s1 = new String(); // S1
20. String s2 = new String(); // S2
21. URL u1 = new URL(s1); // U1
22. URL u2 = new URL(s2); // U2
23. String str = u1.getFile();
24. InputStream in = new FileInputStream(str);
25. // parse content of the Stream.
26. in.close();
27. }

Figure 14 Imprecise points-to information computed by T-2obj for a top container P.

 1. class DerInputBuffer {
 2. byte[] buf;
 3. DerInputBuffer (byte[] p) {
 4. this.buf = p;
 5. }

 6. Date getTime() {
 7. byte[] t = this.buf;
 8. long l = t[0];
 9. return new Date(l);
10. }}

11. class DerValue {
12. DerInputBuffer buffer;
13. DerValue(byte[] buf) {
14. this.buffer = new DerInputBuffer(buf); // D
15. }}
16. void main() {
17. byte[] b1 = new byte[10]; // B1
18. byte[] b2 = new byte[10]; // B2
19. DerValue v1 = new DerValue(b1); // V1
20. DerValue v2 = new DerValue(b2); // V2
21. Date d1 = v1.buffer.getTime();
22. }

Figure 15 Imprecise points-to information computed by T-2obj for a bottom container D.

{(D, [Vi])} ∧ pts(D.buf, [Vi]) = {(Bi, [])}, where 1 ⩽ i ⩽ 2. When analyzing line 7, we
find that pts(t, [D, V1]) = {(B1, [])}. Context-insensitively, 2obj thus obtains pts(t) =

{B1}. In the case of T-2obj, however, D ∈ CIOBS
Turner will be analyzed context-insensitively

instead. When analyzing lines 17–20, we have pts(vi, []) = {(Vi, [])}∧ pts(Vi.buffer, []) =
{(D, [])}∧pts(D.buf, []) = {(Bi, [])}, where 1 ⩽ i ⩽ 2. As t is context-insensitive, analyzing
line 7 will give rise to pts(t, []) = {(B1, []), (B2, [])}. Thus, context-insensitively, T-2obj
obtains pts(t) = {B1, B2}, which contains a spurious target B2 introduced for t. Despite
this loss of precision in #avg-pts, T-2obj loses no precision in #may-fail-casts, #call-edges,
and #poly-calls, as both B1 and B2 have exactly the same type, java.lang.byte[], and in
addition, each array object pointed by t is used in line 8 for obtaining a long integer only.

6 Related Work

There are two approaches for developing pre-analyses for improving the efficiency and
scalability of object-sensitive pointer analysis (kobj) for Java: the precision-preserving
approach [22, 21] and non-precision-preserving approach [32, 19, 13, 9]. Eagle [22, 21] aims
to improve the efficiency of kobj while preserving its precision by reasoning about all the
four value-flow patterns in Figure 1 implicitly via CFL reachability to make its context
selections conservatively, thereby limiting the speedups achieved. In this paper, Turner
addresses its limitation by trading a slight loss of precision for greater performance speedups.
On the other hand, Zipper [19], as a representative non-precision-preserving pre-analysis
[32, 19, 13, 9], aims to trade precision for efficiency by examining the first two value-flow

D. He, J. Lu, Y. Gao, and J. Xue 16:27

patterns in Figure 1 heuristically to make its context selections, achieving sometimes greater
speedups than Eagle but at a substantial loss of precision for some programs. In this paper,
Turner addresses its limitation by trading a slight loss of efficiency for greater precision
by exploiting object containment (Observation 3) and then reasoning about all the four
value-flow patterns in Figure 1 implicitly via an intra-procedural object reachability analysis.

There are other types of pre-analyses for kobj. Mahjong [39] sacrifices the precision of
alias analysis (by merging objects of the same dynamic type) in order to improve the efficiency
of kobj at a small loss of precision for a class of so-called type-dependent clients, such as call
graph construction, may-fail casting, and polymorphic call detection. In contrast, Turner
is designed to be a general-purpose pointer analysis to support all possible applications
that rely on points-to information, including not only type-dependent clients but also alias
analysis. Jeong et al. [13] apply machine learning to select the lengths of calling contexts for
different methods analyzed by kobj for a particular client (e.g., may-fail-casting). In contrast,
Turner makes its context selections by exploiting object containment and reachability.

There are also research efforts for developing pre-analyses for other programming languages.
For example, Wei and Ryder [43] present an adaptive context-sensitive analysis for JavaScript.
They extract user-specific function characteristics from an inexpensive pre-analysis and then
apply a decision-tree-based machine learning technique to correlate these features with
different types of context-sensitivity, e.g., 1-callsite, 1-object and i-th-parameter, achieving
better precision and efficiency than any single context-sensitive analysis evaluated.

Elsewhere [14, 40, 12], pre-analyses are also applied to improve the precision of kobj at
the expense of its efficiency. This thread of research is orthogonal to ours considered here.

There are other types of approaches for conducting pointer analysis in Java programs.
Thiessen and Lhoták [41] propose to use context transformations rather than context strings
as a new context abstraction for kobj, making it theoretically possible for kobj to run
more efficiently with better precision. Instead of solving kobj as a whole-program analysis
[17, 44, 23, 6, 18] as in this paper, demand-driven pointer analyses [37, 34, 45, 28, 38, 33]
typically compute the points-to information for particular variables of interest, with call-site-
sensitivity instead of object-sensitivity being often used.

Finally, Mohri and Nederhof [24] introduce an approach for over-approximating a context-
free grammar (CFG) by a non-deterministic finite automaton (NFA). Prasanna et al. [16]
adopt this approach to compute the liveness information required by a garbage collector for
functional programs. For object-oriented pointer analysis, however, this is the first paper in-
troducing an intra-procedural pre-analysis for determining selective context-sensitivity, based
on a DFA over-approximated from a CFG that defines pointer analysis inter-procedurally.

7 Conclusion

We have introduced Turner, a simple, lightweight yet effective pre-analysis technique that
can accelerate object-sensitive pointer analysis for Java programs with negligible precision loss.
We exploit a key insight that many precision-uncritical objects in a program can be identified
based on a pre-computed object containment relationship. Leveraging this approximation, we
can reason about object reachability intra-procedurally to determine whether the remaining
objects, together with all the variables, in the program are precision-critical or not. As
a result, we have obtained a novel pre-analysis that can improve the efficiency of object-
sensitive pointer analysis significantly while suffering only a small loss of precision in the
points-to information produced. In particular, Turner is shown to preserve the precision of
object-sensitive pointer analysis for three important clients, call graph construction, may-fail
casting, and polymorphic call detection over a set of 12 popular Java programs evaluated.

ECOOP 2021

16:28 Accelerating Object-Sensitive Pointer Analysis

We see several directions to move forward. First, we can incorporate the object allocation
relationship (exploited earlier [40]) into our framework to mitigate some precision loss incurred
in the scenarios shown in Figures 14 and 15. Second, we can sharpen the precision of CIOBS

Turner
with a more precise yet faster algorithm than Anderson’s analysis [1]. Finally, we can analyze
a method based on the context selections made earlier by exploiting a precision/efficiency
tradeoff made possible by the modularity of our intra-procedural pre-analysis.

References
1 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Cophenhagen, 1994.
2 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
page 259–269, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2666356.2594299.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The
DaCapobenchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. Association for Computing Machinery.
doi:10.1145/1167515.1167488.

4 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proceedings
of the 33rd International Conference on Software Engineering, pages 241–250, Honolulu, HI,
USA, 2011. IEEE. doi:10.1145/1985793.1985827.

5 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis:
Better together. In Proceedings of the 18th International Symposium on Software Testing
and Analysis, page 1–12, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1572272.1572274.

6 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 243–262, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1639949.1640108.

7 IBM T.J. Watson Research Center. WALA: T.J. Watson Libraries for Analysis, 2020. URL:
http://wala.sourceforge.net/.

8 Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions on Software Engineering
and Methodology, 17(2):1–34, 2008. doi:10.1145/1348250.1348255.

9 Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard
Scholz, and Yi Lu. An efficient tunable selective points-to analysis for large codebases. In
Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, page 13–18, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3088515.3088519.

10 Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu, Shuangwei
Hu, Lian Li, and Jingling Xue. Performance-boosting sparsification of the IFDS algorithm
with applications to taint analysis. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 267–279, San Diego, CA, USA, 2019. IEEE.
doi:10.1109/ASE.2019.00034.

https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1572272.1572274
https://doi.org/10.1145/1639949.1640108
http://wala.sourceforge.net/
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1109/ASE.2019.00034

D. He, J. Lu, Y. Gao, and J. Xue 16:29

11 Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. Understanding
and detecting evolution-induced compatibility issues in Android apps. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 167–177, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3238147.3238185.

12 Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis via data-
driven context tunneling. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
29, 2018. doi:10.1145/3276510.

13 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017. doi:10.1145/3133924.

14 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 423–434, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2499370.2462191.

15 John Kodumal and Alex Aiken. The set constraint/cfl reachability connection in practice.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, pages 207–218, New York, NY, USA, 2004. ACM. doi:10.1145/996893.
996867.

16 Prasanna Kumar K., Amitabha Sanyal, and Amey Karkare. Liveness-based garbage collection
for lazy languages. In Proceedings of the 2016 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2016, page 122–133, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2926697.2926698.

17 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using spark. In Interna-
tional Conference on Compiler Construction, pages 153–169, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg. doi:10.5555/1765931.1765948.

18 Lian Li, Cristina Cifuentes, and Nathan Keynes. Boosting the performance of flow-sensitive
points-to analysis using value flow. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, pages 343–353, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/2025113.2025160.

19 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context sensitivity
for pointer analysis. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018. doi:10.1145/3276511.

20 Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. Program tailoring: Slicing by sequential
criteria. In 30th European Conference on Object-Oriented Programming, pages 15:1–15:27,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ECOOP.2016.15.

21 Jingbo Lu, Dongjie He, and Jingling Xue. Eagle: CFL-reachability-based precision-preserving
acceleration of object-sensitive pointer analysis with partial context sensitivity. ACM Transac-
tions on Software Engineering and Methodology, 2021. To appear.

22 Jingbo Lu and Jingling Xue. Precision-preserving yet fast object-sensitive pointer analysis with
partial context sensitivity. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
29, 2019. doi:10.1145/3360574.

23 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005. doi:10.1145/1044834.1044835.

24 Mehryar Mohri and Mark-Jan Nederhof. Regular approximation of context-free grammars
through transformation. In Jean-Claude Junqua and Gertjan van Noord, editors, Robustness
in Language and Speech Technology, pages 153–163. Springer Netherlands, Dordrecht, 2001.
doi:10.1007/978-94-015-9719-7_6.

25 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and

ECOOP 2021

https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1145/996893.996867
https://doi.org/10.1145/996893.996867
https://doi.org/10.1145/2926697.2926698
https://doi.org/10.5555/1765931.1765948
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/3276511
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/3360574
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1007/978-94-015-9719-7_6

16:30 Accelerating Object-Sensitive Pointer Analysis

Implementation, pages 308–319, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1133255.1134018.

26 Thomas Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701–726, 1998. doi:10.1016/S0950-5849(98)00093-7.

27 Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM Transactions
on Programming Languages and Systems, 22(1):162–186, 2000. doi:10.1145/345099.345137.

28 Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-
to analysis. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, pages 264–274, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2259016.2259050.

29 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. New
York University. Courant Institute of Mathematical Sciences , 1978.

30 Yannis Smaragdakis. Doop-framework for Java pointer and taint analysis (using p/taint),
2021. URL: https://bitbucket.org/yanniss/doop/.

31 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 17–30, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/1925844.1926390.

32 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 485–495, New York, NY, USA,
2014. Association for Computing Machinery. doi:10.1145/2594291.2594320.

33 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow-and context-sensitive pointer analysis for Java. In 30th European Conference on
Object-Oriented Programming, pages 22:1–22:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.22.

34 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis for
Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 387–400, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1133255.1134027.

35 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, pages 196–232. Springer, Berlin, Heidelberg, 2013. doi:10.1007/
978-3-642-36946-9_8.

36 Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 112–122, New York, NY, USA, 2007. Association for Computing Machinery. doi:
10.1145/1250734.1250748.

37 Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-driven points-to
analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, page 59–76, New York, NY,
USA, 2005. Association for Computing Machinery. doi:10.1145/1103845.1094817.

38 Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow refinement.
In Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of
software engineering, pages 460–473, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2950290.2950296.

39 T. Tan, Y. Li and J. Xue. Efficient and precise points-to analysis: modeling the heap by
merging equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 278–291, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3140587.3062360.

https://doi.org/10.1145/1133255.1134018
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/2259016.2259050
https://bitbucket.org/yanniss/doop/
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1133255.1134027
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1103845.1094817
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/3140587.3062360

D. He, J. Lu, Y. Gao, and J. Xue 16:31

40 Tian Tan, Yue Li, and Jingling Xue. Making k-object-sensitive pointer analysis more precise
with still k-limiting. In International Static Analysis Symposium, pages 489–510, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg. doi:10.1007/978-3-662-53413-7_24.

41 Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
page 263–277, New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3140587.3062359.

42 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., USA, 2010. doi:10.5555/781995.782008.

43 Shiyi Wei and Barbara G Ryder. Adaptive context-sensitive analysis for JavaScript. In 29th
European Conference on Object-Oriented Programming, pages 712–734, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2015.
712.

44 John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, pages 131–144, New York, NY, USA, 2004.
Association for Computing Machinery. doi:10.1145/996841.996859.

45 Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-sensitive alias
analysis for Java. In Proceedings of the 2011 International Symposium on Software Testing and
Analysis, pages 155–165, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/2001420.2001440.

ECOOP 2021

https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3140587.3062359
https://doi.org/10.1145/3140587.3062359
https://doi.org/10.5555/781995.782008
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/2001420.2001440

Signal Classes: A Mechanism for Building
Synchronous and Persistent Signal Networks
Tetsuo Kamina #

Oita University, Japan

Tomoyuki Aotani #

Mamezou Co.,Ltd., Tokyo, Japan

Hidehiko Masuhara #

Tokyo Institute of Technology, Japan

Abstract
Signals are principal abstraction in reactive programming languages and constitute the basics of
reactive computations in modern systems, such as the Internet of Things. Signals sometimes utilize
past values, which leads to space leak, a problem where accumulated past values waste resources
such as the main memory. Persistent signals, an abstraction for time-varying values with their
execution histories, provide a generalized and standardized way of space leak management by leaving
this management to the database system. However, the current design of persistent signals is very
rudimental. For example, they cannot represent complex data structures; they can only be connected
using pre-defined API methods that implicitly synchronize the persistent signal network; and they
cannot be created dynamically.

In this paper, we show that these problems are derived from more fundamental one: no language
mechanism is provided to group related persistent signals. To address this problem, we propose
a new language mechanism signal classes. A signal class packages a network of related persistent
signals that comprises a complex data structure. A signal class defines the scope of synchronization,
making it possible to flexibly create persistent signal networks by methods not limited to the use of
pre-defined API methods. Furthermore, a signal class can be instantiated, and this instance forms a
unit of lifecycle management, which enables the dynamic creation of persistent signals. We formalize
signal classes as a small core language where the computation is deliberately defined to interact with
the underlying database system using relational algebra. Based on this formalization, we prove the
language’s glitch freedom. We also formulate its type soundness by introducing an additional check
of program well-formedness. This mechanism is implemented as a compiler and a runtime library
that is based on a time-series database. The usefulness of the language is demonstrated through the
vehicle tracking simulator and viewer case study. We also conducted a performance evaluation that
confirms the feasibility of this case study.

2012 ACM Subject Classification Software and its engineering → Object oriented languages; Software
and its engineering → Data flow languages; Software and its engineering → Semantics

Keywords and phrases Persistent signals, Reactive programming, Time-series databases

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.17

Related Version Extended Version: https://2020.splashcon.org/details/rebls-2020-papers/
5/Managing-Persistent-Signals-using-Signal-Classes

Funding This research was supported by JSPS KAKENHI Grant Number 17K00115 and 21H03418.

1 Introduction

Signals are principal abstraction in reactive programming languages [10, 17, 30, 33]. Each
signal represents a data stream of a periodically updated value. By connecting them, we
can declaratively specify dataflow from inputs to outputs. This mechanism was proposed
as a representative construct in functional-reactive programming (FRP) [10], and has been
available in imperative languages [6, 20, 30, 17, 33]. Signals constitute the basics of reactive
computations in modern systems, such as the Internet of Things (IoT).

© Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 17; pp. 17:1–17:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kamina@acm.org
mailto:tomoyuki-aotani@mamezou.com
mailto:masuhara@acm.org
https://doi.org/10.4230/LIPIcs.ECOOP.2021.17
https://2020.splashcon.org/details/rebls-2020-papers/5/Managing-Persistent-Signals-using-Signal-Classes
https://2020.splashcon.org/details/rebls-2020-papers/5/Managing-Persistent-Signals-using-Signal-Classes
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Persistent signals [18] are the abstraction for time-varying values with their execution
histories in large storage such as a database. Unlike (transient) signals, past values of
persistent signals do not disappear even after the application stops. Furthermore, persistent
signals can utilize mostly “unlimited” past values. This means that persistent signals deal
with the space leak problem where accumulated past values in transient signals waste
resources such as the main memory. Instead, in persistent signals, space leak is managed by
the underlying time-series database with large storage. This mechanism is quite useful in
applications where a large amount of persistent past values is necessary, such as inspection
of accidents in a vehicle tracking system and simulations based on time-series data.

Even though the idea of persistent signals was presented with their implementation and
microbenchmarks, the existing persistent signals suffer from the following problems:

Persistent signals do not provide abstractions for representing complex data structures. For
example, when we implement a vehicle tracking system that records x- and y-coordinates
of the running vehicle, we need to use two signals corresponding to those coordinates,
instead of using one single signal representing “a vehicle.” Furthermore, there are no
mechanisms for ensuring the simultaneity of updates of those coordinates.
Persistent signals can be connected only using a predefined set of API methods, which
limits the use cases where persistent signals can be applied.
Persistent signals cannot be created dynamically. This means that we cannot add any new
vehicles during the execution of the vehicle tracking system. We consider this limitation
to be critical.
The structures of persistent signal networks are determined statically, and we cannot
change them dynamically.

In this paper, we show that all these problems arise from a fundamental restriction: no
language mechanism is provided to group and identify the related persistent signals. To
address this restriction, we propose signal classes for the packaging mechanism of persistent
signals. A set of related persistent signals (that form a persistent signal network) is grouped
into one signal class. Thus, for example, we can declare “a vehicle” using a signal class where
two persistent signals representing its coordinates are declared. Giving an identifier, a signal
class can be instantiated dynamically, and this instance defines a scope where all persistent
signals are synchronized. This instance also provides a unit of lifecycle management, which
makes it easy to provide consistent management regarding lifecycle events, such as dynamic
creation and destruction, as well as keeping persistency. Furthermore, by using a persistent
signal whose type is also a signal class (this is only an exception to the rule that a persistent
signal can have only a “primitive” type, i.e., a type that is supported by the underlying
database system), we can dynamically “switch” the persistent signal networks.

We design a programming language that supports signal classes as an extension of
SignalJ [17], and show how all the aforementioned problems are tackled using a simple
example of vehicle tracking system. Meanwhile, we define an abstract lifecycle model of
signal class instances that ensures some properties such as the bindings between persistent
signals and database constructs being kept transparent to hide the underlying database from
the program; e.g., multiple database tables are not created to store information regarding
the same identifier.

The usefulness of the language is demonstrated through the case study of vehicle tracking
simulator and viewer. In this application, a vehicle is represented as a signal class instance
that encapsulates a persistent signal network comprising the dataflow from the vehicle’s
coordinates to its velocity. An interactive viewer is implemented using a time-oriented
operation representing “scrolling back to a specific time,” which is simply realized as a

T. Kamina, T. Aotani, and H. Masuhara 17:3

declarative query on the vehicle. This application scenario implies that the proposed
mechanism is useful in applications that handle a time-series data in general, in particular
with an interactive user interface that shows both latest and past information. Examples
include weather information, IoT sensor monitoring, and SNS timelines.

We also formalize the core language of signal classes. Because a signal class encapsulates
its internal time-series data, the language needs to implicitly guarantee its internal consistency.
For example, every derived signal at any timestamp must be reproduced from the values of
the source signals at that timestamp. In our formalization, the computation is deliberately
defined to interact with the underlying database system using relational algebra [5], and
based on that, we prove the language’s glitch freedom, i.e., a well-typed program does not
produce any temporal inconsistencies. We also formulate its type soundness by introducing
an additional check of program well-formedness.

We implemented a compiler of signal classes where a signal class is translated into a normal
SignalJ class that accesses the runtime library of persistent signals. This runtime library
is an extension of the existing persistent signal library [18] where we devise a mechanism
that maintains the identities of signal class instances that follow the lifecycle model. This
implementation is performed on a time-series database. A performance evaluation is conducted
based on this implementation, and its result indicates that the vehicle tracking example is
realistic in this implementation.

Contributions of this paper is listed as follows:
Signal classes that tackle all the aforementioned problems of persistent signals, as well as
their instances’ lifecycle model, are developed.
The usefulness of signal classes is demonstrated through the vehicle tracking simulator
and viewer case study.
A core language of signal classes is formalized based on relational algebra (describing
the integration between signals and a time-series database) with the proofs of its glitch
freedom and type soundness.
Signal classes are implemented on the basis of a time-series database, which is proven to
be responsive through a performance evaluation.

Structure of this paper. Section 2 provides some technical premises on which the
proposal of signal classes is based. Section 3 discusses the difficulties in realizing persistent
signals. Section 4 introduces signal classes with the descriptions of the aforementioned
lifecycle model. The mechanism is explained using the vehicle tracking case study. Section 5
provides the formal definition of the core language with the proofs of glitch-freedom and
type soundness. Section 6 illustrates how signal classes are implemented, and shows its
performance evaluation results. Section 7 discusses related work, and Section 8 finally
concludes this paper.

2 Technical Premises

2.1 Signals
Signals are abstractions for time-varying values that can be declaratively connected to
form dataflows. Signals directly represent dataflows from inputs given by the environment
to outputs that respond to the changes in the environment. This feature is useful in
inplementing modern reactive systems, such as IoT applications. For example, assuming
that the power difference of an actuator is calculated by the function f that takes a sensor
value as an input, both the power difference and the sensor value can be represented as

ECOOP 2021

17:4 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

signals: powerDifference and sensorValue, respectively. We describe these signals using
SignalJ [17], an extension of Java that supports signals.

signal int sensorValue = 2000; //initial value
signal int powerDifference = f(sensorValue);

These declarations specify that the value of powerDifference is recalculated every time the
value of sensorValue is updated.

Although signals were first proposed in several functional languages such as Fran [10],
FrTime [6] and Flapjax [20] introduced their ability to imperatively change signals, and SignalJ
also supports this feature using an assignment expression. For example, we can imperatively
update the value of sensorValue, which is automatically propagated to powerDifference.

sensorValue = readFromSensors(); //powerDifference is also updated.

We note that the dependency between powerDifference and sensorValue is fixed during
the execution, i.e., reassignment of a value to powerDifference is not allowed. In SignalJ,
imperative update is allowed only for signals that do not depend on other signals, such as
sensorValue.

SignalJ supports signals with a class type, and does not perceive each internal state
change as a distinct update of that signal. Instead, a signal update is perceived only when
the identity of the object changes. For example, assuming that the following class C declares
a signal, namely, s, as its field, an assignment to s is not considered as a change in the signal
of type C. We can update that signal by assigning a new instance to that:

signal C c = new C("A"); // Class C declares a set of signals.
c.s = 44; // assignment to the internal signal is not propagated to "c"
c = new C("B"); // reassignment to "c" results in the "switched" network

This enables SignalJ to perform the switching of signal networks by encapsulating a network
of signals as a class instance.

Besides this mechanism to specify the dependency between time-varying values, SignalJ
provides specific features that are intensively used throughout this paper. First, in SignalJ,
a signal is used anywhere a non-signal is expected. Thus, in the above example, the function
f can be a method that does not accept a signal but just an integer value. Thus, we can
connect signals using legacy library methods that do not support signals, and the dependency
between sensorValue and powerDifference is determined statically. Secondly, in SignalJ,
a signal implicitly implements some API methods. One example of such an API method
is subscribe, which registers an event handler that is called when the receiver signal is
updated. In the following section, we will see that query API methods for persistent signals
are also provided in this way.

2.2 Persistent signals
One important building block for modern reactive systems is to store time-series data, which
are the histories of time-varying values comprising the reactive system. We explain this
using the example of a vehicle tracking system [18]. This system records the position of each
vehicle, which is obtained from automotive devices. The position changes while the vehicle is
moving. In other words, the position of the vehicle is a time-varying value. There are also
some other time-varying values that depend on the position, such as the estimated velocity
and the total traveled distance of that vehicle. These dependencies on time-varying values
motivate us to develop the system using signals. This vehicle tracking system also allows for
post analysis (e.g., inspecting the cause of a car accident) and simulation. This means that
the change history of each time-varying value stored in the time-series database is necessary.

T. Kamina, T. Aotani, and H. Masuhara 17:5

Table 1 Persistent signal API (selective). In this table, we use T as a type parameter. For
example, signal[T] is a type T whose modifier includes signal. (Adapted from [18]).

Type Signature Description

Basic

within(Time-series data within the extent specified by a time-
java.sql.Timestamp ts, stamp ts and interval representing its interval
String interval)

bucket(String interval)
Time-series data using the sampling rate specified by
interval

Analytic avg(), max(), min(), etc. Average, maximum, and minimum value of the
receiver signal, resp.
Difference between the current value of the receiver

Domain lastDiff(int i) signal and the ith value since the last value of that
specific signal

distance(signal[T] s) Distance between the receiver signal and s

Persistent signals [18] are abstractions for time-varying values with their execution
histories. A persistent signal is declared as a variant of signals that encapsulates details of
its execution history, which is stored in the underlying database. Queries on this execution
history are supported by API methods equipped with persistent signals in advance. Each
call of the API method is internally translated to the corresponding database query. Because
the management of the history is left to the database system, persistent signals solve the
space leak problem, where accumulated histories waste resources such as the main memory.
Furthermore, persistent signals make their histories available even after the application stops.

In SignalJ, a signal is declared as a persistent signal using the modifier persistent. In
the following example, car1234_x and car1234_y are declared as persistent signals whose
time-varying values are of type int.

persistent signal int car1234_x, car1234_y;
signal int c12x = car1234_x.within(Timeseries.now, "12 hours");
signal int c12y = car1234_y.within(Timeseries.now, "12 hours");

In this example, these persistent signals represent the position of a specific vehicle; car1234_x
represents the x-coordinate and car1234_y represents the y-coordinate.

Persistent signals are equipped with several query API methods, which are summarized
in Table 1. For example, the within method shown above returns another persistent signal
that contains all the receiver’s values that have been recorded within the specified period
(the past 12 hours in the above example). In other words, the return value of within (c12x
or c12y in the above example) is a view of the receiver of within. We call such a persistent
signal a view signal.

View signals are also used to avoid glitches among signals related with the transitive
dependency (instead, temporal consistency between signals like car1234_x and car1234_y
must manually be handled by the programmer). SignalJ supports pull-based signals, which
means that a signal is re-evaluated whenever it is accessed (and it is guaranteed to be
glitch-free). This strategy is also applied to the construction of view signals. Each view signal
refers to a view that is created by a SELECT SQL query corresponding to an API method in
Table 1. This query is executed on-demand when the view signal is accessed.

One particular feature of the current implementation of persistent signals is its timing of
table and view generation; they are generated at compile time. In other words, lifecycle of
persistent and view signals is not considered in the prior work.

ECOOP 2021

17:6 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

2.3 Time-series databases
Time-series databases are used to implement persistent signals. They are usually specialized
to store time-series data, and they provide a compact representation and convenient time-
oriented API for time-series data. Because time-series data are very common in modern
applications, there have been intensive research efforts in this area [16, 8, 26, 1, 19]. There
are also many industrial and/or open source implementations of time-series databases, such
as TimescaleDB1, OpenTSDB2, and InfluxDB3.

The aforementioned implementation of persistent signals uses TimescaleDB, which is an
extension of PostgreSQL, as a backend. Persistent signals have several specific properties:
each record has a timestamp; once inserted, entries are not normally updated; and recent
entries are more likely to be queried. To effectively interact with such time-series data,
TimescaleDB provides an abstraction of a single continuous table across all space and time
intervals; this is called a hypertable. All interactions with TimescaleDB (such as SQL queries)
are implicitly with hypertables. The preliminary experiments on persistent signals indicate
that the existing implementation is sufficiently responsive in most cases.

3 Challenges

The current design of persistent signals suffers from several problems. First, persistent signals
do not provide abstractions for representing complex data structures. This problem is indeed
illustrated by the aforementioned vehicle tracking example, where the position of the vehicle
is represented by two distinct persistent signals, namely, car1234_x and car1234_y. This
is because the persistent signals are only supported with primitive types. Thus, we cannot
represent “a vehicle” as one single persistent signal, and the correspondence between x- and
y-coordinates and even their synchronization must be manually written by the programmers.
This imposes programming with row-level abstractions on the programmers, which is error
prone.

Secondly, a view signal must be defined using an API method prepared in advance, where
its SQL correspondence is defined. This is because it is difficult to derive a SQL query that
creates a view from an arbitrary Java expression. However, this restriction limits the use
cases where the persistent signals can be applied. For example, in the vehicle tracking system,
we may want to calculate the distance to the destination as follows (assuming that Position
is a legacy class that is not a part of the persistent signal library):

Position target = new Position(..);
signal double dist = target.getDistance(car1234_x,car1234_y);

The variable dist represents a time-varying value, as its depends on signals car1234_x and
car1234_y (as mentioned above, even though getDistance does not expect signals as its
arguments, SignalJ can construct a signal network that connects dist with car1234_x and
car1234_y). It is also useful if we can use the update history of dist derived from database
tables for car1234_x and car1234_y. This is unfortunately difficult because deriving the
view is not defined in getDistance.

A more serious problem is that persistent signals cannot be created dynamically. This
is because the database schema corresponding to persistent signals is determined by the
compiler. This approach makes it easy to implement the bindings between persistent signals

1 https://www.timescale.com
2 http://opentsdb.net
3 https://www.influxdata.com

https://www.timescale.com
http://opentsdb.net
https://www.influxdata.com

T. Kamina, T. Aotani, and H. Masuhara 17:7

and database constructs because database constructs already exist before the application is
running, and their identities do not change during the execution. However, this is a relatively
strict limitation. In the vehicle tracking example, this means that every vehicle to be tracked
must be statically identified, and we cannot add any vehicles after the application is running.
We consider this limitation unacceptable for real applications.

Furthermore, structures of persistent signal networks cannot be changed dynamically.
This is because we cannot use a network of persistent signals as a first class citizen. In
SignalJ, a signal is always evaluated to the current value (instead of obtaining “the signal
itself”) when it is accessed. With this semantics, SignalJ supports the switching of signal
networks by encapsulating a network of signals as a class instance. However, persistent
signals cannot perform this switching because they cannot have a class type.

To understand these problems, we elaborate on the details of them. First, to represent
a persistent signal of “a vehicle,” we might consider a complex-type persistent signal. For
example, Kamina and Aotani noted that existing object-relation mapping might be applied
to implement persistent signals with complex types [18], which seems to be straightforward.
We define an object (e.g., a vehicle) as a persistent signal, where its internal state changes are
considered its execution history maintained by the database table. This might be achieved
by defining the mapping from the “Vehicle” class to the relation.

Unfortunately, this approach is not as easy as expected. One problem is that there might
be deep nesting of internal states where one property of the internal state is another object
with a complex type. Furthermore, this contradicts the SignalJ semantics where a signal
update is perceived only when the identity of the object changes.

Second, the reason why we want dist to be implemented using a view is that we want
to update its history simultaneously with updates of car1234_x and car1234_y. We might
consider another approach where every update of dist is stored in a separated database
table, i.e., dist is not a view signal but another persistent signal whose update history is
recorded every time car1234_x and car1234_y are updated. This means that the value of
dist is no longer calculated by the database query statement creating the view. Instead, the
update of dist is pushed, which is synchronized with pushes of car1234_x and car1234_y.
Thus, we must keep track of which persistent signals are synchronized. For example, there
may be a number of vehicles whose updates are independent from others, and we must share
the timestamp at the update only among the related persistent signals. The prior work [18]
proposes the syntax for parallel assignment of persistent signals to specify the group of
synchronous updates; however, intensive use of such a specific syntax makes the program
very clumsy.

Finally, the dynamic creation of persistent signals requires the lifecycle of persistent
signals to be managed at runtime while supporting persistency. The identity of a dynamically
created persistent signal, which is statically unknown, should be retained even after the
application crashes. This is because persistent signals are used to ensure tracing of past
executions. After the application restarts, this identity should be taken over by the new
execution because, for example, it is desirable that the vehicles in the system can be traced
again using the records, including those updated before the application stopped. It is also
possible that the life of persistent signal ends when the execution history of the corresponding
vehicle is no longer necessary.

To enable such lifecycle management, we must keep the consistency between the related
persistent signals. For example, in the vehicle tracking system we cannot simply drop
car1234_x as it is conceptually coupled with another persistent signal car1234_y. As the
dependencies between persistent signals are implicit in the original work, we must analyze

ECOOP 2021

17:8 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

signal class Vehicle {
String onwer, company, name;
Position target;

persistent signal double x, y;
signal double x12h = x.within(Timeseries.now, "12 hours");
signal double y12h = y.within(Timeseries.now, "12 hours");
signal double dx = x12h.lastDiff(1);
signal double dy = y12h.lastDiff(1);
signal double v = dx.distance(dy);
signal double dist = target.getDistance(x,y);

public Vehicle(String id, String owner, String company,
String name, Position target) {

this.owner = owner; this.company = company;
this.name = name; this.target = target;

}
...

}

Figure 1 Declaration of vehicle using a signal class.

which persistent signal is related to another one, which might be very difficult without
assuming hints from the programmers. This leads to the resignation of dynamic persistent
signal management.

This observation leads to our hypothesis that all these problems are just instances of
more fundamental one: no syntactical support is provided to group and identify the related
persistent signals. The lack of grouping mechanism leads to the separate declarations of
primitive persistent signals. Such separate declarations are the cause of implicitly constructed
persistent signal networks. This implicit construction makes it difficult to identify the set of
persistent signals that follow the same lifecycle and can be a unit of switching of persistent
signal networks. In the following section, we show that providing this grouping mechanism
actually solves all these problems.

4 Signal Classes

To provide a grouping mechanism for persistent signals, we develop a language construct
“signal classes” that packages a network of persistent signals into one single class. A signal
class itself represents a complex data structure using a set of (primitive) persistent signals.
Furthermore, a persistent signal can also have a signal class type, which realizes the dynamic
switching of persistent signal networks. By providing an identifier, a signal class can be
instantiated dynamically, and the persistent signals enclosed in the signal class are also
created when the instance of the signal class is created4. Each signal class instance also
forms a unit of synchronization and lifecycle management.

4 More precisely, when the persistent signals are created is determined by the lifecycle model explained in
Section 4.2.

T. Kamina, T. Aotani, and H. Masuhara 17:9

An example of a signal class is shown in Figure 1, which declares the “Vehicle” class in
the vehicle tracking system. A signal class is declared using the modifier signal in the class
declaration. A persistent signal is declared using the modifier persistent, as in the prior
work, but now it is declared within a signal class. In Figure 1, two persistent signals, x and y,
are declared to record the position of the vehicle. We note that in this example, we assume
that the position of a vehicle, which is monitored by automotive sensors, is periodically
sent to a data center that records the vehicle’s movement history. Each Vehicle instance
is an agent reflecting the status of the “real” vehicle identified by the id parameter of the
constructor. This instance is created at the data center when a new vehicle is registered to
the system.

There are also six signals that depend on x and y, namely, x12h, y12h, dx, dy, v, and dist.
While we can imperatively update the values of persistent signals x and y, any imperative
re-assignment for signals depending on x and y are not allowed, and the values of them are
calculated on-demand. Unlike the prior work, the construction of the right-hand side of those
signals is not limited to the set of pre-defined API methods. For example, in the right-hand
side of the signal dist, the receiver target of the method getDistance is not a signal on
which the pre-defined API methods can be called. We assume that the right-hand side of
each signal declaration is side-effect-free. For example, we can use the existing checker that
checks a method with annotation @SideEffectFree does not produce any side-effects5:

class Position { ...
@SideEffectFree
public double getDistance(double x, double y) { ... }
... }

This check is also necessary to ensure the glitch-freedom (Section 5).
We can still use view signals in this setting. A view signal is a signal whose definition

(i.e., the right-hand side of its declaration) is of the form p.m(e), where p is a persistent or
view signal, m is the name of an API method defined in advance, and each ei is an argument
for m. In Figure 1, x12h, y12h, dx, dy, and v are view signals. We note that the value of
view signal is also calculated on demand. One advantage of using view signals is it reduces
the update overhead of persistent signals. Furthermore, view signals are useful to “filter”
the persistent signals that contain all the execution histories managed by the underlying
database system. For example, in Figure 1 we use the within query to filter out the old data
to avoid performance degradation [18]. Two other API methods, lastDiff and distance
taken from Table 1, are also used.

In summary, the behavior of the Vehicle instance is interpreted as follows. Once the
instance, namely, aCar, of Vehicle is created, we can call the set method, which is an
interface method that all signal classes implicitly implement, to update persistent signals x
and y:

aCar.set(33.239148, 131.611722); // setting an initial position.

This set method first sets the value of x and y with the provided arguments and then
implicitly calculates the value of dest using the current values of x and y. The value of each
view signal is automatically determined by the database query statement that creates the
corresponding view. For example, dx and dy calculate the delta between the current value
and the last value for each x- and y-coordinate, respectively. The view signal v calculates
the estimated velocity of the moving vehicle.

5 http://checkerframework.org

ECOOP 2021

http://checkerframework.org

17:10 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

4.1 Time-oriented queries on signal class instances
Our vehicle tracking system consists of two subsystems: the vehicle controller (simulating
the vehicle’s behavior by periodically calling set) and the vehicle viewer. Those subsystems
run as two distinct processes, and each process has its own signal class instance of the same
vehicle. We assume that only the controller continuously updates the vehicles and the viewer
accesses each vehicle’s time-series data.

To implement the viewer, we can perform time-oriented queries on signal class instances.
For example, we can obtain a snapshot of the aCar instance at the time when it causes an
accident. The following snapshot method provides a temporal view of aCar at the time
specified by the timestamp provided as an argument:

aCar.snapshot("2018-06-01T18:10:00").v

This query set the internal cursor of the receiver instance to the specified timestamp, which
makes the value of every persistent signal on aCar be calculated using values of the specified
timestamp. This query is called every time the GUI slider is set to point a specific timestamp.
Moreover, an argument for snapshot can be a variable such as a signal. For example, assuming
that a variable slider is a signal of “currently selected timestamp using the slider,” a vehicle
at the time selected by the slider can simply be represented as aCar.snapshot(slider).

We note that the vehicle can still continue to update its persistent signals using set,
which can be accessed by resetting the cursor to current time using the timestamp “NOW()”:

aCar.snapshot("NOW()");

4.2 Lifecycle of a signal class instance
We develop the lifecycle model of signal class instances. In the original work, the underlying
database tables for persistent signals are generated by the compiler [18]; this forces persistent
signals to be defined statically and makes it very difficult to add new persistent signals
at runtime. In the proposed lifecycle model, a signal class instance can be instantiated
dynamically, and thus the underlying database tables are generated at runtime. A signal
class encapsulates related persistent signals into one module, and this module provides a
unit of lifecycle management.

Once created, the history of a signal class instance can exist on the disk even after the
application stops. Its identity is preserved on the disk, and when the application restarts,
this instance becomes available again from the program. For example, consider the following
declaration of a Vehicle instance:

Vehicle aCar = new Vehicle("501a1234", "Haskell", "Toyota", "Sienta");

If there are no database constructs on the disk that correspond to aCar, the Vehicle instance
is created with fresh database constructs. If there already exist such constructs, aCar is
simply bound to them. In this mechanism, we must keep track of this binding on the disk,
and this is done using the id parameter, which is mandatory for every constructor in a signal
class. This is used as a key to identify the signal class instance.

Figure 2 formalizes this lifecycle model using a state machine diagram. This diagram
models one instance that has a full-control to its history (e.g., updating the history like the
vehicle controller). There may exist other instances that only perform queries on the history
(like the vehicle viewer), but the diagram simply omits such details. Each event that changes
its state is triggered by environmental changes or internal program operations. Some of them
can be explicitly triggered by calling the interface methods that every signal class implicitly

T. Kamina, T. Aotani, and H. Masuhara 17:11

Figure 2 State machine diagram of signal class instance.

public interface SignalClassInstance {
public void set(Object ... newValues);
public void reset();
public void destroy();

}

Figure 3 Interface for representing signal class lifecycle events.

implements. This interface is shown in Figure 3. We note that this listing imprecisely
describes the formal parameters of set to indicate that the number of its formal parameters
and their types are not defined in advance; the interface of set is implicitly derived from the
persistent signals declared in that signal class. For example, set for Vehicle is declared as
follows by listing the formal parameters that correspond to the persistent signals x and y:

public void set(double x, double y);

This interface changes by definition of the signal class. The compiler translates the invocation
of set to make it compatible with the runtime library, which provides the generalized
interface.

The states in the lifecycle model are defined as follows:
Initial: The signal class instance has never been created, and there are no persistent or

view signals that are bound with this signal class instance.
Active: We can access this signal class instance if it is in this state. A signal class

instance will be active just after it is created using the new expression. This state consists of
the substates Empty and Non-empty.

Empty: This is the state of a signal class instance where the histories (i.e., the data in
the database) of persistent and view signals contained in it are empty. As indicated by the
incoming edge from the history state “H”, Empty is the initial substate of the Active state,
which means that every signal class instance starts with empty histories. The reset event
also makes the signal class instance empty. Some operations for signals (for example, taking
a last value) cannot be performed when the signal class instance is empty.

Non-empty: Persistent and view signals contained in the signal class instance have
recorded some of their execution histories. Any operations for signals can be performed when
the signal class instance is non-empty.

Inactive: We cannot access this signal class instance if it is in this state. A signal
class instance will be inactive if there becomes no pointers that access this instance or
the application stops for some reason (e.g., maintenance or crash). A signal class instance
preserves its identity on the disk even after it is removed from the main memory.

ECOOP 2021

17:12 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Final: The signal class instance is destroyed, and persistent and view signals in this
instance no longer exist.

The events in the lifecycle model are defined as follows:
new: This event is triggered by the new expression, which creates a signal class instance.

It generates different side-effects on the signal class instance according to its previous state.
If this event occurs with the initial state, it creates new persistent and view signals in the
signal class instance with their empty contents. If this event occurs with the inactive state,
the signal class instance becomes active and resumes its internal substate, as indicated by
the history state “H”.

set: This event can be generated only when the signal class instance is active. It is
triggered when the persistent signals contained in the signal class instance are updated. If
there are multiple persistent signals (as in the case of Vehicle), their updates are synchronized.
The signal class implicitly provides the set method for this synchronized update, which
makes the state of the signal class instance non-empty.

reset: This event can also be generated only when the signal class instance is active. It
is triggered by the reset method declared in Figure 3, which cleans the existing histories of
the persistent and view signals. This event makes the state of the signal class instance empty.

down: This event is triggered by external or internal environmental changes; it is
triggered if the signal class instance can no longer be accessed or the application stops for
some reason. After this event, the signal class instance disappears. This instance can however
be reactivated, like the “ship of Theseus,” using the blueprint of it stored in the database,
i.e., when the application restarts, the new event can be triggered to restore this instance.

destroy: The signal class instance completes its life when the histories of its persistent
and view signals are no longer necessary, and this is performed by generating the destroy
event. This event can be fired by calling the destroy method shown in Figure 3. It can also
be generated by some external environmental changes (e.g., dropping the tables and views
from the console of the database management system). After firing this event, no events can
be fired on this signal class instance. We note that we can still generate the new event using
the same identifier (passed to the id parameter) again, which starts another independent
lifecycle of this id.

Importantly, every lifecycle management is performed on the basis of this model. We
cannot solely generate, update, or drop the content of each persistent signal. Instead, all
related signals are simultaneously generated, updated, and dropped. This makes it easy to
ensure data consistency between them.

One important property of the signal class instance is that there should not be multiple
signal class instances with the same id. This property is ensured according to the lifecycle
model. This is because this model does not accept any event sequences where multiple new
events are triggered until the next down or destroy events are issued. The new event must
be the first event of the sequence, and it can follow only the down event. Thus, the signal
class instance can be activated only when there are no other signal class instances with the
same id.

4.3 Synchronized update

The vehicle controller continuously updates the histories of the running vehicles. Each signal
class instance forms a unit of synchronization. Each signal class provides the set method
for synchronized update of persistent signals. This improves the synchronized update in
the original work [18], where the programmers must ensure that persistent signals that are

T. Kamina, T. Aotani, and H. Masuhara 17:13

defined independently are updated at the same time. For example, we can define the following
run method in the Vehicle class that periodically updates the position of the vehicle:

public void run() {
double[] current = new double[2];
while (true) {

current = getGeographicCoordinatesFromSensors();
set(current[0], current[1]);

} }

This set method first computes the value of dist using current[0] and current[1],
and then inserts the triple of current timestamp, current[0], and current[1]. Thus, all
persistent and view signals are updated at once, and the programmers do not have to worry
about any glitches inside the instance.

4.4 Switching network of persistent signals
In SignalJ, we can construct a signal of an object that encapsulates other signals [17]. This
feature can be extended to the persistent signals: we can construct a persistent signal of a
signal class instance that encapsulates other persistent signals. This allows us to construct
a network of persistent signals that changes dynamically, like the “switch” in the FRP
languages.

For example, we can construct a signal class that monitors a particular instance of
Vehicle.

signal class Monitor {
persistent signal Vehicle v;
public Monitor(String id) { .. } }

According to the lifecycle model, we can initialize the persistent signal v by issuing the set
event on the instance m of Monitor6

Monitor m = new Monitor("aMonitor");
m.set(aCar);

The subsequent set events on m change the instance of Vehicle that m monitors, and this
change is recorded in the history that is bound with m. For example, we may want to monitor
some suspicious vehicles more intensively, and the history of m is available for inspecting
which vehicles were considered suspicious in the past.

We note that SignalJ’s object-type signals are considered updated only when the identity
of the object changes, and this property is also available in the persistent signals. This means
that the persistent signal v in Monitor does not have to record the instance of Vehicle but
only its identifier, which is provided by the programmer using the id parameter of the signal
class constructor.

4.5 Threat to Validity
While the vehicle tracking example well describes the problems of prior work [18] and how
signal classes address them, we have not performed any other empirical studies in this work.
We consider that discussions in this paper also apply to other applications that handle

6 We further discuss the initialization issue in Section 6.2.

ECOOP 2021

17:14 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

CL ::= signal class C { PS FS M }
PS ::= persistent signal C p;
FS ::= signal C p=e;
M ::= C m(C x) { return e; }
e ::= x | e.p | e.set(e) | e.snapshot(t) | e.m(e) | new C(l) | l | t
v ::= l | t

Figure 4 Abstract syntax of signal classes.

timelines of time-varying values that can be identified by some ids, such as SNS applications
and IoT device monitoring. Further analysis on such application scenarios remain as future
work.

5 Formalization

To study important properties of signal classes such as glitch-freedom, we formally define
the formal semantics of signal classes based on the simplified syntax of SignalJ shown in
Figure 4. The syntax is based on Featherweight Java [15]. Let the metavariables C and D
range over class names; o and p range over persistent signals; e range over expressions; x
range over variables, which include a special variable this; l range over identifiers; t range
over timestamps; v range over values; and m range over method names. Overlines denote
sequences, e.g., e represents a possibly empty sequence ei, · · · , en, where n denotes the length
of the sequence. We write the length of sequence e as #(e). We use C p as shorthand for
“C1 p1 · · · Cn pn” and C s=e as shorthand for “C1 s1=e1 · · · Cn sn=en.”

An expression can be either a variable, an access to a persistent signal, an invocation
of special methods set and snapshot that correspond to the set event and a time-oriented
query, respectively, a method invocation other than set and snapshot, an instance creation,
or a value that can be either an identifier l or a timestamp t. The instance creation receives
only one identifier as its argument. We assume the set Id of identifiers and l ∈ Id. We also
assume a total order set Time of timestamps where ⊥∈ Time and ∀t ∈ Time. ⊥≤ t, i.e., ⊥
is a bottom element.

In our proposal, there are two kinds of persistent signals: a persistent signal whose value
is imperatively set by calling the set method, and that whose value is updated on-demand
when it is accessed. Figure 4 syntactically distinguishes those two: a persistent signal
declaration PS representing the former, and a persistent signal declaration FS representing
the latter; its value is updated on-demand by evaluating the expression e that appears in the
right-hand side. We note that the latter includes view signals that are calculated using API
methods such as database aggregates shown in Section 2.2, as rows in a view are calculated
on-demand.

We also apply another simplification to the calculus: the syntax does not provide
subclassing, meaning that there are no subtyping rules in the calculus. This is a drastic
simplification, but subclassing actually does not interact with the behavior of signal classes,
as the execution history is stored for each instance and thus signal lookup is performed in
per-instance basis, meaning that the class hierarchy is actually not used during the signal
lookup.

A program (CT, e) consists of a class table CT that maps a class name C to a class
declaration CL and an expression e that corresponds to the body of the main method. We

T. Kamina, T. Aotani, and H. Masuhara 17:15

signal class C { persistent signal C p; ... }

sources(C) = C p

signal class C { persistent signal C p; ... }

signalType(C, pi) = Ci

signal class C { ... signal C p=e; ... }

signalType(C, pi) = Ci

signal class C { ... signal C p=e; ... }

signalExpr(C, pi) = ei

signal class C { ... C0 m(C x) { return e0; } }

mbody(m, C) = x.e

signal class C { ... C0 m(C x) { return e0; } }

mtype(m, C) = C → C0

Figure 5 Auxiliary definitions.

assume that CT(C) = signal class C ... for any C ∈ dom(CT). We also assume that all
signals and methods in the same class, and all parameters in the same method are distinct.

In the following discussion, we use the auxiliary definitions shown in Figure 5. The
function sources(C) returns a sequence of all pairs of a signal declared with persistent and
its type in class C. The function signalType(p, C) returns the type of signal p (regardless to
say that it is declared with persistent) in class C. The functions mbody(p, C) returns a pair
x.e of parameters and a method body of method m in class C. Similarly, mtype(p, C) returns
a pair C → C of parameter types and a return type of method m in class C.

5.1 Small-step semantics
We show the reduction rules of expressions in Figure 6. Those are given by the relation of
the form µ | e −→ µ′ | e′, which is read as “an expression e under an environment µ reduces
to e′ under µ′.” The environment µ is a set of mapping l 7→ RC(l), where l is the identifier
of the signal class instance, and RC(l) is an execution history of l that is a relation defined
as follows:

sources(C) = C p

RC(l) = (time, p)

This relation is handled using the operations provided by the relational algebra [5]: πcol(R)
represents a projection of a relation R by col (i.e., selecting the column col from R), and
σc(R) represents filtering R using the condition c. We often use a singleton set {l} and its
value l interchangeably. We use the predicate latest, which is true only if the time field of
the tuple has the largest value among the relation.

ECOOP 2021

17:16 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

µ(l0) = RC(l0) πp(σlatest(RC(l0))) = l

µ | l0.p −→ µ | l
(R-Psignal)

µ(l0) = RC(l0) signalExpr(C, p) = e

µ | l0.p −→ µ | e
(R-Vsignal)

µ | new C(l) −→ µ ⊕ (l 7→ ∅) | l (R-New)

R′
C(l) = {(t, l)} ∪ RC(l) t > σlatest(πtime(RC(l)))

µ(l) = RC(l) µ′ = µ ⊕ (l 7→ R′
C(l)) l ∈ dom(µ)

µ | l.set(l) −→ µ′ | l
(R-Set)

µ(l0) = RC(l0) R′
C(l0) = RC(l0) \ σt<time(RC(l0))

µ′ = µ ⊕ (l0 7→ R′
C(l0)) R′

C(l0) ̸= ∅
µ | l0.snapshot(t) −→ µ′ | l0

(R-Time)

µ(l) = RC(l) mbody(m, C) = x.e m ̸= set m ̸= q

µ | l.m(l) −→ µ | e[x/l, this/l]
(R-Invk)

Figure 6 Small-step computation rules for expressions.

The rules R-Psignal and R-Vsignal define how an access to a signal behaves. These
rules are straightforward. An access to the persistent signal p results in the value in the p
column of the latest tuple in RC(l). An access to a non-source signal results in the right-hand
side of its declaration.

The rule R-New defines the reduction of the signal class instance creation; it adds the
mapping from l, which is the identifier of the created instance, to its execution history to µ

and returns l. We use ⊕ as a destructive update of the mapping, i.e., (x ⊕ y)(k) = y(k) if k

is in the domain of y or x(k) otherwise.
There are three rules for method invocation. In the rule R-Set for the call of set,

which represents the synchronized update, we first choose a timestamp t that is greater
than the “largest” value in Time and put the tuple (t, l) into the relation. We assume
that σlatest(πtime(R)) returns ⊥ if R = ∅. A call of set returns the identifier of its receiver,
which allows us to describe subsequent computations on the receiver. The rule R-Time
destructively changes the relation µ(l0) so as to be filtered by the given timestamp t (as
the calculus does not model the database cursor). We note that this is a simplification
of the original language’s behavior; i.e., unlike the original language, we cannot recover
the time-series values that are lost by the snapshot operation. R-Time requires that the
resulting relation must not be empty. The rule R-Invk for method invocation (other than
set and snapshot) is straightforward.

We also define the congruence rule that enables a reduction of subexpressions. For this
purpose, we first introduce the evaluation context E, which is defined as follows:

E ::= [] | E.p | E.set(e) | l.set(l,E,e) | E.snapshot(t) | E.m(e) |
l.m(l,E,e)

T. Kamina, T. Aotani, and H. Masuhara 17:17

signal class C1 {
persistent signal D p;
C2 m() { return new C2(l2).set(this); }

}
signal class C2 {

persistent signal C1 p;
signal C1 q = this.p.set(new D(l3).set(...));
signal E n = this.o(this.p.p,this.q.p);
E o(D x, D y) { ... }

}

Figure 7 A glitch-introducing program.

Each evaluation context is an expression with a hole (written []) somewhere inside it. We
write E[e] for an expression obtained by replacing the hole in E with e.

Using E, the congruence rule is defined as follows:

µ | e −→ µ′ | e′

µ | E[e] −→ µ′ | E[e′]
(R-Cngl)

The evaluation context syntactically defines the evaluation order of subexpressions in a
method invocation, e.g., the arguments are not reduced until the receiver becomes an
identifier.

5.2 Static semantics
One significant research question is how the internal state of each signal class instance is
kept consistent. This question is also known as an assurance of glitch-freedom. Myter et al.
stated that the key intuition behind glitches is that they can only occur for certain topologies
of signal networks [23], where two or more propagations from the same source signal (A) join
at the other signal (B). A glitch is a situation where the value of B is calculated using A’s
values with different timestamps.

If no static checking is performed, a glitch can occur even in our simple calculus. Consider
the signal classes C1 and C2 declared in Figure 7, and the main expression new C1(l1).m().n.
The signal n calls the method o that consumes signals C2.p and C2.q. Those signals depend
on the same signal p that is a member of new C1(l1). Furthermore, the signal C2.q calls
the set method when its value is accessed. This set updates the signal C1.p with a new
timestamp; thus the signal n handles values of the same signal with different timestamps.
This is a glitch7.

Another important role of static analysis is to ensure the calculus type soundness, i.e., to
avoid a situation where a program get stuck by, e.g., accessing an undefined attribute in R.
To ensure the calculus glitch-freedom and type soundness, we develop a type system of the
proposed calculus.

7 In general, a signal network can contain nodes with different timestamps. Such a network is often
useful, as illustrated by the signal network constructed using lastDiff (Figure 1, the calculus omits
this feature). A glitch is the situation where “the same node” is observed with different timestamps.

ECOOP 2021

17:18 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Γ = x : C

Γ | ∅ ⊢ xi : Ci

(T-Var)

Σ = l : C

∅ | Σ ⊢ li : Ci

(T-Id)
t ∈ Time

∅ | ∅ ⊢ t : T
(T-Ts)

Γ | Σ ⊢ e0 : C0 signalType(C0, p) = C

Γ | Σ ⊢ e0.p : C
(T-Signal)

Γ | Σ ⊢ e0 : C0 sources(C0) = C p Γ | Σ ⊢ e : C

Γ | Σ ⊢ e0.set(e) : C0
(T-Set)

Γ | Σ ⊢ e0 : C0 Γ | Σ ⊢ t : T

Γ | Σ ⊢ e0.snapshot(t) : C0
(T-Time)

Γ | Σ ⊢ e0 : C0 mtype(m, C0) = C → C Γ | Σ ⊢ e : C

Γ | Σ ⊢ e0.m(e) : C
(T-Invk)

Γ | Σ, l : C ⊢ new C(l) : C (T-New)

Figure 8 Expression typing.

x : C, this : C | ∅ ⊢ e0 : C0

C0 m(C x) { return e0; } ok in C
(T-Method)

this : C | ∅ ⊢ e : D sideeffectfree(e) M ok in C

signal class C { persistent signal C p; signal D o=e; M } ok
(T-Class)

Figure 9 Method and class typing.

Typing rules for expressions are shown in Figure 8. A type environment Γ is a finite
mapping from variables to class names. An identifier environment Σ is a finite mapping from
identifiers to class names. A type judgment for expressions is of the form Γ | Σ ⊢ e : C, read
as “expression e is given type C under the type environment Γ and identifier environment
Σ.” To formally describe type judgment, we also introduce a special type T for timestamps.
As we do not consider any subclasses, there are no subtyping rules in the type system. All
typing rules in Figure 8 are straightforward. We note that T-Set checks that the number of
arguments for set is same as the number of source signals of the receiver, and the type of
each argument matches the type of the corresponding persistent signal.

Typing rules for method and class declarations are shown in Figure 9. A type judgment
for methods in a class is of the form M ok in C, read as “method M is well-formed in class C.”
The typing rule T-Method only checks that the method body is given the declared type
C0 under the type environment constructed by formal parameters and the special variable
this. A signal class C is well-formed if the right-hand side expressions e of all the non-source
signals are given the declared type under the type environment this : C, and all methods
are well-formed. Furthermore, it checks that each ei in e is side-effect-free. As explained

T. Kamina, T. Aotani, and H. Masuhara 17:19

µ(l) = RC(l) p ∈ RC(l)

sources(µ, l.p) = { l.p }

µ(l) = RC(l) FP(C, p) = e ∀ei.pi ∈ e.µ | ei.pi −→∗ µi | li.pi

sources(µ, l.p) =
⋃

i sources(µi, li.pi)

Figure 10 Source signal lookup.

µ(l0) = RC(l0) p0 ∈ RC(l0)

timel0.p0
(µ, l0.p0) = πtime(RC(l0))

µ(l) = RC(l) p ∈ RC(l) l0 ̸= l ∨ p0 ̸= p

timel0.p0
(µ, l.p) = ∅

µ(l) = RC(l) FP(C, p) = e ∀ei.pi ∈ e.µ | ei.pi −→∗ µi | li.pi

timel0.p0
(µ, l.p) =

⋃
i timel0.p0

(µi, li.pi)

Figure 11 Source signal’s time-series.

earlier, our language does not provide this check but relies on an external checker. Thus, we
just define the predicate sideeffectfree(e0) as follows:

∀e ∈ subexpressions of e0.(µ | e −→n µ | l for some l ∧ ∀i ≤ n.µ | e −→i µ | e′ for some e′)
sideeffectfree(e0)

This means that each ei does not change the runtime environment during its reduction.

5.3 Properties
To formally state the glitch-freedom in our calculus, we further introduce two other auxiliary
definitions that perform signal network traverse. Figure 10 defines the source signal lookup
sources(µ, l.p) that returns a set consisting of all the source signals on which l.p depend.
If l.p is a source, which means that the value of p is stored in the relation R of the
receiver, sources(µ, l.p) just returns the singleton of l.p. Otherwise, it recursively searches
all the source signals by obtaining all signals contained in the right-hand side expression e
of l.p. Similarly, we define the auxiliary definition timel0.p0

(µ, l.p) that returns the set
of timestamps of the source signal l0.p0 that is observed from signal l.p. Intuitively, the
calculus is glitch-free if two or more subexpressions of the right-hand side of l.p depends on
the same source signal l0.p0, then the same set of timestamps of l0.p0 is observed from any
of those subexpressions. We formally describe this property as the following theorem.

▶ Theorem 5.1 (glitch-freedom). Let signal class C { ... } ok, µ(l0) = RC(l0) for
some µ, and p0 is a non-source signal declared in C whose right-hand side is specified as e0.
For all subexpressions e.p and e′.p′ in e0, we have ∀s ∈ sources(µ, e.p) ∩ sources(µ, e′.p′).
times(µ, e.p) = times(µ, e′.p′).

ECOOP 2021

17:20 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Proof. By signal class C { ... } ok, we have sideeffectfree(e0). This means that we
always access the same µ during the traversals of subexpressions e.p and e′.p′ (i.e., µ does
not change in the premises of definitions of sources(µ, l.p) and timel0.p0

(µ, l.p)). Thus, it is
obvious that times(µ, e.p) = times(µ, e′.p′) for all s in sources(µ, e.p)∩sources(µ, e′.p′). ◀

Another remaining issue is the type soundness. Even though our type system is very
simple (e.g., there is no subtyping), formulation of the type soundness is not easy as expected,
because our calculus interacts with the database system. We first define the judgment
Σ ⊢ RC0(l0), read “relation RC0(l0) is well-formed under the environment Σ,” which indicates
that RC0(l0) is not empty and all values in RC0(l0) is well-typed, as follows:

∅ | Σ ⊢ l0 : C0 ∀p ∈ att(RC0(l0)).∅ | Σ ⊢ πp(RC0(l0)) : C ∧ signalType(C0, p) = C for some C

Σ ⊢ RC0(l0)

In this definition, we write the set of attributes in R as att(R). The judgment Σ ⊢
πp(RC0(l0)) : C returns true if all values in πp(RC0(l0)) have type C. Then, we define the
well-formedness of a runtime environment as follows.

▶ Definition 5.2. A runtime environment µ is said to be well-formed with respect to an
identifier environment Σ, written Σ ⊢ µ, if dom(µ) = dom(Σ) and Σ ⊢ µ(l) for every
l ∈ dom(µ).

We note that the well-formedness of the runtime environment is not always held during
the computation. For example, if the redex has the form new C(l), the runtime environment
contains an empty relation after the reduction. Thus, the type preservation theorem is
formulated as follows.

▶ Theorem 5.3 (preservasion). Suppose that ∀CL ∈ dom(CL).CL ok. If Γ | Σ ⊢ e : C, Σ ⊢ µ,
and µ | e −→ µ′ | e′, then Γ | Σ′ ⊢ e′ : C for some Σ′ ⊇ Σ, and µ′ = µ ⊕ {l 7→ ∅} or Σ′ ⊢ µ′.

Proof. See Appendix A.1. ◀

We also need to consider the fact that a database query may fail. For example, the type
system cannot prohibit the use of a timestamp that is earlier than the beginning of the
computation. This observation results in the following progress theorem.

▶ Theorem 5.4 (progress). Suppose that ∅ | Σ ⊢ e : C for some C and Σ. Then, either e is an
identifier or a time-oriented query l.snapshot(t) where µ(l) = σt<time(µ(l)) for some µ

and t, or, for any µ such that Σ ⊢ µ, there are some expression e′ such that µ | e −→ µ′ | e′

where µ′ = µ ⊕ {l 7→ ∅} or Σ′ ⊢ µ′ for some Σ′ ⊇ Σ.

Proof. See Appendix A.2. ◀

One issue for ensuring type soundness is that the runtime environment µ can contain an
empty relation during the computation. An access to a signal bound with such a relation
definitely fails, and to avoid such an access, the empty relation should be populated before
an access to the signal occurs. To address this issue, we simply take an approach where
all signal class instances are enforced to be immediately populated using set after their
creations. This is a simplification of the SignalJ’s solution discussed in Section 6.2; i.e., the
calculus does not model the lifecycle management but is developed to be applicable to this
management. To describe this enforcement, we define the well-formedness of expressions.

T. Kamina, T. Aotani, and H. Masuhara 17:21

▶ Definition 5.5. An expression e0 is said to be well-formed (written e wf) if and only if,
for all e ∈ subexpressions of e0 where e = new C(l) for some C and l, e is a subexpression
of e.set(e) for some e wf.

Using this definition, we define the well-formedness of method and class declarations as
follows.

e wf
C m(C x) { return e; } wf

e wf M wf
signal class C { ...; signal C p=e; M } wf

We write CT wf if all class declarations in CT are well-formed. Then, our type soundness
theorem is formulated as follows.

▶ Theorem 5.6 (type soundness). Consider a program (CT, e) with CT wf, ∅ | ∅ ⊢ e : C,
and e wf. If ∅ | e −→∗ µ | e′ for some µ with e′ a normal form, then e′ is either an
identifier l with ∅ | Σ ⊢ l : C for some Σ, or an expression containing a time-oriented query
l.snapshot(t) where µ(l) = σt<time(µ(l)) for some µ and t.

Proof. By induction on the length of ∅ | e −→∗ µ | e′. If {l 7→ ∅} ∈ µ′ where ∅ | e −→∗ µ′ | e′′

for some e′′, it is easy to show that the last applied computation rule is R-New. As e wf
and CT wf, all new expressions in e and CT are qualified by a set call, and because of the
evaluation order defined by R-Cngl, the following reduction always use R-Set, resulting in
the reduction µ′ | e′′ −→R-Set µ′′ | e′′′ and Σ ⊢ µ′′ for some Σ. Then, Theorems 5.3 and 5.4
finishes the case. Other cases are straightforward. ◀

6 Implementation

The proposed mechanism is implemented on TimescaleDB. We show the runtime architecture
of signal class instances in Figure 12. A signal class is compiled into a normal Java class.
Each compiled Java class uses the runtime library that prepares the connections to the
underlying database system and implements the runtime semantics of persistent signals.

6.1 Compilation
The compiler is implemented using ExtendJ [9]. Figure 12 shows the object diagram after
the compilation, where a signal class is translated into a Java class that implements the
SignalClassInstance interface, which provides the methods necessary for signal class
lifecycle management. The implementations of those methods are automatically inserted
into the class during the compilation.

Each persistent signal is converted into an instance of PersistentSignal, which is a part
of the runtime library. Each PersistentSignal instance encapsulates the database table
that contains all updates of the persistent signal. Every access to the persistent signal is
rewritten to the method invocation that returns the “current value” of that signal, and every
imperative operation that changes the value of the persistent signal (e.g., a reassignment
using =) is converted into the method invocation that updates the underlying database table.
More precisely, this update is not immediately performed when the reassignment on the
persistent signal is issued; it is postponed until the update requests on all the persistent

ECOOP 2021

17:22 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Figure 12 Runtime architecture of signal class instances. Every signal class is introduced with
the SignalClassInstance interface by the compiler. Each persistent and view signal is converted to
an instance of PersistentSignal, which is a part of the runtime library that implements the API
methods. This instance accesses the projection of the underlying database table and views. There is
also the metatable that manages the existing signal class instances.

signals contained in the signal class instance are issued. An instance of Synchronizer,
which is also a part of the runtime library attached to the signal class instance, monitors
all the persistent signals in the signal class instance and calls the set method that updates
the underlying database table according to the provided synchronization policy such as
non-blocking-buffered, non-blocking-bufferless, blocking, and asynchronous.

Each constructor of the signal class is also translated to create all PersistentSignal
instances declared in the signal class. When the instance of PersistentSignal is created, it is
tested whether the corresponding database table already exists; if so, the PersistentSignal
instance is connected with that table; if not, a new table is created. Similarly, every view signal,
which is also an instance of PersistentSignal, is created by calling the API method that
is prepared in the runtime library in advance. For the creation of these PersistentSignal
instances, the compiler simply inserts a piece of code that calls these runtime library methods.
As there are chains of dependency between persistent and view signals, these creations
of PersistentSignal instances are topologically sorted in a similar manner to those in
Flapjax [20]. An instance of Synchronizer is also created within the constructor execution
that monitors all updates of PersistentSignal instances.

6.2 Naming and initialization

As explained in Section 4.2, the identifier of a signal class instance is always provided when
it is created. In Figure 1, the id parameter in the constructor of Vehicle is mandatory.
Internally, this identifier is used to determine the names of tables and views. The name
of persistent signal table is determined by the fully-qualified name of signal class and the
identifier. The name of the view is determined by the name of the table and the name of the

T. Kamina, T. Aotani, and H. Masuhara 17:23

view signal. For example, consider the following creation of the Vehicle instance again:

Vehicle aCar = new Vehicle("501a1234", "Haskell", "Toyota", "Sienta");

Assuming that Vehicle is declared in the vehicletracking package, the names of the table
and views are determined as follows.

vehicletracking_Vehicle_Oita501a1234 // table for persistent signals
vehicletracking_Vehicle_Oita501a1234_x12h // view for x12h
vehicletracking_Vehicle_Oita501a1234_y12h // view for y12h
vehicletracking_Vehicle_Oita501a1234_dx // view for dx
vehicletracking_Vehicle_Oita501a1234_dy // view for dy
vehicletracking_Vehicle_Oita501a1234_v // view for v

The signal class instance encapsulates these table and views. We cannot create multiple
Vehicle instances with the same identifier, but we can still use the same identifier in the
instances of other signal classes.

One subtle issue is providing an initial value to a persistent signal. Theorem 5.6 indicates
that the program sticks only when an unexpected timestamp is chosen for the time-oriented
query if the program is well-formed. This definition of well-formedness requires that a signal
class instance should be immediately initialized using set. However, in the real program
there is also a situation where the instance is bound with an existing database table. In such
a case, the call of set should not incur any effects.

To ensure that the initialization is performed only when the history of the persistent signal
is empty, the SignalClassInstance interface in Figure 3 provides an additional method:

public void setIfNotInitialized(Object ... newValues);

This method sets the values provided as arguments to persistent signals declared in the
receiver signal class instance only if their histories are empty. We note that, like set, this
interface is defined for the runtime library.

We note that the call of reset also makes the execution history empty, and currently our
compiler does not check the well-formedness of the program. Instead, the runtime system
raises an exception when an empty execution history is accessed.

6.3 Database implementation
TimescaleDB is an open-source time-series database that can run at edge systems as well as
in the cloud. Thus, we can implement a variety of applications, including an IoT system
where the time-series data is managed in an edge system and a data center that manages
massive amount of time-series data. As it is a relational database, the implementation of the
dynamic semantics in Section 5, which is based on the relational algebra, is straightforward.

All PersistentSignal instances in a signal class instance are connected with the under-
lying database system when it is created. They access the table for persistent signals and
views that corresponds to view signals. Those table and views are created if they do not
exist (i.e., if the new event is fired with the initial state in Figure 2). The view creating API
in Table 1 is also applicable in our system. For example, the expression “x.within(ts, “12
hours”)”, where x is a persistent signal containing the x-coordinate of the running vehicle,
executes the following SELECT query to create a view (rel_name is the table that x refers to):

SELECT time,x FROM [rel_name] WHERE time > ts - interval ’12 hours’

ECOOP 2021

17:24 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Table 2 Performance evaluation results. Every measurement is expressed in millisecond (ms),
and was performed by taking an average of 10 vehicles.

(a) Response time of persistent/view signal

records x x12h dx v

100 0.7 0.9 1.2 1.4
1000 0.8 1.0 1.6 1.9
10000 0.8 1.6 6.2 6.1

(b) Overhead of vehicle creation

table/view creation average time
w/ 48.7
w/o 42.1

Normally, the database system does not provide a mechanism to group those related table
and views. Thus, the binding between a signal class instance and its corresponding table
and views is maintained using the naming mechanism explained in Section 6.2.

Each table for persistent signals of a signal class instance (let the name of this instance
be a) consists of tuples of persistent signal values with their timestamps. If the persistent
signal refers to another signal class instance, the database table contains the name of that
instance. When accessed, that instance is restored from the database: if that signal class
instance is active, we obtain that instance from the hashtable that contains all active signal
class instances; otherwise, a new signal class instance is created using the name stored in the
database. The database table metatable remembers the names of signal class instances that
have been created to date, including inactive ones.

6.4 Performance Evaluation
To confirm that the explained application scenario is realistic in the proposed implementa-
tion, we performed simple microbenchmark experiments that measure the response time of
persistent signal accesses. These microbenchmarks were performed using TimescaleDB as a
backend, which is running on Linux kernel version 4.18.0. This system was running on six-
cores Intel Zeon E-2276G 3.80GHz with 16GB main memory and 512GB SSD. TimescaleDB
was tuned to have recommended memory settings, including 2GB shared buffers, 6GB
effective cache size, 1GB maintenance working memory, and 26,214KB working memory.

In these microbenchmarks, we first prepared histories of vehicles by virtually running
them, and then measured the performance of accesses to signals x (holding the x-coordinate
of each vehicle), x12h (holding the last 12 hours of data of x-coordinate), dx (holding the
difference between x12h and its previous value), and v (holding the estimated velocity of the
vehicle). Before these signals were accessed, each vehicle’s timestamp was randomly set by
issuing snapshot.

Table 2a summarizes the response time of accesses to persistent and view signals. The
performance depends on the amount of records the history has. Accesses to view signals
dx (calculated using join) and v (calculated using embedded functions) require around 6
ms when the history has 10,000 records. To confirm that this result is acceptable, we also
implemented a vehicle viewer that displays 10 vehicles with 10,000 records and 7 signals
(including the y-coordinate y, the last 12 hours of y-coordinate y12h, and the difference
between y12h and its previous value, in addition to signals that are shown in Table 2) of each
vehicle. This viewer provides a slider to allow the user time-travel, and 70 signals in total
are recalculated at once when a specific timestamp is set using the slider. In this viewer, we
observed that the slider was mostly responsive.

Table 2b shows the overhead of vehicle creation. This depends on whether the vehicle
instance is created by connecting the existing table and views, or creating new ones (i.e.,
new id is introduced). The creation of table and views (it consists of one table and 5 views)

T. Kamina, T. Aotani, and H. Masuhara 17:25

requires around 6 ms. Other overhead includes making connections to the database system.
This overhead looks relatively large, but we can reduce this by sharing the connections to
the database.

7 Related Work

Signals are a well-known abstraction in reactive programming (RP), which have been
inspired by synchronous languages [12, 4, 29] and functional-reactive programming (FRP)
languages [10]. FRP features are now available in general-purpose functional languages (e.g.,
the Yampa library [24] is available for Haskell), and recently they have made their way
into imperative object-oriented settings [20, 30, 17] by integrating signals with event-based
programming features (such as the event mechanism proposed by EScala [11]).

Even though Yampa’s switch and our switching mechanism look somewhat alike, there
are fundamental differences between them. First, in our switching, the old sub-network (e.g.,
the monitored vehicle) is not lost after switching and can be accessed if its id is restored.
In Yampa, on the other hand, the old signal is lost and we need to preserve every measure
manually if we want to access that again. Second, in our switching, there is no guarantee that
the switching is performed at the same time when the vehicle is updated, while in Yampa,
switches always occur at a global time step. In short, signal classes provide a more general
switching with less guarantees.

Although signals in RP languages are not persistent, some research efforts have been
made to record the update histories of signals to make them available for debugging. For
example, time-traveling [25] makes it possible to pause the execution and rewind to any earlier
execution point. This technique is now common in RP debuggers. Reactive Inspector [31], a
debugger for REScala [30], visualizes how signal networks are constructed and evolved and
how propagations take place over those networks during execution. Using this debugger,
a programmer can see the status of the networks at any execution point. Another way of
debugging FRP programs is to use temporal propositions, an FRP construct based on linear
temporal logic [27]. Time-traveling in FRP can also been seen in the literature [28] that
presents a uniform way to control how time flows, such as the direction of time flow and
sampling rate, by giving time transformations over time domains. Some tools also provide
visualization of such time-series data, such as allowing viewing of the execution history in a
single display to identify anomaly propagation patterns that are repeated over time [3, 14, 13].
Usually, such tools are dedicated to debugging; thus, they record the history of one execution.
Persistence across multiple executions, such as that discussed in the proposed lifecycle model,
is not considered. Furthermore, time-series data handled in such tools are not provided for
use by applications. For example, no convenient APIs to query over such time-series data
are provided.

Other research efforts that are relevant to persistent signals include fault-tolerant RP [21,
22] that provides an implementation for snapshotting mechanism of signals. In contrast,
SignalJ focuses more on applications that query over time-series data, which is also evident
in the formalization developed using relational algebra. In a larger picture, such time-series
data can be open, i.e., that are shared with and queried from multiple processes by referring
to that using the identifiers.

As discussed in the implementation of our system, time-series databases provide important
techniques to implement persistent signals. Jensen et al. presented a survey on time-series
databases, which are also known as time-series management systems [16]. In their survey, time-
series databases were categorized as internal data stores, external data stores, and relational

ECOOP 2021

17:26 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

database extensions. An internal data store (e.g., tsdb presented by Deri et al. [8]) integrates
both a data store and a processing engine together in the same application, allowing for deep
integration between the storage and processing engine. In another approach, an external data
store (e.g., Gorilla by Pelkonen et al. [26] and BTrDB by Andersen and Culler [1]) uses an
existing external management system, allowing for existing system deployments to be reused.
Finally, an relational database extension (e.g., TimeTravel by Khalefa et al. [19]) allows
the expressive power of the relational database to be applied to the time-series database.
TimescaleDB, as used in our implementation, falls into this last category. Overall, there have
been many time-series database implementations suitable for different use case scenarios.
Therefore, although we consider that the performance of TimescaleDB is satisfactory in many
cases, it will be beneficial to consider other implementations that might be suitable for some
specific application domain.

Finally, we do not consider the proposed persistent signal lifecyle model as new because
there have been much work on persistent objects where the lifetime of the objects can
be indefinite (e.g., [2]). We keep the model as simple as possible to extend it to the
objects containing a set of time-varying values. There have also been much work on the
implementation of persistent objects using SQL (e.g., [7]). Instead, in our system, the
mapping is defined only for the trivial cases, i.e., the mapping from persistent signals to the
table. We do not define the mapping for view signals; it is left for the programmers or domain
engineers. However, we consider some of this definition could be performed automatically
using program synthesis. Actually, program synthesis for SQL queries has recently been
intensively studied (e.g., the work by [32]). We consider application of such technologies to
automatic synthesis of view signals is also an interesting direction for future work.

8 Concluding Remarks

In this paper, we proposed a new language mechanism signal class, which encapsulates a
network of related persistent and view signals. Not only does this mechanism allow us to
represent persistent time-varying values with complex data types, but it also provides a
unit of lifecycle management and a unit of synchronization. All these features overcome the
drawbacks of existing persistent signals in that they cannot represent persistent time-varying
values with complex data types, they must be created only at compile time, and the network
is connected only using pre-defined methods. We clarified how each signal class instance
behaves by defining its lifecycle model and formal semantics that maps each signal class
instance to the underlying database system using relational algebra. In these definitions,
we confirmed several properties regarding database transparency, glitch-freedom, and type
soundness. All these results indicate that our approach is effective to implement reactive
systems using convenient abstractions of time-varying values with their execution histories.

References

1 Michael P. Andersen and David E. Culler. BTrDB: Optimizing storage system design for
timeseries processing. In 14th USENIX Conference on File and Storage Technologies (FAST’16),
pages 39–52, 2016.

2 M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence. An orthogonally
persistent Java. SIGMOD Record, 25(4):68–75, 1996.

3 Herman Banken, Erik Meijer, and Georgious Gousios. Debugging data flows in reactive
programs. In ICSE’18, pages 752–763, 2018.

T. Kamina, T. Aotani, and H. Masuhara 17:27

4 Gérard Berry and Georges Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992. doi:
10.1016/0167-6423(92)90005-V.

5 Edgar F. Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–387, 1970.

6 Gregory H. Cooper. Integrating Dataflow Evaluation into a Practical Higher-Order Call-by-
Value Language. PhD thesis, Department of Computer Science, Brown University, 2008.

7 S. Dar, N.H̃. Gehani, and H.Ṽ. Jagadish. CQL++: A SQL for the Ode object-oriented DBMS.
In Advances in Database Technology — EDBT ’92, volume 580 of LNCS, pages 201–216, 1992.

8 Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A compressed database for time
series. In TMA, 2012.

9 Torbjörn Ekman and Görel Hedin. The JastAdd extensible Java compiler. In Proceedings of the
22nd annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’07), pages 1–18, 2007. doi:10.1145/1297105.1297029.

10 Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the 2nd ACM
SIGPLAN International Conference on Functional Programming (ICFP’97), pages 263–273,
1997. doi:10.1145/258949.258973.

11 Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques Noyé. EScala:
modular event-driven object interactions in Scala. In Proceedings of the 10th International
Conference on Aspect-Oriented Software Development (AOSD’11), pages 227–240, 2011. doi:
10.1145/1960275.1960303.

12 Nicholas Halbwachs, Paul Caspi, Pascal Paymond, and Daniel Pilaud. The synchronous
data flow programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.
doi:10.1109/5.97300.

13 Takumi Hikosaka, Tetsuo Kamina, and Katsuhisa Maruyama. Visualizing reactive execution
history using propagation traces. In REBLS’18, 2018.

14 Jeff Horemans and Bob Reynders. Elmsvuur: A multi-tier version of elm and its time-traveling
debugger. In TFP 2017, volume 10788 of LNCS, pages 79–97, 2017.

15 Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001. doi:10.1145/503502.503505.

16 Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Time series management
systems: A survey. IEEE Transactions on Knowledge and Data Engineering, 29:2581–2600,
2018.

17 Tetsuo Kamina and Tomoyuki Aotani. Harmonizing signals and events with a lightweight
extension to Java. The Art, Science, and Engineering of Programming, 2(3), 2018. doi:
10.22152/programming-journal.org/2018/2/5.

18 Tetsuo Kamina and Tomoyuki Aotani. An approach for persistent time-varying values. In
Onward!’19, pages 17–31, 2019.

19 Mohamed E. Khalefa, Ulrike Fischer, Torben Bach Pedersen, and Wolfgang Lehner. Model-
based integration of past & future in TimeTravel. In Proceedings of the VLDB Endowment
(PVLDB), pages 1974–1977, 2012.

20 Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: A programming language for Ajax
applications. In Proceedings of the 24th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Application (OOPSLA’09), pages 1–20, 2009. doi:
10.1145/1640089.1640091.

21 Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben, and Mira Mezini.
Fault-tolerant distributed reactive programming. In 32nd European Conference on Object-
Oriented Programming (ECOOP 2018), volume 109 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 1:1–1:26, 2018.

ECOOP 2021

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1145/258949.258973
https://doi.org/10.1145/1960275.1960303
https://doi.org/10.1145/1960275.1960303
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/503502.503505
https://doi.org/10.22152/programming-journal.org/2018/2/5
https://doi.org/10.22152/programming-journal.org/2018/2/5
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091

17:28 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

22 Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. A fault-tolerant
programming model for distributed interactive applications. Proc. ACM Program. Lang.,
3(OOPSLA):144:1–144:29, 2019.

23 Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. Distributed reactive program-
ming for reactive distributed systems. The Art, Science, and Engineering of Programming,
3(3):5:1–5:52, 2019.

24 Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming,
continued. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell (Haskell’02),
pages 51–64, 2002. doi:10.1145/581690.581695.

25 Laszlo Pandy. Bret Victor style reactive debugging. Elm Workshop, 2013.
26 Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza, and

Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series database. Proc.
VLDB Endow., 8(12):1816–1827, 2015.

27 Ivan Perez. Back to the future: time travel in FRP. In Haskell’17, pages 105–116, 2017.
28 Ivan Perez and Henrik Nilsson. Testing and debugging functional reactive programming.

Proceedings of the ACM on Programming Languages, 1, 2017.
29 Marc Pouzet. Lucid Synchrone version 3.0: Tutorial and Reference Manual. Univer-

sité Paris-Sud, LRI, April 2006. Online manual. URL: https://www.di.ens.fr/~pouzet/
lucid-synchrone/lucid-synchrone-3.0-manual.pdf.

30 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging between object-oriented
and functional style in reactive applications. In Proceedings of the 13th International Conference
on Modularity (MODULARITY’14), pages 25–36, 2014. doi:10.1145/2577080.2577083.

31 Guido Salvaneschi and Mira Mezini. Debugging for reactive programming. In ICSE’16, pages
796–807, 2016.

32 Sai Zhang and Yuyin Sun. Automatically synthesizing SQL queries from input-output examples.
In ASE’13, pages 224–234, 2013.

33 YungYu Zhuang. A lightweight push-pull mechanism for implicitly using signals in imperative
programming. Journal of Computer Languages, 54, 2019.

A Proofs

A.1 Proof of Theorem 5.3
We first show some lemmas required by the proof of Theorem 5.3.

▶ Lemma A.1 (weakening).
1. If Γ | Σ ⊢ e : C and x ̸∈ Γ, then Γ, x : D | Σ ⊢ e : C.
2. If Γ | Σ ⊢ e : C and l ̸∈ Σ, then Γ | Σ, l : C ⊢ e : C.

Proof. By straightforward induction on Γ | Σ ⊢ e : C. ◀

▶ Lemma A.2 (substitution). If Γ, x : C | Σ ⊢ e0 : C0 and Γ | Σ ⊢ l : C, then Γ | Σ ⊢ [l/x]e0 :
C0.

Proof. By induction on Γ | Σ ⊢ e : C. ◀

Proof of Theorem 5.3. By induction on the derivation of µ | e −→ µ′ | e′.
Case R-Psignal: e = l0.p e′ = l µ(l0) = RC0(l0) πp(σlatest(RC0(l0))) = l
By T-Signal, Γ | Σ ⊢ l0 : C′

0 and signalType(C′
0, p) = C for some C′

0. As Σ ⊢ µ, we have
Σ ⊢ RC0(l0), and by the definition of Σ ⊢ RC0(l0), we have ∅ | Σ ⊢ l0 : C0. By Lemma A.1,
Γ | Σ ⊢ l0 : C0. Thus C′

0 = C0. By the definition of Σ ⊢ RC0(l0) and T-Signal, we have
πp(σlatest(RC0(l0))). Then, Lemma A.1 finishes the case.

Case R-Vsignal: e = l0.p e′ = e0 µ(l0) = RC0(l0) signalExpr(C0, p) = e0

https://doi.org/10.1145/581690.581695
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://doi.org/10.1145/2577080.2577083

T. Kamina, T. Aotani, and H. Masuhara 17:29

By T-Signal, Γ | Σ ⊢ l0 : C′
0 and signalType(C′

0, p) = C for some C′
0. As Σ ⊢ µ, we have

Σ ⊢ RC0(l0), and by the definition of Σ ⊢ RC0(l0), we have ∅ | Σ ⊢ l0 : C0. By Lemma A.1,
Γ | Σ ⊢ l0 : C0. Thus C′

0 = C0. By T-Class and the definitions of signalExpr and signalType,
we have this : C0 | ∅ ⊢ e0 : C. Then, Lemma A.1 finishes the case.

Case R-New: e = new C(l) e′ = l µ′ = µ ⊕ {l 7→ ∅}
Let Σ′ = Σ, l : C. By T-Id, Σ′ ⊢ l : C, finishing the case.
Case R-Set: e = l.set(l) e′ = l
It is easy to show that Γ | Σ ⊢ µ′, and by T-Set we have Γ | Σ ⊢ l : C, finishing the case.
Case R-Time: e = l0.snapshot(t) e′ = l0
It is easy to show that Γ | Σ ⊢ µ′, and by T-Time we have Γ | Σ ⊢ l0 : C, finishing the

case.
Case R-Invk: Finished by Lemma A.2, T-Invk, and definitions of mtype and mbody.
Case R-Cngl: Finished by the induction hypothesis. ◀

A.2 Proof of Theorem 5.4
Proof of Theorem 5.4. By induction on the derivation of Γ | Σ ⊢ e : C.

Cases T-Var and T-Ts: Cannot occur.
Case T-Id: Immediately finished.
Case T-Signal: e = e0.p ∅ | Σ ⊢ e0 : C0 signalType(C0, p) = C
There are three subcases based on the form of e0:
Subcase 1: e0 = l0
There are further subcases based on the definition of signalType: (1) signal class C

{... persistent signal C p; ...} and p ∈ p. Assuming ∅ | Σ ⊢ µ, we have Σ ⊢ µ(l0),
i.e., we have a non-empty µ(l0). Thus, πp(σlatest(µ(l0)) = l for some l. Thus, R-Psignal
can be applied to e, finishing the case; (2) signal class C {... signal C p=e; ...}
and p ∈ p. Similarly, R-Vsignal finishes the case.

Subcase 2: e0 = l0.snapshot(t)
Immediately finished because this is the case where e is an expression containing a

time-oriented query.
Subcase 3: Otherwise, R-Cong finishes the case.
Case T-Set: e = e0.set(e) ∅ | Σ ⊢ e0 : C ∅ | Σ ⊢ e : C
There are subcases based on the form of e0:
Subcase 1: e0 = l0
There are further subcases based on the form of e: (1) e = l. By T-Id, l ∈ dom(Σ),

and assuming Σ ⊢ µ, we have l ∈ dom(µ). We can choose t ∈ Time such that t >

σlatest(πtime(µ(l0))). Let R′
C(l0) = {(t, l)} ∪ µ(l0) and µ′ = µ ⊕ (l0 7→ R′

C(l0)). Then, R-Set
finishes the case; (2) Otherwise, R-Cong finishes the case.

Subcase 2: Otherwise, R-Cong finishes the case.
Case T-Time: e = e0.snapshot(t) ∅ | Σ ⊢ e0 : C ∅ | Σ ⊢ t : T
There are subcases based on the form of e0:
Subcase 1: e0 = l0
Immediately finished because this is the case where e is an expression containing a

time-oriented query.
Subcase 2: Otherwise, R-Cong finishes the case.
Case T-Invk: e = e0.m(e) ∅ | Σ ⊢ e0 : C0 mtype(m, C0) = C → C ∅ | Σ ⊢ e : C
There are subcases based on the form of e0:
Subcase 1: e0 = l0

ECOOP 2021

17:30 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

There are further subcases based on the form of e: (1) e = l. By the definition of mtype
and mbody, we have mbody(m, C0) = x.e where the number of l and that of x are the same.
Thus, R-Invk finishes the case; (2) Otherwise, R-Cong finishes the case.

Subcase 2: Otherwise, R-Cong finishes the case.
Case T-New: Immediately finished. ◀

Refinements of Futures Past: Higher-Order
Specification with Implicit Refinement Types
Anish Tondwalkar #

University of California, San Diego, CA, USA

Matthew Kolosick #

University of California, San Diego, CA, USA

Ranjit Jhala #

University of California, San Diego, CA, USA

Abstract
Refinement types decorate types with assertions that enable automatic verification. Like assertions,
refinements are limited to binders that are in scope, and hence, cannot express higher-order
specifications. Ghost variables circumvent this limitation but are prohibitively tedious to use as
the programmer must divine and explicate their values at all call-sites. We introduce Implicit
Refinement Types which turn ghost variables into implicit pair and function types, in a way that
lets the refinement typechecker automatically synthesize their values at compile time. Implicit
Refinement Types further take advantage of refinement type information, allowing them to be used
as a lightweight verification tool, rather than merely as a technique to automate programming tasks.
We evaluate the utility of Implicit Refinement Types by showing how they enable the modular
specification and automatic verification of various higher-order examples including stateful protocols,
access control, and resource usage.

2012 ACM Subject Classification Theory of computation → Program constructs; Theory of compu-
tation → Program specifications; Theory of computation → Program verification

Keywords and phrases Refinement Types, Implicit Parameters, Verification, Dependent Pairs

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.18

Related Version Extended Version: arXiv:2105.01954 [40]

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.3

archived at swh:1:snp:aeaf3dbb58f5be84b565e73b5ade1503ee8cb6d6

Funding This work was supported by NSF grant CCF-1911213.

1 Introduction

Refinement types allow programmers to decorate types with statically checked assertions
(“refinements”) that can be used for automatic verification over decidable theories, with
applications including checking array bounds [48, 34], totality [44], data structure invariants
[22], cryptographic protocols [4, 17], and properties of web applications [18].

Problem: Higher-Order Reasoning. Unfortunately, refinements cannot express the higher-
order specifications needed for higher-order imperative programs [42]. Consider the access-
control API:

grant :: File → IO () read :: File → IO String

Here, grant and read represent a file access API that enforces access control policies: to read
a given file, we must have been grant’d permission to that file. Concretely, this means that
calls to grant f update the state of the world to one in which f has been added to the set of
files we have permission to read.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Anish Tondwalkar, Matthew Kolosick, and Ranjit Jhala;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 18; pp. 18:1–18:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:atondwal@eng.ucsd.edu
mailto:mkolosick@eng.ucsd.edu
mailto:rjhala@eng.ucsd.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://arxiv.org/abs/2105.01954
https://doi.org/10.4230/DARTS.7.2.3
https://doi.org/10.4230/DARTS.7.2.3
https://archive.softwareheritage.org/swh:1:snp:aeaf3dbb58f5be84b565e73b5ade1503ee8cb6d6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Refinements of Futures Past

Next, consider the API for operating over a stream of tokens in a linear fashion:

init :: ST Token next :: Token → ST Token

Here, init simply gives us the first token to start a stream. To use next to recieve a token
we must pass it the previous token, which it will then invalidate. Both of these APIs include
functions where correct usage fundamentally depends on the state of the world at their
eventual call site, as they are composed using higher-order combinators such as (»=) and (»).

One can formalize these informal specifications by augmenting the source program with
ghost variables [31, 41, 42] that represent “departed quantities” that characterize the state of
the world. In our file access example, read f would have to additionally take in the set of
files we have been granted access to, and f must be a member, thus allowing us to compose
the computations grant f » read f. In our stream example, next t must both take in an
additional mapping of tokens to their validity, in which t must be valid, and then give us
back an updated mapping, reflecting that next t is the next valid token, thus allowing us
to sequence the computations as next t »= next, but not next t » next t. The key idea in
both of these examples is that (») (“sequence”) and (»=) (“bind”) must relate the output
of a higher-order argument (grant f and next t) to the requirements of their other argument
(read f and next). For these stateful combinators, ghost variables allow us to lift the state
of the world to relate the output of one computation to the input of another.

Note that while we start with these stateful examples for familiarity, we are interested in
the more general problem of reasoning with higher-order programs. For instance, Handley
et al. [19] introduce a Tick datatype that tracks resource usage of a computation. In this
setting, one may want a higher-order constant-resource combinator such as

mapA :: (a → Tick n b) → xs:List a → Tick (n * len xs) (List b)

Informally, mapA maps a computation that uses a fixed amount of resources n (say, time)
over a list and guarantees that it will take a fixed amount of resources equal to n times the
length of the list. We can use ghost variables to lift the parameter n such that both the input
function and the output computation can refer to it.

Ghosts of Past and Future. Notice that there is a key distinction between the ghost
variables in our informal specifications. The ghost variable for read summarizes the history
of accesses granted and therefore corresponds to a history variable [31] used to refine the past.
It is determined externally by what accesses have been granted by the time read is called.
Similarly, mapA uses the ghost variable n to track costs that will have been incurred once
the computation finishes. In contrast, next t yields the next valid token, and so the ghost
variable for next captures the future value when the computation is run. This corresponds
to a prophecy variable [2] we can use to refine the future. That is, next makes an internal
choice about what the next token will be. While external choice can be encoded as an
additional parameter to read, internal choice can be encoded as adding an additional return
value to next. However, in both cases, these ghost variables require polluting code with
specification-level details and break APIs that don’t accept or produce ghost variables.

Implicit Refinement Types. In this paper, we introduce Implicit Refinement Types (IRT),
a feature that allows us to capture the above specifications with implicit ghost variables,
while preserving the automatic verification properties of prior refinement type systems. Our
approach takes inspiration from implicit parameters [25, 11, 12], a popular language feature
that is the foundation of the theory of typeclasses [46]; models objects [11]; lends flexibility to
module systems [47]; and features in C# [16], C++ [20], and Scala. To capture the distinction
between internal and external choice of ghost parameters, we introduce two different notions

A. Tondwalkar, M. Kolosick, and R. Jhala 18:3

of implicits: implicit dependent functions (i.e. implicit-Π) and implicit dependent pairs
(i.e. implicit-Σ). Implicit functions capture the notion of external choice, where the ghost
parameter is determined by the caller of a function. Dually, implicit pairs correspond to
internal choice, where the ghost parameter is determined by the implementation of the
function. To sum up, we make the following contributions:

A declarative semantics for implicit refinement types (§3), and an inference algorithm
that is sound with respect to the declarative semantics (§5). Crucially, our semantics
preserve subtyping information, allowing us to take advantage of refinement information
in inferring implicit parameters.
A notion of implicit pair types that, when added to implicit function types, allows us
to express higher-order specifications without requiring any changes to code (§2).
We implement our system, in a tool dubbed Mist, and evaluate our prototype on a range
of case studies to demonstrate where automatic verification with Implicit Refinement
Types bears fruit (§7).

2 Overview

We start with an example-driven overview that walks through specification and verification
with implicit functions and pairs on minimal examples of higher-order functions, and then
scales these examples to verify the access control, token stream, and resource accounting
examples from §1.

2.1 Implicit Function Types
While plain refinement type systems can employ extra parameters to capture ghost variables,
they must do so explicitly, requiring programmers to divine their values and implement
bookkeeping. To illustrate this, consider the following example of a higher-order function
foo that accepts a function parameter:

foo :: (Bool → Int) → ()
foo f = assert (f True == f False)

The static assertion requires that the function passed to foo be constant. We could formalize
this informal specification by adding an extra ghost parameter to foo to represent the
singleton return value of its argument:

foo :: n:Int → (Bool → SInt n) → ()

But now we must not only rewrite foo to take this “unused” ghost parameter (foo n f =
assert (f True == f False)) but must also manually modify the call site to foo 1 (\z →
1). The implicit function type lets us handle this automatically. Instead of changing the
definition of foo and its uses, the programmer changes foo to make n an implicit parameter
by surrounding it with square brackets:

foo :: [n:Int] → (Bool → SInt n) → ()

Verifying programs with implicits. To verify foo and its call sites we must check: (1) that
the assertion in the body of foo is valid (2) that at the call-site foo (\z → 1), the argument
meets the precondition. We do so via a bidirectional traversal that checks terms against types
to generate and solve Existential Horn Constraints (ehc). When checking inside the body
of foo, the implicit parameter [n:Int] behaves just like a standard explicit, or “corporeal”,
parameter one might see in a Π-binder. That is, calls to foo will implicitly “pass” an argument

ECOOP 2021

18:4 Refinements of Futures Past

for n, so the sequel must hold for all values of n. This constrains the explicit argument f
to always return n, from which the assertion then follows directly. Checking the call-site is
more interesting: the implicit parameter [n:Int] says the application is valid iff there exists
a witness n such that the remainder of the specification holds. For foo (\z → 1), we require
that n equals the return value of (\z → 1), i.e. n = 1. Let’s see how to automatically find
such witnesses.

Step 1: Templates. First, we generate templates to represent the types of terms whose
refinements must be inferred. These templates are the base unrefined types for those
terms, refined with predicate variables κ that represent the unknown refinements [34]. For
example, we represent the as-yet unknown type of \z → 1 with the template z : Bool →
{ν : Int | κ(ν)}.

Step 2: Existential Horn Constraints. Next, we traverse the term foo (\z → 1) in a
bidirectional, syntax directed fashion (§5) to generate the ehc in Figure 1a.

Constraint (1) comes from the body of the λ-term \z → 1 and says the type of the returned
value 1, i.e. {ν : Int | ν = 1}, must be a subtype of the output type {ν : Int | κ(ν)}.
Constraint (2) comes from applying foo to the λ-term: the type of which must be a
subtype of foo’s input. Since function outputs are covariant, this means the output type
{ν : Int | κ(ν)} must be a subtype of {ν : Int | ν = n}.

Step 3: NNF Constraints. We say that the ehc in Figure 1a is satisfiable iff there exists a
predicate for κ that, when substituted into the constraint, yields a valid first-order formula.
To determine satisfiability, we transform the ehc into a new constraint shown in Figure 1b
comprising

An nnf Constraint [6], where we replace each existentially quantified n with a universally
quantified version bounded by a predicate variable π, as shown in Constraint (Π), and
An Inhabitation Constraint that each π is non-empty, as shown in Constraint (Σ).

We write π instead of κ here solely to differentiate between predicate variables from the
original ehc and those produced in this translation. Intuitively, if every n satisfying π(n)
satisfies the nnf constraint and π is non-empty, i.e. there exists n such that π(n), then we
can conclude there exists some n that satisfies the original ehc.

Step 4: Solution. We require an assignment to the variables π, κ that makes the constraint
in Figure 1b valid. We first compute the strongest valid solution [10] for κ, which yields
κ(v) .= v = 1. As we require π to be inhabited (Constraint (Σ)), we assign to π the
weakest predicate (as detailed in §6) that makes valid the nnf Constraint (Π), i.e., we assign:
π(n) .= n = 1. The above assignments for κ and π make the nnf constraint in Figure 1b
valid, thus verifying foo (\z → 1).

2.2 Implicit Pair Types
Implicit function parameters ([n:Int] → —) represent external choice where the implicit’s
value is resolved at the call site. But external choice alone is insufficient to capture every use
of ghost variables. Consider the following example of a function that returns a function:

bar :: () → (Bool → Int)
bar _ = (\z → 1)
let f = bar () in assert (f True == f False)

A. Tondwalkar, M. Kolosick, and R. Jhala 18:5

∧ ∀z. true ⇒ ∀ν. ν = 1 ⇒ κ(ν) (1)
∧ ∃n. ∀ν. κ(ν) ⇒ ν = n (2)

(a) Existential Horn Clause.

∧ ∀z. true ⇒ ∀ν. ν = 1 ⇒ κ(ν)
∧ ∀n. π(n) ⇒ ∀ν. κ(ν) ⇒ ν = n (Π)
∧ ∃n. π(n) (Σ)

(b) Horn Clause and Side Condition.

Figure 1 Verifying the application foo (\z →1).

Unlike foo, bar instead returns a function f: we want to verify that the two calls to f return
the same value. This simple example models our token stream API: while in fact bar always
returns 1 we do not in general know the exact return value of a computation – for instance
the token returned by next may be retrieved over the network. Suppose, as for foo, we use
an implicit function argument to type bar:

bar :: [n:Int] → () → (Bool → SInt n)

Unfortunately, with this type we cannot verify the body of bar: for any external instantiation
of n, it requires that bar will return a function that returns n, which is not true! Instead, bar
is making an internal choice (specifically, that n = 1). This motivates our notion of implicit
pair types, (written [n:Int]. —), which add a ghost parameter in the return position of a
function. This lets us specify

bar :: () → [n:Int].(Bool → SInt n)

To verify that the code is safe using this specification, we are once again left with two
tasks: (1) check that the assertion at the use site of bar is valid (2) check at the definition
site that the body of bar meets the specified postcondition. The first task is the easier
one, though it requires an additional step that was not needed in verifying the body of foo.
Externally, the type ([n:Int]. —) acts as an extra return value that behaves exactly like a
standard (“corporeal”) dependent pair and is assumed to exist in the body of the let. In
order to account for this, we use a type-directed elaboration to automatically insert the
appropriate “unpacking”, giving a name to n at the use site:

unpack (n, f) = bar () in assert (f True == f False)

Verifying the assertion then follows the exact same logic as verifying the body of foo, as f is
constrained to always return a value equal to n.

Now, we turn to the second task: internally, the type ([n:Int]. —) states that there
exists some “ghost” value n that makes the remaining specification valid. Here, n names the
return value of the function returned by bar (). When checking the body of bar, we will need
to find an instantiation of n and implicitly “pair” or “pack” this value with the type of the
returned function (\z → 1). Here, clearly the instantiation is n = 1. Note how the process
of checking the definition site of bar mirrors that of checking the use site foo (\z → 1). In
fact, checking the body of bar will generate the exact same constraints shown in Figure 1,
which will be solved by the same process, producing the same solution, which suffices to
verify that bar implements its specification.

2.3 State
Next, we show how Implicit Refinement Types allow us to develop a new way of typing
stateful computations, represented as higher-order state transformers. The key challenge
here is to devise specification mechanisms that can relate the state after the transformation

ECOOP 2021

18:6 Refinements of Futures Past

-- | A Hoare - style State Transformer --------------------------------
data HST p q s a = State (s → (s, a))
type SST w_in w_out s a = HST {w|w = w_in} {w|w = w_out} s a

-- | Read and write the state ---------------------------------------
get :: [w:s] → SST w w s {v:s|v = w}
get = State (\s → (s, s))

set :: w:s → HST s {v:s|v = w} s ()
set w = State (_ → (w, ()))

-- | Monadic Interface for HST --------------------------------------
pure :: [w:s] → x:a → SST w w s a
»= :: [w1 w2 w3] →

SST w1 w2 s a → (a → SST w2 w3 s b) → SST w1 w3 s b

-- | Client : Computing a "fresh " Int -------------------------------
fresh :: [n:Int] → SST n (n + 1) Int n
fresh = do { n ← get; set (n + 1); pure n }

Figure 2 Typing Stateful Computations using Implicits.

with the state before. For example, to say that some function increments a counter, we need
a way to say that the value of the counter after the transformation is one greater than the
value before. Previous methods do this either by typing the computation with two-state
predicates (as in YNot [29]) or with a predicate transformer that computes the value of the
input state in terms of the output [38].

Implicit Refinement Types enable a new way to relate the input and output states while
still ensuring that each atomic component of the specification simply refers to a single value.
We will see that implicits are the crucial ingredient, allowing us to name – and hence, reason
about – the output state, much as they did in the simplified foo and bar functions.

A Hoare-Style State Transformer Monad. First, as shown in Figure 2, we define a state
transformer monad indexed by the type of the state s and the computation’s result a. We
call this a Hoare State Monad as it is also indexed with two phantom parameters p and q
which will be refinement types describing the input and output states of the transformer. For
convenience, we also define the singleton version SST i o s a where the pre-condition and
post-conditions are singleton types that say that the input (resp. output) state is exactly i
(resp. o). We can write a combinator to get the “current state”, represented by the implicit
parameter w that is both the input and output state, and also used in the singleton type of
the result of the computation. Finally, we can write a combinator to set the state to some
new (explicitly passed) value w, in which case, the input state can be any s.

A Monadic Interface using Implicit States. Next, we develop a monadic interface for
programming with HST, by implementing the pure and »= combinators whose types use
implicit parameters to relate their input and output states. The pure combinator takes an
implicit w and returns a “pure” computation SST w w s a whose result is the input x and
where the state is unchanged, i.e. where the input and output states are both w. The bind
combinator (»=) combines transforms from w1 to w2, and from w2 to w3 into a single transform

A. Tondwalkar, M. Kolosick, and R. Jhala 18:7

-- | Access control policy State Transformer ------------------------
type AC p1 p2 a = SST p1 p2 (Set String) a

-- | Grant or revoke access to a file path --------------------------
grant :: [p:Set String] → f:String → AC p (p ∪ single f) ()
grant f = State (\p → (insert f p, ()))

revoke :: [p:Set String] → f:String → AC p {v|v = p - single f} ()
revoke f = State (\p → (delete f p, ()))

read :: [p:Set String] → {f:String|f ∈ p} → AC p p String
read f = State (\p → (p, "file␣contents"))

-- | How one might safely read a file -------------------------------
main = runST {} (do grant "f.txt"; read "f.txt")

-- | Enabling dynamic access control policies -----------------------
canRead :: [p:Set String] → f:String → AC p p {v:Bool|v = f ∈ p}
canRead f = State (\p → (p, member f p))

safeRead :: [p:Set String] → f:String → AC p p (Maybe String)
safeRead f = do { r ← canRead;

if r then Just <$> read f
else pure Nothing }

Figure 3 Verifying Access Control Policies.

from w1 to w3. Here, one can think of w1 as a history variable summarizing the state of the
world before the transformed computation and w2 and w3 as prophecy variables predicting
what the respective sub-transformers will compute. The implicit refinement specification
then ensures that these ghost variables all align appropriately.

Verifying Clients. We can use our interface to write a specification and implementation
of the function fresh that “increments” a counter captured by the state parameter. This
program gets an integer state n, and sets it to n + 1, and then returns n. The do-notation
desugars into the monadic interface shown above in Figure 2. The specification captures
the fact that the “counter” is incremented by relating the input and output states via the
implicit parameter n. Notice that the implicit parameters are doubly crucial: first, they let
us relate the input- and output-states, and second, they make programming pleasant by not
requiring the programmer tediously spell out the intermediate states.

2.4 Access Control

The refined Hoare State Transformer lets us specify and verify the access control and token
stream examples from §1. In Figure 3 we show how we can instantiate it with refinements over
the theory of sets to derive a stateful API representing the verified access control primitives
of grant and read. We first define AC as a specialization of the SST monad where we track file
access permissions as a set of filenames both at the runtime level and – using implicits to
relate the input and output states – at the type level.

ECOOP 2021

18:8 Refinements of Futures Past

-- | Token State Transformer --
type TokM m1 m2 a = SST m1 m2 Tk a

-- | Start a stream , Get the next token unless the stream is done --
done :: Tk
init :: [t:Tk]. TokM {} (store {} t ⊤) {v|v = t}
next :: [m:Map Tk Bool] → t:{Tk | (select m t) /\ (not (t = done))}

→ ([t’:Tk]. TokM m (store (store m t ⊥) t’ ⊤) t’)

-- | Looping through all tokens ------------------------------------
client :: [m:Map Tk Bool] →

t:{ select m t} → TokM m {m’| select m’ done} ()
client t = if t == done then pure ()

else do {t’ ← next t; client t’}

-- | Starting the stream and running client ------------------------
main :: TokM {} {m|select m done} ()
main = do {t ← init; client t}

Figure 4 Verifying a Token Stream API.

An API for safe file access. We use the AC monad to develop an API that statically enforces
compliance with an access control list (acl). The grant primitive adds a file name to the
access list, and read statically checks that the file is in the acl and – for simplicity – just
returns the string "file␣contents". In conjunction with the implementations of pure and »=
from Figure 2, the combinators can be used to verify main which, running with an initial
empty access control list, grants permission to read a file then reads the file. If we accidentally
tried to read from, say, "secret-password.txt", the type checker would reject the program
as unsafe.

Dynamic policies. Systems enforcing access control policies in practice [28] are not neces-
sarily limited to a static policy – instead, they define a checked read, which checks at runtime
whether a file is in the access control list, and then reads that file, returning a failure result
if the permission check fails. We enable this via canRead, which determines if a file is in the
dynamic acl. This is reflected at the type level by passing in an implicit access control list
p and specifying that canRead returns true iff its argument is in the acl p. We then use
canRead to define safeRead, which can be called with no conditions on the acl. Instead, it
uses canRead to dynamically check permissions, returning Nothing on failure. Crucially, to
verify main and safeRead we do not need to tediously instantiate ghost variables, as Implicit
Refinement Types automatically infer the suitable instantiations.

2.5 Token Stream
The Hoare State Transformer can be used to verify the token stream example of §1. In
Figure 4 we show how to instantiate it with refinements over maps that track the validity
of tokens. First, we define a specialization of the SST monad named TokM whose concrete
state is a token (of type Tk) that tracks the last token we sent. TokM’s ghost state is a map of
the status of every token. That is, select m t represents the proposition that the token t is
valid (the next value to pass to the API): if select m t = ⊤ (shorthand for true), then t is
valid. Otherwise, select m t = ⊥ (shorthand for false) means that the token t has been
used and is now invalid.

A. Tondwalkar, M. Kolosick, and R. Jhala 18:9

-- | Singletons as resource counts ----------------------------------
data Tick t a = Tick a
type T t a = Tick {v:Int | v = t} a

-- | The Applicative Functor API ------------------------------------
<*> :: [n:Int m:Int] → T n (a → b) → T m a → T (n + m) b
</> :: [n:Int m:Int] → T n (a → b) → T m a → T (n + m + 1) b
pure :: x → T 0 a

-- | Appending two lists in a linear number of steps ----------------
++ :: xs:(List a) → ys:(List a)

→ T (len xs) {v|len v = len xs + len ys}
[] ++ ys = pure ys
(x:xs ’) ++ ys = pure (x:) </> (xs’ ++ ys)

-- | Mapping a costly function over a list --------------------------
mapA :: [n] → (a → T n b) → xs:List a → T (n * len xs) (List b)
mapA f [] = pure []
mapA f (x:xs) = pure (:) <*> f x <*> mapA f xs

Figure 5 Intrinsic Verification of Resource Usage.

An API for streaming tokens. The TokM monad lets us specify and verify the token
streaming API from Section 1. First, we specify a special token done that represents the
last token of the stream. On the other hand, init represents a computation that begins the
stream using an implicit pair to capture that there is some valid token t resulting from the
computation of init. Moreover, init starts with the empty map (with no stale tokens) to
ensure that we may only begin the stream once.

The workhorse of this API is next. It first takes an implicit history parameter m repre-
senting all of the past tokens. We then check that the token t passed in is not the done token,
and use m to constrain t to be valid (select m t). Finally, another implicit pair is used to
produce the prophecy variable t’ which is both the next value returned by the computation,
and the next valid token as noted by the ghost state, which also marks the old token t
invalid.

We can now develop the client, which recursively consumes the remaining stream of
tokens. Were we to attempt to reuse the token t in the recursive call the program will be
correctly rejected as unsafe. main kicks off the stream with init and consumes it using client.
Thus, implicit refinements eliminate the tedium of manually instantiating ghosts.

2.6 Intrinsic Verification of Resource Usage
Next, we demonstrate how implicit refinement types can be used for specifying higher-order
programs beyond the state monad: in particular, tracking resource usage. Figure 5 defines an
applicative functor for counting resource usage in the same style as Handley et al. [19]. This
API has both the standard application operator <*> and a resource-consuming application
operator </>. The API counts the number of times we use the </> operator, which allows
us to apply a function f with cost n to an argument x of cost m, incurring a total cost of
n + m + 1.

Handley et al. [19] show these combinators can be used to verify properties about resource
usage. We adapt their example of counting the recursive steps in xs ++ ys. At each recursive

ECOOP 2021

18:10 Refinements of Futures Past

step, we append another element x to the beginning of the list using pure (x:)</>. Ultimately
(++) will use len xs applications of this operator to build this list, verifying that (++) is
linear in the first argument.

Using this API we can further define the higher-order constant-resource combinator mapA,
which allows us to map a function f of constant cost n over a list xs, and automatically verify
that doing so costs n * len xs. This is easy to specify with implicit refinement types: the
implicit argument lifts the output cost of the function argument so that we may relate it
with the overall cost of calling mapA.

Two-State Specifications. It is worth pausing here to recall the standard technique for
specifying effectful programs like the ones we have shown: the two-state specifications that
allow expressing the input and output requirements of a particular computation. For instance,
fresh (Figure 2) would be given a specification such as requires (\s → ⊤) ensures (\s
o s’ → s’ = s + 1 ∧ o = s) where s and s’ represent the input and output state and o
represents the output of the computation. Notably, even if our language included such two-
state specifications, specifying mapA would still require an extra parameter, as the relationship
between the start and end “states” of mapA depends on the relationship between the start
and end “states” of the (a → T n b) argument.

On the other hand, implicit refinements scale from capturing relations between the inputs
and outputs of a single computation to relating a higher-order computation to its function
argument(s) without having to “hardwire” some notion of two-states or pre/post conditions.
Instead, they allow us to name the input and output worlds and lift them to the top level,
which allows assertions (refinements) that span those states/worlds, including in examples
such as mapA. The key contribution of Implicit Refinement Types then is that they work both
for classic two-state specifications and other use-cases where two-state specifications prove
cumbersome and allow the necessary extra parameter of functions like mapA to be instantiated
automatically.

3 Programs

We start with a declarative static semantics for our elaborated core language λR. Our
discussion here omits polymorphism as it is orthogonal to adding implicit types. (The full
system can be found in the extended edition [40]).

3.1 Syntax

Figure 6 presents the syntax of our source language – a lambda calculus with refinement
types, extended with implicit function and dependent pair types.

Types. of λR begin with base types Int and Bool, which are refined with a (boolean-valued)
expression r to form refined base types {x : b | r}. Next, λR has dependent function types
x : t1 → t2. Dependent function types are complemented by implicit dependent function types
[x : t1] → t2, which are similar, except that the parameter x is passed implicitly, and does
not occur at runtime. Dually, we have implicit dependent pairs [x : t1].t2, which represent a
pair of values: The first, named x, of type t1, is implicit (automatically determined) and
does not occur at runtime. Meanwhile, the second is of type t2 which may refer to x. We
use τ to denote unrefined types.

A. Tondwalkar, M. Kolosick, and R. Jhala 18:11

Types
b ::= Int | Bool | · · ·
t ::= {x : b | r} | x : t→ t | [x : t]→ t | [x : t].t
Terms
c ::= false, true | 0, 1, . . . | ∧,∨, +,−, =,≤, . . .

e ::= c | x | λx : t.e | e e | let x : t = e in e | λix : t.e | unpack (x, y) = e in e

Contexts
Γ ::= • | Γ, x : t | Γ, [x : t]

Type Checking Γ ⊢ e : t

T-AbsI
Γ, [x : tx] ⊢ e : t

Γ ⊢ λix : tx.e : ([x : tx]→ t)

T-App
Γ ⊢ e1 : t Γ | t ⊢ e2 : t′

Γ ⊢ e1 e2 : t′

T-Var
x : t ∈ Γ
Γ ⊢ x : t

T-Let-τ
Γ ⊢ ex : tx Γ, x : tx ⊢ e : t

Γ ⊢ t Γ ⊢ tx ⌊tx⌋ = τ

Γ ⊢ let x : τ = ex in e : t

T-Unpack
Γ ⊢ e1 : [x′ : t1].t2

Γ, [x : t1], y : t2[x/x′] ⊢ e2 : t Γ ⊢ t

Γ ⊢ unpack (x, y) = e1 in e2 : t

Application Checking Γ | t1 ⊢ e : t2

AppI
Γ | t[e′/x] ⊢ e : t′ ⟨Γ⟩ ⊢ e′ : tx

Γ | [x : tx]→ t ⊢ e : t′

App e

Γ ⊢ e : te Γ ⊢ te ⪯ tx

Γ, y : te ⊢ t[y/x] ⪯ t′ Γ ⊢ t′ y fresh
Γ | x : tx → t ⊢ e : t′

Subtyping Γ ⊢ t1 ⪯ t2

⪯-Base
JΓK(∀v1 : b.r1⇒r2[v1/v2]) is valid

Γ ⊢ {v1 : b | r1} ⪯ {v2 : b | r2}

⪯R
ipair

Γ ⊢ t1 ⪯ t′
2[e/x] ⟨Γ⟩ ⊢ e : t2

Γ ⊢ t1 ⪯ [x : t2].t′
2

Figure 6 Syntax and static semantics of λR.

Terms. of λR comprise constants (booleans, integers and primitive operations) and expres-
sions. Let binders are half-annotated with either a refinement type to be checked, or a base
type on which refinements are to be inferred.

In addition to explicit function abstraction, λR has the implicit λ-former λix : t.e, where
the parameter x represents a ghost value that can only appear in refinement types. Implicit
functions are instantiated automatically, so there is no syntax for eliminating them. Similarly,
implicit dependent pairs are introduced automatically, and thus have no introduction form
in λR. Instead, implicit dependent pairs have an elimination form unpack (x, y) = e1 in e2.
Here, if e1 is of type [x : tx].t, then x is bound at type tx and y is bound at type t in e2. Just
like with implicit functions the x represents a ghost value that may only appear in refinement
types.

Though both implicit lambda and unpack terms are present in our model, in practice we
handle their insertion by elaboration: we discuss this aspect of our implementation in §7.
In light of this, we develop the theory of Implicit Refinement Types in terms of the fully
elaborated expressions of the λR syntax.

ECOOP 2021

18:12 Refinements of Futures Past

Contexts. of λR, written Γ, comprise the usual ordered sequences of “corporeal” binders
x : t, where x is visible in both terms and refinements, as well as ghost binders [x : t], where
x is only visible in refinements.

3.2 Static Semantics

Figure 6 provides an excerpt of the declarative typing rules for λR (the complete rules are in
the extended edition [40]). Most of the rules are standard for refinement types [34] so we
focus our attention on the novel rules regarding implicit types.

Type Checking. judgments of the form Γ ⊢ e : t mean “in context Γ, the term e has type t.”
The ghost binders in Γ, written [x : t], reflect the ghostly, refinement-only nature of implicits.
This distinction is witnessed by the rule [T-Var] which types term-level variables using only
the corporeal binders x : t in Γ. This ensures that implicit variables are erasable: they can
only appear in types (specifications) and thus cannot affect computation.

With the separation of ghostly (erasable) implicit binders from corporeal (computation-
ally relevant) binders, both the introduction rule for implicit functions [T-AbsI] and the
elimination rule for implicit pairs [T-Unpack] are standard up to the ghostliness of binders.
Implicit pairs are eliminated through “unpacking” as is typical for dependent pairs and
existential types. The rule [T-Let-τ] demonstrates how we handle annotations at unrefined
base types τ : we pick some well-formed refinement type tx that erases to the base type
⌊tx⌋ = τ , and then use tx as the bound type of x.

Lastly, we split off type checking of applications into an application checking judgment,
in order to handle instantiations of implicit functions. In the rule [T-App] we use this
additional judgment to check that the argument e2 is compatible with the input type of e1.

Application Checking. judgments of the form Γ | t ⊢ e : t′ mean “when e is the argument
to a function of type t the result has type t′”. The (corporeal) application rule [App e], finds
the type te of e, checks that this is consistent with the input type tx of the function, and
then creates a new name y to refer to e so that we may substitute it into the return type.
However, y is not bound in Γ so we guess a type t′, well-formed under Γ, for the entire term,
and check that the return type t[y/x] is a subtype of t′. The rule [AppI] checks implicit
applications by guessing an expression e′ at which to instantiate the implicit parameter. This
e is only used at the refinement-level and is thus allowed to range over both corporeal and
ghost binders in Γ, as described by the antecedent ⟨Γ⟩ ⊢ e : t. (⟨Γ⟩ replaces each ghost binder
[x : t] in Γ with a corresponding corporeal binder ⟨[x : t]⟩ = x : t.) The rule then continues
along the spine of the application, further instantiating implicit parameters as necessary
until we can apply the rule [App e].

Subtyping Judgments. of the form Γ ⊢ t1 ⪯ t2 mean “in context Γ, the values of t1 are
a subset of the values of t2.” Most of the rules are standard, with the base case [⪯-Base]
reducing to a verification condition (VC) that checks if one refinement implies another.
[⪯R

ipair] serves as the “introduction form” for implicit pairs, and states that a term of type t1
can be used as an implicit pair type if there is some expression e of type t2 such that t1 is a
subtype of t′

2 instantiated with that e. Note that this is similar to explicitly constructing the
dependent pair with e as the first element.

A. Tondwalkar, M. Kolosick, and R. Jhala 18:13

Predicates r ::= . . . varies . . .
Types τ ::= . . . varies . . .

Propositions p ::= κ(x) | r

Existential Horn Clauses c ::= ∃x : τ.c | c ∧ c | ∀x : τ.p⇒ c | p

First Order Assignments Ψ ::= • | Ψ, r/x

Second Order Assignments ∆ ::= • | ∆, λx.r/κ

Figure 7 Syntax of LS .

4 Logic

We define the syntax and semantics of verification conditions (VCs) generated by rule
[⪯-Base]. Figure 7 summarizes the syntax of VCs, Existential Horn Clauses (ehc), which
extends the nnf Horn Clauses used in Cosman and Jhala [10] with existential binders.
Predicates r range over a decidable background theory. Propositions p include predicates
and second order predicate variables κ(x). Clauses c comprise quantifiers, conjunction, and
propositions. In the syntax tree of clauses, there are two places a κ variable may appear:
as a leaf (head position), or in an antecedent under a universal quantifier ∀x : τ.κ(y) ⇒ c,
(guard position).

Dependencies of an ehc constraint c are the set E of pairs (κ, κ′) such that κ appears in
guard position in c and κ′ appears in head position under that guard. When (κ, κ′) ∈ E, we
say that κ depends on κ′, or, dually, κ′ appears under κ. The cycles in a constraint c are
nonempty sets S of predicate variables such that: for all κ ∈ S, there exists κ′ ∈ S such that
(κ, κ′) ∈ E. A set of predicate variables S is said to be acyclic in c, if all cycles in c contain
at least one predicate variable not in S. A predicate variable κ is said to be acyclic in c, if
no cycles in c contain κ. A constraint c is said to be acyclic if there are no cycles in c.

Semantics. [⪯-Base] checks the validity of the formula obtained by interpreting contexts
and terms in our constraint logic, (formalized by J·K in the extended edition [40]). Contexts
Γ yield a sequence of universal quantifiers for all variables bound at (interpretable) basic
types. Recall that VCs do not contain predicate variables κ(x). The restricted grammar of
the VCs is designed to be amenable to SMT solvers, represented by an oracle Valid(c) that
checks validity, defined at the end of this section.

We eliminate predicate variables κ via substitution, c[∆] (defined in the extended edi-
tion [40]) that map them onto meta-level lambdas λx.p. We represent solutions to existential
binders with a substitution (Ψ) binding existential variables to predicates. We define an
existential substitution c{r/x} recursively over c which removes the corresponding existential
binder, using standard substitution to replace x with its solution r: (∃x : τ.c){r/x} .= c[r/x].

Ehc Validity is then defined by the judgment ∆; Ψ ⊨ c. Intuitively, c is valid under the
substitutions ∆, Ψ if the result of applying the substitutions yields a VC that is valid. We
say that an ehc is satisfiable, written ⊨ c if there exist ∆ and Γ such that ∆; Γ ⊨ c. We say
that c and c′ are equisatisfiable when ⊨ c iff ⊨ c′.

5 Type Inference

The declarative semantics described in Figure 6 are decidedly non-deterministic. This is
most evident in the rules for implicits, such as [AppI] and [⪯R

ipair], where, out of thin air, we
generate an expression to instantiate the implicit parameter. Additional non-determinism

ECOOP 2021

18:14 Refinements of Futures Past

Subtyping Γ ⊢ t1 <: t2 ⊣ c

c = ∀x : τ.JrK⇒ Jr′[x/y]K
Γ ⊢ {x : τ | r} <: {y : τ | r′} ⊣ c

Γ, z : t2 ⊢ t1 <: t′
2[z/x] ⊣ c z fresh

Γ ⊢ t1 <: [x : t2].t′
2 ⊣ ∃z :: t2.c

Checking Γ ⊢ e⇐ t ⊣ c

C-Sub
Γ ⊢ e⇒ t′ ⊣ c

Γ ⊢ t′ <: t ⊣ c′

Γ ⊢ e⇐ t ⊣ c ∧ c′

C-Let-τ
Γ ⊢ e1 ⇐ t̂ ⊣ c1

Γ, x : t̂ ⊢ e2 ⇐ t ⊣ c2 t̂ = fresh(Γ, τ)
Γ ⊢ let x : τ = e1 in e2 ⇐ t ⊣ c1 ∧ (x :: t̂⇒ c2)

Γ ⊢ e1 ⇒ [x′ : t1].t2 ⊣ c1 Γ, [x : t1], y : t′
2 ⊢ e2 ⇐ t ⊣ c2

t′
2 = t2[x/x′] c = c1 ∧ (x :: t1 ⇒ (y :: t′

2 ⇒ c2))
Γ ⊢ unpack (x, y) = e1 in e2 ⇐ t ⊣ c

Γ ⊢ e1 ⇒ t′ ⊣ c1

Γ | t′ ⊢ e2 ≪ t ⊣ c2

Γ ⊢ e1 e2 ⇐ t ⊣ c1 ∧ c2

Synthesis Γ ⊢ e⇒ t ⊣ c

x : t ∈ Γ
Γ ⊢ x⇒ t ⊣ ⊤

Γ ⊢ e1 ⇒ t1 ⊣ c1 Γ | t1 ⊢ e2 ≫ t2 ⊣ c2

Γ ⊢ e1 e2 ⇒ t2 ⊣ c1 ∧ c2

Application Checking Γ | t ⊢ e≪ t′ ⊣ c

C-App-→
Γ ⊢ y ⇐ tx ⊣ c1 Γ ⊢ t[y/x] <: t′ ⊣ c2

Γ | x : tx → t ⊢ y ≪ t′ ⊣ c1 ∧ c2

C-App-IFun
Γ, [z : tx] | t[z/x] ⊢ y ≪ t′ ⊣ c z fresh

Γ | [x : tx]→ t ⊢ e≪ t′ ⊣ ∃z :: tx.c

Figure 8 Constraint Generation.

appears in rules like [T-Unpack], where a refinement type must be picked such that it is
well-formed under the outer context Γ. This is required as the body of the unpack expression
is checked under Γ extended with the binders x and y, but the type must be well-formed
under Γ itself to ensure that these variables do not escape (since they may appear in the
type t).

We account for all of the non-determinism of the declarative semantics with an algorithmic,
bidirectional type inference system [32, 15], excerpts of which are shown in Figure 8 (the full
rules are in the extended edition [40]). We split the declarative type checking judgments into
two forms: synthesis (Γ ⊢ e ⇒ t ⊣ c) and checking (Γ ⊢ e ⇐ t ⊣ c) along with corresponding
application synthesis (Γ | t ⊢ y ≫ t′ ⊣ c) and application checking (Γ | t ⊢ y ≪ t′ ⊣ c) forms.
Synthesis forms produce the type as an output while checking forms take the type as an
input. We also introduce an algorithmic subtyping judgment (Γ ⊢ t1 <: t2 ⊣ c). In addition
to their other outputs, these judgments produce an ehc c as an output. The core of our
inference algorithm is precisely in extending the restricted grammar of verification conditions
to an ehc that captures the constraints on the non-deterministic choices. Inference then
reduces to the satisfiability of the constraint c (as checked in §6).

5.1 Constraining Unknown Refinements
Consider the following λR program from §2.1:

example = let y : (Bool → Int) = λz :Bool.1 in foo y.

recalling that foo has the type [n : Int] → (Bool → {v : Int | v = n}) → Unit. We wish to
check that this program is safe by checking that it types with type Unit.

A. Tondwalkar, M. Kolosick, and R. Jhala 18:15

To type example in our declarative semantics, we first need to apply the rule [T-Let-τ]
which non-deterministically chooses a tx, well-formed under Γ (Γ ⊢ tx), such that tx is
consistent with the base type (⌊tx⌋ = Bool → Int). To capture picking this refinement type
we employ predicate variables that represent unknown refinements, as is standard in the
refinement type inference literature [23, 34]. As we know the type we wish to give example,
we will focus on the checking rule [C-Let-τ]. We generate a fresh refinement type using
fresh, which takes as input a type t and the current context Γ and then produces a refinement
type, where each base type is refined by a fresh predicate variable κ(x), where x are all of
the variables bound in the context, all of which can appear in refinements at this location.
In our example, this would give the type t̂ = z : {v : Bool | κ1(v)} → {v : Int | κ2(z, v)}.

We then check λz : Bool.1 at the refinement type t̂. Now, we use the rule [C-Sub] to
synthesize a type for this term and then use subtyping to check that the synthesized type is
subsumed by t̂. The synthesized type will be z : {v : Bool | κ3(v)} → {v : Int | v = 1} and the
subtyping check will generate the following constraint which is equivalent to (1) in Figure 1a
modulo the administrative predicate variable κ3 and a simplification of the unconstrained κ1:

∧ ∀v. κ1(v) ⇒ κ3(v)
∧ ∀z. κ1(z) ⇒ ∀v. v = 1 ⇒ κ2(z, v)

There is a subtlety in how [C-Let-τ] generates the quantified subformula ∀z. κ1(z) ⇒ · · · :
this formula is generated by the clause x :: t̂ ⇒ c2 where the double colon represents a
generalized implication that drops any variables quantified at non-base types (as only base
types are interpreted into the refinement logic).

x :: {x : b | r} ⇒ c
.= ∀x : b.r ⇒ c x :: t ⇒ c

.= c

5.2 Constraining Implicit Application
The predicate variables let us capture guessed refinement types as second order con-
straints. Next we turn to checking the implicit application foo y. foo has the type
[n : Int] → (Bool → {v : Int | v = n}) → Unit, so the declarative semantics arbitrarily picks
an expression e of type Int to instantiate n. In the algorithmic type system, we capture
the constraints on this choice with the existential quantifiers of our ehc. This is shown in
the application checking rule [C-App-IFun] (the corresponding application synthesis rule
[S-App-IFun] appears in the extended edition [40]).

Recall that the judgment Γ | t ⊢ e ≪ t′ ⊣ c says that we are checking an application of a
term of type t to an argument e and require that the application has the type t′. Here, we
are checking foo y against the type Unit. Our bidirectional rule [C-App-IFun] “guesses” the
instantiation by generating a fresh variable n and binding it at the type Int. This variable is
added to the context as predicate variables may depend on it. We then generate a constraint
∃n :: Int.c which says that our guessed n must be consistent with c, the constraint generated
by continuing to check down the abstract syntax tree (along the spine of the application
of the revealed function type t[y/x] = (Int → {v : Int | v = n}) → Unit). ∃n :: Int.c is the
existential counterpart to the generalized implication n :: Int ⇒ c:

∃x :: {x : b | r}.c
.= ∃x : b.(r ∧ c) ∃x :: t.c

.= c

This is now a concrete function type and the rule [C-App-→] will check that the argument y

has the type Int → {v : Int | v = n} and that the type Unit is a subtype of Unit. Checking
the implicit and then concrete application thus generates the constraints ∃n.(∀v. ⊤ ⇒
κ1(v) ∧ ∀v. κ2(_, v) ⇒ v = n).

ECOOP 2021

18:16 Refinements of Futures Past

Combining these constraints with those generated from checking λz : Bool.1, we get
constraints equivalent to those in Figure 1a. A satisfying assignment is:

∆ = [λz, v.v = 1/κ1, λv.⊤/κ2, λv.⊤/κ3] Ψ = [1/v]

Satisfying solutions to the predicate variables and existential constraints give instantiations
to the angelic choices of refinement types and implicit arguments respectively. This gives
us the following soundness theorem for our type inference algorithm (where the function
kvars(c) returns the set of predicate variables in c):

▶ Theorem 1 (Soundness of Type Inference). If • ⊢ e ⇒ t ⊣ c, ∆; Ψ ⊨ c, and kvars(t) ⊆
domain(∆), then • ⊢ e : ∆(t).

6 Solving

The constraints generated by algorithmic type checking have both predicate variables and
alternating universal and existential quantifiers. We must provide solutions to both predicate
variables and existential variables before we can use SMT solvers to check the validity of a
VC (§4). We compute solutions in four steps:
1. We transform the ehc by skolemization to replace existential variables with universally

quantified predicate variables and inhabitation side conditions.
2. We eliminate the original predicate variables.
3. We solve the skolem predicate variables.
4. Finally, we check the inhabitation side conditions.

Weakening and Strengthening. A function f on constraints is a strengthening when
∀c. f(c) ⇒ c. A function f on constraints is a weakening when ∀c. c ⇒ f(c). We prove that,
if the transformations in steps 1 and 2 above are both weakening and strengthening, our
algorithm produces a verification condition that is equisatisfiable with the original constraint,
i.e. our algorithm is sound and complete.

Separable Constraints. An ehc c is separable if it can be written as a conjunction c1 ∧ c2,
where c1 is an nnf Horn clause and c2 is an acyclic ehc. The following theorem exactly
characterizes separable ehcs:

▶ Theorem 2. c is separable iff there are no cyclic κs under existential binders.

There are standard partial techniques for solving cyclic nnf Horn clauses [6, 10] so the task
of solving a separable ehc can be split into applying one of these existing techniques and
then solving the acyclic ehc. Consequently, all a programmer must do to make constraints
separable is provide either a local solution to an implicit variable via an explicit value or
a solution to a cyclic predicate variable (e.g. by providing a type signature for a recursive
function.)

Thus, in the sequel, we focus on the remaining problem: solving an acyclic ehc. We use
the acyclic ehc from Figure 1a (reproduced below) as a running example. Recall that this
is a simplified version of the constraints generated during type inference on the program
example in §5.1 and §5.2.

∧ ∀z. ⊤ ⇒ ∀ν. ν = 1 ⇒ κ(ν) (3)
∧ ∃n.∀ν. κ(ν) ⇒ ν = n (4)

A. Tondwalkar, M. Kolosick, and R. Jhala 18:17

Step 1: Skolemization. We use the function skolem to transform the ehc c to a conjunction
of an nnf Horn Clause noside(skolem(∅, c)) and side conditions side(skolem(∅, c)). This differs
from textbook skolemization in two important ways: We replace each existential quantifier
∃n.c with Skolem predicates ∀n.πn(n, x) ⇒ c rather than Skolem functions, so that we can
synthesize a (declarative) relation rather than a function. As a result, we must still check
to make sure that this relation is inhabited. We do so by producing the side condition
∃n.πn(n, x). Our transformation Skolemizes the existential binding (4) of our example as
follows:

∧ ∀z. ⊤ ⇒ ∀ν. ν = 1 ⇒ κ(ν) (5)
∧ ∀n.π(n) ⇒ ∀ν. κ(ν) ⇒ ν = n (6)
∧ ∃n.π(n) (7)

This transformation will be crucial later: giving a name to π allows us to separate the
inhabitation and sufficiency constraints on n.

skolem yields an nnf that has two classes of predicate variables: Skolem predicates
corresponding to existential binders (written πn) that have an inhabitation side condition,
and predicate variables corresponding to unknown refinements (written κ). The πn only
appear negatively, so the standard technique of finding the least fixed point solution [34, 10]
would simply return ⊥, which will fail the inhabitation side conditions. Instead, we would
like to compute the greatest fixed point solution for each πn, but, for efficiency reasons, do
not wish to compute the greatest fixed point solution of every predicate variable. Fortunately
Cosman and Jhala [10] show that acyclic predicate variables can be eliminated one by one.
We explain first how to eliminate κ variables and then how to eliminate π variables.

Step 2: Eliminating κ-Variables from c. Procedure elim1 of [10] eliminates each individual
acyclic predicate variable, κ, in an nnf Horn Clause. Briefly, given a predicate variable κ in
an nnf Horn Clause c, the procedure computes the strongest solution for κ: solκ(κ, c), and
then substitutes the solution into c. For the single κ in our example this solution solκ(κ, c)
is λx.(∃z′.⊤ ∧ (∃v′.v′ = 1 ∧ v′ = x)). After substitution and simplification we get

∧ ∀n.π(n) ⇒ ∀v.⊤ ⇒ ∀z′.⊤ ⇒ ∀v′.v′ = 1 ⇒ v = v′ ∧ v = n

∧ ∃n.π(n)

Step 3: Eliminating Skolem Variables. elim1 removes all the κ predicate variables leaving
only the πn variables inserted by skolem. The inhabitation side conditions require we find
the greatest fixed point (gfp) solution to these variables to ensure we do not spuriously
eliminate witnesses. As πn only appears negatively (in guards), the gfp is the conjunction
of every c appearing as ∀n.πn(n, x) ⇒ c. For a given πn appearing in the constraint c′, we
write this gfp as defπ(πn, c′), the defining constraint of πn.

A first challenge arises in that we wish to use these solutions to eliminate the Skolem
predicate variables, but defπ(πn, c′) is a conjunction of clauses featuring quantifiers. As
the Skolem variables appear in guards, we must transform these c into an equisatisfiable
predicate p before we may substitute, so we parameterize our elimination algorithms with a
quantifier elimination algorithm qe that handles this task. qe can vary with the particular
domain and, for domains that do not admit quantifier elimination or where it is infeasible,
we instead use an approximation described in §6.1.

ECOOP 2021

18:18 Refinements of Futures Past

elimπ∗
qe : P C → Π × CΠ × C → C

elimπ∗
qe([], σ, c) .= c

elimπ∗
qe(πn : π, σ, c) .= elimπ∗

qe(π, σ, c[λx.p/πn])
where p = qe(solπqe({πn}, σ, σ(πn)))

solπqe : P C → Π × CΠ × C → C

solπqe(π, σ, ∀n.πn(n, x) ⇒ c)
| πn ∈ π

.= solπqe(π, σ, c)
| πn /∈ π

.= ∀n.p ⇒ solπqe(π, σ, c)
where p = qe(solπqe(π ∪ {πn}, σ, σ(πn)))

solπqe(π, σ, ∀x.p ⇒ c) .= ∀x.p ⇒ solπqe(π, σ, c)
solπqe(π, σ, c1 ∧ c2) .= solπqe(π, σ, c1) ∧ solπqe(π, σ, c2)
solπqe(π, σ, p) .= p

Figure 9 Eliminating π Variables and their Side Conditions.

A second technical challenge arises en route to our solving algorithm: defπ(πn, c′) may
contain other π variables and may contain cycles involving π variables. Fortunately, recursive
Skolem variables are redundant:

▶ Lemma 3. If πn is a predicate variable inserted by skolem, then ⊨ ∀n.πn(n, x) ⇒ c iff
⊨ ∀n.π(n, x) ⇒ c[λ_.⊤/π].

This lets us to break cycles by ignoring recursive occurrences of Skolem variables.
With this result in hand, we develop the procedure solπqe, as shown in Figure 9. solπqe

recursively eliminates Skolem variables from the defining constraint of πn, using qe to
transform a nested Skolem variable’s defining constraint (tracked in the map σ) into a
substitutable predicate. The first argument π tracks the seen Skolem variables, treating
them as if they were solved to ⊤ when they next occur.

solπqe is used in the procedure elimπ∗
qe which eliminates all Skolem variables from the

constraint one πn at a time. elimπ∗
qe simply calls solπqe on the defining constraint of πn and

then qe’s the result (now free of Skolem variables) before substituting the returned predicate
as the solution for πn.

Regardless of the properties of qe we have the following soundness theorem:

▶ Theorem 4. If c′ = skolem(∅, c), π is the set of all Skolem variables in c′, c′ has no other
predicate variables, σ(πn) = defπ(πn, c′) for all πn ∈ π, and ⊨ elimπ∗

qe(π, σ, c′) then ⊨ c.

If qe is a strengthening and a weakening, the converse also holds and our algorithm is
complete.

Step 4: Putting It All Together. The procedure safe (defined in the extended edition [40])
puts together all the pieces to automatically check the validity of acyclic ehc constraints c.
Like solπ and elimπ∗, safe is parameterized by the quantifier elimination procedure qe. safe
first Skolemizes the constraint c and then solves the original predicate variables by repeated
applications of elim1. Next, safe collects the defining constraints of the Skolem predicate
variables and uses elimπ∗

qe to solve and eliminate the Skolem variables. This leaves us with
a predicate-variable-free constraint, but still featuring nested existential quantifiers from

A. Tondwalkar, M. Kolosick, and R. Jhala 18:19

Table 1 Comparison of systems: ✓on “Spec” and “Check” respectively indicate that the specifi-
cation can be written and that the code can be verified by automatically instantiating the implicit
parameters.

Case Study
Tool Mist MoCHi [41] F* Implicits [26]

LOC Time (s) Spec Check Spec Check Spec Check
incr 8 0.01 ✓ ✓ ✓ ✗ ✓ ✗

sum 5 0.01 ✓ ✓ ✓ ✓ ✓ ✗

repeat 86 0.28 ✓ ✓ ✓ ✗ ✗ ✗

d2 [41] 8 0.07 ✓ ✗ ✓ ✓ ✓ ✗

Resources
incrState 28 0.65 ✓ ✓ ✓ ✓ ✓ ✓

accessControl 49 0.36 ✓ ✓ ✓ ✗ ✓ ✓1

tick [19] 85 0.03 ✓ ✓ ✗ ✗ ✓ ✓

linearDSL 20 0.03 ✓ ✓ ✗ ✗ ✓ ✓1

State Machines
pagination 79 0.3 ✓ ✓ ✗ ✗ ✗ ✗

login [7] 121 0.09 ✓ ✓ ✗ ✗ ✗ ✗

twoPhase 135 0.86 ✓ ✓ ✗ ✗ ✗ ✗

tickTock 112 0.14 ✓ ✓ ✗ ✗ ✗ ✗

tcp 332 115.73 ✓ ✓ ✗ ✗ ✗ ✗

the inhabitation side conditions. Here, we use qe once again to eliminate the existential
quantifiers, leaving us with a VC ripe to be passed to an automated theorem prover to verify
validity. If this VC is valid, we deem c safe. If qe is a strengthening then safe is sound and if
qe is additionally a weakening then safe is complete, proved in the extended edition [40].

▶ Theorem 5. Let c be an acyclic constraint. If qe is a strengthening then safe(c) implies
⊨ c. If qe is also a weakening then safe(c) iff ⊨ c.

6.1 A Theory-Agnostic Approximation to qe

We cannot, in general, provide a quantifier elimination that is a strengthening and a weakening
(since we are agnostic to the set of theories) especially as some theories do not admit a decidable
quantifier instantiation! However, since SMT theories work by equality propagation, we can
make use of equalities between theory terms without making any additional assumptions
about the theories themselves. Therefore, we include a theory-agnostic quantifier elimination
strategy over equalities.

Given the defining constraint c of some πn(n, x), our strategy computes the (well-scoped)
congruence closure of the variables n and x using the body of c. This set of equalities is then
used as the solution to πn. To eliminate the existential side condition ∃n.πn(n, x) we note
that a sound approximation is to find a solution for n. We search for this solution within
the set of equalities. If there is not one, we return ⊥ and verification fails. In Section 7 we
evaluate this incomplete quantifier elimination on a number of benchmarks and demonstrate
its real-world effectiveness.

7 Evaluation

We implement our system of Implicit Refinement Types in a tool dubbed Mist, evaluate
Mist using a set of illustrative examples and case studies (links to full examples elided

ECOOP 2021

18:20 Refinements of Futures Past

for DBR), and compare Mist against the existing state of the art, in order to answer the
following questions:
Q1: Lightweight Verification Are implicits in conjunction with the theory-agnostic instan-

tiation procedure sufficient to verify programs with IRTs, even without using heavyweight
instantiation techniques such as domain-specific solvers and synthesis engines?

Q2: Expressivity Can we use implicits to encode specifications that would’ve otherwise
required the use of additional language features?

Q3: Flexibility Do they allow automated verification in places where unification-based im-
plicits and CEGAR-based extra parameters do not?

Implementation. Mist extends our language (§3) with polymorphism and type constructors,
and omits concrete syntax for implicit lambdas and unpacks. Instead, implicit parameters
appear solely in specifications – that is, refinement types – and do not require implementation
changes to the code.

Inserting implicit lambdas is straightforward: when checking that a term has an implicit
function type, insert a corresponding implicit lambda. Inserting implicit unpacks is more
interesting: we need to unpack any term of implicit pair type before we use it. For instance,
if e has the type [x : t1].t2, then we must unpack e to extract the corporeal (t2) component of
the pair before we can apply a function to it: ef e becomes unpack (x, y) = e in ef y. This
transformation ensures that the ghost parameter (x in the above term) is in context at the
use site of the implicit pair. To automate this procedure, we use an Anf-like transformation
that restricts A-normalization to terms of implicit pair type.

As is common in similar research tools, Mist handles datatypes by axiomatizing their
constructors. A production implementation would treat surface datatype declarations as
sugar over these axioms.

Polymorphism. Mist also includes support for limited refinement polymorphism. For
simplicity, we left refinement polymorphism out of our formalism in §3.2 – it is orthogonal to
the addition of implicit parameters and pairs – but we did include it in our implementation.

Refinement polymorphism alleviates some issues with phantom type parameters. First,
when using phantom type parameters, core constructors cannot be directly verified and must
be assumed to have the given type. Moreover, we can specify the semantics of our stateful
APIs in terms of e.g. the HST type, but the meaning of the arguments to the HST type
operator are determined only by its use. In contrast, refinement polymorphism brings the
intended semantics of HST from the world of phantom parameters into the semantics of the
language itself. The semantics of HST are reflected with the type:

type HST = rforall p q. forall a. p → (q, a)

where rforall ranges over refinement types and forall ranges over base types. The more
sophisticated refinement polymorphism [42] present in existing refinement systems would use
the type:

type HST p q s a = {w:s | p w} → ({w’:s | q w’}, a)

Here, p and q are predicates on the state type s.

1 Verification requires annotating a simple fact about sets as F* does not include a native theory of sets.

A. Tondwalkar, M. Kolosick, and R. Jhala 18:21

Refinement polymorphism further makes core constructors and API primitives themselves
subject to verification: the rforall version of HST above allows the direct verification of
get as

get : forall s. [w:s] → HST {v:s | v = w} {v:s | v = w} s
get = \s → (s, s)

Comparsion. We compare Mist to higher-order model checker MoCHi [41], and F*’s
support for implicit parameters2 [36, 26]. Both systems, like Mist and unlike foundational
verifiers such as Idris [8] and Coq [39], are designed for lightweight, automatic verification.
MoCHi aims to provide complete verification of higher-order programs by automatically
inserting extra (implicit) parameters. Whereas Mist has users write refinement type specifi-
cations (with explicit reference to implicit types), MoCHi’s specifications are implemented
as assertions within the code. F*’s type system is a mix of a Martin-Löf style dependent type
system with SMT-backed automatic verification of refinement type specifications. There is
no formal specification of implicit parameters in F*. They are implemented by unification as
part of Martin-Löf typechecking. This is in contrast to IRTs’ integrated approach, that uses
information from refinement subtyping constraints for instantiation.

Our comparison, summarized in Table 1, illustrates, via a series of case studies, the
specifications that can be written in each system (the Spec column) and whether they can find
the necessary implicit parameter instantiations (the Check column). As each tool is designed
to be used for lightweight verification, we write the implementation and then separately
write the specifications. We do not rewrite the implementations to better accommodate
specifications, though for MoCHi we insert assertions within the code as necessary.

7.1 Q1: Lightweight Verification
We evaluate whether IRTs allow for modular specifications that would otherwise be inexpress-
ible with plain refinement types. We do this via a series of higher-order programs that use
implicits for lightweight verification. These programs are designed to capture core aspects
of various APIs and how IRTs permit specifications that can be automatically verified in a
representative client program using the API. Notably, for all of these examples Mist only
uses the theory-agnostic instantiation procedure from §6.1 and does not employ heavyweight
instantiation techniques such as domain-specific solvers or synthesis engines.

Higher-Order Loops. repeat, defines a loop combinator repeat that takes an increasing
stateful computation body and produces a stateful computation that loops body count times.
Its signature in Mist is:

repeat :: body :([x:Int] → ([y:{v:Int | v > x}]. SST x y Int Int))
→ count :{v:Int | v > 0}
→ ([q:Int] → ([r:{v:Int | v > q}]. SST q r Int Int))

which says that the input and output are stateful computations whose history and prophecy
variables together guarantee that the computation will leave the state larger than it started.
In the first line the implicit function argument x is externally determined and captures the
state of the world before the body computation, while the implicit pair component y captures
that body updates the state of the world to some (unknown) larger value.

2 Note that F*’s main verification mechanism is Dijkstra Monads [38], which we do not compare against
in our evaluation. We discuss trade offs between Dijkstra Monads and Implicit Refinement Types in §8.

ECOOP 2021

18:22 Refinements of Futures Past

The implicit pairs are necessary to specify repeat, as the updated state is determined
by an internal choice in body. repeat also demonstrates how implicit pairs can specify
loop invariants (here, upward-closure) on higher-order stateful programs. Though repeat
is specified using implicit pairs, Mist does not require that arguments passed to repeat be
specified using implicit pairs. In repeat we define a function incr with the type [x:Int] →
SST x (x + 1) Int Int that increments the state. Mist will appropriately type check and

verify repeat incr as Implicit Refinement Types automatically account for the necessary
subtyping constraints to ensure that incr meets the conditions of repeat.

State Machines. The next set of examples demonstrate that IRTs enable specification
verification of state-machine based protocols. These are ubiquitous, spanning appications
from networking protocols to device driver and operating system invariants [7]. IRTs let
us encode state machines as transitions allowed from a ghost state, using the Hoare State
Monad (2.3). login [7], which models logging into a remote server, served as our initial
inspiration for studying this class of problems. We verify that a client respects the sequence
of connect, login, and only then accesses information.

tickTock verifies that two ticker and tocker processes obey the specification standard
to the concurrency literature [35]. Here we show the implementation of tocker.

tocker = \c → do
msg ← recv c
if msg = tick then send c tock else assert False

Ghost parameters on send and recv track the state machine and ensure messages follow the
tick-tock protocol. If send c tock is changed to send c tick the program is appropriately
rejected.

twoPhase is a verified implementation of one side of a two-phase commit process. This
example serves as a scale model for tcp, a verified implementation of a model of a TCP
client performing a 3-way handshake, using the TCP state machine[33].

pagination is an expanded version of our stream example from Section 2, and models
the AWS S3 pagination API [1]. This example shows that our protocol state machine need
not be finite, as it is specified with respect to an unbounded state machine.

Quantitative Resource Tracking. The next set of examples reflect various patterns of
specifying and verifying resources and demonstrate that Implicit Refinement Types enable
lightweight verification of these patterns. The examples show how Mist handles specification
and automatic verification when dealing with resources such as the state of the heap and
quantitative resource usage. In §2.4 we saw how Implicits enable specifying the access-control
API from Figure 3; the accessControl example verifies clients of this API. In contrast,
tick (as shown in §2.6) follows Handley et al. [19] in defining an applicative functor that
tracks quantitative resource usage. The key distinction from Handley et al. [19] is that the
resource count exists only at the type level. This example generalizes: we can port any of the
intrinsic verification examples from that work to use implicit parameters instead of explicitly
passing around resource bounds.

linearDSL embeds a simple linearly typed DSL in Mist. It allows us to embed linear
terms in Mist, with linear usage of variables statically checked by our refinement type
system. The syntactic constructs of this DSL are smart constructors that take the typing
environments as implicit parameters, enforcing the appropriate linear typing rules.

A. Tondwalkar, M. Kolosick, and R. Jhala 18:23

incr :: [n:Int] → (Int → SInt n) → SInt (n + 1)
incr f = (f 0) + 1

test1 :: SInt 11 test2 :: m:Int → SInt (m + 1)
test1 = incr (\x → 10) test2 m = incr (\x → m)

Figure 10 A higher order increment function.

Mist enables specification and automatic verification of this diverse range of examples,
and in fact only requires the theory-agnostic instantiation procedure to find the correct
implicit instantiations. This demonstrates that IRTs enable lightweight verification of a
variety of higher-order programs, and that they are widely useful even without a domain
specific solver or heavyweight synthesis algorithm.

7.2 Q2: Expressivity
We compare the expressivity of Implicit Refinement Types as implemented in Mist to the
assertion-based verification of MoCHi and the implicit parameters of F*. First, merely the
fact that we allow users to explicity write specifications using implicit parameters allows us
to write specifications we otherwise could not. In particular, this is witnessed by the tick
and linearDSL examples that specify resource tracking, a non-functional property. MoCHi
cannot express the specifications for these because there is no combination of program
variables that computes the (non-functional) usage properties used in these specifications.

Second, Implicit Pair Types add expressivity by allowing us to write specifications against
choices made internal to functions that we wish to reason about. For example, repeat uses
implicit pairs to specify a loop invariant. This example can’t be done with F*’s implicits, as,
absent implicit pairs, we cannot bind to the return value of the loop body. As a result, in F*
we cannot verify this example with implicits alone: we would have to bring in additional
features such as the Dijkstra monad [38].

Similarly, none of the protocol state machine examples can be encoded with implicit
functions alone. Implicit pairs are required to write specifications against choices made by
other actors on the protocol channel. As a result, these examples also cannot be encoded in
F*’s implicits. These state machine specifications cannot even be expressed in MoCHi as
they crucially require access to ghost state, which MoCHi does not support.

7.3 Q3: Flexibility
We compare the flexibility that our refinement-integrated approach gives us to solve for
implicit parameters relative to that of other systems. We focus on the features of our
semantics and our abstract solving algorithm from Section 6.1 independently of the choice of
quantifier elimination procedure, which we examined above. We illustrate these differences
with several examples. incr is the program from Figure 10. In MoCHi the specification is
given by assertions that test1 and test2 are equal to 11 and m + 1 respectively. incrState
generalizes incr to track the integer in the singleton state monad instead of a closure. sum
is similar to incr except that it takes two implicit arguments and two function arguments,
returning the sum of the two returned values:

sum :: [n, m] → (Int → SInt n) → (Int → SInt m) → SInt (n + m)
sum f g = (f 0) + (g 0)

test :: SInt 11
test = sum (\x → 10) (\y → 1)

ECOOP 2021

18:24 Refinements of Futures Past

All three tools can specify the program. Mist and MoCHi successfully instantiate the implicit
parameters needed for verification. D2 is an example from the MoCHi [41] benchmarks that
loops a nondeterministic number of times and adds some constant each time. Unlike Mist,
MoCHi is unable to solve accessControl, as CEGAR is notoriously brittle on properties
over the theory of set-operations.

Comparsion to MoCHi. MoCHi fails to automatically verify incr, but it succeeds if either
test1 or test2 appear individually. This is partly due to the unpredictability of MoCHi’s
CEGAR loop [21] (as it succeeds in verifying incrState), and partly due to the fact that
MoCHi attempts to infer specifications (and implicit arguments) globally, which can lead
to the anti-modular behavior seen here. In contrast, by introducing implicit arguments as
a user-level specification technique, Mist permits modular verification: test1 and test2
generate two separate quantifier instantiation problems that Mist solves locally.

In D2, Mist fails to solve the constraints generated by implicit instantiation as they
involve systems of inequalities, which our theory-agnostic quantifier elimination does not
attempt. However, Mist captures the full set of constraints and could, with a theory
specific solver like MoCHi’s, verify D2. Concretely, D2 yields a constraint of the form
∃x.true ⇒ x > 3. Mist could discharge this obligation by instantiating the abstract
algorithm of Section 6 with either the solver from MoCHi [41] or EHSF[5] instead of the
theory-agnostic one above.

Comparsion to Unification. The results of the comparison to F*’s unification-based implicits
are summarized in Table 1. Implicit Refinements are more flexibile as F* attempts to solve the
implicits purely through unification, i.e. without accounting for refinements. In contrast, Mist
generates subtyping (implication) constraints that are handled separately from unification.
When the unification occurs under a type constructor, then unification can succeed. For
example, F* verifies incrState because elevating the ghost state to a parameter of the
singleton state type constructor makes it “visible” to F*’s unification algorithm. However, if
there is no type constructor to guide the unification, F* must rely on higher-order unification,
which is undecidable in general and difficult in practice. For this reason, in the incr example
from Figure 10, F* fails to instantiate the implicit arguments needed to verify test1 and
test2, even if we aid it with precise type annotations on \x → 10 and \x → m, and F* fails
to verify the sum example for the same reason. By contrast, Mist can take advantage of
the refinement information to solve for the implicit parameters. Finally, F*’s unification
fundamentally cannot handle an example like MoCHi’s D2, as unification will not be able
to find an implicit instantiation when it is only constrained by inequalities.

8 Related Work

Verification of Higher-Order Programs. As discussed in Section 7, F* [37] is another SMT-
aided higher-order verification language. Its main support for verifying stateful programs is
baked in via Dijkstra Monads [38]. When it comes to verifying higher-order stateful programs,
Dijkstra Monads enable F* to scale automatic verification up to complex invariants. However,
like other two-state specification techniques, they are not on their own flexible enough to
handle higher-order computations such as mapA, when higher-order computations are composed
in richer ways than simple Kleisli composition. The key difference is that Implicit Refinement
Types work for both classic two-state specifications and other use-cases where two-state
specifications prove cumbersome – IRTs add value even to a system that already includes

A. Tondwalkar, M. Kolosick, and R. Jhala 18:25

two-state specifications by allowing the necessary extra parameter of functions like mapA to
be instantiated automatically. Moreover, IRTs do so while maintaining the key properties
of refinement type systems: (1) SMT-driven automatic verification and (2) refinement type
specifications are added atop an existing program without requiring code changes. In this way
IRTs also differ from systems that use “full-strength” two-state specifications with dependent
types such as VST[3] or Bedrock[9].

We have started implementing implicit refinement types in LiquidHaskell, a very similar
system to Mist that includes both manual [45] and automated [42] facilites for higher order
verification.

F* has both implicit parameters and refinement types, but F*’s implicits have no formal
description, and instantiation is independent of refinement information. On the other hand,
we lack first-class invariants, but future work may be able to alleviate this by abstracting
over refinements a la Vazou et al. [43].

Dafny [24] supports specifications with ghost variables, but the user must explicitly craft
triggers to perform quantifier instantiation when the backing SMT solver’s heuristics cannot,
and must manually pass and update ghost variables.

Implicit Parameter Instantiation. Since finding an instantiation of implicit parameters
is, in general, undecidable, different systems make different tradeoffs: While Haskell and
Scala only perform type-directed lookup, Idris [8] resolves implicits via first-order unification,
with a default value or by a fixed-depth enumerative program synthesis. This form of
implicit resolution system can be very powerful, but can’t be used in conjunction with solver-
automated reasoning so, for example, Idris would not be able to handle our sum example
which requires automated reasoning about arithmetic. Agda [30] combines unification with a
second kind of implicit parameter, instance arguments [14], that uses a separate, specialized,
implicit resolution mechanism for implicit arguments that relate to typeclasses. Coq [39] uses
a mechanism called canonical structures [27], which uses a programmable hint system, but is
intimately tied to the specifics of Coq’s implementation, and its use for implicit parameter
instantiation lacks a formal description, as Devriese et al. [14] lament.

As Devriese et al. [14] note, the complexity of dependent type systems make even achieving
similar functionality as in Haskell and Scala a significant task. These implicit parameters are
designed to accomplish similar tasks as in the non-dependent Haskell and Scala: automating
the instantiation of repetitive arguments or automatically searching the context for relevant
arguments. Refinement types allow us to sidestep this issue as the base type system can
separately use implicit parameters to automate typeclasses or other programming tasks,
allowing our technique of Implicit Refinement Types to entirely focus on using dependent
type information. Here, this means focusing on allowing us to use an SMT to simplify ghost
specifications without worrying about interactions with the base type system.

While there is much work on implicit parameters for dependent types, we believe that
we provide the first formal description of a system combining implicit parameters with
refinement types. F* is the only other example of a language that has implicit parameters
and refinement types, but we discuss how F*’s implicits cannot take advantage of refinement
type information in §7.

Horn Constraints. Horn Clauses have emerged as a lingua franca of verification tools [6] as
they offer a straightforward encoding of assertions. Z3 [13] includes a fixpoint solver for Horn
Constraints including many quantifier elimination heuristics. Rybalchenko et al. [5] present a
semi-decision procedure for solving existential Horn clauses using a template-based CEGAR

ECOOP 2021

18:26 Refinements of Futures Past

loop. Cosman and Jhala [10] use NNF Horn constraints to preserve scope. We extend this
framework to synthesize refinements for implicit program variables that are existentially
quantified, in addition to the usual universally quantified binders.

Unno et al. [41] show that it is sufficient to add one extra parameter for each higher order
argument to any given function to achieve complete higher-order verification with first-order
refinements. Their treatment utilizes more automation, e.g. interpolation and Farkas’ lemma,
but is limited to arithmetic specifications, precluding programs manipulating data structures
like sets and maps, as demonstrated in §7.

References
1 Retrieving paginated results - AWS SDK for java version 2, 2019. URL: https://docs.aws.

amazon.com/sdk-for-java/v2/developer-guide/examples-pagination.html.
2 Martín Abadi and Leslie Lamport. The existence of refinement mappings. In Proceedings of the

Third Annual Symposium on Logic in Computer Science (LICS 1988), Edinburgh, Scotland, UK,
July 5-8, 1988, pages 165–175. IEEE Computer Society, 1988. doi:10.1109/LICS.1988.5115.

3 Andrew W. Appel. Verified software toolchain. In Alwyn Goodloe and Suzette Person, editors,
NASA Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April
3-5, 2012. Proceedings, volume 7226 of Lecture Notes in Computer Science, page 2. Springer,
2012. doi:10.1007/978-3-642-28891-3_2.

4 Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. In Proceedings of the 21st IEEE
Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23-25
June 2008, pages 17–32. IEEE Computer Society, 2008. doi:10.1109/CSF.2008.27.

5 Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solving existentially
quantified horn clauses. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 869–882. Springer,
2013. doi:10.1007/978-3-642-39799-8_61.

6 Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. Horn clause
solvers for program verification. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz,
Bernd Finkbeiner, and Wolfram Schulte, editors, Fields of Logic and Computation II - Essays
Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, volume 9300 of Lecture Notes
in Computer Science, pages 24–51. Springer, 2015. doi:10.1007/978-3-319-23534-9_2.

7 Edwin Brady. State machines all the way down. Draft, 2016. URL: https://www.idris-lang.
org/drafts/sms.pdf.

8 Edwin C. Brady. Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of Functional Programming, 23(5):552–593, 2013. doi:10.1017/
S095679681300018X.

9 Adam Chlipala. The bedrock structured programming system: combining generative metapro-
gramming and hoare logic in an extensible program verifier. In Greg Morrisett and Tarmo
Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,
ICFP 2013, Boston, MA, USA - September 25 - 27, 2013, pages 391–402. ACM, 2013.
doi:10.1145/2500365.2500592.

10 Benjamin Cosman and Ranjit Jhala. Local refinement typing. Proceedings of the ACM on
Programming Languages, 1(ICFP):26:1–26:27, 2017. doi:10.1145/3110270.

11 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA, pages 341–360. ACM, 2010. doi:10.1145/1869459.1869489.

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/examples-pagination.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/examples-pagination.html
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1109/CSF.2008.27
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-319-23534-9_2
https://www.idris-lang.org/drafts/sms.pdf
https://www.idris-lang.org/drafts/sms.pdf
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/3110270
https://doi.org/10.1145/1869459.1869489

A. Tondwalkar, M. Kolosick, and R. Jhala 18:27

12 Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The implicit calculus: a new foundation for generic programming. In Jan Vitek, Haibo Lin,
and Frank Tip, editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2012, Beijing, China - June 11 - 16, 2012, pages 35–44. ACM, 2012.
doi:10.1145/2254064.2254070.

13 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

14 Dominique Devriese and Frank Piessens. On the bright side of type classes: instance arguments
in agda. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011, pages 143–155. ACM, 2011. doi:10.1145/2034773.
2034796.

15 Jana Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking
for higher-rank polymorphism. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN
International Conference on Functional Programming, ICFP 2013, Boston, MA, USA -
September 25 - 27, 2013, pages 429–442. ACM, 2013. doi:10.1145/2500365.2500582.

16 Burak Emir, Andrew Kennedy, Claudio V. Russo, and Dachuan Yu. Variance and generalized
constraints for c# generics. In Dave Thomas, editor, ECOOP 2006 - Object-Oriented Program-
ming, 20th European Conference, Nantes, France, July 3-7, 2006, Proceedings, volume 4067 of
Lecture Notes in Computer Science, pages 279–303. Springer, 2006. doi:10.1007/11785477_18.

17 Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based cryptographic
verification. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois,
USA, October 17-21, 2011, pages 341–350. ACM, 2011. doi:10.1145/2046707.2046746.

18 Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. Verified security
for browser extensions. In 32nd IEEE Symposium on Security and Privacy, S&P 2011,
22-25 May 2011, Berkeley, California, USA, pages 115–130. IEEE Computer Society, 2011.
doi:10.1109/SP.2011.36.

19 Martin A. T. Handley, Niki Vazou, and Graham Hutton. Liquidate your assets: reasoning
about resource usage in liquid haskell. Proceedings of the ACM on Programming Languages,
4(POPL):24:1–24:27, 2020. doi:10.1145/3371092.

20 Christian Heinlein. Implicit and dynamic parameters in C++. In David E. Lightfoot and
Clemens A. Szyperski, editors, Modular Programming Languages, 7th Joint Modular Languages
Conference, JMLC 2006, Oxford, UK, September 13-15, 2006, Proceedings, volume 4228 of
Lecture Notes in Computer Science, pages 37–56. Springer, 2006. doi:10.1007/11860990_4.

21 Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach to predicate
refinement. In Holger Hermanns and Jens Palsberg, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 12th International Conference, TACAS 2006 Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 25 - April 2, 2006, Proceedings, volume 3920 of Lecture Notes in
Computer Science, pages 459–473. Springer, 2006. doi:10.1007/11691372_33.

22 Ming Kawaguchi, Patrick Maxim Rondon, and Ranjit Jhala. Type-based data structure
verification. In Michael Hind and Amer Diwan, editors, Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland,
June 15-21, 2009, pages 304–315. ACM, 2009. doi:10.1145/1542476.1542510.

23 Kenneth Knowles and Cormac Flanagan. Type reconstruction for general refinement types.
In Programming Languages and Systems, 16th European Symposium on Programming, ESOP
2007, Held as Part of the Joint European Conferences on Theory and Practics of Software,

ECOOP 2021

https://doi.org/10.1145/2254064.2254070
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1007/11785477_18
https://doi.org/10.1145/2046707.2046746
https://doi.org/10.1109/SP.2011.36
https://doi.org/10.1145/3371092
https://doi.org/10.1007/11860990_4
https://doi.org/10.1007/11691372_33
https://doi.org/10.1145/1542476.1542510

18:28 Refinements of Futures Past

ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings, pages 505–519, 2007.
doi:10.1007/978-3-540-71316-6_34.

24 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1,
2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages
348–370. Springer, 2010. doi:10.1007/978-3-642-17511-4_20.

25 Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark Shields. Implicit parameters:
Dynamic scoping with static types. In Mark N. Wegman and Thomas W. Reps, editors,
POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston, Massachusetts, USA, January 19-21, 2000, pages 108–118.
ACM, 2000. doi:10.1145/325694.325708.

26 Tomer Libal. The unification algorithm, 2017. URL: https://github.com/FStarLang/FStar/
wiki/The-unification-algorithm.

27 Assia Mahboubi and Enrico Tassi. Canonical structures for the working coq user. In
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive The-
orem Proving, pages 19–34, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-39634-2_5.

28 Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL: A secure shell
scripting language. In Jason Flinn and Hank Levy, editors, 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2014, Broomfield, CO, USA, October
6-8, 2014, pages 183–199. USENIX Association, 2014. doi:10.5555/2685048.268506.

29 Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: dependent types for imperative programs. In James Hook and Peter Thiemann, editors,
Proceeding of the 13th ACM SIGPLAN international conference on Functional programming,
ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pages 229–240. ACM, 2008.
doi:10.1145/1411204.1411237.

30 Ulf Norell. Dependently typed programming in agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI 2009: 2009 ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2.
ACM, 2009. doi:10.1145/1481861.1481862.

31 Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6:319–340, 1976. doi:10.1007/BF00268134.

32 Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on
Programming Language and Systems, 22(1):1–44, 2000. doi:10.1145/345099.345100.

33 Jon Postel. Transmission control protocol. STD 7, RFC Editor, September 1981. URL:
http://www.rfc-editor.org/rfc/rfc793.txt.

34 Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In Rajiv Gupta
and Saman P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008,
pages 159–169. ACM, 2008. doi:10.1145/1375581.1375602.

35 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying message-passing programs
with dependent behavioural types. In Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 502–516. ACM,
2019. doi:10.1145/3314221.3322484.

36 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming with value-dependent types. In Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th ACM SIGPLAN
International Conference on Functional Programming, pages 266–278. ACM, 2011. doi:
10.1145/2034773.2034811.

https://doi.org/10.1007/978-3-540-71316-6_34
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/325694.325708
https://github.com/FStarLang/FStar/wiki/The-unification-algorithm
https://github.com/FStarLang/FStar/wiki/The-unification-algorithm
https://doi.org/10.1007/978-3-642-39634-2_5
https://doi.org/10.1007/978-3-642-39634-2_5
https://doi.org/10.5555/2685048.268506
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1007/BF00268134
https://doi.org/10.1145/345099.345100
http://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2034773.2034811

A. Tondwalkar, M. Kolosick, and R. Jhala 18:29

37 Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. Dependent types and multi-
monadic effects in F. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 256–270. ACM, 2016.
doi:10.1145/2837614.2837655.

38 Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. Verifying
higher-order programs with the dijkstra monad. In Hans-Juergen Boehm and Cormac Flanagan,
editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2013, Seattle, WA, USA, June 16-19, 2013, pages 387–398. ACM, 2013. doi:10.1145/
2491956.2491978.

39 The Coq Development Team. The Coq Reference Manual, 2009.
40 Anish Tondwalkar, Matthew Kolosick, and Ranjit Jhala. Refinements of futures past: Higher-

order specification with implicit refinement types (extended version), 2021. arXiv:2105.01954.
41 Hiroshi Unno, Tachio Terauchi, and Naoki Kobayashi. Automating relatively complete

verification of higher-order functional programs. In Roberto Giacobazzi and Radhia Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2013, Rome, Italy - January 23 - 25, 2013, pages 75–86. ACM, 2013.
doi:10.1145/2429069.2429081.

42 Niki Vazou, Alexander Bakst, and Ranjit Jhala. Bounded refinement types. In Kathleen
Fisher and John H. Reppy, editors, Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3,
2015, pages 48–61. ACM, 2015. doi:10.1145/2784731.2784745.

43 Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. Abstract refinement types. In
Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems -
22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages 209–228. Springer,
2013. doi:10.1007/978-3-642-37036-6_13.

44 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones.
Refinement types for haskell. In Johan Jeuring and Manuel M. T. Chakravarty, editors,
Proceedings of the 19th ACM SIGPLAN International Conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 269–282. ACM, 2014. doi:10.1145/2628136.
2628161.

45 Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: complete verification with SMT. Proceedings
of the ACM on Programming Languages, 2(POPL):53:1–53:31, 2018. doi:10.1145/3158141.

46 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989. doi:
10.1145/75277.75283.

47 Leo White, Frédéric Bour, and Jeremy Yallop. Modular implicits. In Oleg Kiselyov and
Jacques Garrigue, editors, Proceedings ML Family/OCaml Users and Developers workshops,
ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014, volume 198 of EPTCS, pages
22–63, 2014. doi:10.4204/EPTCS.198.2.

48 Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types.
In Jack W. Davidson, Keith D. Cooper, and A. Michael Berman, editors, Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, June 17-19, 1998, pages 249–257. ACM, 1998. doi:10.1145/
277650.277732.

ECOOP 2021

https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2491956.2491978
http://arxiv.org/abs/2105.01954
https://doi.org/10.1145/2429069.2429081
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/277650.277732

Dealing with Variability in API Misuse Specification
Rodrigo Bonifácio #

Computer Science Department, University of Brasília, Brazil

Stefan Krüger #

Independent Researcher, Munich, Germany

Krishna Narasimhan #

Technical University of Darmstadt, Germany

Eric Bodden #

Paderborn University, Germany
Fraunhofer IEM, Paderborn, Germany

Mira Mezini #

Technical University of Darmstadt, Germany

Abstract
APIs are the primary mechanism for developers to gain access to externally defined services and tools.
However, previous research has revealed API misuses that violate the contract of APIs to be prevalent.
Such misuses can have harmful consequences, especially in the context of cryptographic libraries.
Various API-misuse detectors have been proposed to address this issue – including CogniCrypt, one
of the most versatile of such detectors and that uses a language (CrySL) to specify cryptographic
API usage contracts. Nonetheless, existing approaches to detect API misuse had not been designed
for systematic reuse, ignoring the fact that different versions of a library, different versions of a
platform, and different recommendations/guidelines might introduce variability in the correct usage
of an API. Yet, little is known about how such variability impacts the specification of the correct
API usage. This paper investigates this question by analyzing the impact of various sources of
variability on widely used Java cryptographic libraries (including JCA/JCE, Bouncy Castle, and
Google Tink). The results of our investigation show that sources of variability like new versions of
the API and security standards significantly impact the specifications. We then use the insights
gained from our investigation to motivate an extension to the CrySL language (named MetaCrySL),
which builds on meta-programming concepts. We evaluate MetaCrySL by specifying usage rules
for a family of Android versions and illustrate that MetaCrySL can model all forms of variability
we identified and drastically reduce the size of a family of specifications for the correct usage of
cryptographic APIs.

2012 ACM Subject Classification Software and its engineering; Software and its engineering →
Domain specific languages; Software and its engineering → API languages; Theory of computation
→ Cryptographic protocols

Keywords and phrases API misuse, cryptographic API misuse detection, code generation, domain
engineering, cryptographic standards

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.19

Funding This research was supported by the DFG’s collaborative research center 1119 CROSSING.
Rodrigo Bonifácio: funded by FAP-DF (research grant 05/2018).

1 Introduction

Application Programming Interfaces (APIs) have become fundamental to increase developer
productivity. Nonetheless, prior research [1,15,33] has indicated that developers often struggle
with using APIs for various reasons, including poor documentation, low-level abstraction,
and lack of tool support. One way to mitigate these issues are approaches to detecting API

© Rodrigo Bonifácio, Stefan Krüger, Krishna Narasimhan, Eric Bodden, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 19; pp. 19:1–19:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rbonifacio@unb.br
https://orcid.org/0000-0002-2380-2829
mailto:stefan.krueger@uni-paderborn.de
mailto:kri.nara@st.informatik.tu-darmstadt.de
mailto:eric.bodden@uni-paderborn.de
https://orcid.org/0000-0003-3470-3647
mailto:mezini@informatik.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.ECOOP.2021.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Dealing with Variability in API Misuse Specification

misuses [2, 12,20,24,27]. Most of these approaches are deny-listing approaches [2, 12,20,27]
– providing analyses that scan for incorrect API uses. Deny-listing approaches suffer from
false negatives and cannot be easily extended because they rely on hard-coded rules [24]. To
address these issues, CogniCrypt [24] follows an allow-list approach and instead of hard-coding
what the correct usages are, it takes a set of correct usage rules as a parameter – the latter
are specified by API developers using the CrySL specification language [24]. For instance,
CrySL has been used to model correct usage rules of Java Cryptographic APIs.

However, the correct usage of an API is often subject to various sources of variability.
They include (but are not limited to) evolving signatures and behavioral changes, e.g., due
to different security standards in case of crypto APIs.1 Last but not least, APIs like Java
Cryptography Architecture (JCA) foster flexibility through the use of different providers
that can be plugged into to override the default implementation of an algorithm. Depending
on the JCA provider, different secure algorithms (according to cryptographic standards)
might be available or not. Whether or not an API usage is correct may also vary owing to
other factors, including version of the platform (e.g., Java Platform, Android Platform) and
version of the API implementations. Nonetheless, there is a lack of understanding about (a)
how sources of API variability affect what should be considered the correct usage of an API
and (b) a solution to modelling this variability in allow-listing approaches like CrySL. This
is where this paper makes its contributions.

We perform an in-depth domain engineering on the correct usage of cryptographic APIs.
To this end, we consider the following sources from which variability might originate from:
cryptographic standards (FIPS, ECrypt, and BSI), cryptographic libraries (e.g., JCA, Google
Tink, Bouncy Castle), cryptographic library implementations (e.g., JCA providers), and
cryptographic library evolution. Based on the findings, we implement Meta-CrySL, a
meta-programming approach for managing families of CrySL specifications, ensuring that
different sources of variability can be accounted for when specifying usage patterns. Using the
new set of specifications, we conduct an empirical study to investigate two characteristics of
Meta-CrySL: expressiveness (i.e., the possibility to express all sources of CrySL variability
using Meta-CrySL), compactness (i.e., number of lines of CrySL code one can save when
writing Meta-CrySL specifications and the fraction of redundancy one can eliminate) and
correctness (i.e., does the specifications generated by Meta-CrySL detect distinct violations
when exploring different configurations of CrySL rules).

We believe that one can also benefit from using a domain engineering approach for
specifying the correct usage of non-cryptographic APIs as well. First because the sources of
variability we discuss are not unique to cryptographic APIs as all APIs offer variability in
behavior due to evolving signatures as a result of new versions. Second because variability as
a result of pluggable implementations from different providers is not unique to JCA, either
(c.f., JDBC 2). Even security standards that are unique to cryptographic APIs have parallels
in the form of context-specific usage patterns for non-crypto APIs.

To summarize, the main contributions of this paper are as follows:
Domain engineering on Java cryptographic libraries, including:

A study on the evolution of Java cryptographic APIs.
A study on different cryptographic standard recommendations.
A discussion about how the evolution of cryptographic libraries and cryptographic
recommendation impact on the correct usage of APIs.

1 Cryptographic libraries have different definitions of correctness – -and in particular secure – usages,
based on the standards like FIPS or BSI under which they operate contributing to yet another source of
variability.

2 https://www.oracle.com/database/technologies/jdbc-migration.html

https://www.oracle.com/database/technologies/jdbc-migration.html

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:3

The design and implementation of Meta-CrySL, an extension to CrySL that helps
manage sources of variability on CrySL specifications.
An evaluation that shows how Meta-CrySL can help API experts to better modularize
variability in CrySL specifications.

In Section 2, we discuss some concepts that are pre-requisite to understanding the
remainder of the paper. We present our analysis of sources of API variability in Section 3.
In Section 4, we present the design of Meta-CrySL, the language that resulted out of the
insights gained from our study. Lastly, we empirically evaluate Meta-CrySL in Section 5.

2 Background

In this section, we present the concepts and definitions necessary to understand our research
context, contributions, and results. In Section 2.1, we introduce the challenges for using
cryptographic APIs correctly. Although we perform the first part of our study with different
cryptographic APIs, we will use the JCA to drive home these challenges in this section.
In Section 2.2, we present the cryptographic standards we consider in our research. These
standards may guide and impact the specifications of the correct usage of cryptographic
APIs. Finally, Section 2.3 introduces the CrySL language, which allows experts to specify
the proper usage of Java cryptographic APIs.

2.1 Cryptographic APIs
Ferguson et al. [14] state that “cryptography is very difficult”, mostly because it involves
several branches of mathematics and computer science [14,44]. For this reason, algorithms
and implementations are only recommended after a huge effort on testing – often conducted
by a public community. That is, regardless of how much they have been vetted, they are
at best still secure or not yet insecure. As a result, developers should rely on well-known
cryptographic algorithms and API implementations that are subject to hundreds or thousands
of hours of cryptanalysis [44].

Cryptographic APIs (or libraries) that exist for each major programming language,such
as JCA and Bouncy Castle for Java and wolfCrypt and OpenSSL for C/C++, make
available a number of implementations for performing cryptographic tasks, such as
the support for generating (pseudo) random numbers, message digests, symmetric and
asymmetric cryptography (including digital signature). Although these libraries share similar
characteristics, their design differ according to distinct principles, such as flexibility and
usability. Unfortunately, existing research reports that these APIs are often complex and
hard to use [1, 33], which in the end might compromise the security of the systems.

For instance, JCA has been designed such that it is possible to change the cryptographic
implementations used in a system without having to modify many parts of the system.
Specifically, this API employs the provider architecture [21] that enables implementations
behind the interfaces to be easily swapped. The official documentation of JCA [21] explicitly
mentions that the three main motivations driving the design of the API were:
1. Implementation independence: Applications can choose between many variants of

implementations of cryptographic algorithms
2. Implementation interoperability: Just like the applications are not tied to providers,

providers are also not tied to applications
3. Algorithm extensibility: Cryptographic algorithms can use building block primitives

from variable sources to compose their algorithms

ECOOP 2021

19:4 Dealing with Variability in API Misuse Specification

Figure 1 shows a usage scenario for the MessageDigest class of the JCA, which computes
a hash of input data. The first step to this end is to get an instance of an implementation
using a string that specifies the message digest algorithm (BLAKE2B-512), and, optionally,
a named reference to a provider that makes available the actual implementation of the
algorithms through the JCA interface. After getting a MessageDigest instance, a developer
might populate the digest by calling the update() method one or more times, and then
calling the digest method to compute a hash value of the input data. The same sequence of
events has been valid since the first specification of this API. However, several new message
digest algorithms have been implemented (e.g., the family of SHA-3 algorithms has been
introduced in Java 9). Others have been deprecated and considered insecure over the years
(e.g., algorithms MD2, MD5, and SHA-1 are not recommended anymore [16]).

1@Test
2public void testBlakeDigest() {
3try {
4MessageDigest md = MessageDigest.getInstance("BLAKE2B-512", "BC");
5md.update(data);
6byte[] res = md.digest();
7Assert.assertNotNull(res);
8}
9catch(Exception e) {
10org.junit.Assert.fail(e.getMessage());
11}
12}

Figure 1 Code snippet for computing a message digest using the JCA Bouncy Castle provider
(identified by the BC string).

Therefore, to correctly use JCA, developers must not only understand the expected
sequence of method calls for each cryptographic primitive, but which algorithms and providers
are available and are still considered secure. Cryptographic standards detail which algorithms
and algorithm configurations developers should use while implementing systems that deal
with sensitive information. Given the complexity related to the use of crypto APIs, existing
research uses static analysis tools to assess the correct usage of crypto APIs [22, 24,38] and
code generation to assist developers to correctly implement cryptographic tasks [25].

2.2 Cryptographic standards
A cryptographic standard details a set of recommendations related to the use of cryptographic
primitives. A few examples of cryptographic standards include:

FIPS Standards present a set of requirements from the American National Institute of
Standards and Technology (NIST) that should be considered when implementing security
modules for computational systems [34]. This set of standards suggest algorithms for
different primitives, including symmetric encryption, digital signatures, and message
digest.

BSI TR-021-102-1 is a technical guideline from the German Federal Office for Information
Security (BSI) that provides the results of a security assessment on cryptographic
algorithms. This assessment supports a long-term orientation on the use of cryptographic
mechanisms [16].

ECrypt TR-D5.4 details a set of recommendations about cryptographic algorithms and key
size. It is an effort from the Ecrypt Coordination and Support Action, an initiative from
the European Unions’ H2020 program [13].

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:5

2.3 CrySL: Assessing the Correct Usage of Cryptographic APIs
As can be seen from the above, applying cryptographic APIs within a software can have a
lot of potential for errors and developers require new techniques and tools to support the
use of cryptographic APIs. A research effort involving different institutions designed and
developed CogniCrypt, a suite of tools that leverages the specification language CrySL
to enable API experts to specify the correct usage of libraries. CogniCryptsast [24] is
a module of CogniCrypt that takes rules in CrySL and a target program as input and
uses state-of-the-art data-flow analysis [45–47] to identify deviations from these rules in this
program.

In its current version, CrySL allows cryptographic experts to specify how to instantiate
and use an object-oriented class that implements a cryptographic primitive. Figure 2 shows
the CrySL specification for the MessageDigest class of the JCA API.

1SPEC java.security.MessageDigest
2OBJECTS
3java.lang.String algorithm;
4byte[] data;
5byte[] digest;
6EVENTS
7g1: getInstance(algorithm);
8g2: getInstance(digestAlg, _);
9
10Gets := g1 | g2;
11
12u1: update(_);
13d1: out = digest();
14ORDER
15Gets, u1+, d1
16CONSTRAINTS
17algorithm in {"SHA-256", "SHA-384", "SHA-512", "BLAKE2B-512"};
18
19ENSURES
20digested[out];

Figure 2 CrySL rule for the MessageDigest JCA API (considering the default provider).

A CrySL rule explicitly states the class under specification in the SPEC clause. The
OBJECTS definition describes a list of object declarations. These objects might appear as
arguments to events or as variables assigned to the return value of an event. The EVENTS

section declares the methods of the class under specification that are relevant for specifying
the correct usage of the class. In particular, the order in which these (labeled) methods
should be called appears as a regular expression in the ORDER clause. Several operators can
be used to denote this regular expression. That is, supposing that we have events with labels
e1 and e2, we can combine these events using either the sequence operator (e1, e2) or the “or”
operator (e1 | e2). We can also state that one event is optional (e1?) or that an event might
either occur zero or more times (e1∗) or one or more times (e1+). It is also possible to define
aggregates (such as Gets := g1 | g2), which help with the definition of the ORDER clause.
The example of Figure 2 states that a developer must first call one of the getInstance()

methods (using the Gets aggregate) before calling the update() method at least once. After
that, the developer must conclude the computation of the message digest using the digest()

method. A CrySL compiler translates this regular expression into a state machine. After
that, the CogniCryptsast component [24] analyzes a system to verify if a sequence of calls
to a MessageDigest instance obeys the expected sequence of events of the ORDER clause.

ECOOP 2021

19:6 Dealing with Variability in API Misuse Specification

The CONSTRAINTS clause allows a cryptographic expert to define constraints on the objects
declared in a CrySL rule. For instance, the CrySL rule of Figure 2 states that the
algorithm used as parameter for the getInstance() methods should be evaluated to one
of the string literals that represent a “secure” message digest algorithm supported by the
JCA default providers: SHA-256, SHA-384, or SHA-512. Therefore, during the analysis of a
system, CogniCryptsast reports an error if it finds a call to the getInstance() method of
the MessageDigest class using a different algorithm (such as MD5). Finally, the ENSURES clause
of a CrySL rule allows a cryptographic expert to state a predicate that can be later used as
a pre-condition in a CrySL specification for a different class (using the REQUIRES construct
of CrySL). There are other CrySL constructs that we do not discuss here, and a reader
that is interested in a more detailed description should read the paper that introduced the
CrySL specification language [24].

Previous studies have shown the efficiency of using the CrySL approach in identifying
common misuses of cryptographic APIs [24], but considering only one specific set of CrySL
rules. Nonetheless, as we discuss in the remainder of this paper, CrySL rules should consider
possible sources of variability that might affect the specifications, including versions of APIs
and platforms and cryptographic standards.

3 Domain Analysis

To better understand the impacts of variability on API misuse specification, we conducted
a domain analysis [4, 36] that sought to understand reuse opportunities across Crypto-
API-usage specifications, considering different libraries, their different providers and their
different versions, different cryptographic primitives, and different cryptographic standards
– altogether corresponding to the sources of variability of our domain analysis. Domain
Analysis is a well-established set of activities in the software product line community. The
goal is to identify variability motivating the implementation of an infrastructure for software
reuse [4, 36].

3.1 Study Settings
We setup our study based on the following research questions:
RQ1 How do different APIs and their implementations (e.g., different JCA

providers) vary the specifications of the correct usage of cryptographic
primitives? Motivation: Previous studies using specification languages like CrySL
only considered the correct usage of the default providers for the JCA. These studies
report that almost 95% of Android applications that use cryptographic APIs present
at least one misuse of these APIs [24]. Answering RQ1 is relevant because alternative
providers such as Bouncy Castle support algorithms that are not supported by the
default providers. It is unclear whether findings of the previous CrySL studies remain
valid (particularly in the cases where an application explicitly uses a different provider).

RQ2 How do existing cryptographic standards vary the notion of secure or
compliant use of cryptographic libraries? Motivation: Although the use of
some cryptographic algorithms are considered insecure (e.g., MD5 and SHA-1), they are
still widely used in practice. There are many reasons for that, including compatibility
with existing legacy code and the lack of knowledge of developers about up-to-date
cryptographic algorithm recommendations. In addition, current security standards (such
as FIPS and ECrypt) present recommendations about which algorithms should be used
now and in a near future. Answering RQ2 helps us to construct a baseline regarding

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:7

how secure existing application are when considering existing standards. Moreover,
RQ2 helps to understand the relevance of security standards to the specification of the
correct usage of cryptographic APIs.

RQ3 How does the evolution of a cryptographic library vary its correct usage
over time? Motivation: Answers to RQ3 will bring new insights about how to
specify policies and static analysis tools that aim to guarantee the correct usage of
cryptographic APIs, considering that they might evolve along the way. Moreover,
answering RQ3 might provide evidence that the evolution of APIs must be considered
when specifying their correct usage.

To answer the RQs, we first conducted a domain analysis on the specification of the
correct usage of Cryptographic APIs. We first read the documentation of APIs and looked at
code examples (including test cases) that use Java (JCA, Bouncy Castle, and Google Tink)
and C/C++ (OpenSSL and wolfCrypt) cryptographic libraries. We then built a general
understanding about how different sources of variability might influence our domain, i.e., the
domain of specification of the correct usage of cryptographic APIs.

API-DIFF

API-Evolution

Prolog
Database

Input

Figure 3 Approach for mining the evolution of Java Cryptographic APIs.

Figure 3 shows the general workflow that we use to mine the evolution of Java
cryptographic libraries (JCA, Google Tink, and Bouncy Castle). We leverage apidiff [7, 8]
and our own static analysis tool to mine classes and methods available per API release and
the patterns of changes along the evolution of the libraries. We populate all this information
into a Prolog database of facts and rules that allow us to answer questions concerning both
newly introduced algorithms as well as deprecated ones for specific versions of a given library.
Introducing and removing new primitive algorithms suggest that there should exist CrySL
rules for every version of that API that introduces a change. Using a customized version of
apidiff, we also investigated breaking changes [6,8,49], that is, changes between consecutive
releases of an API that break the client code. Next, we execute queries into this database
and export the results to CSV files to analyze and understand the evolution of crypto APIs.

3.2 Analysis Results
RQ1: Variability Due to Different Cryptographic APIs

We started our domain analysis by exploring different cryptographic APIs (e.g., JCA, Google
Tink, and Bouncy Castle, Open SSL and wolfCrypt). We soon realized that these APIs
differ significantly in terms of design principles and decisions. For instance, the design of
the JCA considers flexibility as a key element. Developers are responsible for specifying
the configurations of keys and algorithms as well as modes of operations they want to use,

ECOOP 2021

19:8 Dealing with Variability in API Misuse Specification

1byte[64] digestData(byte input[64]) {
2byte digest[64];
3Blake2b b2b;
4wc_InitBlake2b(&b2b, 64);
5wc_Blake2bUpdate(&b2b, input, sizeof(input));
6wc_Blake2bFinal(&b2b, digest, 64);
7return digest;
8}

Figure 4 Function for hashing a byte array using Blake2b.

which has proven to be challenging to developers. Certain configuration problems might
only appear at runtime adding to the complication. The design decisions of Google Tink,
on the other hand, favor simplicity, instead of flexibility. This way, there is a small set of
key / algorithm configurations available, and the developer is encouraged to use one of these
configurations, in order to avoid possible API misuses.

In comparison to Google Tink, C/C++ libraries are yet more restricted. That is, OpenSSL
and wolfCrypt define specific functions for each algorithm. The code snippet in Figure 4
shows how to use the wolfCrypt library to generate a hash of an input data using the Blake2b
algorithm. There are several calls to functions that are specific to this algorithm. Since the
different implementations of message digest algorithms in wolfCrypt do not share a common
interface, the code of the digestData function is not flexible. In the case a developer has to
change the message digest algorithm, she would have to rewrite the entire function.

Based on our analysis of the different APIs, we understand that it is difficult to reuse usage
rules across different APIs and languages. Nonetheless, we found some opportunities to reuse
CrySL rules across different JCA providers and within the Google Tink and Bouncy Castle
libraries. These opportunities mostly arise due to existing security standard recommendations
(we can customize the specifications that address either FIPS or ECrypt recommendations,
for instance), due to the evolution of the API implementations, and due to the similarity
we found among different primitives and primitives’ implementations. We present some
examples of these situations in the remainder of this section.

There is no clear opportunity for reusing the specifications of the correct usage of
cryptographic libraries across different APIs and languages.

RQ2: Variability Due to Cryptographic Standards

Existing technical reports and standards present a series of recommendations about which
cryptographic algorithms (and respective key configurations) should be used in applications.
These technical reports characterize a valuable source of information to indicate whether
a given system is “secure according to a given standard”. Moreover, (some) existing
cryptographic APIs (e.g., wolfCrypt and Bouncy Castle) comply to the FIPS certifications –
and using a certified library according to the standard recommendations might represent a
competitive advantage for products in specific domains. For instance, FIPS 140-2 validation
is mandatory for use in the US Federal systems that collect or store sensitive information.3

We found that existing standards introduce a source of variability in usage specifications.
This source of variability occurs because sets of algorithms (and algorithm modes) are
recommended by some standards, but not in others. Message digests represent one point

3 https://csrc.nist.rip/groups/STM/cmvp/

https://csrc.nist.rip/groups/STM/cmvp/

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:9

in variability as Table 1 shows. All standards mentioned in Section 2.2 specify secure hash
algorithms that may be used to process a message and produce a condensed representation
(a message digest). However, they do not all recommend the same.

Table 1 Recommendations for using different message digest algorithms.

Algorithm FIPS BSI ECrypt

MD5 ✗ ✗ ✗

SHA-1 ✗ ✗ ✗

SHA-224 ✓ ✗ ✗

SHA-256, 384, 512 ✓ ✓ ✓

SHA-512/224 ✓ ✗ ✗

SHA-512/256 ✓ ✓ ✓

SHA-3/(256, 384, 512) ✓ ✓ ✓

Shake128, Shake256 ✓ ✓ ✓

Whirlpool ✗ ✗ ✓

Blake ✗ ✗ ✓

If we were to encode these standards in CrySL, we would need to model them in three
distinct rules that nonetheless largely overlap. Let us discuss these rules in more detail.
First, consider the default CrySL specification for the MessageDigest class of the JCA, when
considering the default provider (Figure 2). In this case, the set of supported algorithms on
Line 17 is limited to the default algorithms of JCA.

In case we specify aforementioned standards, we would have to consider using the Bouncy
Castle JCA provider – since the default provider does not support some of the algorithms in
Table 1 (such as Whirlpool and Blake), and change that line to consider the recommended
algorithms of each standard, as we show in Figures 5. In this particular case, it is possible to
reuse almost all the CrySL specification of Figure 2, changing only the algorithm constraint
based on the supported standard / technical report. We name this kind of variability
Variability on Set Constraints .

Bouncy Castle provides a lightweight API on top of the providers for JCA 4. Considering
the Lightweight Bouncy Castle API, one is required to write a CrySL rule for each primitive
implementation, as shown in Figure 6 for SHA256 and SHA512. Instead of one specification
for each cryptographic standard (varying the supported algorithms), there are several CrySL
rules for each cryptographic standard (one per supported primitive implementation). The
variability here relates to the classes that implement the message digest primitives and
the Lightweight Bouncy Castle API implements the individual algorithms in a distinct
class. However, the corresponding CrySL specifications vary only according to the base
class (in the example, SHA256Digest and SHA512Digest). We name this kind of variability
Variability on the Base Specification Class .

The specification of the correct usage of cryptographic APIs should consider the
recommendations of individual cryptographic standards. The impact on the specifications
due to a cryptographic standard depends on the API.

4 https://www.bouncycastle.org/

ECOOP 2021

https://www.bouncycastle.org/

19:10 Dealing with Variability in API Misuse Specification

SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in {"SHA-224", "SHA-256", "SHA-384", "SHA-512", "SHA-3", "Shake-128", "Shake-256"};

ENSURES
digested[out];

(a)
SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in {"SHA-256", "SHA-384", "SHA-512", "SHA-3", "Shake-128", "Shake-256"};

ENSURES
digested[out];

(b)
SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in {"SHA-256", "SHA-384", "SHA-512", "SHA-3", "Shake-128", "Shake-256", "Whirlpool",

"Blake2s", "Blake2b"};
ENSURES

digested[out];

(c)

Figure 5 CrySL rules for the MessageDigest JCA (considering the Bouncy Castle provider and the
(a) FIPS recommended algorithms, (b) BSI recommended algorithms, and (c) ECrypt recommended
algorithms).

RQ3: Variability Due to the Evolution of the APIs

We conduct this study using the approach introduced in Section 3.1, to identify cryptographic
algorithms introduced/removed and in turn the breaking changes between two public releases
of an API. In this case we considered three APIs: JCA, Lightweight Bouncy Castle, and
Google Tink. These APIs already have CrySL specifications for them.

Specifically, we mine the evolution history of 15 releases of the Lightweight Bouncy Castle
(v.1.46 to v.1.60), all available in the Maven Central Repository.5 Later we summarize some
findings related to the evolution of the Google Tink and JCA.

The classes that implement the cryptographic primitives in Lightweight Bouncy
Castle implement one of the existing interfaces declared in the Java package
org.bouncycastle.crypto, including the Digest, Mac, and BlockCipher interfaces. In the
last Bouncy Castle release considered in our analysis (release 1.60), we identified more
than 140 primitive implementations, among them 45 implementations of the BlockCipher

interface.6 Block cipher (45), message digest (29), message authentication code (18), and
stream cipher (21) are the primitives with the most algorithm implementations.

Figure 7 shows the evolution in the number of implementations for these primitives. We
can see that almost all releases introduce at least one new primitive implementation. For
instance, release 1.47 introduced a new implementation of the Mac primitive, while release

5 https://search.maven.org/
6 We analyzed these BlockCipher implementations and we found classes that implement cipher algorithms

(e.g., AES and Blowfish) and cipher modes (e.g., CBC and GCM).

https://search.maven.org/

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:11

1SPEC SHA256Digest

2
3OBJECTS
4byte input;
5byte[] out;
6int outOff;
7
8EVENTS

9c : SHA256Digest();

10u : update(input);
11f : doFinal(out, outOff);
12
13ORDER
14c, u+, f
15
16ENSURES
17digested[out];

(a)

1SPEC SHA512Digest

2
3OBJECTS
4byte input;
5byte[] out;
6int outOff;
7
8EVENTS

9c : SHA512Digest();

10u : update(input);
11f : doFinal(out, outOff);
12
13ORDER
14c, u+, f
15
16ENSURES
17digested[out];

(b)

Figure 6 Specification of CrySL rules for the message digest classes in the Bouncy Castle
lightweight API. We will have to elaborate one specification for each supported algorithm of a
standard / technical report.

1.59 introduced five new block ciphers, one new message digest, and three new stream ciphers.
Only releases 1.52, 1.56, and 1.60 did not introduce any new such primitive.

The existence of different implementations of a given primitive has an influence on the
specifications of the correct usage of an API. Consider again the test case method on Figure 1.
This example uses the Bouncy Castle JCA provider (named “BC”) for generating a digest of
an input data using the Blake2b algorithm. However, this algorithm was first introduced in
the release 1.53 of Bouncy Castle. If one executes this test case using an earlier release (e.g.,
1.51 or 1.52), the test case fails with a NoSuchAlgorithmException. Therefore, the CrySL
specification of Figure 5(c) is not compliant with the releases of Bouncy Castle prior to 1.53.

What is considered correct usage of an API depends on the specific versions of the API.

We also analyzed the changes in the Bouncy Castle API that might cause an undesired
effect on the client systems [49] and identified breaking changes. Breaking changes include
removing a public method, renaming a public method, and reducing visibility of a method.
A catalog of these changes could be found elsewhere [11]. We only consider the twelve
releases from 1.49 until 1.60 because these releases are available in the public Git source code
repository of Bouncy Castle.

Using the same approach of previous works [7,8,49], we found 1.733 scenarios of breaking
changes – considering all pairs of successive releases. We document them all in Figure 8.
In total, we identified 1.162 removals of public methods (67% of all breaking changes). All
releases feature at least one. Similarly, all releases change the return type of at least one
method. There are a total of 128 occurrences. Other common breaking changes are change
in exception list (172 cases), renaming a public method (130 cases), and reducing visibility
of a method (92 cases). The remaining 49 breaking fall into other categories. Four pairs of
successive releases contribute with 74.49% of the breaking changes: 1.58–1.57 (210 cases),
1.57–1.56 (364 cases), 1.51–1.50 (389 cases), and 1.50–1.49 (328 cases). We did not find any
evidence that one specific release accounts for a major redesign of the Bouncy Castle library.

ECOOP 2021

19:12 Dealing with Variability in API Misuse Specification

1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60

0
10

20
30

40
50

Release

A
lg

or
ith

m
 Im

pl
em

en
ta

tio
ns

Block Cipher
Mac
Message Digest
Stream Cipher

Figure 7 Evolution in the number of algorithm implementations in Bouncy Castle.

Based on these numbers, one might conclude that, despite its long history, Bouncy Castle
is an unstable library. This conclusion would be true if developers depended on the public
interfaces of the classes that present breaking changes. However, when we consider only the
Java interfaces that define the contract of cryptographic primitives (such as the Digest and
BlockCipher interfaces), we found that the Bouncy Castle library is quite stable. Considering
all releases, we only identified 34 breaking changes (12 occurrences of removing a public
method, 9 occurrences of changing the return type of a public method, 7 occurrences of
renaming a public method, 4 occurrences of reducing visibility of a method, and 2 occurrences
of changing the exception list of a method). Yet, we do not know whether or not developers
only rely on these “high level” interfaces.

We found 1.733 breaking changes along 11 public releases of Bouncy Castles. However,
considering the core interfaces of the library, we only found 34 breaking changes that
might also induce changes on CrySL specifications.

Method updates like renaming/removing/adding methods requires changes to the event
section of CrySL specifications. We name this variability as Variability on Event Sets .

We further investigated whether the Google Tink library is more stable: the public
interfaces of the classes are almost unchanged between the release 1.0.0 (published in
September 2017) and the release 1.2.1 (published in November 2018). During this period,
we found 50 breaking changes – 43 from version 1.0.0 to version 1.1.0, which might indicate
a slight revision on the first design of the library. Between these first initial releases, we
identified 14 removed methods. Nevertheless, the most critical change regarding CrySL
specifications was the introduction of the Deterministic AEAD algorithm on version 1.1.0.
This type of variability is modular and involves only the selection of a set of CrySL
specifications (hereafter referred to as Modular Selection of CrySL Rule). Although not
common, we also identified some variability due to the key templates available across the
different versions of Google Tink. The current CrySL specifications for Google Tink can
deal with the introduction of key templates that modify the events in the specifications
(using the Variability on Event Sets strategy).

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:13

0
20

0
40

0
60

0
80

0

Changes
Remove Method
Change in Exception List
Rename Method
Change in Return Type Method
Lost Visibility
Move Method
Inline Method
Add Final Modifier
Remove Static Modifier
Change in Parameter List
Push Down Method

Figure 8 Total number of breaking changes in the Bouncy Castle API.

Finally, we also considered the evolution of JCA from Java 4 to Java 9. To this end,
we analyzed the classes related to the cryptographic primitives available in three standard
Java libraries: rt.jar, jce.jar, and sunjce_provider.jar, considering official releases of the
Java language. This API is highly stable as it is based on an official Java specification. For
instance, the public class interfaces of the JCA do not present any breaking change, and
from Java 5 (2005) to Java 9 (2017) the interface of the java.security.MessageDigest class
did not change. In Java 7, three additional methods that can be used for ciphering a text
with additional authentication data (AAD) were introduced in the class javax.crypto.Cipher.
Although the APIs are stable, new primitive algorithms have been introduced along these
versions. For instance, eight new ciphers and six new MAC algorithms have been introduced
in the JCA, from Java 4 to Java 9.

4 Meta-CrySL

4.1 Design and Implementation Procedures
We used the outcomes of our domain analysis to design and implement Meta-CrySL.
Meta-CrySL provides means for the systematic reuse of CrySL specifications. To this
end, Meta-CrySL allows the specification of CrySL rules enriched with variation points
(such as meta-variables and type parameters) and refinement operations that solve these
variation points for a given configuration (e.g., version of an API or platform, security
standard, and so on). Meta-CrySL generates a set of CrySL rules tailored for a given
configuration.

We implemented Meta-CrySL using Rascal-MPL [23]. One of the main design decisions
was to implement three distinct languages: one for abstract CrySL specifications (i.e.,
CrySL with variation points), one for CrySL refinements, and one for representing a
configuration model. The configuration model states a set of abstract CrySL specifications
and refinements. We use a program-generator approach to combine instances of the refinement
and configuration languages, and to output regular CrySL specifications. These regular
specifications can directly be used with CogniCrypt’s infrastructure for CrySL specifications.
The following set of high-level requirements guided the design of Meta-CrySL.

1. Meta-CrySL follows a meta-programming approach: we write Meta-CrySL
specifications and generate regular CrySL specifications from them. Using this design
allows us to preserve all CogniCryptsast infrastructure.

2. Meta-CrySL should support the sources of variability discussed in the previous section,
so that we can generate CrySL rules for different standards and versions of the APIs.

ECOOP 2021

19:14 Dealing with Variability in API Misuse Specification

3. Meta-CrySL should also favor reuse among specifications of the same API, reducing the
effort in the case that an API supports many algorithms (as for instance Bouncy Castle).

4.2 High-level Architecture
Figure 9 shows the architecture of Meta-CrySL, which follows a multi-staged pipeline for
language processing [35], where a module loads a Meta-CrySL configuration that specifies
a set of extended CrySL specifications and a set of refinements that should be used during
the building process of a specific set of CrySL rules. After that, the Loader module parses
the sets of extended CrySL and refinement files, generating abstract representations of these
languages as instances of Rascal-MPL algebraic data types (in the following sections we
detail these languages). The Preprocessor module manipulates these instances executing the
refinement operations, using visitors for program transformations. That is, the Preprocessor
solves Meta-CrySL variability and generates an abstract representation of CrySL rules.
Finally, the Pretty Printer module outputs regular CrySL specification files.

Loader
Configuration

Pre Processor Pretty
Printer

Rules

Refinements

CrySL
Rules

MetaCrySL

Figure 9 High-level architecture of Meta-CrySL.

4.3 Abstract CrySL Language
Abstract CrySL is an extension of the CrySL language that allows cryptographic specialists
to write variation points on the CrySL rules, for instance, in terms of meta-variables and
type parameters. Figure 10 shows an example of an instance of the abstract CrySL language,
modelling variability on CrySL rules for the JCA MessageDigest class. The main source of
variability in this case relates to the sets of algorithms that might change due to a specific
standard or version of the provider implementation (recall the specifications in Figure 5).
The abstract CrySL rule of Figure 10 introduces the concept of meta-variables, which are
bound during the derivation process of CrySL rules. In the example, we can bind the
meta-variable $AlgSet to the sets of algorithms supported by a given standard (e.g., FIPS,
EuroCrypt, or BSI) or specific version of an API.

To deal with Variability on the Base Specification Class , we use template-based type
parameters, similarly to the mechanism of type expansion supported by C++ templates. As
such, when solving this type of variability, we actually generate different copies of a CrySL
rule, one for each concrete type that appears in the refinement specifications.

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:15

SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in $AlgSet;

ENSURES
digested[out];

Figure 10 Use of meta-variables to deal with Variability on Set Constraints .

Using the abstract specification of Figure 11, we generated six CrySL rules for different
Google Tink primitive’s implementations. We also used the same strategy to factor out
existing CrySL rules for the message digest primitive of the Lightweight Bouncy Castle API.
Each one of these CrySL rules has about 40 lines of code. Using Meta-CrySL, we were
able to specify each variant using 4 lines of code (three lines of refinements and one line of
the configuration language).

ABSTRACT SPEC AbstractFactory<T>
OBJECTS
com.google.crypto.tink.KeysetHandle ksh;
<T> primitive;

EVENTS
gp : primitive = getPrimitive(ksh);

ORDER
gp

REQUIRES
generatedKeySet[ksh];

ENSURES
setPrimitive[primitive];

Figure 11 Use of type parameters to deal with Variability on the Base Specification Class .

4.4 Refinement Language
Our refinement language allows cryptographic experts to specify transformations on the
Meta-CrySL rules, to solve variation points. Considering the discussion of the previous
section, Meta-CrySL supports two types of syntactic variation points: meta-variables
and type parameters. In addition, it is also possible to introduce new events (and events
aggregates), to introduce new constraints, and to replace the events’ order of a Meta-CrySL
specification. The refinement language expects a base specification and a list of refinement
elements.

The current implementation of Meta-CrySL supports different refinement
transformations, for instance, transformations that support the kinds of variability discussed
in the previous section:

Define literal set binds a meta-variable to a literal set, such as SHA512, Blake2b,

Blake2s. We use this transformation to solve Variability on Set Constraints .
Define qualified type binds a fully qualified type to a type parameter of a Meta-CrySL
specification. This transformation solves Variability on the Base Specification Class .
Add new event introduces a new event into a Meta-CrySL specification. We use this
transformation to solve Variability on Event Sets . Similarly, the refinement language
also supports operations to add (remove or update) constraints and requires/ensures
clauses.

ECOOP 2021

19:16 Dealing with Variability in API Misuse Specification

1SPEC MessageDigest REFINES java.security.MessageDigest {
2define AlgSet = {"Blake2s", "Blake2b", "GOST-3411", "SHA-256", "SHA-384",
3"SHA-512", "Whirlpool"};
4}
5SPEC KeyGenerator REFINES javax.crypto.KeyGenerator {
6define AlgSet = {"AES", "BLOWFISH", "HmacSHA256", "HmacSHA384", "HmacSHA512",
7"RIJNDAEL", "Serpent"};
8add constraint alg in {"AES"} => keySize in {128, 192, 256};
9}

Figure 12 Example of refinement specifications for the Bouncy Castle JCA Provider.

1SPEC SHA256 REFINES
2Digest<org.bouncycastle.crypto.digests.SHA256Digest>;
3SPEC SHA384 REFINES
4Digest<org.bouncycastle.crypto.digests.SHA384Digest>;
5SPEC SHA512 REFINES
6Digest<org.bouncycastle.crypto.digests.SHA512Digest>;
7SPEC SHA512t REFINES
8Digest<org.bouncycastle.crypto.digests.SHA512tDigest>;

Figure 13 Example of refinements that bind a type parameter for the set of message digest
specifications for the Lightweight Bouncy Castle API.

Figure 12 shows two examples of refinement specifications. The first refines the
MessageDigest CrySL specification of Figure 10, binding the meta-variable AlgSet to a
set of message digest algorithms supported by the Bouncy Castle JCA provider. The second
refinement specification KeyGenerator also defines a set of algorithms supported by the Bouncy
Castle JCA provider and also introduces a new constraint which refers to two variables of
the base specification (not illustrated in this paper): alg and keySize. The constraint states
that if alg = AES, the variable keySize must be a value in the set {128, 192, 256}.

Figure 13 shows a set of refinement specifications that are used for generating CrySL
rules for different message digest algorithms supported by the Lightweight Bouncy Castle
API. Each refinement specification generates a different CrySL specification, binding a type
parameter with the full qualified name of a class that implements a message digest algorithm.
In this scenario, we are able to solve all variability using only type parameters, and thus the
body of the refinement specifications is empty.

It might be necessary to add further refinement transformations in the future. To
implement a new transformation, one would have to modify three Rascal-MPL modules,
being necessary to specify the concrete and abstract syntax of the transformation in the
refinement language and to implement a new function with the expected behavior of the
transformation (Preprocessor module). In case one needs to introduce a new syntactic
CrySL variation point, this is possible by modifying the abstract and concrete syntax of
the abstract CrySL language. We have already implemented six transformations, each one
having around ten lines of code.

4.5 Meta-CrySL Configurations
We use a configuration language to specify the Meta-CrySL building process. Figure 14
shows an example, which states the base path where the Meta-CrySL implementation could
find the specifications and refinements (Line 2), the output path of the resulting CrySL
specifications (Line 3), and the sets of abstract CrySL rules and refinements that should

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:17

1 config android25plus {
2 src = MetaCrySL/samples/jca/base/;
3 out = MetaCrySL/samples/jca/android/target/research/25plus/;
4 load spec base/;
5 load refinement android-bsi/01plus/;
6 load refinement android-bsi/10plus/;
7 load refinement android-bsi/1025/;
8 }

Figure 14 Example of a configuration that specifies the rules and refinements target to the
version 25 of Android.

be considered during the building process (Lines 4–7). In the example, all CrySL rules
reside in the base directory. One may also specify individual rules instead of a directory. The
specification of a building process allows cryptographic experts to reuse the same specifications
and refinements in different configurations. That is, from the same set of Lightweight Bouncy
Castle specifications and refinements, we can create different configurations and generate
distinct sets of CrySL rules. For this flexibility, we opted for such a configuration language
instead of a convention-based mechanism.

5 Empirical Assessment of Meta-CrySL

The goal of this empirical assessment is to understand the implications of Meta-CrySL
in modularizing the specifications of the correct usage of the JCA API for Android, and
thereby evaluating Meta-CrySL along the lines of compactness. Additionally, we also
use the empirical assessment to investigate whether or not Meta-CrySL generates correct
CrySL specifications, focusing on the correctness dimension. Accordingly, we answer the
following research questions in this empirical assessment, where RQ4 and RQ5 relate to
compactness and RQ6 explore the correctness perspective:
RQ4 How many lines of CrySL code can one save when writing Meta-CrySL specifications?
RQ5 How much duplication of specifications is eliminated by using Meta-CrySL in

comparison to CrySL?
RQ6 What are the implications of instantiating CrySL rules from Meta-CrySL

specifications, observing the number of API misuses CogniCryptsast analysis reports?

Answering RQ4 and RQ5 allows us to quantify the main expected benefit of Meta-
CrySL: modularizing families of CrySL specifications with the aim of specification reuse.
Answering RQ6 allows us (a) to contrast the difference in the number of reported API
misuses when evaluating programs using different Meta-CrySL configurations and (b) to
check the correctness of our approach for generating CrySL rules (since CogniCryptsast
will reject any invalid CrySL rule). In this assessment, we used Meta-CrySL to modularize
a family of CrySL specifications supporting different versions of the Android platform and
three sets of cryptographic recommendations:

Android Base recommendations: constrains the algorithms that should be used for
each version of the Android platform, as detailed in the Android Cryptography Guide
specification.7

7 Android Cryptography Guide: https://developer.android.com/guide/topics/security/cryptography

ECOOP 2021

https://developer.android.com/guide/topics/security/cryptography

19:18 Dealing with Variability in API Misuse Specification

Table 2 Sets of cryptographic rules considered in our study.

Config. Id Primitives Android Platform Version Crypto Standard
C01 All primitives 01 – 08 Android Base recommendations
C02 All primitives 01 – 16 Android Base recommendations
C03 All primitives 01 – 28 Android Base recommendations
C04 All primitives 01 – 08 Android BSI Standard recommendations
C05 All primitives 01 – 16 Android BSI Standard recommendations
C06 All primitives 01 – 28 Android BSI Standard recommendations
C07 All primitives 01 – 08 Android CogniCrypt recommendations
C08 All primitives 01 – 16 Android CogniCrypt recommendations
C09 All primitives 01 – 28 Android CogniCrypt recommendations

Android BSI standard recommendations: constrains the algorithms considering the
BSI standard and the set of Android Base recommendations. The set of Android Base
recommendations must be considered because not all BSI recommended algorithms are
available in every version of the Android platform.
Android CogniCrypt recommendations: constrains the algorithms according to
the current CrySL specifications from the CogniCrypt project and the set of Android
Base recommendations. The set of Android Base recommendations must be considered
because not all CogniCrypt recommended algorithms are available in every version of the
Android platform.

Specifying the correct usage of the JCA for Android is an interesting scenario for using
Meta-CrySL, in particular because the correct usage of cryptography in Android depends
on the version of the Android platform. Moreover, to answer our research question RQ6, this
decision allows us to leverage the same dataset of Android applications that was previously
used to empirically assess CrySL [24]. This dataset comprises 8,136 Android applications,
though we could not collect the output of the CogniCryptsast for at least one configuration
in a subset comprising 507 of these Android apps. For this reason, we consider a smaller set
of 7,629 Android apps. From our Meta-CrySL specifications, we can generate hundreds of
configurations. Since it is computationally expensive to run CogniCryptsast on a dataset
with thousands of Android apps, we decided to conduct our assessment with the nine
configurations shown in Table 2. Each configuration supports all cryptographic primitives
(JCA supports 32 primitives in total, including Block Cipher and Message Digest), one of
three distinct ranges of versions of the Android platform (01 – 08, 01 – 16, 01 – 28), and one
of the cryptographic recommendations.

We answer research questions RQ4, RQ5, and RQ6 through the use of metrics. For
RQ4 we compute (a) the total number of lines in Meta-CrySL necessary to specify the
sets of configurations of Table 2 and (b) the resulting lines of specifications in CrySL that
we generate using the Meta-CrySL specifications. We then compute how many lines of
specification text we save using Meta-CrySL. For RQ5 we estimate the total number of
duplication in the Meta-CrySL specifications, as well as in the generated CrySL rules. We
answer RQ6 using the total number of rule violations that CogniCryptsast finds in the
dataset of Android applications when using each distinct set of CrySL rule configurations.

5.1 RQ4: How many lines of CrySL code can one save when writing
Meta-CrySL specifications?

In RQ4, we investigate the benefits of using Meta-CrySL w.r.t. removing the redundant
code that one would write when specifying the sets of CrySL rules describing the correct
usage of cryptographic APIs – tailored to the nine configurations in Table 2. Figure 15

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:19

summarizes the total number of lines needed to write the Meta-CrySL specifications,
refinements, and configurations as well as the total number of lines of specifications generated
by Meta-CrySL and that could be used to execute CogniCryptsast with the distinct
configurations. In this case study, we wrote 1,407 lines in Meta-CrySL (762 lines of Meta-
CrySL specifications, 540 lines of Meta-CrySL refinements, and 105 lines of Meta-CrySL
configurations), and generated 7,105 lines of CrySL rules for those configurations, saving
80% of lines.

0

2000

4000

6000

Generated CrySL rules MetaCrySL

Li
ne

s
of

 s
pe

ci
fic

at
io

n
te

xt

Type

configurations

refinements

specifications

Figure 15 The total number of lines of code necessary to specify the nine configurations in
Meta-CrySL (including Meta-CrySL specifications, Meta-CrySL refinements, and Meta-CrySL
configurations) and the total number of lines of CrySL code generated.

Meta-CrySL removed 80% of the redundancy induced when writing all the CrySL
rules tailored to the specific configurations considered in our study.

The Meta-CrySL payoff tends to increase when defining new configurations, since one
would then generate further instances of CrySL from the same set of Meta-CrySL rules
and refinements. Figure 16 shows how many lines of CrySL specification we generate after
introducing each configuration in Table 2. In terms of lines of specification text, we achieve
a payoff after generating the second configuration (C02).

5.2 RQ5: How much duplication of specifications is eliminated by using
Meta-CrySL in comparison to CrySL?

In total, there were 188 files (including refinements and configurations) of base Meta-CrySL
specifications for the JCA use in Android. These files contained 1407 lines of specifications,
out of which 633 lines were duplicates, resulting out of 156 individual lines. In comparison,
the corresponding CrySL specifications for three families of Android configurations (BSI,
CogniCrypt, Base) each comprising specifications for three versions (0108, 0116, 25plus)
contributed to 7,105 lines of specifications spread across 288 files. Out of these, 5,579 lines
of specifications were duplicates resulting out of 546 unique lines.

ECOOP 2021

19:20 Dealing with Variability in API Misuse Specification

Figure 16 Evolution of the total lines of generated CrySL specification text after introducing
each configuration. The red line corresponds to the total number of lines of Meta-CrySL used to
generate the configurations.

The amount of duplicate lines of specifications for a family of CrySL specifications
is 5,579 in comparison to 633 for Meta-CrySL specifications for the same family
(11.34%).

Most of the duplication in Meta-CrySL arises because we specified all Meta-CrySL
refinements for the three families of Android configurations (BSI, CogniCrypt, and Base)
which could be prevented by writing carefully crafted refinements. Specifically, out of the
1407 lines of specifications, only 97 lines and 85 lines of duplicates resulted from the base
Meta-CrySL specifications and configurations – 451 of the 633 duplicates resulted from
refinements for individual versions.

5.3 RQ6: What are the implications of instantiating CrySL rules from
Meta-CrySL specifications, observing the number of API misuses
CogniCryptsast analysis reports?

Our research question RQ6 explores the results of CogniCryptsast for the nine configurations
(C01 – C09). We concentrate our analysis on the violations related to the CONSTRAINTS section
of CrySL rules, mostly because cryptographic standards do not address other sections.
Table 3 summarizes the results of the analysis, showing the number of Android apps using
the JCA APIs, the number of Android apps using the JCA APIs incorrectly (i.e., presenting
at least one misuse), the rate of vulnerable Android apps (calculated using the previous
two), and the total number of violations. The results of CogniCryptsast reveal a significant
number of apps with at least one JCA API misuse in all configurations – more than five
percent of the apps present at least one misuse in the more permissive Android Base sets of
recommendations. This number jumps to more than 45% when considering the BSI or the
CogniCrypt recommendations.

The total number of violations when considering the set of Android Base recommendations
is substantially smaller than the total number of violation found using the other configurations
(Android-BSI and Android-CC configurations) and most of the violations in the Android
Base configurations relate to the Cipher primitive. For instance, when one only considers

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:21

Table 3 Summary of the findings of CogniCryptsast for the different CrySL configurations.

Configuration Apps Apps Presenting (Rate %) # Violations
Using JCA Misuse

Android Base 0108 6,714 545 8.12 1,083
Android Base 0116 6,714 395 5.88 1,224
Android Base 25plus 6,714 386 5.75 830
Android BSI 0108 6,714 3,184 47.42 9,089
Android BSI 0116 6,714 3,155 46.99 8,905
Android BSI 25plus 6,714 3,155 46.99 8,873
Android CogniCrypt 0108 6,714 3,261 48.57 9,077
Android CogniCrypt 0116 6,714 3,260 48.56 8,975
Android CogniCrypt 25plus 6,714 3,256 48.50 8,945

the “Android Base 25plus” configuration, 548 out of 830 violations are either due to the
use of an insecure cipher algorithm (such as DES or DESede) or due to the use of an
insecure algorithm/mode/padding configuration (e.g., AES/CBC/NoPadding). This changes
when one considers the other sets of recommendations (from Android BSI and Android
CogniCrypt). There, most of the violations relate to the Message Digest primitive. For
instance, considering the Android BSI 0116 configuration, one finds 6,272 violations due to
insecure message-digest algorithms (e.g., MD5 and SHA-1) – this corresponds to 70.43% of
all violations one finds with this particular configuration.

Regarding the differences between the Android BSI and Android CogniCrypt families
of CrySL rules we found some modes of operations that are not mentioned in the BSI
standard (e.g., RSA/ECB/PKCS1Padding) but that are considered secure and recommended
in CogniCrypt. The Message Authentication Code (MAC) primitive also brings differences
in the number of violations when comparing the BSI and CogniCrypt recommendations.
Actually, the BSI standard makes clear that the HMAC scheme should only be used with
the SHA-2 or SHA-3 families of hash functions, though the algorithms HmacMD5 and HmacSHA1

are allowed by the CogniCrypt configurations.
We also found some differences when considering the particular platform versions. For

instance, until version 10 of the Android platform, developers must use the TLS8 algorithm
for SSLContext. This led to 169 additional violations regarding the incorrect usage of the
SSLContext class in the “Android Base 0108” configuration, in comparison to “Android Base
0116” and “Android Base 25plus”. In more detail, 161 apps use either the SSL or TLSv1

algorithms (both introduced in version 10) and eight apps use either TLSv1.1 or TLSv1.2

(both introduced in version 10). These violations do not occur in the remaining “0116” and
“25plus” configurations. We also found similar divergences on the platform version related to
other cryptographic primitives.

It is important to note that, although version 8 was released in May 2010 already, in
order to increase compatibility with a broader range of devices, most apps in our dataset
are still configured to use this version as the minimum version. The observation that the
number of violations for the “Android Base 0108” configuration is higher compared to the
the “Android Base 0116” and “25plus” configurations might indicate that some apps use
cryptographic algorithms that are not available in their minimum version. This would then
lead to a runtime exception. In summary:

8 TLS is a protocol that provides authenticated encryption for data connections.

ECOOP 2021

19:22 Dealing with Variability in API Misuse Specification

The experiments showed a significant difference when considering the different versions of
the platform for the Android Base configurations. Yet, the Android Base configurations
are much less restrictive then those of the BSI and by CogniCrypt in general. We
found slight differences in the results of CogniCryptsast when considering the
recommendations from BSI and CogniCrypt. Although the differences are not that
large, this result still suggests that one can benefit from tailoring the specifications of
the correct usage of cryptographic standards according to the different guidelines.

6 Threats to Validity

In this section, we present some limitations and possible threats to the validity of our
work. Since our research focuses on cryptographic libraries only, we need to discuss the
applicability of our approach to other domains. The choice of this domain was motivated by
our previous experience using CrySL to specify the correct usage of cryptographic APIs.
We was challenged by the fact that new algorithms are frequently designed and old ones
might become deprecated [5]. In addition, cryptographic standards are frequently updated –
in particular to state that an algorithm vulnerability has been found and reported.

We believe that our approach can also be used for APIs that target other domains as well,
even though we did not systematically investigate this question. First, APIs from different
domains evolve along the time, and as we discussed throughout this paper, API evolution has
an impact on the correct usage of libraries. Second, there are different recommendations on
the proper usage of each popular API. For instance, there are many guidelines discussing the
correct usage of the Java Persistence API [26,30] – and individual companies might also take
advantage of specific recommendations. The specifications about how to correctly use a given
API should take into account these differences. We envision that both practitioners and
researchers would benefit from a domain engineering approach that considers different sources
of variability – including different versions of an API, recommendations from gray literature
(for instance), and mining software repositories efforts – before specifying the correct usage a
given API. We make the reader aware that domain engineering is a well-known technique to
understand properties that, like in our case, bring variability to the domain of API usage
specifications. We are not attempting to validate domain engineering itself or propose a
technique for its application to other domains; the process for which would require careful
understanding of the specific API domain and a thorough analysis.

Another threat to our conclusions relates to the additional complexity introduced by
Meta-CrySL. We envision that the users of Meta-CrySL are already users of CrySL,
and the learning curve would involve a language for specifying CrySL refinements and
configurations. To better quantify the additional complexity Meta-CrySL introduces, we
will have to conduct a user study with this specific goal. We postpone such an investigation
to a future work, since our focus here was to explore Meta-CrySL in a more realistic
scenario, investigating the possible benefits of using Meta-CrySL to modularize CrySL
specifications for different versions of the Android platform and different cryptographic
recommendations. Therefore, currently we do not have empirical evidence about how much
complexity Meta-CrySL introduces to those already familiar with CrySL. Nonetheless,
compared to the benefit of managing a large family of specifications using a relatively small
number of refinements and configurations, we feel this additional complexity is justified.

Additional threats relate to the methods we used in our research. We tried to mitigate
possible reliability threats by reusing methods and tools from previous research studies.
For instance, we investigated the frequency of breaking changes to estimate the stability

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:23

of Java cryptographic libraries using the methodologies available in the literature [7, 8, 49].
Nonetheless, although we found more than 1700 breaking changes across 11 public releases of
Bouncy Castle, a limitation of our work is that we do not investigate if these changes have
actually broken existing client code. Our understanding is that just a subset of breaking
changes impact on the specifications of the correct usage of APIs.

This threat relates to the use of apidiff, which detects breaking changes considering
modifications to the standard notion of Java interfaces – that is, public members of Java
classes or interfaces. Modifications that do not preserve the standard notion of Java interfaces
(e.g., changing the signature of public methods, removing public methods, and so on) are
claimed by apidiff as breaking changes. This might actually lead to a number of false-
positives – once client code might not depend on all public members of a library. To mitigate
this threat, we narrowed our analysis of the Bouncy Castle library to only focus on the
high-level classes and interfaces of Bouncy Castle that implement cryptographic primitives.

Regarding our research question RQ4, we measure the reduction of lines of specification
and redundancy with respect to generated specifications. This might raise the question
whether these generated specifications do not contain boilerplate text that had not arisen
had these specifications be hand-written. We are confident that we can rule this out, due
to the nature of CrySL specifications and the way they are generated by Meta-CrySL.
Conducting a large scale developer study by manually writing many families of specifications
by hand was beyond the scope of this work.

7 Related Work

7.1 Domain Engineering
Frakes et al. [17] present a well-established definition for domain engineering, which embraces
two phases: domain analysis and domain implementation. The first deals with all activities
necessary to understand and document the commonalities and variabilities within a software
domain. Similar to the guidelines presented by the authors, we also collected and recorded
information from documents (cryptographic standards) and source code (examples of
cryprographic libraries usage) while conducting our domain analysis. The main difference of
our approach is that we also mined the source code evolution of the cryptographic libraries.
Lisboa et al. presents a literature review on tools and methods for domain analysis [28].

The second phase of domain engineering (that is, domain implementation) aims to build
the infrastructure necessary to generate products from reusable assets. Here we used the same
general idea, though not to build software products, but actually to generate specifications of
the correct usage of APIs that might vary according to different sources of variablity (such
as versions of APIs, platforms, and cryptographic standards). Czarnecki and Eisenecker [10]
detail several techniques that can be used to implement an infrastructure for building
products from reusable assets. In our work, we used the refinement-based transformational
approach [10, Chapter 9] as the basis for the Meta-CrySL design and implementation. The
literature on software product lines also recommends two distinct phases for building SPLs:
one for domain analysis and one for domain implementation [4, 36].

7.2 Correct Usage of APIs
Amann et al. present some terminology and taxonomy around the correct usage and misuse
of APIs [3]. Given a set of constraints stating, for instance, the expected order of method
calls and the pre-conditions the client code must guarantee before calling the methods of an

ECOOP 2021

19:24 Dealing with Variability in API Misuse Specification

API, any usage scenario that violates a constraint characterizes a misuse – otherwise, it is
a correct usage [3]. The main goal of mining misuse of APIs is to reveal deviant code that
might originate a bug or a software vulnerability (in the context of cryptographic APIs).

According to Amann et al [3], the constraint specifications could be manually crafted by
experts or infered using either dynamic [29,37] or static analysis [32,40,48]. In this paper,
we rely on a manually crafted approach to specify rules in Meta-CrySL– mostly because
many programs fail to use cryptographic APIs correctly [1, 24,33]. It is a matter of future
work to investigate if our domain engineering approach could also benefit from techniques
that automatically infer the correct usage of APIs.

To the best of our knowledge, none of the previous research works consider that the
correct usage of an API could vary, among other reasons, according to specific versions of
APIs or to existing usage recommendation patterns that could be general accepted or tailored
to particular companies or projects.

7.3 API Evolution

Studies on API evolution focus on two directions. First, to help developers to migrate their
systems in response to the evolution of APIs the systems depend on [9,18,31,43]. The second
direction, which is closely related to our research, focus on understanding how developers
evolve APIs and on characterizing the evolution of APIs. For instance, several research
works have explored the impact of deprecation mechanisms on software ecosystems [39,41,42].
Other research studies investigate how developers respond to API evolution [19] and the
motivations for breaking APIs [6].

Here we investigate how the evolution of cryptographic APIs occurs in practice, considering
the history of three Java cryptographic libraries: JCA/JCE, Bouncy Castle, and Google Tink.
We have found that cryptographic libraries are quite stable, and the high-level APIs that
define cryptographic primitives rarely change – even though we found a number of breaking
changes during the evolution of Bouncy Castle. The most typical pattern is the introduction
of new algorithms that implement cryptographic primitives – which often requires changes
into the specification about the correct usage of the APIs.

8 Conclusion

Domain engineering involves a set of techniques for identifying and documenting the
commonalities and variabilities within a software domain, as well as for building an
infrastructure for deriving products from reusable assets [4, 17, 36]. While it has been
successfully used to develop software product lines, in this paper, we explored the use of
domain engineering procedures to specify the correct usage of cryptographic APIs. After
gathering a better understanding about how different versions of the platforms, APIs, and
cryptographic standards might affect the specifications of the correct usages of crypto
APIs, we designed Meta-CrySL. Meta-CrySL serves as an infrastructure for generating
CrySL [24] specifications tailored for specific scenarios. We evaluated our approach using a
family of Meta-CrySL specifications describing the correct usage of the Java Cryptographic
Architecture for Android, which accommodates the evolution of the Android platform and
three distinct sets of cryptographic recommendations. Our results provide evidence that it
is important to tackle the problem of writing specifications of correct usage of APIs using
a domain engineering approach and that using Meta-CrySL we can better modularize
families of specifications.

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:25

References
1 Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky. Comparing

the usability of cryptographic apis. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 154–171. IEEE Press, May 2017. doi:10.1109/SP.2017.52.

2 S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. A systematic evaluation of
static api-misuse detectors. IEEE Transactions on Software Engineering, 45(12):1170–1188,
2019.

3 S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. A systematic evaluation of
static api-misuse detectors. IEEE Transactions on Software Engineering, 45(12):1170–1188,
2019. doi:10.1109/TSE.2018.2827384.

4 Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Publishing Company, Incorporated,
2013.

5 A. Bhardwaj and S. Som. Study of different cryptographic technique and challenges in
future. In 2016 International Conference on Innovation and Challenges in Cyber Security
(ICICCS-INBUSH), pages 208–212, 2016.

6 Aline Brito, Marco Tulio Valente, Laerte Xavier, and André C. Hora. You broke my code:
understanding the motivations for breaking changes in apis. Empirical Software Engineering,
25(2):1458–1492, 2020. doi:10.1007/s10664-019-09756-z.

7 Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. Apidiff: Detecting API
breaking changes. In Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd, editors,
25th International Conference on Software Analysis, Evolution and Reengineering, SANER
2018, Campobasso, Italy, March 20-23, 2018, pages 507–511. IEEE Computer Society, 2018.
doi:10.1109/SANER.2018.8330249.

8 Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. Why and how Java
developers break APIs. In Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd,
editors, 25th International Conference on Software Analysis, Evolution and Reengineering,
SANER 2018, Campobasso, Italy, March 20-23, 2018, pages 255–265. IEEE Computer Society,
2018. doi:10.1109/SANER.2018.8330214.

9 Kingsum Chow and David Notkin. Semi-automatic update of applications in response to
library changes. In 1996 International Conference on Software Maintenance (ICSM ’96), 4-8
November 1996, Monterey, CA, USA, Proceedings, page 359. IEEE Computer Society, 1996.
doi:10.1109/ICSM.1996.565039.

10 Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., USA, 2000.

11 Danny Dig and Ralph Johnson. How do apis evolve? a story of refactoring: Research articles.
J. Softw. Maint. Evol., 18(2):83–107, March 2006.

12 Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’13, pages 73–84, New
York, NY, USA, 2013. ACM. doi:10.1145/2508859.2516693.

13 Michel Abdalla et al. Algorithms, key size and protocols report. Technical report, ECRYPT –
Coordination and Support Action, European Union’s H2020 programme, 2018.

14 Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering: Design
Principles and Practical Applications. Wiley Publishing, 2010.

15 F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl. Stack
overflow considered harmful? the impact of copy amp;paste on android application security.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 121–136, May 2017. doi:

10.1109/SP.2017.31.
16 German Federal Office for Information Security. Cryptographic mechanisms: Recommendations

and key lengths. Technical Report BSI TR-02102-1, German Federal Office for Information
Security, 2020.

ECOOP 2021

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/TSE.2018.2827384
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/ICSM.1996.565039
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1109/SP.2017.31

19:26 Dealing with Variability in API Misuse Specification

17 William Frakes, Ruben Prieto, Christopher Fox, et al. Dare: Domain analysis and reuse
environment. Annals of software engineering, 5(1):125–141, 1998.

18 Johannes Henkel and Amer Diwan. Catchup! capturing and replaying refactorings to support
api evolution. In Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, page 274–283, New York, NY, USA, 2005. Association for Computing Machinery.
doi:10.1145/1062455.1062512.

19 A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. Tulio Valente. How do
developers react to api evolution? the pharo ecosystem case. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 251–260, 2015. doi:

10.1109/ICSM.2015.7332471.
20 David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,

2004. doi:10.1145/1052883.1052895.
21 Oracle Inc. Java cryptography architecture (JCA), 2020. URL: https://docs.oracle.com/en/

java/javase/15/security/java-cryptography-architecture-jca-reference-guide.html.
22 Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and Arie van Deursen.

Effective and efficient api misuse detection via exception propagation and search-based testing.
In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, page 192–203, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293882.3330552.

23 Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. RASCAL: A domain specific language for
source code analysis and manipulation. In Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September
20-21, 2009, pages 168–177. IEEE Computer Society, 2009. doi:10.1109/SCAM.2009.28.

24 S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini. Crysl: An extensible approach to
validating the correct usage of cryptographic apis. IEEE Transactions on Software Engineering,
pages 1–1, 2019. doi:10.1109/TSE.2019.2948910.

25 Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian Göpfert,
Felix Günther, Christian Weinert, Daniel Demmler, and Ram Kamath. Cognicrypt: Supporting
developers in using cryptography. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, pages 931–936. IEEE Press, 2017.

26 A. Leonard. Spring Boot Persistence Best Practices: Optimize Java Persistence Performance
in Spring Boot Applications. Apress, 2020. URL: https://books.google.com.br/books?id=

dIvgDwAAQBAJ.
27 Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. icryptotracer: Dynamic analysis on

misuse of cryptography functions in ios applications. In Man Ho Au, Barbara Carminati, and
C.-C. Jay Kuo, editors, Network and System Security, pages 349–362, Cham, 2014. Springer
International Publishing.

28 Liana Barachisio Lisboa, Vinicius Cardoso Garcia, Daniel Lucrédio, Eduardo Santana de
Almeida, Silvio Romero de Lemos Meira, and Renata Pontin de Mattos Fortes. A systematic
review of domain analysis tools. Information and Software Technology, 52(1):1–13, 2010.
doi:10.1016/j.infsof.2009.05.001.

29 Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith,
Traian Florin ŞerbănuŢă, and Grigore Roşu. Rv-monitor: Efficient parametric runtime
verification with simultaneous properties. In Borzoo Bonakdarpour and Scott A. Smolka,
editors, Runtime Verification, pages 285–300, Cham, 2014. Springer International Publishing.

30 Dustin Marx. Basic java persistence api best practices. Technical report, Oracle, 2008.
31 Mira Mezini. Maintaining the consistency of class libraries during their evolution. SIGPLAN

Not., 32(10):1–21, 1997. doi:10.1145/263700.263701.
32 Martin Monperrus and Mira Mezini. Detecting missing method calls as violations of the

majority rule. ACM Trans. Softw. Eng. Methodol., 22(1), 2013. doi:10.1145/2430536.2430541.
33 Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops: Why

do java developers struggle with cryptography apis? In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 935–946. ACM, 2016. doi:10.1145/

2884781.2884790.

https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1145/1052883.1052895
https://docs.oracle.com/en/java/javase/15/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/15/security/java-cryptography-architecture-jca-reference-guide.html
https://doi.org/10.1145/3293882.3330552
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/TSE.2019.2948910
https://books.google.com.br/books?id=dIvgDwAAQBAJ
https://books.google.com.br/books?id=dIvgDwAAQBAJ
https://doi.org/10.1016/j.infsof.2009.05.001
https://doi.org/10.1145/263700.263701
https://doi.org/10.1145/2430536.2430541
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/2884781.2884790

R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:27

34 National Institute of Standards and Technology. Security requirements for cryptographic
modules. Technical report, National Institute of Standards and Technology, 2019.

35 Terence Parr. Language Implementation Patterns: Create Your Own Domain-Specific and
General Programming Languages. Pragmatic Bookshelf, 1st edition, 2009.

36 Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, Berlin, Heidelberg, 2005.

37 Michael Pradel and Thomas R. Gross. Leveraging test generation and specification mining
for automated bug detection without false positives. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, page 288–298. IEEE Press, 2012.

38 Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat
Kantarcioglu, and Danfeng (Daphne) Yao. Cryptoguard: High precision detection of
cryptographic vulnerabilities in massive-sized java projects. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19, page 2455–2472,
New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3319535.

3345659.
39 Romain Robbes, Mircea Lungu, and David Röthlisberger. How do developers react to api

deprecation? the case of a smalltalk ecosystem. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New York,
NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2393596.2393662.

40 M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-level api usage
patterns. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 23–32, 2015. doi:10.1109/SANER.2015.7081812.

41 A. A. Sawant, R. Robbes, and A. Bacchelli. On the reaction to deprecation of 25,357 clients
of 4+1 popular java apis. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 400–410, 2016. doi:10.1109/ICSME.2016.64.

42 Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to deprecation of
clients of 4+ 1 popular java apis and the jdk. Empirical Software Engineering, 23(4):2158–2197,
2018.

43 Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from
instantiation code. In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, page 471–480, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1368088.1368153.

44 Bruce Schneier. Secrets & Lies: Digital Security in a Networked World. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 2000.

45 Johannes Späth, Karim Ali, and Eric Bodden. Ideal : efficient and precise alias-aware dataflow
analysis. PACMPL, 1(OOPSLA):99:1–99:27, 2017. doi:10.1145/3133923.

46 Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-sensitive data-flow
analysis using synchronized pushdown systems. PACMPL, 3(POPL):48:1–48:29, 2019.

47 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow- and context-sensitive pointer analysis for java. In Shriram Krishnamurthi and
Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages 22:1–22:26. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.22.

48 Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting object usage anomalies.
In Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-
FSE ’07, page 35–44, New York, NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1287624.1287632.

49 L. Xavier, A. Brito, A. Hora, and M. T. Valente. Historical and impact analysis of api
breaking changes: A large-scale study. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 138–147, February 2017.
doi:10.1109/SANER.2017.7884616.

ECOOP 2021

https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/2393596.2393662
https://doi.org/10.1109/SANER.2015.7081812
https://doi.org/10.1109/ICSME.2016.64
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/3133923
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1109/SANER.2017.7884616

On the Monitorability of Session Types, in Theory
and Practice
Christian Bartolo Burlò #

Gran Sasso Science Institute, L’Aquila, Italy

Adrian Francalanza #

Department of Computer Science, University of Malta, Msida, Malta

Alceste Scalas #

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
Software components are expected to communicate according to predetermined protocols and APIs.
Numerous methods have been proposed to check the correctness of communicating systems against
such protocols/APIs. Session types are one such method, used both for static type-checking as well as
for run-time monitoring. This work takes a fresh look at the run-time verification of communicating
systems using session types, in theory and in practice. On the theoretical side, we develop a formal
model of session-monitored processes. We then use this model to formulate and prove new results
on the monitorability of session types, defined in terms of soundness (i.e., whether monitors only
flag ill-typed processes) and completeness (i.e., whether all ill-typed processes can be flagged by
a monitor). On the practical side, we show that our monitoring theory is indeed realisable: we
instantiate our formal model as a Scala toolkit (called STMonitor) for the automatic generation of
session monitors. These executable monitors can be used as proxies to instrument communication
across black-box processes written in any programming language. Finally, we evaluate the viability
of our approach through a series of benchmarks.

2012 ACM Subject Classification Software and its engineering → Development frameworks and
environments; Software and its engineering → Software verification and validation; Theory of
computation → Concurrency

Keywords and phrases Session types, monitorability, monitor correctness, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.20

Related Version Full Version: https://arxiv.org/abs/2105.06291

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.2

Funding This work has been partly supported by: the project MoVeMnt (No: 217987-051) under
the Icelandic Research Fund; the BehAPI project funded by the EU H2020 RISE under the Marie
Skłodowska-Curie action (No: 778233); the EU Horizon 2020 project 830929 CyberSec4Europe; the
Danish Industriens Fonds Cyberprogram 2020-0489 Security-by-Design in Digital Denmark.

1 Introduction

Communication protocols and Application Programming Interfaces (APIs) [18] govern the
interactions between concurrent and distributed software components by exposing the
functionality of a component for others to use. Although the order of messages exchanged
and methods invoked is crucial for correct API usage, this information is either outright
omitted, or stated informally via textual descriptions [62, 61]. At best, protocols and
temporal API usage are described semi-formally as message sequence charts [51]. This
state of affairs is conducive to conflicting interactions, which may manifest themselves as
run-time errors, deadlocks and livelocks. Behavioural types [11] provide a methodology

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Christian Bartolo Burlò, Adrian Francalanza, and
Alceste Scalas;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 20; pp. 20:1–20:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.bartolo@gssi.it
https://orcid.org/0000-0002-0016-086X
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:alcsc@dtu.dk
https://orcid.org/0000-0002-1153-6164
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://arxiv.org/abs/2105.06291
https://doi.org/10.4230/DARTS.7.2.2
https://doi.org/10.4230/DARTS.7.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 On the Monitorability of Session Types, in Theory and Practice

client server
Auth(Str,Str)

Succ(Str)

Get(Str,Str)

...Rvk(Str)

Fail(Int)

re
cu

rs
e

choice

Figure 1 Authentication Protocol.

to address these shortcomings, by elevating protocols and flat API descriptions to formal
behavioural specifications with explicit sequences and choices of operations. A prevalent form
of behavioural types are session types [36, 37] which can ensure correct interactions that are
free from communication errors, deadlocks and livelocks.

▶ Example 1. Consider a server that exposes the API calls Auth (authenticate), Get and
Rvk (revoke). The intended use of this API is to invoke Auth followed with Get and finally
Rvk, as depicted in Fig. 1. If authentication is successful, Auth returns a token that can be
used for exclusive access to a resource with the service Get. After its use, the token should
be revoked with the service Rvk to allow other parties to access the resource. For security
reasons, the server is expected to only reply Get requests after it services an Auth request.
However, if the order of invocation is not respected, a client may send a Get request before
an Auth request. The resulting components’ interaction will be incorrect, causing an error or
deadlock. Even worse, the server may accept the Get request and let an unauthenticated
client access sensitive information. The protocol from the viewpoint of the client can be
described as the session type:

S = !Auth . &
{

?Succ . !Get . . .!Rvk . S, ?Fail . S
}

Type S states that the client is expected to first invoke (!) the service Auth and then
branch (&) according to the response received (?). If it receives Success, the client can invoke
Get and eventually Rvk before restarting the protocol (S). Otherwise, if it receives Fail, the
client may start following the type S from the beginning and retry authentication. ⌟

Run-time monitoring of session types: promise and challenges. In behavioural type
frameworks (including session types), the conformance between the component under scrutiny
and a desired protocol is commonly checked statically, via a type system that is tailored for
the language used to develop the component. This avoids runtime overhead and allows for
early error detection. However, there are cases where a (full) static analysis is not possible.
For instance, within a distributed or collaborative system, not all system components are
necessarily accessible for static analysis (e.g., due to source obfuscation). Components may
also be implemented using different programming languages, making it infeasible to develop
bespoke type-checkers for every programming language used in development. In these cases,
post-deployment techniques such as Runtime Verification (RV) [29, 13] can be used where
protocol conformance is carried out dynamically via monitors [21, 50, 24, 42, 49, 17, 34].
Runtime monitoring of behavioural types comes with a set of challenges.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:3

The realisability of effective monitoring: Restrictions such as inaccessible code and license
agreements (regulating code modifications), may restrict the ways in which software
components can be instrumented, thus hindering a monitor’s capabilities for observation
and intervention. Moreover, the runtime overhead induced by monitors should be kept
within acceptable levels.

Monitor Correctness: Intuitively, a “correct” monitor for a session type S should carry
out detections that correspond to the protocol represented by S. The recent results on
monitorability help us unpack this intuition of “correctness” in terms of soundness and
completeness: the monitor should not unnecessarily flag well-behaving code (detection
soundness [30, 3]), while providing guarantees for recognising misbehaving components
(detection completeness [4, 6]).

The aforementioned challenges are not independent of one another, and an adequate solution
often needs to take both aspects into consideration. On the one hand, monitor correctness
may require computations that increase runtime overheads; on the other hand, there are
inherent limits to what can be detected at runtime (i.e., the monitorability problem [13]) –
and moreover, practical implementation concerns may restrict monitoring capabilities even
further (e.g., due to the need for low overheads). To our knowledge, the above aspects have
not been fully investigated together for session types, in one unified study:

there is no systematic examination for the monitorability of session types, determining
the limits of runtime monitoring when verifying session-type conformance;
no previous work tackles the design of a session monitoring system that is practically
realisable, while also backed by formal detection soundness and completeness guarantees.

Contributions. We present the first formal analysis of the monitorability of session types,
and use it to guide the design and implementation of a practical framework (written in
Scala) for the run-time monitoring of concurrent and distributed applications. We focus
on communication protocols that can be formalised as (binary) session types [36, 37] with
two interacting parties (e.g., a client and a server). Crucially, we tackle scenarios where
at least one of the parties is a “black-box” process that may not be statically verified.
After formalising a streamlined process calculus with session types (§ 2), we present our
contributions:
1. We develop a formal model detailing how processes can be instrumented with monitors, to

observe their interactions and flag violations on the offending party (§ 3). We then design
an automated synthesis procedure from session types to monitors (in this operational
model) to study the monitorability of session types (§ 3.4);

2. We carry out the first study on the monitorability of session types, formally linking their
static and run-time verification (§ 4). We prove that our synthesised monitors are detection-
sound, i.e., components flagged by a monitor for session type S are indeed ill-typed for S

(Theorem 15). We also prove a weak detection-completeness result (Theorem 19) showing
to what degree can our synthesised monitors detect ill-typed components. Importantly,
we show that these limits are not specific to our synthesis procedure by proving an
impossibility result: under our “black-box” monitoring model, session monitoring cannot
be both sound and complete (Theorem 21). The latter results are new to the area of
behavioural types;

3. We show the realisability of our model, by implementing a toolkit (called STMonitor) that
synthesises session monitors as executable Scala programs (§ 5). We provide STMonitor
as companion artifact of this paper. We also provide evaluation benchmarks showing
that our generated Scala monitors induce limited overheads, hence their usability in
practice appears promising (§ 6).

Proofs and additional details are available in the extended version of this paper [19].

ECOOP 2021

20:4 On the Monitorability of Session Types, in Theory and Practice

Syntax
Predicates A ::= tt | ff | v1 == v2 | v1 >= v2 | A1 && A2 | !A | . . .

Processes P, Q ::= ◁l(a).P | ▷
{

li(xi).Pi

}
i∈I

| µX .P | X | if A then P else Q | 0

Semantics [pRec]
µX .P

τ−→ P [µX .P/X]
[pSnd]

◁l(v).P ◁l(v)−−−→ P

[pRcv]
▷
{

li(xi).Pi

}
i∈I

▷lj (v)
−−−−→ Pj [v/xj]

j ∈ I

[pTru]
A ⇓ tt

if A then P else Q
τ−→ P

[pFls]
A ⇓ ff

if A then P else Q
τ−→ Q

Figure 2 Process Calculus Syntax and Semantics.

2 Process Calculus and Session Types

This section introduces the formalism at the basis of our work: a streamlined process calculus
(§ 2.1) with standard session types (§ 2.2) and typing system (§ 2.3).

2.1 Process Calculus

Syntax. We adopt a streamlined process calculus that models a sequential process interacting
on a single communication channel, similar to [33, 32, 60]. Our process calculus is defined in
Figure 2. The syntax assumes separate denumerable sets of values v, u, w ∈ Val (including
tuples), value variables x, y, z ∈ Var and process variables X, Y ∈ PVar. We use a, b to
range over the set Val ∪ Var. The syntax also assumes a set of predicates A (used in
conditionals). A process may communicate by sending or receiving messages of the form
l(v), where l is a label, and v is the payload value. To this end, a process may perform
outputs ◁l(a).P (i.e., send message l(v) and continue as P), or inputs ▷

{
li(xi).Pi

}
i∈I

(i.e., receive a message with label li for any i ∈ I, and continue as Pi, with xi replaced by the
message payload). Loops are supported by the recursion construct µX .P , and the process
variable X. The process 0 represents a terminated process. The calculus also includes a
standard conditional construct if A then P else Q. We assume that all recursive processes
are guarded, i.e., process variables can only occur under an input or output prefix. The
calculus has two binders: the input construct ▷

{
li(xi).Pi

}
i∈I

binds the free occurrences
of the (value) variables xi in the continuation process Pi, whereas the recursion construct
µX .P binds the process variable X in the continuation process P .

Semantics. The dynamic behaviour of a process is described by the transition rules in
Fig. 2. The rules take the form P

µ−→ P ′, where the transition action µ can be either an
output action ◁l(v), an input action ▷l(v), or a silent action τ . Rule [pRec] allows
the recursive process µX .P to unfold. Rules [pSnd] and [pRcv] enable communication:

by [pSnd], process ◁l(v).P sends a message by firing action ◁l(v) and continuing as P ;
by [pRcv], process ▷

{
li(xi).Pi

}
i∈I

can receive a message lj(v) (j ∈ I) by firing action
▷lj(v) and continuing as Pj , with the payload value v replacing the variable xj .

The remaining two rules [pTru] and [pFls] define the silent transitions when the predicate
in the process if A then P else Q evaluates to true (A ⇓ tt) or false (A ⇓ ff), respectively. For
brevity, we often omit the trailing 0 and write ▷l(v).P for singleton input choices.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:5

Syntax
Base types B ::= Int | Str | Bool | . . . | (B, B)

Session types R, S ::= ⊕
{

!li(Bi).Si

}
i∈I

| &
{

?li(Bi).Si

}
i∈I︸ ︷︷ ︸

with I ̸= ∅ and li pairwise distinct

| rec X.S | X | end

Dual types
&

{
?li(Bi).Si

}
i∈I

= ⊕
{

!li(Bi).Si

}
i∈I

end = end X = X

⊕
{

!li(Bi).Si

}
i∈I

= &
{

?li(Bi).Si

}
i∈I

rec X.S = rec X.S

Figure 3 Session Types Syntax, and Definition of Dual Types.

▶ Example 2 (Process syntax and semantics). Recall the protocol depicted in Fig. 1. A
corresponding client process for this protocol is defined as Pauth below.

Pauth = µX .◁Auth("Bob", "pwd").Pres where Pres = ▷
{

Succ(tok).Psucc , Fail(code).Pfail
}

From the rules in Figure 2, the process Pauth executes as follows:

Pauth
τ−→

(
◁ Auth("Bob", "pwd").Pres

)
[Pauth/X] using [pRec]

◁Auth("Bob","pwd")−−−−−−−−−−−−→ ▷

{
Succ(tok).Psucc[Pauth/X] ,

Fail(code).Pfail[Pauth/X]

}
using [pSnd]

The process performs a silent action τ to unfold its recursion, and then sends a message with
label Auth and tuple "Bob","pwd" as payload. If the authentication is successful, the process
receives the message Succ including a token tok and proceeds according to Psucc (omitted):

▷Succ(321)−−−−−−−→ Psucc[Pauth/X][321/tok] using [pRcv]

Otherwise, if the authentication is unsuccessful, the process receives the message Fail
including an error code from the server and proceeds according to Pfail. ⌟

2.2 Binary Session Types
Session types describe the structure of interaction among processes. They enable the
verification of communicating systems against a stipulated communication protocol. Figure
3 formalises binary session types. We assume a set of standard base types B which includes
tuples. The selection type (or internal choice) ⊕

{
!li(Bi).Si

}
i∈I

requires a component to
send a message li(v) where the value v has base type Bi, for some i ∈ I. The branching
type (or external choice) &

{
?li(Bi).Si

}
i∈I

requires a component to receive a message of
the form li(v), where the value v (i.e., the message payload) is of the corresponding base
type Bi for any i ∈ I. The recursive session type rec X.S binds the recursion variable X in
S (we assume guarded recursion), while end describes a terminated session. For brevity, we
often omit ⊕ and & for singleton choices, as well as trailing ends.

A process implementing a session type S can correctly interact with a process implementing
the dual type of S, denoted as S (defined in Fig. 3). Intuitively, the dual type of a selection
is a branching type with the same choices. Hence, every possible output from one component
matches an input by the other component, and vice versa. Duality guarantees that the
interaction between typed components is safe (i.e., only expected messages are communicated)
and deadlock-free (i.e., the session terminates only if both components reach their end).

▶ Example 3. The session type Sauth below formalises the first part of the protocol that the
client in Fig. 1 is expected to follow (i.e., the type S in Example 1).

Sauth = rec Y.!Auth(Str, Str).&
{

?Succ(Str).Ssucc , ?Fail(Int).Y
}

ECOOP 2021

20:6 On the Monitorability of Session Types, in Theory and Practice

Identifier Typing [tVar]
Γ(x) = B
Γ ⊢ x : B [tVal] v ∈ B

Γ ⊢ v : B

Process Typing

[tBra]
∀i ∈ I Θ · Γ, xi : Bi ⊢ Pi : Si

Θ · Γ ⊢ ▷
{

li(xi).Pi

}
i∈I∪J

: &
{

?li(Bi).Si

}
i∈I

[tRec]
Θ, X : S · Γ ⊢ P : S

Θ · Γ ⊢ µX .P : S

[tSel] ∃i ∈ I l = li Γ ⊢ a : Bi Θ · Γ ⊢ P : Si

Θ · Γ ⊢ ◁l(a).P : ⊕
{

!li(Bi).Si

}
i∈I

[tPVar]
Θ(X) = S

Θ · Γ ⊢ X : S

[tIf]
Γ ⊢ A : Bool Θ · Γ ⊢ P : S Θ · Γ ⊢ Q : S

Θ · Γ ⊢ if A then P else Q : S
[tNil] Θ · Γ ⊢ 0 : end

Figure 4 Session Typing Rules.

The server should follow Sauth = rec Y.?Auth(Str, Str). ⊕
{

!Succ(Str).Ssucc , !Fail(Int).Y
}

,
its dual. According to Sauth, the client initiates interaction by sending a message with label
Auth, carrying a tuple of strings (username and password) as payload. The server should
then reply with either Success (carrying a string), or Failure (with an integer error code).
In case of Success, the client continues along Ssucc. In case of Failure, the session loops. ⌟

2.3 Session Typing System

Our session typing system (in Fig. 4) is standard. It uses two typing environments Θ and
Γ, where Θ is a partial mapping from process variables to session types, while Γ is a partial
mapping from value variables to base types. We represent them syntactically as:

Θ ::= ∅
∣∣ Θ, X : S Γ ::= ∅

∣∣ Γ, x : B

The type system is equi-recursive [53]: when comparing two types, we consider a recursive type
rec X.S to be equivalent to its unfolding S[rec X.S/X] (i.e., interchangeable in all contexts).

The typing judgement for values and variables is Γ ⊢ a : B, defined by rules [tVar] and
[tVal]. The process typing judgement, Θ · Γ ⊢ P : S, states that process P communicates
according to session type S, given the typing assumptions in Θ and Γ. In the branching rule
[tBra], an input process has a branching type &

{
?li(Bi).Si

}
i∈I

if all the possible branches
in the type are present as choices in the process, with matching labels. Hence, the process
must have the form ▷

{
li(xi).Pi

}
i∈I∪J

(notice that if J ̸= ∅, the process has more input
branches than the type). Moreover, for each matching branch, each continuation process Pi

(for i ∈ I) must be typed with the corresponding continuation type Si, assuming that the
received message payload xi has the expected type Bi. The selection rule [tSel] states that
◁l(a).P follows a selection type of the form ⊕

{
!li(Bi).Si

}
i∈I

if there exists a possible choice
in the type that matches the message l(a). To match, the labels must be identical, and the
type of the payload a must be of the type Bi stated in the session type, and the continuation
process P must be of the continuation type Si. The remaining rules are fairly standard.

▶ Remark 4. Although we do not fix the boolean predicates A, we assume that:
1. boolean predicates can be type-checked with standard rules;
2. base types B come with a predicate isB(v) that returns tt if v is of type B, and ff otherwise

(akin to instanceof in Java.) ⌟

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:7

▶ Example 5. Recall the process Pauth (Example 2) and the session type Sauth (Example 3):

Pauth = µX . ◁ Auth("Bob", "pwd").Pres Sauth = rec Y.!Auth(Str, Str).Sres

One can show that Pauth type-checks with Sauth, i.e., ∅ · ∅ ⊢ Pauth : Sauth. ⌟

3 A Formal Model for Monitoring Sessions

We now formalise an operational setup that enables us to verify the (binary) session types of
§ 2 at runtime. Our runtime analysis is conducted by uni-verdict rejection monitors, whose
purpose is to flag any session type violations detected (i.e., violation monitors [30, 3]).

3.1 Monitor and Instrumentation Design
We now illustrate the design decisions behind our formal monitoring framework. To this end,
we use as a reference the client-server system outlined in Example 1. Consider, in particular,
the scenario depicted in Fig. 5a, where a client is expected to interact with a server following
the prescribed protocol Sauth; the server is trusted and guaranteed to adhere to the dual type
Sauth (e.g., because it has been statically typechecked against Sauth using the type system
in § 2.3) – but we have limited control over the client, which might be untyped, hence its
interactions are potentially unsafe.

Our setup should place no assumptions on the client, largely treating it as a black
box. In fact, we target scenarios where the client source is inaccessible, possibly remote,
interacting with the server via a generic channel of communication (e.g., TCP sockets or
HTTP addresses). This precludes the possibility of weaving the monitor within the client
component. To achieve a model that can handle these requirements, we restrict ourselves to
outline monitors [13, 7], which are decoupled from the process-under-scrutiny as concurrent
units of code that can be more readily deployed over a black-box component; outline monitors
are also easier to verify for correctness via compositional techniques [23, 26, 27, 14, 31, 28].

client server

⊢ server : Sauth⊢ client : Sauth? ?

(a) No monitors.

client server monitora

▷Auth(“Bob”, “pwd”)
2

Auth(“Bob”, “pwd”)
1

◁Fail(1)
4

Fail(1)
3

(b) Server side instrumentation.

client monitorb server

Auth(“Bob”, “pwd”)
2

Auth(“Bob”, “pwd”)
1

Fail(1)
3

Fail(1)
4

(c) Channel instrumentation.

Figure 5 Design choices for instrumentation.

Our model focusses on the communication occurring on the channel between the client
and the server – and we assume such communication to be synchronous and reliable.
Outline monitors can typically only analyse the externally observable actions of a monitored
component. In our case, monitored processes follow the semantics of Fig. 2, hence the only
observable actions are send (◁l(v)) and receive (▷l(v)); τ -moves are unobservable.

ECOOP 2021

20:8 On the Monitorability of Session Types, in Theory and Practice

We consider two potential instrumentation setup designs for an outline approach. In
the setup in Fig. 5b, the server is instrumented with a sequence-recogniser monitor [57, 43]
(monitora). The server is required to notify monitora about every send and receive action it
performs – this can be achieved via listeners added through mechanisms such as class-loaders,
agents and VM-level tracers. For monitora, every receive action the server performs indicates
a send action by the client and vice-versa (i.e., every send indicates a receive). In Fig. 5b,
The client sends the message Auth(“Bob”, “pwd”) to the server 1 . Once received, 2 the
server notifies monitora with the message contents and the direction of the message (▷).
For monitora this indicates that the client sent the particular message. After the server
replies with the message Fail(1) 3 , it notifies monitora with the message contents and the
direction (◁) 4 , indicating that the client received the message.

In the alternative setup depicted in Fig. 5c, the monitor (monitorb) is instrumented on
the communication channel and acts as a proxy (or a partial-identity monitor [34]) between
the two components. Any communicated messages must pass through monitorb in order for it
to analyse them. In the execution of Fig. 5c the client sends the message Auth(“Bob”, “pwd”)
to monitorb 1 . The monitor checks that its contents conform with the protocol before
proceeding to forward the message to the server 2 . The server replies by sending the
message Fail(1) to monitorb 3 , which forwards it straight to the client 4 .

On the one hand, the monitor in Fig. 5b is completely passive: it performs analysis in
response to the events received. On the other hand, the monitor in Fig. 5c is also responsible
for forwarding messages between the client and the server . Thus, the communication between
the two components in Fig. 5c relies on monitorb: should the monitor crash or terminate
abruptly, the client and the server will stop interacting. Moreover, the setup in Fig. 5c
introduces additional delays when every communicated message passes through monitorb;
these are avoided in Fig. 5b. The main drawback of the setup in Fig. 5b is that the server is
directly exposed to an untrusted client, with additional responsibility of reporting events. In
contrast, the instrumentation in Fig. 5c provides a layer of protection to the server from
potentially malicious interactions: if the client sends a message that violates the protocol,
monitorb is able to flag the message without forwarding it to the server . Moreover, the setup
in Fig. 5c provides more flexibility for reasoning on the run-time monitoring of systems where
both the client and the server are black boxes. This work opts for the setup in Fig. 5c.

3.2 A Monitor Calculus
Fig. 6 describes the structure and behaviour of a partial-identity monitor operating as in
Fig. 5c. Monitors are similar to the processes defined in Fig. 2, with a few key additions.
Since monitors need to interact with the environment, they also include the constructs
▲l(a).M and ▼

{
li(xi : Bi).Mi

}
i∈I

, and rules [mOut] and [mIn]: they are analogous to the
process output and input constructs, where interaction takes place between the environment
and the monitor instead. We use the terms internal and external to differentiate between
actions involving the monitored process and the environment, respectively.

As shown in Figure 7, monitors can reach two kinds of rejection verdicts, namely
noP and noE ; the P and E tags distinguish between violations committed by the monitored
process (P) and the environment (E). The rules [mIV] and [mEV] specify how the monitor
reaches a verdict. Rule [mIV] represents the case when the monitor receives a violating
message l(v) and consequently reaches the verdict noP ; the message is deemed violating
since its label is not among those that the monitor expects to receive. Symmetrically, in
rule [mEV] the monitor reaches noE when it receives a violating message from the external
environment. The following example outlines the scenarios in which monitors reach a verdict.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:9

Syntax
Monitor M, N := ◁l(a).M | ▷

{
li(xi).Mi

}
i∈I

| ▲l(a).M | ▼
{

li(xi).Mi

}
i∈I

| µX .M | X | if A then M else N | 0 | noP | noE

Semantics

[mSnd]
◁l(v).M ◁l(v)−−−→ M

[mOut]
▲l(v).M ▲l(v)−−−→ M

[mRec]
µX .M

τ−→ M [µX .M/X]

[mRcv]
▷
{

li(xi).Mi

}
i∈I

▷lj (v)
−−−−→ Mj [v/xj]

j ∈ I [mIn]
▼

{
li(xi).Mi

}
i∈I

▼lj (vj)
−−−−−→ Mj [vj/xj]

j ∈ I

[mTru]
A ⇓ tt

if A then M else N
τ−→ M

[mFls]
A ⇓ ff

if A then M else N
τ−→ N

Violation Semantics

[mIV]
▷
{

li(xi).Mi

}
i∈I

▷l(v)−−−→ noP

∀i∈I : l ̸=li [mEV]
▼

{
li(xi).Mi

}
i∈I

▼l(v)−−−→ noE

∀i∈I : l ̸=li

Figure 6 Monitor Syntax and Semantics.

client monitor
Login(“Bob”)

̸ ⊢ ◁ Login(“Bob”) : Sauth

noP

(a) Internal violation.

monitor server
Res(227)

̸ ⊢ ▷ Res(227) : Sauth

noE

(b) External violation.

Figure 7 Monitor violations.

▶ Example 6. Fig. 7 depicts a monitor verifying the conformity of a client with the session
type Sauth (from Example 3). In Fig. 7a, the client sends the message Login(“Bob”). Since
the type Sauth states that the client should send a message with label Auth, the monitor
reaches the verdict noP by rule [mIV]. In Fig. 7b, the monitor receives Res(227) from the
environment (which represents a buggy server). In this case the monitor reaches the verdict
noE (by rule [mEV]) since the message does not conform with Sauth which states that the
client should receive either Succ or Fail. ⌟

▶ Remark 7. According to Fig. 6, our monitors can reach a verdict explicitly in their syntax
(by having noP /noE in their body), or by just transitioning to a verdict via rules [mIV] or
[mEV]. We will make use both methods for our synthesised monitors (see § 3.4). ⌟

3.3 Composite Monitored System
The rules in Fig. 8 formalise the behaviour of the monitor when composed with the process
to monitor, while also interacting with an environment (i.e., another process). This setup is
depicted in Fig. 9. We refer to a process P instrumented with a monitor M as a composite
(monitored) system, denoted as ⟨P ; M⟩. The rules [iRcv] and [iSnd] model the interaction
within the composite system, (i.e., between the monitored process P and the monitor M

in Fig. 9). Note that the interaction between the two is synchronous: the monitor (resp.
process) can only send a message when the process (resp. monitor) can receive the same
message. If P sends a message (by [iSnd]) that violates the monitor’s inputs, M is able to
flag the violation by rule [mIV]. The rules [iOut] and [iIn] model the interaction between
the composite system and the environment. As shown in Fig. 9, the monitor is the entity
that interacts with the environment (represented as a process Q). Accordingly, the monitor
can flag a message sent by the environment if the message violates the monitor’s expected

ECOOP 2021

20:10 On the Monitorability of Session Types, in Theory and Practice

[iSnd] P
◁l(v)−−−→ P ′ M

▷l(v)−−−→ M ′

⟨P ; M⟩ τ−→ ⟨P ′; M ′⟩
[iRcv] P

▷l(v)−−−→ P ′ M
◁l(v)−−−→ M ′

⟨P ; M⟩ τ−→ ⟨P ′; M ′⟩

[iOut] M
▲l(v)−−−→ M ′

⟨P ; M⟩ ▲l(v)−−−→ ⟨P ; M ′⟩
[iIn] M

▼l(v)−−−→ M ′

⟨P ; M⟩ ▼l(v)−−−→ ⟨P ; M ′⟩

[iProc] P
τ−→ P ′

⟨P ; M⟩ τ−→ ⟨P ′; M⟩
[iMon] M

τ−→ M ′

⟨P ; M⟩ τ−→ ⟨P ; M ′⟩

Figure 8 Composite monitored system semantics.

P M Q

composite system environment

Figure 9 The composite system interacting with the environment.

inputs, by rule [mEV]. The rules [iProc] and [iMon] allow the monitored process and the
monitor respectively to perform actions independent of each other (e.g., to recurse or branch
internally).

Our partial identity monitors halt upon reaching a verdict, in contrast to instrumented
sequence recognisers that operationally continue to process events without changing their
(irrevocable) verdict [26, 28]. As a result, our monitors also halt any interactions between the
composite system and the environment. Because of this, monitor correctness is of paramount
importance. The following example outlines the impact of a poorly constructed monitor.

▶ Example 8. Recall process Pauth = µX . ◁ Auth(“Bob”, “pwd”).Pres (Example 2), which
adheres to the session type Sauth = rec Y.!Auth(uname : Str, pwd : Str).Sres (Example 5). A
monitor corresponding to Sauth should receive from Pauth, analyse the message, and forward
it to the environment. The following (erroneous) monitor might seem to monitor Sauth:

Mbad = ▷Login(uname).▲Login(uname).Nbad

If process Pauth is instrumented with monitor Mbad, we observe the following behaviour:

⟨Pauth; Mbad⟩ τ−→ ⟨◁Auth(“Bob”, “pwd”).Pres[Pauth/X]; Mbad⟩ τ−→ ⟨Pres[Pauth/X]; noP ⟩

After Pauth unfolds, it sends the message Auth(“Bob”, “pwd”) to the monitor as per Sauth.
However, Mbad can only receive messages with label Login, hence it transitions to noP . ⌟

3.4 Monitor Synthesis
Def. 9 presents a synthesis procedure from session types (Fig. 3) to monitors (Fig. 6). The
monitors generated are meant to act as a proxy between the monitored process and the
environment process, as outlined in Fig. 5c. There are various practical advantages in having
an automated synthesis function: it is less error prone, expedites development and improves
the maintainability of the verification framework.

▶ Definition 9. The monitor synthesis function [[−]] : S 7→ M takes as input a session type
S and returns a monitor M . It is defined inductively, on the structure of the session type S:

[[⊕
{

!li(Bi).Si

}
i∈I

]] ≜ ▷
{

li(xi).if isBi(xi) then ▲li(xi).[[Si]] else noP

}
i∈I

[[&
{

?li(Bi).Si

}
i∈I

]] ≜ ▼
{

li(xi).if isBi(xi) then ◁ li(xi).[[Si]] else noE

}
i∈I

[[rec X.S]] ≜ µX .[[S]] [[X]] ≜ X [[end]] ≜ 0 ⌟

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:11

The main cases of Def. 9 are those for the selection and branching types. In the case
of S = ⊕

{
!li(Bi).Si

}
i∈I

, the synthesised monitor first waits to receive a message from
the monitored process, with one of the labels specified in the type. Once the message
is received, the monitor checks whether its payload is of the correct base type Bi, i.e.,
isBi(xi) (see Remark 4), raising noP if it is not. If isBi(xi) is true, the monitor forwards
the message towards the environment, and proceeds according to [[Si]]. The synthesis for
S = &

{
?li(Bi).Si

}
i∈I

is analogous, but the generated monitor receives a message from
the environment, analyses it, and forwards it to the monitored process; any violations are
attributed to the environment.

▶ Example 10 (Session Monitor Synthesis). Recall the session type Sauth in Example 3:
Sauth = rec Y.!Auth(Str, Str).Sres where Sres = &

{
?Succ(Str).Ssucc, ?Fail(Int).Y

}
The synthesis for this type first generates the recursion construct µY followed by the synthesis
for the selection type:

Mauth = [[Sauth]] =
{

µY . ▷ Auth(uname, pwd). if
(
isBStr(uname) ∧ isBStr(pwd)

)
then ▲Auth(uname, pwd).[[Sres]] else noP

Monitor Mauth first waits to receive a message with label Auth from the monitored process
(via ▷), checks the types of the payload

(
isBStr(uname)∧ isBStr(pwd)

)
, and proceeds to forward

the message to the environment (via ▲), continuing as the monitor of Sres:

[[Sres]] = ▼

{
Succ(tok).if isBStr(tok) then ◁ Succ(tok).[[Ssucc]] else noE ,

Fail(code).if isBInt(code) then ◁ Fail(code).Y else noE

}
Observe that [[Sres]] inputs from the environment and outputs to the monitored process. ⌟

If process Pauth is instrumented with monitor Mauth as the composite system ⟨Pauth; Mauth⟩,
we observe the behaviour outlined in Fig. 5c, as we show in the following example.

▶ Example 11. Recall Pauth defined in Example 2:
Pauth = µX .(◁Auth(“Bob”, “pwd”)).Pres where Pres = ▷

{
Succ(tok).Psucc, Fail(code).Pfail

}
When Pauth is instrumented with the monitor Mauth = [[Sauth]] we observe the behaviour:

⟨Pauth; Mauth⟩ τ−→ ⟨P ′
auth; Mauth⟩ where P ′

auth = ◁Auth(“Bob”, “pwd”).Pres[Pauth/X]

⟨P ′
auth; Mauth⟩ τ−→ ⟨P ′

auth; M ′
auth⟩ using [iMon]

where M ′
auth =

(
▷ Auth(uname, pwd).if

(
isBStr(uname) ∧ isBStr(pwd)

)
then ▲Auth(uname, pwd).[[Sres]] else noP

)
[Mauth/Y]

After unfolding, using the rules [iProc] and [iMon] respectively, the monitor can receive and
the process can send, and they can transition together to communicate: (see 1 in Fig. 5c)

P ′
auth

◁Auth(“Bob”,“pwd”)−−−−−−−−−−−→ P ′′
auth where P ′′

auth = ▷
{

Succ(tok).Psucc, Fail(code).Pfail
}

[Pauth/X]

M ′
auth

▷Auth(“Bob”,“pwd”)−−−−−−−−−−−→ M ′′
auth where

M ′′
auth = if

(
isBStr(“Bob”) ∧ isBStr(“pwd”)

)
then ▲Auth(“Bob”, “pwd”).[[Sres]][Mauth/Y] else noP

⟨P ′
auth; M ′

auth⟩ τ−→ ⟨P ′′
auth; M ′′

auth⟩

The monitor proceeds by checking the values of the payload values using the rule [iMon].

M ′′
auth

τ−→ M ′′′
auth where M ′′′

auth = ▲Auth(“Bob”, “pwd”).[[Sres]][Mauth/Y]

⟨P ′′
auth; M ′′

auth⟩ τ−→ ⟨P ′′
auth; M ′′′

auth⟩

ECOOP 2021

20:12 On the Monitorability of Session Types, in Theory and Practice

P

violates φ

satisfies φ

soundness

completeness
Pmonitor

φ

✓

✗

Figure 10 Monitoring soundness and completeness, from a logic-based viewpoint [30, 3, 4].

M ′′′
auth now forwards the message to the environment by rule [iOut]: (see 2 in Fig. 5c)

⟨P ′′
auth; M ′′′

auth⟩ ▲Auth(“Bob”,“pwd”)−−−−−−−−−−−−→ ⟨P ′′
auth; [[Sres]][Mauth/Y]⟩

The monitor is currently waiting to receive from the environment, since:

[[Sres]][Mauth/Y] =▼

{
Succ(tok).if isBStr(tok) then ◁ Succ(tok).[[Ssucc]][Mauth/Y] else noE

Fail(code).if isBInt(code) then ◁ Fail(code).Mauth else noE

}
If the monitor receives the message Succ(321), it forwards the message to the monitored
process and proceeds according to [[Ssucc]][Mauth/Y]. If the monitor receives the message
Fail(1) (see 3 in Fig. 5c) it forwards the message to the process P ′′

auth (see 4 in Fig. 5c):

◁Fail(1).Mauth
◁Fail(1)−−−−−→ Mauth P ′′

auth
▷Fail(1)−−−−−→ Pfail[Pauth/X][1/code]

⟨P ′′
auth; ◁Fail(1).Mauth⟩ τ−→ ⟨Pfail[Pauth/X][1/code]; Mauth⟩

The composite system can now proceed with the monitor restarting as Mauth. ⌟

Should the monitored process send a message that violates the session type, the monitor can
flag the violation upon receiving a message, as the following example shows.

▶ Example 12. Consider the scenario in Fig. 7a, where the client is the process Pbad:
Pbad = ◁Login(“Bob”). ▷ Res(tok : Str).Pres

and recall the monitor Mauth (from Examples 10 and 11) obtained from the session type
Sauth. When Pbad is instrumented with Mauth, we observe the following behaviour:

⟨Pbad; Mauth⟩ τ−→ ⟨Pbad; M ′
auth⟩ τ−→ ⟨▷Res(tok : Str).Pres; noP ⟩ using [iMon],[iSnd]

where M ′
auth =

{ (
▷ Auth(uname, pwd).if

(
isBStr(uname) ∧ isBStr(pwd)

)
then ▲Auth(uname, pwd).[[Sres]]else noP

)
[Mauth/Y]

i.e., Mauth unfolds, receives Login(“Bob”) from Pbad, and flag the rejection verdict noP . ⌟

4 Formal Analysis and Results

In § 3 we argued for the importance of monitor correctness. This has also been recognised
by other works that study monitoring techniques for session types [17, 42, 34]. However,
these attempts all propose their own bespoke notion of monitor correctness that is often hard
to relate to the others. Instead, we strive towards a more systematic approach for monitor
correctness and study monitor correctness in relation to an independent characterisation
of process correctness. More concretely, we assess the correctness of session monitors in
relation to session typing. We draw inspirations from a recent body of work that captures this

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:13

relationship in terms of soundness and completeness [30, 3], as depicted in Fig. 10. In such
body of work, monitor soundness states that if a monitor M is monitoring a process P for a
property φ, and M reaches a rejection (resp. acceptance) verdict, then such a verdict must
correspond to P ’s violations (resp. satisfactions) of property φ. Monitor completeness is the
dual property: if a process P violates (resp. satisfies) a property φ, then the monitor that
runtime-checks P for φ must reach a rejection (resp. acceptance) verdict. This formulation
is appealing to our study for a number of reasons:

The touchstone logic used to specify process correctness is the Hennessy-Milner Logic
with minimal and maximal fixpoints (recHML) [45]; like session types, it has a tight
relation to (ω-)regular properties, and a long tradition of automata-based interpetations.
Recent work [4, 6] has extended this framework to a spectrum of correctness criteria.
This gives us the flexibility of identifying the criteria that best fit our concerns.

To study session types monitorability, we adapt this theoretical framework to our setting:
M1 instead of logic formulas as specifications, we adopt session types as specifications; and
M2 to characterise processes satisfying a specification, we use the session typing system.
This leads to important differences between our approach and [30, 3]:
D1 by item M2, our processes characterisation is syntactic (rather than semantic), which is

further removed from the runtime behaviour observed by the monitor;
D2 session types describe interactions between two parties, and our monitors can attribute a

violation to a party. By contrast, monitors for recHML formulas flag generic rejections;
D3 we here limit our analysis to rejection monitors and do not consider acceptance verdicts.
Consequently, we formalise our notions of monitoring soundness and completeness as follows.
Here, t represents a trace, i.e., finite a sequence of environment send/receive actions ▲l(v)
and ▼l(v) (from Fig. 8); moreover, t=⇒ is a sequence of transitions where the actions in t are
interleaved with finite sequences of τ -transitions.

▶ Definition 13 (Session Monitor Soundness). A monitor M soundly monitors for a session
type S iff, for all P , if there is a trace t such that ⟨P ; M⟩ t=⇒ ⟨P ′; noP ⟩, then ∅ · ∅ ⊢ P : S

does not hold. ⌟

▶ Definition 14 (Session Monitor Completeness). A monitor M monitors for a session type
S in a complete manner, iff for all processes P , whenever ∅ · ∅ ⊢ P : S does not hold, then
there exists a trace t such that ⟨P ; M⟩ t=⇒ ⟨P ′; noP ⟩. ⌟

4.1 Soundness of Session Type Monitoring
A tenet of [30, 3, 4] is that, in order to have monitor correctness, soundness (Def. 13) is not
negotiable. We here show that our monitor synthesis procedure is sound, i.e., we show that
for any session type S, monitor [[S]] observes Def. 13 w.r.t. specification S.

▶ Theorem 15 (Synthesis Soundness). For all session types S and processes P , if there exists
a trace t such that ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; noP ⟩, then ∅ · ∅ ⊢ P : S does not hold.

Proof. Instead of proving the statement directly, we prove its contrapositive:

For all session types S and processes P such that ∅·∅ ⊢ P : S, if ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩
then M ′ ̸= noP .

To this end, we first establish a subject reduction result, relying on standard properties of
our type system: this determines how process P evolves w.r.t. its session type S. Then, we
prove the contrapositive statement above by lexicographical induction on the derivation of

ECOOP 2021

20:14 On the Monitorability of Session Types, in Theory and Practice

∅ · ∅ ⊢ P : S and the number of transitions in the trace ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩. This requires
some sophistication, because as the instrumented system ⟨P ; [[S]]⟩ evolves, for each step of P

the monitor [[S]] (as generated by Def. 9) may take multiple steps to evaluate synthesised
conditions before it can forward messages. Hence, we prove additional results to handle such
cases, and formulate a suitable induction hypothesis allowing us to complete the proof of the
contrapositive statement. Theorem 15 follows as a corollary. ◀

As a by-product of Theorem 15 we also deduce that if a process P has type S, then the
instrumented process ⟨P ; [[S]]⟩ can only get stuck due to an external violation, i.e., noE ; this
arises when the environment sends a message with a wrong label or payload type. This result
is formalised in Corollary 16 below, and is reminiscent of the notion of blaming in gradual
types (i.e., untyped components can always be blamed in case of errors [10, 41]).

▶ Corollary 16 (Monitor Blaming). For any process P and session types S where ∅ ·∅ ⊢ P : S,
for any trace t such that ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩ ̸→ where P ̸= 0, we have M ′ = noE. ⌟

4.2 On the Completeness of Session Type Monitoring
Monitor soundness, by itself, is a weak result. For instance, the monitor that merely acts as a
forwarder between the monitored process and the environment, never raising any detections,
is trivially sound but, arguably, not very useful. One way to force the monitor to produce
useful detections is via completeness, as per Def. 14 above. We investigate completeness for
our synthesised monitors by first establishing a “weak” completeness result (§ 4.2.1) showing
how ill-typed processes can misbehave when instrumented. Then, we prove that a “full”
completeness result is impossible in our black-box monitoring model (§ 4.2.2).

4.2.1 Weak Monitor Synthesis Completeness
To achieve our completeness result, in this section we need a precise typing assumption on
predicates A: ill-typed predicates do not evaluate to a boolean – i.e., if Γ ⊢ A : Bool does
not hold, then A ̸⇓ tt and A ̸⇓ ff. Furthermore, we need to limit our analysis to processes
without dead code (Def. 18 below). For the process language of Fig. 2, this means: for every
“if” statement occurring in a process P , there are executions of P where the left branch is
taken, and executions where the right branch is taken. These executions depend on P ’s
inputs, which may cause different instantiations to P ’s variables. Example 17 illustrates why
we need this assumption; note that these assumptions are not needed for monitor soundness.

▶ Example 17. The process P = if tt then ◁ l1(v1).0 else ◁ l2(v2).0 is not typable with
S = ⊕

{
!li(Bi).Si

}
i∈{1} (for any Si): it is only typable with internal choices of the form

⊕
{

!li(Bi).Si

}
i∈1..n

, with n ≥ 2. Yet, P would operate correctly if instrumented with monitor
[[S]], because its “else” branch is dead code. If we remove the dead code from P , the remaining
process ◁l1(v1).0 is typable with S, and behaves like P . ⌟

▶ Definition 18. A process P has no dead code iff for all its subterms of the form P ′ =
if A then Q else Q′, there exist traces t and t′ and substitutions σ and σ′ such that P

t=⇒

P ′σ
τ−→ Qσ (hence, Aσ ⇓ tt) and P

t′

=⇒ P ′σ′ τ−→ Q′σ′ (hence, Aσ ⇓ ff). ⌟

With the “no dead code” assumption, we can formulate our weak completeness result. It
states that when a process P is ill-typed for a session type S, then the monitored system
⟨P ; [[S]]⟩ exhibits at least one execution that gets stuck due to P ’s behaviour, without any
violation by the environment.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:15

▶ Theorem 19 (Weak Monitor Synthesis Completeness). Take any closed process P without
dead code such that ∅ · ∅ ⊢ P : S does not hold. Then, there exists a trace t such that
⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩ ̸→ , with P ′ ̸= 0 or M ′ ̸= 0; moreover, M ′ ̸= noE.

Proof. The proof is based on failing derivations, inspired by [16, 44]. It consists of 6 steps.
1. We define the rule function Φ that, following the typing rules in Fig. 4, maps a judgement

of the form J = Θ · Γ ⊢ P : S to either the set of all judgements in J ’s premises (for
inductive rules), or {tt} (for axioms), or ∅ (if J does not match any rule);

2. we formalise a failing derivation of a session typing judgement Θ · Γ ⊢ P : S as a finite
sequence of judgements D = (J0, J1, . . . , Jn) such that:

(i) for all i ∈ 0..n, Ji is a judgement of the form Θi · Γi ⊢ Pi : Si;
(ii) J0 = Θ · Γ ⊢ P : S (i.e., the failing derivation D begins with the judgement of

interest);
(iii) ∀i ∈ 1..n, Ji ∈ Φ(Ji−1) (i.e., each judgement in D is followed by one of its premises);
(iv) Φ(Jn) = ∅ (i.e., the last judgement in D does not match any rule in Fig. 4)

3. we prove there is a failing derivation of J = Θ · Γ ⊢ P : S if and only if J is not derivable;
4. we formalise a negated typing judgement Θ · Γ ̸ ⊢ P : S and prove that it holds if and

only if there is a corresponding failing derivation of Θ · Γ ⊢ P : S;
5. thus, from items 3 and 4 above, we know that Θ · Γ ⊢ P : S is not derivable if and only if

Θ · Γ ̸ ⊢ P : S is derivable. Consequently, the judgement Θ · Γ ̸ ⊢ P : S tells us exactly
what are the possible shapes of P and S covered by the theorem’s statement;

6. finally, we use all ingredients above to prove the thesis. From a failing derivation of
Θ · Γ ⊢ P : S (item 3), we construct a trace t leading from ⟨P ; M⟩ to some ⟨P ′; M ′⟩;
further, using the corresponding derivation of Θ · Γ ̸ ⊢ P : S (items 4, 5), we prove that
t is a valid trace, and ⟨P ′; M ′⟩ ̸→ with P ′ ̸= 0 or M ′ ̸= 0, and M ′ ̸= noE . ◀

Although Theorem 19 is weaker than the ideal requirement set out in Def. 14, its proof
sheds light on all the possible reasons why an ill-typed monitored process gets stuck:

1. the monitor reaches a process rejection verdict, M ′ = noP , because the process sends a
message with a wrong label, or payload value of a wrong base type.

2. the monitor blocks waiting for the process to send a message, but:
a. P ′ is attempting to receive a message itself or
b. P ′ = 0 (i.e., P ′ has terminated its execution);

3. the monitor blocks waiting for the process to receive a message, but:
a. the process is also waiting to receive a message but does not support the required

message label being sent or
b. P ′ is attempting to send a message itself or
c. P ′ = 0;

4. the monitor expects the process to end, but P ′ is trying to send/receive more messages;
5. P ′ is stuck on an ill-typed expression.

▶ Remark 20. Process violations are only flagged noP (as required in Def. 14) is case 1. We
now discuss how a practical monitor implementation could, in principle, detect violations
in other cases, and highlight when this additional detection power would require additional
assumptions that go beyond our black-box monitoring design.

In cases 3a and 5, the trace t may lead to a run-time error; this could be flagged by
assuming that the monitor can detect whether the monitored process has crashed;

ECOOP 2021

20:16 On the Monitorability of Session Types, in Theory and Practice

In case 4, the monitor expects the session to be ended. This could be handled by assuming
and end-of-session signal: the monitor can wait for such a signal, and flag any other
message sent by the process. However, if the process is attempting to receive (instead of
ending the session), the detection is more subtle, as in case 2a below;
Cases 2b and 3c could be similarly handled by assuming an end-of-session signal;
Case 2a is more subtle: both the process and monitor are waiting for a message. Reception
timeouts from the monitor side are inadequate because they lead to unsound detections.
To accurately handle this case, we would need to instrument the process executable,
which breaks our black-box assumptions from § 3.1. Similarly, flagging a violation in case
3b also requires access to the process code, again breaking our black-box design. ⌟

4.2.2 Impossibility of Sound and Complete Session Monitoring
The weakness of our completeness result in Theorem 19 is not specific to our monitor synthesis
function. Rather, we show that this is an inherent limit of the operational model (Figures 6
and 8) that captures the black-box monitor design decisions of § 3.1. Similar impossibility
results often arise for reasonably expressive specification languages (such as the logics in
[30, 1, 3, 4]), where it is usually the case that only a subset of specifications can be monitored
in a sound and complete way.

▶ Theorem 21 (Impossibility of Sound and Complete Session Monitoring). A (closed) session
type S ̸= end cannot have a sound and complete monitor under the semantics of Fig. 6.

Proof. We proceed by case analysis on the structure of S:
Case S = &

{
?li(Bi).Si

}
i∈I

: We assume that a complete monitor M for S exists and
proceed to show that such a monitor is necessarily unsound for S. Fix a complete monitor
M for S. Consider the process P2 = ▷

{
li(xi).Qi

}
i∈I

that is well-typed w.r.t. the session
type S. Then, consider the process P1 obtained by pruning some of the top-level external
choices of P2, i.e., P1 = ▷

{
lj(xj).Qj

}
j∈J

where J ⊂ I (a strict inclusion). Observe that
P1 is ill-typed for S, and thus, by completeness (Def. 14), M should reject P1, (i.e., there
must exists a trace t such that ⟨P1; M⟩ t=⇒ ⟨P ′

1; noP ⟩). There are two ways for M to reach
such a verdict:

M
t=⇒ noP without interacting with P1. In this case, the same rejection verdict is

reached by the composite system ⟨P2; M⟩. Since P2 is well-typed for S, this means
that M is unsound for S by Def. 13;
M reaches the rejection verdict after interacting (at least once) with P1. In this case,
we have P1

▷lj(v)−−−−→ Qj (for some j ∈ J), and there are t1, t2, P ′
1 such that t = t1.t2

and M
t1.◁lj(v)
======⇒ M ′ and ⟨Qj ; M ′⟩ t2=⇒ ⟨P ′

1; noP ⟩. But then, since j ∈ J ⊆ I, we

also have ⟨P2; M⟩ t=⇒ ⟨P ′
1; noP ⟩. Since M rejects the well-typed process P2, this again

makes M unsound for S by Def. 13.
We have thus shown that a complete monitor M for S is necessarily unsound.

Case S = ⊕
{

!li(Bi).Si

}
i∈I

: Assume that a complete monitor M for S exists. The process
P1 = 0 is ill-typed for S (since it does not produce any of the expected outputs). By
Def. 14 (Completeness), there must exist a trace t such that ⟨P1; M⟩ t=⇒ ⟨P ′

1; noP ⟩. From
the structure of P1 it is clear that M reaches its rejection verdict without interacting
with P1, i.e., M

t=⇒ noP . This also means that M would also reach a rejection verdict
when instrumented with P2 = ◁lk(vk).Q′

2 with k ∈ I and is well-typed w.r.t. S. This
makes M unsound by Def. 13.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:17

Recall that all session types are assumed to be guarded. Since the above two cases rule out
all the guarding constructs, ⊕

{
!li(Bi).Si

}
i∈I

and &
{

?li(Bi).Si

}
i∈I

, we conclude that there
is no closed (guarded) session type that can be monitored for soundly and completely, except
for all the trivial session types that equate to end. ◀

5 Realisability and Implementation

Up to this point we have considered a level of abstraction that allows us to model session
monitors and monitored components, reason about their behaviour, and prove their proper-
ties. We now illustrate how our theoretical developments can be translated into an actual
implementation of session monitoring, targeting the Scala programming language. The key
idea is to turn our monitor synthesis procedure (Def. 9) into a code generation tool that,
given a protocol specification (as a session type), produces the Scala code of a corresponding
executable monitor. The tool is called STMonitor, and is provided as companion artifact to
this paper. It is also available at:

https://github.com/chrisbartoloburlo/stmonitor (release tag v0.0.1)

We describe STMonitor in § 5.2 – but first, we augment session types with assertions (§ 5.1).

5.1 Introducing Assertions in Session Types Specifications
Since we use session types as specifications for a tool that generates executable monitors,
it is convenient to enrich them with assertions on the values being sent or received. We
augment the session types syntax (Fig. 3) by extending selection and branching as follows:

S ::= ⊕
{

!li(xi : Bi)[Ai].Si

}
i∈I

| &
{

?li(xi : Bi)[Ai].Si

}
i∈I

| . . .

The assertions Ai are predicates of the process calculus (Fig. 2, Remark 4), and they can
refer to the named payload variables xi. Such assertions do not influence type-checking: they
are copied in the synthesised monitors, where they are used to flag the new violations noA

P

(assertion violation by the process) and noA
E (external assertion violation). To achieve this,

we update our monitor synthesis function (Def. 9) as follows:

[[⊕
{

!li(xi : Bi)[Ai].Si

}
i∈I

]] ≜ ▷
{

li(xi).if isBi(xi) then
(
if Ai then ▲li(xi).[[Si]] else noA

P

)
else noP

}
i∈I

[[&
{

?li(xi : Bi)[Ai].Si

}
i∈I

]] ≜ ▼
{

li(xi).if isBi(xi) then
(
if Ai then ◁ li(xi).[[Si]] else noA

E

)
else noE

}
i∈I

The only changes are highlighted: if the monitored process sends a message that violates
the assertion, it is flagged with noA

P ; symmetrically, if a message that violates the assertion is
received from the environment, then the message is flagged with noA

E .

▶ Example 22. Recall Sauth from Example 3. We can refine it with assertions to check the
validity of the data being transmitted and received:

SA
auth = rec Y.!Auth(uname : Str, pwd : Str)[validUname(uname)].SA

res

SA
res = &

{
?Succ(tok : Str)[validTok(tok, uname)].SA

succ, ?Fail(code : Int)[tt].Y
}

In SA
auth, when the client sends Auth(uname, pwd), the value of uname is passed to the

predicate validUname which ensures that the supplied uname is given in the correct format.
If the server replies with Succ(tok), the token tok and username uname are validated by
the cryptographic predicate validTok, which tests whether the token is correct for the given
username. If so, the client continues along session type SA

succ. Otherwise, if the server
chooses to send Fail with the error code, the trivial assertion check tt is performed. ⌟

ECOOP 2021

https://github.com/chrisbartoloburlo/stmonitor

20:18 On the Monitorability of Session Types, in Theory and Practice

Notice that, when all assertions are trivially true, the augmented monitor synthesis is
equivalent to the original Def. 9. Otherwise, the synthesised monitors with assertions are
more restrictive: executions where no violations noP nor noE were detected might now violate
an assertion and result in noA

P or noA
E . The introduction of such assertions in our theory

changes our monitorability results as follows:
soundness (Theorem 15) is preserved – which is crucial for practical usability;
blaming (Corollary 16) is weakened: an instrumented well-typed process may violate an
assertion, and be flagged with noA

P ;
weak detection completeness (Theorem 19) is not preserved: assertions can in principle be
unsatisfiable, hence some ill-typed processes may not be flagged because all their traces
end with an environment assertion violation noA

E .

5.2 Implementation

We now illustrate the implementation of our session monitor synthesis tool. It generates
runnable Scala code from session types, possibly including the assertions discussed in § 5.1.

Implementation framework. Our synthesised monitors uses the session programming library
lchannels [56]. It allows for implementing a session type S in Scala, by
1. defining a set of Continuation-Passing-Style Protocol classes (CPSPc) corresponding to S,

and
2. using a communication API that, by leveraging such CPSPc, lets the Scala compiler spot

protocol violations.
By using lchannels, we are more confident that if a syntesised monitor for session type S

compiles, then it correctly sends/receives messages according to S. Moreover, lchannels
abstracts communication from the underlying message transport, hence it allows our monitors
to interact with clients or servers written in any programming language.

Implementation of the session monitor synthesis. Overall, our Scala monitor generation
requires 3 user-supplied inputs:
i1 a session type S (with or without assertions) describing the desired protocol;
i2 for each assertion in S (if any), a corresponding Scala function returning true/false; and
i3 a Connection Manager class (discussed below) to interact with the monitored process.
Given a session type (input 1) our monitor synthesiser tool generates:
1. the protocol classes (CPSPc) for representing the session type in Scala + lchannels, and
2. the Scala source code of a runtime monitor (requiring inputs 2 and 3 to compile).

The generated monitor acts as a mediator between client and server: one is on the internal
side of the monitor (i.e., the instrumented process), while the other is on the external side.
The internal side is untrusted: its messages are run-time checked, to ensure they follow
the desired protocol (e.g., session type SA

auth in Example 22). Instead, the external side is
trusted: it is (mostly) expected to follow the dual protocol (e.g., the dual session type SA

auth).
This design choice allows us to simplify the monitor implementation, as its communication
with the external side are handled by lchannels. However, our design does not limit the
flexibility of the approach, since an untrusted peer can be made trusted by instrumenting it
with a monitor (see discussion below).

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:19

Monitor synthesis in practice. We now illustrate the scenario depicted in Fig. 11 where:

1. we want a client/server system to implement the session type (with assertions) SA
auth

(Example 22);
2. we trust the server (e.g., because it is type-checked), and
3. we want to instrument a client whose source code is inaccessible or cannot be verified.
Other variations of this scenario are possible. For instance, we could similarly instrument an
untrusted server, by running our monitor synthesiser on the dual session type Sauth. The
resulting combination of monitor-and-server is then trusted and can interact via lchannels.
As a result, it could then be used as the trusted server in Fig. 11.

client CM mon server∗ lchannels

CPSPcsynthSauth CPSPc

Figure 11 The composite system interacting with the environment.

The generated monitor (mon) intercepts all messages between client and server . The
communication between mon and server occurs via lchannels; instead, the communication
between the monitor and the client is handled by a Connection Manager (CM): a user-
supplied Scala class, input 3, which acts as a translator and gatekeeper, by transforming
each messages from the monitor-client transport protocol into a corresponding CPSP class,
and vice versa. With this design, the code generated for the monitor is abstracted from the
low-level details of the protocols used by both the client and server.

There is a tight correspondence between the monitors generated by our tool, and our
formal monitor synthesis. This increases our confidence that the results in § 4 carry over
to our implementation and that our tool is indeed correct. In the sequel, we illustrate the
generated monitoring code for Example 22 above, showing the monitoring of a selection type
(§ 5.2) and branching type (§ 5.2).

[[SA
auth]] =

µY . ▷
{

Auth(uname : Str, pwd : Str).

if isBStr(uname) ∧ isBStr(pwd)
then if validUname(uname)

then ▲Auth(uname, pwd).[[Sres]]

else noA
P

else noP

}

1def receiveAuth(srv:Out[Auth],client:CM): Unit ={
2client.receive() match {
3case msg @ Auth(_, _) =>
4if (validUname(msg.uname)) {
5val cont = srv !! Auth(msg.uname,
6msg.pwd)_
7payloads.Auth.uname = msg.uname
8sendChoice1(msg.cont, client)
9} else {
10/* INTERNAL VIOLATION (assertion) */
11}
12case _ =>
13/* INTERNAL VIOLATION: invalid message */
14} }

Figure 12 Comparison between the formal and implementation synthesis of the internal choice.

The internal receive operator of the monitor calculus (▷) corresponds to line 2 in § 5.2,
where the monitor invokes the receive method of the CM. Depending on the type of message
received, the monitor performs a series of checks. By default, a catch-all case (line 12) handles

ECOOP 2021

20:20 On the Monitorability of Session Types, in Theory and Practice

any messages violating the protocol: this is similar to rule [mIV] of the formal monitor
(Fig. 6), which flags the violation noP . If Auth is received, the monitor initially invokes the
function validUname() with argument uname; such a function is user-supplied (see input 2
above). If the function returns false, the monitor flags the violation and halts (line 10): this
corresponds to the external assertion violation noA

P in [[SA
auth]]. Otherwise, if validUname()

returns true, the message is forwarded to the server (line 5). The function used to forward
the message (!!), which is part of lchannels, corresponds to the external output operator ▲
of [[SA

auth]]; it returns a continuation channel that is stored in cont. To associate the payload
identifiers of SA

auth to their current values, the monitors maintain a mapping, called payloads.
In this case, the value of uname is stored (line 7) since it is used later on in Sauth. Finally,
the monitor moves to the next state sendChoice1 (§ 5.2), passing the channel stored in cont
to continue the protocol (line 8).

[[SA
res]] =

▼
{

Succ(tok : Str).if isBStr(tok)

then if validTok(tok, uname)
then ◁ Succ(tok).[[Ssucc]]

else noA
E else noE ,

Fail(code : Int).if isBInt(code)
then if tt then ◁ Fail(code).Y

else noA
E else noE

}

1def sendChoice1(srv:In[Choice1],Client:CM):Any = {
2srv ? {
3case msg @ Succ(_) =>
4if (validTok(msg.tok, payloads.Auth.uname)) {
5Client.send(msg)
6/* Continue according to S_succ */
7} else {
8/* EXTERNAL VIOLATION (assertion) */
9}
10case msg @ Fail(_) =>
11Client.send(msg)
12receiveAuth(msg.cont, External)
13} }

Figure 13 Comparison between the formal and implementation synthesis of the external choice.

According to SA
res, the server can choose to send either Succ or Fail. The monitor waits

to receive either of the options from the server , using the method ? from lchannels (line 2).
This corresponds to the external input operator of the monitor calculus (▼) used in [[SA

res]],
which can also receive both options from the server .

If the server sends Succ(toc), the first case is selected (line 3). The monitor evaluates
the assertion validTok on tok and uname (stored in § 5.2, and now retrieved from
the payloads mapping). If it is satisfied, the message is forwarded to the client (line
5) via CM’s send method, which corresponds to the internal send operator (◁) in the
monitor calculus. The monitor then proceeds according to the monitor [[Ssucc]]. Otherwise,
the monitor logs a violation and halts (line 8); similarly, [[SA

res]] flags the violation noA
E

indicating an external assertion violation.

Instead, if the server sends Fail (line 10), the monitor forwards it to the client; there
are no assertion checks here, as the assertion after Fail in [[SA

res]] is tt. Then, following
the recursion in [[SA

res]], the monitor (on line 12) loops to receiveAuth (§ 5.2).
Unlike the synthesised code of receiveAuth (that handles the previous external choice, in
§ 5.2), there is no catch-all case for unexpected messages from the server . This is by design.
As explained above we use lchannels to interact with the “trusted” external side, hence the
interaction with the server is typed, and a catch-all case would be unreachable code. Still,
lchannels throws an exception (crashing the monitor) if it receives an invalid message –
which corresponds to the monitor [[SA

res]] flagging an external violation via rule [mEV].

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:21

6 Empirical Evaluation

We evaluate the feasibility of our implementation by measuring the overheads induced by
the run-time checks of our synthesised monitors (§ 5). We consider 3 application protocols,
modelled as session types, as our benchmarks:
1. A ping-pong protocol, based on a request-response over HTTP (a style of protocol that

is typical, e.g., in applications based on web services). Although it is a fairly simple
protocol, our implementation uses HTTP to carry ping/pong messages, highlighting the
fact that our generated monitors are independent from the message transport in use;

2. A fragment of the Simple Mail Transfer Protocol (SMTP) [47]. This benchmark represents
a more complex protocol featuring nested internal/external choices;

3. A fragment of the HTTP protocol, also featuring sequences of nested internal/external
choices.

Ping-pong over HTTP. In this protocol, a client is expected to recursively send messages
with label Ping to the server which, in turn, replies with Pong. The protocol proceeds until
the client sends Quit. The client-side protocol is shown below (the server-side is dual).

Spong = rec X.(⊕
{

!Ping().?Pong().X, !Quit()
}

)
Notice that the protocol has no explicit reference to HTTP. In fact, we use HTTP as

a mere message transport, by providing a suitable Connection Manager to the synthesised
monitor (which is transport-agnostic). Concretely, the ping-pong is implemented with the
server handling requests on an URL like http://127.0.0.1/ping, and the client performing
a GET request on that URL, and reading the response. For this benchmark, the setup is:

the client is on the internal side of the generated monitor, hence subject to scrutiny;
the server is on the external side of the generated monitor.

As untrusted client we use a standard, unmodified load testing tool: Apache JMeter (https:
//jmeter.apache.org/) configured to send HTTP requests at an increasing rate.

SMTP. We model a fragment of the SMTP protocol (server-side) as the session type Ssmtp:

Ssmtp = !M220(msg : Str).&
{

?Helo(host : Str).!M250(msg : Str).Smail, ?Quit().!M221(msg : Str)
}

Smail = rec X.(&
{

?MailFrom(addr : Str).!M250(msg : Str).rec Y.(&
{

(7)

?RcptTo(addr : Str).!M250(msg : Str).Y, (8)
?Data().!M354(msg : Str).?Content(txt : Str).!M250(msg : Str).X, (9)

?Quit().!M221(msg : Str)
}

), ?Quit().!M221(msg : Str)
}

)

When a client establishes a connection, the server sends a welcome message (M220), and
waits for the client to identify itself (Helo). Then, the client can recursively send emails by
specifying the sender and recipient address(es), followed by the mail contents. The client can
send multiple emails by repeating the loop on “X” between lines (7) and (9).

The SMTP protocol runs over TCP/IP. The specification above (and the synthesised
monitors) are again transport-agnostic: we handle TCP/IP sockets by providing a suitable
Connection Manager to the synthesised monitor.

For this benchmark, the setup used is “dual” to that of the HTTP ping-pong benchmark
above:

the server is on the internal side of the generated monitor, hence subject to scrutiny;
the client is on the external side of the generated monitor.

ECOOP 2021

http://127.0.0.1/ping
https://jmeter.apache.org/
https://jmeter.apache.org/

20:22 On the Monitorability of Session Types, in Theory and Practice

For this experiment, we implement an SMTP client that sends emails to the server, and
measures the response time. We take such measurements against two (untrusted and
monitored) servers, both configured to accept incoming emails and discard them:
1. a default instance of smtpd from the Python standard library;1
2. a default instance of Postfix,2 one of the most used SMTP servers [59].

HTTP. In this benchmark, we do not use HTTP as a mere message transport (unlike the
ping-pong benchmark above). Rather, we model HTTP headers, requests, and responses with
a session type, which we use to synthesise a monitor that checks the interactions between a
trusted server and an untrusted client. We focus on a fragment of HTTP that is sufficient
for supporting typical client-server interactions (e.g., when the client is the Mozilla Firefox
browser). The HTTP session type (here omitted due space reasons) and its (trusted) server
implementation are adapted from the lchannels examples [55]. For benchmarking, we use
Apache JMeter (https://jmeter.apache.org/) as untrusted client.

Benchmarking setups and measurements. In all of our benchmarks, we study the overhead
of our synthesised monitors by comparing:

an unsafe setup: the client and server interact directly;
a monitored setup: communication between the trusted and untrusted components is
mediated by our synthesised monitors, which halts when it detects a violation – as
described earlier in Fig. 11.

We follow a multi-faceted approach, as advocated by [8], and base our study on three
measurements: average response time, average CPU utilisation, and maximum memory
consumption. The response time is arguably the most important measurement, since slower
response times can be immediately perceived when interacting with a monitored system. We
measure them by running experiments of increasing length: for ping-pong and HTTP, we
perform an increasing number of request-response loops, whereas for SMTP, we send an
increasing number of emails. The general expectation is: for longer experiments, the average
response time and CPU usage should decrease, while the maximum memory consumption
should increase. We repeat each experiment 30 times, and we plot the average of all results.

In our benchmarks, overheads can have two forms:

Overhead 1: the translation and duplication of messages being forwarded between client and
server;

Overhead 2: the run-time checks needed to ensure that the desired session type is being
respected.

Overhead 1 is unavoidable for the most part. By their own nature, partial identity
monitors (like ours) must receive and forward all messages. This overhead can only be
minimised by using more efficient message transports. By contrast, overhead 2 is specifically
caused by our monitor synthesis. Our benchmarks were specifically designed to accurately
capture this latter form of overhead. In order to better distinguish overhead 1 from overhead
2, our benchmarks run the trusted side (client or server) and the synthesised monitors
on a same JVM instance, where they interact in the most efficient way (i.e., through the
LocalChannel transport provided by the lchannels library). This minimises overhead 1,

1 https://docs.python.org/3/library/smtpd.html
2 http://www.postfix.org/

https://jmeter.apache.org/
https://docs.python.org/3/library/smtpd.html
http://www.postfix.org/

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:23

and allows us to better observe the impact of overhead 2. Clearly, the untrusted side of each
benchmark (i.e., the black-box client or server being monitored) always runs as a separate
process.

Despite this, our synthesised monitors can still be deployed independently of the trusted
side (i.e., on their own JVM, possibly across a network) because they are agnostic to the
message transports in use; this is made possible by the use of connection managers and
lchannels. We demonstrate this capability by also taking measurements for a detached
setup, where the trusted component and monitor run on separate JVMs (on a same host),
and interact via TCP/IP (through a suitable message transport for lchannels). This setup
is more flexible, but the slower message transport increases overhead 1. We implemented
this setup for ping-pong and SMTP, measuring their response times.

Results and analysis. The benchmark results are reported Fig. 14. For the ping-pong
benchmark (Fig. 14a), the impact of monitors is noticeable but limited: for the “monitored”
setup (which highlights overhead 2), the response times are less than 14% slower; the
“detached” monitor setup is unsurprisingly slower, due to its slower message transport (which
increases overhead 1). For the SMTP benchmark (Figures 14b and 14c), we can observe
different behaviours:

the Python smtpd server (Fig. 14b) has extremely fast response times: it is essentially a
dummy server that receives emails and does nothing with them. This is also evident from
the CPU usage: it constantly increases, because the SMTP client receives immediate
responses, no matter how many emails it sends, with or without a monitor. Consequently,
our monitors cause a relatively high impact on such fast response times (almost 34%);
the Postfix SMTP server (Fig. 14c) is more realistic: unlike Python smtpd, it takes some
time (with fluctuations) to process each email and respond to the client. Consequently,
our monitors have a relatively small impact on the response times (less than 7%).

As in the case of ping-pong, the “detached” monitor setup for both SMTP benchmarks is
slower, as it uses a slower message transport (which increases overhead 1). Finally, the HTTP
benchmark (Fig. 14d) shows a response time overhead that is below 5%. By and large, these
overhead levels are tolerable for many applications that are not mission critical, and are
comparable to the overhead experienced when running state-of-the-art RV tools [13].

7 Conclusion

We presented a formal analysis for the monitorability limits of (binary) session types w.r.t. a
partial-identity monitor model; to wit, this is the first monitorability assessment of session
types. We couple this study with an implementation of session monitor synthesis.

More in detail, our contributions are the following. On the the theoretical side, we
provide the first treatment of the monitorability of session types, and detection-soundness and
detection-completeness properties of session monitors, and we prove that our autogenerated
session monitors enjoy both the former and (to a lesser extent) the latter. We also present
an impossibility result of completeness for our black-box monitoring setup – which is a
novel result to the area of session type monitoring. On the practical side, we evaluate the
viability of our implementation (called STMonitor) via benchmarks. The results show that
our monitor synthesis procedure only introduces limited overheads.

7.1 Related Work
Several papers address the monitoring of session-types-based protocols – but no previous
work studies the formal problem of session monitorability; furthermore, their approaches
differ from ours in various ways, as we now discuss.

ECOOP 2021

20:24 On the Monitorability of Session Types, in Theory and Practice

500 1000 1500 2000
Requests sent

15

20

25

C
P

U
U

til
is

at
io

n
(%

)

unsafe monitored

500 1000 1500 2000
Requests sent

100

105

110

115

120

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Requests sent

10

20

30

R
es

po
ns

e
T

im
e

(m
s)

detached

(a) Ping-pong over HTTP (trusted server, untrusted client). Monitored response time overhead: 13.82%.

500 1000 1500 2000
Emails sent

150

160

170

180

C
P

U
U

til
is

at
io

n
(%

)

500 1000 1500 2000
Emails sent

95

100

105

110

115

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Emails sent

0.1

0.2

0.3

0.4

R
es

po
ns

e
T

im
e

(m
s)

(b) SMTP Python session (trusted client, untrusted server). Monitored response time overhead: 33.98%.

500 1000 1500 2000
Emails sent

40

60

80

100

C
P

U
U

til
is

at
io

n
(%

)

500 1000 1500 2000
Emails sent

95

100

105

110

115

120

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Emails sent

0.9

1.0

1.1

1.2

1.3

R
es

po
ns

e
T

im
e

(m
s)

(c) SMTP Postfix session (trusted client, untrusted server). Monitored response time overhead: 6.68%.

500 1000 1500 2000
Requests sent

20

30

40

50

60

C
P

U
U

til
is

at
io

n
(%

)

500 1000 1500 2000
Requests sent

140

160

180

200

220

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Requests sent

25

50

75

100

125

R
es

po
ns

e
T

im
e

(m
s)

(d) HTTP session (trusted server, untrusted client). Monitored response time overhead: 4.81%.

Figure 14 Benchmark results: average CPU usage, maximum memory consumption, and average
response time (30 runs, 2 CPUs (Intel Pentium Gold G5400 @ 3.70GHz), 8 GB RAM, Ubuntu 20.04).

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:25

The work [17] formalises a theory of process networks including monitors generated from
(multiparty) session types. The main differences with our work are:
1. the design of [17] is based on a global, centralised router providing a safe transport

network that dispatches messages between participant processes; correspondingly, its
implementation [24, 50, 40] includes a Python library for monitored processes to access the
safe transport network. By contrast, we do not assume a specific message routing system,
and our theory and implementation address the monitoring of black-box components;

2. the results in [17] do not consider limits related to session monitorability. Their results
(e.g., transparency) are analogous to our detection soundness (Theorem 15), i.e., syn-
thesised monitors do not disrupt communications of well-typed processes; they do not
address completeness (Theorem 19 and Theorem 21), i.e., to what extent can a monitor
detect ill-typed processes.

Furthermore, our work and [17] differ in a fundamental design choice: when our monitors
detect an invalid message, they flag a violation and halt – whereas monitors in [17] drop
invalid messages, and keep forwarding the rest. The latter is akin to runtime enforcement
via suppressions [9]; studying this design with our theory is interesting future work.

Our protocol assertions (§ 5.1) are reminiscent of interaction refinements in [48], that
are also statically generated (by an F# type provider), and dynamically enforced when
messages are sent/received. However, our approach and design are different from [48]: we
synthesise session monitoring processes that can be deployed over a network, to instrument
black-box processes – whereas [48] expects the runtime-verified code to be written with a
specific language and framework, and injects dynamic checks in the program executable.
Furthermore, the work [48] does not address session monitorability limits.

The work [49] proposes a methodology to supervise (multiparty) session protocols, and
recover them in case of failure of some component; it also includes an implementation in
Erlang. Similarly to this work, in [49] each component is observed by a session monitor;
unlike this work, [49] does not address any aspect of session monitorability, and focuses on
proving that its recovery strategy does not deadlock.

The work by Gommerstadt et al. [34] considers a partial identity monitor model for
session types that is close to the one discussed in § 3. They however do not provide any
synthesis function and assume that monitors are constructed by hand. To complement this,
they define a dedicated type system to prove that the monitor code behaves as a partial
identity, e.g., it forwards messages in the correct order, without dropping them. They do not
study session monitorability. To our knowledge, their approach has not been implemented as
a tool nor has it been assessed empirically either.

Melgratti and Padovani [46] propose monitors that act as wrappers around a session
library. This technique effectively inlines the monitors in the monitored process code. In
fact, their implementation assumes that the processes under scrutiny are written in OCaml
using the FuSE library. In contrast, we synthesise outline monitors as independent processes
that observe black-box implementations written in any language/library. The work proves
a series of results that are akin to our notion of monitoring soundness, without addressing
completeness.

In separate work, Waye et al. [63] monitor black-box services, focusing exclusively on
request-response protocols. Unlike our session-type monitors, they do not support protocols
with prescribed sequences of internal/external choices and recursion. In fact, their contracts
are analogous to enhanced assertions on transmitted/received values (reminiscent of the
assertion introduced in § 5.1). Although they provide soundness results for their monitoring
framework, they do not consider any further monitorability issues.

The recent work [35] presents a runtime verification framework for communication
protocols (based on multiparty session types) in Clojure. Unlike this work, [35] expects

ECOOP 2021

20:26 On the Monitorability of Session Types, in Theory and Practice

monitored applications to be written in a specific language and framework – whereas
we address the monitoring of black-box processes. Again, [35] does not study session
monitorability.

7.2 Future Work
This work is our first step along a new line of research on the relative power of static versus
run-time verification methods. In general terms, given a calculus C with a type system T and
run-time monitoring system M , monitoring soundness tells us whether M is flagging “real”
errors according to T . Dually, monitoring completeness tells us whether T is too restrictive
w.r.t. M (i.e., whether T is rejecting too many processes that M deems well-behaved). In
this work, we demonstrate a rather tight connection between the chosen process calculus
(C) and session type system (T), and our session monitors (M): our synthesised monitors
are sound (Theorem 15), and most processes rejected by the type system behave incorrectly
(Theorem 19). Our plan is to study more instances of C, T and M – both in theory, and in
practice.

One avenue worth exploring is that of increasing the observational powers of the monitoring
setup considered, in order to extend session monitorability. The work by Aceto et al. [2] is a
systematic study that considers a variety of extensions to the traditional monitoring setup
(consisting of one monitor observing events describing the computation effected by the process
under scrutiny). The extensions considered include traces that report process termination
and events that could not have been produced at different stages of the computation (i.e.,
refusals [52]). They also consider monitoring setups where a process is monitored over
multiple runs. In each case, they show the maximal properties that can be monitored for in a
sound and complete manner, characterised a syntactic fragments of the modal µ-calculus. We
intend to consider how any of the proposed extensions would affect our monitorability results
and the extent to which they are implementable in practice. Other bodies of work take a
slightly different approach to monitorability, by weakening the completeness requirement
from their notion of adequate monitoring [5, 6]. It would be worthwhile exploring the effect
of having such weakened completeness requirements on the monitorability of session types.

Although we have limited ourselves to binary session, we plan to extend the framework
above to the static and run-time verification of multiparty and asynchronous sessions [38, 39].
This will most likely require us to consider communicating monitors, that cooperate to
aggregate observations made from analysing communications on distinct channels. For
multiparty sessions, we can benefit from previous work [54, 55] where lchannels is used to
implement multiparty protocols written in Scribble [58, 64]. Our implementations should also
benefit from insights gained from numerous work on decentralised runtime verification [15,
12, 25]. For both multiparty and asynchronous sessions, we can benefit from the research on
precise session subtyping [33, 32, 22].

In this work, our session monitors adhere to the “fail-fast” design methodology: if a pro-
tocol violation occurs, the monitor flags the violation and halts. In the practice of distributed
systems, “fail-fast” is advocated as an alternative to defensive programming [20]; it is also in
line with existing literature on runtime verification [13]. As mentioned above, an interesting
research direction is to adapt our session monitorability framework to suppressions [9], i.e.,
by dropping invalid messages without halting the monitor, as in [17].

Finally, we plan to investigate how to handle violations by adding compensations to our
session types – i.e., by formalising how the protocol should proceed if a violation is detected
at a certain stage. In this setting, the monitors would play a more active role in handling
violations, and their synthesis would need to be more sophisticated; this new research could
be related to the work on session recovery [49].

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:27

References

1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring
for silent actions. In FSTTCS, volume 93 of LIPIcs, pages 7:1–7:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework
for parameterized monitorability. In FoSSaCS, volume 10803 of Lecture Notes in Computer
Science, pages 203–220. Springer, 2018.

3 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang., 3(POPL):52:1–52:29, 2019. doi:10.1145/3290365.

4 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability. In SEFM, volume 11724 of Lecture Notes in Computer
Science, pages 433–453. Springer, 2019. doi:10.1007/978-3-030-30446-1_23.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
The best a monitor can do. In CSL, volume 183 of LIPIcs, pages 7:1–7:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability with applications to regular properties. Softw. Syst.
Model., 20(2):335–361, 2021. doi:10.1007/s10270-020-00860-z.

7 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. A
choreographed outline instrumentation algorithm for asynchronous components. CoRR,
abs/2104.09433, 2021. URL: https://arxiv.org/abs/2104.09433.

8 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. On benchmark-
ing for concurrent runtime verification. In FASE, volume 12649 of Lecture Notes in Computer
Science, pages 3–23. Springer, 2021.

9 Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On runtime enforcement
via suppressions. In CONCUR, volume 118 of LIPIcs, pages 34:1–34:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.34.

10 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all. In
POPL, pages 201–214. ACM, 2011. doi:10.1145/1926385.1926409.

11 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types
in programming languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016. doi:
10.1561/2500000031.

12 Duncan Paul Attard and Adrian Francalanza. Trace partitioning and local monitoring for
asynchronous components. In SEFM, volume 10469 of Lecture Notes in Computer Science,
pages 219–235. Springer, 2017.

13 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Lectures on Runtime Verification, volume 10457 of Lecture Notes in Computer
Science, pages 1–33. Springer, 2018. doi:10.1007/978-3-319-75632-5_1.

14 David A. Basin, Thibault Dardinier, Lukas Heimes, Srdan Krstic, Martin Raszyk, Joshua
Schneider, and Dmitriy Traytel. A formally verified, optimized monitor for metric first-order
dynamic logic. In IJCAR (1), volume 12166 of Lecture Notes in Computer Science, pages
432–453. Springer, 2020. doi:10.1007/978-3-030-51074-9_25.

15 Andreas Bauer and Yliès Falcone. Decentralised LTL monitoring. Formal Methods Syst. Des.,
48(1-2):46–93, 2016.

16 Jeremy Blackburn, Ivory Hernandez, Jay Ligatti, and Michael Nachtigal. Completely subtyping
iso-recursive types. Technical Report CSE-071012, University of South Florida, 2012.

ECOOP 2021

https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/s10270-020-00860-z
https://arxiv.org/abs/2104.09433
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1145/1926385.1926409
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-030-51074-9_25

20:28 On the Monitorability of Session Types, in Theory and Practice

17 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.
doi:10.1016/j.tcs.2017.02.009.

18 Alan Brown, Jerry Fishenden, and Mark Thompson. API Economy, Ecosystems and En-
gagement Models, pages 225–236. Palgrave Macmillan UK, London, 2014. doi:10.1057/
9781137443649_13.

19 Christian Batrolo Burlò, Adrian Francalanza, and Alceste Scalas. On the monitorability of
session types, in theory and practice (extended version), 2021. arXiv:2105.06291.

20 Francesco Cesarini and Simon Thompson. ERLANG Programming. O’Reilly Media, Inc., 1st
edition, 2009.

21 Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida.
Asynchronous distributed monitoring for multiparty session enforcement. In TGC, volume
7173 of Lecture Notes in Computer Science, pages 25–45. Springer, 2011. doi:10.1007/
978-3-642-30065-3_2.

22 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On
the preciseness of subtyping in session types. Log. Methods Comput. Sci., 13(2), 2017.
doi:10.23638/LMCS-13(2:12)2017.

23 Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin Hritcu, Benjamin C.
Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-policies: Formally verified,
tag-based security monitors. In IEEE Symposium on Security and Privacy, pages 813–830.
IEEE Computer Society, 2015. doi:10.1109/SP.2015.55.

24 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and python. Formal Methods Syst. Des., 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

25 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods Syst. Des., 54(3):336–363, 2019.

26 Adrian Francalanza. A theory of monitors - (extended abstract). In FoSSaCS, volume
9634 of Lecture Notes in Computer Science, pages 145–161. Springer, 2016. doi:10.1007/
978-3-662-49630-5_9.

27 Adrian Francalanza. Consistently-detecting monitors. In CONCUR, volume 85 of LIPIcs,
pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
CONCUR.2017.8.

28 Adrian Francalanza. A Theory of Monitors. Information and Computation, page 104704, 2021.
doi:10.1016/j.ic.2021.104704.

29 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,
Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In
RV, volume 10548 of Lecture Notes in Computer Science, pages 8–29. Springer, 2017.
doi:10.1007/978-3-319-67531-2_2.

30 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the hennessy-
milner logic with recursion. Formal Methods Syst. Des., 51(1):87–116, 2017. doi:10.1007/
s10703-017-0273-z.

31 Adrian Francalanza and Jasmine Xuereb. On implementing symbolic controllability. In
COORDINATION, volume 12134 of Lecture Notes in Computer Science, pages 350–369.
Springer, 2020. doi:10.1007/978-3-030-50029-0_22.

32 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program.,
104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

33 Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise
subtyping for asynchronous multiparty sessions. Proc. ACM Program. Lang., 5(POPL):1–28,
2021. doi:10.1145/3434297.

https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1057/9781137443649_13
https://doi.org/10.1057/9781137443649_13
http://arxiv.org/abs/2105.06291
https://doi.org/10.1007/978-3-642-30065-3_2
https://doi.org/10.1007/978-3-642-30065-3_2
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1109/SP.2015.55
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/978-3-030-50029-0_22
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/3434297

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:29

34 Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-typed concurrent contracts.
In ESOP, volume 10801 of Lecture Notes in Computer Science, pages 771–798. Springer, 2018.
doi:10.1007/978-3-319-89884-1_27.

35 Ruben Hamers and Sung-Shik Jongmans. Discourje: Runtime verification of communication
protocols in clojure. In TACAS (1), volume 12078 of Lecture Notes in Computer Science,
pages 266–284. Springer, 2020. doi:10.1007/978-3-030-45190-5_15.

36 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes in
Computer Science, pages 509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

37 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP, volume 1381 of
Lecture Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

38 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

39 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

40 Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon, and Kohei Honda.
Practical interruptible conversations - distributed dynamic verification with session types and
python. In RV, volume 8174 of Lecture Notes in Computer Science, pages 130–148. Springer,
2013. doi:10.1007/978-3-642-40787-1_8.

41 Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. Gradual session
types. Proc. ACM Program. Lang., 1(ICFP):38:1–38:28, 2017. doi:10.1145/3110282.

42 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In POPL, pages 582–594. ACM, 2016. doi:10.1145/2837614.
2837662.

43 Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms for run-
time security policies. Int. J. Inf. Sec., 4(1-2):2–16, 2005. doi:10.1007/s10207-004-0046-8.

44 Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. On subtyping-relation completeness,
with an application to iso-recursive types. ACM Trans. Program. Lang. Syst., 39(1):4:1–4:36,
2017. doi:10.1145/2994596.

45 Kim Guldstrand Larsen Luca Aceto, Anna Ingólfsdóttir and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

46 Hernán C. Melgratti and Luca Padovani. Chaperone contracts for higher-order sessions. Proc.
ACM Program. Lang., 1(ICFP):35:1–35:29, 2017. doi:10.1145/3110279.

47 Network Working Group. RFC 5321: Simple Mail Transfer Protocol. https://tools.ietf.
org/html/rfc5321, 2008.

48 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In CC,
pages 128–138. ACM, 2018. doi:10.1145/3178372.3179495.

49 Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In CC, pages 98–108. ACM, 2017. doi:10.1145/3033019.

50 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: local verification of global
protocols. In RV, volume 8174 of Lecture Notes in Computer Science, pages 358–363. Springer,
2013. doi:10.1007/978-3-642-40787-1_25.

51 Doron A. Peled. Specification and verification using message sequence charts. Electron. Notes
Theor. Comput. Sci., 65(7):51–64, 2002. doi:10.1016/S1571-0661(04)80484-5.

52 Iain Phillips. Refusal testing. Theor. Comput. Sci., 50:241–284, 1987.
53 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
54 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of

multiparty sessions for safe distributed programming. In ECOOP, volume 74 of LIPIcs, pages
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ECOOP.2017.24.

ECOOP 2021

https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1145/3110282
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1145/2994596
https://doi.org/10.1145/3110279
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3033019
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1016/S1571-0661(04)80484-5
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

20:30 On the Monitorability of Session Types, in Theory and Practice

55 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition
of multiparty sessions for safe distributed programming (artifact). Dagstuhl Artifacts Ser.,
3(2):03:1–03:2, 2017. doi:10.4230/DARTS.3.2.3.

56 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

57 Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000. doi:10.1145/353323.353382.

58 Scribble homepage, 2020. URL: http://www.scribble.org.
59 SecuritySpace. Mail (MX) server survey, 2021. URL: http://www.securityspace.com/s_

survey/data/man.202103/mxsurvey.html.
60 Paula Severi and Mariangiola Dezani-Ciancaglini. Observational equivalence for multiparty

sessions. Fundam. Informaticae, 170(1-3):267–305, 2019. doi:10.3233/FI-2019-1863.
61 Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static specification mining

using automata-based abstractions. In ISSTA, pages 174–184. ACM, 2007. doi:10.1145/
1273463.1273487.

62 Fu Song and Tayssir Touili. Model-checking software library API usage rules. In IFM,
volume 7940 of Lecture Notes in Computer Science, pages 192–207. Springer, 2013. doi:
10.1007/978-3-642-38613-8_14.

63 Lucas Waye, Stephen Chong, and Christos Dimoulas. Whip: higher-order contracts for modern
services. Proc. ACM Program. Lang., 1(ICFP):36:1–36:28, 2017.

64 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble protocol
language. In TGC, volume 8358 of Lecture Notes in Computer Science, pages 22–41. Springer,
2013. doi:10.1007/978-3-319-05119-2_3.

https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/353323.353382
http://www.scribble.org
http://www.securityspace.com/s_survey/data/man.202103/mxsurvey.html
http://www.securityspace.com/s_survey/data/man.202103/mxsurvey.html
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1007/978-3-642-38613-8_14
https://doi.org/10.1007/978-3-642-38613-8_14
https://doi.org/10.1007/978-3-319-05119-2_3

λ-Based Object-Oriented Programming
Marco Servetto # Ñ

ECS, Victoria University of Wellington, New Zealand

Elena Zucca # Ñ

DIBRIS, University of Genova, Italy

Abstract
We show that a minimal subset of Java 8 excluding classes supports a simple and natural programming
style, which we call λ-based object-oriented programming. That is, on one hand the programmer can
use tuples in place of objects (class instances), and tuples can be desugared to lambdas following their
classical encoding in the λ-calculus. On the other hand, lambdas can be equipped with additional
behaviour, thanks to the fact that they may implement interfaces with default methods, hence
inheritance and dynamic dispatch are still supported. We formally describe the encoding by a
translation from FJλ, an FJ variant including lambdas and interfaces with default methods, to FJ−

λ ,
a subset of FJλ with no classes (hence no constructors and fields). We provide several examples
illustrating this novel programming style.

2012 ACM Subject Classification Software and its engineering → Object oriented languages; Software
and its engineering → Functional languages

Keywords and phrases Programming paradigms, Java, lambda-calculus

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.21

Category Pearl

Acknowledgements We warmly thank the anonymous referees for suggestions which greatly improved
the paper.

1 Introduction

Java 8 introduced lambdas and default interface methods. In Java 8, an interface with exactly
one abstract method can be instantiated with the convenient lambda syntax. Lambdas are
intended to represent first class functions; indeed, when such abstract method is invoked
on a lambda, the body is executed as in standard application (β-rule). However, thanks to
default methods, also interfaces with multiple methods can be instantiated with lambdas. In
this way, lambdas also behave as regular objects, making it possibile to write object-oriented
code without any need of classes and constructor invocations. Consider the following Java
code example:

interface Person {
String name ();
default String greet (){

return "Hi , I’m "+this.name ()+"; nice to meet you!";
}

}
Person bob = ()->"bob";
bob. greet ();

interface GamerPerson extends Person {
default String greet (){

return "Hi , I’m "+this.name ()+"; and I love computer games !";
}

}
Person p = (GamerPerson)()->" charles ";
p. greet (); // dynamic dispatch

© Marco Servetto and Elena Zucca;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.servetto@vuw.ac.nz
https://people.wgtn.ac.nz/marco.servetto
https://orcid.org/0000-0003-1458-2868
mailto:elena.zucca@unige.it
https://person.dibris.unige.it/zucca-elena/
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2021.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 λ-Based Object-Oriented Programming

In this example, the lambda, rather than be used as a first-class function, serves a
role similar to an object with a name field. Correspondingly, the unique abstract method
String name(); behaves as a getter, even though a field name is never really declared.

At first, this programming style may look an odd curiosity or even a form of misguided
code obfuscation. We started playing with these kinds of programming patterns as a funny
exercise, to see how far we could push this; unexpectedly, in the end we realized that it is
possible to program in a pretty natural way in such a paradigm, hence in a small Java 8 subset
excluding two of the most iconic Java keywords: class and new. We call this programming
style λ-based object-oriented programming: it can be seen as a novel way to conciliate OO
and functional programming, that neither simply encodes one approach into the other, nor
just merges constructs from both paradigms.

In other words, our aim is to explore a programming style which is basically functional
(first-class values are only lambdas) but where functions may have, besides application,
additional behaviour, thus supporting inheritance and dynamic binding, hence code reuse, as
in object-oriented programming. Moreover, our aim is to present (and encode) this approach
by a minimal and clean calculus. In other words, our focus here is not on increasing expressive
power, but on simplicity: encoding the same features with fewer constructs.

To illustrate λ-based object-oriented programming, first of all in Section 2 we present a
core language supporting this paradigm, by means of a simple calculus FJ−

λ , in the style of
Featherweight Java (FJ) [8]. An FJ−

λ program is a table of interfaces, and expressions are only
variables, method calls and lambdas. In a sense, this expression language is lambda-calculus
enriched by the foundational feature of object-oriented programming, that is, dynamically
dispatched method call. While some methods are implemented with lambdas, most code is
provided inside (default) method bodies keeping the natural code organization typical of OO
programming.

Then, we enrich FJ−
λ by classes, fields and constructors, obtaining an extended calculus

FJλ, and in Section 3 we show a simple translation from FJλ to FJ−
λ , thus formally proving

that such constructs are redundant language features. The translation is inspired by the
classical encoding of tuples in the lambda-calculus; however, some additional work is needed
to use the encoding in a language with only nominal types (interface names). We show that
the translation preserves typing and semantics.

In Section 4, we provide several programming examples illustrating how to rely on this
paradigm in a real language, notably a Java 8 subset excluding classes. Finally, in Section 5
we discuss possibile extensions and relation with other works, and in Section 6 we summarize
the contribution of the paper and outline future directions.

2 The FJ−
λ and FJλ calculi

Syntax, reduction rules, and typing rules of FJ−
λ are given in Figure 1. We write Ds as

metavariable for D1 . . . Dn, n ≥ 0, and analogously for other sequences.
As anticipated, an FJ−

λ program is a table of interfaces, and expressions are only variables,
method calls and λ-expressions (lambdas). In Java, λ-abstractions can only be typed when
occurring in a context requiring a given type (called the target type). Here, we directly
assume lambdas to be annotated with their interface type, since the issue of deriving this
annotation from the context is orthogonal to our topic, and has been faced in other works
[2, 6]. Moreover, in the calculus we use the lambda-calculus syntax, both to help readability
and to stress that it can be seen both as a subset of Java, and, conversely, as a λ-calculus
equipped with an interface table.

M. Servetto and E. Zucca 21:3

P ::= Ds program
D ::= interface I extends Is { IMs } declaration
IM ::= MH; | default M interface method
MH ::= T m(T1 x1, . . . , Tn xn) method header
M ::= MH {return e;} method
R, S, T ::= I type
e ::= x | e.m(es) | (λxs.e)I expression

v ::= (λxs.e)I value
E ::= [].m(es) | v.m(vs [] es) evaluation context
Γ ::= x1:T1 . . . xn:Tn typing context

(ctx)
e→P e′

E [e]→P E [e′] (invk) v.m(vs)→P e[xs←vs][this←v]
typeof(v) = T
mbodyP(T, m) = ⟨xs, e⟩

(β) v.m(vs)→P e[xs←vs][this←v]
v = (λxs.e)I

!absmethP(I) = m

(t-prog)
⊢P D1 . . . ⊢P Dn

⊢ P P = D1 . . . Dn

(t-interface)
I ⊢P IM1 . . . I ⊢P IMn

⊢P interface I extends Is { IM1 . . . IMn }
Is ⊆ inames(P)

(t-mh) T ⊢P R m(T1 x1, . . . , Tn xn)

{R, T1, . . . , Tn} ⊆ tnames(P)
(T ≤P S and mtypeP(S, m) = Ts → R′) imply

Ts = T1 . . . Tn

R′ = R

(t-abs)
T ⊢P MH
T ⊢P MH;

(t-default)
T ⊢P M

T ⊢P default M

(t-meth)
⊢P MH Γ ⊢P e : R′

T ⊢P MH {return e;}

MH = R m(T1 x1, . . . , Tn xn)
Γ = x1:T1 . . . xn:Tn this:T
R′ ≤P R

(t-var) Γ ⊢P x : T Γ(x) = T

(t-invk)
Γ ⊢P ei : Ti ∀i ∈ 0..n

Γ ⊢P e0.m(e1, . . . , en) : R
mtypeP(T0, m) = S1 . . . Sn → R
Ti ≤P Si ∀i ∈ 1..n

(t-lam)
Γ[x1:T1 . . . xn:Tn] ⊢P e : S

Γ ⊢P (λx1 . . . xn.e)I : I
!absmtypeP(I) = T1 . . . Tn → R
S ≤P R

Figure 1 Formal definition of FJ−
λ .

ECOOP 2021

21:4 λ-Based Object-Oriented Programming

The formal definition is straightforward. Given a program P, inames(P) and tnames(P)
are the declared interface names and type names; typeof(v) the (dynamic) type of value v,
which for a lambda is its annotation; mtypeP(T, m) and mbodyP(T, m) the type and body of
method m in T, if any; !absmethP(I) and !absmtypeP(I), only defined if I has exactly one
abstract method1, the name and type of such method; finally, ≤P the reflexive and transitive
closure of the extends relation. For brevity, we omit the straightforward formal definitions.
Only note that we require mtype and mbody, defined as in FJ, to be actually functions;
this constraint implies that an interface I cannot inherit the same method m with different
signatures, and cannot inherit more than one default method m, unless m is declared by I as
well.

We denote by E [e] the expression obtained by filling the hole of the context E with e, and
by e[xs←vs] the expression obtained from e by replacing variables xs with values vs. Typing
contexts are assumed to represent finite maps from variables into types, hence the notation
Γ(x) is well-defined; we denote by Γ[Γ′] the type context which coincides with Γ′ when the
latter is defined, with Γ otherwise.

In Figure 2, we extend FJ−
λ with classes, fields and constructor invocations. New

productions are emphasized, and we only write the new reduction and typing rules. The
extended calculus is similar to other calculi extending FJ with interfaces and lambdas [2, 6].
Here, we do not include subclassing, since our focus is to show that the role of classes
as object’s generators can be replaced by instantiating functional interfaces with lambdas;
instead, we expect the role of subclassing for code reuse to be achieved by interface inheritance
and default methods.

The reduction relation →P is defined on closed expressions. The calculus enjoys standard
properties; notably, reduction is deterministic, and the type system is sound, that is, reduction
of (closed) well-typed expressions with respect to well-typed programs does not go stuck, as
formally stated below. We write →⋆

P for the transitive and reflexive closure of →P.

▶ Theorem 1 (Determinism). If e→P e1 and e→P e2, then e1 = e2.

Proof. By structural induction on e, observing that at most one (instantation of meta-)rule
is applicable. ◀

▶ Theorem 2 (Soundness). If ⊢ P, and ∅ ⊢P e : T, and e→⋆
P e′, then either e′ is a value or

e′ →P e′′ for some e′′.

Proof. Straightforward adaptation of the proof provided for a richer language in [2]. ◀

Set v∞ ::= v | ∞. The relation e⇒P v∞, associating to an expression e its semantics in
P, is defined as follows:

e⇒P v if e→⋆
P v

e⇒P ∞ if e has an infinite reduction sequence in P.
If ⊢ P, and ∅ ⊢P e : T, then Theorem 1 and Theorem 2 above ensure that the semantics of e
in P is well-defined, that is, e⇒P v∞ for a unique v∞.

1 That is, is a functional interface.

M. Servetto and E. Zucca 21:5

P ::= Ds program
D ::= interface I extends Is { IMs } declaration

| class C implements Is {Fs Ms}
IM ::= MH | default M interface method
MH ::= T m (T1 x1, . . . , Tn xn) method header
M ::= MH {return e;} method
F ::= T f ; field

T ::= I | C type
e ::= x | e.m(es) | (λxs.e)I | new C (es) | e.f expression
v ::= (λxs.e)I | new C (vs) value
E ::= [].m(es) | v.m(vs [] es) | new C (vs [] es) | [].f evaluation context

Γ ::= x1:T1 . . . xn:Tn typing context

(field)
new C (v1 . . . vn).fi →P vi

fieldsP(C) = T1 f1; . . . Tn fn;
i ∈ 1..n

(t-class)
I ⊢P M1 . . . I ⊢P Mn

⊢P class C implements Is {T1 f1; . . . Tk fk; M1 . . . Mn}
T1 . . . Tk ⊆ tnames(P)
Is ⊆ inames(P)

(t-field)
Γ ⊢P e : C

Γ ⊢P e.fi : Ti

fieldsP(C) = T1 f1; . . . Tn fn;
i ∈ 1..n

(t-new)
Γ ⊢P ei : Ti ∀i ∈ 1..n

Γ ⊢P new C (e1, . . . , en) : C
fieldsP(C) = S1 f1; . . . Sn fn;
Ti ≤P Si ∀i ∈ 1..n

Figure 2 Formal definition of FJλ.

ECOOP 2021

21:6 λ-Based Object-Oriented Programming

3 Translation

First we explain the translation on a simple example: a class Pair with two fields, where
for simplicity types A and B can be thought to be primitive types, e.g., int and boolean,
respectively.
class Pair {

A fst;
B snd;

}

An instance of a class with n fields is essentially a tuple with n components, so our
translation is based on the classical encoding of tuples in λ-calculus: a tuple is a function
which, taken a selector, returns the corresponding component. In the example, a pair, e.g.,
mypair = ⟨1, true⟩, is encoded by the function λs.s 1 true, and there are only two expected
selectors: fst = λx.λy.x and snd = λx.λy.y. For instance, mypair fst reduces to 1.

We consider now the problem of assigning types to the functions encoding tuples and
selectors. Of course this is easy if we have polymorphic types. However, in each concrete
case, there are only n different types of selectors which can be given as argument to the
tuple, and for each of them a different result type. In other words, union types are enough.
In a language with algebraic types, such as, e.g., Haskell, the same effect can be achieved by
constructors which act as embeddings, as shown below.
type A = Int
type B = Bool
data AorB = FromA A | FromB B

type Fst = A -> B -> A
type Snd = A -> B -> B
data Sel = FromFst Fst | FromSnd Snd

type Pair = Sel -> AorB
--mypair = <1,True >
mypair :: Pair
mypair (FromFst s) = FromA (s 1 True)
mypair (FromSnd s) = FromB (s 1 True)

getFst :: Pair -> A
getFst p =

let FromA a = p (FromFst (\a b -> a))
in a

getSnd :: Pair -> B
getSnd p =

let FromB b = p (FromSnd (\a b -> b))
in b

Note that the getter methods could in principle raise a pattern matching error, but this will
never happen at runtime.

The encoding in Java is based on the same idea. However, in this case the union of
the result types is encoded by an interface, and the embedding of an element of type A
into AorB is the constant function (FromA)()->a. On the other hand, it is enough to have
the interface Sel corresponding to the various selectors, since in this case the embedding is
silently obtained by subtyping.

M. Servetto and E. Zucca 21:7

interface AorB{
default A toA (){ /* error */}
default B toB (){ /* error */}

}

interface FromA extends AorB{ A toA ();}
interface FromB extends AorB{ B toB (); }

interface Sel { AorB apply(A a, B b);}}

interface Pair {
default A getFst (){

return this.apply ((Sel)(a,b)->(FromA)()->a). toA ();}
default B getSnd (){

return this.apply ((Sel)(a,b)->(FromB)()->b). toB ();}
AorB apply (Sel sel);
}

For instance, the object new Pair(myA,myB) is encoded by (Pair)s->s.apply(myA,myB). Also
in this case the getter methods could in principle raise an error, but this will never happen at
runtime. Hence, the body of the default methods toA and toB could be arbitrary well-typed
expressions, which will be never executed, as indicated by the /*error*/ comment. In the
minimal syntax of FJ−

λ , such arbitrary expressions could be the recursive calls this.toA()
and this.toB(). In full Java, an exception could be thrown.

This pattern is applied for all classes with n ≥ 2 fields, as formally defined below; for
each such class n + 3 interfaces are generated. Classes with zero or one field have specific
(simpler) encodings, explained below.

As shown in the Person example before, a class with a single field can be encoded by an
interface which defines a single abstract no-args getter method for such field, and an instance
of the class can be encoded by a constant function which returns the field value.

A class with no fields, in a functional setting, has only one instance, and offers a set of
methods to be invoked on such unique instance, which hence can be seen as class methods.The
corresponding interface offers such methods, but also needs an abstract method, since the
unique instance of the class should be encoded by a lambda. Note that an arbitrary abstract
method, and an arbitrary lambda providing the implementation could be used, since the
method will never be called. We conventionally use a method dummy with argument and
return type Void, where Void is an empty interface, and as dummy lambda the identity
function. In the following examples in full Java, we use a void dummy() method and the
empty block as body of the dummy lambda.

We provide now the formal translation, denoted J_K. To the aim of this translation, we
assume that, in the FJλ program to be translated, arguments of constructor invocations
are only variable or values, since otherwise (possibly non terminating or stuck) reduction
of arguments would be not simulated in the translation. This is not a restriction, since
general constructor invocations can be encoded by auxiliary methods in FJλ, and could be
translated adding local variable declarations in FJ−

λ . Moreover, as mentioned above, we
assume a declaration interface Void {}. Finally, we assume that all the interface and
method names introduced by the translation are fresh, that is, they do not clash with existing
names. We first provide the translation of class declarations. The C at the beginning of
interface names is necessary to get unique names. Moreover, the to methods are decorated
by indexes, rather than field types as in the introductory example, since two fields could
have the same type.

ECOOP 2021

21:8 λ-Based Object-Oriented Programming

Jinterface I extends Is {IM1 . . . IMn}K = interface I extends Is {JIM1K . . . JIMnK}

Jclass C implements Is {MH1 {return e1;} . . . MHn {return en;}}K = (zero fields)
interface C extends Is {

default MH1 {return Je1K;}
. . .
default MHn {return JenK;}
Void dummy(Void x);

}

Jclass C implements Is {T f ; MH1 {return e1;} . . . MHn {return en;}}K = (one field)
interface C extends Is {

default MH1 {return Je1K;}
. . .
default MHn {return JenK;}
T getf ();

}

Jclass C implements Is
{T1 f1; . . . Tk fk; MH1 {return e1;} . . . MHn {return en;}}K = (≥ 2 fields)

interface CUnion {
default T1 to1(){return /*error*/;}
. . .
default Tk tok(){return /*error*/;}

interface CFrom1 extends CUnion{to1();}
. . .
interface CFromk extends CUnion{tok();}
interface CSel{CUnion apply(T1 x1, . . . , Tk xk);}
interface C extends Is {

default MH1 {return Je1K;}
. . .
default MHn {return JenK;}
default T1 getf1(){return this.apply((λx1 . . . xk.(λ.x1)CFromk)CSel).to1();}
. . .
default Tk getfk(){return this.apply((λx1 . . . xk.(λ.xk)CFromk)CSel).tok();}
CUnion apply(CSel s);

}

The translation of expressions is given below.

Set xv ::= x | v.
JxK = x
Je.m(e1, . . . , en)K = JeK.m(Je1K, . . . , JenK)
J(λxs.e)I K = (λxs.JeK)I

Jnew C ()K = (λx.x)C

Jnew C (xv)K = (λ.JxvK)C

Jnew C (xv1, . . . xvn)K = (λs.s.apply(Jxv1K, . . . , JxvnK))C

Je.f K = JeK.getf ()

The translation preserves typing and semantics, as formally stated below.

▶ Theorem 3. If ⊢ P and ∅ ⊢P e : T, then the following hold:
1. ⊢ JPK.
2. ∅ ⊢JPK JeK : T.
3. e⇒P v∞ iff JeK⇒JPK Jv∞K, where J∞K =∞.

M. Servetto and E. Zucca 21:9

Proof. The first two points can be proved by straightforward induction on the typing rules.
The third point is a consequence of the following properties:

e is a value iff JeK is a value
if e→P e′, then JeK→⋆

JPK Je′K
The first property trivially holds, since e is closed, whereas the second one can be proved by
structural induction on e. We show the most interesting case, which is e.f . There are the
following subcases:

Rule (ctx) is applicable, hence we have e→P e′ and e.f →P e′.f . By inductive hypothesis,
JeK →⋆

JPK Je′K in n steps. Moreover, Je.f K = JeK.getf (), which is of shape E [JeK], then
the thesis follows by applying n times rule (ctx).
Rule (field) is applicable. We distinguish the following subcases:

n = 1: we have new C (v).f →P v and fieldsP(C) = T f ;; moreover, Jnew C (v).f K =
(λ.)C .getf (). By the second clause in the translation of classes, class C exists in JPK
and has a unique abstract method getf , hence (λ.)C .getf ()→JPK JvK by rule (β).
n > 1: we have new C (v1 . . . vn).f →P vi and fieldsP(C) = T1 f1; . . . Tn fn;. Moreover,
Jnew C (v1 . . . vn).f K = (λs.s.apply(Jv1K, . . . , JvnK))C .getfi(). By the third clause in
the translation of classes, classes C , CFromTi, and CSel exist in JPK with the specified
methods.
Hence, (λs.s.apply(Jv1K, . . . , JvnK))C .getfi() →⋆

JPK JviK by the following reduction
sequence in JPK, where we write the computational rule applied at each step:

(λs.s.apply(Jv1K, . . . , JvnK))C .getfi() → (invk)

(λs.s.apply(Jv1K, . . . , JvnK))C .apply((λx1 . . . xn.(λ.xi)CFromTi)CSel).toi() → (β)

(λx1 . . . xk.(λ.xi)CFromTi)CSel.apply(Jv1K, . . . , JvnK).toi() → (β)

(λ.JviK)CFromTi .toi() → (β)

JviK ◀

4 Programming with only lambdas

We describe how this programming paradigm can be effectively used. In these examples, we
assume a language extended with numbers and string literals, local variable declarations,
type inference for lambdas and generics as in Java. First of all, to avoid to have to manually
encode tuples by lambdas, we expect this encoding to be provided by libraries. That is,
we expect to have library types Tuple2<T1,T2>, Tuple3<T1,T2,T3>, and so on. In this way,
the programmer can just extend the opportune Tuple interface to encode a class with many
fields.

// Library code:
// case for 2 fields
interface Union2 <T1 ,T2 >{

default T1 to1 (){ /* error */}
default T2 to2 (){ /* error */}
}

interface From2_1 <T1 ,T2 > extends Union2 <T1 ,T2 >{ T1 to1 (); }
interface From2_2 <T1 ,T2 > extends Union2 <T1 ,T2 >{ T2 to2 (); }
interface Tuple2 <T1 ,T2 >{

Union2 <T1 ,T2 > apply(Sel2 <T1 ,T2 > sel);
default T1 get1 (){

return this.apply (
(x1 ,x2)->(From2_1 <T1 ,T2 >)()- >x1

ECOOP 2021

21:10 λ-Based Object-Oriented Programming

). to1 ();
}
default T2 get2 (){ /*as above , using From2_2 /to2 () */}
}

interface Sel2 <T1 ,T2 >{ Union2 <T1 ,T2 > apply (T1 f1 , T2 f2); }

... // case for 3 or more fields

interface Tuple0 { void dummy (); }

interface Function <T,R>{ R apply(T t);} //as in Java 8
interface Bifunction <T1 ,T2 ,R>{ R apply(T1 t1 , T2 t2);}
// ... other functional interfaces

With such simple standard library, we can write an extended version of the example in the
introduction as follows:

interface Person extends Tuple2 <String ,Integer >{
default String name (){ return this.get1 ();}
default Integer age (){ return this.get2 ();}
default String greet (){ return "Hi , I’m "+this.name ();}
...
}

Bifunction <String ,Integer ,Person > makePerson
= (name ,age)->s->s. apply(name ,age);

Person bob = makePerson . apply ("bob" ,23);
bob.greet ();

The code above shows that it is easy to encode classes with fields and instantiate them. It is
also easy to abstract over object creation and provide factories, as the Bifunction above.

In the second example, we show how we can encode private methods; a library may want
to encapsulate the richer ConcretePoint implementation and only expose a minimal Point
interface.

// Point library code:
/**Point docs */
interface Point{ Integer x(); Integer y(); Integer distance (Point p);}
/** ConcretePoint is only for internal library usage
and may change in a future release */
interface ConcretePoint extends Point , Tuple2 <Integer ,Integer >{

// point implemented with a Tuple
default Integer x(){ return this.get1 ();}
default Integer y(){ return this.get2 ();}
default Integer distance (Point p){ /* uses aux */}
default Integer aux(Point p){..} //" private " method
}

/** NewPoint docs do not need to mention ConcretePoint */
interface NewPoint extends Tuple0 , Bifunction <Integer ,Integer ,Point >{

default Point apply (Integer x, Integer y){
return (ConcretePoint) s->s. apply (x,y);
}

}
// User code
Point myPoint = ((NewPoint)() - >{}). apply (3 ,5);
myPoint . distance (myPoint); //ok
// myPoint .aux(myPoint);// no

M. Servetto and E. Zucca 21:11

The interface NewPoint extends Tuple0, leaving the dummy method abstract, hence, as explained
before, is expected to be instantiated by the dummy lambda. Moreover, it extends BiFunction,
providing an implementation for the abstract method apply.

Note how implementation hiding is encoded by using subtyping and factories. This
approach is a natural extension of what is discussed in TraitRecordJ [3], where methods of
classes are implicitly private, and the only way to publicly expose behaviour is to implement
an interface method.

Likely, the interface ConcretePoint should not be public. However, even with ConcretePoint
exposed to the user, the implementation of Point is still hidden, and the user in no way can
be aware that a Point is indeed a ConcretePoint, or call the ConcretePoint.aux method on
an object provided by NewPoint.

Finally, we show that in this programming style recursive types are as easy as in plain
Java. This is important to notice, since in other encodings of objects mutually recursive
types are not trivial to handle. Consider the standard implementation of lists as pairs
consisting of head and tail.

interface List <T>{
T head ();
List <T> tail ();
boolean isEmpty ();
default List <T> add(T elem){

return (Cons <T>)s->s.apply(elem ,this);
}

}
interface Empty <T> extends List <T>, Tuple0 {

default T head (){ /* error */}
default List <T> tail (){ /* error */}
default boolean isEmpty (){ return true ;}

}
interface Cons <T> extends Tuple2 <T,List <T>>, List <T> {

default T head (){ return this.get1 ();}
default List <T> tail (){ return this.get2 ();}
default boolean isEmpty (){ return false ;}

}
... // usage example
List <Integer > list = ((Empty <Integer >)() - >{}). add (1). add (2). add (3);

Interestingly, we can also easily encode the iconic functional match:

interface List <T>{
<R> R match (Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons);
default List <T> add(T elem){

return (Cons <T>)s->s.apply(elem ,this);
}

}
interface Empty <T> extends List <T>, Tuple0 {

<R> R match (Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons){
return onEmpty .get ();

}
}
interface Cons <T> extends Tuple2 <T,List <T>>, List <T> {

<R> R match (Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons){
return onCons .apply(this.get1 (), this.get2 ());

}
}

ECOOP 2021

21:12 λ-Based Object-Oriented Programming

... // example methods using match
default Integer sumAll (List <Integer > l){

return l.match(
()->0,
(head ,tail)->head+ sumAll (tail)

);
}
default Integer getHead (List <Integer > l, Integer orElse){

return l.match(
()->orElse ,
(head ,tail)->head

);
}

The above example employs a variant of the visitor pattern [5] getting popular in Java
8, which provides functions as arguments to the visitor. The point to be noted here is that
the λ-based paradigm makes this approach very natural. Note that List as defined above is
open: any user can define new kinds of List by providing an implementation for the match
method.

We end this section with a remark. A subtle detail in Java 8 is that lambdas cannot
be used to implement generic methods. This means that the following more natural tuple
encoding would only work by “desugaring” the lambda syntax.

public interface Tuple2 <A,B> {
<T> T apply(BiFunction <A, B, T> f);
default A a(){ return apply ((a,b)->a);}
default B b(){ return apply ((a,b)->b);}

}
... // code trying to instantiate Tuple2
default <A, B> Tuple2 <A,B> of(A a, B b){

// return f -> f. apply (a, b);// does not compile :-(
return new Tuple2 <A,B >(){ // works without lambda syntax

public <T> T apply(BiFunction <A,B,T> f){
return f.apply(a,b);}};}

Allowing lambdas to implement generic methods was planned in a pre-release of Java 8, but
this feature was removed before release. Note how the generic method match above is the
only abstract method of List, thus if generic methods were instantiable with lambdas, we
could omit the Cons code and simply write

interface List <T>{
<R> R match(Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons);
default List <T> add(T elem){

return (onEmpty , onCons)-> onCons . apply (elem ,this);
}

}

5 Discussion and related work

The encoding presented in Section 3 strikes a balance between being not too cumbersome and
useful. A nice feature is that it does not change the way that the programmers write their
program. That is, it is not a transformation that turns the program inside-out and obscures
the original intent: the original classes are still there (as interfaces) and their construction

M. Servetto and E. Zucca 21:13

happens at the same sites (with lambda syntax). On the other hand, the representation of
object’s state as a tuple is mainly intended to show the completeness of the approach, and
could be replaced by an efficient private implementation as, e.g., values of primitive types
are seen as objects in Smalltalk. The translation is shown over a simplification of the FJ
calculus, which makes it composable with other work on Java semantics. Keeping the original
program structure (classes/methods) means that the original program is still extensible in
the same way. Also, Java reflection would still work with the output of this encoding in a
natural way. So, this encoding looks quite powerful to support more features, e.g., simulate
field shadowing or more complex inheritance patterns.

Since our motivation was to explore a programming style which is basically functional,
we did not consider imperative features, as it is in FJ. They can be added, as usually in
functional languages, introducing reference types and constructs for referencing, assigning
and dereferencing. The classical encoding of tuples by functions immediately extends, as
shown by the code below, which is the previous Haskell example rewritten in OCaml with
references:

type a = int
type b = bool
type aOrBref = FromA of a ref | FromB of b ref
type fst = a ref -> b ref -> a ref
type snd = a ref -> b ref -> b ref
type sel = FromFst of fst | FromSnd of snd
type pair = sel -> aOrBref

let mypair : pair =
let first = ref 1 in
let second = ref true in

function
FromFst s -> FromA (s first second)
| FromSnd s -> FromB (s first second)

let getFst : pair -> a =
function p ->

let FromA a = p (FromFst (function a -> function b -> a))
in !a

let setFst : pair -> a -> unit =
function p -> function x ->

let FromA a = p (FromFst (function a -> function b -> a))
in a; a := x;

In a Java-like language, the same can be achieved having reference types (as in C++), or,
otherwise, by using local variables. Unfortunately, in Java local variables used in a lambda
expression must be final or effectively final. Without this restriction, a class Person with an
updatable field name could be encoded as follows:

interface Person extends Tuple2 <Supplier <String >, Consumer <String >>{
default String getName (){ return this.get1 (). apply ();}
default void setName (String name){ return this.get2 (). apply (name);}

}
interface PersonFactory {

void dummy ();
default Person makePerson (String name){

return s -> s.apply (()->name , newName ->name= newName);
}

}

ECOOP 2021

21:14 λ-Based Object-Oriented Programming

One commonly used way to circumvent this Java limitation is to use an array of size 1,
as shown below:

default Person makePerson (String name){
String [] n={ name };
return s -> s.apply(()->n[0], newName ->n[0]= newName);

}

In general, adding any kind of array or collections would make our encoding simpler, but, as
said above, here our goal is to achieve minimality.

Though, as already said, addressing limitations of existing programming techniques was
not our aim, we can mention some side benefits of the approach. Replacing “real” fields by
getters/setters avoids the limitation that the type of fields must be invariant; thus more
code reuse patterns become available, see the extended discussion in [12]. Moreover, Java8
interfaces support reusing code from multiple sources, as for multiple inheritance. Avoiding
classes means that all the code is usable for multiple inheritance.

We already mentioned that inheritance and dynamic dispatch are supported through
default methods in interfaces. In addition, we could easily extend our core to support
InterfaceName.super.methName(...) and this would transparently allow super method calls
as in Java. Moreover, the above syntax could be syntactic sugar; if any interface declared
methods with a standard long name returnType InterfaceName$methName(...){...} with a
delegator method returnType methName(...){ return this.InterfaceName$methName(...);}
then InterfaceName.super could be emulated simply using the longer name for the method.

An OO style without class declarations, called interface-based object-oriented program-
ming, has been proposed in [12], and exploited in Java by defining Classless Java. However,
differently from our proposal, Classless Java has objects, obtained as instances of anonymous
inner classes, hence fields as well, and static methods.

More generally, many languages support objects without classes, that is, follow the
so-called “object-based” paradigm. That is, objects are not created as class instances, but,
e.g., by directly writing “object literals”. Our proposal goes a bit further, since in our calculus
there are no objects at all; the only values are functions (lambdas).

Differently from the Java approach, in [11] a minimal core Java is extended to λ-expressions
by adding function types, following the style of functional languages. Complexity of type
inference increases in a substantial way, with respect to Java’s one. Moreover, adding real
function types entails that a method must have a different signature according to whether it
can accept an object or a function. This contrasts with Java philosophy to fuse language
innovations into the old layer.

Empirical methodologies are used in [10] to illustrate when, how and why imperative
programmers adopt λ-expressions.

Classical encodings of objects [4] are as records of mutually recursive functions, where all
such functions are closures over the record. In this kind of encoding, objects contain all their
behaviour, and a program is fully expressed by an expression. Typing in this setting is non
trivial, especially recursive types, which need to be handled by some variation of fixpoints.
Our proposed language, instead, embraces the idea of an externally defined table of types
(in our case interface names) also including most of the behaviour, in the form of default
implementations. In this way, the key technical characteristic of OOP following, e.g., [1],
that is, dynamic dispatch, is provided anyway, and such language design is more friendly
toward module systems and module composition languages.

Grace [9, 7] offers an interesting middle ground: it is structurally typed, but objects can
have (generic) type-alias declarations as members, and these type names can be mutually
recursive. In most Grace programs, a top level object (called a module) plays the role of

M. Servetto and E. Zucca 21:15

the table of types, and reduction actually takes place inside such a module object. Still,
the Grace approach is more flexible than having a fixed top-level type table, since multiple
objects can be nested into each other, and lexical scope and nesting allow for interesting
forms of code composition. However, to make static reasoning feasible, only type members
of known objects (objects created in a controlled way) can be used as type annotations.
Moreover, due to generic type aliases, subtyping is undecidable.

Formalization of lambdas as in Java 8 have been provided in [2, 6], the former covering
intersection types and default methods as well. These works focus on typing issues, notably
on the fact that lambdas can only be typed when occurring in a context requiring a given
type (called the target type). In a small-step semantics, this poses a problem: reduction can
move λ-abstractions into arbitrary contexts, leading to intermediate terms which would be
ill-typed. To maintain subject reduction, in [2] λ-abstractions are decorated with their initial
target type. In a big-step semantics, as in [6], there is no need of such intermediate terms
and annotations.

6 Conclusion

We have described a novel way to conciliate OO and functional programming, where objects
(instances of classes) are replaced by tuples (encoded by lambdas). Lambdas can be equipped
with an additional behaviour, thanks to the fact that they may implement interfaces with
default methods, hence inheritance and dynamic binding are still supported. The encoding
has been formally defined by a translation from a calculus including classes to one with only
lambdas and interfaces, shown to preserve typing and semantics. This novel programming
style has been illustrated by several examples.

Concerning further work, a first step is about the use of the λ-based paradigm in Java
8, illustrated in Section 4. We assumed the encoding of tuples by lambdas to be provided
once and for all by libraries. However, in the examples in Section 4, the programmer
still has to manually write some tedious and rather cryptic code, notably lambdas such
as (name,age)->s->s.apply(name,age), or dummy lambdas. To make the paradigm more
user-friendly, suitable syntactic sugar should be provided for these constructions, likely in
form of macros.

More in general, we could leave the Java world and investigate the design of a language
especially suited to express this paradigm, and its integration with other typical language
features. For instance, which would be the best, simplest way to encode mutation in FJ−

λ

where fields are implicit? An inspiration could come from Smalltalk, which allows to update
local variables, even when they are captured by a closure.

In this design investigation, in particular an interesting direction is to take an approach
which is complementary to that of this paper, that is, to start from a functional kernel and
to enrich it by a table of types.

References
1 Jonathan Aldrich. The power of interoperability: why objects are inevitable. In Antony L.

Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH’13, pages
101–116. ACM Press, 2013. doi:10.1145/2509578.2514738.

2 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti
Venneri. Java & Lambda: a Featherweight story. Logical Methods in Computer Science, 14(3),
2018. doi:10.23638/LMCS-14(3:17)2018.

ECOOP 2021

https://doi.org/10.1145/2509578.2514738
https://doi.org/10.23638/LMCS-14(3:17)2018

21:16 λ-Based Object-Oriented Programming

3 Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. TraitRecordJ: A
programming language with traits and records. Science of Computer Programming, 78(5):521–
541, 2013. doi:10.1016/j.scico.2011.06.007.

4 Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Informa-
tion and Computation, 155(1-2):108–133, 1999. doi:10.1006/inco.1999.2829.

5 Peter Buchlovsky and Hayo Thielecke. A type-theoretic reconstruction of the visitor pat-
tern. Electronic Notes in Theoretical Computer Science, 155:309–329, 2006. Mathematical
Foundations of Programming Semantics - MFPS 2005. doi:10.1016/j.entcs.2005.11.061.

6 Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola Dezani-Ciancaglini. Sound-
ness conditions for big-step semantics. In Peter Müller, editor, Programming Languages and Sys-
tems - 29th European Symposium on Programming - ESOP 2020, volume 12075 of Lecture Notes
in Computer Science, pages 169–196. Springer, 2020. doi:10.1007/978-3-030-44914-8_7.

7 Michael Homer, Timothy Jones, and James Noble. First-class dynamic types. In Dynamic
Languages Symposium 2019, pages 1–19. ACM Press, 2019. doi:10.1145/3359619.3359740.

8 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001. doi:10.1145/503502.503505.

9 Timothy Jones, Michael Homer, James Noble, and Kim Bruce. Object inheritance without
classes. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, ECOOP’16 - Object-
Oriented Programming, volume 56, pages 13:1–13:26. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.13.

10 Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding
the use of lambda expressions in Java. Proceedings of ACM on Programming Languages,
1(OOPSLA 2017):85:1–85:31, 2017. doi:10.1145/3133909.

11 Martin Plümicke. Well-typings for Javaλ. In Christian W. Probst and Christian Wimmer,
editors, Principles and Practice of Programming in Java - PPPJ 2011, pages 91–100. ACM
Press, 2011. doi:10.1145/2093157.2093171.

12 Yanlin Wang, Haoyuan Zhang, Bruno C. d. S. Oliveira, and Marco Servetto. Classless Java. In
Bernd Fischer and Ina Schaefer, editors, Generative Programming: Concepts and Experiences
- GPCE 2016, pages 14–24. ACM Press, 2016. doi:10.1145/2993236.2993238.

https://doi.org/10.1016/j.scico.2011.06.007
https://doi.org/10.1006/inco.1999.2829
https://doi.org/10.1016/j.entcs.2005.11.061
https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3359619.3359740
https://doi.org/10.1145/503502.503505
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.1145/3133909
https://doi.org/10.1145/2093157.2093171
https://doi.org/10.1145/2993236.2993238

Multiparty Languages: The Choreographic and
Multitier Cases
Saverio Giallorenzo ! Ï

Università di Bologna, Italy
INRIA, Sophia Antipolis, France

Fabrizio Montesi ! Ï

University of Southern Denmark, Odense, Denmark

Marco Peressotti ! Ï

University of Southern Denmark, Odense, Denmark

David Richter !

Technical University of Darmstadt, Germany

Guido Salvaneschi !

University of St. Gallen, Switzerland

Pascal Weisenburger !

University of St. Gallen, Switzerland

Abstract
Choreographic languages aim to express multiparty communication protocols, by providing primitives
that make interaction manifest. Multitier languages enable programming computation that spans
across several tiers of a distributed system, by supporting primitives that allow computation to
change the location of execution. Rooted into different theoretical underpinnings – respectively
process calculi and lambda calculus – the two paradigms have been investigated independently
by different research communities with little or no contact. As a result, the link between the two
paradigms has remained hidden for long.

In this paper, we show that choreographic languages and multitier languages are surprisingly
similar. We substantiate our claim by isolating the core abstractions that differentiate the two
approaches and by providing algorithms that translate one into the other in a straightforward way.
We believe that this work paves the way for joint research and cross-fertilisation among the two
communities.

2012 ACM Subject Classification Software and its engineering → Multiparadigm languages; Soft-
ware and its engineering → Concurrent programming languages; Software and its engineering →
Distributed programming languages

Keywords and phrases Distributed Programming, Choreographies, Multitier Languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.22

Category Pearl

Funding Fabrizio Montesi: Villum Fonden, grant no. 29518, and Independent Research Fund
Denmark, grant no. 0135-00219.
David Richter : German Federal Ministry of Education and Research (BMBF) iBlockchain Project,
grant no. 16KIS0902.
Guido Salvaneschi: German Research Foundation (DFG) project no. 383964710, LOEWE initiative
(Hesse, Germany) within the Software-Factory 4.0 project, and Swiss National Science Foundation
(SNSF) project “Multitier Programming above the Clouds”.
Pascal Weisenburger : University of St. Gallen, IPF project no. 1031569.

Acknowledgements We thank the anonymous reviewers for their useful feedback and comments.

© Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and
Pascal Weisenburger;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 22; pp. 22:1–22:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saverio.giallorenzo@gmail.com
https://www.saveriogiallorenzo.com
https://orcid.org/0000-0002-3658-6395
mailto:fmontesi@imada.sdu.dk
https://www.fabriziomontesi.com
https://orcid.org/0000-0003-4666-901X
mailto:peressotti@imada.sdu.dk
https://marcoperessotti.com
https://orcid.org/0000-0002-0243-0480
mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:guido.salvaneschi@unisg.ch
https://orcid.org/0000-0002-9324-8894
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Multiparty Languages: The Choreographic and Multitier Cases

1 Introduction

Programming concurrent and distributed systems is notoriously hard. Among other issues, it
requires dealing with coordination and predicting how multiple participants will interact at
runtime, for which programmers do not receive adequate help from mainstream programming
abstractions and technology [25, 21, 32].

The quest for finding elegant languages and methodologies that can help with concurrent
and distributed programming has been a major focus of the research community for decades,
including the seminal actor model and calculus of communicating systems [17, 27]. In this
work, we are interested in two kinds of languages that have been recently gaining attention:
choreographic languages [28, 2] and multitier languages [40]. Choreographic languages
are designed to express multiparty communication protocols, by providing primitives that
make interaction manifest. On the other hand, multitier languages allow for programming
computation that spans across several tiers of a distributed system, by providing primitives
that allow computation to change location of execution.

Both choreographic and multitier languages aim at making concurrent and distributed
programming more effective, and have inspired several research and industrial language
designs. However, choreographic and multitier languages stem from different ideas; they
adopt different terminologies; they look different; they have evolved different features; and
they have found different applications in practice. Perhaps because the design principles of
choreographic and multitier languages come from different angles, the two communities have
prolifically evolved independently. However, as a consequence, the commonalities and actual
differences between the two research lines remain unclear, which impedes cross-fertilisation.

In this paper, we offer a new perspective on the relationship between choreographic and
multitier languages. We show that, despite their different starting points and evolutions,
they share a strong core idea that classifies them both as what we call multiparty languages –
languages that describe the behaviour of multiple participants. Leveraging this commonality,
it is possible to derive choreographic programs from multitier programs, and vice versa. Our
aim is to provide a way for each community to access the other, encouraging cross-fertilisation.

We outline our investigation and contributions:
In Section 2, we give an overview of the essential features of choreographic and multitier
languages. We recap the history of the two approaches and identify their key differences,
which lie in perspective (objective vs subjective) and in the modelling of communications
(manifest vs non-manifest). We also pinpoint the commonality that classifies choreographic
and multitier languages as multiparty.
In Section 3, we present an example use case for both choreographic and multitier
programming, which introduces the concrete choreographic and multitier programming
languages that we will use in the rest of our development: Choral [16] and ScalaLoci [38].
In Section 4, we introduce Mini Choral and Mini ScalaLoci, two representative but
minimal languages for choreographic and multitier programming, respectively. Mini
Choral and Mini ScalaLoci dispense with the features that are not essential parts of
their respective paradigms, which allows us to study how the essential differences can be
bridged in the next section.
In Section 5, we define algorithms for translating programs in Mini Choral to programs in
Mini ScalaLoci, and vice versa. The translations deal with the changes in perspective and
manifestation of communications between the two paradigms. For example, translating
a multitier program into a choreographic one requires synthesising a communication
protocol that enacts the necessary communications among participants.

S. Giallorenzo et al. 22:3

Our translations are not just of inspiration to see the connection between the two
paradigms (which we leverage in the next section), but also open a window towards the
future sharing of theoretical and practical results. An example for each direction: by
translating a multitier program into a choreographic one and then using a choreographic
compiler to generate executable code, we can know statically the pattern of communica-
tions that will be enacted by the executable code (this property is called “Choreography
Compliance” [16] or “EndPoint Projection Theorem” [3]); by translating a choreographic
program into a multitier one and then using a multitier compiler to generated executable
code, we can reuse all the machinery developed by the multitier community to generate
code for different technologies (e.g., the code generated for one participant is in JavaScript
for a web browser while the code for another might be code runnable on the Java Virtual
Machine for a server).
Our study shows that, while choreographic and multitier programming languages are
different enough to be independently useful, they are also near enough to benefit from
cross-fertilisation. In Section 6, we report on important features that have been developed
separately in the choreographic and multitier research lines. We find that important
features for the development of concurrent and distributed systems have been developed
for one paradigm but not the other. Inspired by our newfound connection, we discuss
how these features could be ported over to the other paradigm in the future, setting up
future work enabled by our view.

2 Background: Choreographic and Multitier Programming Languages

In this section, we give some background on choreographic and multitier languages, and
discuss their differences and similarities.

2.1 Choreographic Languages
Choreographic languages are inspired by the famous “Alice and Bob” notation, or security
protocol notation [30]. The idea is to define how the different participants of a system should
communicate (or interact) – which later inspired also message sequence charts and sequence
diagrams [20]. Textual and graphical choreographic languages have already been adopted in
industry as specification languages in different settings ranging from business processes, e.g.,
the choreographic language in OMG’s Business Process Model and Notation, to web services,
e.g., W3C’s Web Services Choreography Description Language [31, 37].

The essence of a choreographic language is the capability of expressing explicitly data flows
from a participant to another through communication, and of composing such communications
into larger structures. In other words, choreographies make interaction and the structure of
interaction protocols manifest. A communication from a participant, Alice, to another, Bob,
is written as follows:
Alice.userId -> Bob.x : ch

The statement above reads: Alice sends its userId (a local variable storing a user identifier)
to Bob, which stores it in its local variable x, and the communication takes place through the
channel ch.

Communication statements can be composed in larger and more sophisticated protocols,
for example using the sequential operator “;”. In the following protocol snippet: after
interacting with Alice, Bob forwards to Charlie the user identifier that it received through a
separate channel ch2.

ECOOP 2021

22:4 Multiparty Languages: The Choreographic and Multitier Cases

nested subjective descriptions by n peers
Choreographic Program
objective description of n roles

Multitier Program

Projection Choreography
Compiler

Executable Program

for role A
Executable Program

for role n

. . .

Splitting Multitier
Compiler

Executable Program

for peer A
Executable Program

for peer n

. . .

I take X

I compute Y

A
B

I compute X

C

...

I take X and Y

I compute Z
...

A
B

computes X

C

sends X toA
B computes Y

B sends Y to

C computes Z

...

CA sends X to

Figure 1 Choreographic Programming.

nested subjective descriptions by n peers
Choreographic Program
objective description of n roles

Multitier Program

Projection Choreography
Compiler

Executable Program

for role A
Executable Program

for role n

. . .

Splitting Multitier
Compiler

Executable Program

for peer A
Executable Program

for peer n

. . .

I take X

I compute Y

A
B

I compute X

C

...

I take X and Y

I compute Z
...

A
B

computes X

C

sends X toA
B computes Y

B sends Y to

C computes Z

...

CA sends X to

Figure 2 Multitier Programming.

Listing 1 A simple choreography with three participants.
1 Alice.userId -> Bob.x : ch;
2 Bob.x -> Charlie.y : ch2;

In the paradigm of choreographic programming [28], choreographic languages are full-
fledged programming languages: developers write the implementation of an entire multiparty
system as a choreography, and then a compiler automatically generates an executable
program for each participant. This process is depicted in Figure 1. Choreographies resemble
play scripts, written from an external point of view, describing the interactions among all
participants. We call this view objective. Participants, like Alice and Bob, are typically
referred to as roles in choreographies, and the procedure that generates the executable
program for each role is called projection (or endpoint projection) [4, 11].

The code in Listing 1 is valid code in the Chor language, the first implementation of
choreographic programming [28, 4]. Chor targets microservices: given that code (with
appropriate boilerplate), Chor would generate executable programs of microservices that
implement Alice, Bob, and Charlie. Choreographic programming has been applied to other
settings, e.g., information flow [22], parallel algorithms [10], cyber-physical systems [24, 23],
runtime adaptation [11], and integration processes [15].

2.2 Multitier Languages

Multitier languages are inspired by one of the ideas proposed with ambient calculi [5]. In this
kind of process calculi, terms express the place (the “ambient”) at which computation occurs.
Computations that take place at different locations can be nested, which enables describing
multiparty systems. It was later shown that the idea can be combined with well-known
abstractions, by developing a variation of λ-calculus with locations called Lambda 5 [29].
This solution prompted the development of multitier languages [36, 8, 40], which extend
existing programming languages with locations. The term multitier comes from the fact that
these languages were mostly developed for web programming, where tiers is used to refer to
the typical participants of a web system (e.g., client, backend server, and database).

S. Giallorenzo et al. 22:5

The crux of a multitier language is the capability of hopping from the point of view of
a participant to that of another – the multitier language by Serrano et al. is aptly called
“Hop” [36]. When hopping from a participant to another, it is possible to move data from
the participant that we are leaving to the participant that we are going to – enabling
communication. As an example, consider a remote procedure call from a client to server. In a
recent incarnation of multitier programming that builds on the Scala language, ScalaLoci [38],
this can be written as follows (for simplicity of presentation, we omit library calls that would
be necessary to deal with asynchrony):

1 def rpc(input: String): String on Client = on[Client] {
2 val result =
3 on[Server].run.capture(input) {
4 expensiveFunction(input)
5 }.asLocal
6 return result
7 }

Participants are referred to as peer types in ScalaLoci. The method rpc above is defined
as a block of code that starts at the client peer (on[Client]). The client stores the result
of some computation in its local variable result, but this computation is performed at the
server. This result is achieved by “moving” to the server with the instruction on[Server]. The
invocation of method run, right afterwards, models some computation, and capture(input)

means that we want to move the content of the local variable input from the peer that we are
leaving (the client) to the one that we are going to (the server). How this move is achieved
is left to the implementation (ScalaLoci generates a communication strategy automatically).
The server then runs an expensive function on the input, and the execution goes back to the
client – the code block at the server ends. The invocation of asLocal ensures that the return
value of the code at the server is moved to the location of the enclosing scope (the client).
We finally return the result at the client.

Like choreographic programming languages, multitier languages come with a compiler
that turns the multiparty view of the system into executable programs. This process is
depicted in Figure 2. Given a multitier program, a multitier compiler generates an executable
program for each peer type (in the case of Section 2.2, these would be client and server). The
procedure for generating code is called splitting. The nested “dialogues” of peers inside the
multitier program depict that a multitier program has many viewpoints, switching regularly
from the point of view of a peer to that of another. Nevertheless, code is written with the
viewpoint of the peer we are currently in. For this reason, we say that multitier programs
adopt a nested subjective view.

2.3 Towards Linking Choreographic to Multitier Languages
The two communities of choreographic and multitier languages have prolifically evolved
independently [2, 40]. They adopted different design principles, and they have found different
practical applications – most notably service-oriented computing for choreographies and
web development for multitier programming. As a result, they have also developed several
features independently (we discuss some of the most important ones in Section 6). In
addition, the two communities have been facing different challenges. For example, multitier
programming languages historically tackle the problem of “impedance mismatch”: the
necessity of handling data conversions and heterogeneous execution engines in the web
(the Google Web Toolkit is a multitier framework that contributes to this research area).
Instead, choreographic programming mainly aimed at achieving “choreography compliance”:
providing the guarantee that distributed systems communicate as expected and with desirable
properties (like liveness).

ECOOP 2021

22:6 Multiparty Languages: The Choreographic and Multitier Cases

Yet, the two paradigms are clearly linked. We drew Figure 1 and Figure 2 with the
intention of highlighting such connection. Indeed, despite differences in both terminologies
and methods, the strategies of choreographic and multitier programming languages share a
similarity: both define the behaviour of a multiparty system in a single compilation unit, and
then offer ways to synthesise executable implementations for the participants. We thus identify
both kinds of languages as instances of the larger class of multiparty languages – leaving the
class open to future additions. We see value in both techniques for multiparty programming.
In choreographies protocols are manifest, which makes them easy to understand. Multitier
programs give access to multiparty programming with a developing experience that resembles
standard “local programming” by leveraging scoping.

Despite both choreographic and multitier languages sharing the multiparty approach,
they remain pretty diverse in terms of theoretical background. The theory of choreographic
language typically stands on process calculi, whereas multitier models build on λ-calculus [18,
4, 19, 11, 40]. This is likely an important reason why the link between choreographic and
multitier languages has been overlooked for long. Very recently, however, it has been shown
that object-oriented languages can be extended to capture choreographies, by generalising
the notion of data type to data types located at multiple roles [16]. In the resulting language,
called Choral, a choreography among a few roles can be expressed as an object. For example,
we can write the choreography in Listing 1 in Choral as follows:

1 class Example@(Alice, Bob, Charlie) { // the three roles of the protocol
2 DiDataChannel@(Alice,Bob)<Serializable> ch; // channel from Alice to Bob
3 DiDataChannel@(Bob,Charlie)<Serializable> ch2; // channel from Bob to Charlie
4

5 /* constructor omitted */
6

7 public UserID@Charlie run(UserID@Alice userId) { // the protocol
8 UserID@Bob x = ch.<UserID>com(userId); // Alice.userId -> Bob.x : ch
9 return ch2.<UserID>com(x); // Bob.x -> Charlie.y : ch2

10 }
11 }

Briefly – as we give a more detailed description of Choral programs in Section 3.2 – the
Example class declares three roles (Alice, Bob, and Charlie) and two directed channels (ch from
Alice to Bob and ch2 from Bob to Charlie). These correspond to the roles and channels assumed
in Listing 1. The protocol described in Listing 1 is implemented by method run that takes
an instance of UserID located at Alice and returns one located at Charlie passing through Bob.
Communication happens by invoking method com of the two channels.

Choral helps in leveling the playfield with multitier programming. Indeed, we now have
an object-oriented incarnation of choreographic programming that we can use to compare to
object-oriented multitier languages, here represented by ScalaLoci. In the next sections, we
leverage this common ground and take Choral and ScalaLoci as representative languages for
their respective paradigms.

3 Overview of Choral and ScalaLoci

In this section, we give an overview of the representative languages for choreographic and
multitier programming that we have chosen, Choral and ScalaLoci, by using them to deal
with a simple yet comprehensive example of a context-aware protocol for e-mail fetching.

S. Giallorenzo et al. 22:7

Email Client Email Server

User ID

Last Checkout Timestamp

List of Emails

opt

(Client is on a flat-rate connection)

List of Email IDs

List of Attachments

Figure 3 Sequence diagram for context-aware e-mail fetching.

3.1 A Context-Aware Email-Fetching Protocol
Before delving into the details of the two implementations, we discuss briefly the protocol
that we want to program. A depiction as a sequence diagram is given in Figure 3. The
protocol defines an interaction between an Email Client and an Email Server. Specifically,
the Client sends its identification token – here simplified as User ID – and the timestamp of
the last e-mail checkout to the Server. The Server returns the list of e-mails received after
the timestamp to the Client. After the above interaction, the Client and the Server enter
an optional block. The optional block is executed depending on the context of the client,
namely, if the connection from the Client to the Server is flat-rate, i.e., if the connection fee
paid by the Client is independent from its usage. If that is the case, the Client sends the
Server the list of e-mail IDs retrieved in the previous interaction to fetch their attachments.
The Server concludes the optional part of the protocol by sending to the Client the requested
attachments.

3.2 A Choreographic Programming Implementation with Choral
In Listing 2, we use Choral to implement the protocol from Figure 3. The example

illustrates the main concepts of the choreographic programming approach and how Choral
captures them in the object-oriented setting.

In Choral, objects have types of the form T@(R1, ..., Rn), where T is the interface of the
object (as usual), and R1, . . . , Rn are the roles that collaboratively implement the object. As
we see below, Choral supports two notations for denoting the roles over which an object
is distributed: the standard form @(A, ..., Z) and the contracted form @A, for objects that
belong to one role (shortcut for @(A)). Incorporating roles in data types makes distribution
manifest at the type level.

In Listing 2, at Line 3, we define a class EmailSystem implemented by two roles: the Client

and the Server. The method updateEmails (Line 8) implements the actual protocol from
Figure 3. Lines 4–6 declare class-level private objects, i.e., accessible from the updateEmails

method and other (omitted) ones within the class. Specifically, at Line 4, we have the
MailServerDB located at the Server. At Line 5, we find the complementary MailDB of the
Client. At Line 6, we define the object used to transfer data between the two roles: a
SymChannel – standing for symmetric channel – shared between the two roles and able to
transmit Serializable objects. We omit the initialisation of the abovementioned objects.

ECOOP 2021

22:8 Multiparty Languages: The Choreographic and Multitier Cases

Listing 2 Choral implementation for the context-aware e-mail fetching example.
1 enum Choice@Role { THEN, ELSE }
2

3 class EmailSystem@(Client, Server) {
4 private MailServerDB@Server serverDB = ...;
5 private MailDB@Client clientDB = ...;
6 private SymChannel@(Client, Server)<Serializable> ch = ...;
7

8 void updateEmails(UserId@Client userId) {
9 UserId@Server id = userId >> ch::com;

10 Timestamp@Server timestamp = clientDB.lastCheckOut() >> ch::com;
11 List@Client<Email> emails = serverDB.since(id, timestamp) >> ch::com;
12 clientDB.update(emails);
13 if (ClientLib@Client.isOnFlatRate()) {
14 Choice@Client.THEN >> ch::select;
15 clientDB.extractIds(emails) >> ch::com
16 >> serverDB::getAttachments >> ch::com
17 >> clientDB::updateAttachments;
18 }
19 else {
20 Choice@Client.ELSE >> ch::select;
21 }
22 }
23 }

Considering the description of the implementation of the e-mail fetching protocol, we look
at the updateEmails method (Line 8). The method does not return a value (void) and takes
as input the UserId – which simplifies the user authentication procedure here, for brevity –
to identify the user of the Client at the Server.

In the body, at Line 9, we pass the UserId to the Server. We do this by invoking the
method com of the ch SymChannel giving to it as argument the userId. This is done by the
expression userId >> ch::com which uses the Choral chaining operator >> and that corresponds
to the expanded expression ch.com(userId). To make Choral programs closer to standard
choreographic notation, where data flows from left to right, Choral borrows the forward
chaining operator >> from F#: exp >> obj::method is syntactic sugar for obj.method(exp).

The method com of the SymChannel transfers the value of the sender given as input into
an equivalent representation of the value at the receiver. In this case, the sender is the
Client (where the UserId object lives) and the receiver is the Server, which stores the result
of the communication into variable id which is an object of type UserId at its location – i.e.,
UserId@Server.

The transfer of the Timestamp from the Client to the Server is similar (Line 10): we retrieve
the object from the clientDB – invoking method lastCheckOut – and we transfer it to the Server

thought the SymChannel. Then, to fetch the e-mails, the Client receives a transmission from
the Server. The Server interrogates its local database (serverDB) by extracting all e-mails
belonging to the id of the Client and received since its last checkout (indicated by the
timestamp) and sends them to the Client via their shared SymChannel. At Line 12, the Client

uses the received list of emails to update its local database (clientDB).
Lines 13–20 implement the optional part of the protocol from Figure 3. First, the Client

checks whether it is using a flat-rate connection – this is done through the static library
ClientLib and its method isOnFlatRate.

The if-else block at Lines 13–20 allows us to explain the concept of knowledge of choice
(a hallmark element of choreographic programming) and how Choral implements it. Briefly,
the concept of knowledge of choice indicates a fork in the flow of a program among alternative
behaviours, where the concerned roles should coordinate to ensure that they agree on which

S. Giallorenzo et al. 22:9

behaviour they should enact. In choreographic languages, this issue is typically addressed
by defining a “selection” primitive to communicate constants drawn from a dedicated set of
“labels”, so that the compiler has enough information to build code that can react to choices
made by other roles [4, 11]. In Choral, this is implemented by channel methods that can
transmit instances of enumerated types between roles. Conveniently, the SymChannel used
in the example also supports selections via its select methods. In Listing 2, we find the
implementation of the knowledge of choice of the conditional at Line 14 (where the Client

“decides” to fetch the attachments) and at Line 20 (which skips the retrieval). In the example,
we implement the choice by defining the Choice enum class at Line 1 – note that we use the
identifier Role for the single role that owns the Choice object in its declaration, instantiated
at the Client at Lines 14 and 20.

If the Client uses a flat-rate connection, the chained statement at Lines 15–17 execute:
first (Line 15) the Client sends to the Server the IDs of the e-mails (retrieved through
extractIds(emails)) whose attachments it wants to retrieve, then (Line 16) the Server uses
the received ids to extract from its database (serverDB) the attachments and it send them
back to the Client, and finally (Line 17) the Client uses the received attachments to update
its local database.

3.3 A Multitier Programming Implementation with ScalaLoci
We now use ScalaLoci to illustrate the multitier programming approach, implementing the
protocol from Figure 3 in Listing 3.

In ScalaLoci, the location of different values is specified through placement types. The
placement type T on P represents a value of type T on a peer P. Developers can freely define
the different components, called peers, of the distributed system. For instance, in the example,
serverDB is a MailServerDB placed on the Server (Line 5) and clientDB is a MailDB placed on the
Client (Line 6).

Peers are defined as abstract type members (Lines 2 and 3). Further, peer types express
the architectural relation between the different peers by specifying ties between peers,
thus supporting generic distributed architectures. Ties statically approximate the runtime
connections between peers. In the example, we define a single tie from client to server (Line 2)
and from server to client (Line 3). A single tie expresses the expectation that a single remote
instance is always accessible. In the specified architecture, a client connects to a single server
and a server program instance handles a single client.

The updateEmails method (Line 8) encapsulates the communication logic from Figure 3. It
takes the UserId for identifying the client as input. The implementation diverts control flow
to the server using a nested on[Server].run expression (Line 10). The capture clause transfers
both the timestamp and the userId from the client to the server. Inside the server expression
(Line 11), the server queries its local serverDB database to extract all e-mails belonging to the
userId of the client received since its last checkout (indicated by the timestamp). The result
of the server-side expression is returned to the client using asLocal (Line 12).

In ScalaLoci, accessing remote values via the asLocal marker creates a local representation
of the remote value by transmitting it over the network. For simplicity, we use synchronous
communication. In general, ScalaLoci allows developers to choose among different trans-
mitters, most notably one that wraps local representations of data in futures to account for
network delay and communication failures.

The client then uses the received list of emails to update its local clientDB database (Line 14).
Lines 16–20 implement the optional part of the communication logic from Figure 3. If the client
is currently using a flat-rate connection – as indicated by the static ClientLib.isOnFlatRate

ECOOP 2021

22:10 Multiparty Languages: The Choreographic and Multitier Cases

Listing 3 ScalaLoci implementation for the context-aware e-mail fetching example.
1 @multitier object EmailSystem {
2 @peer type Client <: { type Tie <: Single[Server] }
3 @peer type Server <: { type Tie <: Single[Client] }
4

5 private val serverDB: MailServerDB on Server = ...
6 private val clientDB: MailDB on Client = ...
7

8 def updateEmails(userId: UserId): Unit on Client = on[Client] {
9 val timestamp: Timestamp = clientDB.latestCheckout

10 val emails: List[Email] = on[Server].run.capture(userId, timestamp) {
11 serverDB.since(userId, timestamp)
12 }.asLocal
13

14 clientDB.update(emails)
15

16 if (ClientLib.isOnFlatRate) {
17 val ids = clientDB.extractIds(emails)
18 clientDB.updateAttachments(
19 on[Server].run.capture(ids) { serverDB.getAttachments(ids) }.asLocal)
20 }
21 }
22 }

method – the client initiates a second server-side computations using on[Server].run (Line 19).
The client transfers the IDs of the e-mails (retrieved through extractIds(emails)) – whose
attachments to receive – to the server, which extracts the attachments from its serverDB

database and returns them to the client, which then updates its local clientDB with the
received attachments (Line 18).

4 Mini Choreographic and Multitier Languages

We now introduce Mini Choral and Mini ScalaLoci, minimal languages that omit most features
of their reference counterparts that are irrelevant to our study (like generics and inheritance).
This allows us to focus on the distinctive traits that characterise the choreographic and
multitier approaches, respectively. The minimality of the two languages is instrumental to
highlight their distinguishing features here and to focus on the salient points that define their
reciprocal translations in Section 5. Next, we present the grammar of the two languages and
briefly describe the components that mark them respectively as choreographic and multitier
languages.

Listing 4 displays the grammar of Mini Choral. C ranges over class declarations, Channel
ranges over channel declarations, Field ranges over class fields, Method ranges over method
definitions, Type ranges over type expressions, and Exp ranges over expression terms. The
metavariable id ranges over both class names, fields, and variables. We use A, B, C to range
over role names. Here and in the reminder of the paper, we use overlines to denote sequences
of terms of the same sort and we denote concatenation of sequences using a comma.

4.1 Mini Choral
The class declaration C defines its name id, its owner roles A within the @(· · ·) clause, the
topology of directed channels available between roles in Channel, its field declarations Field,
and its suite of method definitions Method.

S. Giallorenzo et al. 22:11

Listing 4 Syntax of Mini Choral.

Mini Choral C ::= class·id@(A){ Channel·Field·Method }
Type Expression Type ::= id@(A)
Channels Channel ::= DiChannel@(A, B)·ch_A_B
Field Field ::= Type·id
Method Definition Method ::= Type·id(Type·id){ return·Exp }
Expression Exp ::= id | Exp.id | Exp.id(Exp) | new·id@(A)(Exp)

| lit@(A) | if·(Exp) { Exp }·else·{Exp} | Exp; ·Exp
| ch_A_B.com(Exp) | ch_A_B.select(Exp)

In Mini Choral, we decided to focus on describing data flow and to limit Choral’s
expressivity regarding data distribution. That is, we allow only the declared class to be
distributed at multiple roles, while variables belong to only one role, with the exception of
Channels, which specify the network topology as a set of objects located (and able to transfer
single-role objects) between two roles. Specifically, Mini Choral supports only one-way
channels (drawn from Choral and called DiChannels) of the shape DiChannel@(A,B) ch_A_B –
with A and B roles of the enclosing class. In this work, the loss of expressiveness of the Mini
variant with respect to Choral – which supports the definition of multi-role classes/fields
without the above limitations – lends itself to simplify the algorithms in our translation
in Section 5. In the general case, Choral can express arbitrary channel topologies and
user-defined implementations of communications semantics (e.g., asymmetric channels or
bidirectional symmetric channels) [16] – whereas most choreographic languages assume a
complete topology of channels between all roles in a choreography with a fixed communication
semantics [4, 11].

Following the considerations above, we restrict type expressions Type to define variables
located at one role id@(A). This is reflected in the definition of Fields but also in method
definitions, where we additionally assume the return type Type and the types of arguments
Type·id to be located at the same role. The body of the method is the single statement
return·Exp. Regarding expressions, we focus our description on the relevant, non-standard
elements: object creation new·id@(A)(Exp) happens for classes at only one role and literals
lit@(A) (integers, strings, etc.) are always located at one role. In Exp, we use Exp; Exp to
represent a block which evaluates the expression on the left, discards its value, and returns
the evaluation of the expression on the right.

Although already captured by the grammar, we include channel invocations of the shape
ch_A_B.com(Exp) and ch_A_B.select(Exp) to highlight their relevance in the language.
DiChannels support both methods com, meant to transfer data between two roles, and select,
used to solve knowledge-of-choice challenges in conditionals (that is, informing a role of a
local choice made by another role, e.g., by using a conditional) [16]. When using selects, we
assume that the compiler provides us with a Choice enum class at one role, with a THEN and
ELSE inhabitants (as presented at Line 1 in Listing 2).

4.1.1 Example: Mini Choral Expressiveness

We conclude the presentation of our minimal choreographic language by illustrating its
expressiveness with respect to its reference Choral language with an implementation of the
email-fetching protocol presented in Section 3.2, Listing 2.

We report the code of the Mini Choral implementation of the protocol in Figure 3 in
Listing 5. In the Listing, the main notable difference with Listing 2 is that, by removing
assignments, we rely on method bindings to reuse variables in “subsequent” (;) invocations.

ECOOP 2021

22:12 Multiparty Languages: The Choreographic and Multitier Cases

Listing 5 Mini Choral implementation for the context-aware email fetching example.
1 class EmailSystem@(Client, Server) {
2 DiChannel@(Client, Server) ch_Client_Server
3 DiChannel@(Server, Client) ch_Server_Client
4

5 MailServerDB@Server serverDB
6 MailDB@Client clientDB
7

8 Unit@Client updateEmails(UserId@Client userId) {
9 return contextAwareUpdate(getEmails(userID, clientDB.lastCheckOut())))

10 }
11

12 List@Client getEmails(UserId@Client id, Timestamp@Client ts) {
13 return ch_Server_Client.com(
14 serverDB.since(ch_Client_Server.com(id), ch_Client_Server.com(ts))
15 }
16

17 Unit@Client contextAwareUpdate(List@Client emails) {
18 clientDB.update(emails);
19 if (ClientLib.isOnFlatRate()) {
20 ch_Client_Server.select(Choice@Client.THEN);
21 clientDB.updateAttachments(
22 ch_Server_Client.com(
23 serverDB.getAttachments(
24 ch_Client_Server.com(clientDB.extractIds(emails)))))
25 }
26 else {
27 ch_Client_Server.select(Choice@Client.ELSE); Unit
28 }
29 }
30 }

Although divided into three sub-methods, we find the updateEmails method that invokes the
getEmails method, which fetches the emails from the Server by sending to it the id of the
user and the timestamp (ts) of the last checkout and transmitting back the result of the
extraction on the serverDB. Notice that the return type of the getEmails method omits the
definition of the “content” of the list due to the lack of generics. As expected, by omitting
generics we also drop support for specifying/checking the correct/expected content of the
collection – an orthogonal guarantee with respect to the specification/check of the flow of
data among roles. The lack of generics does not hamper the expressiveness of the language
to capture the correct movement of the data from the Server to the Client and vice versa.
After obtaining the emails, we can apply method contextAwareUpdate which updates the email
database of the client and proceeds to conditionally retrieve the attachments of the fetched
emails. This is done by informing the Server of the choice, via the select methods.

4.2 Mini ScalaLoci
Listing 6 displays the grammar of Mini ScalaLoci. L ranges over object declarations, Peer
ranges over peer declarations, Field ranges over class fields, Method ranges over method
definitions, Type ranges over type expressions, PlacedType ranges over placement type
expressions, Exp ranges over expressions, and PlacedExp ranges over placed expressions. The
metavariable id ranges over both class names, fields, and variables. We use A, B, C to range
over peers.

The object declaration L defines its name id, and its peers A and topology of directed
ties between the peers within the @peer type A <: { type Tie <: Any with Single[A] } clauses,
its field declarations Field, and its method definitions Method. Fields associate a placement
type expression PlacedType to a variable.

S. Giallorenzo et al. 22:13

Listing 6 Syntax of Mini ScalaLoci.

Mini ScalaLoci L ::= @multitier object·{ Peer ·Field·Method }
Peer Peer ::= @peer type·A·<:{·type Tie <:·Any·with·Single[B]·}
Placement Type Expression PlacedType ::= Type·on·A
Type Expression Type ::= id
Field Field ::= val·id : PlacedType
Method Definition Method ::= def·id (id : Type) : PlacedType· = ·PlacedExp
Placed Expression PlacedExp ::= on[A]·{ Exp }
Expression Exp ::= id | Exp.id | Exp.id(Exp) | new·id(Exp)

| lit | if·(Exp) { Exp }·else·{ Exp } | Exp; ·Exp
| on[A].run.capture(id)·{ Exp }.asLocal

Mini ScalaLoci is able to express different topologies rather than being restricted to a
fixed client-server model. This choice remarks the departure taken by ScalaLoci from other
multitier models and implementations [8, 9, 34, 35, 36], which assume a fixed client-server
or n-tier architecture of an application. Contrarily, in ScalaLoci, the developer defines an
arbitrary number of peers and directional ties between them. In contrast to ScalaLoci,
Mini ScalaLoci only supports a single connected peer instance per peer type (drawn from
ScalaLoci’s Single ties) of the shape @peer type A <: { type Tie <: Any with Single[A] } – with
A and B peers of the enclosing multitier module. (In Scala, with is the operator for constructing
intersection types.) In this work, the loss of expressiveness of the Mini variant with respect
to ScalaLoci lends itself to simplify the algorithms in our translation in Section 5.

In method definitions, the return type PlacedType specifies a location, which places the
computation of the whole method on that peer, whereas the arguments only have types
but no placement id : ·Type. The body of the method is a placed expression PlacedExp that
specifies the placement of the contained expression Exp. Regarding expressions, we focus our
description on the main differences with Choral: In ScalaLoci, we locate expressions rather
than data and therefore neither instantiation new·id(Exp) nor literals lit (integers, strings,
etc.) carry placement annotations.

Nested remote blocks are encoded by on[A].run.capture(id)·{ Exp }.asLocal expressions,
which execute the nested expression on the peer A and returns its result via asLocal to
the surrounding peer, i.e., switching the current perspective to another peer for evaluating
the nested expression. Note that in the Mini variant, we keep the run, capture and asLocal

constructs to be close to the complete version of the ScalaLoci language (that is syntactic-
ally more flexible and supports optional capture clauses and asLocal on module-level value
bindings).

4.2.1 Example: Mini ScalaLoci Expressiveness
We show the implementation of the email-fetching example presented in Section 3.3, Listing 3
using our minimal multitier language to demonstrate its expressiveness with respect to its
reference ScalaLoci language.

Listing 7 shows the Mini ScalaLoci implementation of the communication scheme in
Figure 3. As with Mini Choral, the main notable difference with Listing 3 is that by removing
assignments, we rely on method arguments for scoped variable declarations instead. The
updateEmails method invokes the getEmails method, which fetches the emails from the Server

by sending to it the id of the user and the timestamp (ts) of the last checkout and transmitting
back the result of the extraction on the serverDB. Similar to Mini Choral, Mini ScalaLoci
also lacks generics, an orthogonal language feature. The lack of generics, however, does not
limit the expressiveness of the language to capture the correct topology of the system and

ECOOP 2021

22:14 Multiparty Languages: The Choreographic and Multitier Cases

Listing 7 Mini ScalaLoci implementation for the context-aware email fetching example.
1 @multitier object EmailSystem {
2 @peer type Client <: { type Tie <: Any with Single[Server] }
3 @peer type Server <: { type Tie <: Any with Single[Client] }
4

5 val serverDB: MailServerDB on Server
6 val clientDB: MailDB on Client
7

8 def updateEmails(userId: UserId): Unit on Client = on[Client] {
9 contextAwareUpdate(getEmails(userId, clientDB.lastCheckOut()))

10 }
11

12 def getEmails(id: UserId, ts: Timestamp): List on Client = on[Client] {
13 on[Server].run.capture(id, ts) { serverDB.since(id,ts) }.asLocal
14 }
15

16 def contextAwareUpdate(emails: List): Unit on Client = on[Client] {
17 clientDB.update(emails);
18 if (ClientLib.isOnFlatRate()) {
19 updateAttachments(clientDB.extractIds(emails))
20 }
21 else { () }
22 }
23

24 def updateAttachments(emailIds: List): Unit on Client = on[Client] {
25 clientDB.updateAttachments(
26 on[Server].run.capture(emailIds){
27 serverDB.getAttachments(emailIds)
28 }.asLocal
29)
30 }
31 }

communication between the Server and the Client. After obtaining the emails, we apply
method contextAwareUpdate, which updates the email database of the client and proceeds to
conditionally retrieve the attachments of the fetched emails.

5 Choreographies to Multitier, Multitier to Choreographies

We now define algorithms that translate programs in a Mini language to the other and
vice versa. The reason for defining the following algorithms is to present evidence of the
existence of a common root at the foundation of the two approaches. We show that the
mechanised procedures for their reciprocal translation are relatively simple. In the remainder
of this section, for brevity, we use the names Choral and ScalaLoci to indicate their Mini
counterparts. We first present a translation algorithm from a Choral choreography to a
ScalaLoci multitier application (Section 5.1). Afterwards, we show a translation algorithm
from a ScalaLoci multitier application to a Choral choreography (Section 5.2).

Perspective translation. Multitier and choreographic programming take different perspect-
ives on what parts of the language are annotated with locations. In Choral, all literals are
annotated by the role on which they operate, and the location of operators can be inferred
by the location of their argument. ScalaLoci assigns peers to expressions, which are then
written from the specified peer’s perspective.

While in simple cases there is a direct correspondence between a value on the role A in
Choral (1@A) and on a peer A in ScalaLoci (on[A] { 1 }), the difference is more obvious in
compound expressions (on[A] { 1 + 2 + 3 } vs. 1@A + 2@A + 3@A), where in ScalaLoci, only the

S. Giallorenzo et al. 22:15

Algorithm 1 Translation algorithm from Choral classes to ScalaLoci objects.

function choral2loci(class)
"class id@(Role) { Channel Field Method }" ← class
decls ← { }
for T ← Role do

ties ← { "Single[B]" | "DiChannel@(A, B) ch_A_B" ∈ Channel ∧ T = A }
decls ← decls ∪ { "@peer type·T ·<: ·{·type Tie <: Any·with·ties }" }

end
for "idt@(A)·idn" ← Field do

decls ← decls ∪ { "val·id1· : ·id0·on·A" }
end
for "idt@(A)·id·(idtn@(A) iden) { e }" ← Method do

e′ ← choral2loci(e)
decls ← decls ∪ { "def·id(iden : idtn) : ·idt·on·A = {e′}" }

end
return "@multitier object·id·{·decls·}"

end

whole expression is annotated but the literals are not, whereas in Choral, only the literals
are annotated while the expression is not.

The translation algorithms perform such perspective change by grouping composed literals
on the same Choral role into a ScalaLoci placed expression and, in the opposite direction,
assigning the same Choral role to all literals in a ScalaLoci placed expression.

Further, we translate between ScalaLoci’s way of defining peers and their topology as type
members and Choral’s way of defining roles as class parameters and their communication
channels as class members.

Communication translation. In ScalaLoci two peers communicate using asLocal. Given an
expression e on peer A, the expression on[B] { e.asLocal } describes how peer B can access the
value of e, implemented as a message with the value of e sent from A to B. In Choral, such
communication is represented by invoking the com method of a directional communication
channel, which takes a value on role A and returns it on role B.

The translation algorithms transform asLocal in ScalaLoci to an invocation of method
com of the appropriate channel in Choral and vice versa.

5.1 From Choreographic Programming to Multitier Programming
Choral choreography classes to ScalaLoci multitier objects. Algorithm 1 describes the
translation of Choral choreography classes to ScalaLoci multitier objects. We decompose the
class definition to be transformed into its identifier id, the roles Role, the channel declarations
Channel, the field declarations Field and the method definitions Method.

Each Choral role definition is translated to a ScalaLoci peer definition. Each channel
DiChannel@(A,B) ch_A_B between two roles is translated to a single tie, e.g., a directed one-to-one
tie, between two peers @peer type A <: { type Tie <: Any with Single[B] }.

The translation of field definitions from Choral to ScalaLoci is straightforward. In Choral,
fields are introduced with a base type and the residing role, followed by the name of the field
“idname@(idrole) idtype”. In ScalaLoci, fields are introduced as “val idname: idtype on idrole”.
Similarly, method definitions are translated. The algorithm returns a multitier object with
the same name and the translated definitions as a body.

ECOOP 2021

22:16 Multiparty Languages: The Choreographic and Multitier Cases

Algorithm 2 Translation algorithm from Choral expressions to ScalaLoci expressions.

function choral2loci(expr)
return match expr with

case "e0; e1" with
"on[A]{·e′

0·}" ← choral2loci(e0)
"on[B]{·e′

1·}" ← choral2loci(e1)
captures← freeV ars(e0) ∩ currentMethodArguments

if A ̸= B then
"on[B]{ on[A].run.capture(captures)·{·e′

0·}.asLocal; e′
1 }"

else
"on[B]{·e′

0; e′
1·}"

end
case "id" with

A ← roleOf(id)
"on[A]{·id·}"

case "lit@A" with
"on[A]{·lit·}"

case "new·id@A·(e)" with
"on[A]{·e′·}" ← choral2loci(e)
"on[A]{·new·id(e′)·}"

case "e0.id(e)" with
"on[A]{·e′

0·}" ← choral2loci(e0)
"on[B]{·e′·}" ← choral2loci(e)
assert A = B // receiver and arguments have the same role
"on[A]{ e′

0.id(e′) }"
case "ch.select(e)" with

"Unit"
case "if·(e0)·{·e1·}·else·{·e2·}" with

"on[A]{·e′
0·}" ← choral2loci(e0)

"on[B]{·e′
1·}" ← choral2loci(e1)

"on[C]{·e′
2·}" ← choral2loci(e2)

captures← freeV ars(e0) ∩ currentMethodArguments

assert B = C // branches have the same role
if A ̸= B then

"on[B]{·if·(on[A].run.capture(captures)·{·e′
0·}.asLocal)·{·e′

1·}·else·{·e′
2·} }"

else
"on[B]{·if·(e′

0)·{·e′
1·}·else·{·e′

2·}·}"
end

case "ch_B_A.com(e)" with
"on[B]{·e′·}" ← choral2loci(e)
captures← freeV ars(e) ∩ currentMethodArguments

"on[A]{ on[B].run.capture(captures)·{·e′·}.asLocal }"
end

end

Choral choreography expressions to ScalaLoci multitier expressions. Algorithm 2 describes
the translation of Choral expressions to ScalaLoci: the algorithm matches on the different
cases of Choral Exp terms and transforms each into the corresponding ScalaLoci code.

For sequencing e0; e1, both e0 and e1 are recursively transformed. If both subexpressions
agree on their placement, e.g., A = B, the complete sequence is placed on the same peer.
More interestingly, if the subexpressions are placed on different peers, we introduce a nested
remote block for e′

0, which executes e′
0 on A and places the overall result of e′

1 on B. For the
remote block we generate a capture clause for all method-local variables that are free in e0.

S. Giallorenzo et al. 22:17

Algorithm 3 Translation algorithm from ScalaLoci objects to Choral classes.

function loci2choral(module)
"@multitier object id { Peer Field Method }" ← module

decls ← { }
roles ← { }
for "@peer type A <: { type Tie <: Any with·ties }" ← Peer do

roles ← roles ∪ { A }
for "Single[B]" ← ties do

decls ← decls ∪ { "DiChannel@(A,B) ch_A_B" }
end

end
for "val id1: id0 on A" ← Field do

decls ← decls ∪ { "id0@(A) id1" }
end
for "def id(iden : idtn): idt on A = { e }" ← Method do

e′ ← loci2choral(e)
decls ← decls ∪ { "idt@(A) id(idtn@(A)·iden) { e′ }" }

end
return "class id@(roles) { decls }"

end

The translations for identifiers, literals and instantiation is straightforward, placing the
ScalaLoci expression on the peer according to the role specified in the Choral code. Further,
the case for method invocation is similar since we assume that the receiver of a method
invocation and its arguments are on the same role. This assumption is expressed by the
assert statement in the algorithm and holds for every well-typed Mini Choral program (in
contrast to a Choral program). Selection does not exist in ScalaLoci. Hence, it is removed.

The case for branching makes a distinction similar to sequencing of whether the condition
agrees to the branches regarding their placement, e.g., A = B. If they agree, the complete
branching is placed on the same peer. Otherwise, we introduce a nested remote block for e′

0,
which executes e′

0 on A and returns the result to B where the branches are placed. B then
acts as a coordinator to decide which of the branches to execute.

Finally, we translate Choral’s channel communication. For a channel from role B to A,
we generate a ScalaLoci expression, which runs a nested remote block for e′, which executes
e′ on B and returns the result to A.

5.2 From Multitier Programming to Choreographic Programming
ScalaLoci multitier objects to Choral choreography classes. Algorithm 3 describes the
translation of ScalaLoci multitier objects to Choral choreography classes. We decompose the
multitier object to be transformed into its identifier id, the peer and tie declarations Peer ,
the field declarations Field and the method definitions Method.

Each ScalaLoci peer definition is translated to Choral role argument and each single tie
between two peers is translated to a DiChannel between two peers @(A,B).

The translation of fields and methods from ScalaLoci to Choral is straightforward. The
algorithm returns a Choral class with the same name and the translated definitions as body.

ScalaLoci multitier expressions to Choral choreography expressions. Algorithm 4 describes
the translation of ScalaLoci expressions to Choral expressions. The algorithm matches on the
different cases of ScalaLoci Expr terms and transforms each of them into the corresponding
ScalaLoci code.

ECOOP 2021

22:18 Multiparty Languages: The Choreographic and Multitier Cases

Algorithm 4 Translation algorithm from ScalaLoci expressions to Choral expressions.

function loci2choral(expr)
return match expr with

case "on[A]{·e0; e1·}" with
e′

0 ← loci2choral("on[A]{·e0·}")
e′

1 ← loci2choral("on[A]{·e1·}")
"e′

0; e′
1"

case "on[A]{·id·}" with "id"
case "on[A]{·lit·}" with

"lit@A"
case "on[A]{ new id(e) }" with

e′ ← loci2choral("on[A]{·e·}")
"new·id@A(e′)"

case "on[A]{·e0.id(e)·}" with
e′

0 ← loci2choral("on[A]{·e0·}")
e′ ← loci2choral("on[A]{·e·}")
"e′

0.id(e′)"
case "on[A]·{·if·(e0)·{·e1·}·else·{·e2·}·}" with

e′
0 ← loci2choral("on[A]{·e0·}")

e′
1 ← loci2choral("on[A]{·e1·}")

e′
2 ← loci2choral("on[A]{·e2·}")

peers ← peersIn(e′
1) ∪ peersIn(e′

2)
channels ← { "ch_A_B" | B ∈ peers ∧A has tie to B }
thenSelects ← { "c.select(Choice@A.THEN)" | c ∈ channels }
elseSelects ← { "c.select(Choice@A.ELSE)" | c ∈ channels }
"if·(·e′

0·)·{·thenSelects;·e′
1·}·else·{·elseSelects; e′

2·}"
case "on[A]{ on[B].run.capture(captures)·{·e·}.asLocal }" with

e′ ← loci2choral("on[B]{e}")
"ch_B_A.com(e′)"

end
end

The translations for sequencing, identifiers, literals, instantiation and method invocation
is straightforward, recursively transforming each subexpression.

In the case for branching, the translation needs to synthesise select expressions to
implement knowledge of choice (recall Section 3.2). Hence, we collect all peers used in the
branches and create select statements for all channels between those peers for both branches.

Finally, we translate ScalaLoci’s nested remote blocks. For a remote expression placed
on A that executes e on B, we generate a Choral channel communication that transfers the
value of e from B to A.

6 A Unified Perspective

Although choreographic and multitier programming evolved in dissimilar ways, their cores
– represented by our two Mini languages – are close enough to let us define in Section 5
straightforward translation algorithms in both directions and show the core features of both
approaches isomorphic.

Besides the more abstract purpose to present evidence of the closeness of the two
approaches, our translation algorithms are also directly useful in practice. Translating
Choral to ScalaLoci code enables the reuse of ScalaLoci’s middleware for Choral. In general,
translating to multitier programs is interesting because we can leverage the possibility of
compiling to different technologies.

S. Giallorenzo et al. 22:19

Table 1 Overview of the feature comparison of choreographic and multitier programming.

Feature Choral ScalaLoci

Distributed Data Structures (Section 6.1.1) ✓ ×
Dynamic Topologies (Section 6.1.2) × ✓
Higher-Order Composition (Section 6.1.3) ✓ ×
Races (Section 6.1.4) − ✓
Fault tolerance (Section 6.1.5) ✓ ✓
Asynchrony (Section 6.1.6) ✓ ✓

Translating ScalaLoci to Choral code enables synthesising the choreography of the
multitier program. Making the protocol manifest supports both manually checking what
communications take place as well as automatic analyses (e.g., security).

We believe that both the multitier and choreographic research areas can greatly benefit
from cross-fertilisation and transfer of concepts already developed in one but lacking in the
other. As a glimpse of this fact, we dedicate Section 6.1 to describe some advanced features
present in only one of the two languages (Choral, ScalaLoci) and outline how they could be
integrated into the other in the future. We conclude this section by widening our scope on
the category of multiparty language in Section 6.2. We give an (incomplete) overview on
other languages that are neither multitier nor choreographic but share common traits that
can classify them as multiparty ones. We consider those languages valuable additions to the
multiparty category and subject of future research akin to this work.

6.1 Feature Comparison
We now discuss a few features that are important for concurrent and distributed programming.
Our discussion is summarised in Table 1, which shows which features are present in Choral and
ScalaLoci, respectively (the − in the table means partial support, explained in the relevant
paragraph where we discuss the feature). The first four features have evolved separately and
give potential for cross-fertilisation, whereas the last two are important features that have
been dealt in both worlds (yet separately).

6.1.1 Distributed Data Structures
The @(R1, ..., Rn) type notation supported in Choral specifies the distribution of classes
and objects over roles. This is true also without taking into account communication. As an
example, let us consider the BiPair class below, which implements an incarnation of a Pair

class where the two values (referred to as left and right) of the pair belong to different roles:
1 class BiPair@(A,B)<L@X, R@Y> {
2 private L@A left;
3 private R@B right;
4 public BiPair(L@A left, R@B right) { this.left = left; this.right = right; }
5 public L@A left() { return this.left; }
6 public R@A right() { return this.right; }
7 }

As its Java counterpart, also BiPair is parametric with respect to its contents: we use
parameters L and R to capture the type of the left and right components of the pair. Then,
by specifying that L is owned by one role X and R is owned by another role Y, we indicate that

ECOOP 2021

22:20 Multiparty Languages: The Choreographic and Multitier Cases

the two values in the pair must be at different roles (and they can capture different data
types, e.g., String and Integer). Indeed, adopting the same interpretation of Java generics,
Choral interprets role parameter binders so that the first appearance of a parameter is a
binder, while subsequent appearances of the same parameter are bound – hence, given that
the declaration of type parameters <...> limits the scope of the of role parameters X and Y,
we are indicating that they cannot coincide. For completeness, we include in the definition
of the BiPair class its fields (left and right, respectively located at A and B), a constructor,
and the traditional accessors.

Besides showing the basic feature of inherent distribution supported by the Choral
type system, the example of BiPair is useful to illustrate that, also without considering
communications, Choral offers support in defining programs where the data at some role
needs to correlate with data at another, e.g., as in the case of distributed authentication
tokens.

Similar to Choral, in ScalaLoci, we use parameters L and R to capture the type of the left
and right components of the pair. Corresponding to Choral’s roles definition, we define an A

and a B peer type. We then specify that L is placed on a peer A and R is placed on a peer B:
1 @multitier trait BiPair[L, R] {
2 @peer type A
3 @peer type B
4

5 val left: L on A
6 val right: R on B
7 }

While we can define distributed data structures similar to Choral, their usability is
more limited: they need to be composed at compile-time, because of ScalaLoci’s lack of
higher-order composition (see Section 6.1.3).

6.1.2 Dynamic Topologies and Homogenous Behaviours
A feature of ScalaLoci that is not covered in its Mini variant is the possibility for peer types
to abstract over multiple peer instances of the same type, e.g., a master-worker architecture
where a single master can connect to an arbitrary number of homogeneous (i.e., with the
same behaviour) worker nodes. Such a feature also enables dynamic topologies where peers
can join and leave the system at runtime. A variable number of peer instances is expressed in
ScalaLoci’s peer specification by not using a Single tie but a Multiple or an Optional tie, i.e.,
an arbitrary number or at most one remote peer of a given type can connect, respectively.

Listing 8 shows the definitions for different topologies with their iconification on the
right. The P2P module defines a Peer that can connect to arbitrary many other peers. The
P2PRegistry module adds a central registry, to which peers can connect. The MultiClient-

Server module defines a client that is always connected to a single server, while the server
can handle multiple clients simultaneously. The ClientServer module specifies a server that
always handles a single client instance. For the Ring module, we define a Prev and a Next

peer. A RingNode itself is both a predecessor and a successor. All Node peers have a single
tie to their predecessor and a single tie to their successor.

ScalaLoci allows to abstract over different peer instances of the same type and uniformly
receive values from multiple connected remote peers, asLocalFromAll returns a sequence that
contains the remote values from the different peers. Yet, a specific peer instance client

can be selected via on(client).run { ... }.asLocal (using the client value referencing a peer

S. Giallorenzo et al. 22:21

Listing 8 Distributed Architectures.
1 @multitier object P2P {
2 @peer type Peer <: { type Tie <: Multiple[Peer] }
3 }
4 @multitier object P2PRegistry {
5 @peer type Registry <: { type Tie <: Multiple[Peer] }
6 @peer type Peer <: { type Tie <: Optional[Registry] with Multiple[Peer] }
7 }
8 @multitier object MultiClientServer {
9 @peer type Server <: { type Tie <: Multiple[Client] }

10 @peer type Client <: { type Tie <: Single[Server] with Single[Node] }
11 }
12 @multitier object ClientServer {
13 @peer type Server <: { type Tie <: Single[Client] }
14 @peer type Client <: { type Tie <: Single[Server] with Single[Node] }
15 }
16 @multitier object Ring {
17 @peer type Node <: { type Tie <: Single[Prev] with Single[Next] }
18 @peer type Prev <: Node
19 @peer type Next <: Node
20 @peer type RingNode <: Prev with Next
21 }

instance) instead of on[Client].run { ... }.asLocal (using the Client peer type). The handlers
remote[Client].join foreach { ... } and remote[Client].leave foreach { ... } can be used to
react to dynamic changes in the topology of the running multitier system.

Denièlou and Yoshida [13] developed a theory for choreographies with homogeneous roles
and dynamic topologies by allowing choreographies to be parametrised (also) in collections of
roles. Plans for supporting for this feature in Choral are discussed in [16, §7]. In this extension,
prefixing a role parameter declaration with *, as in *Clients, specifies that this is a collection
of roles. Types are extended with products indexed over collections of role using a syntax
similar to Java for-each blocks. For instance, the type forall(Client: Clients) String@Client

represents a “tuple” with a String for each role in the collection Clients. We can write a
scatter-gather channel over a star topology (cf. MultiClientServer) as follows:

1 abstract class StarChannel@(Server, *Clients) {
2 forall (Client : Clients) { SymChannel@(Server,Client) } star;
3 forall (Client : Clients) { String@Client } scatter(String@Server m);
4 String@Server gather(forall (Client : Clients) { String@Client } ms);
5 }

Method gather of StarChannel is then translated to ScalaLoci’s primitive asLocalFromAll

and vice versa. A further extension discussed in [16, §7] is the introduction of existential quan-
tification over roles in role collections. For instance, with(Client: Clients) {String@(Client)}

represents a string at some role in the collection Clients. We can extend the example above
to support any-cast communication as follows:

1 abstract class StarChannel@(Server, *Clients) {
2 /* ... */
3 with (Client : Clients) { String@(Client) } any(String@Server m);
4 String@Server any(with (Client : Clients) { String@(Client) } m);
5 }

Method any of StarChannel is then translated to ScalaLoci’s on(c).run { ... } and
vice versa.

ECOOP 2021

22:22 Multiparty Languages: The Choreographic and Multitier Cases

6.1.3 Higher-Order and First-Class Multiparty Programs

We classify “higher-order” a multiparty language where multiparty components (objects,
functions) are values that can be passed as arguments.

Choral is higher-order because methods can accept choreographic objects with multiple
roles as parameters. In Choral, Channels are one of the most basic examples of the usage of
the higher-order feature. For example, we can pass a DiChannel as an argument:

1 class MyClass@(A, B){
2 void passValue(DiChannel@(A, B) ch) {
3 ch.com<Integer>(5@B);
4 }
5 }

In the example, the method passValue takes as input the choreographic object DiChannel

and, by invoking its com method, we execute the protocol needed to send the data (5@B)
between the two roles.

ScalaLoci does not support higher-order composition (no multitier objects as values or
dynamic multitier object storage) but at least supports statically-composed modules [39].
The following snippet shows the declaration of a ClientServer multitier module that is
parameterised over a Client and a Server peer. The module uses the monitoring functionality
provided by the Monitoring multitier module, which is parameterised over a Monitor and
a Monitored peer. The Monitoring module is instantiated by mon inside ClientServer. The
ClientServer module identifies the Client peer with the Monitored peer and the Server peer
with the Monitor peer and defines their ties accordingly:

1 @multitier trait Monitoring {
2 @peer type Monitor { type Tie <: Single[Monitored] }
3 @peer type Monitored { type Tie <: Single[Monitor] }
4 }
5

6 @multitier object ClientServer {
7 @multitier object mon extends Monitoring
8

9 @peer type Client <: mon.Monitored { type Tie <: Single[mon.Monitor] with Single[Server] }
10 @peer type Server <: mon.Monitor { type Tie <: Single[mon.Monitored] with Single[Client] }
11 }

Porting higher-order composition from choreographic to multitier languages is an interest-
ing challenge, because the way higher-order values are achieved in the former relies heavily
on the objective view of choreographies. Whenever a value is returned in a multitier program,
the subjective view of multitier languages requires that the value is located at a single place.
It is thus unclear how a higher-order extension of multitier programming should be pursued.

To exemplify the challenge, consider that to return a data structure containing data from
two distinct peers A and B, one of the two peers must act as coordinator and collect data
from the other, e.g., by nesting on[A]{ ... on[B]{ ... }.asLocal }. But this would return
a data structure completely located at A, so it does not solve the problem. Alternatively,
we could add a multitier operator par for running code at different places simultaneously,
e.g., on[A]{ ... } par on[B]{ ... }. The result of this expression could be a multitier pair
containing data at A and B respectively. However, the only way to use this data structure
would be to invoke asLocal on the two elements of the pair from within an on[C] block for
some peer C, which would again centralise control.

S. Giallorenzo et al. 22:23

6.1.4 Races
In this context, by “races” we mean well-behaved and non-deterministic first-come/first-served
patterns where two or more roles “race” to communicate with a target role first (and the
loser is handled correctly). We distinguish two prototypical scenarios: races among producers
and races among consumers.

To program a race among multiple producers in ScalaLoci, we can simply retrieve the
values from all remote producers via asLocalFromAll and pick the first one that becomes
available via Future.firstCompletedOf as shown in the example below:

1 Future.firstCompletedOf(
2 on[Producer].run { generateValue() }.asLocalFromAll map {
3 case (producerPeerInstance, value) => value map { (producerPeerInstance, _) }
4 })

It is not possible to program a race among multiple consumers in ScalaLoci. In general,
consumer races represent unexplored territory for the multitier paradigm.

In Choral, it is possible to implement protocols with races among producers and among
consumers provided their number is statically fixed. For instance, below is the type for a
choreography where two producers race to send a message to a consumer:

1 interface ProducerRace@(Producer1, Producer2, Consumer) {
2 Message@Consumer run(Message@Producer1 m1, Message@Producer2 m2);
3 }

The constraint that the number of roles must be statically fixed is related to the inability of
Choral to capture dynamic topologies and, as discussed above, is solved by adding collections
of roles to the language. In the case of consumer races, another limitation is that the Choral
type system is not powerful enough express (and enforce) their presence. Consider a situation
where two consumers race to receive a message from a single producer. In Choral, this
protocol can implement the following interface:

1 interface ConsumerRace@(Producer, Consumer1, Consumer2) {
2 BiPair@(Consumer1,Consumer2)<Optional<Message>,Optional<Message>> run(Message@Producer m);
3 }

However, the return type of run does not guarantee that exactly one consumer receives
the message: implementations that deliver the message to both or neither respect the type.
As discussed in [16, §7], we can write a precise type if we extend Choral with existential
quantification over roles (recall the syntax for existentials at the end of Section 6.1.2) as
shown in the example below:

1 interface ConsumerRace@(Producer, Consumer1, Consumer2) {
2 with(C : [Consumer1, Consumer2]) { Message@C } run(Message@Producer m);
3 }

6.1.5 Fault Tolerance
In ScalaLoci, remote values whose computation or transmission to the local peer instance fail
result in a future that is completed with a failure value. Thus, user code can detect a failed
remote access and decide how to react appropriately by using library APIs. For example,
failed futures can be handled using the typical operators on futures like recover:
on[Client].run { generateValue() }.asLocal recover { case _ => generateOtherValue() }

Similarly, Choral does not commit to specific failure handling mechanisms at the language
level: programmers can implement their own strategies, e.g., returning errors. An API for

ECOOP 2021

22:24 Multiparty Languages: The Choreographic and Multitier Cases

channels that is equivalent to the recover library method above could look as follows (from
the point of view of the caller):

chAB.comOrRecover(generateValue(), new OtherValueGenerator@B());

where OtherValueGenerator has a run method equivalent to generateOtherValue(). Similar
observations hold for timeouts.

ScalaLoci offers some APIs to trigger code when communications with peers in network
with dynamic topologies timeout. If dynamic topologies are introduced to Choral, these APIs
will become relevant for choreographies as well. We conjecture that they can be imported in
a similar way to the one sketched above for recovery.

6.1.6 Asynchrony

For the sake of exposition, we presented multiparty programs using communication APIs
as if they were blocking and designed the Mini variants of both Choral and ScalaLoci
as synchronous. ScalaLoci promotes an asynchronous approach: the preferred variant of
accessing remote values via asLocal in ScalaLoci creates a future to account for network delay
and potential communication failure. On the other hand, Choral is agnostic with regards to
communication models: programmers can import libraries of channels or implement their
own. For instance, a communication model similar to ScalaLoci’s asLocal is offered by the
following interface:

1 interface AsyncDiChannel@(Sender, Receiver)<T@X> {
2 <S@Y extends T@Y> Future@Receiver<S> com(Promise@Sender<S> v);
3 }

6.2 Other Multiparty Languages

For the future we envision further cross-fertilisation between multiparty languages, and that
the class of multiparty languages might get larger. We mention a few approaches outside of
choreographic and multitier programming that might contribute to this.

Software architectures [14, 33] are about organising software systems into well-studied
patterns that comprise components and their connections organised in a certain configura-
tion. Architecture description languages (ADL) [26] specify software architectures and the
constraints among the architecture components. Different from choreographic and multitier
programming, ADLs usually specification languages separate from the implementation. An
exception is ArchJava [1] which support specifying a software architecture and enforcing
its constraints together with the implementation. Regarding cross-fertilisation, ADLs come
equipped with powerful analysis, code synthesis, and runtime-support tools as well as model
checkers, which can be also used in multitier and choreographic scenarios to enforce different
aspects of correctness.

Partitioned global address space languages (PGAS) [12] are often used in the domain
of high-performance computing. The main abstraction is a global memory address space
where logical partitions are assigned to processes to maximize data locality. X10 [7] features
explicit fork/join operations and provides a sophisticated dependent type system [6] to model
the place (the heap partition) a reference points to. PGAS languages, similar to multitier
and choreographic languages reduce the boundaries between hosts in a distributed system.

S. Giallorenzo et al. 22:25

7 Conclusion

Choreographic and multitier languages have developed independently, leading to a number
of research achievement carried out within two vibrant but separate research communities [2,
28, 40]. In this paper, we discussed the fundamental nature of the programming paradigms
based on these languages, isolating the core difference between them. We then showed that,
under the cover of syntactic variance, the two approaches are similar enough to be related
and to reason about potential cross-fertilisation. Our observations offer a platform for future
joint work between the respective communities.

References
1 Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software

architecture to implementation. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 187–197, New York, NY, USA, 2002. ACM. doi:
10.1145/581339.581365.

2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in
programming languages. Foundations and Trends in Programming Languages, 3(2-3):95–230,
2016.

3 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.
doi:10.1145/2220365.2220367.

4 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 263–274. ACM, 2013. doi:10.1145/2429069.2429101.

5 Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor, Foundations
of Software Science and Computation Structure, First International Conference, FoSSaCS’98,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer, 1998. doi:10.1007/BFb0053547.

6 Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. Type inference for locality
analysis of distributed data structures. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’08, pages 11–22, New York, NY,
USA, 2008. ACM. doi:10.1145/1345206.1345211.

7 Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
519–538, New York, NY, USA, 2005. ACM. doi:10.1145/1094811.1094852.

8 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, editors, Formal Methods for Components and Objects, 5th International Symposium,
FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006, Revised Lectures, volume
4709 of Lecture Notes in Computer Science, pages 266–296. Springer, 2006. doi:10.1007/
978-3-540-74792-5_12.

9 Ezra E. K. Cooper and Philip Wadler. The RPC calculus. In Proceedings of the 11th ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP ’09,
pages 231–242, New York, NY, USA, 2009. ACM. doi:10.1145/1599410.1599439.

ECOOP 2021

https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/BFb0053547
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1145/1599410.1599439

22:26 Multiparty Languages: The Choreographic and Multitier Cases

10 Luís Cruz-Filipe and Fabrizio Montesi. Choreographies in practice. In Elvira Albert and Ivan
Lanese, editors, Formal Techniques for Distributed Objects, Components, and Systems - 36th
IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,
Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture Notes in Computer Science, pages
114–123. Springer, 2016. doi:10.1007/978-3-319-39570-8_8.

11 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies: Theory and implementation. Logical Methods in Computer Science,
13(2), 2017. doi:10.23638/LMCS-13(2:1)2017.

12 Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter.
Partitioned global address space languages. ACM Computing Surveys, 47(4), May 2015.
doi:10.1145/2716320.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 435–446. ACM, 2011. doi:10.1145/1926385.1926435.

14 David Garlan and Mary Shaw. An introduction to software architecture. Technical report,
Carnegie Mellon University, Pittsburgh, PA, USA, 1994. Accessed 2020-05-05. URL: http:
//www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf.

15 Saverio Giallorenzo, Ivan Lanese, and Daniel Russo. Chip: A choreographic integration
process. In On the Move to Meaningful Internet Systems. OTM 2018 Conferences - Confederated
International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26,
2018, Proceedings, Part II, pages 22–40. Springer, 2018. doi:10.1007/978-3-030-02671-4_2.

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects. CoRR,
abs/2005.09520, 2020. arXiv:2005.09520.

17 Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular Actor formalism for
artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, IJCAI ’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc. Accessed 2020-05-05. URL: http://ijcai.org/Proceedings/73/Papers/
027B.pdf.

18 Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
Scribbling interactions with a formal foundation. In Raja Natarajan and Adegboyega K.
Ojo, editors, Distributed Computing and Internet Technology - 7th International Conference,
ICDCIT 2011, Bhubaneshwar, India, February 9-12, 2011. Proceedings, volume 6536 of Lecture
Notes in Computer Science, pages 55–75. Springer, 2011. doi:10.1007/978-3-642-19056-8_4.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008. doi:10.1145/2827695.

20 Intl. Telecommunication Union. Recommendation Z.120: Message Sequence Chart, 1996.
21 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. TaxDC:

A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In Proc.
of ASPLOS, pages 517–530, 2016.

22 Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis Nielson. Discretionary information
flow control for interaction-oriented specifications. In Logic, Rewriting, and Concurrency,
volume 9200 of Lecture Notes in Computer Science, pages 427–450. Springer, 2015.

23 Hugo A. López and Kai Heussen. Choreographing cyber-physical distributed control systems
for the energy sector. In SAC, pages 437–443. ACM, 2017.

24 Hugo A. López, Flemming Nielson, and Hanne Riis Nielson. Enforcing availability in failure-
aware communicating systems. In FORTE, volume 9688 of Lecture Notes in Computer Science,
pages 195–211. Springer, 2016.

25 Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In Proc. of ASPLOS, pages
329–339, 2008.

https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1145/2716320
https://doi.org/10.1145/1926385.1926435
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
https://doi.org/10.1007/978-3-030-02671-4_2
http://arxiv.org/abs/2005.09520
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1145/2827695

S. Giallorenzo et al. 22:27

26 Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000. doi:10.1109/32.825767.

27 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

28 Fabrizio Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen,
2013. http://www.fabriziomontesi.com/files/choreographic_programming.pdf.

29 Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal
lambda calculus for distributed computing. In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 286–295. IEEE
Computer Society, 2004. doi:10.1109/LICS.2004.1319623.

30 Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

31 Object Management Group. Business Process Model and Notation.
http://www.omg.org/spec/BPMN/2.0/, 2011.

32 Peter W. O’Hearn. Experience developing and deploying concurrency analysis at facebook. In
Andreas Podelski, editor, Static Analysis - 25th International Symposium, SAS 2018, Freiburg,
Germany, August 29-31, 2018, Proceedings, volume 11002 of Lecture Notes in Computer
Science, pages 56–70. Springer, 2018. doi:10.1007/978-3-319-99725-4_5.

33 Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992. doi:10.1145/141874.
141884.

34 Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. Eliom: A core ML language for tierless
web programming. In Atsushi Igarashi, editor, Proceedings of the 14th Asian Symposium on
Programming Languages and Systems, APLAS ’16, pages 377–397, Berlin, Heidelberg, 2016.
Springer-Verlag. doi:10.1007/978-3-319-47958-3_20.

35 Bob Reynders, Frank Piessens, and Dominique Devriese. Gavial: Programming the web with
multi-tier FRP. The Art, Science, and Engineering of Programming, 4(3):6:1–6:32, 2020.
doi:10.22152/programming-journal.org/2020/4/6.

36 Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language for programming the
web 2.0. In Peri L. Tarr and William R. Cook, editors, Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, pages 975–985. ACM, 2006.
doi:10.1145/1176617.1176756.

37 W3C. WS Choreography Description Language. http://www.w3.org/TR/ws-cdl-10/, 2004.
38 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development

with ScalaLoci. Proceedings of the ACM on Programming Languages, 2(OOPSLA):129:1–129:30,
2018. doi:10.1145/3276499.

39 Pascal Weisenburger and Guido Salvaneschi. Multitier modules. In Alastair F. Donaldson,
editor, Proceedings of the 33rd European Conference on Object-Oriented Programming (ECOOP
’19), volume 134 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–
3:29, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ECOOP.2019.3.

40 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. A survey of multitier program-
ming. ACM Computing Surveys, 53(4), 2020. doi:10.1145/3397495.

ECOOP 2021

https://doi.org/10.1109/32.825767
https://doi.org/10.1007/3-540-10235-3
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1109/LICS.2004.1319623
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1007/978-3-319-99725-4_5
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.1145/1176617.1176756
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.1145/3397495

	p000-Frontmatter
	Message from the Chairs
	Message from the Artifact Evaluation Chairs
	Foreword by the President of AITO
	Organization
	External Reviewers

	p001-VanAntwerpen
	1 Introduction
	2 Motivation and Scope
	3 Type Checking with Scope Graphs
	3.1 Scope Graphs
	3.2 Critical Edges for Safe Name Resolution
	3.3 Scope States

	4 Hierarchical Compilation Units
	4.1 The Compilation Unit Model
	4.2 Safe Name Resolution with Sharing
	4.3 Name Resolution API

	5 Parallel Actor-based Algorithm
	5.1 Compilation Unit Actors
	5.2 Maintaining Scope Graph and Scope States
	5.3 Resolving Queries
	5.4 Handling Deadlock

	6 Evaluation
	6.1 Benchmark
	6.2 Supporting Local Inference

	7 Related Work
	7.1 Parallel Compilers
	7.2 Parallel Build Systems
	7.3 Parallel Programming Models
	7.4 Scope Graphs

	8 Conclusion

	p002-Schubert
	1 Introduction
	2 Motivating Example and Intuition
	3 Framework Architecture
	3.1 Idea of the Algorithm
	3.2 Summary Generation
	3.2.1 Type Hierarchies
	3.2.2 Intra-Procedural Points-To Information
	3.2.3 Callgraphs and Inter-Procedural Points-To Information
	3.2.4 Background on IFDS/IDE
	3.2.5 Data-Flow Information

	3.3 Merging Analysis Summaries
	3.3.1 Type Hierarchies
	3.3.2 Callgraphs and Points-To Information
	3.3.3 Fixed-Point Iteration for Callgraph and Points-To Graph
	3.3.4 Data-Flow Information
	3.3.5 Analyzing the Main Application

	3.4 Removing Dependencies Ahead of Time

	4 Implementation
	5 Experiments
	5.1 Experimental Setup
	5.2 RQ1: Precision
	5.3 RQ2: Performance
	5.4 RQ3: Shortcuts

	6 Limitations of the Approach
	7 Related Work
	8 Conclusion

	p003-Estep
	1 Introduction
	2 Gradual Null-Pointer Analysis in Action
	2.1 Null-Pointer Analysis in a Nutshell
	2.2 Avoiding False Positives
	2.3 Avoiding False Negatives

	3 PICL: A Procedural Imperative Core Language
	3.1 Syntax & Static Semantics
	3.2 Control Flow Graph Representation
	3.3 Dynamic Semantics

	4 A Static Null-Pointer Analysis for PICL
	4.1 Semilattice of Abstract Values
	4.2 Flow Function
	4.2.1 Properties

	4.3 Fixpoint Algorithm
	4.4 Safety Function & Static Warnings
	4.4.1 Static Warnings

	4.5 Soundness of NPA

	5 Gradual Null-Pointer Analysis
	5.1 Lifting the Semilattice
	5.1.1 Giving Meaning to Missing Annotations
	5.1.2 Lifted Join
	5.1.3 Lifted Order
	5.1.4 Properties

	5.2 Lifting the Flow & Safety Functions
	5.3 Lifting the Fixpoint Algorithm
	5.4 Static Warnings
	5.5 Dynamic Checking
	5.6 Gradual Properties

	6 Preliminary Empirical Evaluation
	6.1 Research Questions
	6.2 Prototype
	6.3 Static Warnings
	6.3.1 Generated Code
	6.3.2 Test Code
	6.3.3 Remaining False Positives

	6.4 Run-time Checks

	7 Related Work
	8 Conclusion

	p004-Bessai
	1 Introduction
	2 Design Pattern
	3 Case Studies
	4 Related Work
	5 Conclusion and Future Work

	p005-Buyse
	1 Introduction
	2 Related works
	2.1 Core safety concepts
	2.2 Safety formalisms
	2.3 Domain-specific languages

	3 Generic modeling needs and running example
	4 The Alpacas domain-specific language
	4.1 Lifting types, declaring components, state and flow variables
	4.2 Declaring flow assertions
	4.3 Declaring transitions and synchronizations
	4.4 Specifying failure conditions
	4.5 Parameters, type parameters, higher-order parameters
	4.6 Abstract syntax for expressions
	4.7 Syntax extensions

	5 Stochastic guarded transition systems
	5.1 Definitions
	5.2 Stochastic timed trace semantics
	5.3 Event synchronizations
	5.4 Instability, Zeno phenomena and other issues

	6 Alpacas algorithms
	6.1 Translating a hierarchical model to a flat stochastic guarded transition system
	6.2 Transition firing and state updates
	6.3 Qualitative indicators
	6.4 Quantitative indicators

	7 Design-space exploration for an eVTOL thrust reallocation function
	8 Conclusion and Future Work

	p006-Maj
	1 Introduction
	2 Related Work
	3 An Infrastructure for Querying Large-Scale Repositories
	3.1 Design considerations and system architecture
	3.2 The Parasite datastore
	3.2.1 Acquisition
	3.2.2 Storage
	3.2.3 Interfaces

	3.3 The Djanco database
	3.3.1 Instances
	3.3.2 Queries
	3.3.3 Data management
	3.3.4 Availability
	3.3.5 Reproducibility

	4 A Case Study: Of Bugs and Languages
	4.1 Corpus
	4.2 Random input selection
	4.3 Observing change over time
	4.4 Introducing domain knowledge

	5 Conclusions
	A Analysis with GitHub toolkits
	B Domain queries

	p007-Arteca
	1 Introduction
	2 Review of promises and async/await
	3 Motivating Example
	4 Approach
	4.1 Access paths
	4.2 MOD and REF
	4.3 Determining whether statements are independent
	4.4 Environmental side effects
	4.5 Computing MOD and REF sets
	4.6 Determining whether statements can be exchanged
	4.7 Identifying reordering opportunities
	4.8 Program transformation
	4.9 Implementation
	4.10 Soundness of the Analysis

	5 Evaluation
	5.1 Experimental Methodology
	5.2 RQ1 (Applicability)
	5.3 RQ2 (Soundness)
	5.4 RQ3 (Performance Impact)
	5.5 RQ4 (Analysis Time)
	5.6 Threats to Validity

	6 Related Work
	7 Future Work
	8 Conclusions

	p008-Hao
	1 Introduction
	1.1 The Need for Privacy-Preserving Analysis
	1.2 Local Differential Privacy
	1.3 Challenges and Contributions

	2 Background and Problem Statement
	2.1 Software Traces
	2.1.1 Exemplar 1: Call Chains
	2.1.2 Exemplar 2: Enter/Exit Traces

	2.2 Trace Coverage Analysis for Deployed Software
	2.3 Differential Privacy
	2.4 Assumptions

	3 Randomized Count Sketch for Software Traces
	3.1 Count Sketch
	3.2 Sketch Randomization
	3.3 Efficient Randomization
	3.4 Server-Side Processing
	3.5 Selecting Sketch Size

	4 Identification of Hot Traces
	5 Evaluation
	5.1 Accuracy for All Covered Traces
	5.2 Precision and Recall for Hot Traces
	5.3 Accuracy of Estimates for Reported Hot Traces
	5.4 Privacy Loss Parameter
	5.5 Summary of Results

	6 Related Work
	7 Conclusions and Future Work

	p009-Brady
	1 Introduction
	1.1 Contributions

	2 An Overview of Idris
	2.1 Functions and Data Types
	2.2 Interactive Programs
	2.3 First-Class Types
	2.3.1 Computing Types
	2.3.2 Dependent Data Types

	2.4 Idris 2

	3 Quantities in Types
	3.1 Syntax
	3.2 Erasure
	3.2.1 Example 1: Vector length
	3.2.2 Example 2: Run-length Encoding of Lists

	3.3 Linearity
	3.3.1 Example 1: Preventing Duplication
	3.3.2 Example 2: I/O in Idris 2

	4 Linear Resource Usage Protocols
	4.1 Initialising Linear Values
	4.2 Linear Interactive Programs
	4.3 Example: An ATM State Machine

	5 Session Types via QTT
	6 Related Work
	7 Conclusions and Further Work

	p010-Harvey
	1 Introduction
	2 Multiparty Session Types
	3 EnsembleS: An Actor Language for Runtime Adaptation
	3.1 EnsembleS: basic language features
	3.2 Session types in EnsembleS
	3.3 Channel connections: static and dynamic
	3.4 Adaptation via discovery and replacement
	3.5 Implementation

	4 Case study: DNS
	5 A Core Calculus for EnsembleS
	5.1 Syntax
	5.2 Typing rules
	5.2.1 Term typing

	5.3 Operational semantics
	5.3.1 Runtime syntax
	5.3.2 Reduction rules

	5.4 Metatheory
	5.4.1 Runtime typing
	5.4.2 Preservation
	5.4.3 Progress

	6 Related Work
	7 Conclusion and Future Work

	p011-Gu
	1 Introduction
	2 Background
	2.1 Temporal Correlation Analysis in Social Science
	2.2 Modeling Ties Using Graphs
	2.3 Measuring Propagation

	3 Study Methodologies
	3.1 Software Tie Graphs
	3.1.1 Function Call Graph
	3.1.2 Type Hierarchy Graph
	3.1.3 Co-Change Graph

	3.2 Measuring Temporal Bug Correlations

	4 Experimental Setup
	4.1 Research Questions
	4.2 Subjects and Data Collection
	4.3 Implementation Details
	4.4 Comparison

	5 Results
	5.1 Bug Correlation on Known Software Ties (RQ1)
	5.2 Bug Correlation on Hybrid Tie (RQ2)
	5.2.1 Synthesizing Hybrid Correlation Graphs
	5.2.2 LRC on The Hybrid Graph

	5.3 Casual Mechanisms behind the Temporal Bug Correlation (RQ3)

	6 Discussion
	6.1 Application of Findings
	6.2 Threats to Validity

	7 Related Work
	7.1 Bug Distribution and Dependence
	7.2 Software Graphs

	8 Conclusion

	p012-Ye
	1 Introduction
	2 Overview
	2.1 Background: Gradual Typing and the lambda B calculus
	2.2 Motivation for a Direct Semantics for Gradual Typing
	2.3 lambda B^{g}: A Gradually Typed Lambda Calculus
	2.4 Designing a TDOS for lambda B^{g}
	2.5 lambda B^{r}: Gradual Typing with a Blame Recovery Semantics

	3 The lambda B^{g} Calculus: Syntax, Typing and Semantics
	3.1 Syntax
	3.2 Typing
	3.3 Dynamic Semantics
	3.4 Soundness to lambda B

	4 The lambda B^{r} Calculus and the Blame Recovery Semantics
	4.1 Syntax
	4.2 Typing
	4.3 Dynamic Semantics
	4.4 Gradual Guarantee

	5 Related Work
	6 Conclusion

	p013-Rau
	1 Introduction
	2 Language Formalisms
	2.1 Syntax
	2.2 Type System
	2.3 Operational Semantics

	3 Theoretical Guarantees
	3.1 Soundness
	3.2 Additional Properties

	4 Implementation
	4.1 Language Extensions
	4.2 The Type Checking Algorithm

	5 Evaluation
	5.1 Type Checker Performance
	5.2 Case Study

	6 Related Work
	6.1 Program Analysis
	6.2 Semantics for Concurrent Programs

	7 Conclusion & Future Work

	p014-Dimovski
	1 Introduction
	2 Motivating Example
	3 A Language for Dynamic Program Families
	4 Decision Trees Lifted Domain
	4.1 Basic elements
	4.2 Extended transfer functions
	4.3 Widening
	4.4 Soundness

	5 Evaluation
	6 Related Work
	7 Conclusion

	p015-Zhang
	1 Introduction
	2 Overview
	3 Dependencies between Operations
	4 Best-Effort Lazy Evaluation (BELE)
	4.1 Minimum interference runtime watching (MIN-Watch)
	4.1.1 Overview of MIN-Watch
	4.1.2 Watch protocol
	4.1.3 Watching relatives
	4.1.4 Unwatching objects via deferred flag resetting

	4.2 Lazy value propagation
	4.3 Overhead control
	4.4 Additional complexities

	5 Intermediate Representation
	6 Optimizers
	6.1 Reducing temporary variables in NumPy
	6.2 Adaptive caching for PySpark
	6.3 From NumPy to WeldNumpy
	6.4 From Pandas to Spark

	7 API Redirection
	8 Efforts in Applying Cunctator
	9 Evaluation
	9.1 Optimizers
	9.1.1 NumPy
	9.1.2 Spark
	9.1.3 Pandas

	9.2 Overheads
	9.3 Threats to Validity

	10 Related Work
	11 Conclusion

	p016-He
	1 Introduction
	2 Motivation
	2.1 Background
	2.2 Challenges
	2.3 Example
	2.4 Our Approach
	2.4.1 Object Containment
	2.4.2 Object Reachability

	3 Preliminaries
	3.1 A Simplified Object-Oriented Language
	3.2 Selective Object-Sensitive Pointer Analysis

	4 Turner: Our Approach
	4.1 Object Containment
	4.2 Object Reachability
	4.2.1 Standard CFL-Reachability-based Pointer Analysis
	4.2.2 Turner's Context-Sensitivity-Deciding Reachability Analysis

	4.3 Time Complexity

	5 Evaluation
	5.1 RQ1: Precision
	5.2 RQ2: Efficiency
	5.3 RQ3: Effectiveness

	6 Related Work
	7 Conclusion

	p017-Kamina
	1 Introduction
	2 Technical Premises
	2.1 Signals
	2.2 Persistent signals
	2.3 Time-series databases

	3 Challenges
	4 Signal Classes
	4.1 Time-oriented queries on signal class instances
	4.2 Lifecycle of a signal class instance
	4.3 Synchronized update
	4.4 Switching network of persistent signals
	4.5 Threat to Validity

	5 Formalization
	5.1 Small-step semantics
	5.2 Static semantics
	5.3 Properties

	6 Implementation
	6.1 Compilation
	6.2 Naming and initialization
	6.3 Database implementation
	6.4 Performance Evaluation

	7 Related Work
	8 Concluding Remarks
	A Proofs
	A.1 Proof of Theorem 5.3
	A.2 Proof of Theorem 5.4

	p018-Tondwalkar
	1 Introduction
	2 Overview
	2.1 Implicit Function Types
	2.2 Implicit Pair Types
	2.3 State
	2.4 Access Control
	2.5 Token Stream
	2.6 Intrinsic Verification of Resource Usage

	3 Programs
	3.1 Syntax
	3.2 Static Semantics

	4 Logic
	5 Type Inference
	5.1 Constraining Unknown Refinements
	5.2 Constraining Implicit Application

	6 Solving
	6.1 A Theory-Agnostic Approximation to qe

	7 Evaluation
	7.1 Q1: Lightweight Verification
	7.2 Q2: Expressivity
	7.3 Q3: Flexibility

	8 Related Work

	p019-Bonifacio
	1 Introduction
	2 Background
	2.1 Cryptographic APIs
	2.2 Cryptographic standards
	2.3 CrySL: Assessing the Correct Usage of Cryptographic APIs

	3 Domain Analysis
	3.1 Study Settings
	3.2 Analysis Results

	4 Meta-CrySL
	4.1 Design and Implementation Procedures
	4.2 High-level Architecture
	4.3 Abstract CrySL Language
	4.4 Refinement Language
	4.5 Meta-CrySL Configurations

	5 Empirical Assessment of Meta-CrySL
	5.1 RQ4: How many lines of CrySL code can one save when writing Meta-CrySL specifications?
	5.2 RQ5: How much duplication of specifications is eliminated by using Meta-CrySL in comparison to CrySL?
	5.3 RQ6: What are the implications of instantiating CrySL rules from Meta-CrySL specifications, observing the number of API misuses CogniCryptsast analysis reports?

	6 Threats to Validity
	7 Related Work
	7.1 Domain Engineering
	7.2 Correct Usage of APIs
	7.3 API Evolution

	8 Conclusion

	p020-BartoloBurlo
	1 Introduction
	2 Process Calculus and Session Types
	2.1 Process Calculus
	2.2 Binary Session Types
	2.3 Session Typing System

	3 A Formal Model for Monitoring Sessions
	3.1 Monitor and Instrumentation Design
	3.2 A Monitor Calculus
	3.3 Composite Monitored System
	3.4 Monitor Synthesis

	4 Formal Analysis and Results
	4.1 Soundness of Session Type Monitoring
	4.2 On the Completeness of Session Type Monitoring
	4.2.1 Weak Monitor Synthesis Completeness
	4.2.2 Impossibility of Sound and Complete Session Monitoring

	5 Realisability and Implementation
	5.1 Introducing Assertions in Session Types Specifications
	5.2 Implementation

	6 Empirical Evaluation
	7 Conclusion
	7.1 Related Work
	7.2 Future Work

	p021-Servetto
	1 Introduction
	2 The FJ_{lambda}^{-} and FJ_{lambda} calculi
	3 Translation
	4 Programming with only lambdas
	5 Discussion and related work
	6 Conclusion

	p022-Giallorenzo
	1 Introduction
	2 Background: Choreographic and Multitier Programming Languages
	2.1 Choreographic Languages
	2.2 Multitier Languages
	2.3 Towards Linking Choreographic to Multitier Languages

	3 Overview of Choral and ScalaLoci
	3.1 A Context-Aware Email-Fetching Protocol
	3.2 A Choreographic Programming Implementation with Choral
	3.3 A Multitier Programming Implementation with ScalaLoci

	4 Mini Choreographic and Multitier Languages
	4.1 Mini Choral
	4.1.1 Example: Mini Choral Expressiveness

	4.2 Mini ScalaLoci
	4.2.1 Example: Mini ScalaLoci Expressiveness

	5 Choreographies to Multitier, Multitier to Choreographies
	5.1 From Choreographic Programming to Multitier Programming
	5.2 From Multitier Programming to Choreographic Programming

	6 A Unified Perspective
	6.1 Feature Comparison
	6.1.1 Distributed Data Structures
	6.1.2 Dynamic Topologies and Homogenous Behaviours
	6.1.3 Higher-Order and First-Class Multiparty Programs
	6.1.4 Races
	6.1.5 Fault Tolerance
	6.1.6 Asynchrony

	6.2 Other Multiparty Languages

	7 Conclusion

