
Covariant Conversions (CoCo): A Design Pattern
for Type-Safe Modular Software Evolution in
Object-Oriented Systems
Jan Bessai # Ñ

Technische Universität Dortmund, Germany

George T. Heineman #Ñ

Worcester Polytechnic Institute, MA, USA

Boris Düdder #

University of Copenhagen, Denmark

Abstract

Software evolution is an essential challenge for all software engineers, typically addressed solely using
code versioning systems and language-specific code analysis tools. Most versioning systems view the
evolution of a system as a directed acyclic graph of steps, with independent branches that could be
merged. What these systems fail to provide is the ability to ensure stable APIs or that each subsequent
evolution represents a cohesive extension yielding a valid system. Modular software evolution ensures
that APIs remain stable, which is achieved by ensuring that only additional methods, fields, and
data types are added, while treating existing modules through blackbox interfaces. Even with
these restrictions, it must be possible to add new variations, fields, and methods without extensive
duplication of prior module code. In contrast to most literature, our focus is on ensuring modular
software evolution using mainstream object-oriented programming languages, instead of resorting
to novel language extensions. We present a novel CoCo design pattern that supports type-safe
covariantly overridden convert methods to transform earlier data type instances into their newest
evolutionary representation to access operations that had been added later. CoCo supports both
binary methods and producer methods. We validate and contrast our approach using a well-known
compiler construction case study that other researchers have also investigated for modular evolution.
Our resulting implementation relies on less boilerplate code, is completely type-safe, and allows
clients to use normal object-oriented calling conventions. We also compare CoCo with existing
approaches to the Expression Problem. We conclude by discussing how CoCo could change the
direction of currently proposed Java language extensions to support closed-world assumptions about
data types, as borrowed from functional programming.

2012 ACM Subject Classification Software and its engineering → Software evolution; Software
and its engineering → Design patterns; Software and its engineering → Abstraction, modeling and
modularity

Keywords and phrases Expression problem, software evolution, type safety, producer method, binary
method

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.4

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.4
Software: http://doi.org/10.5281/zenodo.4756838 [2]

Acknowledgements We would like to thank the reviewers of earlier versions of this paper for their
carefully thought out, detailed reviews, as well as the many constructive remarks. They helped
to improve our presentation, the artifacts, and the pattern drastically. Special thanks go to the
reviewer who suggested to mitigate “parameterization boilerplate” with type members.

Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Jan Bessai, George T. Heineman, and Boris Düdder;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jan.Bessai@tu-dortmund.de
https://ls14-www.cs.tu-dortmund.de/cms/de/mitarbeiter/wimis/Bessai.html
mailto:heineman@wpi.edu
https://www.wpi.edu/people/faculty/heineman
mailto:boris.d@di.ku.dk
https://orcid.org/0000-0002-0241-7729
https://doi.org/10.4230/LIPIcs.ECOOP.2021.4
https://doi.org/10.4230/DARTS.7.2.4
https://doi.org/10.4230/DARTS.7.2.4
http://doi.org/10.5281/zenodo.4756838
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

1 Introduction

This paper presents a novel solution to the well-known Expression Problem (EP) [29], a
research problem common to the fields of programming language design, multi-dimensional
product line design, and software engineering. EP offers a concise representation of the
challenge in implementing a system that evolves over time. The goal is to enable additive
modular software evolution for data types and their methods.
The research community has identified a number of mandatory qualities that any approach
must satisfy [27, 31]:

It must be possible to add new variations, attributes, and methods to data types without
changing existing software modules.
Evolved modules must not duplicate the code of prior modules, so potential errors can be
found and fixed locally.
Hierarchical grouping of data types is an important feature of object-oriented programming
that must remain intact. When a method implementation is the same for a subset of the
hierarchy, it must not be necessary to repeat its definition.
Modules must be able to evolve concurrently in branches to reflect the fact that indepen-
dent features can be developed independently, possibly by different developers. It must
be possible to merge these branches later so that work does not need to be duplicated.

Large systems must be able to deal with evolving dependencies without the need to rewrite
existing code. This justifies the initial requirement of additive evolution, where data types
and methods are considered incrementally without breaking APIs by refactoring, for example,
by removing or renaming their components. Even as the software system evolves, developers
must still be able to rely on compile-time checks to ensure completeness of evolutionary steps;
in particular, static type-safety shall guarantee that methods are declared for all data type
variants of their domain. Missing implementations shall be reported in a human-readable
way at compile-time.

Solutions that apply to existing programming languages are preferable because they may
provide immediate benefit to existing systems. Language extensions and new programming
languages typically require years to manifest themselves in practice. They also often require
rewrites of entire projects, which risk the well-known second-system effect [15]. This is also
true of solutions which require code that diverges from the idiomatic use of its programming
language, for example, by creating an embedded domain-specific language. There must be
no restriction on the form of methods which can be added. There must be no exclusion of
binary methods (methods that take data types of the evolving domain as input) or producer
methods (methods which produce instances of data types in the evolving domain).

As presented in Section 2, the CoCo design pattern:
Enables method signatures (the API) of domain logic to be stable, even when the
types used in them evolve. This is facilitated by a conversion method that grants
access to evolved APIs of types. It is covariantly overridden (hence the name Covariant
Conversions) during the evolution process and integrated into a pattern of factories and
delayed instantiation that allows implementing it safely.
Operates fully within the constraints described above, as validated in several case studies
in Section 3.
Supports hierarchical grouping with method-deduplication [33].
Relies only on inheritance, interfaces with default methods, and parametric polymor-
phism (without type bounds), which are common features of mainstream object-oriented
languages [33], such as Java, Scala, and C#.
Allows programmers to write idiomatic code in object-oriented languages to construct
objects and invoke operations with method calls [30].

J. Bessai, G. T. Heineman, and B. Düdder 4:3

Figure 1 Example modeling XML components with multiple hierarchical classes, binary methods
addChild, setChildren, sameRootElements and producer methods deepClone, getChildren, and getRoot-
Tag.

Enables mergeable evolutionary branches [31], where developer teams can independently
work on extensions that can be merged without changing or recompiling any existing
code. This capability is a notable extension to EP [29] and guarantees future reusability
within the code base.

Section 4 discusses how the CoCo design pattern takes a unique position in the known
design space of possible solutions, where related approaches do not provide a solution to all
extended constraints of EP as described above. Section 5 concludes with some remarks on
pathways to broader adoption of CoCo.

2 Design Pattern

Let us consider a basic class hierarchy shown in Figure 1 to see why the CoCo design pattern
is useful and how it would be applied. Assume that we want to design some classes to
model XML data. We restrict ourselves to a subset of the possibilities of XML, which is
interesting for demonstrating the various EP aspects discussed earlier. Figure 2 illustrates the
intended use of the classes in Figure 1 with a simple XML document and its representation
by a newly constructed object tree. An abstract base class XML is extended by classes
Tag and Text as well as another abstract subdomain base class Document, which has a
single subclass SingleRoot. The XML base class defines operations that all XML elements
support. Method hasElem searches for a desired text in an XML element and its children.
Calling hasElem on the example document from Figure 2 would return true for arguments
“CoCo”, and “relatedPattern”, but false for “Visitor” or “related”. As a convenience,
the default-implemented method notHasElem confirms that the desired text is not present.

Method deepClone recursively copies an entire XML element into a new object structure.
The addChild method tries to add a given element to become a child node of an XML
element. This might not always work and so addChild returns a boolean to indicate success.
The simplest element, represented by class Text, represents plain text in a document.
Therefore its addChild implementation does nothing and returns false. Objects of class Tag
have a name and an array of children. Their addChild method appends the given element
to that array and returns true. In contrast to Text, where operations work locally, the

ECOOP 2021

4:4 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

<des ignPattern>
<name>CoCo</name>
<re l a t edPat t e rn>Factory</ re l a t edPat t e rn>

</des ignPattern>

new SingleRoot (
new Tag(

" des ignPattern " ,
new XML[] {

new Tag("name" , new XML[] { new Text ("CoCo") }) ,
new Tag(" r e l a t edPat t e rn " , new XML[] { new Text (" Factory ") })

}
)

) ;

Figure 2 Example XML document (top) and Java code for its construction (bottom) based on
the classes shown in Figure 1.

hasElem and deepClone methods of Tag recursively call the appropriate methods of the XML
elements known via the children array. Class SingleRoot is a special case of abstract class
Document, where the topmost element is a single object of class Tag. Operations from
XML are implemented performing recursive calls to the child root. Method getRootTag
of SingleRoot returns the single root tag injected into an Optional wrapper class. The
intended semantics of the parent method signature in Document is that getRootTag can be
a partial method returning an empty Optional value for some possible implementations.
Finally, sameRootElements in SingleRoot checks if the name of the current root tag matches
the name of the root tag from the other document. This check uses getRootTag on the
argument, checking if the partial result is present before comparing with the getName result.

Note that classes XML, Tag, and Document occur as types of parameters in addChild,
setChildren, and sameRootElements. These methods are binary methods [4] because they
involve the object on which they are called (this) and their parameter is also an object of a
type present in the inheritance hierarchy. Methods deepClone, getChildren, and getRootTag
are producer methods because their result is an instance produced from a type present in
the inheritance hierarchy. Constructors are producer methods, and sometimes (in Tag
and SingleRoot) binary methods. The return type of deepClone is covariantly overridden
(i.e., safely replaced by a compatible subclass) in Tag and Document to enable recursive
implementations that can pass cloned elements to other binary methods.

Extending the class hierarchy at any point with a new class is easy and can be done
without recompiling or modifying existing code. This is, after all, the main modularity benefit
of class-oriented programming. However, inserting a new method is problematic because
it has to be inserted in a class, which needs to be recompiled and will cause a recursive
recompilation of all sub-classes. Even worse, if the method is abstract or requires different
implementations in some sub-classes, multiple classes have to change. In scenarios where the
hierarchy is part of a library developed and distributed by a third-party, this is problematic
and might even be impossible when the distribution is under a closed-source license.

A flawed but informative attempt to fix the issue is shown in Figure 3. Here, new classes
(prefixed with E) are naively inserted to contain a new binary method validate and a new
producer method asTag. Method validate is intended to use the current element as a schema
to validate the given XML tag, while asTag checks if the current XML element is a tag
and returns it as such, if possible. The new classes mirror the old ones, extending each of
them together with their new parent. First of all, this is impossible in languages without
multi-inheritance (e.g., Java). Additionally, the interplay between the new binary method
validate and the old producer methods is fundamentally broken: method validate requires an

J. Bessai, G. T. Heineman, and B. Düdder 4:5

Figure 3 Flawed attempt to extend class hierarchy with a new binary method validate and a new
producer method asTag provided in the extended interfaces EXML, EDocument, ETag, EText,
and ESingleRoot (shaded background).

object of type ETag, while the producer methods provide objects of the old types (without
an E-prefix) that were present before the extension. Wang and Oliveira [30] propose to
solve the problem of multi-inheritance by turning the classes into a hierarchy of interfaces,
which are implemented by some final classes that provide the code for getters, setters, and
constructors. Their solution covariantly overrides all producer methods (including getters)
whenever an evolution needs to add a method to the class hierarchy. In Figure 3, for example,
EXML would become an interface with an abstract override of method deepClone(): XML to
deepClone(): EXML. This trivial solution (at first glance) to the expression problem results
in more problems upon closer inspection. One problem is that mutable attributes no longer
work. Setters, as a special case of binary methods, cannot override their parameter type to
evolved versions because method parameters are contravariant, that is, they need to be less
specialized or remain the same with each inheritance step. In the example, the setChildren
setter in class Tag would require an array of EXML which is more specialized than XML.
Wang and Oliveira [30] propose to fix this by adding generic parameters with type bounds
that abstract over any domain type reference. Their example remains incomplete because it
does not show an extension with binary and producer methods after these type bounds have
been introduced. In practice, the type bounds break inheritance because they covariantly
modify the contravariant type of parameters of binary methods. They also break producer
methods (such as deepClone) that need to construct instances of the evolved types, but invoke
earlier constructors in their implementations. This forces producer code to be duplicated
and modified with each evolution, violating the requirement not to duplicate code.

The CoCo design pattern eliminates the aforementioned issues by allowing references to
the most generic (earliest) class type everywhere, providing abstract factory methods for
constructors and conversion methods to convert earlier instances to later versions. Figure 4
shows the base class hierarchy implemented using the CoCo design pattern. Java and

ECOOP 2021

4:6 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Figure 4 Hierarchy of Figure 1 implemented using the CoCo design pattern. Extension with a
new data type Schema and factory shown in the tinted box. Methods are abstract in interfaces
unless they have default implementations which are stereotyped by «default».

Scala code for Figure 4 and the following figures throughout this section is available in
the accompanying artifacts. As with the solution by Wang and Oliveira [30], all classes
become interfaces to avoid issues with multi-inheritance. Methods are placed, as before,
with implementations provided as default implementations (a feature available in Java, C#,
and other mainstream OO languages). An additional Factory interface is introduced with
abstract methods corresponding to each of the constructors of the naive object-oriented
solution from Figure 1. Note that all interfaces are parameterized for domain types mentioned
in the signature of methods. This parameterization allows delaying specifying which types
will be finally used. A convert method is added to the factory for each parameterized type.
Once an evolution is added, these convert methods will be covariantly overridden to refine
their results to the latest evolutions of the converted classes. We choose to use inheritance
from the Factory interface to make conversions and factory methods available in all parts of
the type hierarchy. Conversions can be implemented in the next step, which will use the
additional getSelf methods in each of the convertible interfaces. These methods are only
necessary if a type is convertible (i.e., mentioned in a signature) and so the interfaces XML,
Document, and Tag require new getSelf methods, while Text and SingleRoot can inherit
them. Figure 4 also shows that the basic object-oriented feature to add new data types is not
affected. The tinted box in the upper right contains a new data type Schema, which can
be added independently of any code that was present before. Instances are instantiated by
a newly-added extended Factory, SFactory. These additions appear in a new compilation
unit without changing existing code. Unlike the Visitor pattern, CoCo does not compromise
the advantage of object-oriented programming, namely, being able to freely add data types.

Figure 5 shows how the interfaces from Figure 4 are implemented by classes to allow
instantiation. The implementation is fairly trivial, adding a finalized component (prefixed with
F) for every component of the original class diagram. All getSelf methods are implemented
by returning the current object (this). The convert methods of the final factories simply

J. Bessai, G. T. Heineman, and B. Düdder 4:7

Figure 5 Final layers to instantiate the interfaces from Figure 4. The tinted upper box contains
the final layer of the initial diagram, while the lower tinted box contains the separate finalized layer
for the extension with Schema. Data types of the extension are filled in gray color. Comments in
the center column show that only trivial getter, setter, constructor, and conversion code is added,
which does not contain business logic or unsafe casts.

ECOOP 2021

4:8 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

dispatch to the getSelf method of their argument. None of these methods need any casts,
because in the final layer, generics parameters for the return type of getSelf are instantiated
to the finalized types which inherit from the domain types at the most recent level. Delaying
the implementation of convert and instantiation of generics until this moment enables convert
methods (and thereby the pattern) to ensure stability of the domain logic methods, while
their implementations can convert to the latest known evolution. Instantiation in factory
methods is forwarded to constructor calls. Final classes (FTag, FText, FSingleRoot,
FSchema) add constructors, getters, and setters with a field for each attribute reachable
via the get-set-protocol prescribed by their interface. Note how the newly created layer
contains no additional domain logic. In principle, a compiler extension or code generator
could automatically produce it, and modern languages, such as Scala, allow to implement
this layer with very few lines of code. Figure 5 already includes a (separate) final layer for
the addition of the data type Schema.

Figure 6 shows a modular evolution that adds the binary method, validate, and the
producer method, asTag, which previously failed in the naive approach. The method is
added into a new extended domain interface EXML. Its parameter is typed by the earliest
version of the domain interface Tag and does not need to evolve any further. This is possible
because the implementation of validate has access to convert inherited from the extended
factory interface EFactory, which allows to safely transform the parameter into an ETag
instance. The convert methods are covariantly overridden with a refined result type (e.g.,
EXML instead of XML), which gives the CoCo design pattern its name.

Method validate is placed in the EXML interface and returns an optional error message if
validation fails. If an element is not suitable to validate the given tag, it can return an error
message. This behavior serves as a default implementation in EXML and is inherited in
ETag, EText, EDocument, and ESingleRoot. Sharing default behavior for the general
case in base classes is crucial for real world usability, which is discussed at length in [33].
Alternatively, we could have opened up Schema for extension by introducing it with a
generic parameter, a getSelfSchema method, and a convert in SFactory, or we could do the
same for the new type ESchema. In both cases validate would be available in ESchema,
which in the first case could be obtained from any Schema and in the second case would
serve as its own subdomain base class1.

Implementing validate in ESchema is possible by recursively constructing new sub-
schemata for the children of the document represented by the current schema. This is
possible with the producer methods of the classes (for accessing children) and the factory
methods from EFactory. Factory-produced instances are usable at the current level, because
they can again be converted. The new producer method toTag is there to check if elements of
the document are tags to recursively validate. It is defined in EXML and only overridden by
the class ETag. Though not required in the example, extended interfaces could also choose
to override an existing method introduced by an earlier extension, or require new getters
and setters from their implementing final classes. Developers can remedy bad design choices
(e.g., because new methods and data types can implement operations more efficiently) or add
more fields to the domain data types. Since all extensions are provided in interfaces, even
mainstream object-oriented languages such as Java and C# allow merging multiple domain
evolutions by using multi-inheritance. In the example, this would result in E-prefixed classes,
each extending multiple prior versions. Extended domain data types can then supply any

1 The interested reader may find such domain extensions in the accompanying code for the TAPL case
study discussed later

J. Bessai, G. T. Heineman, and B. Düdder 4:9

Figure 6 Extension with a new binary method toValidate and a producer method asTag. New
components are placed in the tinted box. With convert, binary methods can refer to the old (less
general) domain types instead of the new E-prefixed types, while avoiding contravariance issues
from overriding parameters.

ECOOP 2021

4:10 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

missing implementations for pairs of types and methods, where the type is present in one
branch, while the method is required in interfaces from a different branch. The next section
presents a case study on the traditional Expression Problem domain, illustrating why such a
merge may be useful.

The class hierarchy for implementations of the extended layer from Figure 6 is shown
in Figure 7. This time the extended interfaces need to be instantiated. Since extended
interfaces are derived from the earlier versions, their final instantiations in FEFactory,
FEXML, FEDocument, FETag, FEText, FESingleRoot, and FESchema remain
compatible with any code that is written to work with their respective earlier versions (such
as Factory<FX,FT,FD> or XML<FX,FT,FD> as long as the parameters FX, FT,
FD remain abstract by the client. In any case, whether fixing a final version or abstractly
working with its interfaces, clients can directly call methods without using visitors or object
algebras. Clients also have access to convert methods via factories to ensure that objects
created from producer methods provide the latest API required by the client. The final
implementations are similar to those in Figure 5, but they do not contain non-trivial or
domain-specific replicated code because all they do is add trivial getter, setter, constructor,
and conversion methods.
public c lass Cl i en t {

s t a t i c c lass ClientM0<FX,FT,FD> {
private f i n a l Factory<FX,FT,FD> fac t o ry ;
f i n a l Document<FX,FT,FD> demoDoc ;
public ClientM0 (Factory<FX,FT,FD> fac t o ry) {

this . f a c t o ry = fa c t o ry ;
this . demoDoc =
fa c t o ry . s ing l eRoot (
f a c t o ry . tag (" des ignPattern " ,
f a c t o ry . tag ("name" , f a c t o ry . t ext ("CoCo")) ,
f a c t o ry . tag (" r e l a t edPat t e rn " , f a c t o ry . t ext (" Factory ")))) ;

}
public void run () {
System . out . p r i n t l n ("Has␣CoCo : ␣ " + demoDoc . hasElem ("CoCo")) ;
System . out . p r i n t l n ("Has␣ r e l a t edPat t e rn : ␣ " + demoDoc . hasElem (" r e l a t edPat t e rn ")) ;
System . out . p r i n t l n ("Has␣ V i s i t o r : ␣ " + demoDoc . hasElem (" V i s i t o r ")) ;
System . out . p r i n t l n ("Has␣ r e l a t e d : ␣ " + demoDoc . hasElem (" r e l a t e d ")) ;

}
}
s t a t i c c lass ClientM2<FX,FT,FD> {

private f i n a l EFactory<FX,FT,FD> fac t o ry ;
private f i n a l ClientM0<FX,FT,FD> co l l a b o r a t o r ;
f i n a l XML<FX,FT,FD> schema ;
public ClientM2 (EFactory<FX,FT,FD> factory , ClientM0<FX,FT,FD> co l l a b o r a t o r) {

this . f a c t o ry = fa c t o ry ;
this . c o l l a b o r a t o r = co l l a b o r a t o r ;
this . schema =
fa c t o ry . schema (f a c t o ry . s ing l eRoot (
f a c t o ry . tag (" des ignPattern " ,
f a c t o ry . tag ("name") ,
f a c t o ry . tag (" r e l a t edPat t e rn ")))) ;

}
public void run () {
c o l l a b o r a t o r . run () ;
Optional<Tag<FX,FT,FD>> root = co l l a b o r a t o r . demoDoc . getRootTag () ;
i f (root . isEmpty ()) { return ; }
Optional<Str ing> i sVa l i d = fa c t o ry . convert (schema) . v a l i d a t e (root . get ()) ;
System . out . p r i n t l n (" Errors : ␣ " + i sVa l i d . t oS t r i ng ()) ;

}
}
public s t a t i c void main (St r ing [] a rgs) {
EFactory<FEXML, FETag , FEDocument> fa c t o ry = new FEFactory () {} ;
ClientM0<FEXML, FETag , FEDocument> c l i e n t = new ClientM0<>(f a c t o ry) ;
ClientM2<FEXML, FETag , FEDocument> evolved = new ClientM2<>(factory , c l i e n t) ;
evolved . run () ;

}
}

Listing 1 Stand alone example for evolving client code using Factories

J. Bessai, G. T. Heineman, and B. Düdder 4:11

Figure 7 Final layer to instantiate the interfaces from Figure 6. New components are placed in
the tinted box on the left. The finalized classes are similar to those from Figure 5, but implement
the extended interfaces and instantiate generics to the newest finalized versions.

ECOOP 2021

4:12 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Listing 1 contains evolving client code using the pattern: the two client classes are ClientM0
and ClientM2 (while wrapped using a single class Client for this paper, this is not
essential). The clients both have factories at their intended level, received as arguments via
their constructor (which is just dependency injection, popular in object-oriented programming
[8]). Finalized types in the clients are kept as generic parameters. The first client, ClientM0,
operates at the first level and initializes the document from Listing 2 in its constructor. Its run
method performs the previously described calls to hasElem. The second client, ClientM2, is
passed a reference to the first, and then constructs a schema for the example XML document.
Its run method interacts with the first client by calling its run method and also by using
its document, and validating its root tag (if present). Only in the very last stage of the
program, does the main method instantiate the generic parameters with the finalized types of
the latest required level, and an FEFactory is passed to construct all required objects. This
final construction step could also be automated by a dependency injection framework such
as Guice [11]. The client code is idiomatic Java and the pattern is visible only in the passing
of generic parameters and the occasional call to convert (here used to convert Schema to
ESchema to gain access to its validate method). More advanced languages, such as Scala,
can turn convert into an implicit conversion, automatically inserting it whenever the compiler
expects a more advanced type (we will see this in the next section). In Scala we can also
bundle together all generic parameters into one and use type members of path dependent
types to access them2. This mitigates accumulation of generic parameters (sometimes called
“parameterization boilerplate”). Readers with advanced Scala skills will find a demonstration
of parameter bundling with path-dependent types in the artifacts for the XML example.

As we have seen in the previous example, CoCo is a design pattern rather than a
framework-based approach. It is, therefore, appropriate to conclude this section using the
traditional classification of design patterns established in [9].

Pattern Name and Classification
Covariant Conversions (CoCo), Creational and Behavioral Class Pattern.

Intent
CoCo structures data type classes to be extended in the future with new classes, new
operations, and new fields without modifying earlier code. Type-safe convert methods
transform earlier data type instances into their newest evolutionary representation to
access operations added later.

Motivation
Traditional inheritance-based object-oriented programming languages do not allow meth-
ods to be added to a class hierarchy without modifying previously written code. This is
known as the Expression Problem [29] and imposes particular difficulties when producer
or binary methods are involved.

Applicability
Use the CoCo design pattern when

you intend to deploy your classes in compiled form and still allow future evolutions to
add new operations
you want to merge two or more independent evolutions
you want to introduce new hierarchy levels to an existing subtype structure
you want to override an existing operation of an existing data type

2 This is an idea suggested by a reviewer of this paper.

J. Bessai, G. T. Heineman, and B. Düdder 4:13

Structure
There are two families of interfaces in the pattern. A domain interface undergoes evolutions
over time, as new data types and operations are added, and even new subdomains are
identified. A factory interface provides the API for creating objects from the growing
family of data types in the domain and a parameterized convert method that is covariantly
overridden to ensure access for data types to all operations defined for the current evolution
stage. Each evolution defines an extension-factory interface to instantiate objects of that
evolution and specify the signature of the conversion method, and extension-domain
interfaces that specify operations available for the data types in that evolution, as well
as their hierarchy. Each of the inheritance relationships exists to share a signature or
provide a default implementation.

Collaborations
The actual instantiation of a data type object is deferred to the finalized classes. Objects
can ensure API compatibility with convert methods that invoke getSelf to return an
instance of the current object at its latest evolution stage. The client code simply invokes
operations on the returned objects using regular object-oriented method invocations.

Consequences
This approach minimizes code duplication by ensuring the designer can place the imple-
mentation of an operation in either an extension-domain interface or the relevant logic
interfaces. An important implication of this pattern is that the compiler can statically
detect missing operations in the finalized classes (i.e., a logic-interface is missing a method
definition). Also, because there never is a need to dynamically cast objects, there can be
no run-time exception during convert. If an evolution only adds new data types (tinted
box in Figure 4), there is no need to introduce data type extension interfaces for earlier
data types. Each evolution can support a hierarchy to structure the data types as needed.
Domain data types need to be exposed via type variable abstractions if they are ever to
be used in method signatures.

Implementation All objects are accessed through a hierarchy of domain interfaces, which
has a factory interface as its base, and is refined via inheritance in subsequent evolutions,
as shown in Figures 4 and 6. Instantiation occurs in a thin layer of finalized interfaces
and classes. The top-level domain and factory interfaces have type parameters for every
domain type that is mentioned in a signature and needs conversion. Arguments for these
parameters ultimately refer to some finalized interface. Subdomain extensions are useful
when parts of your subdomain have methods meant only for those subdomains. Not
just a matter of having uniform access to the subdomain type hierarchy, methods could
be implemented in the intermediate stages of the hierarchy to be shared throughout.
Producer and binary methods may refer to the earliest points of definition of domain
types in their signatures and operate using factory conversion and construction methods.
This avoids any variance issues during inheritance. Client code invoking a producer
operation can call convert to ensure the object conforms to the latest evolution stage. It
can keep the type parameters for finalized classes abstract and only rely on non-finalized
domain factories and interfaces to remain compatible with future updates to the code.

Related Patterns
CoCo uses abstract factories [9] for uniform access to object construction; as discussed
in [27]; this allows for future extension by allowing instances of newer evolutions to be
supplied to existing code. Accessing APIs through interfaces provided by factories is
compatible with the principles of inversion of control, also known as dependency injection.
Covariant overrides and finalized classes are inspired by Wang and Oliveira [30].

ECOOP 2021

4:14 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Sub PrettyP

m0 m1 m2 m3

Divd
Mult
Neg

m4

Simplify
Collect

alt1
MultBy

Equals

m5

AsTree

m6

m7alt2

Add
Lit

Eval Id

PowBy

m7

Power

alt2

Eql

Truncate

Figure 8 Extension Graph history for mathematical expressions domain.

package exp
t r a i t Exp [T] extends Factory [T] { def g e t S e l f :T }
t r a i t Factory [T] {

implicit def convert (other : Exp [T]) : Exp [T]
}
//
package exp .m0
t r a i t Exp [T] extends exp . Exp [T] with Factory [T] { def eva l : Double }
t r a i t Factory [T] extends exp . Factory [T] {

def l i t (va lue : Double) : exp . Exp [T]
def add (l e f t : exp . Exp [T] , r i g h t : exp . Exp [T]) : exp . Exp [T]
implicit override def convert (e : exp . Exp [T]) : Exp [T]

}
t r a i t Lit [T] extends Exp [T] {

def value : Double
def eva l : Double = value

}
t r a i t Add [T] extends Exp [T] {

def l e f t : exp . Exp [T]
def r i g h t : exp . Exp [T]
def eva l : Double = l e f t . eva l + r i gh t . eva l

}

object f i n a l i z e d {
t r a i t Exp extends exp .m0. Exp [Exp] with Factory { def g e t S e l f : Exp = this }
t r a i t Factory extends exp .m0. Factory [Exp] {

override def l i t (va lue : Double) : Exp = new Lit (value)
override def add (l e f t : exp . Exp [Exp] , r i g h t : exp . Exp [Exp]) : Exp =

new Add(l e f t , r i g h t)
override implicit def convert (e : exp . Exp [Exp]) : Exp = e . g e t S e l f

}

class Lit (val value : Double) extends Exp with exp .m0. L i t [Exp]
class Add(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends Exp with exp .m0.Add [Exp]
}

Listing 2 Scala implementation of initial version of hierarchy

package exp .m1
t r a i t Factory [T] extends exp .m0. Factory [T] {

def sub (l e f t : exp . Exp [T] , r i g h t : exp . Exp [T]) : exp . Exp [T]
}
t r a i t Sub [T] extends exp .m0. Exp [T] with Factory [T] {

def l e f t : exp . Exp [T]
def r i g h t : exp . Exp [T]
def eva l : Double = l e f t . eva l − r i g h t . eva l

}
object f i n a l i z e d {

import exp .m0. f i n a l i z e d . Exp
t r a i t Factory extends exp .m1. Factory [Exp] with exp .m0. f i n a l i z e d . Factory {

override def sub (l e f t : exp . Exp [Exp] , r i g h t : exp . Exp [Exp]) : Exp =
new Sub(l e f t , r i g h t)

}
class Sub(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends exp .m1. Sub [Exp] with Exp with Factory
}

Listing 3 Modular extension adding Sub data type with minimal extensions required to factories

J. Bessai, G. T. Heineman, and B. Düdder 4:15

3 Case Studies

We have applied the CoCo design pattern to two standard case studies (evolving mathematical
expressions and an example from a course on compiler construction) to demonstrate its
effectiveness, with full implementations provided as artifacts with the paper.

The evolution history for the mathematical expression domain is captured in Figure 8
using an extension graph [27]. CoCo was the only pattern for which we achieved no violation
of any of the constraints imposed by the Expression Problem, as we discuss in Section 4. This
rich example offers a rigorous benchmark to validate any proposed EP solution. From an
initial system, m0, with Lit and Add, evolution m1 adds the Sub data type, while m2 adds
the prettyp operation that creates a string representation of an expression. An independent
branch, alt1, diverges and adds a new producer operation, multBy, and data type, Power
is added in alt2. The main branch continues development, each new evolution introducing
new data types and operations as specified, such as division, multiplication, negation, literal
collecting and expression simplification. Truncate is an example of an operation with a side
effect. The subsequent three evolutions – m5, m6, and m7 – introduce two binary operations
equals and eql for equality checks (with equals using equality on trees computed by astree and
eql dispatching to its argument instead), and a producer operation powBy for exponentiation.
package exp .m2
t r a i t Exp [T] extends exp .m0. Exp [T] with Factory [T] {

def prettyp : S t r ing
}
t r a i t Factory [T] extends exp .m1. Factory [T] {

implicit override def convert (e : exp . Exp [T]) : exp .m2. Exp [T]
}
t r a i t Lit [T] extends exp .m0. L i t [T] with Exp [T] {

def prettyp : S t r ing = value . t oS t r i ng
}
t r a i t Add [T] extends exp .m0.Add [T] with Exp [T] {

def prettyp : S t r ing = St r ing . format ("(%s+%s) " , l e f t . prettyp , r i g h t . prettyp)
// The compiler i m p l i c i t l y r e w r i t e s t h i s to :
// Str ing . format ("(% s+%s) " , convert (l e f t) . pret typ , convert (r i g h t) . p r e t t y p)

}
t r a i t Sub [T] extends exp .m1. Sub [T] with Exp [T] {

def prettyp : S t r ing = St r ing . format ("(%s−%s) " , l e f t . prettyp , r i g h t . prettyp)
}

object f i n a l i z e d {
t r a i t Exp extends exp .m2. Exp [Exp] with Factory {

def g e t S e l f : Exp = this
}
t r a i t Factory extends exp .m2. Factory [Exp] {

override def l i t (va lue : Double) : Exp = new Lit (value)
override def add (l e f t : exp . Exp [Exp] ,

r i g h t : exp . Exp [Exp]) : Exp = new Add(l e f t , r i g h t)
override def sub (l e f t : exp . Exp [Exp] ,

r i g h t : exp . Exp [Exp]) : Exp = new Sub(l e f t , r i g h t)

implicit override def convert (e : exp . Exp [Exp]) : Exp = e . g e t S e l f
}

class Lit (val value : Double) extends Exp with exp .m2. L i t [Exp]
class Add(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends exp .m2.Add [Exp] with Exp
class Sub(val l e f t : exp . Exp [Exp] ,

val r i g h t : exp . Exp [Exp]) extends exp .m2. Sub [Exp] with Exp
}

Listing 4 Modular extension that adds prettyp operation, requiring extensions for existing data
types to contain domain logic, and extended factories to contain implicit conversion methods

A final combined branch, m7alt2, merges together two independent branches, alt2 and
m7, leading to optimizations where powBy from the main branch is reimplemented to return
newly constructed elements of type Power from alt2 (and similarly for multBy and Mult).

ECOOP 2021

4:16 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

This case study is fully implemented in Java, Scala, and C# 8.0 with small variations, as
provided in the accompanying artifacts. The C# implementation using .NET Core 3.1
illustrating applicability to languages not based on the Java virtual machine. Aside from the
language-specific syntax of C#, it completely conforms to the solution we described above.

The Scala implementation of CoCo reveals that only a small amount of boilerplate code
is required. Within the space limitations of this paper, we can actually show the full code for
extensions up to m2. Listing 2 contains the initial exp.Exp[T] domain interface and factory
meant for a future family of data types in the domain of mathematical expressions. In Scala,
interfaces with default methods are represented by traits. The exp.Exp[T] trait contains
the signature of the getSelf method that returns an instance of the parameterized type, T.
The exp.Factory[T] trait specifies the signature of the convert method that converts an
other instance into the most recent realization of the Exp[T] type in the domain.

The initial definition of the system, exp.m0, provides the exp.m0.Exp trait that extends
the domain with a new eval method computing the numerical value of a data type instance.
Two new data types are defined – Lit and Add – which implement eval in the context of
values that might (in a future evolution) be further specialized. The finalized object acts
as a namespace to group the final trait implementations. In accordance with the pattern,
they are comprised of a concrete finalized.Factory that offers methods to instantiate and
convert the known data types, as well as trivial implementations for the domain interfaces.
No domain logic of the eval method leaks into this finalized area.

package exp .m4
t r a i t Exp [T] extends exp .m2. Exp [T] with Factory [T] {

def s imp l i f y : exp . Exp [T]
def t runcate (l e v e l : Int) : Unit
def c o l l e c t : L i s t [Double]

}
t r a i t Factory [T] extends exp .m3. Factory [T] {

implicit override def convert (toConvert : exp . Exp [T]) : exp .m4. Exp [T]
}

t r a i t BinaryExp [T] extends Exp [T] {
var _le f t : exp . Exp [T]
var _right : exp . Exp [T]
def l e f t : Exp [T] = _le f t
def r i g h t : Exp [T] = _right

def t runcate (l e v e l : Int) : Unit = {
i f (l e v e l > 1) {

l e f t . t runcate (l e v e l −1)
r i gh t . t runcate (l e v e l −1)

} else {
_ l e f t = l i t (l e f t . eva l)
_right = l i t (r i g h t . eva l)

}
}

}

t r a i t Add [T] extends exp .m2.Add [T] with BinaryExp [T] {
def s imp l i f y : exp . Exp [T] = {

i f (l e f t . eva l + r i gh t . eva l == 0) {
this . l i t (0)

} else i f (l e f t . eva l == 0) {
r i gh t . s imp l i f y

} else i f (r i gh t . eva l == 0) {
l e f t . s imp l i f y

} else {
this . add (l e f t . s imp l i f y , r i g h t . s imp l i f y)

}
}
def c o l l e c t : L i s t [Double] = l e f t . c o l l e c t ++ r i gh t . c o l l e c t

}

Listing 5 Partial listing from exp.m4 containing BinaryExp generic implementation

J. Bessai, G. T. Heineman, and B. Düdder 4:17

Listing 3 encapsulates the first modular evolution, exp.m1, adding the Sub data type to
the system. With minimal new code (analogous to the tinted part in Figures 4 and 5), the
new Factory classes extend existing factories to provide methods to instantiate Sub objects.

Listing 4 encapsulates the second modular evolution, exp.m2, that adds a new prettyp
operation to the system. The existing Exp and Factory traits are refined from the prior
evolution without any code duplication. The new operation must be applicable to all existing
data types, so new refined types are created for Lit, Add, and Sub. The finalized Factory
again instantiates and converts these refined data types. In the prettyp implementation for
types exp.m2.Add and exp.m2.Sub we see a feature of Scala at work, which declares convert
as an implicit method inserted by the compiler when necessary. This reduces the boilerplate
code but is not strictly necessary; other languages would manually invoke convert.
package exp . m7alt2
import exp .m5.{Node , Tree}
t r a i t Exp [T] extends exp .m7. Exp [T] with exp . a l t 1 . Exp [T] with Factory [T] {

override def powby(other : exp . Exp [T]) : exp . Exp [T] = power (this , o ther)
override def multby (other : exp . Exp [T]) : exp . Exp [T] = mult (this , o ther)

def isPower (base : exp . Exp [T] , exponent : exp . Exp [T]) : Boolean = f a l s e
}
t r a i t Power [T] extends exp . a l t 2 . Power [T] with Factory [T] with Exp [T]

with exp .m5. BinaryExp [T] {
def base : exp . Exp [T] = _le f t
def exponent : exp . Exp [T] = _right
def s imp l i f y : exp . Exp [T] = {

i f (exponent . eva l == 0) { l i t (1) }
else i f (exponent . eva l == 1) { base . s imp l i f y }
else i f (base . eva l == 0) { l i t (0) }
else i f (base . eva l == 1) { l i t (1) }
else { power (base . s imp l i f y , exponent . s imp l i f y) }

}
def c o l l e c t : L i s t [Double] = base . c o l l e c t ++ exponent . c o l l e c t
def id : Int = 80440
def eq l (that : exp . Exp [T]) : Boolean = that . isPower (base , exponent)
override def isPower (base : exp . Exp [T] , exponent : exp . Exp [T]) : Boolean =

base . eq l (this . base) && exponent . eq l (this . exponent)
}
t r a i t Factory [T] extends exp . a l t 2 . Factory [T] with exp .m7. Factory [T] {

implicit override def convert (toConvert : exp . Exp [T]) : exp . m7alt2 . Exp [T]
}

object f i n a l i z e d {
t r a i t Exp extends exp . m7alt2 . Exp [Exp] with Factory {

def g e t S e l f : Exp = this
}

t r a i t Factory extends exp . m7alt2 . Factory [Exp] {
override def l i t (va lue : Double) : Exp = new Lit (value)
override def add (l e f t : exp . Exp [Exp] , r i g h t : exp . Exp [Exp]) : Exp =

new Add(l e f t , r i g h t)
/∗ . . . s i m i l a r methods omitted . . . ∗/
override def power (base : exp . Exp [Exp] , exponent : exp . Exp [Exp]) : Exp =

new Power (base , exponent)

implicit override def convert (e : exp . Exp [Exp]) : Exp = e . g e t S e l f
}

class Lit (val value : Double) extends exp .m7. L i t [Exp] with Exp
class Add(var _le f t : exp . Exp [Exp] , var _right : exp . Exp [Exp])

extends exp .m7.Add [Exp] with Exp

/∗ . . . s i m i l a r c l a s s d e f i n i t i o n s omitted . . . ∗/

class Power (var _le f t : exp . Exp [Exp] , var _right : exp . Exp [Exp])
extends exp . m7alt2 . Power [Exp] with Exp

}

Listing 6 Merging branches exp.m7 and exp.alt2

In evolution exp.m4, the truncate operation can be generically implemented for any
expression with two recursively-defined child attributes. This is accomplished with an
intermediate trait, exp.m4.BinaryExp shown in Listing 5, that is inherited by data types,
such as Add, and can also be further extended by subsequent evolutions.

ECOOP 2021

4:18 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Listing 6 for exp.m7alt2 shows how to merge different evolved branches. Here, multby
and powby are overridden at the Exp level of the hierarchy to always instantiate appropriate
domain data types, which become available after the merge. Traits can inherit from their
predecessors in the two branches using the Scala’s with keyword. A refinement of the trait for
the exponentiation data type exp.alt2.Power is required to supply method implementations
for the operations added in the main branch after divergence. For the new main branch data
types, this would have also been possible but is not necessary in the example because the
only new method in the alternative branch is multby, which is specified in exp.m7alt2.Exp.
The finalized classes work exactly as expected, which is why some of their code is omitted in
the listing (but available in the accompanying code repository).

Binary methods [4] are challenging because they involve the object on which they are
called (i.e., this) and their parameter is also an object of a type present in the inheritance
hierarchy. Listing 6 combines two independent branches, bringing together for the first time
the Power data type (for exponentiation) and the eql operation that checks whether two
mathematical expressions are equal. Our solution (coded in the Power trait) conforms to the
strong binary method equality proposed by Zenger and Odersky [31] which dispatches on
the arguments.

Listing 7 shows client code for a unit test of exp.m2.Add. The test is structured in a
reusable version TestTemplate that keeps the final class parameter T abstract and works
with the factory from exp.m2, as well as a concrete executable version ActualTest which
refines the abstract class to use the implementations from exp.m2.finalized. This way
tests are able to fully reuse the abstract part and instantiate it to use evolved finalized
interfaces instead.
package exp .m2
import org . s c a l a t e s t . FunSuite

t r a i t TestTemplate [T] extends Factory [T] with exp .m1. TestTemplate [FT] {
val s u i t e : FunSuite
import s u i t e ._

override def t e s t () : Unit = {
super . t e s t ()

val expr1 = this . add (this . l i t (1 . 0) , this . l i t (2 . 0))
a s s e r t (" (1 .0+2 .0) " === expr1 . prettyp)

val expr2 = this . l i t (2 . 0)
a s s e r t (" 2 .0 " === expr2 . prettyp)

a s s e r t (" (1 .0 −2.0) " === this . sub (this . l i t (1 . 0) , this . l i t (2 . 0)) . prettyp)
a s s e r t (" ((1 .0 −2 .0)+(5 .0+6.0)) " === this . add (this . sub (this . l i t (1 . 0) ,
this . l i t (2 . 0)) , this . add (this . l i t (5 . 0) , this . l i t (6 . 0))) . prettyp)

}
}

class M2Test extends FunSuite { s e l f =>

object ActualTest extends TestTemplate [exp .m2. f i n a l i z e d . Exp] with
f i n a l i z e d . Factory {

val s u i t e : FunSuite = s e l f
}

t e s t ("M2") { ActualTest . t e s t () }
}

Listing 7 Test for exp.m2.Add in abstract and concrete version

J. Bessai, G. T. Heineman, and B. Düdder 4:19

Table 1 Observations for the TAPL case study.

EVF Castor CoCo
Duplication free domain code no no yes
Fully modular no no yes
Feasible w/o code generator no no yes
Statically typesafe no yes yes
Boilerplate free client code no yes yes
Code Structuring Principle functions functions classes
Human written LOC 763 768 825 (+ 862a)
Generated LOC 1892 N/Ab 0
aboilerplate for finalized class layer
bcode generated by compiler internal macros

In our second case study, we implemented, in Java, parts of the Types and Programming
Languages (TAPL) textbook by Pierce [22]. The example was also chosen to show the
features of the Extended Visitor Framework (EVF) [33] and Castor [34]. Our solution
implements typed and untyped compiler modules for natural numbers, Booleans, floats and
strings, let-bindings, function application, and lambda-calculus. Compared to EVF and
Castor, there are immediate differences in the way code and files are structured: CoCo
encourages object oriented-design, placing all functionality of one domain data type evolution
into one compilation unit (i.e., class or interface), while the other frameworks are inherently
functional with one function definition for all domain data types corresponding to one
compilation unit. This switch of perspective enabled us to find multiple modularity violations
in the solutions provided for the other frameworks. These can be traced back to the original
OCaml implementation available with the textbook. A prominent example is the pretty
print function, which converts abstract syntax trees of the compiler into human-readable
strings. In the CoCo solution, it is a method print() which returns a String and belongs
to the generic interface Element for syntax tree nodes. In EVF (and similarly in Castor),
pretty-printing is implemented as an object algebra returning instances of the interface
IPrint, which provides a functional closure over a context to keep track of variable names
for binders. This violates modularity because most compiler modules are not concerned
with – and do not even supply – syntax for variables. In CoCo, we were able to completely
avoid this issue by attaching the necessary name information to the tree upon traversal – the
object-oriented view lets us cleanly encapsulate state where it is needed instead of passing it
around in a map. Another modularity violation in EVF and Castor is that domain code for
lambda terms is duplicated to add type annotations to binders. In CoCo, we simply added
new fields for the evolutions that require types. Tests in EVF seem to require substantial
boilerplate for algebra initialization, similar to the layer of finalized classes in CoCo, but
with the crucial difference that finalized classes are not replicated by library clients. In both
frameworks, EVF and Castor, users have to interact with and understand generated code,
which we found mentally challenging when trying to re-engineer the case study. For EVF,
this was especially problematic because of its calling convention through algebraic interfaces
and a lack of type-safety where classes accept visitors of previous evolutions. In Table 1 we
summarize our findings, where lines of code are counted by cloc [6] on the parts implemented
in all three case studies.

ECOOP 2021

4:20 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

4 Related Work

The CoCo Design pattern is most directly related to the approach by Wang and Oliveira [30],
which also uses interfaces with covariant overrides to provide multiple inheritance as well
as future refinement of data type references. In contrast, there are no issues with binary
or producer methods in CoCo, and we are able to support side effects with formal setter
methods. In CoCo, one only covariantly overrides the convert method, but in [30], one has
to covariantly override every single reference to domain data types.

Harrison et al. describe an approach that generically abstracts over the final implementa-
tion type to improve type-safety in interface-based programming and client-side APIs [12].
From the client perspective, the APIs are similar enough to project the positive results from
their case study to clients using CoCo.

From the earliest investigations into the Expression Problem, the Visitor design pattern [9]
was essential, whether described by Krishnamurthi et al. [17] or Wadler’s original email [29].
It only seems natural to turn to Visitor to support newly defined operations in subsequent
evolutions.

A formal type-theoretic analysis, conducted by Oliveira [5], reveals that Visitors are
related to Church encodings in functional programming languages, showing that advanced
type system features, such as F-bounded polymorphism (also used in [27]), are required for
type-safe Visitors that remain extensible and satisfy all constraints of EP.

Further investigations on different styles of Visitor encodings [33] reveal how to externalize
Visitors and combine them with ideas from Object algebras [32]. Solutions of this form have
the drawback of breaking the traditional way to design and invoke object-oriented APIs,
and lead to non-standard, idiosyncratic code as discussed earlier in Section 3. External
Visitors [33] provide type safety not present in normal visitors but cannot be further extended
without substantial code duplication of domain logic.

EP often occurs in frameworks for designing DSLs. MontiCore [13], as well as the Revisitor
implementation pattern [18], rely on Visitors. They both hide runtime typechecks behind a
layer of code generated from domain-specific languages that extend Java with the explicit
purpose of building DSL frameworks. Chapter 2 of [25] provides an overview of modular
DSL Frameworks, which could also have been used to implement the compiler case study in
Section 3.

Verna [28] provides a detailed account of the practical issues that arise from implementing
the Visitor design pattern. In consensus with our observations, the problems with Visitor
include non-idiomatic calling conventions and lack of extensibility, without losing type-safety
or forcing code duplication. CoCo eliminates all these issues by avoiding Visitors, relying on
the idiomatic placement of methods in domain data type interfaces, and providing type-safe
conversion methods.

The Castor framework [34], which is a follow-up to EVF [33], requires self-type an-
notations, path-dependent types, and traits. This combination is (to our knowledge) only
available in Scala. Despite its heavy requirements, Castor does not provide a complete
EP solution, because (as the authors acknowledge) nested pattern-matching is not checked
for exhaustiveness. In CoCo, no similar problem occurs because dispatching on children is
always safe, and default implementations are properly placed in domain data type interfaces.
Zhang and Oliveira [34] observe that avoiding exhaustiveness issues is possible by either
adding new language features to Scala or duplicating default logic for new data types, in
violation of requirements for EP. The more pressing issue, however, is forcing programmers
to rewrite existing systems in Scala to realize the benefits from Castor. Additionally, the

J. Bessai, G. T. Heineman, and B. Düdder 4:21

Scala sub-dialect used by Castor relies on advanced language features, such as macros,
which are inaccessible to novice programmers and introduce difficult to understand compiler
error messages.

The CoCo design pattern is immediately applicable to numerous mainstream programming
languages, such as Java, C#, and C++. However, it cannot be used in Rust or a multi-
paradigm language such as Go because both programming languages have discarded class-
based inheritance hierarchies in favor of constructs akin to type classes from functional
programming languages, such as Haskell. This switch was motivated because of prominent
solutions to the EP in functional programming languages, including tagless final [16] and
trees that grow [19].

Language extensions are routinely proposed, such as extensible pattern matching with
extractors [26], but this introduces compatibility issues with existing code; it additionally
requires code generators for substantial boilerplate. Many proposed language extensions
deal with the problem of self-types, which was studied in the context of family polymor-
phism [7]. In essence, the idea is to existentially quantify over the domain type and bound
the existential quantification by the domain type at the current evolution level. Evidence for
this quantification is then associated with each instantiated object and a way to return the
current object as an instance of the existentially quantified type is given. This is in sharp
contrast to CoCo, where we universally qualify over the domain type and avoid any type
bounds. Instead, all conversion is centralized in a convert-method and delayed until the last
possible point in a finalized getSelf-method, which is no longer generic and thereby does not
have to deal with type-bounds. Listing 8 shows a short snippet of Scala, which allows both
encodings, to illustrate the essential difference.

t r a i t Exp [T] {
def g e t S e l f : T // No bound on T

}
t r a i t FExp extends Exp [FExp] { // Bound ensured in f i n a l i z e d instance

def g e t S e l f : FExp = this
}
t r a i t ExpFamily {

type S e l f <: ExpFamily // Bound to ensure c o m p a t i b i l i t y
def g e t S e l f : S e l f // Returned as a compatib le type

}

Listing 8 Scala code illustrating CoCo vs existentially encoded family polymorphism

Saito et al. [24] show how to extend a minimal Java core calculus with the features
necessary for family polymorphism. The idea can also be rephrased with path types [14],
which is why the more powerful dependent object types [1] of Scala are so suitable to illustrate
it. Still, practical integration into programming languages poses serious challenges, which
are beyond the scope of this work, but are addressed with solution proposals in [23, 35]. The
latter proposal [35] might be interesting for future work to reconcile CoCo with languages
such as Rust because it combines family polymorphism with type classes.

The program languages research community has extensively studied EP since its initial
formulation by Wadler in 1998 [29]. Wadler proposed an experimental language, GJ, based
on Visitor using a language mechanism to allow a type variable to be indexed by any inner
class defined in that variable’s bound (similar to the bound on the inner type presented in
Listing 8). This requires projections out of generic types [21] which encounters soundness
issues and was not added to Java, and even partially dropped from Scala 3.0. The Extensible
Visitor [17] requires a runtime check in a Java solution. The Interpreter design pattern [9] has
also been suggested to solve EP, but its Factory classes would have to be modified whenever
new data types are added. Object Algebras [20] similarly use interfaces to define the evolving
interface of the system while factory objects provide concrete implementations. However,

ECOOP 2021

4:22 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

Table 2 Language features necessary for the CoCo design pattern, EP approaches, and related
work.

Approach Data type/
operation extension

Producer
methods

Binary
methods

Merging
independent
evolutions

Hierarchical
ordering of
subdomains

CoCo

interfaces with default
methods; covariant
overriding of convert
method return type;
parametric polymorphism
for getSelf

multi-inheritance
from interfaces

convert
method

multi-inheritance
from interfaces inheritance

Trivially
[30]

inheritance and interfaces
with covariant overriding
of return types

not available
without
violates EP

not available
without
violates EP

multi-trait-
inheritance
in trait-based
languages

not discussed

Extensible
Visitor
[17]

inheritance and dynamic
cast (violates EP);
parametric polymorphism;
single-class inheritance

inheritance method overriding multi-inheritance
from interfaces not discussed

Interpreter
[3]

inheritance and dynamic
cast (violates EP)

duplicate methods
(violates EP)

dynamic cast
(violates EP)

multi-inheritance
from interfaces not discussed

Torgersen
[27]

inheritance and
dynamic cast (violates EP);
final methods;
parametric F-bounded
polymorphism

not discussed not discussed multi-class
inheritance not discussed

EVF
[33]

inheritance; parametric
polymorphism; interfaces
with default methods;
multi-inheritance from
interfaces; annotation-
based macros; lack of
type-safety for earlier
visitors (violates EP)

parametric
polymorphism

parametric
polymorphism

multi-inheritance
from interfaces inheritance

Castor
[34]

path-dependent types;
self-type annotations;
multi-trait-inheritance
in trait-based languages;
partial pattern
matching on types
(violates EP)

not discussed not discussed

multi-trait-
inheritance
in trait-based
languages

inheritance

supporting producer methods is only possible when the factory object algebras have access to
“the latest” object algebra in the evolution history, which can be accomplished by modifying a
special “combined” object algebra that composes together all known factories. This modifies
existing code and, in addition, working with object algebras involves considerable boilerplate
code for clients, to the point that researchers recommend using code generators [32]. Table 2
summarizes the language features required by various EP solutions.

5 Conclusion and Future Work

The CoCo design pattern combines a number of programming idioms commonly used in
object-oriented design (abstract factories, access to and sharing of implementations through
interfaces, dependency inversion) with the novel addition of covariantly overridden conversion
methods. This allows the modular future extensibility of class hierarchies with new data
types, methods, and fields without code duplication.

We have illustrated how this solves the Expression Problem within the constraints of
mainstream object oriented languages, improves modularity, and reduces the amount of
boilerplate when compared to other EP approaches. It satisfies the constraints for a “full and

J. Bessai, G. T. Heineman, and B. Düdder 4:23

final” solution as summarized by Torgersen [27]. While feasible without tool support, a path
for widescale adoption of the pattern should consider compiler assistance for generating the
boilerplate code required for the finalized class layer. Scala’s implicit conversions are among
useful compiler features to make CoCo more straightforward. However, relying on compiler
extensions would require fixing a particular language and semantics which we intentionally
avoided here, to leave the pattern applicable to a broad range of languages. In this line of
future work, a precise formal definition and proofs about it become meaningful and should
be provided. A further question for future work will be if the additional structure exposed
by the pattern can be exploited in code analysis tools to provide better insights into the
evolution and code quality of projects. One of the main contributions of the CoCo design
pattern is to illustrate that the current trend toward integrating functional programming
and specifically pattern matching into object oriented languages (e.g., JEP 394 [10]) is not
necessarily the only way forward.

CoCo avoids unsafe instance-of pattern matching and the alternative closed-world as-
sumption (i.e., data types can no longer be extended) to make it safe, without adding new
features to the type system and remaining compatible with the object-oriented paradigm
of programming. We also hope that CoCo solves some of the prevailing issues around the
overuse of the visitor pattern [28].

References
1 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence

of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

2 Jan Bessai, George Heineman, and Boris Düdder. JanBessai/ecoop2021artifacts: State
published with paper, 2021. doi:10.5281/zenodo.4756838.

3 Kim B. Bruce. Some challenging typing issues in object-oriented languages. Electron. Notes
Theor. Comput. Sci., 82(7):1–29, 2003. doi:10.1016/S1571-0661(04)80799-0.

4 William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In
Frances E. Allen, editor, Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, California, USA, January 1990, pages
125–135. ACM Press, 1990. doi:10.1145/96709.96721.

5 Bruno C. d. S. Oliveira. Modular visitor components. In Sophia Drossopoulou, editor, ECOOP
2009 - Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10,
2009. Proceedings, volume 5653 of Lecture Notes in Computer Science, pages 269–293. Springer,
2009. doi:10.1007/978-3-642-03013-0_13.

6 Al Danial. Cloc code analysis tool, September 2020. URL: https://github.com/AlDanial/
cloc.

7 Erik Ernst. Family polymorphism. In Jørgen Lindskov Knudsen, editor, ECOOP 2001 -
Object-Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22,
2001, Proceedings, volume 2072 of Lecture Notes in Computer Science, pages 303–326. Springer,
2001. doi:10.1007/3-540-45337-7_17.

8 M. Fowler. Inversion of Control Containers and the Dependency Injection pattern, 2004. URL:
http://martinfowler.com/articles/injection.html.

9 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., 1995.

10 Brian Goetz and Gavin Bierman. JEP 394: Pattern matching for instanceof. Technical report,
Open JDK, Oracle Corporation, 2021. URL: http://openjdk.java.net/jeps/394.

11 Guice Framework for Java, 2021. URL: https://github.com/google/guice.

ECOOP 2021

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.5281/zenodo.4756838
https://doi.org/10.1016/S1571-0661(04)80799-0
https://doi.org/10.1145/96709.96721
https://doi.org/10.1007/978-3-642-03013-0_13
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1007/3-540-45337-7_17
http://martinfowler.com/articles/injection.html
http://openjdk.java.net/jeps/394
https://github.com/google/guice

4:24 CoCo: A Design Pattern for Type-Safe Modular Software Evolution

12 William Harrison, David Lievens, and Fabio Simeoni. Safer typing of complex API usage
through Java generics. In Proceedings of the 7th International Conference on Principles
and Practice of Programming in Java, PPPJ ’09, page 67–75, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1596655.1596666.

13 Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wortmann. Com-
positional language engineering using generated, extensible, static type-safe visitors. In
Andrzej Wasowski and Henrik Lönn, editors, Modelling Foundations and Applications -
12th European Conference, ECMFA@STAF 2016, Vienna, Austria, July 6-7, 2016, Pro-
ceedings, volume 9764 of Lecture Notes in Computer Science, pages 67–82. Springer, 2016.
doi:10.1007/978-3-319-42061-5_5.

14 Atsushi Igarashi and Mirko Viroli. Variant path types for scalable extensibility. In Richard P.
Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors, Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
pages 113–132. ACM, 2007. doi:10.1145/1297027.1297037.

15 Frederick P. Brooks Jr. The mythical man-month (Anniversary Ed.). Addison-Wesley Longman
Publishing Co., Inc., 1995.

16 Oleg Kiselyov. Typed tagless final interpreters. In Jeremy Gibbons, editor, Generic and
Indexed Programming - International Spring School, SSGIP 2010, Oxford, UK, March 22-26,
2010, Revised Lectures, volume 7470 of Lecture Notes in Computer Science, pages 130–174.
Springer, 2010. doi:10.1007/978-3-642-32202-0_3.

17 Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman. Synthesizing object-
oriented and functional design to promote re-use. In Eric Jul, editor, ECOOP’98 - Object-
Oriented Programming, 12th European Conference, Brussels, Belgium, July 20-24, 1998,
Proceedings, volume 1445 of Lecture Notes in Computer Science, pages 91–113. Springer, 1998.
doi:10.1007/BFb0054088.

18 Manuel Leduc, Thomas Degueule, Benoît Combemale, Tijs van der Storm, and Olivier
Barais. Revisiting visitors for modular extension of executable DSMLs. In 20th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, MODELS
2017, Austin, TX, USA, September 17-22, 2017, pages 112–122. IEEE Computer Society, 2017.
doi:10.1109/MODELS.2017.23.

19 Shayan Najd and Simon Peyton Jones. Trees that grow. J. Univers. Comput. Sci., 23(1):42–62,
2017. URL: http://www.jucs.org/jucs_23_1/trees_that_grow.

20 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses. In James Noble,
editor, ECOOP 2012 – Object-Oriented Programming, pages 2–27, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

21 Lionel Parreaux. What is type projection in Scala, and why is it unsound?, 2019. Blog Entry.
URL: https://lptk.github.io/programming/2019/09/13/type-projection.html.

22 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002. URL: https:
//www.cis.upenn.edu/~bcpierce/tapl/.

23 Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. ACM Trans.
Program. Lang. Syst., 38(3):8:1–8:66, 2016. doi:10.1145/2888392.

24 Chieri Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight family polymorphism. J. Funct.
Program., 18(3):285–331, 2008. doi:10.1017/S0956796807006405.

25 Stefan Sobernig. Variable Domain-specific Software Languages with DjDSL - Design and
Implementation. Springer, 2020. doi:10.1007/978-3-030-42152-6.

26 Nicolas Stucki, Paolo G. Giarrusso, and Martin Odersky. Truly abstract interfaces for
algebraic data types: the extractor typing problem. In Sebastian Erdweg and Bruno C.
d. S. Oliveira, editors, Proceedings of the 9th ACM SIGPLAN International Symposium on
Scala, SCALA@ICFP 2018, St. Louis, MO, USA, September 28, 2018, pages 56–60. ACM,
2018. doi:10.1145/3241653.3241658.

https://doi.org/10.1145/1596655.1596666
https://doi.org/10.1007/978-3-319-42061-5_5
https://doi.org/10.1145/1297027.1297037
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/BFb0054088
https://doi.org/10.1109/MODELS.2017.23
http://www.jucs.org/jucs_23_1/trees_that_grow
https://lptk.github.io/programming/2019/09/13/type-projection.html
https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.cis.upenn.edu/~bcpierce/tapl/
https://doi.org/10.1145/2888392
https://doi.org/10.1017/S0956796807006405
https://doi.org/10.1007/978-3-030-42152-6
https://doi.org/10.1145/3241653.3241658

J. Bessai, G. T. Heineman, and B. Düdder 4:25

27 Mads Torgersen. The Expression Problem Revisited. In Martin Odersky, editor, Proceedings
of the 18th European Conference on Object-Oriented Programming, volume 3086 of Lecture
Notes in Computer Science, pages 123–143. Springer International Publishing, 2004. doi:
10.1007/978-3-540-24851-4_6.

28 Didier Verna. Revisiting the visitor: the "just do it" pattern. J. Univers. Comput. Sci.,
16(2):246–270, 2010. doi:10.3217/jucs-016-02-0246.

29 Philip Wadler. The expression problem, 1998. E-Mail to the Java Genericity Mailing List.
URL: http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

30 Yanlin Wang and Bruno C. d. S. Oliveira. The expression problem, trivially! In Lidia Fuentes,
Don S. Batory, and Krzysztof Czarnecki, editors, Proceedings of the 15th International
Conference on Modularity, MODULARITY 2016, Málaga, Spain, March 14 - 18, 2016, pages
37–41. ACM, 2016. doi:10.1145/2889443.2889448.

31 Matthias Zenger and Martin Odersky. Independently extensible solutions to the expression
problem, 2004. URL: http://infoscience.epfl.ch/record/52625.

32 Haoyuan Zhang, Zewei Chu, Bruno C. d. S. Oliveira, and Tijs van der Storm. Scrap your
boilerplate with object algebras. In Jonathan Aldrich and Patrick Eugster, editors, Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, pages 127–146. ACM, 2015. doi:10.1145/2814270.2814279.

33 Weixin Zhang and Bruno C. d. S. Oliveira. EVF: an extensible and expressive visitor framework
for programming language reuse. In Peter Müller, editor, 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of
LIPIcs, pages 29:1–29:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.ECOOP.2017.29.

34 Weixin Zhang and Bruno C. d. S. Oliveira. CASTOR: Programming with extensible generative
visitors. Sci. Comput. Program., 193:102449, 2020. doi:10.1016/j.scico.2020.102449.

35 Yizhou Zhang and Andrew C. Myers. Familia: unifying interfaces, type classes, and family
polymorphism. Proc. ACM Program. Lang., 1(OOPSLA):70:1–70:31, 2017. doi:10.1145/
3133894.

ECOOP 2021

https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.3217/jucs-016-02-0246
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1145/2889443.2889448
http://infoscience.epfl.ch/record/52625
https://doi.org/10.1145/2814270.2814279
https://doi.org/10.4230/LIPIcs.ECOOP.2017.29
https://doi.org/10.4230/LIPIcs.ECOOP.2017.29
https://doi.org/10.1016/j.scico.2020.102449
https://doi.org/10.1145/3133894
https://doi.org/10.1145/3133894

	1 Introduction
	2 Design Pattern
	3 Case Studies
	4 Related Work
	5 Conclusion and Future Work

