
On the Monitorability of Session Types, in Theory
and Practice
Christian Bartolo Burlò #

Gran Sasso Science Institute, L’Aquila, Italy

Adrian Francalanza #

Department of Computer Science, University of Malta, Msida, Malta

Alceste Scalas #

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
Software components are expected to communicate according to predetermined protocols and APIs.
Numerous methods have been proposed to check the correctness of communicating systems against
such protocols/APIs. Session types are one such method, used both for static type-checking as well as
for run-time monitoring. This work takes a fresh look at the run-time verification of communicating
systems using session types, in theory and in practice. On the theoretical side, we develop a formal
model of session-monitored processes. We then use this model to formulate and prove new results
on the monitorability of session types, defined in terms of soundness (i.e., whether monitors only
flag ill-typed processes) and completeness (i.e., whether all ill-typed processes can be flagged by
a monitor). On the practical side, we show that our monitoring theory is indeed realisable: we
instantiate our formal model as a Scala toolkit (called STMonitor) for the automatic generation of
session monitors. These executable monitors can be used as proxies to instrument communication
across black-box processes written in any programming language. Finally, we evaluate the viability
of our approach through a series of benchmarks.

2012 ACM Subject Classification Software and its engineering → Development frameworks and
environments; Software and its engineering → Software verification and validation; Theory of
computation → Concurrency

Keywords and phrases Session types, monitorability, monitor correctness, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.20

Related Version Full Version: https://arxiv.org/abs/2105.06291

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.2

Funding This work has been partly supported by: the project MoVeMnt (No: 217987-051) under
the Icelandic Research Fund; the BehAPI project funded by the EU H2020 RISE under the Marie
Skłodowska-Curie action (No: 778233); the EU Horizon 2020 project 830929 CyberSec4Europe; the
Danish Industriens Fonds Cyberprogram 2020-0489 Security-by-Design in Digital Denmark.

1 Introduction

Communication protocols and Application Programming Interfaces (APIs) [18] govern the
interactions between concurrent and distributed software components by exposing the
functionality of a component for others to use. Although the order of messages exchanged
and methods invoked is crucial for correct API usage, this information is either outright
omitted, or stated informally via textual descriptions [62, 61]. At best, protocols and
temporal API usage are described semi-formally as message sequence charts [51]. This
state of affairs is conducive to conflicting interactions, which may manifest themselves as
run-time errors, deadlocks and livelocks. Behavioural types [11] provide a methodology

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Christian Bartolo Burlò, Adrian Francalanza, and
Alceste Scalas;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 20; pp. 20:1–20:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.bartolo@gssi.it
https://orcid.org/0000-0002-0016-086X
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:alcsc@dtu.dk
https://orcid.org/0000-0002-1153-6164
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://arxiv.org/abs/2105.06291
https://doi.org/10.4230/DARTS.7.2.2
https://doi.org/10.4230/DARTS.7.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 On the Monitorability of Session Types, in Theory and Practice

client server
Auth(Str,Str)

Succ(Str)

Get(Str,Str)

...Rvk(Str)

Fail(Int)

re
cu

rs
e

choice

Figure 1 Authentication Protocol.

to address these shortcomings, by elevating protocols and flat API descriptions to formal
behavioural specifications with explicit sequences and choices of operations. A prevalent form
of behavioural types are session types [36, 37] which can ensure correct interactions that are
free from communication errors, deadlocks and livelocks.

▶ Example 1. Consider a server that exposes the API calls Auth (authenticate), Get and
Rvk (revoke). The intended use of this API is to invoke Auth followed with Get and finally
Rvk, as depicted in Fig. 1. If authentication is successful, Auth returns a token that can be
used for exclusive access to a resource with the service Get. After its use, the token should
be revoked with the service Rvk to allow other parties to access the resource. For security
reasons, the server is expected to only reply Get requests after it services an Auth request.
However, if the order of invocation is not respected, a client may send a Get request before
an Auth request. The resulting components’ interaction will be incorrect, causing an error or
deadlock. Even worse, the server may accept the Get request and let an unauthenticated
client access sensitive information. The protocol from the viewpoint of the client can be
described as the session type:

S = !Auth . &
{

?Succ . !Get . . .!Rvk . S, ?Fail . S
}

Type S states that the client is expected to first invoke (!) the service Auth and then
branch (&) according to the response received (?). If it receives Success, the client can invoke
Get and eventually Rvk before restarting the protocol (S). Otherwise, if it receives Fail, the
client may start following the type S from the beginning and retry authentication. ⌟

Run-time monitoring of session types: promise and challenges. In behavioural type
frameworks (including session types), the conformance between the component under scrutiny
and a desired protocol is commonly checked statically, via a type system that is tailored for
the language used to develop the component. This avoids runtime overhead and allows for
early error detection. However, there are cases where a (full) static analysis is not possible.
For instance, within a distributed or collaborative system, not all system components are
necessarily accessible for static analysis (e.g., due to source obfuscation). Components may
also be implemented using different programming languages, making it infeasible to develop
bespoke type-checkers for every programming language used in development. In these cases,
post-deployment techniques such as Runtime Verification (RV) [29, 13] can be used where
protocol conformance is carried out dynamically via monitors [21, 50, 24, 42, 49, 17, 34].
Runtime monitoring of behavioural types comes with a set of challenges.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:3

The realisability of effective monitoring: Restrictions such as inaccessible code and license
agreements (regulating code modifications), may restrict the ways in which software
components can be instrumented, thus hindering a monitor’s capabilities for observation
and intervention. Moreover, the runtime overhead induced by monitors should be kept
within acceptable levels.

Monitor Correctness: Intuitively, a “correct” monitor for a session type S should carry
out detections that correspond to the protocol represented by S. The recent results on
monitorability help us unpack this intuition of “correctness” in terms of soundness and
completeness: the monitor should not unnecessarily flag well-behaving code (detection
soundness [30, 3]), while providing guarantees for recognising misbehaving components
(detection completeness [4, 6]).

The aforementioned challenges are not independent of one another, and an adequate solution
often needs to take both aspects into consideration. On the one hand, monitor correctness
may require computations that increase runtime overheads; on the other hand, there are
inherent limits to what can be detected at runtime (i.e., the monitorability problem [13]) –
and moreover, practical implementation concerns may restrict monitoring capabilities even
further (e.g., due to the need for low overheads). To our knowledge, the above aspects have
not been fully investigated together for session types, in one unified study:

there is no systematic examination for the monitorability of session types, determining
the limits of runtime monitoring when verifying session-type conformance;
no previous work tackles the design of a session monitoring system that is practically
realisable, while also backed by formal detection soundness and completeness guarantees.

Contributions. We present the first formal analysis of the monitorability of session types,
and use it to guide the design and implementation of a practical framework (written in
Scala) for the run-time monitoring of concurrent and distributed applications. We focus
on communication protocols that can be formalised as (binary) session types [36, 37] with
two interacting parties (e.g., a client and a server). Crucially, we tackle scenarios where
at least one of the parties is a “black-box” process that may not be statically verified.
After formalising a streamlined process calculus with session types (§ 2), we present our
contributions:
1. We develop a formal model detailing how processes can be instrumented with monitors, to

observe their interactions and flag violations on the offending party (§ 3). We then design
an automated synthesis procedure from session types to monitors (in this operational
model) to study the monitorability of session types (§ 3.4);

2. We carry out the first study on the monitorability of session types, formally linking their
static and run-time verification (§ 4). We prove that our synthesised monitors are detection-
sound, i.e., components flagged by a monitor for session type S are indeed ill-typed for S

(Theorem 15). We also prove a weak detection-completeness result (Theorem 19) showing
to what degree can our synthesised monitors detect ill-typed components. Importantly,
we show that these limits are not specific to our synthesis procedure by proving an
impossibility result: under our “black-box” monitoring model, session monitoring cannot
be both sound and complete (Theorem 21). The latter results are new to the area of
behavioural types;

3. We show the realisability of our model, by implementing a toolkit (called STMonitor) that
synthesises session monitors as executable Scala programs (§ 5). We provide STMonitor
as companion artifact of this paper. We also provide evaluation benchmarks showing
that our generated Scala monitors induce limited overheads, hence their usability in
practice appears promising (§ 6).

Proofs and additional details are available in the extended version of this paper [19].

ECOOP 2021

20:4 On the Monitorability of Session Types, in Theory and Practice

Syntax
Predicates A ::= tt | ff | v1 == v2 | v1 >= v2 | A1 && A2 | !A | . . .

Processes P, Q ::= ◁l(a).P | ▷
{

li(xi).Pi

}
i∈I

| µX .P | X | if A then P else Q | 0

Semantics [pRec]
µX .P

τ−→ P [µX .P/X]
[pSnd]

◁l(v).P ◁l(v)−−−→ P

[pRcv]
▷
{

li(xi).Pi

}
i∈I

▷lj (v)
−−−−→ Pj [v/xj]

j ∈ I

[pTru]
A ⇓ tt

if A then P else Q
τ−→ P

[pFls]
A ⇓ ff

if A then P else Q
τ−→ Q

Figure 2 Process Calculus Syntax and Semantics.

2 Process Calculus and Session Types

This section introduces the formalism at the basis of our work: a streamlined process calculus
(§ 2.1) with standard session types (§ 2.2) and typing system (§ 2.3).

2.1 Process Calculus

Syntax. We adopt a streamlined process calculus that models a sequential process interacting
on a single communication channel, similar to [33, 32, 60]. Our process calculus is defined in
Figure 2. The syntax assumes separate denumerable sets of values v, u, w ∈ Val (including
tuples), value variables x, y, z ∈ Var and process variables X, Y ∈ PVar. We use a, b to
range over the set Val ∪ Var. The syntax also assumes a set of predicates A (used in
conditionals). A process may communicate by sending or receiving messages of the form
l(v), where l is a label, and v is the payload value. To this end, a process may perform
outputs ◁l(a).P (i.e., send message l(v) and continue as P), or inputs ▷

{
li(xi).Pi

}
i∈I

(i.e., receive a message with label li for any i ∈ I, and continue as Pi, with xi replaced by the
message payload). Loops are supported by the recursion construct µX .P , and the process
variable X. The process 0 represents a terminated process. The calculus also includes a
standard conditional construct if A then P else Q. We assume that all recursive processes
are guarded, i.e., process variables can only occur under an input or output prefix. The
calculus has two binders: the input construct ▷

{
li(xi).Pi

}
i∈I

binds the free occurrences
of the (value) variables xi in the continuation process Pi, whereas the recursion construct
µX .P binds the process variable X in the continuation process P .

Semantics. The dynamic behaviour of a process is described by the transition rules in
Fig. 2. The rules take the form P

µ−→ P ′, where the transition action µ can be either an
output action ◁l(v), an input action ▷l(v), or a silent action τ . Rule [pRec] allows
the recursive process µX .P to unfold. Rules [pSnd] and [pRcv] enable communication:

by [pSnd], process ◁l(v).P sends a message by firing action ◁l(v) and continuing as P ;
by [pRcv], process ▷

{
li(xi).Pi

}
i∈I

can receive a message lj(v) (j ∈ I) by firing action
▷lj(v) and continuing as Pj , with the payload value v replacing the variable xj .

The remaining two rules [pTru] and [pFls] define the silent transitions when the predicate
in the process if A then P else Q evaluates to true (A ⇓ tt) or false (A ⇓ ff), respectively. For
brevity, we often omit the trailing 0 and write ▷l(v).P for singleton input choices.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:5

Syntax
Base types B ::= Int | Str | Bool | . . . | (B, B)

Session types R, S ::= ⊕
{

!li(Bi).Si

}
i∈I

| &
{

?li(Bi).Si

}
i∈I︸ ︷︷ ︸

with I ̸= ∅ and li pairwise distinct

| rec X.S | X | end

Dual types
&

{
?li(Bi).Si

}
i∈I

= ⊕
{

!li(Bi).Si

}
i∈I

end = end X = X

⊕
{

!li(Bi).Si

}
i∈I

= &
{

?li(Bi).Si

}
i∈I

rec X.S = rec X.S

Figure 3 Session Types Syntax, and Definition of Dual Types.

▶ Example 2 (Process syntax and semantics). Recall the protocol depicted in Fig. 1. A
corresponding client process for this protocol is defined as Pauth below.

Pauth = µX .◁Auth("Bob", "pwd").Pres where Pres = ▷
{

Succ(tok).Psucc , Fail(code).Pfail
}

From the rules in Figure 2, the process Pauth executes as follows:

Pauth
τ−→

(
◁ Auth("Bob", "pwd").Pres

)
[Pauth/X] using [pRec]

◁Auth("Bob","pwd")−−−−−−−−−−−−→ ▷

{
Succ(tok).Psucc[Pauth/X] ,

Fail(code).Pfail[Pauth/X]

}
using [pSnd]

The process performs a silent action τ to unfold its recursion, and then sends a message with
label Auth and tuple "Bob","pwd" as payload. If the authentication is successful, the process
receives the message Succ including a token tok and proceeds according to Psucc (omitted):

▷Succ(321)−−−−−−−→ Psucc[Pauth/X][321/tok] using [pRcv]

Otherwise, if the authentication is unsuccessful, the process receives the message Fail
including an error code from the server and proceeds according to Pfail. ⌟

2.2 Binary Session Types
Session types describe the structure of interaction among processes. They enable the
verification of communicating systems against a stipulated communication protocol. Figure
3 formalises binary session types. We assume a set of standard base types B which includes
tuples. The selection type (or internal choice) ⊕

{
!li(Bi).Si

}
i∈I

requires a component to
send a message li(v) where the value v has base type Bi, for some i ∈ I. The branching
type (or external choice) &

{
?li(Bi).Si

}
i∈I

requires a component to receive a message of
the form li(v), where the value v (i.e., the message payload) is of the corresponding base
type Bi for any i ∈ I. The recursive session type rec X.S binds the recursion variable X in
S (we assume guarded recursion), while end describes a terminated session. For brevity, we
often omit ⊕ and & for singleton choices, as well as trailing ends.

A process implementing a session type S can correctly interact with a process implementing
the dual type of S, denoted as S (defined in Fig. 3). Intuitively, the dual type of a selection
is a branching type with the same choices. Hence, every possible output from one component
matches an input by the other component, and vice versa. Duality guarantees that the
interaction between typed components is safe (i.e., only expected messages are communicated)
and deadlock-free (i.e., the session terminates only if both components reach their end).

▶ Example 3. The session type Sauth below formalises the first part of the protocol that the
client in Fig. 1 is expected to follow (i.e., the type S in Example 1).

Sauth = rec Y.!Auth(Str, Str).&
{

?Succ(Str).Ssucc , ?Fail(Int).Y
}

ECOOP 2021

20:6 On the Monitorability of Session Types, in Theory and Practice

Identifier Typing [tVar]
Γ(x) = B
Γ ⊢ x : B [tVal] v ∈ B

Γ ⊢ v : B

Process Typing

[tBra]
∀i ∈ I Θ · Γ, xi : Bi ⊢ Pi : Si

Θ · Γ ⊢ ▷
{

li(xi).Pi

}
i∈I∪J

: &
{

?li(Bi).Si

}
i∈I

[tRec]
Θ, X : S · Γ ⊢ P : S

Θ · Γ ⊢ µX .P : S

[tSel] ∃i ∈ I l = li Γ ⊢ a : Bi Θ · Γ ⊢ P : Si

Θ · Γ ⊢ ◁l(a).P : ⊕
{

!li(Bi).Si

}
i∈I

[tPVar]
Θ(X) = S

Θ · Γ ⊢ X : S

[tIf]
Γ ⊢ A : Bool Θ · Γ ⊢ P : S Θ · Γ ⊢ Q : S

Θ · Γ ⊢ if A then P else Q : S
[tNil] Θ · Γ ⊢ 0 : end

Figure 4 Session Typing Rules.

The server should follow Sauth = rec Y.?Auth(Str, Str). ⊕
{

!Succ(Str).Ssucc , !Fail(Int).Y
}

,
its dual. According to Sauth, the client initiates interaction by sending a message with label
Auth, carrying a tuple of strings (username and password) as payload. The server should
then reply with either Success (carrying a string), or Failure (with an integer error code).
In case of Success, the client continues along Ssucc. In case of Failure, the session loops. ⌟

2.3 Session Typing System

Our session typing system (in Fig. 4) is standard. It uses two typing environments Θ and
Γ, where Θ is a partial mapping from process variables to session types, while Γ is a partial
mapping from value variables to base types. We represent them syntactically as:

Θ ::= ∅
∣∣ Θ, X : S Γ ::= ∅

∣∣ Γ, x : B

The type system is equi-recursive [53]: when comparing two types, we consider a recursive type
rec X.S to be equivalent to its unfolding S[rec X.S/X] (i.e., interchangeable in all contexts).

The typing judgement for values and variables is Γ ⊢ a : B, defined by rules [tVar] and
[tVal]. The process typing judgement, Θ · Γ ⊢ P : S, states that process P communicates
according to session type S, given the typing assumptions in Θ and Γ. In the branching rule
[tBra], an input process has a branching type &

{
?li(Bi).Si

}
i∈I

if all the possible branches
in the type are present as choices in the process, with matching labels. Hence, the process
must have the form ▷

{
li(xi).Pi

}
i∈I∪J

(notice that if J ̸= ∅, the process has more input
branches than the type). Moreover, for each matching branch, each continuation process Pi

(for i ∈ I) must be typed with the corresponding continuation type Si, assuming that the
received message payload xi has the expected type Bi. The selection rule [tSel] states that
◁l(a).P follows a selection type of the form ⊕

{
!li(Bi).Si

}
i∈I

if there exists a possible choice
in the type that matches the message l(a). To match, the labels must be identical, and the
type of the payload a must be of the type Bi stated in the session type, and the continuation
process P must be of the continuation type Si. The remaining rules are fairly standard.

▶ Remark 4. Although we do not fix the boolean predicates A, we assume that:
1. boolean predicates can be type-checked with standard rules;
2. base types B come with a predicate isB(v) that returns tt if v is of type B, and ff otherwise

(akin to instanceof in Java.) ⌟

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:7

▶ Example 5. Recall the process Pauth (Example 2) and the session type Sauth (Example 3):

Pauth = µX . ◁ Auth("Bob", "pwd").Pres Sauth = rec Y.!Auth(Str, Str).Sres

One can show that Pauth type-checks with Sauth, i.e., ∅ · ∅ ⊢ Pauth : Sauth. ⌟

3 A Formal Model for Monitoring Sessions

We now formalise an operational setup that enables us to verify the (binary) session types of
§ 2 at runtime. Our runtime analysis is conducted by uni-verdict rejection monitors, whose
purpose is to flag any session type violations detected (i.e., violation monitors [30, 3]).

3.1 Monitor and Instrumentation Design
We now illustrate the design decisions behind our formal monitoring framework. To this end,
we use as a reference the client-server system outlined in Example 1. Consider, in particular,
the scenario depicted in Fig. 5a, where a client is expected to interact with a server following
the prescribed protocol Sauth; the server is trusted and guaranteed to adhere to the dual type
Sauth (e.g., because it has been statically typechecked against Sauth using the type system
in § 2.3) – but we have limited control over the client, which might be untyped, hence its
interactions are potentially unsafe.

Our setup should place no assumptions on the client, largely treating it as a black
box. In fact, we target scenarios where the client source is inaccessible, possibly remote,
interacting with the server via a generic channel of communication (e.g., TCP sockets or
HTTP addresses). This precludes the possibility of weaving the monitor within the client
component. To achieve a model that can handle these requirements, we restrict ourselves to
outline monitors [13, 7], which are decoupled from the process-under-scrutiny as concurrent
units of code that can be more readily deployed over a black-box component; outline monitors
are also easier to verify for correctness via compositional techniques [23, 26, 27, 14, 31, 28].

client server

⊢ server : Sauth⊢ client : Sauth? ?

(a) No monitors.

client server monitora

▷Auth(“Bob”, “pwd”)
2

Auth(“Bob”, “pwd”)
1

◁Fail(1)
4

Fail(1)
3

(b) Server side instrumentation.

client monitorb server

Auth(“Bob”, “pwd”)
2

Auth(“Bob”, “pwd”)
1

Fail(1)
3

Fail(1)
4

(c) Channel instrumentation.

Figure 5 Design choices for instrumentation.

Our model focusses on the communication occurring on the channel between the client
and the server – and we assume such communication to be synchronous and reliable.
Outline monitors can typically only analyse the externally observable actions of a monitored
component. In our case, monitored processes follow the semantics of Fig. 2, hence the only
observable actions are send (◁l(v)) and receive (▷l(v)); τ -moves are unobservable.

ECOOP 2021

20:8 On the Monitorability of Session Types, in Theory and Practice

We consider two potential instrumentation setup designs for an outline approach. In
the setup in Fig. 5b, the server is instrumented with a sequence-recogniser monitor [57, 43]
(monitora). The server is required to notify monitora about every send and receive action it
performs – this can be achieved via listeners added through mechanisms such as class-loaders,
agents and VM-level tracers. For monitora, every receive action the server performs indicates
a send action by the client and vice-versa (i.e., every send indicates a receive). In Fig. 5b,
The client sends the message Auth(“Bob”, “pwd”) to the server 1 . Once received, 2 the
server notifies monitora with the message contents and the direction of the message (▷).
For monitora this indicates that the client sent the particular message. After the server
replies with the message Fail(1) 3 , it notifies monitora with the message contents and the
direction (◁) 4 , indicating that the client received the message.

In the alternative setup depicted in Fig. 5c, the monitor (monitorb) is instrumented on
the communication channel and acts as a proxy (or a partial-identity monitor [34]) between
the two components. Any communicated messages must pass through monitorb in order for it
to analyse them. In the execution of Fig. 5c the client sends the message Auth(“Bob”, “pwd”)
to monitorb 1 . The monitor checks that its contents conform with the protocol before
proceeding to forward the message to the server 2 . The server replies by sending the
message Fail(1) to monitorb 3 , which forwards it straight to the client 4 .

On the one hand, the monitor in Fig. 5b is completely passive: it performs analysis in
response to the events received. On the other hand, the monitor in Fig. 5c is also responsible
for forwarding messages between the client and the server . Thus, the communication between
the two components in Fig. 5c relies on monitorb: should the monitor crash or terminate
abruptly, the client and the server will stop interacting. Moreover, the setup in Fig. 5c
introduces additional delays when every communicated message passes through monitorb;
these are avoided in Fig. 5b. The main drawback of the setup in Fig. 5b is that the server is
directly exposed to an untrusted client, with additional responsibility of reporting events. In
contrast, the instrumentation in Fig. 5c provides a layer of protection to the server from
potentially malicious interactions: if the client sends a message that violates the protocol,
monitorb is able to flag the message without forwarding it to the server . Moreover, the setup
in Fig. 5c provides more flexibility for reasoning on the run-time monitoring of systems where
both the client and the server are black boxes. This work opts for the setup in Fig. 5c.

3.2 A Monitor Calculus
Fig. 6 describes the structure and behaviour of a partial-identity monitor operating as in
Fig. 5c. Monitors are similar to the processes defined in Fig. 2, with a few key additions.
Since monitors need to interact with the environment, they also include the constructs
▲l(a).M and ▼

{
li(xi : Bi).Mi

}
i∈I

, and rules [mOut] and [mIn]: they are analogous to the
process output and input constructs, where interaction takes place between the environment
and the monitor instead. We use the terms internal and external to differentiate between
actions involving the monitored process and the environment, respectively.

As shown in Figure 7, monitors can reach two kinds of rejection verdicts, namely
noP and noE ; the P and E tags distinguish between violations committed by the monitored
process (P) and the environment (E). The rules [mIV] and [mEV] specify how the monitor
reaches a verdict. Rule [mIV] represents the case when the monitor receives a violating
message l(v) and consequently reaches the verdict noP ; the message is deemed violating
since its label is not among those that the monitor expects to receive. Symmetrically, in
rule [mEV] the monitor reaches noE when it receives a violating message from the external
environment. The following example outlines the scenarios in which monitors reach a verdict.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:9

Syntax
Monitor M, N := ◁l(a).M | ▷

{
li(xi).Mi

}
i∈I

| ▲l(a).M | ▼
{

li(xi).Mi

}
i∈I

| µX .M | X | if A then M else N | 0 | noP | noE

Semantics

[mSnd]
◁l(v).M ◁l(v)−−−→ M

[mOut]
▲l(v).M ▲l(v)−−−→ M

[mRec]
µX .M

τ−→ M [µX .M/X]

[mRcv]
▷
{

li(xi).Mi

}
i∈I

▷lj (v)
−−−−→ Mj [v/xj]

j ∈ I [mIn]
▼

{
li(xi).Mi

}
i∈I

▼lj (vj)
−−−−−→ Mj [vj/xj]

j ∈ I

[mTru]
A ⇓ tt

if A then M else N
τ−→ M

[mFls]
A ⇓ ff

if A then M else N
τ−→ N

Violation Semantics

[mIV]
▷
{

li(xi).Mi

}
i∈I

▷l(v)−−−→ noP

∀i∈I : l ̸=li [mEV]
▼

{
li(xi).Mi

}
i∈I

▼l(v)−−−→ noE

∀i∈I : l ̸=li

Figure 6 Monitor Syntax and Semantics.

client monitor
Login(“Bob”)

̸ ⊢ ◁ Login(“Bob”) : Sauth

noP

(a) Internal violation.

monitor server
Res(227)

̸ ⊢ ▷ Res(227) : Sauth

noE

(b) External violation.

Figure 7 Monitor violations.

▶ Example 6. Fig. 7 depicts a monitor verifying the conformity of a client with the session
type Sauth (from Example 3). In Fig. 7a, the client sends the message Login(“Bob”). Since
the type Sauth states that the client should send a message with label Auth, the monitor
reaches the verdict noP by rule [mIV]. In Fig. 7b, the monitor receives Res(227) from the
environment (which represents a buggy server). In this case the monitor reaches the verdict
noE (by rule [mEV]) since the message does not conform with Sauth which states that the
client should receive either Succ or Fail. ⌟

▶ Remark 7. According to Fig. 6, our monitors can reach a verdict explicitly in their syntax
(by having noP /noE in their body), or by just transitioning to a verdict via rules [mIV] or
[mEV]. We will make use both methods for our synthesised monitors (see § 3.4). ⌟

3.3 Composite Monitored System
The rules in Fig. 8 formalise the behaviour of the monitor when composed with the process
to monitor, while also interacting with an environment (i.e., another process). This setup is
depicted in Fig. 9. We refer to a process P instrumented with a monitor M as a composite
(monitored) system, denoted as ⟨P ; M⟩. The rules [iRcv] and [iSnd] model the interaction
within the composite system, (i.e., between the monitored process P and the monitor M

in Fig. 9). Note that the interaction between the two is synchronous: the monitor (resp.
process) can only send a message when the process (resp. monitor) can receive the same
message. If P sends a message (by [iSnd]) that violates the monitor’s inputs, M is able to
flag the violation by rule [mIV]. The rules [iOut] and [iIn] model the interaction between
the composite system and the environment. As shown in Fig. 9, the monitor is the entity
that interacts with the environment (represented as a process Q). Accordingly, the monitor
can flag a message sent by the environment if the message violates the monitor’s expected

ECOOP 2021

20:10 On the Monitorability of Session Types, in Theory and Practice

[iSnd] P
◁l(v)−−−→ P ′ M

▷l(v)−−−→ M ′

⟨P ; M⟩ τ−→ ⟨P ′; M ′⟩
[iRcv] P

▷l(v)−−−→ P ′ M
◁l(v)−−−→ M ′

⟨P ; M⟩ τ−→ ⟨P ′; M ′⟩

[iOut] M
▲l(v)−−−→ M ′

⟨P ; M⟩ ▲l(v)−−−→ ⟨P ; M ′⟩
[iIn] M

▼l(v)−−−→ M ′

⟨P ; M⟩ ▼l(v)−−−→ ⟨P ; M ′⟩

[iProc] P
τ−→ P ′

⟨P ; M⟩ τ−→ ⟨P ′; M⟩
[iMon] M

τ−→ M ′

⟨P ; M⟩ τ−→ ⟨P ; M ′⟩

Figure 8 Composite monitored system semantics.

P M Q

composite system environment

Figure 9 The composite system interacting with the environment.

inputs, by rule [mEV]. The rules [iProc] and [iMon] allow the monitored process and the
monitor respectively to perform actions independent of each other (e.g., to recurse or branch
internally).

Our partial identity monitors halt upon reaching a verdict, in contrast to instrumented
sequence recognisers that operationally continue to process events without changing their
(irrevocable) verdict [26, 28]. As a result, our monitors also halt any interactions between the
composite system and the environment. Because of this, monitor correctness is of paramount
importance. The following example outlines the impact of a poorly constructed monitor.

▶ Example 8. Recall process Pauth = µX . ◁ Auth(“Bob”, “pwd”).Pres (Example 2), which
adheres to the session type Sauth = rec Y.!Auth(uname : Str, pwd : Str).Sres (Example 5). A
monitor corresponding to Sauth should receive from Pauth, analyse the message, and forward
it to the environment. The following (erroneous) monitor might seem to monitor Sauth:

Mbad = ▷Login(uname).▲Login(uname).Nbad

If process Pauth is instrumented with monitor Mbad, we observe the following behaviour:

⟨Pauth; Mbad⟩ τ−→ ⟨◁Auth(“Bob”, “pwd”).Pres[Pauth/X]; Mbad⟩ τ−→ ⟨Pres[Pauth/X]; noP ⟩

After Pauth unfolds, it sends the message Auth(“Bob”, “pwd”) to the monitor as per Sauth.
However, Mbad can only receive messages with label Login, hence it transitions to noP . ⌟

3.4 Monitor Synthesis
Def. 9 presents a synthesis procedure from session types (Fig. 3) to monitors (Fig. 6). The
monitors generated are meant to act as a proxy between the monitored process and the
environment process, as outlined in Fig. 5c. There are various practical advantages in having
an automated synthesis function: it is less error prone, expedites development and improves
the maintainability of the verification framework.

▶ Definition 9. The monitor synthesis function [[−]] : S 7→ M takes as input a session type
S and returns a monitor M . It is defined inductively, on the structure of the session type S:

[[⊕
{

!li(Bi).Si

}
i∈I

]] ≜ ▷
{

li(xi).if isBi(xi) then ▲li(xi).[[Si]] else noP

}
i∈I

[[&
{

?li(Bi).Si

}
i∈I

]] ≜ ▼
{

li(xi).if isBi(xi) then ◁ li(xi).[[Si]] else noE

}
i∈I

[[rec X.S]] ≜ µX .[[S]] [[X]] ≜ X [[end]] ≜ 0 ⌟

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:11

The main cases of Def. 9 are those for the selection and branching types. In the case
of S = ⊕

{
!li(Bi).Si

}
i∈I

, the synthesised monitor first waits to receive a message from
the monitored process, with one of the labels specified in the type. Once the message
is received, the monitor checks whether its payload is of the correct base type Bi, i.e.,
isBi(xi) (see Remark 4), raising noP if it is not. If isBi(xi) is true, the monitor forwards
the message towards the environment, and proceeds according to [[Si]]. The synthesis for
S = &

{
?li(Bi).Si

}
i∈I

is analogous, but the generated monitor receives a message from
the environment, analyses it, and forwards it to the monitored process; any violations are
attributed to the environment.

▶ Example 10 (Session Monitor Synthesis). Recall the session type Sauth in Example 3:
Sauth = rec Y.!Auth(Str, Str).Sres where Sres = &

{
?Succ(Str).Ssucc, ?Fail(Int).Y

}
The synthesis for this type first generates the recursion construct µY followed by the synthesis
for the selection type:

Mauth = [[Sauth]] =
{

µY . ▷ Auth(uname, pwd). if
(
isBStr(uname) ∧ isBStr(pwd)

)
then ▲Auth(uname, pwd).[[Sres]] else noP

Monitor Mauth first waits to receive a message with label Auth from the monitored process
(via ▷), checks the types of the payload

(
isBStr(uname)∧ isBStr(pwd)

)
, and proceeds to forward

the message to the environment (via ▲), continuing as the monitor of Sres:

[[Sres]] = ▼

{
Succ(tok).if isBStr(tok) then ◁ Succ(tok).[[Ssucc]] else noE ,

Fail(code).if isBInt(code) then ◁ Fail(code).Y else noE

}
Observe that [[Sres]] inputs from the environment and outputs to the monitored process. ⌟

If process Pauth is instrumented with monitor Mauth as the composite system ⟨Pauth; Mauth⟩,
we observe the behaviour outlined in Fig. 5c, as we show in the following example.

▶ Example 11. Recall Pauth defined in Example 2:
Pauth = µX .(◁Auth(“Bob”, “pwd”)).Pres where Pres = ▷

{
Succ(tok).Psucc, Fail(code).Pfail

}
When Pauth is instrumented with the monitor Mauth = [[Sauth]] we observe the behaviour:

⟨Pauth; Mauth⟩ τ−→ ⟨P ′
auth; Mauth⟩ where P ′

auth = ◁Auth(“Bob”, “pwd”).Pres[Pauth/X]

⟨P ′
auth; Mauth⟩ τ−→ ⟨P ′

auth; M ′
auth⟩ using [iMon]

where M ′
auth =

(
▷ Auth(uname, pwd).if

(
isBStr(uname) ∧ isBStr(pwd)

)
then ▲Auth(uname, pwd).[[Sres]] else noP

)
[Mauth/Y]

After unfolding, using the rules [iProc] and [iMon] respectively, the monitor can receive and
the process can send, and they can transition together to communicate: (see 1 in Fig. 5c)

P ′
auth

◁Auth(“Bob”,“pwd”)−−−−−−−−−−−→ P ′′
auth where P ′′

auth = ▷
{

Succ(tok).Psucc, Fail(code).Pfail
}

[Pauth/X]

M ′
auth

▷Auth(“Bob”,“pwd”)−−−−−−−−−−−→ M ′′
auth where

M ′′
auth = if

(
isBStr(“Bob”) ∧ isBStr(“pwd”)

)
then ▲Auth(“Bob”, “pwd”).[[Sres]][Mauth/Y] else noP

⟨P ′
auth; M ′

auth⟩ τ−→ ⟨P ′′
auth; M ′′

auth⟩

The monitor proceeds by checking the values of the payload values using the rule [iMon].

M ′′
auth

τ−→ M ′′′
auth where M ′′′

auth = ▲Auth(“Bob”, “pwd”).[[Sres]][Mauth/Y]

⟨P ′′
auth; M ′′

auth⟩ τ−→ ⟨P ′′
auth; M ′′′

auth⟩

ECOOP 2021

20:12 On the Monitorability of Session Types, in Theory and Practice

P

violates φ

satisfies φ

soundness

completeness
Pmonitor

φ

✓

✗

Figure 10 Monitoring soundness and completeness, from a logic-based viewpoint [30, 3, 4].

M ′′′
auth now forwards the message to the environment by rule [iOut]: (see 2 in Fig. 5c)

⟨P ′′
auth; M ′′′

auth⟩ ▲Auth(“Bob”,“pwd”)−−−−−−−−−−−−→ ⟨P ′′
auth; [[Sres]][Mauth/Y]⟩

The monitor is currently waiting to receive from the environment, since:

[[Sres]][Mauth/Y] =▼

{
Succ(tok).if isBStr(tok) then ◁ Succ(tok).[[Ssucc]][Mauth/Y] else noE

Fail(code).if isBInt(code) then ◁ Fail(code).Mauth else noE

}
If the monitor receives the message Succ(321), it forwards the message to the monitored
process and proceeds according to [[Ssucc]][Mauth/Y]. If the monitor receives the message
Fail(1) (see 3 in Fig. 5c) it forwards the message to the process P ′′

auth (see 4 in Fig. 5c):

◁Fail(1).Mauth
◁Fail(1)−−−−−→ Mauth P ′′

auth
▷Fail(1)−−−−−→ Pfail[Pauth/X][1/code]

⟨P ′′
auth; ◁Fail(1).Mauth⟩ τ−→ ⟨Pfail[Pauth/X][1/code]; Mauth⟩

The composite system can now proceed with the monitor restarting as Mauth. ⌟

Should the monitored process send a message that violates the session type, the monitor can
flag the violation upon receiving a message, as the following example shows.

▶ Example 12. Consider the scenario in Fig. 7a, where the client is the process Pbad:
Pbad = ◁Login(“Bob”). ▷ Res(tok : Str).Pres

and recall the monitor Mauth (from Examples 10 and 11) obtained from the session type
Sauth. When Pbad is instrumented with Mauth, we observe the following behaviour:

⟨Pbad; Mauth⟩ τ−→ ⟨Pbad; M ′
auth⟩ τ−→ ⟨▷Res(tok : Str).Pres; noP ⟩ using [iMon],[iSnd]

where M ′
auth =

{ (
▷ Auth(uname, pwd).if

(
isBStr(uname) ∧ isBStr(pwd)

)
then ▲Auth(uname, pwd).[[Sres]]else noP

)
[Mauth/Y]

i.e., Mauth unfolds, receives Login(“Bob”) from Pbad, and flag the rejection verdict noP . ⌟

4 Formal Analysis and Results

In § 3 we argued for the importance of monitor correctness. This has also been recognised
by other works that study monitoring techniques for session types [17, 42, 34]. However,
these attempts all propose their own bespoke notion of monitor correctness that is often hard
to relate to the others. Instead, we strive towards a more systematic approach for monitor
correctness and study monitor correctness in relation to an independent characterisation
of process correctness. More concretely, we assess the correctness of session monitors in
relation to session typing. We draw inspirations from a recent body of work that captures this

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:13

relationship in terms of soundness and completeness [30, 3], as depicted in Fig. 10. In such
body of work, monitor soundness states that if a monitor M is monitoring a process P for a
property φ, and M reaches a rejection (resp. acceptance) verdict, then such a verdict must
correspond to P ’s violations (resp. satisfactions) of property φ. Monitor completeness is the
dual property: if a process P violates (resp. satisfies) a property φ, then the monitor that
runtime-checks P for φ must reach a rejection (resp. acceptance) verdict. This formulation
is appealing to our study for a number of reasons:

The touchstone logic used to specify process correctness is the Hennessy-Milner Logic
with minimal and maximal fixpoints (recHML) [45]; like session types, it has a tight
relation to (ω-)regular properties, and a long tradition of automata-based interpetations.
Recent work [4, 6] has extended this framework to a spectrum of correctness criteria.
This gives us the flexibility of identifying the criteria that best fit our concerns.

To study session types monitorability, we adapt this theoretical framework to our setting:
M1 instead of logic formulas as specifications, we adopt session types as specifications; and
M2 to characterise processes satisfying a specification, we use the session typing system.
This leads to important differences between our approach and [30, 3]:
D1 by item M2, our processes characterisation is syntactic (rather than semantic), which is

further removed from the runtime behaviour observed by the monitor;
D2 session types describe interactions between two parties, and our monitors can attribute a

violation to a party. By contrast, monitors for recHML formulas flag generic rejections;
D3 we here limit our analysis to rejection monitors and do not consider acceptance verdicts.
Consequently, we formalise our notions of monitoring soundness and completeness as follows.
Here, t represents a trace, i.e., finite a sequence of environment send/receive actions ▲l(v)
and ▼l(v) (from Fig. 8); moreover, t=⇒ is a sequence of transitions where the actions in t are
interleaved with finite sequences of τ -transitions.

▶ Definition 13 (Session Monitor Soundness). A monitor M soundly monitors for a session
type S iff, for all P , if there is a trace t such that ⟨P ; M⟩ t=⇒ ⟨P ′; noP ⟩, then ∅ · ∅ ⊢ P : S

does not hold. ⌟

▶ Definition 14 (Session Monitor Completeness). A monitor M monitors for a session type
S in a complete manner, iff for all processes P , whenever ∅ · ∅ ⊢ P : S does not hold, then
there exists a trace t such that ⟨P ; M⟩ t=⇒ ⟨P ′; noP ⟩. ⌟

4.1 Soundness of Session Type Monitoring
A tenet of [30, 3, 4] is that, in order to have monitor correctness, soundness (Def. 13) is not
negotiable. We here show that our monitor synthesis procedure is sound, i.e., we show that
for any session type S, monitor [[S]] observes Def. 13 w.r.t. specification S.

▶ Theorem 15 (Synthesis Soundness). For all session types S and processes P , if there exists
a trace t such that ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; noP ⟩, then ∅ · ∅ ⊢ P : S does not hold.

Proof. Instead of proving the statement directly, we prove its contrapositive:

For all session types S and processes P such that ∅·∅ ⊢ P : S, if ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩
then M ′ ̸= noP .

To this end, we first establish a subject reduction result, relying on standard properties of
our type system: this determines how process P evolves w.r.t. its session type S. Then, we
prove the contrapositive statement above by lexicographical induction on the derivation of

ECOOP 2021

20:14 On the Monitorability of Session Types, in Theory and Practice

∅ · ∅ ⊢ P : S and the number of transitions in the trace ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩. This requires
some sophistication, because as the instrumented system ⟨P ; [[S]]⟩ evolves, for each step of P

the monitor [[S]] (as generated by Def. 9) may take multiple steps to evaluate synthesised
conditions before it can forward messages. Hence, we prove additional results to handle such
cases, and formulate a suitable induction hypothesis allowing us to complete the proof of the
contrapositive statement. Theorem 15 follows as a corollary. ◀

As a by-product of Theorem 15 we also deduce that if a process P has type S, then the
instrumented process ⟨P ; [[S]]⟩ can only get stuck due to an external violation, i.e., noE ; this
arises when the environment sends a message with a wrong label or payload type. This result
is formalised in Corollary 16 below, and is reminiscent of the notion of blaming in gradual
types (i.e., untyped components can always be blamed in case of errors [10, 41]).

▶ Corollary 16 (Monitor Blaming). For any process P and session types S where ∅ ·∅ ⊢ P : S,
for any trace t such that ⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩ ̸→ where P ̸= 0, we have M ′ = noE. ⌟

4.2 On the Completeness of Session Type Monitoring
Monitor soundness, by itself, is a weak result. For instance, the monitor that merely acts as a
forwarder between the monitored process and the environment, never raising any detections,
is trivially sound but, arguably, not very useful. One way to force the monitor to produce
useful detections is via completeness, as per Def. 14 above. We investigate completeness for
our synthesised monitors by first establishing a “weak” completeness result (§ 4.2.1) showing
how ill-typed processes can misbehave when instrumented. Then, we prove that a “full”
completeness result is impossible in our black-box monitoring model (§ 4.2.2).

4.2.1 Weak Monitor Synthesis Completeness
To achieve our completeness result, in this section we need a precise typing assumption on
predicates A: ill-typed predicates do not evaluate to a boolean – i.e., if Γ ⊢ A : Bool does
not hold, then A ̸⇓ tt and A ̸⇓ ff. Furthermore, we need to limit our analysis to processes
without dead code (Def. 18 below). For the process language of Fig. 2, this means: for every
“if” statement occurring in a process P , there are executions of P where the left branch is
taken, and executions where the right branch is taken. These executions depend on P ’s
inputs, which may cause different instantiations to P ’s variables. Example 17 illustrates why
we need this assumption; note that these assumptions are not needed for monitor soundness.

▶ Example 17. The process P = if tt then ◁ l1(v1).0 else ◁ l2(v2).0 is not typable with
S = ⊕

{
!li(Bi).Si

}
i∈{1} (for any Si): it is only typable with internal choices of the form

⊕
{

!li(Bi).Si

}
i∈1..n

, with n ≥ 2. Yet, P would operate correctly if instrumented with monitor
[[S]], because its “else” branch is dead code. If we remove the dead code from P , the remaining
process ◁l1(v1).0 is typable with S, and behaves like P . ⌟

▶ Definition 18. A process P has no dead code iff for all its subterms of the form P ′ =
if A then Q else Q′, there exist traces t and t′ and substitutions σ and σ′ such that P

t=⇒

P ′σ
τ−→ Qσ (hence, Aσ ⇓ tt) and P

t′

=⇒ P ′σ′ τ−→ Q′σ′ (hence, Aσ ⇓ ff). ⌟

With the “no dead code” assumption, we can formulate our weak completeness result. It
states that when a process P is ill-typed for a session type S, then the monitored system
⟨P ; [[S]]⟩ exhibits at least one execution that gets stuck due to P ’s behaviour, without any
violation by the environment.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:15

▶ Theorem 19 (Weak Monitor Synthesis Completeness). Take any closed process P without
dead code such that ∅ · ∅ ⊢ P : S does not hold. Then, there exists a trace t such that
⟨P ; [[S]]⟩ t=⇒ ⟨P ′; M ′⟩ ̸→ , with P ′ ̸= 0 or M ′ ̸= 0; moreover, M ′ ̸= noE.

Proof. The proof is based on failing derivations, inspired by [16, 44]. It consists of 6 steps.
1. We define the rule function Φ that, following the typing rules in Fig. 4, maps a judgement

of the form J = Θ · Γ ⊢ P : S to either the set of all judgements in J ’s premises (for
inductive rules), or {tt} (for axioms), or ∅ (if J does not match any rule);

2. we formalise a failing derivation of a session typing judgement Θ · Γ ⊢ P : S as a finite
sequence of judgements D = (J0, J1, . . . , Jn) such that:

(i) for all i ∈ 0..n, Ji is a judgement of the form Θi · Γi ⊢ Pi : Si;
(ii) J0 = Θ · Γ ⊢ P : S (i.e., the failing derivation D begins with the judgement of

interest);
(iii) ∀i ∈ 1..n, Ji ∈ Φ(Ji−1) (i.e., each judgement in D is followed by one of its premises);
(iv) Φ(Jn) = ∅ (i.e., the last judgement in D does not match any rule in Fig. 4)

3. we prove there is a failing derivation of J = Θ · Γ ⊢ P : S if and only if J is not derivable;
4. we formalise a negated typing judgement Θ · Γ ̸ ⊢ P : S and prove that it holds if and

only if there is a corresponding failing derivation of Θ · Γ ⊢ P : S;
5. thus, from items 3 and 4 above, we know that Θ · Γ ⊢ P : S is not derivable if and only if

Θ · Γ ̸ ⊢ P : S is derivable. Consequently, the judgement Θ · Γ ̸ ⊢ P : S tells us exactly
what are the possible shapes of P and S covered by the theorem’s statement;

6. finally, we use all ingredients above to prove the thesis. From a failing derivation of
Θ · Γ ⊢ P : S (item 3), we construct a trace t leading from ⟨P ; M⟩ to some ⟨P ′; M ′⟩;
further, using the corresponding derivation of Θ · Γ ̸ ⊢ P : S (items 4, 5), we prove that
t is a valid trace, and ⟨P ′; M ′⟩ ̸→ with P ′ ̸= 0 or M ′ ̸= 0, and M ′ ̸= noE . ◀

Although Theorem 19 is weaker than the ideal requirement set out in Def. 14, its proof
sheds light on all the possible reasons why an ill-typed monitored process gets stuck:

1. the monitor reaches a process rejection verdict, M ′ = noP , because the process sends a
message with a wrong label, or payload value of a wrong base type.

2. the monitor blocks waiting for the process to send a message, but:
a. P ′ is attempting to receive a message itself or
b. P ′ = 0 (i.e., P ′ has terminated its execution);

3. the monitor blocks waiting for the process to receive a message, but:
a. the process is also waiting to receive a message but does not support the required

message label being sent or
b. P ′ is attempting to send a message itself or
c. P ′ = 0;

4. the monitor expects the process to end, but P ′ is trying to send/receive more messages;
5. P ′ is stuck on an ill-typed expression.

▶ Remark 20. Process violations are only flagged noP (as required in Def. 14) is case 1. We
now discuss how a practical monitor implementation could, in principle, detect violations
in other cases, and highlight when this additional detection power would require additional
assumptions that go beyond our black-box monitoring design.

In cases 3a and 5, the trace t may lead to a run-time error; this could be flagged by
assuming that the monitor can detect whether the monitored process has crashed;

ECOOP 2021

20:16 On the Monitorability of Session Types, in Theory and Practice

In case 4, the monitor expects the session to be ended. This could be handled by assuming
and end-of-session signal: the monitor can wait for such a signal, and flag any other
message sent by the process. However, if the process is attempting to receive (instead of
ending the session), the detection is more subtle, as in case 2a below;
Cases 2b and 3c could be similarly handled by assuming an end-of-session signal;
Case 2a is more subtle: both the process and monitor are waiting for a message. Reception
timeouts from the monitor side are inadequate because they lead to unsound detections.
To accurately handle this case, we would need to instrument the process executable,
which breaks our black-box assumptions from § 3.1. Similarly, flagging a violation in case
3b also requires access to the process code, again breaking our black-box design. ⌟

4.2.2 Impossibility of Sound and Complete Session Monitoring
The weakness of our completeness result in Theorem 19 is not specific to our monitor synthesis
function. Rather, we show that this is an inherent limit of the operational model (Figures 6
and 8) that captures the black-box monitor design decisions of § 3.1. Similar impossibility
results often arise for reasonably expressive specification languages (such as the logics in
[30, 1, 3, 4]), where it is usually the case that only a subset of specifications can be monitored
in a sound and complete way.

▶ Theorem 21 (Impossibility of Sound and Complete Session Monitoring). A (closed) session
type S ̸= end cannot have a sound and complete monitor under the semantics of Fig. 6.

Proof. We proceed by case analysis on the structure of S:
Case S = &

{
?li(Bi).Si

}
i∈I

: We assume that a complete monitor M for S exists and
proceed to show that such a monitor is necessarily unsound for S. Fix a complete monitor
M for S. Consider the process P2 = ▷

{
li(xi).Qi

}
i∈I

that is well-typed w.r.t. the session
type S. Then, consider the process P1 obtained by pruning some of the top-level external
choices of P2, i.e., P1 = ▷

{
lj(xj).Qj

}
j∈J

where J ⊂ I (a strict inclusion). Observe that
P1 is ill-typed for S, and thus, by completeness (Def. 14), M should reject P1, (i.e., there
must exists a trace t such that ⟨P1; M⟩ t=⇒ ⟨P ′

1; noP ⟩). There are two ways for M to reach
such a verdict:

M
t=⇒ noP without interacting with P1. In this case, the same rejection verdict is

reached by the composite system ⟨P2; M⟩. Since P2 is well-typed for S, this means
that M is unsound for S by Def. 13;
M reaches the rejection verdict after interacting (at least once) with P1. In this case,
we have P1

▷lj(v)−−−−→ Qj (for some j ∈ J), and there are t1, t2, P ′
1 such that t = t1.t2

and M
t1.◁lj(v)
======⇒ M ′ and ⟨Qj ; M ′⟩ t2=⇒ ⟨P ′

1; noP ⟩. But then, since j ∈ J ⊆ I, we

also have ⟨P2; M⟩ t=⇒ ⟨P ′
1; noP ⟩. Since M rejects the well-typed process P2, this again

makes M unsound for S by Def. 13.
We have thus shown that a complete monitor M for S is necessarily unsound.

Case S = ⊕
{

!li(Bi).Si

}
i∈I

: Assume that a complete monitor M for S exists. The process
P1 = 0 is ill-typed for S (since it does not produce any of the expected outputs). By
Def. 14 (Completeness), there must exist a trace t such that ⟨P1; M⟩ t=⇒ ⟨P ′

1; noP ⟩. From
the structure of P1 it is clear that M reaches its rejection verdict without interacting
with P1, i.e., M

t=⇒ noP . This also means that M would also reach a rejection verdict
when instrumented with P2 = ◁lk(vk).Q′

2 with k ∈ I and is well-typed w.r.t. S. This
makes M unsound by Def. 13.

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:17

Recall that all session types are assumed to be guarded. Since the above two cases rule out
all the guarding constructs, ⊕

{
!li(Bi).Si

}
i∈I

and &
{

?li(Bi).Si

}
i∈I

, we conclude that there
is no closed (guarded) session type that can be monitored for soundly and completely, except
for all the trivial session types that equate to end. ◀

5 Realisability and Implementation

Up to this point we have considered a level of abstraction that allows us to model session
monitors and monitored components, reason about their behaviour, and prove their proper-
ties. We now illustrate how our theoretical developments can be translated into an actual
implementation of session monitoring, targeting the Scala programming language. The key
idea is to turn our monitor synthesis procedure (Def. 9) into a code generation tool that,
given a protocol specification (as a session type), produces the Scala code of a corresponding
executable monitor. The tool is called STMonitor, and is provided as companion artifact to
this paper. It is also available at:

https://github.com/chrisbartoloburlo/stmonitor (release tag v0.0.1)

We describe STMonitor in § 5.2 – but first, we augment session types with assertions (§ 5.1).

5.1 Introducing Assertions in Session Types Specifications
Since we use session types as specifications for a tool that generates executable monitors,
it is convenient to enrich them with assertions on the values being sent or received. We
augment the session types syntax (Fig. 3) by extending selection and branching as follows:

S ::= ⊕
{

!li(xi : Bi)[Ai].Si

}
i∈I

| &
{

?li(xi : Bi)[Ai].Si

}
i∈I

| . . .

The assertions Ai are predicates of the process calculus (Fig. 2, Remark 4), and they can
refer to the named payload variables xi. Such assertions do not influence type-checking: they
are copied in the synthesised monitors, where they are used to flag the new violations noA

P

(assertion violation by the process) and noA
E (external assertion violation). To achieve this,

we update our monitor synthesis function (Def. 9) as follows:

[[⊕
{

!li(xi : Bi)[Ai].Si

}
i∈I

]] ≜ ▷
{

li(xi).if isBi(xi) then
(
if Ai then ▲li(xi).[[Si]] else noA

P

)
else noP

}
i∈I

[[&
{

?li(xi : Bi)[Ai].Si

}
i∈I

]] ≜ ▼
{

li(xi).if isBi(xi) then
(
if Ai then ◁ li(xi).[[Si]] else noA

E

)
else noE

}
i∈I

The only changes are highlighted: if the monitored process sends a message that violates
the assertion, it is flagged with noA

P ; symmetrically, if a message that violates the assertion is
received from the environment, then the message is flagged with noA

E .

▶ Example 22. Recall Sauth from Example 3. We can refine it with assertions to check the
validity of the data being transmitted and received:

SA
auth = rec Y.!Auth(uname : Str, pwd : Str)[validUname(uname)].SA

res

SA
res = &

{
?Succ(tok : Str)[validTok(tok, uname)].SA

succ, ?Fail(code : Int)[tt].Y
}

In SA
auth, when the client sends Auth(uname, pwd), the value of uname is passed to the

predicate validUname which ensures that the supplied uname is given in the correct format.
If the server replies with Succ(tok), the token tok and username uname are validated by
the cryptographic predicate validTok, which tests whether the token is correct for the given
username. If so, the client continues along session type SA

succ. Otherwise, if the server
chooses to send Fail with the error code, the trivial assertion check tt is performed. ⌟

ECOOP 2021

https://github.com/chrisbartoloburlo/stmonitor

20:18 On the Monitorability of Session Types, in Theory and Practice

Notice that, when all assertions are trivially true, the augmented monitor synthesis is
equivalent to the original Def. 9. Otherwise, the synthesised monitors with assertions are
more restrictive: executions where no violations noP nor noE were detected might now violate
an assertion and result in noA

P or noA
E . The introduction of such assertions in our theory

changes our monitorability results as follows:
soundness (Theorem 15) is preserved – which is crucial for practical usability;
blaming (Corollary 16) is weakened: an instrumented well-typed process may violate an
assertion, and be flagged with noA

P ;
weak detection completeness (Theorem 19) is not preserved: assertions can in principle be
unsatisfiable, hence some ill-typed processes may not be flagged because all their traces
end with an environment assertion violation noA

E .

5.2 Implementation

We now illustrate the implementation of our session monitor synthesis tool. It generates
runnable Scala code from session types, possibly including the assertions discussed in § 5.1.

Implementation framework. Our synthesised monitors uses the session programming library
lchannels [56]. It allows for implementing a session type S in Scala, by
1. defining a set of Continuation-Passing-Style Protocol classes (CPSPc) corresponding to S,

and
2. using a communication API that, by leveraging such CPSPc, lets the Scala compiler spot

protocol violations.
By using lchannels, we are more confident that if a syntesised monitor for session type S

compiles, then it correctly sends/receives messages according to S. Moreover, lchannels
abstracts communication from the underlying message transport, hence it allows our monitors
to interact with clients or servers written in any programming language.

Implementation of the session monitor synthesis. Overall, our Scala monitor generation
requires 3 user-supplied inputs:
i1 a session type S (with or without assertions) describing the desired protocol;
i2 for each assertion in S (if any), a corresponding Scala function returning true/false; and
i3 a Connection Manager class (discussed below) to interact with the monitored process.
Given a session type (input 1) our monitor synthesiser tool generates:
1. the protocol classes (CPSPc) for representing the session type in Scala + lchannels, and
2. the Scala source code of a runtime monitor (requiring inputs 2 and 3 to compile).

The generated monitor acts as a mediator between client and server: one is on the internal
side of the monitor (i.e., the instrumented process), while the other is on the external side.
The internal side is untrusted: its messages are run-time checked, to ensure they follow
the desired protocol (e.g., session type SA

auth in Example 22). Instead, the external side is
trusted: it is (mostly) expected to follow the dual protocol (e.g., the dual session type SA

auth).
This design choice allows us to simplify the monitor implementation, as its communication
with the external side are handled by lchannels. However, our design does not limit the
flexibility of the approach, since an untrusted peer can be made trusted by instrumenting it
with a monitor (see discussion below).

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:19

Monitor synthesis in practice. We now illustrate the scenario depicted in Fig. 11 where:

1. we want a client/server system to implement the session type (with assertions) SA
auth

(Example 22);
2. we trust the server (e.g., because it is type-checked), and
3. we want to instrument a client whose source code is inaccessible or cannot be verified.
Other variations of this scenario are possible. For instance, we could similarly instrument an
untrusted server, by running our monitor synthesiser on the dual session type Sauth. The
resulting combination of monitor-and-server is then trusted and can interact via lchannels.
As a result, it could then be used as the trusted server in Fig. 11.

client CM mon server∗ lchannels

CPSPcsynthSauth CPSPc

Figure 11 The composite system interacting with the environment.

The generated monitor (mon) intercepts all messages between client and server . The
communication between mon and server occurs via lchannels; instead, the communication
between the monitor and the client is handled by a Connection Manager (CM): a user-
supplied Scala class, input 3, which acts as a translator and gatekeeper, by transforming
each messages from the monitor-client transport protocol into a corresponding CPSP class,
and vice versa. With this design, the code generated for the monitor is abstracted from the
low-level details of the protocols used by both the client and server.

There is a tight correspondence between the monitors generated by our tool, and our
formal monitor synthesis. This increases our confidence that the results in § 4 carry over
to our implementation and that our tool is indeed correct. In the sequel, we illustrate the
generated monitoring code for Example 22 above, showing the monitoring of a selection type
(§ 5.2) and branching type (§ 5.2).

[[SA
auth]] =

µY . ▷
{

Auth(uname : Str, pwd : Str).

if isBStr(uname) ∧ isBStr(pwd)
then if validUname(uname)

then ▲Auth(uname, pwd).[[Sres]]

else noA
P

else noP

}

1def receiveAuth(srv:Out[Auth],client:CM): Unit ={
2client.receive() match {
3case msg @ Auth(_, _) =>
4if (validUname(msg.uname)) {
5val cont = srv !! Auth(msg.uname,
6msg.pwd)_
7payloads.Auth.uname = msg.uname
8sendChoice1(msg.cont, client)
9} else {
10/* INTERNAL VIOLATION (assertion) */
11}
12case _ =>
13/* INTERNAL VIOLATION: invalid message */
14} }

Figure 12 Comparison between the formal and implementation synthesis of the internal choice.

The internal receive operator of the monitor calculus (▷) corresponds to line 2 in § 5.2,
where the monitor invokes the receive method of the CM. Depending on the type of message
received, the monitor performs a series of checks. By default, a catch-all case (line 12) handles

ECOOP 2021

20:20 On the Monitorability of Session Types, in Theory and Practice

any messages violating the protocol: this is similar to rule [mIV] of the formal monitor
(Fig. 6), which flags the violation noP . If Auth is received, the monitor initially invokes the
function validUname() with argument uname; such a function is user-supplied (see input 2
above). If the function returns false, the monitor flags the violation and halts (line 10): this
corresponds to the external assertion violation noA

P in [[SA
auth]]. Otherwise, if validUname()

returns true, the message is forwarded to the server (line 5). The function used to forward
the message (!!), which is part of lchannels, corresponds to the external output operator ▲
of [[SA

auth]]; it returns a continuation channel that is stored in cont. To associate the payload
identifiers of SA

auth to their current values, the monitors maintain a mapping, called payloads.
In this case, the value of uname is stored (line 7) since it is used later on in Sauth. Finally,
the monitor moves to the next state sendChoice1 (§ 5.2), passing the channel stored in cont
to continue the protocol (line 8).

[[SA
res]] =

▼
{

Succ(tok : Str).if isBStr(tok)

then if validTok(tok, uname)
then ◁ Succ(tok).[[Ssucc]]

else noA
E else noE ,

Fail(code : Int).if isBInt(code)
then if tt then ◁ Fail(code).Y

else noA
E else noE

}

1def sendChoice1(srv:In[Choice1],Client:CM):Any = {
2srv ? {
3case msg @ Succ(_) =>
4if (validTok(msg.tok, payloads.Auth.uname)) {
5Client.send(msg)
6/* Continue according to S_succ */
7} else {
8/* EXTERNAL VIOLATION (assertion) */
9}
10case msg @ Fail(_) =>
11Client.send(msg)
12receiveAuth(msg.cont, External)
13} }

Figure 13 Comparison between the formal and implementation synthesis of the external choice.

According to SA
res, the server can choose to send either Succ or Fail. The monitor waits

to receive either of the options from the server , using the method ? from lchannels (line 2).
This corresponds to the external input operator of the monitor calculus (▼) used in [[SA

res]],
which can also receive both options from the server .

If the server sends Succ(toc), the first case is selected (line 3). The monitor evaluates
the assertion validTok on tok and uname (stored in § 5.2, and now retrieved from
the payloads mapping). If it is satisfied, the message is forwarded to the client (line
5) via CM’s send method, which corresponds to the internal send operator (◁) in the
monitor calculus. The monitor then proceeds according to the monitor [[Ssucc]]. Otherwise,
the monitor logs a violation and halts (line 8); similarly, [[SA

res]] flags the violation noA
E

indicating an external assertion violation.

Instead, if the server sends Fail (line 10), the monitor forwards it to the client; there
are no assertion checks here, as the assertion after Fail in [[SA

res]] is tt. Then, following
the recursion in [[SA

res]], the monitor (on line 12) loops to receiveAuth (§ 5.2).
Unlike the synthesised code of receiveAuth (that handles the previous external choice, in
§ 5.2), there is no catch-all case for unexpected messages from the server . This is by design.
As explained above we use lchannels to interact with the “trusted” external side, hence the
interaction with the server is typed, and a catch-all case would be unreachable code. Still,
lchannels throws an exception (crashing the monitor) if it receives an invalid message –
which corresponds to the monitor [[SA

res]] flagging an external violation via rule [mEV].

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:21

6 Empirical Evaluation

We evaluate the feasibility of our implementation by measuring the overheads induced by
the run-time checks of our synthesised monitors (§ 5). We consider 3 application protocols,
modelled as session types, as our benchmarks:
1. A ping-pong protocol, based on a request-response over HTTP (a style of protocol that

is typical, e.g., in applications based on web services). Although it is a fairly simple
protocol, our implementation uses HTTP to carry ping/pong messages, highlighting the
fact that our generated monitors are independent from the message transport in use;

2. A fragment of the Simple Mail Transfer Protocol (SMTP) [47]. This benchmark represents
a more complex protocol featuring nested internal/external choices;

3. A fragment of the HTTP protocol, also featuring sequences of nested internal/external
choices.

Ping-pong over HTTP. In this protocol, a client is expected to recursively send messages
with label Ping to the server which, in turn, replies with Pong. The protocol proceeds until
the client sends Quit. The client-side protocol is shown below (the server-side is dual).

Spong = rec X.(⊕
{

!Ping().?Pong().X, !Quit()
}

)
Notice that the protocol has no explicit reference to HTTP. In fact, we use HTTP as

a mere message transport, by providing a suitable Connection Manager to the synthesised
monitor (which is transport-agnostic). Concretely, the ping-pong is implemented with the
server handling requests on an URL like http://127.0.0.1/ping, and the client performing
a GET request on that URL, and reading the response. For this benchmark, the setup is:

the client is on the internal side of the generated monitor, hence subject to scrutiny;
the server is on the external side of the generated monitor.

As untrusted client we use a standard, unmodified load testing tool: Apache JMeter (https:
//jmeter.apache.org/) configured to send HTTP requests at an increasing rate.

SMTP. We model a fragment of the SMTP protocol (server-side) as the session type Ssmtp:

Ssmtp = !M220(msg : Str).&
{

?Helo(host : Str).!M250(msg : Str).Smail, ?Quit().!M221(msg : Str)
}

Smail = rec X.(&
{

?MailFrom(addr : Str).!M250(msg : Str).rec Y.(&
{

(7)

?RcptTo(addr : Str).!M250(msg : Str).Y, (8)
?Data().!M354(msg : Str).?Content(txt : Str).!M250(msg : Str).X, (9)

?Quit().!M221(msg : Str)
}

), ?Quit().!M221(msg : Str)
}

)

When a client establishes a connection, the server sends a welcome message (M220), and
waits for the client to identify itself (Helo). Then, the client can recursively send emails by
specifying the sender and recipient address(es), followed by the mail contents. The client can
send multiple emails by repeating the loop on “X” between lines (7) and (9).

The SMTP protocol runs over TCP/IP. The specification above (and the synthesised
monitors) are again transport-agnostic: we handle TCP/IP sockets by providing a suitable
Connection Manager to the synthesised monitor.

For this benchmark, the setup used is “dual” to that of the HTTP ping-pong benchmark
above:

the server is on the internal side of the generated monitor, hence subject to scrutiny;
the client is on the external side of the generated monitor.

ECOOP 2021

http://127.0.0.1/ping
https://jmeter.apache.org/
https://jmeter.apache.org/

20:22 On the Monitorability of Session Types, in Theory and Practice

For this experiment, we implement an SMTP client that sends emails to the server, and
measures the response time. We take such measurements against two (untrusted and
monitored) servers, both configured to accept incoming emails and discard them:
1. a default instance of smtpd from the Python standard library;1
2. a default instance of Postfix,2 one of the most used SMTP servers [59].

HTTP. In this benchmark, we do not use HTTP as a mere message transport (unlike the
ping-pong benchmark above). Rather, we model HTTP headers, requests, and responses with
a session type, which we use to synthesise a monitor that checks the interactions between a
trusted server and an untrusted client. We focus on a fragment of HTTP that is sufficient
for supporting typical client-server interactions (e.g., when the client is the Mozilla Firefox
browser). The HTTP session type (here omitted due space reasons) and its (trusted) server
implementation are adapted from the lchannels examples [55]. For benchmarking, we use
Apache JMeter (https://jmeter.apache.org/) as untrusted client.

Benchmarking setups and measurements. In all of our benchmarks, we study the overhead
of our synthesised monitors by comparing:

an unsafe setup: the client and server interact directly;
a monitored setup: communication between the trusted and untrusted components is
mediated by our synthesised monitors, which halts when it detects a violation – as
described earlier in Fig. 11.

We follow a multi-faceted approach, as advocated by [8], and base our study on three
measurements: average response time, average CPU utilisation, and maximum memory
consumption. The response time is arguably the most important measurement, since slower
response times can be immediately perceived when interacting with a monitored system. We
measure them by running experiments of increasing length: for ping-pong and HTTP, we
perform an increasing number of request-response loops, whereas for SMTP, we send an
increasing number of emails. The general expectation is: for longer experiments, the average
response time and CPU usage should decrease, while the maximum memory consumption
should increase. We repeat each experiment 30 times, and we plot the average of all results.

In our benchmarks, overheads can have two forms:

Overhead 1: the translation and duplication of messages being forwarded between client and
server;

Overhead 2: the run-time checks needed to ensure that the desired session type is being
respected.

Overhead 1 is unavoidable for the most part. By their own nature, partial identity
monitors (like ours) must receive and forward all messages. This overhead can only be
minimised by using more efficient message transports. By contrast, overhead 2 is specifically
caused by our monitor synthesis. Our benchmarks were specifically designed to accurately
capture this latter form of overhead. In order to better distinguish overhead 1 from overhead
2, our benchmarks run the trusted side (client or server) and the synthesised monitors
on a same JVM instance, where they interact in the most efficient way (i.e., through the
LocalChannel transport provided by the lchannels library). This minimises overhead 1,

1 https://docs.python.org/3/library/smtpd.html
2 http://www.postfix.org/

https://jmeter.apache.org/
https://docs.python.org/3/library/smtpd.html
http://www.postfix.org/

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:23

and allows us to better observe the impact of overhead 2. Clearly, the untrusted side of each
benchmark (i.e., the black-box client or server being monitored) always runs as a separate
process.

Despite this, our synthesised monitors can still be deployed independently of the trusted
side (i.e., on their own JVM, possibly across a network) because they are agnostic to the
message transports in use; this is made possible by the use of connection managers and
lchannels. We demonstrate this capability by also taking measurements for a detached
setup, where the trusted component and monitor run on separate JVMs (on a same host),
and interact via TCP/IP (through a suitable message transport for lchannels). This setup
is more flexible, but the slower message transport increases overhead 1. We implemented
this setup for ping-pong and SMTP, measuring their response times.

Results and analysis. The benchmark results are reported Fig. 14. For the ping-pong
benchmark (Fig. 14a), the impact of monitors is noticeable but limited: for the “monitored”
setup (which highlights overhead 2), the response times are less than 14% slower; the
“detached” monitor setup is unsurprisingly slower, due to its slower message transport (which
increases overhead 1). For the SMTP benchmark (Figures 14b and 14c), we can observe
different behaviours:

the Python smtpd server (Fig. 14b) has extremely fast response times: it is essentially a
dummy server that receives emails and does nothing with them. This is also evident from
the CPU usage: it constantly increases, because the SMTP client receives immediate
responses, no matter how many emails it sends, with or without a monitor. Consequently,
our monitors cause a relatively high impact on such fast response times (almost 34%);
the Postfix SMTP server (Fig. 14c) is more realistic: unlike Python smtpd, it takes some
time (with fluctuations) to process each email and respond to the client. Consequently,
our monitors have a relatively small impact on the response times (less than 7%).

As in the case of ping-pong, the “detached” monitor setup for both SMTP benchmarks is
slower, as it uses a slower message transport (which increases overhead 1). Finally, the HTTP
benchmark (Fig. 14d) shows a response time overhead that is below 5%. By and large, these
overhead levels are tolerable for many applications that are not mission critical, and are
comparable to the overhead experienced when running state-of-the-art RV tools [13].

7 Conclusion

We presented a formal analysis for the monitorability limits of (binary) session types w.r.t. a
partial-identity monitor model; to wit, this is the first monitorability assessment of session
types. We couple this study with an implementation of session monitor synthesis.

More in detail, our contributions are the following. On the the theoretical side, we
provide the first treatment of the monitorability of session types, and detection-soundness and
detection-completeness properties of session monitors, and we prove that our autogenerated
session monitors enjoy both the former and (to a lesser extent) the latter. We also present
an impossibility result of completeness for our black-box monitoring setup – which is a
novel result to the area of session type monitoring. On the practical side, we evaluate the
viability of our implementation (called STMonitor) via benchmarks. The results show that
our monitor synthesis procedure only introduces limited overheads.

7.1 Related Work
Several papers address the monitoring of session-types-based protocols – but no previous
work studies the formal problem of session monitorability; furthermore, their approaches
differ from ours in various ways, as we now discuss.

ECOOP 2021

20:24 On the Monitorability of Session Types, in Theory and Practice

500 1000 1500 2000
Requests sent

15

20

25

C
P

U
U

til
is

at
io

n
(%

)

unsafe monitored

500 1000 1500 2000
Requests sent

100

105

110

115

120

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Requests sent

10

20

30

R
es

po
ns

e
T

im
e

(m
s)

detached

(a) Ping-pong over HTTP (trusted server, untrusted client). Monitored response time overhead: 13.82%.

500 1000 1500 2000
Emails sent

150

160

170

180

C
P

U
U

til
is

at
io

n
(%

)

500 1000 1500 2000
Emails sent

95

100

105

110

115

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Emails sent

0.1

0.2

0.3

0.4

R
es

po
ns

e
T

im
e

(m
s)

(b) SMTP Python session (trusted client, untrusted server). Monitored response time overhead: 33.98%.

500 1000 1500 2000
Emails sent

40

60

80

100

C
P

U
U

til
is

at
io

n
(%

)

500 1000 1500 2000
Emails sent

95

100

105

110

115

120

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Emails sent

0.9

1.0

1.1

1.2

1.3

R
es

po
ns

e
T

im
e

(m
s)

(c) SMTP Postfix session (trusted client, untrusted server). Monitored response time overhead: 6.68%.

500 1000 1500 2000
Requests sent

20

30

40

50

60

C
P

U
U

til
is

at
io

n
(%

)

500 1000 1500 2000
Requests sent

140

160

180

200

220

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

500 1000 1500 2000
Requests sent

25

50

75

100

125

R
es

po
ns

e
T

im
e

(m
s)

(d) HTTP session (trusted server, untrusted client). Monitored response time overhead: 4.81%.

Figure 14 Benchmark results: average CPU usage, maximum memory consumption, and average
response time (30 runs, 2 CPUs (Intel Pentium Gold G5400 @ 3.70GHz), 8 GB RAM, Ubuntu 20.04).

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:25

The work [17] formalises a theory of process networks including monitors generated from
(multiparty) session types. The main differences with our work are:
1. the design of [17] is based on a global, centralised router providing a safe transport

network that dispatches messages between participant processes; correspondingly, its
implementation [24, 50, 40] includes a Python library for monitored processes to access the
safe transport network. By contrast, we do not assume a specific message routing system,
and our theory and implementation address the monitoring of black-box components;

2. the results in [17] do not consider limits related to session monitorability. Their results
(e.g., transparency) are analogous to our detection soundness (Theorem 15), i.e., syn-
thesised monitors do not disrupt communications of well-typed processes; they do not
address completeness (Theorem 19 and Theorem 21), i.e., to what extent can a monitor
detect ill-typed processes.

Furthermore, our work and [17] differ in a fundamental design choice: when our monitors
detect an invalid message, they flag a violation and halt – whereas monitors in [17] drop
invalid messages, and keep forwarding the rest. The latter is akin to runtime enforcement
via suppressions [9]; studying this design with our theory is interesting future work.

Our protocol assertions (§ 5.1) are reminiscent of interaction refinements in [48], that
are also statically generated (by an F# type provider), and dynamically enforced when
messages are sent/received. However, our approach and design are different from [48]: we
synthesise session monitoring processes that can be deployed over a network, to instrument
black-box processes – whereas [48] expects the runtime-verified code to be written with a
specific language and framework, and injects dynamic checks in the program executable.
Furthermore, the work [48] does not address session monitorability limits.

The work [49] proposes a methodology to supervise (multiparty) session protocols, and
recover them in case of failure of some component; it also includes an implementation in
Erlang. Similarly to this work, in [49] each component is observed by a session monitor;
unlike this work, [49] does not address any aspect of session monitorability, and focuses on
proving that its recovery strategy does not deadlock.

The work by Gommerstadt et al. [34] considers a partial identity monitor model for
session types that is close to the one discussed in § 3. They however do not provide any
synthesis function and assume that monitors are constructed by hand. To complement this,
they define a dedicated type system to prove that the monitor code behaves as a partial
identity, e.g., it forwards messages in the correct order, without dropping them. They do not
study session monitorability. To our knowledge, their approach has not been implemented as
a tool nor has it been assessed empirically either.

Melgratti and Padovani [46] propose monitors that act as wrappers around a session
library. This technique effectively inlines the monitors in the monitored process code. In
fact, their implementation assumes that the processes under scrutiny are written in OCaml
using the FuSE library. In contrast, we synthesise outline monitors as independent processes
that observe black-box implementations written in any language/library. The work proves
a series of results that are akin to our notion of monitoring soundness, without addressing
completeness.

In separate work, Waye et al. [63] monitor black-box services, focusing exclusively on
request-response protocols. Unlike our session-type monitors, they do not support protocols
with prescribed sequences of internal/external choices and recursion. In fact, their contracts
are analogous to enhanced assertions on transmitted/received values (reminiscent of the
assertion introduced in § 5.1). Although they provide soundness results for their monitoring
framework, they do not consider any further monitorability issues.

The recent work [35] presents a runtime verification framework for communication
protocols (based on multiparty session types) in Clojure. Unlike this work, [35] expects

ECOOP 2021

20:26 On the Monitorability of Session Types, in Theory and Practice

monitored applications to be written in a specific language and framework – whereas
we address the monitoring of black-box processes. Again, [35] does not study session
monitorability.

7.2 Future Work
This work is our first step along a new line of research on the relative power of static versus
run-time verification methods. In general terms, given a calculus C with a type system T and
run-time monitoring system M , monitoring soundness tells us whether M is flagging “real”
errors according to T . Dually, monitoring completeness tells us whether T is too restrictive
w.r.t. M (i.e., whether T is rejecting too many processes that M deems well-behaved). In
this work, we demonstrate a rather tight connection between the chosen process calculus
(C) and session type system (T), and our session monitors (M): our synthesised monitors
are sound (Theorem 15), and most processes rejected by the type system behave incorrectly
(Theorem 19). Our plan is to study more instances of C, T and M – both in theory, and in
practice.

One avenue worth exploring is that of increasing the observational powers of the monitoring
setup considered, in order to extend session monitorability. The work by Aceto et al. [2] is a
systematic study that considers a variety of extensions to the traditional monitoring setup
(consisting of one monitor observing events describing the computation effected by the process
under scrutiny). The extensions considered include traces that report process termination
and events that could not have been produced at different stages of the computation (i.e.,
refusals [52]). They also consider monitoring setups where a process is monitored over
multiple runs. In each case, they show the maximal properties that can be monitored for in a
sound and complete manner, characterised a syntactic fragments of the modal µ-calculus. We
intend to consider how any of the proposed extensions would affect our monitorability results
and the extent to which they are implementable in practice. Other bodies of work take a
slightly different approach to monitorability, by weakening the completeness requirement
from their notion of adequate monitoring [5, 6]. It would be worthwhile exploring the effect
of having such weakened completeness requirements on the monitorability of session types.

Although we have limited ourselves to binary session, we plan to extend the framework
above to the static and run-time verification of multiparty and asynchronous sessions [38, 39].
This will most likely require us to consider communicating monitors, that cooperate to
aggregate observations made from analysing communications on distinct channels. For
multiparty sessions, we can benefit from previous work [54, 55] where lchannels is used to
implement multiparty protocols written in Scribble [58, 64]. Our implementations should also
benefit from insights gained from numerous work on decentralised runtime verification [15,
12, 25]. For both multiparty and asynchronous sessions, we can benefit from the research on
precise session subtyping [33, 32, 22].

In this work, our session monitors adhere to the “fail-fast” design methodology: if a pro-
tocol violation occurs, the monitor flags the violation and halts. In the practice of distributed
systems, “fail-fast” is advocated as an alternative to defensive programming [20]; it is also in
line with existing literature on runtime verification [13]. As mentioned above, an interesting
research direction is to adapt our session monitorability framework to suppressions [9], i.e.,
by dropping invalid messages without halting the monitor, as in [17].

Finally, we plan to investigate how to handle violations by adding compensations to our
session types – i.e., by formalising how the protocol should proceed if a violation is detected
at a certain stage. In this setting, the monitors would play a more active role in handling
violations, and their synthesis would need to be more sophisticated; this new research could
be related to the work on session recovery [49].

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:27

References

1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring
for silent actions. In FSTTCS, volume 93 of LIPIcs, pages 7:1–7:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework
for parameterized monitorability. In FoSSaCS, volume 10803 of Lecture Notes in Computer
Science, pages 203–220. Springer, 2018.

3 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang., 3(POPL):52:1–52:29, 2019. doi:10.1145/3290365.

4 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability. In SEFM, volume 11724 of Lecture Notes in Computer
Science, pages 433–453. Springer, 2019. doi:10.1007/978-3-030-30446-1_23.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
The best a monitor can do. In CSL, volume 183 of LIPIcs, pages 7:1–7:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability with applications to regular properties. Softw. Syst.
Model., 20(2):335–361, 2021. doi:10.1007/s10270-020-00860-z.

7 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. A
choreographed outline instrumentation algorithm for asynchronous components. CoRR,
abs/2104.09433, 2021. URL: https://arxiv.org/abs/2104.09433.

8 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. On benchmark-
ing for concurrent runtime verification. In FASE, volume 12649 of Lecture Notes in Computer
Science, pages 3–23. Springer, 2021.

9 Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On runtime enforcement
via suppressions. In CONCUR, volume 118 of LIPIcs, pages 34:1–34:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.34.

10 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all. In
POPL, pages 201–214. ACM, 2011. doi:10.1145/1926385.1926409.

11 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types
in programming languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016. doi:
10.1561/2500000031.

12 Duncan Paul Attard and Adrian Francalanza. Trace partitioning and local monitoring for
asynchronous components. In SEFM, volume 10469 of Lecture Notes in Computer Science,
pages 219–235. Springer, 2017.

13 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Lectures on Runtime Verification, volume 10457 of Lecture Notes in Computer
Science, pages 1–33. Springer, 2018. doi:10.1007/978-3-319-75632-5_1.

14 David A. Basin, Thibault Dardinier, Lukas Heimes, Srdan Krstic, Martin Raszyk, Joshua
Schneider, and Dmitriy Traytel. A formally verified, optimized monitor for metric first-order
dynamic logic. In IJCAR (1), volume 12166 of Lecture Notes in Computer Science, pages
432–453. Springer, 2020. doi:10.1007/978-3-030-51074-9_25.

15 Andreas Bauer and Yliès Falcone. Decentralised LTL monitoring. Formal Methods Syst. Des.,
48(1-2):46–93, 2016.

16 Jeremy Blackburn, Ivory Hernandez, Jay Ligatti, and Michael Nachtigal. Completely subtyping
iso-recursive types. Technical Report CSE-071012, University of South Florida, 2012.

ECOOP 2021

https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/s10270-020-00860-z
https://arxiv.org/abs/2104.09433
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1145/1926385.1926409
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-030-51074-9_25

20:28 On the Monitorability of Session Types, in Theory and Practice

17 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.
doi:10.1016/j.tcs.2017.02.009.

18 Alan Brown, Jerry Fishenden, and Mark Thompson. API Economy, Ecosystems and En-
gagement Models, pages 225–236. Palgrave Macmillan UK, London, 2014. doi:10.1057/
9781137443649_13.

19 Christian Batrolo Burlò, Adrian Francalanza, and Alceste Scalas. On the monitorability of
session types, in theory and practice (extended version), 2021. arXiv:2105.06291.

20 Francesco Cesarini and Simon Thompson. ERLANG Programming. O’Reilly Media, Inc., 1st
edition, 2009.

21 Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida.
Asynchronous distributed monitoring for multiparty session enforcement. In TGC, volume
7173 of Lecture Notes in Computer Science, pages 25–45. Springer, 2011. doi:10.1007/
978-3-642-30065-3_2.

22 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On
the preciseness of subtyping in session types. Log. Methods Comput. Sci., 13(2), 2017.
doi:10.23638/LMCS-13(2:12)2017.

23 Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin Hritcu, Benjamin C.
Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-policies: Formally verified,
tag-based security monitors. In IEEE Symposium on Security and Privacy, pages 813–830.
IEEE Computer Society, 2015. doi:10.1109/SP.2015.55.

24 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and python. Formal Methods Syst. Des., 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

25 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods Syst. Des., 54(3):336–363, 2019.

26 Adrian Francalanza. A theory of monitors - (extended abstract). In FoSSaCS, volume
9634 of Lecture Notes in Computer Science, pages 145–161. Springer, 2016. doi:10.1007/
978-3-662-49630-5_9.

27 Adrian Francalanza. Consistently-detecting monitors. In CONCUR, volume 85 of LIPIcs,
pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
CONCUR.2017.8.

28 Adrian Francalanza. A Theory of Monitors. Information and Computation, page 104704, 2021.
doi:10.1016/j.ic.2021.104704.

29 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,
Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In
RV, volume 10548 of Lecture Notes in Computer Science, pages 8–29. Springer, 2017.
doi:10.1007/978-3-319-67531-2_2.

30 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the hennessy-
milner logic with recursion. Formal Methods Syst. Des., 51(1):87–116, 2017. doi:10.1007/
s10703-017-0273-z.

31 Adrian Francalanza and Jasmine Xuereb. On implementing symbolic controllability. In
COORDINATION, volume 12134 of Lecture Notes in Computer Science, pages 350–369.
Springer, 2020. doi:10.1007/978-3-030-50029-0_22.

32 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program.,
104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

33 Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise
subtyping for asynchronous multiparty sessions. Proc. ACM Program. Lang., 5(POPL):1–28,
2021. doi:10.1145/3434297.

https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1057/9781137443649_13
https://doi.org/10.1057/9781137443649_13
http://arxiv.org/abs/2105.06291
https://doi.org/10.1007/978-3-642-30065-3_2
https://doi.org/10.1007/978-3-642-30065-3_2
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1109/SP.2015.55
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/978-3-030-50029-0_22
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/3434297

C. Bartolo Burlò, A. Francalanza, and A. Scalas 20:29

34 Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-typed concurrent contracts.
In ESOP, volume 10801 of Lecture Notes in Computer Science, pages 771–798. Springer, 2018.
doi:10.1007/978-3-319-89884-1_27.

35 Ruben Hamers and Sung-Shik Jongmans. Discourje: Runtime verification of communication
protocols in clojure. In TACAS (1), volume 12078 of Lecture Notes in Computer Science,
pages 266–284. Springer, 2020. doi:10.1007/978-3-030-45190-5_15.

36 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes in
Computer Science, pages 509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

37 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP, volume 1381 of
Lecture Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

38 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

39 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

40 Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon, and Kohei Honda.
Practical interruptible conversations - distributed dynamic verification with session types and
python. In RV, volume 8174 of Lecture Notes in Computer Science, pages 130–148. Springer,
2013. doi:10.1007/978-3-642-40787-1_8.

41 Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. Gradual session
types. Proc. ACM Program. Lang., 1(ICFP):38:1–38:28, 2017. doi:10.1145/3110282.

42 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In POPL, pages 582–594. ACM, 2016. doi:10.1145/2837614.
2837662.

43 Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms for run-
time security policies. Int. J. Inf. Sec., 4(1-2):2–16, 2005. doi:10.1007/s10207-004-0046-8.

44 Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. On subtyping-relation completeness,
with an application to iso-recursive types. ACM Trans. Program. Lang. Syst., 39(1):4:1–4:36,
2017. doi:10.1145/2994596.

45 Kim Guldstrand Larsen Luca Aceto, Anna Ingólfsdóttir and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

46 Hernán C. Melgratti and Luca Padovani. Chaperone contracts for higher-order sessions. Proc.
ACM Program. Lang., 1(ICFP):35:1–35:29, 2017. doi:10.1145/3110279.

47 Network Working Group. RFC 5321: Simple Mail Transfer Protocol. https://tools.ietf.
org/html/rfc5321, 2008.

48 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In CC,
pages 128–138. ACM, 2018. doi:10.1145/3178372.3179495.

49 Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In CC, pages 98–108. ACM, 2017. doi:10.1145/3033019.

50 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: local verification of global
protocols. In RV, volume 8174 of Lecture Notes in Computer Science, pages 358–363. Springer,
2013. doi:10.1007/978-3-642-40787-1_25.

51 Doron A. Peled. Specification and verification using message sequence charts. Electron. Notes
Theor. Comput. Sci., 65(7):51–64, 2002. doi:10.1016/S1571-0661(04)80484-5.

52 Iain Phillips. Refusal testing. Theor. Comput. Sci., 50:241–284, 1987.
53 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
54 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of

multiparty sessions for safe distributed programming. In ECOOP, volume 74 of LIPIcs, pages
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ECOOP.2017.24.

ECOOP 2021

https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1145/3110282
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1145/2994596
https://doi.org/10.1145/3110279
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3033019
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1016/S1571-0661(04)80484-5
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

20:30 On the Monitorability of Session Types, in Theory and Practice

55 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition
of multiparty sessions for safe distributed programming (artifact). Dagstuhl Artifacts Ser.,
3(2):03:1–03:2, 2017. doi:10.4230/DARTS.3.2.3.

56 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

57 Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000. doi:10.1145/353323.353382.

58 Scribble homepage, 2020. URL: http://www.scribble.org.
59 SecuritySpace. Mail (MX) server survey, 2021. URL: http://www.securityspace.com/s_

survey/data/man.202103/mxsurvey.html.
60 Paula Severi and Mariangiola Dezani-Ciancaglini. Observational equivalence for multiparty

sessions. Fundam. Informaticae, 170(1-3):267–305, 2019. doi:10.3233/FI-2019-1863.
61 Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static specification mining

using automata-based abstractions. In ISSTA, pages 174–184. ACM, 2007. doi:10.1145/
1273463.1273487.

62 Fu Song and Tayssir Touili. Model-checking software library API usage rules. In IFM,
volume 7940 of Lecture Notes in Computer Science, pages 192–207. Springer, 2013. doi:
10.1007/978-3-642-38613-8_14.

63 Lucas Waye, Stephen Chong, and Christos Dimoulas. Whip: higher-order contracts for modern
services. Proc. ACM Program. Lang., 1(ICFP):36:1–36:28, 2017.

64 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble protocol
language. In TGC, volume 8358 of Lecture Notes in Computer Science, pages 22–41. Springer,
2013. doi:10.1007/978-3-319-05119-2_3.

https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/353323.353382
http://www.scribble.org
http://www.securityspace.com/s_survey/data/man.202103/mxsurvey.html
http://www.securityspace.com/s_survey/data/man.202103/mxsurvey.html
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1007/978-3-642-38613-8_14
https://doi.org/10.1007/978-3-642-38613-8_14
https://doi.org/10.1007/978-3-319-05119-2_3

	1 Introduction
	2 Process Calculus and Session Types
	2.1 Process Calculus
	2.2 Binary Session Types
	2.3 Session Typing System

	3 A Formal Model for Monitoring Sessions
	3.1 Monitor and Instrumentation Design
	3.2 A Monitor Calculus
	3.3 Composite Monitored System
	3.4 Monitor Synthesis

	4 Formal Analysis and Results
	4.1 Soundness of Session Type Monitoring
	4.2 On the Completeness of Session Type Monitoring
	4.2.1 Weak Monitor Synthesis Completeness
	4.2.2 Impossibility of Sound and Complete Session Monitoring

	5 Realisability and Implementation
	5.1 Introducing Assertions in Session Types Specifications
	5.2 Implementation

	6 Empirical Evaluation
	7 Conclusion
	7.1 Related Work
	7.2 Future Work

