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Abstract
APIs are the primary mechanism for developers to gain access to externally defined services and tools.
However, previous research has revealed API misuses that violate the contract of APIs to be prevalent.
Such misuses can have harmful consequences, especially in the context of cryptographic libraries.
Various API-misuse detectors have been proposed to address this issue – including CogniCrypt, one
of the most versatile of such detectors and that uses a language (CrySL) to specify cryptographic
API usage contracts. Nonetheless, existing approaches to detect API misuse had not been designed
for systematic reuse, ignoring the fact that different versions of a library, different versions of a
platform, and different recommendations/guidelines might introduce variability in the correct usage
of an API. Yet, little is known about how such variability impacts the specification of the correct
API usage. This paper investigates this question by analyzing the impact of various sources of
variability on widely used Java cryptographic libraries (including JCA/JCE, Bouncy Castle, and
Google Tink). The results of our investigation show that sources of variability like new versions of
the API and security standards significantly impact the specifications. We then use the insights
gained from our investigation to motivate an extension to the CrySL language (named MetaCrySL),
which builds on meta-programming concepts. We evaluate MetaCrySL by specifying usage rules
for a family of Android versions and illustrate that MetaCrySL can model all forms of variability
we identified and drastically reduce the size of a family of specifications for the correct usage of
cryptographic APIs.
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1 Introduction

Application Programming Interfaces (APIs) have become fundamental to increase developer
productivity. Nonetheless, prior research [1,15,33] has indicated that developers often struggle
with using APIs for various reasons, including poor documentation, low-level abstraction,
and lack of tool support. One way to mitigate these issues are approaches to detecting API
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19:2 Dealing with Variability in API Misuse Specification

misuses [2, 12,20,24,27]. Most of these approaches are deny-listing approaches [2, 12,20,27]
– providing analyses that scan for incorrect API uses. Deny-listing approaches suffer from
false negatives and cannot be easily extended because they rely on hard-coded rules [24]. To
address these issues, CogniCrypt [24] follows an allow-list approach and instead of hard-coding
what the correct usages are, it takes a set of correct usage rules as a parameter – the latter
are specified by API developers using the CrySL specification language [24]. For instance,
CrySL has been used to model correct usage rules of Java Cryptographic APIs.

However, the correct usage of an API is often subject to various sources of variability.
They include (but are not limited to) evolving signatures and behavioral changes, e.g., due
to different security standards in case of crypto APIs.1 Last but not least, APIs like Java
Cryptography Architecture (JCA) foster flexibility through the use of different providers
that can be plugged into to override the default implementation of an algorithm. Depending
on the JCA provider, different secure algorithms (according to cryptographic standards)
might be available or not. Whether or not an API usage is correct may also vary owing to
other factors, including version of the platform (e.g., Java Platform, Android Platform) and
version of the API implementations. Nonetheless, there is a lack of understanding about (a)
how sources of API variability affect what should be considered the correct usage of an API
and (b) a solution to modelling this variability in allow-listing approaches like CrySL. This
is where this paper makes its contributions.

We perform an in-depth domain engineering on the correct usage of cryptographic APIs.
To this end, we consider the following sources from which variability might originate from:
cryptographic standards (FIPS, ECrypt, and BSI), cryptographic libraries (e.g., JCA, Google
Tink, Bouncy Castle), cryptographic library implementations (e.g., JCA providers), and
cryptographic library evolution. Based on the findings, we implement Meta-CrySL, a
meta-programming approach for managing families of CrySL specifications, ensuring that
different sources of variability can be accounted for when specifying usage patterns. Using the
new set of specifications, we conduct an empirical study to investigate two characteristics of
Meta-CrySL: expressiveness (i.e., the possibility to express all sources of CrySL variability
using Meta-CrySL), compactness (i.e., number of lines of CrySL code one can save when
writing Meta-CrySL specifications and the fraction of redundancy one can eliminate) and
correctness (i.e., does the specifications generated by Meta-CrySL detect distinct violations
when exploring different configurations of CrySL rules).

We believe that one can also benefit from using a domain engineering approach for
specifying the correct usage of non-cryptographic APIs as well. First because the sources of
variability we discuss are not unique to cryptographic APIs as all APIs offer variability in
behavior due to evolving signatures as a result of new versions. Second because variability as
a result of pluggable implementations from different providers is not unique to JCA, either
(c.f., JDBC 2). Even security standards that are unique to cryptographic APIs have parallels
in the form of context-specific usage patterns for non-crypto APIs.

To summarize, the main contributions of this paper are as follows:
Domain engineering on Java cryptographic libraries, including:

A study on the evolution of Java cryptographic APIs.
A study on different cryptographic standard recommendations.
A discussion about how the evolution of cryptographic libraries and cryptographic
recommendation impact on the correct usage of APIs.

1 Cryptographic libraries have different definitions of correctness – -and in particular secure – usages,
based on the standards like FIPS or BSI under which they operate contributing to yet another source of
variability.

2 https://www.oracle.com/database/technologies/jdbc-migration.html
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The design and implementation of Meta-CrySL, an extension to CrySL that helps
manage sources of variability on CrySL specifications.
An evaluation that shows how Meta-CrySL can help API experts to better modularize
variability in CrySL specifications.

In Section 2, we discuss some concepts that are pre-requisite to understanding the
remainder of the paper. We present our analysis of sources of API variability in Section 3.
In Section 4, we present the design of Meta-CrySL, the language that resulted out of the
insights gained from our study. Lastly, we empirically evaluate Meta-CrySL in Section 5.

2 Background

In this section, we present the concepts and definitions necessary to understand our research
context, contributions, and results. In Section 2.1, we introduce the challenges for using
cryptographic APIs correctly. Although we perform the first part of our study with different
cryptographic APIs, we will use the JCA to drive home these challenges in this section.
In Section 2.2, we present the cryptographic standards we consider in our research. These
standards may guide and impact the specifications of the correct usage of cryptographic
APIs. Finally, Section 2.3 introduces the CrySL language, which allows experts to specify
the proper usage of Java cryptographic APIs.

2.1 Cryptographic APIs
Ferguson et al. [14] state that “cryptography is very difficult”, mostly because it involves
several branches of mathematics and computer science [14,44]. For this reason, algorithms
and implementations are only recommended after a huge effort on testing – often conducted
by a public community. That is, regardless of how much they have been vetted, they are
at best still secure or not yet insecure. As a result, developers should rely on well-known
cryptographic algorithms and API implementations that are subject to hundreds or thousands
of hours of cryptanalysis [44].

Cryptographic APIs (or libraries) that exist for each major programming language,such
as JCA and Bouncy Castle for Java and wolfCrypt and OpenSSL for C/C++, make
available a number of implementations for performing cryptographic tasks, such as
the support for generating (pseudo) random numbers, message digests, symmetric and
asymmetric cryptography (including digital signature). Although these libraries share similar
characteristics, their design differ according to distinct principles, such as flexibility and
usability. Unfortunately, existing research reports that these APIs are often complex and
hard to use [1, 33], which in the end might compromise the security of the systems.

For instance, JCA has been designed such that it is possible to change the cryptographic
implementations used in a system without having to modify many parts of the system.
Specifically, this API employs the provider architecture [21] that enables implementations
behind the interfaces to be easily swapped. The official documentation of JCA [21] explicitly
mentions that the three main motivations driving the design of the API were:
1. Implementation independence: Applications can choose between many variants of

implementations of cryptographic algorithms
2. Implementation interoperability: Just like the applications are not tied to providers,

providers are also not tied to applications
3. Algorithm extensibility: Cryptographic algorithms can use building block primitives

from variable sources to compose their algorithms

ECOOP 2021



19:4 Dealing with Variability in API Misuse Specification

Figure 1 shows a usage scenario for the MessageDigest class of the JCA, which computes
a hash of input data. The first step to this end is to get an instance of an implementation
using a string that specifies the message digest algorithm (BLAKE2B-512), and, optionally,
a named reference to a provider that makes available the actual implementation of the
algorithms through the JCA interface. After getting a MessageDigest instance, a developer
might populate the digest by calling the update() method one or more times, and then
calling the digest method to compute a hash value of the input data. The same sequence of
events has been valid since the first specification of this API. However, several new message
digest algorithms have been implemented (e.g., the family of SHA-3 algorithms has been
introduced in Java 9). Others have been deprecated and considered insecure over the years
(e.g., algorithms MD2, MD5, and SHA-1 are not recommended anymore [16]).

1@Test
2public void testBlakeDigest() {
3try {
4MessageDigest md = MessageDigest.getInstance("BLAKE2B-512", "BC");
5md.update(data);
6byte[] res = md.digest();
7Assert.assertNotNull(res);
8}
9catch(Exception e) {
10org.junit.Assert.fail(e.getMessage());
11}
12}

Figure 1 Code snippet for computing a message digest using the JCA Bouncy Castle provider
(identified by the BC string).

Therefore, to correctly use JCA, developers must not only understand the expected
sequence of method calls for each cryptographic primitive, but which algorithms and providers
are available and are still considered secure. Cryptographic standards detail which algorithms
and algorithm configurations developers should use while implementing systems that deal
with sensitive information. Given the complexity related to the use of crypto APIs, existing
research uses static analysis tools to assess the correct usage of crypto APIs [22, 24,38] and
code generation to assist developers to correctly implement cryptographic tasks [25].

2.2 Cryptographic standards
A cryptographic standard details a set of recommendations related to the use of cryptographic
primitives. A few examples of cryptographic standards include:

FIPS Standards present a set of requirements from the American National Institute of
Standards and Technology (NIST) that should be considered when implementing security
modules for computational systems [34]. This set of standards suggest algorithms for
different primitives, including symmetric encryption, digital signatures, and message
digest.

BSI TR-021-102-1 is a technical guideline from the German Federal Office for Information
Security (BSI) that provides the results of a security assessment on cryptographic
algorithms. This assessment supports a long-term orientation on the use of cryptographic
mechanisms [16].

ECrypt TR-D5.4 details a set of recommendations about cryptographic algorithms and key
size. It is an effort from the Ecrypt Coordination and Support Action, an initiative from
the European Unions’ H2020 program [13].
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2.3 CrySL: Assessing the Correct Usage of Cryptographic APIs
As can be seen from the above, applying cryptographic APIs within a software can have a
lot of potential for errors and developers require new techniques and tools to support the
use of cryptographic APIs. A research effort involving different institutions designed and
developed CogniCrypt, a suite of tools that leverages the specification language CrySL
to enable API experts to specify the correct usage of libraries. CogniCryptsast [24] is
a module of CogniCrypt that takes rules in CrySL and a target program as input and
uses state-of-the-art data-flow analysis [45–47] to identify deviations from these rules in this
program.

In its current version, CrySL allows cryptographic experts to specify how to instantiate
and use an object-oriented class that implements a cryptographic primitive. Figure 2 shows
the CrySL specification for the MessageDigest class of the JCA API.

1SPEC java.security.MessageDigest
2OBJECTS
3java.lang.String algorithm;
4byte[] data;
5byte[] digest;
6EVENTS
7g1: getInstance(algorithm);
8g2: getInstance(digestAlg, _);
9
10Gets := g1 | g2;
11
12u1: update(_);
13d1: out = digest();
14ORDER
15Gets, u1+, d1
16CONSTRAINTS
17algorithm in {"SHA-256", "SHA-384", "SHA-512", "BLAKE2B-512"};
18
19ENSURES
20digested[out];

Figure 2 CrySL rule for the MessageDigest JCA API (considering the default provider).

A CrySL rule explicitly states the class under specification in the SPEC clause. The
OBJECTS definition describes a list of object declarations. These objects might appear as
arguments to events or as variables assigned to the return value of an event. The EVENTS

section declares the methods of the class under specification that are relevant for specifying
the correct usage of the class. In particular, the order in which these (labeled) methods
should be called appears as a regular expression in the ORDER clause. Several operators can
be used to denote this regular expression. That is, supposing that we have events with labels
e1 and e2, we can combine these events using either the sequence operator (e1, e2) or the “or”
operator (e1 | e2). We can also state that one event is optional (e1?) or that an event might
either occur zero or more times (e1∗) or one or more times (e1+). It is also possible to define
aggregates (such as Gets := g1 | g2), which help with the definition of the ORDER clause.
The example of Figure 2 states that a developer must first call one of the getInstance()

methods (using the Gets aggregate) before calling the update() method at least once. After
that, the developer must conclude the computation of the message digest using the digest()

method. A CrySL compiler translates this regular expression into a state machine. After
that, the CogniCryptsast component [24] analyzes a system to verify if a sequence of calls
to a MessageDigest instance obeys the expected sequence of events of the ORDER clause.

ECOOP 2021



19:6 Dealing with Variability in API Misuse Specification

The CONSTRAINTS clause allows a cryptographic expert to define constraints on the objects
declared in a CrySL rule. For instance, the CrySL rule of Figure 2 states that the
algorithm used as parameter for the getInstance() methods should be evaluated to one
of the string literals that represent a “secure” message digest algorithm supported by the
JCA default providers: SHA-256, SHA-384, or SHA-512. Therefore, during the analysis of a
system, CogniCryptsast reports an error if it finds a call to the getInstance() method of
the MessageDigest class using a different algorithm (such as MD5). Finally, the ENSURES clause
of a CrySL rule allows a cryptographic expert to state a predicate that can be later used as
a pre-condition in a CrySL specification for a different class (using the REQUIRES construct
of CrySL). There are other CrySL constructs that we do not discuss here, and a reader
that is interested in a more detailed description should read the paper that introduced the
CrySL specification language [24].

Previous studies have shown the efficiency of using the CrySL approach in identifying
common misuses of cryptographic APIs [24], but considering only one specific set of CrySL
rules. Nonetheless, as we discuss in the remainder of this paper, CrySL rules should consider
possible sources of variability that might affect the specifications, including versions of APIs
and platforms and cryptographic standards.

3 Domain Analysis

To better understand the impacts of variability on API misuse specification, we conducted
a domain analysis [4, 36] that sought to understand reuse opportunities across Crypto-
API-usage specifications, considering different libraries, their different providers and their
different versions, different cryptographic primitives, and different cryptographic standards
– altogether corresponding to the sources of variability of our domain analysis. Domain
Analysis is a well-established set of activities in the software product line community. The
goal is to identify variability motivating the implementation of an infrastructure for software
reuse [4, 36].

3.1 Study Settings
We setup our study based on the following research questions:
RQ1 How do different APIs and their implementations (e.g., different JCA

providers) vary the specifications of the correct usage of cryptographic
primitives? Motivation: Previous studies using specification languages like CrySL
only considered the correct usage of the default providers for the JCA. These studies
report that almost 95% of Android applications that use cryptographic APIs present
at least one misuse of these APIs [24]. Answering RQ1 is relevant because alternative
providers such as Bouncy Castle support algorithms that are not supported by the
default providers. It is unclear whether findings of the previous CrySL studies remain
valid (particularly in the cases where an application explicitly uses a different provider).

RQ2 How do existing cryptographic standards vary the notion of secure or
compliant use of cryptographic libraries? Motivation: Although the use of
some cryptographic algorithms are considered insecure (e.g., MD5 and SHA-1), they are
still widely used in practice. There are many reasons for that, including compatibility
with existing legacy code and the lack of knowledge of developers about up-to-date
cryptographic algorithm recommendations. In addition, current security standards (such
as FIPS and ECrypt) present recommendations about which algorithms should be used
now and in a near future. Answering RQ2 helps us to construct a baseline regarding
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how secure existing application are when considering existing standards. Moreover,
RQ2 helps to understand the relevance of security standards to the specification of the
correct usage of cryptographic APIs.

RQ3 How does the evolution of a cryptographic library vary its correct usage
over time? Motivation: Answers to RQ3 will bring new insights about how to
specify policies and static analysis tools that aim to guarantee the correct usage of
cryptographic APIs, considering that they might evolve along the way. Moreover,
answering RQ3 might provide evidence that the evolution of APIs must be considered
when specifying their correct usage.

To answer the RQs, we first conducted a domain analysis on the specification of the
correct usage of Cryptographic APIs. We first read the documentation of APIs and looked at
code examples (including test cases) that use Java (JCA, Bouncy Castle, and Google Tink)
and C/C++ (OpenSSL and wolfCrypt) cryptographic libraries. We then built a general
understanding about how different sources of variability might influence our domain, i.e., the
domain of specification of the correct usage of cryptographic APIs.

API-DIFF

API-Evolution

Prolog
Database

Input

Figure 3 Approach for mining the evolution of Java Cryptographic APIs.

Figure 3 shows the general workflow that we use to mine the evolution of Java
cryptographic libraries (JCA, Google Tink, and Bouncy Castle). We leverage apidiff [7, 8]
and our own static analysis tool to mine classes and methods available per API release and
the patterns of changes along the evolution of the libraries. We populate all this information
into a Prolog database of facts and rules that allow us to answer questions concerning both
newly introduced algorithms as well as deprecated ones for specific versions of a given library.
Introducing and removing new primitive algorithms suggest that there should exist CrySL
rules for every version of that API that introduces a change. Using a customized version of
apidiff, we also investigated breaking changes [6,8,49], that is, changes between consecutive
releases of an API that break the client code. Next, we execute queries into this database
and export the results to CSV files to analyze and understand the evolution of crypto APIs.

3.2 Analysis Results
RQ1: Variability Due to Different Cryptographic APIs

We started our domain analysis by exploring different cryptographic APIs (e.g., JCA, Google
Tink, and Bouncy Castle, Open SSL and wolfCrypt). We soon realized that these APIs
differ significantly in terms of design principles and decisions. For instance, the design of
the JCA considers flexibility as a key element. Developers are responsible for specifying
the configurations of keys and algorithms as well as modes of operations they want to use,

ECOOP 2021



19:8 Dealing with Variability in API Misuse Specification

1byte[64] digestData(byte input[64]) {
2byte digest[64];
3Blake2b b2b;
4wc_InitBlake2b(&b2b, 64);
5wc_Blake2bUpdate(&b2b, input, sizeof(input));
6wc_Blake2bFinal(&b2b, digest, 64);
7return digest;
8}

Figure 4 Function for hashing a byte array using Blake2b.

which has proven to be challenging to developers. Certain configuration problems might
only appear at runtime adding to the complication. The design decisions of Google Tink,
on the other hand, favor simplicity, instead of flexibility. This way, there is a small set of
key / algorithm configurations available, and the developer is encouraged to use one of these
configurations, in order to avoid possible API misuses.

In comparison to Google Tink, C/C++ libraries are yet more restricted. That is, OpenSSL
and wolfCrypt define specific functions for each algorithm. The code snippet in Figure 4
shows how to use the wolfCrypt library to generate a hash of an input data using the Blake2b
algorithm. There are several calls to functions that are specific to this algorithm. Since the
different implementations of message digest algorithms in wolfCrypt do not share a common
interface, the code of the digestData function is not flexible. In the case a developer has to
change the message digest algorithm, she would have to rewrite the entire function.

Based on our analysis of the different APIs, we understand that it is difficult to reuse usage
rules across different APIs and languages. Nonetheless, we found some opportunities to reuse
CrySL rules across different JCA providers and within the Google Tink and Bouncy Castle
libraries. These opportunities mostly arise due to existing security standard recommendations
(we can customize the specifications that address either FIPS or ECrypt recommendations,
for instance), due to the evolution of the API implementations, and due to the similarity
we found among different primitives and primitives’ implementations. We present some
examples of these situations in the remainder of this section.

There is no clear opportunity for reusing the specifications of the correct usage of
cryptographic libraries across different APIs and languages.

RQ2: Variability Due to Cryptographic Standards

Existing technical reports and standards present a series of recommendations about which
cryptographic algorithms (and respective key configurations) should be used in applications.
These technical reports characterize a valuable source of information to indicate whether
a given system is “secure according to a given standard”. Moreover, (some) existing
cryptographic APIs (e.g., wolfCrypt and Bouncy Castle) comply to the FIPS certifications –
and using a certified library according to the standard recommendations might represent a
competitive advantage for products in specific domains. For instance, FIPS 140-2 validation
is mandatory for use in the US Federal systems that collect or store sensitive information.3

We found that existing standards introduce a source of variability in usage specifications.
This source of variability occurs because sets of algorithms (and algorithm modes) are
recommended by some standards, but not in others. Message digests represent one point

3 https://csrc.nist.rip/groups/STM/cmvp/
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in variability as Table 1 shows. All standards mentioned in Section 2.2 specify secure hash
algorithms that may be used to process a message and produce a condensed representation
(a message digest). However, they do not all recommend the same.

Table 1 Recommendations for using different message digest algorithms.

Algorithm FIPS BSI ECrypt

MD5 ✗ ✗ ✗

SHA-1 ✗ ✗ ✗

SHA-224 ✓ ✗ ✗

SHA-256, 384, 512 ✓ ✓ ✓

SHA-512/224 ✓ ✗ ✗

SHA-512/256 ✓ ✓ ✓

SHA-3/(256, 384, 512) ✓ ✓ ✓

Shake128, Shake256 ✓ ✓ ✓

Whirlpool ✗ ✗ ✓

Blake ✗ ✗ ✓

If we were to encode these standards in CrySL, we would need to model them in three
distinct rules that nonetheless largely overlap. Let us discuss these rules in more detail.
First, consider the default CrySL specification for the MessageDigest class of the JCA, when
considering the default provider (Figure 2). In this case, the set of supported algorithms on
Line 17 is limited to the default algorithms of JCA.

In case we specify aforementioned standards, we would have to consider using the Bouncy
Castle JCA provider – since the default provider does not support some of the algorithms in
Table 1 (such as Whirlpool and Blake), and change that line to consider the recommended
algorithms of each standard, as we show in Figures 5. In this particular case, it is possible to
reuse almost all the CrySL specification of Figure 2, changing only the algorithm constraint
based on the supported standard / technical report. We name this kind of variability
Variability on Set Constraints .

Bouncy Castle provides a lightweight API on top of the providers for JCA 4. Considering
the Lightweight Bouncy Castle API, one is required to write a CrySL rule for each primitive
implementation, as shown in Figure 6 for SHA256 and SHA512. Instead of one specification
for each cryptographic standard (varying the supported algorithms), there are several CrySL
rules for each cryptographic standard (one per supported primitive implementation). The
variability here relates to the classes that implement the message digest primitives and
the Lightweight Bouncy Castle API implements the individual algorithms in a distinct
class. However, the corresponding CrySL specifications vary only according to the base
class (in the example, SHA256Digest and SHA512Digest). We name this kind of variability
Variability on the Base Specification Class .

The specification of the correct usage of cryptographic APIs should consider the
recommendations of individual cryptographic standards. The impact on the specifications
due to a cryptographic standard depends on the API.

4 https://www.bouncycastle.org/
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SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in {"SHA-224", "SHA-256", "SHA-384", "SHA-512", "SHA-3", "Shake-128", "Shake-256"};

ENSURES
digested[out];

(a)
SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in {"SHA-256", "SHA-384", "SHA-512", "SHA-3", "Shake-128", "Shake-256"};

ENSURES
digested[out];

(b)
SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in {"SHA-256", "SHA-384", "SHA-512", "SHA-3", "Shake-128", "Shake-256", "Whirlpool",

"Blake2s", "Blake2b"};
ENSURES

digested[out];

(c)

Figure 5 CrySL rules for the MessageDigest JCA (considering the Bouncy Castle provider and the
(a) FIPS recommended algorithms, (b) BSI recommended algorithms, and (c) ECrypt recommended
algorithms).

RQ3: Variability Due to the Evolution of the APIs

We conduct this study using the approach introduced in Section 3.1, to identify cryptographic
algorithms introduced/removed and in turn the breaking changes between two public releases
of an API. In this case we considered three APIs: JCA, Lightweight Bouncy Castle, and
Google Tink. These APIs already have CrySL specifications for them.

Specifically, we mine the evolution history of 15 releases of the Lightweight Bouncy Castle
(v.1.46 to v.1.60), all available in the Maven Central Repository.5 Later we summarize some
findings related to the evolution of the Google Tink and JCA.

The classes that implement the cryptographic primitives in Lightweight Bouncy
Castle implement one of the existing interfaces declared in the Java package
org.bouncycastle.crypto, including the Digest, Mac, and BlockCipher interfaces. In the
last Bouncy Castle release considered in our analysis (release 1.60), we identified more
than 140 primitive implementations, among them 45 implementations of the BlockCipher

interface.6 Block cipher (45), message digest (29), message authentication code (18), and
stream cipher (21) are the primitives with the most algorithm implementations.

Figure 7 shows the evolution in the number of implementations for these primitives. We
can see that almost all releases introduce at least one new primitive implementation. For
instance, release 1.47 introduced a new implementation of the Mac primitive, while release

5 https://search.maven.org/
6 We analyzed these BlockCipher implementations and we found classes that implement cipher algorithms

(e.g., AES and Blowfish) and cipher modes (e.g., CBC and GCM).

https://search.maven.org/
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1SPEC SHA256Digest

2
3OBJECTS
4byte input;
5byte[] out;
6int outOff;
7
8EVENTS

9c : SHA256Digest();

10u : update(input);
11f : doFinal(out, outOff);
12
13ORDER
14c, u+, f
15
16ENSURES
17digested[out];

(a)

1SPEC SHA512Digest

2
3OBJECTS
4byte input;
5byte[] out;
6int outOff;
7
8EVENTS

9c : SHA512Digest();

10u : update(input);
11f : doFinal(out, outOff);
12
13ORDER
14c, u+, f
15
16ENSURES
17digested[out];

(b)

Figure 6 Specification of CrySL rules for the message digest classes in the Bouncy Castle
lightweight API. We will have to elaborate one specification for each supported algorithm of a
standard / technical report.

1.59 introduced five new block ciphers, one new message digest, and three new stream ciphers.
Only releases 1.52, 1.56, and 1.60 did not introduce any new such primitive.

The existence of different implementations of a given primitive has an influence on the
specifications of the correct usage of an API. Consider again the test case method on Figure 1.
This example uses the Bouncy Castle JCA provider (named “BC”) for generating a digest of
an input data using the Blake2b algorithm. However, this algorithm was first introduced in
the release 1.53 of Bouncy Castle. If one executes this test case using an earlier release (e.g.,
1.51 or 1.52), the test case fails with a NoSuchAlgorithmException. Therefore, the CrySL
specification of Figure 5(c) is not compliant with the releases of Bouncy Castle prior to 1.53.

What is considered correct usage of an API depends on the specific versions of the API.

We also analyzed the changes in the Bouncy Castle API that might cause an undesired
effect on the client systems [49] and identified breaking changes. Breaking changes include
removing a public method, renaming a public method, and reducing visibility of a method.
A catalog of these changes could be found elsewhere [11]. We only consider the twelve
releases from 1.49 until 1.60 because these releases are available in the public Git source code
repository of Bouncy Castle.

Using the same approach of previous works [7,8,49], we found 1.733 scenarios of breaking
changes – considering all pairs of successive releases. We document them all in Figure 8.
In total, we identified 1.162 removals of public methods (67% of all breaking changes). All
releases feature at least one. Similarly, all releases change the return type of at least one
method. There are a total of 128 occurrences. Other common breaking changes are change
in exception list (172 cases), renaming a public method (130 cases), and reducing visibility
of a method (92 cases). The remaining 49 breaking fall into other categories. Four pairs of
successive releases contribute with 74.49% of the breaking changes: 1.58–1.57 (210 cases),
1.57–1.56 (364 cases), 1.51–1.50 (389 cases), and 1.50–1.49 (328 cases). We did not find any
evidence that one specific release accounts for a major redesign of the Bouncy Castle library.
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Figure 7 Evolution in the number of algorithm implementations in Bouncy Castle.

Based on these numbers, one might conclude that, despite its long history, Bouncy Castle
is an unstable library. This conclusion would be true if developers depended on the public
interfaces of the classes that present breaking changes. However, when we consider only the
Java interfaces that define the contract of cryptographic primitives (such as the Digest and
BlockCipher interfaces), we found that the Bouncy Castle library is quite stable. Considering
all releases, we only identified 34 breaking changes (12 occurrences of removing a public
method, 9 occurrences of changing the return type of a public method, 7 occurrences of
renaming a public method, 4 occurrences of reducing visibility of a method, and 2 occurrences
of changing the exception list of a method). Yet, we do not know whether or not developers
only rely on these “high level” interfaces.

We found 1.733 breaking changes along 11 public releases of Bouncy Castles. However,
considering the core interfaces of the library, we only found 34 breaking changes that
might also induce changes on CrySL specifications.

Method updates like renaming/removing/adding methods requires changes to the event
section of CrySL specifications. We name this variability as Variability on Event Sets .

We further investigated whether the Google Tink library is more stable: the public
interfaces of the classes are almost unchanged between the release 1.0.0 (published in
September 2017) and the release 1.2.1 (published in November 2018). During this period,
we found 50 breaking changes – 43 from version 1.0.0 to version 1.1.0, which might indicate
a slight revision on the first design of the library. Between these first initial releases, we
identified 14 removed methods. Nevertheless, the most critical change regarding CrySL
specifications was the introduction of the Deterministic AEAD algorithm on version 1.1.0.
This type of variability is modular and involves only the selection of a set of CrySL
specifications (hereafter referred to as Modular Selection of CrySL Rule ). Although not
common, we also identified some variability due to the key templates available across the
different versions of Google Tink. The current CrySL specifications for Google Tink can
deal with the introduction of key templates that modify the events in the specifications
(using the Variability on Event Sets strategy).
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Figure 8 Total number of breaking changes in the Bouncy Castle API.

Finally, we also considered the evolution of JCA from Java 4 to Java 9. To this end,
we analyzed the classes related to the cryptographic primitives available in three standard
Java libraries: rt.jar, jce.jar, and sunjce_provider.jar, considering official releases of the
Java language. This API is highly stable as it is based on an official Java specification. For
instance, the public class interfaces of the JCA do not present any breaking change, and
from Java 5 (2005) to Java 9 (2017) the interface of the java.security.MessageDigest class
did not change. In Java 7, three additional methods that can be used for ciphering a text
with additional authentication data (AAD) were introduced in the class javax.crypto.Cipher.
Although the APIs are stable, new primitive algorithms have been introduced along these
versions. For instance, eight new ciphers and six new MAC algorithms have been introduced
in the JCA, from Java 4 to Java 9.

4 Meta-CrySL

4.1 Design and Implementation Procedures
We used the outcomes of our domain analysis to design and implement Meta-CrySL.
Meta-CrySL provides means for the systematic reuse of CrySL specifications. To this
end, Meta-CrySL allows the specification of CrySL rules enriched with variation points
(such as meta-variables and type parameters) and refinement operations that solve these
variation points for a given configuration (e.g., version of an API or platform, security
standard, and so on). Meta-CrySL generates a set of CrySL rules tailored for a given
configuration.

We implemented Meta-CrySL using Rascal-MPL [23]. One of the main design decisions
was to implement three distinct languages: one for abstract CrySL specifications (i.e.,
CrySL with variation points), one for CrySL refinements, and one for representing a
configuration model. The configuration model states a set of abstract CrySL specifications
and refinements. We use a program-generator approach to combine instances of the refinement
and configuration languages, and to output regular CrySL specifications. These regular
specifications can directly be used with CogniCrypt’s infrastructure for CrySL specifications.
The following set of high-level requirements guided the design of Meta-CrySL.

1. Meta-CrySL follows a meta-programming approach: we write Meta-CrySL
specifications and generate regular CrySL specifications from them. Using this design
allows us to preserve all CogniCryptsast infrastructure.

2. Meta-CrySL should support the sources of variability discussed in the previous section,
so that we can generate CrySL rules for different standards and versions of the APIs.
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3. Meta-CrySL should also favor reuse among specifications of the same API, reducing the
effort in the case that an API supports many algorithms (as for instance Bouncy Castle).

4.2 High-level Architecture
Figure 9 shows the architecture of Meta-CrySL, which follows a multi-staged pipeline for
language processing [35], where a module loads a Meta-CrySL configuration that specifies
a set of extended CrySL specifications and a set of refinements that should be used during
the building process of a specific set of CrySL rules. After that, the Loader module parses
the sets of extended CrySL and refinement files, generating abstract representations of these
languages as instances of Rascal-MPL algebraic data types (in the following sections we
detail these languages). The Preprocessor module manipulates these instances executing the
refinement operations, using visitors for program transformations. That is, the Preprocessor
solves Meta-CrySL variability and generates an abstract representation of CrySL rules.
Finally, the Pretty Printer module outputs regular CrySL specification files.

Loader
Configuration

Pre Processor Pretty 
Printer

Rules

Refinements

CrySL
Rules

MetaCrySL

Figure 9 High-level architecture of Meta-CrySL.

4.3 Abstract CrySL Language
Abstract CrySL is an extension of the CrySL language that allows cryptographic specialists
to write variation points on the CrySL rules, for instance, in terms of meta-variables and
type parameters. Figure 10 shows an example of an instance of the abstract CrySL language,
modelling variability on CrySL rules for the JCA MessageDigest class. The main source of
variability in this case relates to the sets of algorithms that might change due to a specific
standard or version of the provider implementation (recall the specifications in Figure 5).
The abstract CrySL rule of Figure 10 introduces the concept of meta-variables, which are
bound during the derivation process of CrySL rules. In the example, we can bind the
meta-variable $AlgSet to the sets of algorithms supported by a given standard (e.g., FIPS,
EuroCrypt, or BSI) or specific version of an API.

To deal with Variability on the Base Specification Class , we use template-based type
parameters, similarly to the mechanism of type expansion supported by C++ templates. As
such, when solving this type of variability, we actually generate different copies of a CrySL
rule, one for each concrete type that appears in the refinement specifications.
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SPEC java.security.MessageDigest
// same definitions of the default JCA MessageDigest specification
CONSTRAINTS
algorithm in $AlgSet;

ENSURES
digested[out];

Figure 10 Use of meta-variables to deal with Variability on Set Constraints .

Using the abstract specification of Figure 11, we generated six CrySL rules for different
Google Tink primitive’s implementations. We also used the same strategy to factor out
existing CrySL rules for the message digest primitive of the Lightweight Bouncy Castle API.
Each one of these CrySL rules has about 40 lines of code. Using Meta-CrySL, we were
able to specify each variant using 4 lines of code (three lines of refinements and one line of
the configuration language).

ABSTRACT SPEC AbstractFactory<T>
OBJECTS
com.google.crypto.tink.KeysetHandle ksh;
<T> primitive;

EVENTS
gp : primitive = getPrimitive(ksh);

ORDER
gp

REQUIRES
generatedKeySet[ksh];

ENSURES
setPrimitive[primitive];

Figure 11 Use of type parameters to deal with Variability on the Base Specification Class .

4.4 Refinement Language
Our refinement language allows cryptographic experts to specify transformations on the
Meta-CrySL rules, to solve variation points. Considering the discussion of the previous
section, Meta-CrySL supports two types of syntactic variation points: meta-variables
and type parameters. In addition, it is also possible to introduce new events (and events
aggregates), to introduce new constraints, and to replace the events’ order of a Meta-CrySL
specification. The refinement language expects a base specification and a list of refinement
elements.

The current implementation of Meta-CrySL supports different refinement
transformations, for instance, transformations that support the kinds of variability discussed
in the previous section:

Define literal set binds a meta-variable to a literal set, such as SHA512, Blake2b,

Blake2s. We use this transformation to solve Variability on Set Constraints .
Define qualified type binds a fully qualified type to a type parameter of a Meta-CrySL
specification. This transformation solves Variability on the Base Specification Class .
Add new event introduces a new event into a Meta-CrySL specification. We use this
transformation to solve Variability on Event Sets . Similarly, the refinement language
also supports operations to add (remove or update) constraints and requires/ensures
clauses.
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1SPEC MessageDigest REFINES java.security.MessageDigest {
2define AlgSet = {"Blake2s", "Blake2b", "GOST-3411", "SHA-256", "SHA-384",
3"SHA-512", "Whirlpool"};
4}
5SPEC KeyGenerator REFINES javax.crypto.KeyGenerator {
6define AlgSet = {"AES", "BLOWFISH", "HmacSHA256", "HmacSHA384", "HmacSHA512",
7"RIJNDAEL", "Serpent"};
8add constraint alg in {"AES"} => keySize in {128, 192, 256};
9}

Figure 12 Example of refinement specifications for the Bouncy Castle JCA Provider.

1SPEC SHA256 REFINES
2Digest<org.bouncycastle.crypto.digests.SHA256Digest>;
3SPEC SHA384 REFINES
4Digest<org.bouncycastle.crypto.digests.SHA384Digest>;
5SPEC SHA512 REFINES
6Digest<org.bouncycastle.crypto.digests.SHA512Digest>;
7SPEC SHA512t REFINES
8Digest<org.bouncycastle.crypto.digests.SHA512tDigest>;

Figure 13 Example of refinements that bind a type parameter for the set of message digest
specifications for the Lightweight Bouncy Castle API.

Figure 12 shows two examples of refinement specifications. The first refines the
MessageDigest CrySL specification of Figure 10, binding the meta-variable AlgSet to a
set of message digest algorithms supported by the Bouncy Castle JCA provider. The second
refinement specification KeyGenerator also defines a set of algorithms supported by the Bouncy
Castle JCA provider and also introduces a new constraint which refers to two variables of
the base specification (not illustrated in this paper): alg and keySize. The constraint states
that if alg = AES, the variable keySize must be a value in the set {128, 192, 256}.

Figure 13 shows a set of refinement specifications that are used for generating CrySL
rules for different message digest algorithms supported by the Lightweight Bouncy Castle
API. Each refinement specification generates a different CrySL specification, binding a type
parameter with the full qualified name of a class that implements a message digest algorithm.
In this scenario, we are able to solve all variability using only type parameters, and thus the
body of the refinement specifications is empty.

It might be necessary to add further refinement transformations in the future. To
implement a new transformation, one would have to modify three Rascal-MPL modules,
being necessary to specify the concrete and abstract syntax of the transformation in the
refinement language and to implement a new function with the expected behavior of the
transformation (Preprocessor module). In case one needs to introduce a new syntactic
CrySL variation point, this is possible by modifying the abstract and concrete syntax of
the abstract CrySL language. We have already implemented six transformations, each one
having around ten lines of code.

4.5 Meta-CrySL Configurations
We use a configuration language to specify the Meta-CrySL building process. Figure 14
shows an example, which states the base path where the Meta-CrySL implementation could
find the specifications and refinements (Line 2), the output path of the resulting CrySL
specifications (Line 3), and the sets of abstract CrySL rules and refinements that should
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1 config android25plus {
2 src = MetaCrySL/samples/jca/base/;
3 out = MetaCrySL/samples/jca/android/target/research/25plus/;
4 load spec base/;
5 load refinement android-bsi/01plus/;
6 load refinement android-bsi/10plus/;
7 load refinement android-bsi/1025/;
8 }

Figure 14 Example of a configuration that specifies the rules and refinements target to the
version 25 of Android.

be considered during the building process (Lines 4–7). In the example, all CrySL rules
reside in the base directory. One may also specify individual rules instead of a directory. The
specification of a building process allows cryptographic experts to reuse the same specifications
and refinements in different configurations. That is, from the same set of Lightweight Bouncy
Castle specifications and refinements, we can create different configurations and generate
distinct sets of CrySL rules. For this flexibility, we opted for such a configuration language
instead of a convention-based mechanism.

5 Empirical Assessment of Meta-CrySL

The goal of this empirical assessment is to understand the implications of Meta-CrySL
in modularizing the specifications of the correct usage of the JCA API for Android, and
thereby evaluating Meta-CrySL along the lines of compactness. Additionally, we also
use the empirical assessment to investigate whether or not Meta-CrySL generates correct
CrySL specifications, focusing on the correctness dimension. Accordingly, we answer the
following research questions in this empirical assessment, where RQ4 and RQ5 relate to
compactness and RQ6 explore the correctness perspective:
RQ4 How many lines of CrySL code can one save when writing Meta-CrySL specifications?
RQ5 How much duplication of specifications is eliminated by using Meta-CrySL in

comparison to CrySL?
RQ6 What are the implications of instantiating CrySL rules from Meta-CrySL

specifications, observing the number of API misuses CogniCryptsast analysis reports?

Answering RQ4 and RQ5 allows us to quantify the main expected benefit of Meta-
CrySL: modularizing families of CrySL specifications with the aim of specification reuse.
Answering RQ6 allows us (a) to contrast the difference in the number of reported API
misuses when evaluating programs using different Meta-CrySL configurations and (b) to
check the correctness of our approach for generating CrySL rules (since CogniCryptsast
will reject any invalid CrySL rule). In this assessment, we used Meta-CrySL to modularize
a family of CrySL specifications supporting different versions of the Android platform and
three sets of cryptographic recommendations:

Android Base recommendations: constrains the algorithms that should be used for
each version of the Android platform, as detailed in the Android Cryptography Guide
specification.7

7 Android Cryptography Guide: https://developer.android.com/guide/topics/security/cryptography
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Table 2 Sets of cryptographic rules considered in our study.

Config. Id Primitives Android Platform Version Crypto Standard
C01 All primitives 01 – 08 Android Base recommendations
C02 All primitives 01 – 16 Android Base recommendations
C03 All primitives 01 – 28 Android Base recommendations
C04 All primitives 01 – 08 Android BSI Standard recommendations
C05 All primitives 01 – 16 Android BSI Standard recommendations
C06 All primitives 01 – 28 Android BSI Standard recommendations
C07 All primitives 01 – 08 Android CogniCrypt recommendations
C08 All primitives 01 – 16 Android CogniCrypt recommendations
C09 All primitives 01 – 28 Android CogniCrypt recommendations

Android BSI standard recommendations: constrains the algorithms considering the
BSI standard and the set of Android Base recommendations. The set of Android Base
recommendations must be considered because not all BSI recommended algorithms are
available in every version of the Android platform.
Android CogniCrypt recommendations: constrains the algorithms according to
the current CrySL specifications from the CogniCrypt project and the set of Android
Base recommendations. The set of Android Base recommendations must be considered
because not all CogniCrypt recommended algorithms are available in every version of the
Android platform.

Specifying the correct usage of the JCA for Android is an interesting scenario for using
Meta-CrySL, in particular because the correct usage of cryptography in Android depends
on the version of the Android platform. Moreover, to answer our research question RQ6, this
decision allows us to leverage the same dataset of Android applications that was previously
used to empirically assess CrySL [24]. This dataset comprises 8,136 Android applications,
though we could not collect the output of the CogniCryptsast for at least one configuration
in a subset comprising 507 of these Android apps. For this reason, we consider a smaller set
of 7,629 Android apps. From our Meta-CrySL specifications, we can generate hundreds of
configurations. Since it is computationally expensive to run CogniCryptsast on a dataset
with thousands of Android apps, we decided to conduct our assessment with the nine
configurations shown in Table 2. Each configuration supports all cryptographic primitives
(JCA supports 32 primitives in total, including Block Cipher and Message Digest), one of
three distinct ranges of versions of the Android platform (01 – 08, 01 – 16, 01 – 28), and one
of the cryptographic recommendations.

We answer research questions RQ4, RQ5, and RQ6 through the use of metrics. For
RQ4 we compute (a) the total number of lines in Meta-CrySL necessary to specify the
sets of configurations of Table 2 and (b) the resulting lines of specifications in CrySL that
we generate using the Meta-CrySL specifications. We then compute how many lines of
specification text we save using Meta-CrySL. For RQ5 we estimate the total number of
duplication in the Meta-CrySL specifications, as well as in the generated CrySL rules. We
answer RQ6 using the total number of rule violations that CogniCryptsast finds in the
dataset of Android applications when using each distinct set of CrySL rule configurations.

5.1 RQ4: How many lines of CrySL code can one save when writing
Meta-CrySL specifications?

In RQ4, we investigate the benefits of using Meta-CrySL w.r.t. removing the redundant
code that one would write when specifying the sets of CrySL rules describing the correct
usage of cryptographic APIs – tailored to the nine configurations in Table 2. Figure 15
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summarizes the total number of lines needed to write the Meta-CrySL specifications,
refinements, and configurations as well as the total number of lines of specifications generated
by Meta-CrySL and that could be used to execute CogniCryptsast with the distinct
configurations. In this case study, we wrote 1,407 lines in Meta-CrySL (762 lines of Meta-
CrySL specifications, 540 lines of Meta-CrySL refinements, and 105 lines of Meta-CrySL
configurations), and generated 7,105 lines of CrySL rules for those configurations, saving
80% of lines.
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Figure 15 The total number of lines of code necessary to specify the nine configurations in
Meta-CrySL (including Meta-CrySL specifications, Meta-CrySL refinements, and Meta-CrySL
configurations) and the total number of lines of CrySL code generated.

Meta-CrySL removed 80% of the redundancy induced when writing all the CrySL
rules tailored to the specific configurations considered in our study.

The Meta-CrySL payoff tends to increase when defining new configurations, since one
would then generate further instances of CrySL from the same set of Meta-CrySL rules
and refinements. Figure 16 shows how many lines of CrySL specification we generate after
introducing each configuration in Table 2. In terms of lines of specification text, we achieve
a payoff after generating the second configuration (C02).

5.2 RQ5: How much duplication of specifications is eliminated by using
Meta-CrySL in comparison to CrySL?

In total, there were 188 files (including refinements and configurations) of base Meta-CrySL
specifications for the JCA use in Android. These files contained 1407 lines of specifications,
out of which 633 lines were duplicates, resulting out of 156 individual lines. In comparison,
the corresponding CrySL specifications for three families of Android configurations (BSI,
CogniCrypt, Base) each comprising specifications for three versions (0108, 0116, 25plus)
contributed to 7,105 lines of specifications spread across 288 files. Out of these, 5,579 lines
of specifications were duplicates resulting out of 546 unique lines.

ECOOP 2021



19:20 Dealing with Variability in API Misuse Specification

Figure 16 Evolution of the total lines of generated CrySL specification text after introducing
each configuration. The red line corresponds to the total number of lines of Meta-CrySL used to
generate the configurations.

The amount of duplicate lines of specifications for a family of CrySL specifications
is 5,579 in comparison to 633 for Meta-CrySL specifications for the same family
(11.34%).

Most of the duplication in Meta-CrySL arises because we specified all Meta-CrySL
refinements for the three families of Android configurations (BSI, CogniCrypt, and Base)
which could be prevented by writing carefully crafted refinements. Specifically, out of the
1407 lines of specifications, only 97 lines and 85 lines of duplicates resulted from the base
Meta-CrySL specifications and configurations – 451 of the 633 duplicates resulted from
refinements for individual versions.

5.3 RQ6: What are the implications of instantiating CrySL rules from
Meta-CrySL specifications, observing the number of API misuses
CogniCryptsast analysis reports?

Our research question RQ6 explores the results of CogniCryptsast for the nine configurations
(C01 – C09). We concentrate our analysis on the violations related to the CONSTRAINTS section
of CrySL rules, mostly because cryptographic standards do not address other sections.
Table 3 summarizes the results of the analysis, showing the number of Android apps using
the JCA APIs, the number of Android apps using the JCA APIs incorrectly (i.e., presenting
at least one misuse), the rate of vulnerable Android apps (calculated using the previous
two), and the total number of violations. The results of CogniCryptsast reveal a significant
number of apps with at least one JCA API misuse in all configurations – more than five
percent of the apps present at least one misuse in the more permissive Android Base sets of
recommendations. This number jumps to more than 45% when considering the BSI or the
CogniCrypt recommendations.

The total number of violations when considering the set of Android Base recommendations
is substantially smaller than the total number of violation found using the other configurations
(Android-BSI and Android-CC configurations) and most of the violations in the Android
Base configurations relate to the Cipher primitive. For instance, when one only considers



R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:21

Table 3 Summary of the findings of CogniCryptsast for the different CrySL configurations.

Configuration Apps Apps Presenting (Rate %) # Violations
Using JCA Misuse

Android Base 0108 6,714 545 8.12 1,083
Android Base 0116 6,714 395 5.88 1,224
Android Base 25plus 6,714 386 5.75 830
Android BSI 0108 6,714 3,184 47.42 9,089
Android BSI 0116 6,714 3,155 46.99 8,905
Android BSI 25plus 6,714 3,155 46.99 8,873
Android CogniCrypt 0108 6,714 3,261 48.57 9,077
Android CogniCrypt 0116 6,714 3,260 48.56 8,975
Android CogniCrypt 25plus 6,714 3,256 48.50 8,945

the “Android Base 25plus” configuration, 548 out of 830 violations are either due to the
use of an insecure cipher algorithm (such as DES or DESede) or due to the use of an
insecure algorithm/mode/padding configuration (e.g., AES/CBC/NoPadding). This changes
when one considers the other sets of recommendations (from Android BSI and Android
CogniCrypt). There, most of the violations relate to the Message Digest primitive. For
instance, considering the Android BSI 0116 configuration, one finds 6,272 violations due to
insecure message-digest algorithms (e.g., MD5 and SHA-1) – this corresponds to 70.43% of
all violations one finds with this particular configuration.

Regarding the differences between the Android BSI and Android CogniCrypt families
of CrySL rules we found some modes of operations that are not mentioned in the BSI
standard (e.g., RSA/ECB/PKCS1Padding) but that are considered secure and recommended
in CogniCrypt. The Message Authentication Code (MAC) primitive also brings differences
in the number of violations when comparing the BSI and CogniCrypt recommendations.
Actually, the BSI standard makes clear that the HMAC scheme should only be used with
the SHA-2 or SHA-3 families of hash functions, though the algorithms HmacMD5 and HmacSHA1

are allowed by the CogniCrypt configurations.
We also found some differences when considering the particular platform versions. For

instance, until version 10 of the Android platform, developers must use the TLS8 algorithm
for SSLContext. This led to 169 additional violations regarding the incorrect usage of the
SSLContext class in the “Android Base 0108” configuration, in comparison to “Android Base
0116” and “Android Base 25plus”. In more detail, 161 apps use either the SSL or TLSv1

algorithms (both introduced in version 10) and eight apps use either TLSv1.1 or TLSv1.2

(both introduced in version 10). These violations do not occur in the remaining “0116” and
“25plus” configurations. We also found similar divergences on the platform version related to
other cryptographic primitives.

It is important to note that, although version 8 was released in May 2010 already, in
order to increase compatibility with a broader range of devices, most apps in our dataset
are still configured to use this version as the minimum version. The observation that the
number of violations for the “Android Base 0108” configuration is higher compared to the
the “Android Base 0116” and “25plus” configurations might indicate that some apps use
cryptographic algorithms that are not available in their minimum version. This would then
lead to a runtime exception. In summary:

8 TLS is a protocol that provides authenticated encryption for data connections.

ECOOP 2021



19:22 Dealing with Variability in API Misuse Specification

The experiments showed a significant difference when considering the different versions of
the platform for the Android Base configurations. Yet, the Android Base configurations
are much less restrictive then those of the BSI and by CogniCrypt in general. We
found slight differences in the results of CogniCryptsast when considering the
recommendations from BSI and CogniCrypt. Although the differences are not that
large, this result still suggests that one can benefit from tailoring the specifications of
the correct usage of cryptographic standards according to the different guidelines.

6 Threats to Validity

In this section, we present some limitations and possible threats to the validity of our
work. Since our research focuses on cryptographic libraries only, we need to discuss the
applicability of our approach to other domains. The choice of this domain was motivated by
our previous experience using CrySL to specify the correct usage of cryptographic APIs.
We was challenged by the fact that new algorithms are frequently designed and old ones
might become deprecated [5]. In addition, cryptographic standards are frequently updated –
in particular to state that an algorithm vulnerability has been found and reported.

We believe that our approach can also be used for APIs that target other domains as well,
even though we did not systematically investigate this question. First, APIs from different
domains evolve along the time, and as we discussed throughout this paper, API evolution has
an impact on the correct usage of libraries. Second, there are different recommendations on
the proper usage of each popular API. For instance, there are many guidelines discussing the
correct usage of the Java Persistence API [26,30] – and individual companies might also take
advantage of specific recommendations. The specifications about how to correctly use a given
API should take into account these differences. We envision that both practitioners and
researchers would benefit from a domain engineering approach that considers different sources
of variability – including different versions of an API, recommendations from gray literature
(for instance), and mining software repositories efforts – before specifying the correct usage a
given API. We make the reader aware that domain engineering is a well-known technique to
understand properties that, like in our case, bring variability to the domain of API usage
specifications. We are not attempting to validate domain engineering itself or propose a
technique for its application to other domains; the process for which would require careful
understanding of the specific API domain and a thorough analysis.

Another threat to our conclusions relates to the additional complexity introduced by
Meta-CrySL. We envision that the users of Meta-CrySL are already users of CrySL,
and the learning curve would involve a language for specifying CrySL refinements and
configurations. To better quantify the additional complexity Meta-CrySL introduces, we
will have to conduct a user study with this specific goal. We postpone such an investigation
to a future work, since our focus here was to explore Meta-CrySL in a more realistic
scenario, investigating the possible benefits of using Meta-CrySL to modularize CrySL
specifications for different versions of the Android platform and different cryptographic
recommendations. Therefore, currently we do not have empirical evidence about how much
complexity Meta-CrySL introduces to those already familiar with CrySL. Nonetheless,
compared to the benefit of managing a large family of specifications using a relatively small
number of refinements and configurations, we feel this additional complexity is justified.

Additional threats relate to the methods we used in our research. We tried to mitigate
possible reliability threats by reusing methods and tools from previous research studies.
For instance, we investigated the frequency of breaking changes to estimate the stability
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of Java cryptographic libraries using the methodologies available in the literature [7,8, 49].
Nonetheless, although we found more than 1700 breaking changes across 11 public releases of
Bouncy Castle, a limitation of our work is that we do not investigate if these changes have
actually broken existing client code. Our understanding is that just a subset of breaking
changes impact on the specifications of the correct usage of APIs.

This threat relates to the use of apidiff, which detects breaking changes considering
modifications to the standard notion of Java interfaces – that is, public members of Java
classes or interfaces. Modifications that do not preserve the standard notion of Java interfaces
(e.g., changing the signature of public methods, removing public methods, and so on) are
claimed by apidiff as breaking changes. This might actually lead to a number of false-
positives – once client code might not depend on all public members of a library. To mitigate
this threat, we narrowed our analysis of the Bouncy Castle library to only focus on the
high-level classes and interfaces of Bouncy Castle that implement cryptographic primitives.

Regarding our research question RQ4, we measure the reduction of lines of specification
and redundancy with respect to generated specifications. This might raise the question
whether these generated specifications do not contain boilerplate text that had not arisen
had these specifications be hand-written. We are confident that we can rule this out, due
to the nature of CrySL specifications and the way they are generated by Meta-CrySL.
Conducting a large scale developer study by manually writing many families of specifications
by hand was beyond the scope of this work.

7 Related Work

7.1 Domain Engineering
Frakes et al. [17] present a well-established definition for domain engineering, which embraces
two phases: domain analysis and domain implementation. The first deals with all activities
necessary to understand and document the commonalities and variabilities within a software
domain. Similar to the guidelines presented by the authors, we also collected and recorded
information from documents (cryptographic standards) and source code (examples of
cryprographic libraries usage) while conducting our domain analysis. The main difference of
our approach is that we also mined the source code evolution of the cryptographic libraries.
Lisboa et al. presents a literature review on tools and methods for domain analysis [28].

The second phase of domain engineering (that is, domain implementation) aims to build
the infrastructure necessary to generate products from reusable assets. Here we used the same
general idea, though not to build software products, but actually to generate specifications of
the correct usage of APIs that might vary according to different sources of variablity (such
as versions of APIs, platforms, and cryptographic standards). Czarnecki and Eisenecker [10]
detail several techniques that can be used to implement an infrastructure for building
products from reusable assets. In our work, we used the refinement-based transformational
approach [10, Chapter 9] as the basis for the Meta-CrySL design and implementation. The
literature on software product lines also recommends two distinct phases for building SPLs:
one for domain analysis and one for domain implementation [4, 36].

7.2 Correct Usage of APIs
Amann et al. present some terminology and taxonomy around the correct usage and misuse
of APIs [3]. Given a set of constraints stating, for instance, the expected order of method
calls and the pre-conditions the client code must guarantee before calling the methods of an
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API, any usage scenario that violates a constraint characterizes a misuse – otherwise, it is
a correct usage [3]. The main goal of mining misuse of APIs is to reveal deviant code that
might originate a bug or a software vulnerability (in the context of cryptographic APIs).

According to Amann et al [3], the constraint specifications could be manually crafted by
experts or infered using either dynamic [29,37] or static analysis [32,40,48]. In this paper,
we rely on a manually crafted approach to specify rules in Meta-CrySL– mostly because
many programs fail to use cryptographic APIs correctly [1, 24,33]. It is a matter of future
work to investigate if our domain engineering approach could also benefit from techniques
that automatically infer the correct usage of APIs.

To the best of our knowledge, none of the previous research works consider that the
correct usage of an API could vary, among other reasons, according to specific versions of
APIs or to existing usage recommendation patterns that could be general accepted or tailored
to particular companies or projects.

7.3 API Evolution

Studies on API evolution focus on two directions. First, to help developers to migrate their
systems in response to the evolution of APIs the systems depend on [9,18,31,43]. The second
direction, which is closely related to our research, focus on understanding how developers
evolve APIs and on characterizing the evolution of APIs. For instance, several research
works have explored the impact of deprecation mechanisms on software ecosystems [39,41,42].
Other research studies investigate how developers respond to API evolution [19] and the
motivations for breaking APIs [6].

Here we investigate how the evolution of cryptographic APIs occurs in practice, considering
the history of three Java cryptographic libraries: JCA/JCE, Bouncy Castle, and Google Tink.
We have found that cryptographic libraries are quite stable, and the high-level APIs that
define cryptographic primitives rarely change – even though we found a number of breaking
changes during the evolution of Bouncy Castle. The most typical pattern is the introduction
of new algorithms that implement cryptographic primitives – which often requires changes
into the specification about the correct usage of the APIs.

8 Conclusion

Domain engineering involves a set of techniques for identifying and documenting the
commonalities and variabilities within a software domain, as well as for building an
infrastructure for deriving products from reusable assets [4, 17, 36]. While it has been
successfully used to develop software product lines, in this paper, we explored the use of
domain engineering procedures to specify the correct usage of cryptographic APIs. After
gathering a better understanding about how different versions of the platforms, APIs, and
cryptographic standards might affect the specifications of the correct usages of crypto
APIs, we designed Meta-CrySL. Meta-CrySL serves as an infrastructure for generating
CrySL [24] specifications tailored for specific scenarios. We evaluated our approach using a
family of Meta-CrySL specifications describing the correct usage of the Java Cryptographic
Architecture for Android, which accommodates the evolution of the Android platform and
three distinct sets of cryptographic recommendations. Our results provide evidence that it
is important to tackle the problem of writing specifications of correct usage of APIs using
a domain engineering approach and that using Meta-CrySL we can better modularize
families of specifications.



R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:25

References
1 Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky. Comparing

the usability of cryptographic apis. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 154–171. IEEE Press, May 2017. doi:10.1109/SP.2017.52.

2 S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. A systematic evaluation of
static api-misuse detectors. IEEE Transactions on Software Engineering, 45(12):1170–1188,
2019.

3 S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. A systematic evaluation of
static api-misuse detectors. IEEE Transactions on Software Engineering, 45(12):1170–1188,
2019. doi:10.1109/TSE.2018.2827384.

4 Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Publishing Company, Incorporated,
2013.

5 A. Bhardwaj and S. Som. Study of different cryptographic technique and challenges in
future. In 2016 International Conference on Innovation and Challenges in Cyber Security
(ICICCS-INBUSH), pages 208–212, 2016.

6 Aline Brito, Marco Tulio Valente, Laerte Xavier, and André C. Hora. You broke my code:
understanding the motivations for breaking changes in apis. Empirical Software Engineering,
25(2):1458–1492, 2020. doi:10.1007/s10664-019-09756-z.

7 Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. Apidiff: Detecting API
breaking changes. In Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd, editors,
25th International Conference on Software Analysis, Evolution and Reengineering, SANER
2018, Campobasso, Italy, March 20-23, 2018, pages 507–511. IEEE Computer Society, 2018.
doi:10.1109/SANER.2018.8330249.

8 Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. Why and how Java
developers break APIs. In Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd,
editors, 25th International Conference on Software Analysis, Evolution and Reengineering,
SANER 2018, Campobasso, Italy, March 20-23, 2018, pages 255–265. IEEE Computer Society,
2018. doi:10.1109/SANER.2018.8330214.

9 Kingsum Chow and David Notkin. Semi-automatic update of applications in response to
library changes. In 1996 International Conference on Software Maintenance (ICSM ’96), 4-8
November 1996, Monterey, CA, USA, Proceedings, page 359. IEEE Computer Society, 1996.
doi:10.1109/ICSM.1996.565039.

10 Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., USA, 2000.

11 Danny Dig and Ralph Johnson. How do apis evolve? a story of refactoring: Research articles.
J. Softw. Maint. Evol., 18(2):83–107, March 2006.

12 Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’13, pages 73–84, New
York, NY, USA, 2013. ACM. doi:10.1145/2508859.2516693.

13 Michel Abdalla et al. Algorithms, key size and protocols report. Technical report, ECRYPT –
Coordination and Support Action, European Union’s H2020 programme, 2018.

14 Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering: Design
Principles and Practical Applications. Wiley Publishing, 2010.

15 F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl. Stack
overflow considered harmful? the impact of copy amp;paste on android application security.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 121–136, May 2017. doi:

10.1109/SP.2017.31.
16 German Federal Office for Information Security. Cryptographic mechanisms: Recommendations

and key lengths. Technical Report BSI TR-02102-1, German Federal Office for Information
Security, 2020.

ECOOP 2021

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/TSE.2018.2827384
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/ICSM.1996.565039
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1109/SP.2017.31


19:26 Dealing with Variability in API Misuse Specification

17 William Frakes, Ruben Prieto, Christopher Fox, et al. Dare: Domain analysis and reuse
environment. Annals of software engineering, 5(1):125–141, 1998.

18 Johannes Henkel and Amer Diwan. Catchup! capturing and replaying refactorings to support
api evolution. In Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, page 274–283, New York, NY, USA, 2005. Association for Computing Machinery.
doi:10.1145/1062455.1062512.

19 A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. Tulio Valente. How do
developers react to api evolution? the pharo ecosystem case. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 251–260, 2015. doi:

10.1109/ICSM.2015.7332471.
20 David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,

2004. doi:10.1145/1052883.1052895.
21 Oracle Inc. Java cryptography architecture (JCA), 2020. URL: https://docs.oracle.com/en/

java/javase/15/security/java-cryptography-architecture-jca-reference-guide.html.
22 Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and Arie van Deursen.

Effective and efficient api misuse detection via exception propagation and search-based testing.
In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, page 192–203, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293882.3330552.

23 Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. RASCAL: A domain specific language for
source code analysis and manipulation. In Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September
20-21, 2009, pages 168–177. IEEE Computer Society, 2009. doi:10.1109/SCAM.2009.28.

24 S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini. Crysl: An extensible approach to
validating the correct usage of cryptographic apis. IEEE Transactions on Software Engineering,
pages 1–1, 2019. doi:10.1109/TSE.2019.2948910.

25 Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian Göpfert,
Felix Günther, Christian Weinert, Daniel Demmler, and Ram Kamath. Cognicrypt: Supporting
developers in using cryptography. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, pages 931–936. IEEE Press, 2017.

26 A. Leonard. Spring Boot Persistence Best Practices: Optimize Java Persistence Performance
in Spring Boot Applications. Apress, 2020. URL: https://books.google.com.br/books?id=

dIvgDwAAQBAJ.
27 Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. icryptotracer: Dynamic analysis on

misuse of cryptography functions in ios applications. In Man Ho Au, Barbara Carminati, and
C.-C. Jay Kuo, editors, Network and System Security, pages 349–362, Cham, 2014. Springer
International Publishing.

28 Liana Barachisio Lisboa, Vinicius Cardoso Garcia, Daniel Lucrédio, Eduardo Santana de
Almeida, Silvio Romero de Lemos Meira, and Renata Pontin de Mattos Fortes. A systematic
review of domain analysis tools. Information and Software Technology, 52(1):1–13, 2010.
doi:10.1016/j.infsof.2009.05.001.

29 Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith,
Traian Florin ŞerbănuŢă, and Grigore Roşu. Rv-monitor: Efficient parametric runtime
verification with simultaneous properties. In Borzoo Bonakdarpour and Scott A. Smolka,
editors, Runtime Verification, pages 285–300, Cham, 2014. Springer International Publishing.

30 Dustin Marx. Basic java persistence api best practices. Technical report, Oracle, 2008.
31 Mira Mezini. Maintaining the consistency of class libraries during their evolution. SIGPLAN

Not., 32(10):1–21, 1997. doi:10.1145/263700.263701.
32 Martin Monperrus and Mira Mezini. Detecting missing method calls as violations of the

majority rule. ACM Trans. Softw. Eng. Methodol., 22(1), 2013. doi:10.1145/2430536.2430541.
33 Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops: Why

do java developers struggle with cryptography apis? In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 935–946. ACM, 2016. doi:10.1145/

2884781.2884790.

https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1145/1052883.1052895
https://docs.oracle.com/en/java/javase/15/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/15/security/java-cryptography-architecture-jca-reference-guide.html
https://doi.org/10.1145/3293882.3330552
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/TSE.2019.2948910
https://books.google.com.br/books?id=dIvgDwAAQBAJ
https://books.google.com.br/books?id=dIvgDwAAQBAJ
https://doi.org/10.1016/j.infsof.2009.05.001
https://doi.org/10.1145/263700.263701
https://doi.org/10.1145/2430536.2430541
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/2884781.2884790


R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini 19:27

34 National Institute of Standards and Technology. Security requirements for cryptographic
modules. Technical report, National Institute of Standards and Technology, 2019.

35 Terence Parr. Language Implementation Patterns: Create Your Own Domain-Specific and
General Programming Languages. Pragmatic Bookshelf, 1st edition, 2009.

36 Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, Berlin, Heidelberg, 2005.

37 Michael Pradel and Thomas R. Gross. Leveraging test generation and specification mining
for automated bug detection without false positives. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, page 288–298. IEEE Press, 2012.

38 Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat
Kantarcioglu, and Danfeng (Daphne) Yao. Cryptoguard: High precision detection of
cryptographic vulnerabilities in massive-sized java projects. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19, page 2455–2472,
New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3319535.

3345659.
39 Romain Robbes, Mircea Lungu, and David Röthlisberger. How do developers react to api

deprecation? the case of a smalltalk ecosystem. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New York,
NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2393596.2393662.

40 M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-level api usage
patterns. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 23–32, 2015. doi:10.1109/SANER.2015.7081812.

41 A. A. Sawant, R. Robbes, and A. Bacchelli. On the reaction to deprecation of 25,357 clients
of 4+1 popular java apis. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 400–410, 2016. doi:10.1109/ICSME.2016.64.

42 Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to deprecation of
clients of 4+ 1 popular java apis and the jdk. Empirical Software Engineering, 23(4):2158–2197,
2018.

43 Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from
instantiation code. In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, page 471–480, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1368088.1368153.

44 Bruce Schneier. Secrets & Lies: Digital Security in a Networked World. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 2000.

45 Johannes Späth, Karim Ali, and Eric Bodden. Ideal : efficient and precise alias-aware dataflow
analysis. PACMPL, 1(OOPSLA):99:1–99:27, 2017. doi:10.1145/3133923.

46 Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-sensitive data-flow
analysis using synchronized pushdown systems. PACMPL, 3(POPL):48:1–48:29, 2019.

47 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow- and context-sensitive pointer analysis for java. In Shriram Krishnamurthi and
Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages 22:1–22:26. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.22.

48 Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting object usage anomalies.
In Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-
FSE ’07, page 35–44, New York, NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1287624.1287632.

49 L. Xavier, A. Brito, A. Hora, and M. T. Valente. Historical and impact analysis of api
breaking changes: A large-scale study. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 138–147, February 2017.
doi:10.1109/SANER.2017.7884616.

ECOOP 2021

https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/2393596.2393662
https://doi.org/10.1109/SANER.2015.7081812
https://doi.org/10.1109/ICSME.2016.64
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/3133923
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1109/SANER.2017.7884616

	1 Introduction
	2 Background
	2.1 Cryptographic APIs
	2.2 Cryptographic standards
	2.3 CrySL: Assessing the Correct Usage of Cryptographic APIs

	3 Domain Analysis
	3.1 Study Settings
	3.2 Analysis Results

	4 Meta-CrySL
	4.1 Design and Implementation Procedures
	4.2 High-level Architecture
	4.3 Abstract CrySL Language
	4.4 Refinement Language
	4.5 Meta-CrySL Configurations

	5 Empirical Assessment of Meta-CrySL
	5.1 RQ4: How many lines of CrySL code can one save when writing Meta-CrySL specifications?
	5.2 RQ5: How much duplication of specifications is eliminated by using Meta-CrySL in comparison to CrySL?
	5.3 RQ6: What are the implications of instantiating CrySL rules from Meta-CrySL specifications, observing the number of API misuses CogniCryptsast analysis reports?

	6 Threats to Validity
	7 Related Work
	7.1 Domain Engineering
	7.2 Correct Usage of APIs
	7.3 API Evolution

	8 Conclusion

