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Abstract
Static analysis is used to automatically detect bugs and security breaches, and aids compiler
optimization. Whole-program analysis (WPA) can yield high precision, however causes long analysis
times and thus does not match common software-development workflows, making it often impractical
to use for large, real-world applications.

This paper thus presents the design and implementation of ModAlyzer, a novel static-analysis
approach that aims at accelerating whole-program analysis by making the analysis modular and
compositional. It shows how to compute lossless, persisted summaries for callgraph, points-to and
data-flow information, and it reports under which circumstances this function-level compositional
analysis outperforms WPA.

We implemented ModAlyzer as an extension to LLVM and PhASAR, and applied it to 12 real-
world C and C++ applications. At analysis time, ModAlyzer modularly and losslessly summarizes
the analysis effect of the library code those applications share, hence avoiding its repeated re-analysis.
The experimental results show that the reuse of these summaries can save, on average, 72% of
analysis time over WPA. Moreover, because it is lossless, the module-wise analysis fully retains
precision and recall. Surprisingly, as our results show, it sometimes even yields precision superior to
WPA. The initial summary generation, on average, takes about 3.67 times as long as WPA.
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1 Introduction

Static analysis plays an important role in modern software development. While intra-
procedural static data-flow analysis might only be useful in a limited number of use-cases,
inter-procedural analysis is a powerful building block for bug finding [4, 7, 34], compiler
optimization [6, 8] and software hardening [22,39,40,44,47].

Static analysis is known to be an undecidable problem [57], which challenges static-
analysis designers to define analyses that are both precise (yielding little to no approximate
information) and efficient. To obtain good precision, static program analyses need to be
inter-procedural, i.e., cross procedure boundaries, and also must be context sensitive [68].
Moreover, they must be based on precise points-to analyses [26].

© Philipp Dominik Schubert, Ben Hermann, and Eric Bodden;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 2; pp. 2:1–2:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp.schubert@upb.de
https://it-schubert.com/philipp/
https://orcid.org/0000-0002-8674-1859
mailto:ben.hermann@cs.tu-dortmund.de
https://www.thewhitespace.de/
https://orcid.org/0000-0001-9848-2017
mailto:eric.bodden@upb.de
https://www.bodden.de
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Lossless, Persisted Summarization for Static Analysis

Such inter-procedural analysis, however, especially if implemented as a whole-program
analysis (WPA), is notorious for causing problems with scalability in both runtime and
memory consumption. The memory consumption required for larger programs to keep the
complete program representation as well as all of the data structures required to perform the
analyses and optimizations in memory can easily grow to a large two-digit GB figure [13, 80].
Analysis times can amount to several hours, impeding development processes even in cases
where the analysis is deployed as nightly build [23,46,69].

There are application scenarios for which one can yield useful results with intra-procedural
analyses that are simple enough to scale. The clang-tidy tool [2] and Cppcheck [5] use
syntactic analyses that are able to analyze software comprising a million lines of code within
minutes. Many semantic program analyses, however, such as data-flow [42], typestate [74,75]
or shape analyses [82], for instance, require detailed program representations that incorporate
the effects of procedure calls, yet are virtually impossible to scale if computed for the
whole program at once. This precludes important application scenarios, for instance, IDE
integration or the automated scanning of frequently changing software. Facebook, for instance,
reports that its code base changes so frequently that it has become a real challenge to design
analysis tools such that they can report errors quickly enough so that they are still relevant
and actionable when reported [37].

In this work, we aim to scale static context-, flow-, and field-sensitive inter-procedural
program analysis using a compositional computation of analysis information. The effectivity
of this compositional program analysis depends on the number of reusable parts of an
application, e.g., program parts that constitute frameworks or libraries, or for parts that
simply do not change from one analysis run to the next. A recent study by Black Duck
(Synopsis) has shown that more than 96% percent of the applications they scan contain
open-source components and that those components now make up, on average, 57% of the
code [70]. As those dependencies are updated much less frequently than application code,
compositional analysis can potentially accelerate the analysis of applications by reusing
analysis results from previous runs.

Previous work on compositional program analysis has been restricted to certain types of
data-flow analysis only. Reviser [20], for instance, allows for the ahead-of-time computation
of reusable taint-analysis summaries for Java libraries. Reviser builds on concepts by Rountev
et al. [62], who showed how to obtain reusable libraries for general distributive data-flow
problems. Both those previous approaches, however, have two significant limitations: First,
they only apply to Java, making it unclear which concepts carry over to other languages,
particularly C/C++, which allow more liberal pointer accesses to the stack and heap. Second,
they only apply to data-flow analysis and leave out the composition of points-to and callgraph
information. Especially the latter is a serious practical limitation: when composing a library
summary with application code, these approaches again perform an expensive whole-program
points-to and callgraph analysis, which in itself can take several minutes if not hours to
complete. In result, these approaches incrementalize only the tip of the proverbial iceberg.
Addressing this limitation is complex as callgraph, points-to, and data-flow information are
inter-dependent. A core conceptual contribution of this paper is therefore also a mechanism
for analysis dependency management for a fully compositional analysis. This mechanism
automatically triggers updates whenever novel information becomes available that affects
existing information.

An important practical factor impacting the scalability of compositional analysis is the
mechanism to persist summaries. While the approach by Rountev et al. [62] computes
summaries, they are not persisted at all [58] but rather discarded at analysis shutdown, which
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completely defeats their purpose. Reviser [20] does persist summaries, but its summary
format is only applicable to taint analysis that uses a binary lattice ⊤

⊥. Finding an efficient
summary format that is able to persist general data-flow information is challenging due
to arbitrarily complex lattices used by more advanced analyses. However, efficient and
generalized persistence of summaries is key to effective compositional analysis.

This paper presents ModAlyzer, a novel approach to compositional analysis that in
contrast to earlier approaches performs an integrated compositional analysis for callgraph,
points-to and context-sensitive data-flow information in a module-wise fashion. ModAlyzer
allows the compositional pre-computation of all three pieces of information for individual
C/C++ modules, such as libraries and frameworks. Information precomputed this way is
then efficiently persisted, and later-on merged into larger analysis scopes. Merging analysis
information efficiently is an integral part of any compositional analysis approach as combining
analysis information computed on individual pieces of code is required to produce overall
analysis results.

As our experiments show, this frequently helps to achieve a more efficient analysis of
entire applications (compared to WPA) while retaining the same level of precision and recall
of a matching WPA.

Interestingly, as this paper shows, merge operations on different types of analysis informa-
tion can be modelled in a common way by defining merge operations on their respective graph
representations. ModAlyzer thus conducts its compositional computation of callgraph,
points-to, and data-flow information using those graph operations. While ModAlyzer com-
positionally computes all these kinds of information, it also manages the dependencies among
them, and updates dependent information as required. ModAlyzer creates summaries for
callgraph and points-to analysis, and for data-flow analyses expressed in the IFDS [55] and
IDE [63] frameworks. Those frameworks support data-flow analyses whose flow functions
distribute over the meet operator, which in turn allows for an efficient and – as we also
show empirically – lossless summarization. ModAlyzer does not lose any information and
also does not have to overapproximate missing information. Instead, it leaves gaps that will
be eventually filled-in during summary application resulting in the same information that
would have been obtained by a matching whole program analysis. Many useful data-flow
analyses, among others taint analysis as well as all Gen/Kill problems, can be encoded
in those distributive frameworks. ModAlyzer also allows for the computation of more
expressive analyses in the monotone framework [41]. While one generally cannot create
data-flow summaries for such analyses (an undecidable problem), these analyses nonetheless
can benefit from summaries for points-to and callgraph information. This still allows to
greatly accelerate analysis computations even for non-distributive analysis problems.

We have implemented ModAlyzer on top of PhASAR [64] and LLVM [45]. We show
the improvements of ModAlyzer’s compositional analysis over traditional whole-program
analysis by analyzing 12 real-world C/C++ applications of various sizes, reaching from
129,000 to 1,400,000 lines of code. For each application, we perform two client analyses
(uninitialized-variables analysis and taint analysis), once in whole-program mode and once
using library summaries pre-computed by ModAlyzer. We compare the resulting running
times and client reports to validate the equivalence in precision and recall, and to assess
analysis time. Our experiments show that ModAlyzer can decrease the analyses’ runtimes
between 28% and 91% while keeping the initial one-time runtime overhead for summarization
of library parts at 3.67 times as long as the cost of a whole-program analysis.

We will make the implementation of ModAlyzer available as open source under the
permissive MIT license. We subject it to artifact evaluation. All accompanying artifacts of
this paper, including the processed target applications, their modularizations, and result
data are available online under the MIT license [16].

ECOOP 2021
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Figure 1 C/C++’s compilation model. cc is the C/C++ compiler. ln is the linker.

In summary, this paper makes the following contributions: it presents
the first integrated compositional analysis for callgraph, points-to and context-sensitive
data-flow information with appropriate summarization techniques and summary formats,
ModAlyzer, an open-source C++ implementation within the PhASAR [64] framework,
allowing the full module-wise computation of arbitrary distributive static analysis problems
(and module-wise computation of points-to and callgraph information for non-distributive
analysis problems),
and an experimental evaluation of ModAlyzer, which shows that not just in theory
but also in practice precision and recall are retained, and which assesses under which
circumstances the reuse of summaries can decrease the overall analysis time.

2 Motivating Example and Intuition

C/C++ programs are usually organized in several files that provide some limited form of
modularity. An implementation and its corresponding header file are often referred to as a
compilation unit or module. The compiler translates each module separately and thus, has
only knowledge about the information contained within the module that is currently compiled.
The resulting object file contains executable program code, which may, however, contain
unresolved references. The linker resolves these references across two or more object files
and may adds links to external libraries. The result after the linkage step is an executable
program. Figure 1 depicts the corresponding mechanism.

The vast majority of modern software is not written from scratch, but rather uses libraries,
which enable code reuse, faster development and is less error prone [12, 80]. Thus, only
a small amount of a program is actual application code and large parts are library code.
Once a library has been introduced as a dependency it is rarely changed compared to the
application code that uses it.

Our example program is comprised of three compilation units (CUs) – often called modules
in the C/C++ context – Main, Sanitizer, and DbgSanitizer shown in Listing 1, 2, and 3.
We omit the header files for brevity of presentation. The example program is built according
to the compilation model presented in Figure 1.

Let us assume that Sanitizer and DbgSanitizer form a library for sanitization tasks
called libsan. In C/C++, a library is a collection of one or more object files that have
been compiled in form of an archive or shared object file. We further assume that Main
represents the user application that makes use of the libsan library. We use the example
program shown in Figure 2 as a running example to detail on our module-wise analysis
(MWA) approach.

As a client analysis we use a taint analysis which is able to detect potential SQL injections
in programs. A taint analysis tracks values that have been tainted by one or more sources
through the program and reports a leak, if a tainted value reaches a sink. The analysis
considers all user inputs of a program which potentially contain malicious data as tainted,
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1int main ( int argc , char ∗∗ argv ) {
2auto ∗con = dr ive r −>connect ( /∗ connect ion p r o p e r t i e s ∗/ ) ;
3auto ∗stmt = con−>createStatement ( ) ;
4s t r i n g q = "SELECT name FROM students where id=" ;
5s t r i n g input = argv [ 1 ] ;
6s t r i n g san in = a p p l y S a n i t i z e r ( input ) ;
7auto ∗ r e s = stmt−>executeQuery ( q + sanin ) ;
8res −>b e f o r e F i r s t ( ) ;
9i f ( ! res −>rowsCount ( ) ) { cout << " no record found \n" ; }
10while ( res −>next ( ) ) { cout << res −>g e t S t r i n g ( "name" ) << ’ \n ’ ; }
11delete stmt ; delete r e s ; delete con ; return 0 ;
12}

Listing (1) Main – Contains the main application code.

13struct S a n i t i z e r {
14virtual ~ S a n i t i z e r ( ) = default ;
15virtual s t r i n g s a n i t i z e ( s t r i n g &in ) {
16i f ( i s M a l i c i o u s ( in ) ) { in = /∗ a c t u a l s a n i t i z a t i o n ∗/ ; }
17return in ;
18}
19bool i s M a l i c i o u s ( s t r i n g &in ) { return /∗ check i f ma l i c ious ∗/ ; }
20} ;
21s t r i n g a p p l y S a n i t i z e r ( s t r i n g &in ) {
22S a n i t i z e r ∗ s = getGlobalSan ( ) ;
23s t r i n g out = s−>s a n i t i z e ( in ) ;
24return out ;
25}

Listing (2) Sanitizer – A module of the sanitization library.

26struct DbgSanit i zer : S a n i t i z e r {
27bool d i s a b l e = true ;
28~ DbgSanit i zer ( ) override = default ;
29s t r i n g s a n i t i z e ( s t r i n g &in ) override {
30i f ( ! d i s a b l e && i s M a l i c i o u s ( in ) ) { throw mal ic ious_input ( " : ’ ( " ) ; }
31return in ;
32}
33} ;
34S a n i t i z e r ∗ getGlobalSan ( ) {
35stat ic S a n i t i z e r ∗ s = new DbgSanit i zer ;
36return s ;
37}

Listing (3) DbgSanitizer – A module of the sanitization library.

Figure 2 Modular example program.

e.g. the parameters argc and argv that are passed into the main() function in our example
program presented in Listing 1. The function Statement::executeQuery() serves as a sink in this
scenario. Without sanitization, a malicious user of the program could carefully craft the
string ‘‘1 OR TRUE;’’ and pass it as the program’s second command-line argument. As the
input string is just concatenated the database server will return the names of all students
not just the one where the id matches. By crafting such malicious inputs, a user can leak
or alter the data stored in the database. A tainted value may be sanitized in our scenario
by using the Sanitizer :: sanitize () function (Listing 2) that clears malicious contents, and
therefore un-taints a value. The client analysis T aims to find flows of (unsanitized) tainted
values to sinks and reports a potential SQL injection vulnerability whenever it finds such an
illegal flow.

ECOOP 2021
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points-to type hierarchy callgraph data-flow client
(5)(4)

(2)

(3)

(1)

Figure 3 Dependencies of a client analysis involving type hierarchy, points-to information, inter-
procedural control-flow and data-flow information. Numbered edges determine computation order.

3 Framework Architecture

In this section, we elaborate on our compositional, module-wise analysis. We first present
the idea of the algorithm in a nutshell and continue with our concept of summary generation.
We then explain the steps we take for result merging and optimizations. As summaries are
always depending on assumptions made, we discuss them at the end of this section.

3.1 Idea of the Algorithm
We have built our module-wise analysis approach following C/C++’s compilation model.
To determine a program property of interest, a concrete data-flow analysis, the client, may
require information from other analyses as shown in the dependency graph in Figure 3.
To be able to determine the inter-procedural data flow that a concrete client analysis is
interested in, a precise callgraph is needed. A precise callgraph, in turn, requires points-to
information [26] and the type hierarchy of the program, but points-to analysis requires a
callgraph as well. The data-flow information depends on the callgraph and the client analysis
transitively depends on all of these pieces of information. Note that a points-to analysis
does require information on subtyping. Information such as the declared and allocated
pointer types can be queried ad-hoc. Many useful static analyses can be encoded using the
dependencies show in Figure 3 and thus, we will assume such a scenario in this paper.

To achieve fully compositional analysis information for all levels of information as shown
in Figure 3, we must be able to (i) compute all information required for a client analysis
on a function level (except the type hierarchy, which is always computed on a module level)
and summarize them, (ii) merge the information and (iii) perform an update if a merge
reveals new information that affect the current results. The merge operation combines static
analysis summaries computed on two individual modules into a novel summary such that it
reflects the information that would have been obtained by linking those modules first and
then computing the static analysis information afterwards. In such an MWA-style analysis
library modules would be analyzed separately. Their computed summaries would be merged
whenever necessary while analyzing a program which uses those library modules.

As mentioned in Section 1, the compositional approaches to static data-flow analysis
presented by Rountev et al. [62] and Reviser [20] only apply to Java. In that regard,
ModAlyzer can take advantage of C’s and C++’s language characteristics, which are quite
different from Java. The ModAlyzer approach merges summaries for each function per
compilation unit. The intuition is that related source code often resides within the same
compilation unit. Because C and C++ are often used to implement performance-critical
applications [1, 11], developers have a great interest in making as much information available
to the compiler as possible within an individual compilation unit. Otherwise, the compiler
would not be able to perform inlining and other important optimizations in an ordinary
(i.e., non-WPA) compilation setup [49,50]. Additionally, whereas all function members (or
methods) in Java are virtual, function members are non-virtual by default in C++. It
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τSanitizer 0 : •Sanitizer ::∼ Sanitizer()

1 : •Sanitizer :: sanitize()

Figure 4 Type hierarchy and respective virtual function table(s) of the Sanitizer module.

generally seems that C++ programs make use of dynamic dispatch less frequently to avoid
performance penalties [17,29,32], a property that ModAlyzer, again, uses to our advantage.
Summaries computed for C/C++ code are thus more expressive and less likely to contain
gaps due to missing information. While ModAlyzer, in general, is applicable to other
languages as well it might work better for C and C++ programs than for programs written
in Java or C#, for instance, which use virtual calls all over the place. For those languages,
the portion of partial summaries will increase and the overall performance of ModAlyzer
will degrade as more gaps need to be closed while analyzing the “main application”. Previous
works by Rountev show that summarization techniques nonetheless can greatly improve
running times for large Java applications, even when restricted to data-flow analysis only.
We elaborate on that in detail in Section 5.

In the following, we show that merge operations on analysis information can be modelled in
a common way through merge operations performed on their respective graph representations.
However, special care must be taken to update the dependent information accordingly if
new information becomes available due to merging two module summaries. This makes it
crucial to keep particularly the callgraph up to date, as all other information except the type
hierarchy depend on it.

3.2 Summary Generation

In the following, we will explain the steps of our analysis based on the example presented in
Section 2. The assumption is that Main changes frequently, and libsan only once in a while.
For presentation here we start our library pre-analysis by analyzing the Sanitizer module,
although the analysis algorithm does not make any assumptions about module order.

3.2.1 Type Hierarchies

Our approach first computes the type hierarchy as it is the most robust structure in the
sense that the amount of information can only grow monotonically. We use τt to denote
the type of a class or struct t and we use TC to denote the type hierarchy for a module C.
In addition, the type hierarchy maintains information on the virtual function tables (call
targets) for C++’s struct or class types that declare virtual functions.

▶ Example 1. The analysis will find that the type hierarchy for the Sanitizer module
consists of a graph containing a single node representing the type τSanitizer. The call target
for τSanitizer contains two entries, {Sanitizer ::∼ Sanitizer(), Sanitizer :: sanitize()}.1 The
(partial) type hierarchy for the Sanitizer module is shown in Figure 4

1 If a C++ type is meant to be used polymorphically, its destructor has to be declared virtual. Otherwise,
if the static type of an object to be deleted differs from its dynamic type, the behavior is undefined.

ECOOP 2021
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∅
(a) πSanitizer :: ∼Sanitizer.

∅
(b) πSanitizer :: isMalicious

in f0

⟨ret⟩

(c) πSanitizer :: sanitize ; f0 denotes the first
formal parameter and ⟨ret⟩ the return value
of the isMalicious () function.

in f0

s ⟨ret⟩

(d) πSanitizer :: applySanitizer; f0 denotes the
first formal parameter and ⟨ret⟩ the return value
of the getGlobalSan() function.

Figure 5 ΠSanitizer containing all pointer-assignment graphs of Sanitizer.

3.2.2 Intra-Procedural Points-To Information
In the next step, the analysis computes function-wise, intra-procedural, never-invalidating2

points-to information using an Andersen [19] or Steensgaard [73]-style algorithm. The points-
to information computed is flow-insensitive, and we store it as graphs. These function-wise
pointer-assignment graphs (PAGs) are used to resolve potential call targets at dynamic
call sites. We merge those intra-procedural PAGs later to obtain inter-procedural pointer
information while constructing the callgraph. We use πC::f to denote a pointer-assignment
graph for function f in module C. We use ΠC to denote a pointer-assignment graph containing
all pointer-assignment graphs for module C.

▶ Example 2. For each function definition contained in the Sanitizer module a
PAG is computed and added to the graph ΠSanitizer. The ΠSanitizer graph containing
πSanitizer :: ∼Sanitizer, πSanitizer :: sanitize , πSanitizer :: isMalicious , and πSanitizer :: applySanitizer
is shown in Figure 5. Inter-procedural points-to relations are not followed and thus, formal
pointer-typed parameters and calls to functions that return a pointer value remain unre-
solved and represent boundaries to the respective PAG. For instance, the pointer s in the
applySanitizer() function points to the return value of getGlobalSan() which is indicated by a
special node in the respective PAG (cf. Figure 5d).

3.2.3 Callgraphs and Inter-Procedural Points-To Information
After having computed the function-wise pointer assignment graphs, the callgraph is construc-
ted according to Algorithm 1, Algorithm 2 and its resolver routine shown in Algorithm 3. The
same algorithm also computes points-to information across procedure boundaries. Since one
cannot know upfront what library functions a user is going to call, the callgraph algorithm
has to consider every externally visible function definition as a possible entry point [54] (cf.
line 58 of Algorithm 1). We use CGC to denote a (partial) callgraph of a module C. The
algorithm starts at an arbitrary externally visible function f of module C. It then iterates
through all call sites cs of f (cf. line 44). We denote a call site as csi where i represents the
line number at which the call site is found. In the following, we write csi for a static call site
and c̃si for a dynamic call site at which a function pointer or virtual function member is
called. In case a static call site has been detected, the algorithm adds a new callgraph edge
(line 46). In addition, for the pointer analysis, the algorithm connects the caller’s actual

2 Intra-procedural points-to information is, by definition, never invalidated by additional program inform-
ation from other procedures.
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pointer parameters and pointer return value with their corresponding formal parameters
and return value of the callee target using a stitch operation (line 69), thus promoting
(intra-procedural) pointer information to inter-procedural information. We formally define
the stitch operation in Definition 3 and then discuss its use. In the latter case (line 48), the
algorithm uses points-to information provided by ΠC to resolve potential call targets of c̃si

according to Algorithm 3. Starting from the function pointer that is invoked or the pointer
variable of the receiver that the virtual member function is being called on at c̃si, we search
in ΠC for reachable functions in case of function pointer calls (line 83) or allocation sites in
case of virtual member function calls (line 96), respectively.

In this process, two situation may occur along with different levels of completeness of
points-to information which dictate what (missing) dependencies must be tracked: Incomplete
or partially complete information: If no functions or allocation sites are reachable yet, the
reachable pointers at the function boundaries (i.e., formal pointer parameters or pointer
return value of a function whose definition is missing) are marked as dependencies of c̃si (line
86 and 94). The dependencies are maintained in a bidirectional map from dependent pointer
parameters to the respective unresolved call site and vice versa. If only some functions
or allocation sites are reachable but also there are some reachable pointers at function
boundaries as well, then pointers at function boundaries are added to the dependencies of
c̃si and reachable functions are added as potential call targets to the callgraph (line 109 and
50). The edges of the callgraph are annotated with c̃si. For virtual member function calls,
the call targets of the allocated types at reachable allocation sites are inspected to find the
potential targets (line 104) which are then added to the callgraph. Complete information: If
no boundary pointers but only functions or allocation sites are reachable starting from the
pointer at c̃si, then no dependencies must be tracked.

During the construction of the callgraph we can have situations where a pointer-assignment
graph will be amended with new information. To this end, we define a first graph operation
which we call stitch and which we use to combine pointer information at call sites.

▶ Definition 3. Stitch: Let G = (V,E) be a (directed) graph containing vertices {u, v} ⊆ V

with u ̸= v and e = (u, v) /∈ E. The stitch of u and v is a new graph G′ = (V ′, E′), where
V ′ = V and E′ = E ∪ (u, v). For convenience, we additionally define the function stitch :
G×G′ ×P → G′′ that maps the (directed) graphs G = (V,E) and G′ = (V ′, E′), and P a set
of pairs of vertices (u, v) with u ∈ G and v ∈ G′ that shall be stitched together to a new graph
G′′. The stitch function stitch(G,G′, P ) produces G′′ such that G′′ = (V ∪ V ′, E ∪ E′ ∪ P ).

For each target function C::g that could be successfully resolved, the algorithm stitches c̃si

to πC::g (cf. line 69): Actual pointer parameters are connected with the corresponding formal
parameters of the callee function C::g. If C::g returns a pointer parameter, it is connected as
well. All edges are annotated with the corresponding call site.

If this graph stitch affects a pointer that is listed in the dependency map, the algorithm
recursively continues resolving the affected call sites. Otherwise, the algorithm recursively
continues resolving call sites in the resolved target functions. The algorithms for the
interwoven points-to, callgraph computation are shown in Algorithm 1, Algorithm 2, and
Algorithm 3. We use the symbol cs in a call to the function stitch(G,G′, cs) as shorthand
for {(ai, fi)}, the set of pairs of left-hand-site pointer variable/actual pointer parameters and
pointer return value/formal pointer parameters of the callee at cs that are stitched together.

▶ Example 4. The callgraph algorithm starts analyzing the function Sanitizer :: sanitize ().
At the call site cs16, the actual parameter is stitched to the formal parameter of Sanitizer ::
isMalicious () and the algorithm proceeds in Sanitizer :: isMalicious (). Since
Sanitizer :: isMalicious () has now already been visited, the next function to be analyzed is
applySanitizer().

ECOOP 2021
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Algorithm 1 Callgraph construction algorithm.
38 directed graph: CGC = ∅, T = computeTypeHierarchy(); undirected graph: ΠC = ∅;

bidirectional map: D = ∅; set: V = ∅;
39 Function constructionWalk(f):
40 if f ∈ V || isDeclaration(f) then
41 return;
42 end
43 V ∪ = f ;
44 foreach callsite cs ∈ f do
45 if cs is static then
46 CGC∪ =< cs,getCallee(cs)>;
47 updatePointerInfo(f, getCallee(cs));
48 else
49 callees = resolveIndirectCallSite(cs);
50 foreach callee ∈ callees do
51 CGC∪ =< cs, callee >;
52 updatePointerInfo(f, callee);
53 end
54 end
55 end
56 return;
57 Function constructCallGraph():
58 foreach f ∈ C do
59 if !isDeclaration(f) then
60 ΠC∪ = computePointsToGraph(f);
61 end
62 foreach f ∈ C \ {internalfunctions} do
63 if f /∈ V ∧ !isDeclaration(f) then
64 CGC∪ = f ;
65 constructionWalk (f);
66 end
67 return;

Algorithm 2 Procedure for updating the pointer information.
68 Function updatePointerInfo(f, callee):
69 ΠC = stitch(ΠC [f ], ΠC [callee], cs);
70 modptrs = getVerticesInvolvedInGraphOp(stitch, ΠC [f ], ΠC [callee], cs);
71 foreach ptr ∈ modptrs do
72 if ptr ∈ D then
73 fmod =getFunctionContaining(D[ptr]);
74 V = V \ fmod;
75 constructionWalk(fmod);
76 end
77 constructionWalk(callee);
78 return;

applySanitizer() contains two interesting call sites. cs22 is a static call to getGlobalSan().
However, its definition is currently not available and thus, a callgraph node which is marked
as a declaration is added to the callgraph. Note that the function causes incomplete points-to
information as it returns a pointer value that is stored in variable s (cf. Figure 5d).

Furthermore, a virtual function member is called at c̃s23 on the receiver pointer variable s
of type Sanitizer∗. Due to dynamic dispatch we have incomplete information on the possibly
called functions and are not able to resolve this call, because we cannot yet determine the
allocation sites that are reachable through s. The algorithm marks this call site as incomplete
and keeps track of the dependent pointer variable s. The call site has to be updated as further
information might be discovered later on. For instance, if the definition of getGlobalSan()
becomes available that provides the required additional points-to information. The partial
callgraph that can be computed individually on the Sanitizer module is shown in Figure 6.
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Algorithm 3 Procedure for resolving dynamic call sites.
79 Function resolveIndirectCallSite(cs):
80 callees = ∅;
81 if isFunctionPtrCall(cs) then
82 fptr = getCalledPtr(cs);
83 rfptrs = getReachablePtrs(fptr);
84 foreach fptr′ ∈ rfptrs do
85 if isBoundaryPtr(fptr′) then
86 D[cs] ∪ = fptr′;
87 end
88 callees ∪ = getReachableFunctions(fptr);
89 else
90 aptr = getAllocationPtr(cs);
91 raptrs = getReachablePtrs(aptrs);
92 foreach aptr′ ∈ raptrs do
93 if isBoundary(aptr′) then
94 D[cs] ∪ = aptr′;
95 end
96 allocs = getReachableAllocSites(aptr);
97 foreach alloc ∈ allocs do
98 τ = getAllocatedType(alloc);
99 vτ = getVTable(T , τ);

100 if ! vτ then
101 D[τ ] ∪ = cs;
102 else
103 i = getVCallIndex(cs);
104 callee = getVTableEntry(vτ , i);
105 callees ∪ = callee;
106 end
107 end
108 end
109 return callees;

Sanitizer :: sanitize()

Sanitizer :: isMalicious()

applySanitizer()

getGlobalSan()d

Sanitizer ::∼ Sanitize()

∗ :: sanitize()d

Figure 6 Callgraph for Sanitizer: CGSanitizer. fd denotes the declaration of a function f .

3.2.4 Background on IFDS/IDE

To illustrate how ModAlyzer summarizes data-flow information, as foundational background
we first present the inherently compositional Interprocedural Finite Distributive Subset
(IFDS) [55] and Interprocedural Distributive Environments (IDE) [63] frameworks that
ModAlyzer utilizes to solve data-flow problems.

The IFDS and IDE frameworks both follow the functional approach [66] to inter-procedural
data-flow analysis. We use IFDS/IDE to encode our data-flow analyses as they allow the
generation of graph-based, precise, reusable data-flow summaries of regions of code, even for
incomplete code. Additionally, IFDS/IDE allow for the composition of data-flow summaries.
This is required when implementing a compositional approach throughout all pieces of
information where parts of the program are missing while the data-flow analysis is performed.

Reps et al. showed that distributive data-flow problems can be solved elegantly and
efficiently by transforming them into graph reachability problems. The IFDS framework
and its generalization IDE construct an exploded super-graph (ESG) in which each node
represents a data-flow fact. If a data-flow fact d holds at a statement s the node (s, d) is
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reachable in the ESG from a special tautological fact Λ (that always holds) and vice versa.
The ESG is constructed by replacing each node in the inter-procedural control-flow graph
(ICFG) with a bipartite graph that represents the equivalent flow function and thus, describes
the effects of the statement on the data-flow facts. Standard functions for generating (Gen)
or removing (Kill) data-flow facts can be encoded in bipartite graphs. Therefore, all Gen/Kill
problems such as live variables, available expressions, etc. can be encoded within IFDS/IDE.

The runtime complexity of IFDS is O(|N | · |D|3), where |N | is the number of nodes in
the ICFG and |D| is the size of the data-flow domain D. Thus, the efficiency highly depends
on the size of the underlying data-flow domain.

In IDE, however, the data-flow domain D is decomposed into the data-flow domain D

and a separate value domain V . The value domain V can be infinite. Because IDE has the
same complexity as IFDS, the size of V does not affect the complexity of the algorithm. IDE
annotates the edges of the ESG with lambda-functions that describe a value computation
over the domain of V . When a reachability check is performed in IDE to decide whether
an ESG node (s, n) is reachable and, therefore, the fact d holds at statement s, the value
computation problem that is specified along those edges leading to (s, d) is solved. Figure 7
shows some exploded super-graphs for a taint analysis conducted on the code in Listing 2.

IFDS and IDE follow the functional, summary-based approach to achieve fully context-
sensitive, inter-procedural analysis. The effect of statements of sections of code can be
summarized by composing the flow functions of subsequent statements. The composition
h = g ◦ f of two flow functions f and g, called jump function, can be obtained by combining
their bipartite graph representations. The graph of h can be produced by merging the nodes
of g with the corresponding nodes of the domain of f . Once a summary ψ for a complete
procedure p has been constructed, it can be (re)applied in each subsequent context the
procedure p is called. Importantly, because the flow functions are assumed to distribute over
the merge operator, this summarization is known to be lossless [55]. IFDS/IDE problems
can thus be solved with full precision, without the need for approximation.

3.2.5 Data-Flow Information
In the next step, the analysis computes the possibly partial data-flow information using
IFDS/IDE [51, 55, 63] according to the description of the data-flow problem to be solved
for the available function definitions. In contrast to the information computed before, the
data-flow information depends on the configuration of the client analysis because data-flow
information is never general and always depending on a specific definition.

We use the flow and edge functions of the client analysis to construct the partial exploded
super-graph of the library to be summarized. The partial callgraph is traversed in a depth-first
bottom-up manner to maximize the number of functions that can be summarized completely.
For a library function f that does not make any calls, the summary information is computed
by applying the client’s flow and edge functions to each node n of the control-flow graph.
The resulting exploded super-graph edges are then combined using composition and meet to
construct the jump functions ψ(f) that summarize the complete function. For each incoming
data-flow fact di, its respective jump function ϕi(f) describes the effect of the analyzed
function on di.

In case a function f contains call sites csi, the IFDS/IDE algorithm computes a partial
data-flow summary from f ’s entry node to the first call-site node cs1, ψentry

cs1
(f). It then

computes the summary of the called function f ′, ψ(f ′), (if not already computed) and
composes it with the partial summary ψentry

cs1
(f) to obtain ψentry

rs1
(f). The algorithm proceeds

successively until the complete summary ψ(f) = ψentry
exit (f) has been constructed.



P. D. Schubert, B. Hermann, and E. Bodden 2:13

Λ•
⊤��

��

ϕ16
17

��

in•

�� 



ret•
16: if (isMalicious(in))

Λ•

��

in• ret•
16a: in = /∗ sanitization ∗/;

Λ•

��

in• ret•
17: return in;

Λ• in• ret•

(a) Exploded super-graph for
Sanitizer :: sanitize ().

Λ•
⊤��

��
ϕ19

19 ��

in•

��
ϕ19

19


19: return /∗if malicious ∗/;

Λ• in•

(b) Exploded super-graph for
Sanitizer :: isMalicious ().

Λ•
⊤��

��

��

ϕ22
22



in•

��
ϕ22

22
vv

out• ret•
22: Sanitizer ∗s = getGlobalSan();

Λ•

�� ��

in•

�� ��

out• ret•
23: string out = s−>sanitize(in);

Λ•

��
ϕ24

24



in•

��

out•

�� ��
ϕ24

24 ��

ϕ24
24

��

ret•
24: return out;

Λ• in• out• ret•

(c) Exploded super-graph for applySanitizer().

Figure 7 Exploded super-graphs for the Sanitizer module.

However, in case a library function f contains call sites that are depending on user
code, for instance, because of callbacks or incomplete points-to information, a complete
summary ψ(f) cannot be computed. In this case, ModAlyzer computes a set of partial
summary functions ψn

m, where n is a function’s entry point or some return site (rs) and m is
a function’s exit statement or some call site (cs) whose call targets are not or only partially
known. This results in gaps in the exploded super-graph that represent the unresolved effects
of the missing call targets.

▶ Example 5. The data-flow information computed for the Sanitizer module is shown in
Figure 7. Individual flow/edge functions are denoted by solid (→) and jump functions by
dashed (99K) arrows. Analyzing applySanitizer() leads to an incomplete ESG, because the
callgraph for the Sanitizer module is only partially complete. The definition of getGlobalSan()
is not yet available and the dynamic call site at line 23 cannot be resolved with the information
available within the Sanitizer module.

The call to the unresolved function getGlobalSan() does not interact directly with the
data-flow information as it receives no arguments, its return type differs from the type of
the data-flow domain (strings), and the string which the variable in refers to is not global as
no global declarations are present. Therefore it cannot be modified by the call and one can
safely use the identity function here. We will further elaborate on that in Subsection 3.4.

The call to ∗:: sanitize () results in a gap in the ESG. In Figure 7c gaps in the ESG are
indicated with squiggled arrows (⇝). We pass in and out as identity after the gap and also
generate other variables, such as the implicit return variable, that depend on out. Later
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on, after the merging process, the missing targets of the call site at line 23 will have been
determined and their data-flow summaries can be inserted. Then, the analysis will check
whether in, out, and ret are reachable from Λ, and determine if those variables are tainted.

The ESGs for the Sanitizer :: sanitize () and Sanitizer :: isMalicious () functions are shown
in Figure 7a and 7b, respectively. For our example analysis we assume that
Sanitizer :: isMalicious () checks whether the variable in contains malicious data and the function
does not modify the data-flow facts. Sanitizer :: sanitize () checks if the string referred to by
variable in contains malicious data – is tainted – and, if so, replaces it with a sanitized version.
Again, to keep our example analysis simple, we assume that the analysis is aware of the
special semantics of Sanitizer :: isMalicious () and thus, kills the variable in in both branches.

After having computed the data-flow summaries for the Sanitizer module, we have
determined any information we need on Sanitizer as an individual module. We denote
the combination of the partial type-hierarchy graph (and call targets) in Figure 4, partial
points-to in Figure 5 and callgraph in Figure 6 and the partial data-flow summaries for
Sanitizer in Figure 7 as ΞSanitizer.

3.3 Merging Analysis Summaries

To complete the picture, we next combine the information obtained by analyzing Sanitizer
and DbgSanitizer with an analysis of the client application Main.

For this we need to define a new operation on graphs which we call contraction. We use
the contraction operation when new information becomes available during a merge, to replace
placeholder nodes (that indicate missing information) of a graph by their counterparts that
represent the actual information. We apply this operation to combine partial type hierarchy-
and callgraphs. For instance, we combine callgraphs by contracting away function declaration
nodes with their respective definition counterpart nodes: the nodes representing function
declarations are removed and all former incoming edges now lead to the corresponding
definition nodes. We formally define the contraction operation as follows:

▶ Definition 6. Contraction: Let G = (V,E) be a (directed) graph containing vertices
{u, v} ⊆ V with u ̸= v. Let f be a function that maps every vertex in V \ {u, v} to itself,
and otherwise, maps it to a new vertex w. The contraction of u and v is a new graph
G′ = (V ′, E′), where V ′ = (V \ {u, v}) ∪ {w}, E′ = E \ {e = (u, v)}, and for every x ∈ V ,
the vertex x′ = f(x) ∈ V ′ is incident to an edge e′ ∈ E′, iff the corresponding edge e ∈ E is
incident to x in G (reproduced from [53]). For convenience, we additionally define the function
contract : G×G′×P → G′′ that maps the (directed) graphs G = (V,E) and G′ = (V ′, E′), and
P a set of pairs of vertices u ∈ V and v ∈ V ′ that shall be contracted to a new graph G′′. The
contraction function contract(G,G′, P ) contracts the pairs of vertices ui and vi and produces
a new (directed) graph G′′ = ((V ∪ V ′) \ {ui}, (((E ∪E′) \ {(tj , ui)}) \ {(ui, vi)}) ∪ {(tj , vi)}),
where all edges incident to ui with their origin in some vertex tj are replaced by edges from
tj to vi contracting away ui. We use f in contract(G,G′, f) as shorthand for {(fdecl, f)},
the set of function declaration/definition pairs and τ in contract(G,G′, τ) as shorthand for
{(τdecl, τ)}, the set of type declaration/definition pairs.

Our merge procedure for two module summaries Ξi and Ξj is shown in Algorithm 4. In
the following, we present all involved steps for each piece of analysis information.
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3.3.1 Type Hierarchies
The analysis first merges the type-hierarchy graphs using vertex contraction (cf. line 114),
to remove redundant definitions of the same type. The redundancy is caused by including a
type’s definition (which usually resides in a corresponding header file) in multiple modules
that require a type’s exact data layout (e.g. for allocation or subtyping).

▶ Example 7. While performing the contraction, the analysis finds that Sanitizer’s type
τSanitizer is sub-typed by τDbgSanitizer. The contraction has no immediate effect on the
callgraph analysis: As the callgraph uses points-to information to resolve indirect calls, no
immediate update is required at this point, because the new type-hierarchy information is
not used before new pointer information becomes available. The type hierarchy needs to be
queried if a new allocation site has been found. For each newly discovered allocation site,
the type hierarchy is used to retrieve the entry of the allocated type’s virtual function table.

3.3.2 Callgraphs and Points-To Information
The analysis merges the callgraphs by using the vertex contraction operation introduced
before (line 122). A contraction is used to remove function-declaration nodes and replace
them with their corresponding definition nodes, now linking calls to callees. While performing
the contraction on the callgraphs, the corresponding partial pointer-assignment graphs are
not contracted but stitched together (cf. Definition 3); through the stitch (line 126) no nodes
of the pointer-assignment graph are replaced to keep information on the parameter mapping.
Actual pointer parameters at a call site as well as pointer return values at the respective
return site are connected with the corresponding formal parameters of the called function
and the left-hand side variables, respectively. The information on the contracted callgraph
nodes is used in the next step when repropagating data-flows.

Algorithm 4 Merge procedure for callgraphs.
110 Function merge(CGC , TC , ΠC , DC , VC , CGC′ , TC′ , ΠC′ , DC′ , VC′ ,):
111 DC∪ = DC′ ;
112 VC∪ = VC′ ;
113 ΠC∪ = ΠC′ ;
114 TC = contract(TC , TC′ , τ);
115 modtypes = getVerticesInvolvedInGraphOp(contract, TC , TC′ , τ);
116 foreach τ ∈ modtypes do
117 if τ ∈ D then
118 f =getFunctionContaining(D[τ ]);
119 V = V \ f ;
120 constructionWalk(f);
121 end
122 CGC = contract(CGC , CGC′ , f);
123 {⟨cs, f⟩} = getVertexPairsInvolvedInGraphOp(contract, CGC , CGC′ , f);
124 foreach ⟨cs, f⟩ do
125 f ′ =getFunctionContaining(cs);
126 ΠC = stitch(ΠC [f ′], ΠC [f ], cs);
127 modptrs = getVerticesInvolvedInGraphOp(stitch, ΠC [f ′], ΠC [f ], cs);
128 foreach ptr ∈ modptrs do
129 if ptr ∈ D then
130 f =getFunctionContaining(D[ptr]);
131 V = V \ f ;
132 constructionWalk(f);
133 end
134 end
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Sanitizer DbgSanitizer contracting contracted

applySanitizer

getGlobalSand

*::sanitized

cs22

c̃s23

getGlobalSan

DbgSanitizer::sanitize

applySanitizer

getGlobalSand

*::sanitized

getGlobalSan

DbgSanitizer::sanitize

=

=
applySanitizer

getGlobalSan

DbgSanitizer::sanitize
c̃s23

cs22

Figure 8 Excerpt of the vertex contraction for callgraphs of Sanitizer and DbgSanitizer. fd

denotes the declaration of a function f .

applySanitizer() getGlobalSan() stitch(applySanitizer(), getGlobalSan(), cs22)

in f0

s ⟨ret⟩ ⟨objDbgSanitizer⟩

s ⟨ret⟩

in f0⟨objDbgSanitizer⟩

s ⟨ret⟩ s
cs22

Figure 9 Excerpt of the vertex stitch of the PAG’s for applySanitizer() and getGlobalSan().

▶ Example 8. The callgraph contraction of the modules Sanitizer and DbgSanitizer
is indicated in Figure 8. The callgraph contraction triggers the corresponding stitching
of PAGs. For instance, the points-to graphs πSanitizer::applySanitizer and πgetGlobalSan are
stitched together at cs22 as indicated in Figure 9. Through the stitch, the analysis recognizes
that the previously marked pointer variable s gets new inputs from the resolved callee
function getGlobalSan(). As s is now able to reach getGlobalSan()’s variable s of allocated type
τDbgSanitizer and the receiver object s in applySanitizer() has no other unresolved dependencies,
the possible call targets are updated in the callgraph such that DbgSanitizer:: sanitize () is now
the only possible target for the dynamic call site at line 23. The pointer-assignment graph of
the newly discovered callee at line 23 is stitched to the call site c̃s23.

3.3.3 Fixed-Point Iteration for Callgraph and Points-To Graph
Note that there are cases in which the stitch (of two PAGs) of a resolved callee function

changes the points-to information in such a way that previously partially resolved indirect
call sites must be revised again (cf. line 69 for summarization, and line 126 for merges). In
these cases, the analysis loops in updating callgraph and points-to information until the
callgraph and points-to information stabilize. A constructed yet expressive example of the

131void (∗ f ) ( ) ;
132void bar ( ) {}
133void f oo ( ) { f = &bar ; }
134void i n i t ( void (∗ f ) ( ) ) { f = &foo ; }
135int main ( ) { i n i t ( f ) ; f ( ) ; /∗ <−− i n d i r e c t c a l l s i t e ∗/ return 0 ; }

Listing 4 Example in which the update of points-to- invalidates callgraph information.
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aforementioned for function pointers is shown in Listing 4. When the callgraph algorithm
resolves the indirect call to the function pointer f using points-to information, it determines
foo() as the callee target. However, foo() manipulates the points-to information such that
bar() becomes a feasible target as well. Thus, the indirect call site has to be revisited and
bar() has to be added as a possible target as well. When analyzing bar() the callgraph and
points-to information stabilize and the algorithm terminates.

3.3.4 Data-Flow Information
Once a callgraph has been updated by a merge, the data-flow information has to be repopu-
lated in order to reflect the changes. Whenever two callgraphs are merged, new function
definitions and their respective data-flow summaries become available which have been
previously unknown to the other module’s data-flow information. The merge procedure for
the callgraphs shown in Algorithm 4 issues the contracted nodes (function declarations) and
their respective call sites. This information and the newly available function definitions and
accompanying data-flow summaries are used to close potential gaps in the ESG. The analysis
visits all sub-graphs that have undergone the callgraph contraction procedure in a depth-first
bottom-up manner, filling in the newly available data-flow summaries.

Suppose a function f contains a previously unresolved or only partially resolved call site cs
and therefore, a pair of partial summaries ψentry

cs (f) and ψrs
exit(f). If the callgraph contraction

reveals the call target f ′ and its respective data-flow summary, ψentry
cs (f) and ψrs

exit(f) are
composed with ψ(f ′) to produce a complete summary of f , ψentry

exit (f) = ψrs
exit(f) ◦ ψ(f ′) ◦

ψentry
cs (f). The summary ψentry

exit (f) may need to be merged with any existing jump functions
that have been obtained along other paths, for instance, call-free-paths (cf. flows for Λ in
Figure 7c) or paths for other call targets of cs that have been available for analysis already.
The complete summary ψ(f) is used to successively fill in potential other gaps in the ESG.

In case a target library to be summarized is depending on code of its user(s) because it
uses features such as callbacks, for instance, the static analysis summaries Ξ even for the
complete library code will contain gaps. Those gaps are eventually closed once the main
application is available, analyzed and merged with the precomputed library summaries to
produce the final analysis results.

▶ Example 9. As the function definition of DbgSanitizer:: sanitize () becomes now accessible
to applySanitizer(), its respective data-flow summary can now be plugged into the current
gap of applySanitizer() to obtain a complete IFDS/IDE summary for it. The sub-graphs that
undergo the contraction procedure are visited in a depth-first, bottom-up manner and the
data-flow summary for DbgSanitizer:: sanitize () is inserted into applySanitizer(). The analysis
therefore finds that the values passed as a reference parameter into DbgSanitizer:: sanitize ()
and the value returned by it are indeed tainted. Therefore, the return value of applySanitizer()
is tainted as well. The pre-analysis of the library is now complete and the obtained results
can be used by any potential client to the library.

3.3.5 Analyzing the Main Application
When analyzing the application program Main the analysis first constructs Main’s type
hierarchy, function-wise pointer-assignment and callgraph (cf. Algorithm 1). The type
hierarchy-, call- and pointer-assignment graphs for Main are merged with the library’s
respective graphs (cf. Algorithm 4). The data-flow analysis can then start at the entry point
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main(). As the data-flow analysis recognizes the call to applySanitizer() it can directly use the
(complete) pre-computed summary and thus keeps the return value as well as the actual
reference parameter input marked as tainted. Finally, the client analysis is able to query the
results and finds that the tainted variable sanin leaks at the call to Statement::executeQuery().

3.4 Removing Dependencies Ahead of Time
While computing the data-flow information for an individual module, information at dynamic
call sites or static call sites, where the callee definitions are not available, will be incomplete.
However, by using the following shortcuts, ModAlyzer is able to compute a complete
and precise data-flow summary nonetheless. We already observed such a situation while
computing the data-flow information for applySanitizer() in the Sanitizer module. Because
the call to getGlobalSan() at line 22 does not have a direct impact on the data-flow information
(as described in Example 5), we can model it using the identity flow function. Note, however,
that the call still has an indirect impact since the function is able to change what function
is being called in the next line. When our analysis recognizes a function f that misses
information on potential callees, but where we can ensure that the missing information has
no direct or indirect impact on the data-flow information, we can nevertheless compute a
complete and precise summary for f using the identity shortcut denoted as id

↪→ and thus fully
remove any dependencies on the missing callees. To determine if id

↪→ can be applied, different
predicates may be applied, depending on the client analysis, e.g. pass and return by value.
For instance, if a function receives its arguments by value they are copied into the callee.
Thus, we can be sure that it cannot modify its arguments even if information on the callee’s
definition is missing.

s t r i n g foo ( bool p){ s t r i n g in = user Input ( ) ; return p ? s a n i t i z e ( in ) : in ; }

Listing 5 Code allowing the
⊤
↪→ shortcut.

Another example of a situation in which a data-flow analysis can perform such an
optimization is shown in Listing 5. Such a treatment for summarization of incomplete
data-flow analysis has also been presented in [43]. While analyzing foo() we assume the
information ⊤ for the variable in, i.e., in is tainted. foo() sanitizes in only in one of the
branches (depending on an unknown predicate). Hence, if we assume that we are conducting
a may-taint analysis, then it holds that in may be tainted at the end of foo() no matter what
the call to sanitize () does. It follows that ⊤ will always be associated with in. In this case, we
can compute a complete summary even with incomplete information by using the ⊤ shortcut

⊤
↪→. This is always true for may-analyses that use set union as the merge operator, which for
instance in IFDS is always the case.

In the presence of global variables, ModAlyzer applies shortcuts only if they can be
proven sound, which ModAlyzer manages easily if only module-internal global variables
are involved. Global variables are often declared as static (in case of C) or within anonymous
namespaces (in case of C++) making them internal to the module that declares them.
ModAlyzer’s shortcuts are not applied if externally visible global variables are involved in
the situation, i.e., variables that are used across multiple modules.

Due to C/C++’s modular compilation model, an analysis frequently encounters situations
as presented above, in which it can use these shortcuts to compute data-flow information.
Functions where these shortcut summaries are used do not need to be revisited, thus, the
analysis is able to work more efficiently. Therefore, when summarizing a module, it is desirable
to remove as many data-flow dependencies as possible using the id

↪→ and ⊤
↪→ shortcuts.
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4 Implementation

We have implemented the strategy described in Section 3 in a tool called ModAlyzer, as an
extension to PhASAR [64], a static-analysis framework that has been implemented on top of
LLVM [45]. PhASAR allows to solve arbitrary monotone data-flow problems on the LLVM
intermediate representation (LLVM IR) and also provides IFDS/IDE solver implementations.

We extended the existing IDE solver as well as the other infrastructure for type hierarchy,
points-to, and callgraph computation and added the necessary summarize, merge, and update
functionalities respectively.

ModAlyzer persists the summary results by using a document-oriented store in which
it saves the graphs along with the code the analysis is conducted on with help of LLVM’s
metadata capabilities. LLVM allows for a key-based introduction of custom metadata. Each
function that is defined in a module is annotated with its function-wise summaries for the
different pieces of static analysis information, i.e., its points-to and exploded super-graph. A
module carries the module-wise information that is obtained by merging all information of its
enclosed functions as well as type hierarchy and callgraph information. Those module-wise
summaries are referred to using the module flags section of the LLVM IR.

For the persistence, we created a bidirectional mapping from LLVM’s in-memory rep-
resentation to a textual representation allowing us to store the graphs comprising pointer
values to LLVM IR records as graphs that use the text-encoded version. Additionally, we
implemented import and export functionalities for each graph type that enable us to manage
loads and stores of encoded graphs along with the LLVM IR.

LLVM’s metadata mechanism does not restrict the type of data for annotations. Thus,
arbitrary data structures and encodings may be used to persist the analysis information.
We use the capabilities of the Boost Graph Library (BGL) [67] to manage type hierarchy,
points-to, and callgraph information. The BGL offers of-the-shelf textual import and export
functionalities and allows for implementing custom reader/writer concepts. We use the default
Graphivz [15] format to store the graphs in metadata records. As PhASAR’s IFDS/IDE
solver implementation works by incrementally constructing two tables to represent flow func-
tions/jump functions of ever longer sequences of code (c.f. [51,64]), we use the following sets of
quintuples for the data-flow summary representation of a function ψ(f) := {⟨ni, dx, nj , dy, l⟩},
where a quintuple represents a jump function (or an edge in the ESG) from data-flow
fact dx to dy with the corresponding edge function l that summarizes parts of the
effects of the region of code that is enclosed by the statements ni and nj . The concrete
(partial) data-flow summary for the applySanitizer() function (cf. Figure 7c) looks as follows:
{⟨22,Λ, 24,Λ,⊤⟩, ⟨22, in, 22, in,⊤⟩, ⟨24, in, 24, in,⊤⟩, ⟨24, out, 24, out,⊤⟩, ⟨24, out, 24, ret,⊤⟩}.
Note that for IFDS we can use the simple encoding of the binary lattice and the edge
functions. We handle the persistence of the difficult-to-handle, general IDE edge functions
by creating a record to keep track which edge functions are composed and meet for each
jump function while constructing them. We finally persist the record using the extensive
Boost Serialization library [14]. On load, the record can be replayed to (re)construct the
actual jump functions.

5 Experiments

Our empirical evaluation aims to answer the following research questions:
RQ1: Does the use of a module-wise static analysis incur a precision loss when compared
to a whole program analysis? If so, what causes this loss in precision?
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RQ2: Compared to conducting a whole-program analysis, what speed-up can one achieve
when applying MWA using pre-computed summaries for type-hierarchy, callgraph, points-
to and data-flow information?
RQ3: How frequently can the data-flow shortcuts id

↪→ and ⊤
↪→ be applied in MWA?

To address RQ1, we compare the analysis results of a whole program analysis with the
results obtained by a module-wise analysis. Ideally, the results of both analyses should be
identical. To address RQ2, we measure and compare the runtimes of a client analysis using
pre-computed summaries and a version that computes everything on-the-fly. To address
RQ3, we extend PhASAR’s IFDS/IDE solver implementation and measure how frequently
it makes use of both shortcuts for different client analyses.

5.1 Experimental Setup

We have evaluated ModAlyzer using as benchmark subjects the C coreutils (version 8.28) [3]
and the PhASAR framework itself.

The GNU core utilities are a collection of C programs that share a common core, providing
a library that consists of 251 files. Each coreutil program itself only consists of a small
number of C source files that provides the program’s entry point, manages the command-line,
and makes suitable calls into the common core in order to achieve the desired task. For our
evaluation we prepared and analyzed 97 of the coreutils and chose 10 of them at random
which to present in this paper in more detail. (However, the figures for the remaining 87
coreutils can be found online [16].)

PhASAR is written in C++ and is similarly structured. To provide flexible, reusable
software components, the main functionalities of the different components are implemented
as libraries. The front-ends (or drivers) themselves represent only a relatively small amount
of “glue code” and large amounts of their runtime is spent in library code. Using PhASAR
we defined two benchmark subjects: First PhASAR’s own command-line client and the
PhASAR-based tool MPT, a exemplary client that uses PhASAR as a library, both of which
can be found alongside PhASAR’s examples [10].

We chose those subjects because they have a relatively high amount of virtual calls.
This stresses ModAlyzer’s points-to based callgraph algorithm. We observed that C++
developers generally try to minimize the amount of indirect calls to avoid indirect jumps,
which degrade performance, especially when implementing performance critical software
systems [17]. The chosen subjects hence set a relatively high bar when it comes to evaluating
analysis performance. The raw as well as the processed data produced in our evaluation is
available online [16].

All programs and their characteristics are shown in Table 1. We prepared all programs
presented for analysis with the PhASAR framework by compiling them into LLVM IR with
production flags using the Clang compiler. The numbers in Table 1 are based on LLVM IR.

We used an uninitialized-variables analysis U and a taint analysis T as two concrete client
analyses that both impose the information dependencies as shown in Figure 3. U and T are
both implemented in IFDS within PhASAR.

Uninitialized-variables analysis U: U is an analysis that finds potentially uninitialized
variables and tracks them through the program. If the analysis finds an uninitialized variable
to be read from, it reports an illegal use of that variable. Uninitialized variables propagate
through computations and thus, the analysis tracks those as well. U also tracks the variables
across function boundaries making it an inter-procedural analysis.
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Table 1 Number of compilation units, library/application code ratio, number of statements,
pointer variables and allocation sites of the analyzed (completely linked) programs.

Program Compilation Units IR LOC lib
IR LOC app

Statements Pointers Allocation Sites
wc 252 41.2 63,166 10,644 396
ls 253 5.9 71,712 13,200 438
cat 252 66.3 62,588 10,584 391
cp 256 10.5 67,097 11,722 443
whoami 252 335.7 61,860 10,433 389
dd 252 16.8 65,287 11,150 408
fold 252 105.8 62,201 10,509 390
join 252 24.9 64,196 11,042 402
kill 253 88.2 62,304 10,527 394
uniq 252 60.1 62,663 10,650 396
MPT 156 13.8 1,351,735 755,567 176,540
PhASAR (driver) 156 56.4 1,368,297 763,796 178,486

Taint analysis T: T is a parameterizable taint analysis that tracks tainted values through
the program and reports potential leaks whenever it finds a tainted value that may flows into
a sink function (or operation). Sources and sinks are parameterizable. We used PhASAR’s
default parametrization that treats the command-line arguments passed into main as tainted.
All standard input functions (e.g., fread(), fgets ()) are treated as sources as well. All output
functions (e.g., fwrite (), printf ()) are treated as sinks.

For each target program shown in Table 1 we computed the library and application code
ratio based on lines of LLVM IR code. If a module is used by more than one application, we
consider it to be part of the library, whereas modules that are only used by one application are
considered as application code. We also measured runtimes and number of leaks/uninitialized
variables that each of the analyses reported in a WPA setup as well as an MWA setup. The
measurements for MWA are split into a summarization and an actual analysis step. The
PhASAR framework implements a reporting system which we use to compare the actual
reports to make sure that the findings are identical. We also recorded the number of callgraph
updates #CG ⟳ that had to be performed in the MWA setup, i.e., we counted the number of
callgraph edges that have been introduced during the merge process. This is a good indicator
of the expense of a merge, as the introduction of a new callgraph edge causes the points-to
and data-flow information to be updated as well. In addition, we measured the number of
shortcuts that a data-flow analysis was able to use. We measured the runtimes by performing
5 runs for each analysis in each setup on a virtual machine running on an Intel(R) Xeon(R)
CPU E5-2695 v3 @ 2.30GHz machine with 128GB memory. We removed the minimum and
maximum values and computed the average of the remaining 3 values. Table 2 shows the
results. The first column comprises the programs under analysis, the second column contains
the WPA runtimes, column three contains the required runtime for summarization, column
four the actual analysis time of MWA. The differences of the runtimes and reports of WPA
and MWA are shown in column five. Column six, seven, and eight contain the respective
number of callgraph updates, identity shortcuts, and ⊤ shortcuts, respectively. The number
of callgraph updates are equal for both analysis as the callgraph information is not affected
by the concrete client analyses.
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Table 2 Runtimes and findings WPA vs. MWA for the taint analysis T (first half) and uninitialized
variables U (second half).

T: Program WPA [s] Σm∈lib [s] MWA [s] ∆ runtimes / (∆ reports) #
CG
⟳ #

id
↪→ #

⊤
↪→

wc 2.3 5.7 0.5 -1.8 / (0) 47 8,052 78
ls 4.8 5.7 1.3 -3.5 / (0) 166 13,470 11
cat 1.9 5.7 0.2 -1.7 / (0) 21 2,117 269
cp 4.4 5.7 1.8 -2.6 / (0) 197 19,712 1077
whoami 2.0 5.7 0.4 -1.6 / (0) 4 6,065 11
dd 8.1 5.7 5.5 -2.6 / (-3) 58 48,747 90
fold 2.1 5.8 0.4 -1.7 / (0) 12 6,695 11
join 2.4 5.7 0.6 -1.8 / (0) 58 8,979 11
kill 1.9 5.7 0.2 -1.7 / (0) 14 2,079 11
uniq 2.2 5.7 0.4 -1.8 / (0) 29 7,281 11
MPT 2,306 42,847 1,516 -809 / (0) 41 29,061 0
PhASAR 7,176 42,876 598 -6578 / (0) 3 47,736 0

U: Program WPA [s] Σm∈lib [s] MWA [s] ∆ runtimes / (∆ reports) #
CG
⟳ #

id
↪→ #

⊤
↪→

wc 2.6 5.9 0.6 -2.0 / (0) 47 2,413 162
ls 8.4 6.0 3.3 -5.1 / (0) 166 7,173 184
cat 2.0 6.0 0.3 -1.7 / (0) 21 845 12
cp 5.2 5.9 2.2 -3.0 / (0) 197 6,684 1122
whoami 2.0 5.9 0.3 -1.7 / (0) 4 535 0
dd 3.1 5.9 0.9 -2.2 / (0) 58 2,522 16
fold 2.1 6.0 0.4 -1.7 / (0) 12 895 0
join 2.8 6.0 0.5 -2.3 / (0) 58 2,582 171
kill 2.2 6.0 0.4 -1.8 / (0) 14 793 12
uniq 2.5 5.9 0.5 -2.0 / (0) 29 1,433 17
MPT 3,811 53,703 2,958 -826 / (0) 41 137,722 8,136
PhASAR 10,160 53,348 968 -9,192 / (0) 3 210,032 24,446

5.2 RQ1: Precision
As the points-to and therefore, call- and control-flow graphs guide an analysis through a
program, they may heavily influence the reported results. Therefore, we compared the
callgraph obtained in an MWA setting with the one obtained in a WPA setting. We found
that the callgraphs only differ at call-sites at which a static function pointer is called. In
those cases, our MWA callgraph implementation turns out to be more precise as it does not
consider every function of the complete program that matches the pointer’s signature as a
possible target, but only the ones reachable within the module whose address can actually
be taken.3 This reduces the number of infeasible call targets while retaining soundness.

We compared the client analyses precision and recall of WPA and MWA using PhASAR’s
reporting capabilities. Column ∆ in Table 2 shows how many result entries differ from a
WPA to an MWA setup for each client analysis. We only observed a difference in the reports
for the “dd” program while performing the taint analysis. In this case, the analysis in WPA
mode reports three leaks in a library function fL, whereas the analysis in MWA reports none.
We investigated the cause of this difference and found that this is actually a false positive in
the WPA. The leaking function fL is not called within the “dd” program. However, “dd”
defines a static global function pointer p in the application code and the WPA analysis safely

3 Reducing the set of feasible function pointer targets in WPA mode can be easily implemented.
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assumes that fL, which matches the function pointers signature, might be called. When
the application code that defines the static function pointer is analyzed in MWA mode, the
analysis does not find a declaration of fL within the application code and therefore, its
address cannot possibly be taken, preventing it to be a callee target of p. While one could
adapt the WPA to be equally precise, the MWA obtains this precision automatically.

Since ModAlyzer does not need to overapproximate information it does indeed also
preserve recall. The ModAlyzer approach has been designed to obtain this property by
construction. Besides the differing result entries that are caused by the differences in the
callgraph, both the results of ModAlyzer and WPA coincide.

The module-wise analysis generally yields the same precision as the whole-program analysis,
in some cases even exceeds it.

5.3 RQ2: Performance

Table 1 shows that the library/application ratio ranges from 5.9 to 5675.6 and therefore,
that the actual application code only comprises a small fraction of the complete program.
One expects the MWA runtime to pay off better with increasing code ratios, since more
pre-computed summaries can be (re)used for a program’s library parts. The runtimes of both
analyses measured in the WPA and MWA setup live up to that expectation. Looking at the
programs with an especially advantageous library/application ratio such as whoami, fold, kill,
cat, PhASAR, the use of pre-computed summaries saves between 81% and 91% of the analysis
time. On average, MWA saves 72% of analysis time compared to WPA while MWA’s initial
one-time summarization step is, on average, 3.67 times as expensive than the corresponding
run in a WPA setup. Thus, computing the initial summarization of the library (or infrequently
changing) parts of a program is more expensive that performing a whole program analysis.
Computing summaries will always be more expensive compared to computing plain WPA
due to the additional overhead required for organizing and maintaining the summaries. In
addition, many of PhASAR’s critical analysis parts have undergone tremendous amounts of
manual optimization while ModAlyzer’s implementation for summary generation has not
yet been optimized manually. As a concrete example, analyzing PhASAR in an MWA setup
outperforms WPA with the seventh run using the taint analysis and after the sixth run for
the uninitialized variables analysis – assuming an initial summary must be computed and no
changes in PhASAR’s library occur after summarization. For the MPT program, that has a
larger number of callgraph updates to be performed, MWA pays off with the 54th run for
the taint analysis and 64th run for the uninitialized variables analysis, respectively.

In case of PhASAR, runtime savings of 92% can be achieved as the application merely
consists of few calls into the library code. This is underlined by the three callgraph updates
that are necessary. We manually inspected the program and confirmed that, although
the amount of front-end code is certainly large, it performs only very few calls into the
corresponding library. A controller class, which is part of the library, is used to dispatch the
different tasks to solve into calls to the adequate library functionalities. This shifts large
parts of the computation to the offline MWA summarization phase.

The size of the persisted summaries that are stored along with the library code increase a
library, on average, by a factor of five in size. The code and summaries for PhASAR require
approx. 2.8 GB of memory for persistence and 30 MB for the core utils.

Summaries for static callgraph, points-to and data-flow analysis can be used to capture the
analysis effects of libraries. After a one-time pre-computation effort, this allows a runtime
reduction of 72%, on average, compared to the runtimes in whole-program mode.
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5.4 RQ3: Shortcuts

The number of id
↪→ shortcuts taken by an analysis is parameterized by a predicate as described

in Subsection 3.4. For the analyses U and T we used the predicate return type is void
and uses pass-by-value. However, different predicates might be useful for other analyses,
depending on the specific assumptions that can be made on an analysis’s domain. The
results in Table 2 show that both shortcuts can be frequently applied during analysis. The

id
↪→ shortcut can be applied between 535 and 210,032 times depending on the client data-flow
analysis that is performed. The ⊤

↪→ shortcut can be applied between 0 and 24,446 times.
We are confident that the number of ⊤

↪→ shortcuts could be further increased, if one adjusts
PhASAR’s data-flow solvers to favour analyzing branches first that contains fewer (or no)
function calls.

Shortcuts can be frequently applied. Hence, to decrease the number of data-flow dependen-
cies and to increase the amount of complete summaries that can be pre-computed offline, it
is advisable to make use of shortcuts whenever possible.

6 Limitations of the Approach

In this section, we briefly discuss the limitations of ModAlyzer. ModAlyzer needs to
summarize the different pieces of information presented in Figure 3 to be able to construct
effective module-wise summaries for a given concrete client analysis. Hence, ModAlyzer
requires analysis algorithms that produce summarizable results such as IFDS [55], IDE [63]
or Weighted Pushdown Systems (WPDS) [56].

For problems that are distributive, hence fit into these frameworks, the summarization
is lossless. It is generally also possible to use ModAlyzer to solve non-distributive client
analysis problems. As mentioned in Section 1, one cannot generally compute summaries for
non-distributive data-flow problems. In that case, the approach can only make use of the
summaries for type-hierarchy, points-to, and callgraph information, which may still lead to
large performance increases as we present in Section 5.

We use never-invalidating points-to information computed using an Andersen [19] or
Steensgaard-style [73] algorithm to be able to produce effective summaries. Again, computing
more precise inter-procedural, context-, and flow-sensitive points-to information is a non-
distributive problem for which no effective summaries can be computed. However, Späth et
al. showed how flow- and context-sensitive pointer analysis can be decomposed into multiple
analysis problems each of which, in turn, can be expressed within a distributive framework [72]
– making the overall problem distributive. ModAlyzer’s current points-to algorithm could
therefore also be replaced by an adjusted version the distributive Bommerang approach
proposed by Späth et al. The Boomerang approach – as is – operates in an on-demand
manner and does not compute reusable summaries nor does it persist results. It is interesting
to see the performance of ModAlyzer with an improved Boomerang-style points-to
algorithm, that reuses summaries, presented in [72], but we consider it as future work.

As described in Section 5, ModAlyzer’s overall effectiveness degrades with the number
of updates that must be performed while merging summaries with the application code.
Therefore, ModAlyzer’s performance increase may not apply to programs that make
excessive use of callbacks.
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7 Related Work

Several previous approaches address, in part, the difficult problem of compositional static
analysis [30,31,33,36,38,52,59–61,78,83]. However, existing techniques for compositional
static analysis typically focus on data-flow or points-to analysis only. As advocated in
this paper, a concrete compositional data-flow analysis client requires at the very least a
combination of compositional callgraph, points-to and data-flow analysis.

Compositional data-flow techniques rely on the functional approach [66] allowing to
solve distributive data-flow problems by using summary-based, inherently compositional
frameworks such as IFDS [55], IDE [63], or WPDS [56]. Rountev et al. used IDE data-flow
summaries to summarize large object-oriented libraries [62] and showed that a significant
amount of time can be saved when using pre-computed summaries. The approach presented
by Rountev et al., however, omits to tackle the challenging task of persisting general IDE
summaries but rather discards the summaries at analysis shutdown. StubDroid [21] is a
fully automated approach to generate precise library models for taint-analysis problems for
the Android Framework, effectively preventing the re-analysis of the Android Framework for
the analysis of different Android apps. Both Rountev’s approach and StubDroid assume the
existence of whole-program points-to and callgraph information.

Several works use partial points-to information in from of function-local summaries
computed using context-free language (CFL-)reachability [48, 65, 81]. The summaries can
be used in various scenarios allowing, among others, for on-demand points-to analysis,
pre-analysis, and pointer analysis of partial programs using different sensitivities. These
works present individual solutions to individual problems, while this paper presents the first
integrated approach and shows its effectiveness on real-world C/C++ applications.

The IDEal [71] approach developed by Späth et al. is an alias-aware extension to the
framework IDE [63] framework. IDEal embeds the alias analysis Boomerang [72] into the
IDE solver implementation HEROS [25] to automatically resolve alias queries on-demand
at analysis time while solving a given distributive data-flow analysis problem. However,
it does not compute (persisted,) reusable summaries but rather computes analysis queries
on-demand and still requires external callgraph graph information.

AVERROES [18] uses the separate compilation assumption and Java’s constant pool [9]
to generate sound and precise callgraphs without actually analyzing library code in order to
generate a placeholder library. Existing whole-program callgraph construction algorithms
can use the replacement to obtain a sound and precise application callgraph. AVERROES
supports callgraph construction only. Its summaries cannot be used for precise pointer
analysis, nor for precise data-flow analysis.

Other techniques try to improve the scalability of inter-procedural static analysis by using
sparse propagation of data-flow facts along def-use chains [77] or demand-driven analysis
that only analyze parts of a program that a user is currently interested in [72,76]. Sparseness
is a concept orthogonal to the ones proposed here. Both could be used in combination.

Some tools, including clang-tidy [2] and CppCheck [5], trade off scalability for reduced
complexity. Thus, they only apply syntactic analysis to retrieve information on the property
of interest. Precise, fully-fledged static analysis is replaced by much simpler checks that are
capable of analyzing even million lines of code in minutes. However, these checks are often
too imprecise to check for interesting properties.

Klohs et al. described the situation for may-analysis in which ⊤, representing all informa-
tion, is obtained along one path in the control-flow graph, and thus, the other path does not
have to be analyzed. This allows to remove data-flow dependencies ahead of time [43]. The
approach presented here adopts this insight.
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ModAlyzer computes the module-level summaries in a completely unrestricted way and
does not make any assumptions about missing code. Yet, it may be advisable to compute
summaries based on various sensible assumptions in scenarios where the summarization step
can be performed ahead of time, e.g. for library pre-analysis. Tree-adjoining languages [79]
and Dyck context-free language reachability [30, 78] can be used to increase the effective
library summarization by computing reasonable conditional summaries that enable greater
summary reuse under certain premises checked at analysis time of the application code. Such
a strategy allows for more computations to be performed on a module-level. During the
merge, the analysis can check whether an assumption that has been made holds and, if so,
directly use the corresponding summary that may be much more expressive than one that
has been computed without any assumptions about missing code, effectively reducing the
amount of work that needs to be done while merging summaries with the application code.
ModAlyzer currently does not use such a conditional summarization, however, it provides
all required infrastructure to easily integrate the approach. Unfortunately, one cannot rely
on programmers specifying pointer or reference parameters as constants using the const
keyword because C/C++’s typesystem provides several mechanisms to circumvent constant
declarations (e.g. const_cast and mutable in case of C++). Although writes through const are
possible, they are used sparingly in real-world software as shown by Eyolfson and Lam [35].
Therefore, one reasonable assumption may be const means const. Especially const-qualified
pointer parameters then represent hard inter-procedural boundaries and a data-flow analysis
is not concerned with those parameters.

Early versions of Facebook’s Infer [27] used separation logic to allow for the compositional
analysis of heap-based programs. The approach computed bottom-up summaries using
bi-abductive inference [24, 28], which could then be used in different calling contexts. Using
Infer, one could thus formulate compositional static analyses that are evaluated using
abstract interpretation. These analyses, however, were largely restricted to finding cases of
memory corruption. Since about 2019 – reportedly due to a lack of general applicability and
extensibility – Infer thus does not use abductive inference for most of its analyses any longer,
and now instead bases its implementation on data-flow analysis using abstract interpretation.
This analysis is no longer compositional.

8 Conclusion

In this paper, we presented ModAlyzer, a compositional approach to speeding up static
analysis using persisted summaries for callgraph, points-to and data-flow information. We
have presented an integrated strategy based on the dependencies as shown in Figure 3 that
manages all those information and their dependencies, which many useful, concrete client
analyses impose to provide precise results. ModAlyzer allows one to compute static analysis
summaries on individual parts of a program without the need to make any assumptions on
the missing code. These pre-computed summaries can then be (re)used later on, effectively
shifting large parts of the computational effort to an offline phase.

Our experiments confirm the finding by previous works that actual application code
often only constitutes only a small fraction of the complete program. Thus, ModAlyzer
outperforms traditional whole program analysis in both runtime and flexibility.
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